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Introduction. 

Generalized harmonic analysis represents the culmination and combination 

of a number of very diverse mathematical movements. The theory of almost 

periodic functions finds its precursors in the theory of Dirichlet series, and in 

the quasiperiodie functions of Bohl and Eselangon. These latter, in turn, are 

an answer to the demands of the theory of orbits in celestial mechanics; the 

former take their origin in the analytic theory of numbers. Quite independent 

of the regions of thought just enumera~d, we have the order of ideas associated 

with the names of Lord l~yleigh, of Gouy, and above all, of Sir Arthur Schuster; 

these writers concerned themselves with the problems of white light, of noise, 

of coherent and incoherent sources. More particularly, Schuster was able to 

point out the close analogy between the problems of the harmonic analysis of 

light anit the statistical analysis of hidden periods in such scientific data as are 

common in meteorology and astronomy, and developed the ext remely  valuable 

theory of t h e  periodogram. The work of G. I. Taylor on diffusion represents 

another valuable anticipation of theories here developed, from the standpoint of 

an applied mathematician of the British school, with preoccupations much the 

same as those of Schuster. 

The work of Hahn seems to have a much more definitely pure-mathematics 

motivation. To the pure mathematician in general, however, and the worker in 

real function theory in particular, we owe, no~ so much the setting of our pro- 

blem, as the chief tool in its attack: the famous theorem of Plancherel, the proof 

of which Titehmarsh has extended and improved. 

I t  may seem a little strange to the reader that the present paper should 

contain y e t  another proof of this much proved theorem. In view, however, of 

the centralness of the Plancherel theorem in all that is to follow, and more 

expecially of the fact that the proof here given furnishes an excellent introduc- 

tion to the meaning and motivation of our proofs in more complicated cases, 

it has seemed worth while to prove the Plancherel theorem in full. 

T h e  germs of the generalized harmonic analysis of this paper are already 

in the work Of Schuster, but only the germs. To make the Schuster theory 

assume a form suitable for extension and generalization, a radical recasting is 

necessary. This recasting brings out the fact that the expression 
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T 

--T 
O. I)  

plays a fundamental part in Schuster's theory, as does also 

2~ f e iux- 1 S(u) = q (x)--ix dx. (o. 2) 
- - c o  

Accordingly, section 3 is devoted to the independent study of these two expres- 

sions, and to the definition .of S(u) under appropriate assumption as the spectrum 
off(x). 

There are some interesting relations between the total spectral intensity of 

f(x) as represented by S(u) and the other expressions of the theory. Some of 

these demand for their proper appreciation a mode of connecting various weighted 

means of a positive quantity. The appropriate tool for this purpose is the general 

theory of Tauberian theorems' developed by the author and applied to these 

problems by Mr. S. B. Littauer. 

These latte r Tauberian theorems enable us tO correlate the mean square 

o f  the modulus of a function and the ~quadratic variatiom) of a related function 

which determines its harmonic analysis. The theory of harmonic analysis here 

indicated has been extended by Bochner to cover the case of very general func- 

t i o n s b e h a v i n g  algebraically at infinity. A somewhat similar, theory is due to 

Hahn, who is, however, more interested in questions of ordinary convergence 

than in those clustering about the Parseval theorem. 

The theory of generalized harmonic analysis is itself capable of extension 

in very varied directions. Mr. A. C. Berry has recently developed a vectorial 

extension of the theory to n dimensions, while on the other hand, .the author 

himself has extended the theory to cover the simultaneous harmonic analysis of 

a set of functions and the notions of coherent and incoherent .sources of light. 

A third extension depends on the replacement of the translation group, funda- 

mental in all harmonic analysis, by another group. 

To prove that the theory is not vacuous and trivial, it is of importance to 

give examples of  different types of spectra. We  do this, both by direct methods, 

and by methods involving an infinite series of. choices between alternatives of 

equal probability. The latter method, of course, involves the assumption of. the 
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Zermelo axiom: on t h e  other hand, it yields a most interesting probability theory 

o f  spectra. This theory may be developed to cover the case where the infinite 

sequence of choices is replaced by a haphazard motion of the type known as 

Brownian. 

The spectrum theory of the present paper has as one very special applica: 

tion the theory o f  almost periodic functions. I t  is n o t  difficult to prove that 

the spec t rum of such a function contains a discrete set of lines and no cont- 

inuous part, and to deduce from this, Bohr's form of the Parseval theorem. The �9 

transition from the Parseval theorem to the Weierstrassian theorem that it is 

possible to approximate uniformly to any almost periodic function by a sequence 

of trigonometrical polynomials follows essentially �9 laid down :by Weyl, 

though it differs somewhat in detail. 

Besides the well-known generalizations of almost periodic functions due to 

Stepanoff, Besicovitch, Weyl, and the author, there is the little explored fi~ld 

of extensions of almost periodic functions containing a parameter. These have  

been used by Mr. C. F. Muckenhoupt to prove the closure of the set of the 

Eigenfunktionen of certain linear vibrating systems. "This is one Of the few 

applications of almost periodic functions of a fairly general type to definite 

mathematicophysical problems. Our last section is devoted to this, and to related 

matters. 

CHAPTER I. 

i ~ P l a n c h e r e l ' s  t h e o r e m .  

Planeherel's theorem reads as follows: L e t f ( x ) b e  quadraticallg summable 

over (--oo, oo) in the sense of Lebesgue - -  that is, let it be measurable, and let 

f l f (xl l 'dx ( i .oi)  

exist and be finite. (i.e. f cL~). Then 

A 

= 1.i.m. f (i. 
- - A  



Generalized Harmonic Analysis. 

(where 1.i.m. stands for ~)limit in the mean~)) will exist, and 

121 

A 

f(x)'----1.i.m. I f 

- - A  

( I .  0 3 )  

g'(u) is known as the ))Fourier transforms) of f(x). 

If(x) if I xl  < :1, 
J:, ,(x)--] o if lxl>--A. 

Let us represent f.l(x) over ( - -2A,  2A) by the Fourier series 

To prove this, let us put  

(I. 04) 

Then 

i n ~ x  

A (x) ~ F, a,,e'~:' 
- - 3  

2 A  . 

- - ~  - -2  A 

2 A  

---oo - -2  A 

(~. o5) 

= ~, 4 A l ~ n l ' e ' ~ .  (,. 06) 

This series of equations merits several comments. First, the infinite inte- 

grals which appear are infinite in appearance only, as the integrand vanishes 

beyond a certain point. Secondly, the period chosen for the Fourier representa- 

tion of fA(X) is twice the length of the interval over which fA(x) may differ 

from o, so that  one period of fA(x+ ~) may overlap not more than one corres- 

�9 f ponding period of j](~). Third, the function f~(x+~)fA(~)d~ has a Fourier 

development which possesses only positive coefficients, and is absolutely and 

uniformly convergent~ as follows at once from the tturwitz theorem. The 

positiveness of the Fourier coefficients of this function forms the point of de- 

parture for the greater part of the present paper. 
1 6 - - 2 9 7 6 4 .  Acta mathemati~a. 55. I m p r l m 6  le 7 a v r i l  1930. 



122 Norbo.rt Wiener. 

I t  follows at  once tha t  

| 2a 2 N + I  

f f a  =~ fsin ~(x-Y).4~].. sin -~ (xT--Y-) - 
I . . . . . . .  _4 ~ -  

-| --2 A 4 A 

eaO 

f fa(y + ~).fa (~)d~. (I. 07) 

However, Lebesgue's fundamenta l  theorem on the Fourier  coefficients, to the 

effect tha t  they always tend to zero, yields us 

. 2A 

~'--| 4 A  sin 4 A - -  z (  y) 
--2 A s i n  g ~ - Y  

oo 

~ 0 .  (r. 08) 

Combining these two relations, we see tha t  

A o o  

dx 

2 N + I  / -- lim - dy f~(y+~)fA(~)d~ 
I v . - . . . ~  y 

- - 2  A - - o 0  

2N+I  

= f a,, f cos u,, a" f (V + 
- -  o~ 0 - -  oo 

oO oO oO 

- - - -  u ~ ~ e iu(~-~) d 
2 ~  

= du f(V) e ,~,~ d~ �9 
- - ~ 0  - - A  

(I. 09) 

The inversions of the order of integrat ion are here justified by the fact  tha t  

all the infinite limits are merely apparent,  and are introduced to simplify the 
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formal work of inversion. I f  we replace fa(x) by the function fB(x)--fA(x) which 

has essentially the same properties, we see that 

B A ao .B A 

f f If f [f(x)l~dx _ x)l~ dx -- 2 du f(u)d,,'Td~i -- f(u)e'Und �9 (i. io) 
- - B  - - A  - - ~  - - B  - - A  

f 
In case ]f(x)]*dx exists, 

B A 

f If f I' lim du f(v)d"'~d~]-- f(u)e'"'ldv = 0  (I. IX) 
J~', A~ce  

- - ~  - -B --A 

and we may use Weyl's lemma to the "Riesz-Fischer theorem to prove that 

A 

,f g(u) = 1.i.m.-===- f (v)d'~d~ (I. t2) 
A ~  V 2  ]1: 

--A 

exists, and is ~quadratically summable>>. Combining this definition of g(u) with 

(I. o9). we see that  

f , g ( u ) , S d u = f , f ( x ) . ' d x .  ( I .  I 3 )  

--00 --:1o 

That is, the integral of the square of the modulus of a function is invariant 

under a Fourier transformation. 

To complete the proof of Plancherel's theorem, it is merely necessary to 

show that for functions f(x) of some closed set, 

A 

f ( x ) =  l.i.m. I ( a--= i/2:=~ .~ g(u)e-'U~du. (I. '4) 

--A 

A particular choice of f(x) is the following: 

o; I x < . ]  
f (x )=  ~; [ ~ < x < # ]  (i. ~5) 

o; i# < x]. 
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Here  

I j e iuz dx  -~ eiUr 
g(u) - V2  ~i iu  V-2-~ 

Hence  
A A i /  / l .Lm. --=- g(u)e--~"~du = l.i.m. _ I  eiU(~-~)--e i'*(~-~) 

A--~ V2 ~r A--~ 2 ~ iu  
- - A  - - A  

du 

A 
= l . i . m .  I f s i n u ( f l . x ) - s i n u ( a - - X ) d u  

--A 

(I. 16) 

= ' [sgn ( ~ - . ) - s g n  (~-.)] 
2 

=f(x) (I. 17) 

except possibly at the two points a and fl, a set of zero measure.  

the proof of Planeherel 's  theorem. 

Plancherel  states this theorem somewhat  differently. 

g(u) as 

d I f f g(u)--  d u V - 2 z  d~ f(v)e'"~dv. 
- -ao 0 

This completes 

He  essentially defines 

(I. I8) 

I f  we retain 

inequality that 

our definition, it follows from an elementary use of the Schwarz 

f ~ f f  g ( v ) d v - - v 2  ~ dv f(v)e'~ndv. (I. I9) 

To see this, les us reflect tha t  

u A u 

[f ---I fd'~f f('J)e'~€ g(v)dv 1/.2~: 
0 ~ A  0 

I [? ;] r dv = l i m  ~ av + f(v) d~  av 

0 A - - B  

u u B --A 

{~f fl[f f] [' }'~, --< lira dv + f(~) e ~n d~ dv 

0 0 A - - B  
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r B --A 

w B  . 

= u § I f ( v )  I s 

and since fl:f(v)l*dv is finite, it follows that  

lim [ g(v) dv I dv V) er dv = o. 
A ~ a e  

0 --A 0 

From this (I. 19) follows at once. Since a summable function is almost every- 

where the derivative of its integral, the transition to Plancherel 's form of the 

definition is immediate. 

I t  follows at once from Planeherel 's theorem that  if f l (x  ) and f~(x)are" 

quadratically summable, 

and 

exist, and that  

A 

F l ( u ) = l . i . m .  I f 

--A 

A 

F~(u) = 1.i.m. I f a-~ ~ A(x) 
--A 

d x  (i. 20) 

e iux d x  ( I .  2 I )  

and 

f lFl(u) + ~(u)I s d,, = f IA(x) + A(x)I s dx 

- - o o  - - o o  

I.  22) 

( I .  23)  

Combining the last four formulae with one another, we have 



126 Norbert Wiener. 

/ / .F~(u)~'s(u)du= f~(x)fr~(x)dx. (i. 24) 

This we may know as the Parseval theorem for the Fourier integral. Since 

A 

F~(--u) = 1.i.m. I fz (x) 
--A 

we may deduce at once that  

dx (i. 25) 

Since furthermore 

it follows that  

B 

.F~(v--u) = 1.i.m. I fz ~-~  _/~% (.) e,,x e,u,, ~x 
--A 

/ / F,(u)F,(v--u)du= A(x)s 
- -  c ~  - -  r s o  

(I. 26) 

( I .  27) 

( I .  28) 

As a consequence, if fl(x)f,(x) is quadratically summable, its Fourier transform is 

This theorem lies at the basis of the whole operational calculus. 

(i. 29) 

2. Sehuster 's  periodogram analysis. 

The two theories of harmonic analysis embodied in the classical Fourier 

series development and the theory of Plancherel do not exhaust the possibilities 

of harmonic analysis. The Fourier series is restricted to the very special class 

of periodic functions, while the Plancherel theory is restricted to functions which 

are quadratically summable, and hence fend on the average to zero as their 
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argument tends to infinity. Neither. is adequate for the treatment of a my of 

white light which is supposed to endure for an indefinite time. Nevertheless, 

the physicists who first were faced with the problem of analyzing white light 

into its components had to employ one or the other of these tools. Gouy 

accordingly represented white light by a Fourier series, the period of which he 

allowed to grow without limit, and by focussing his attention on the average 

values of the energies concerned, he was able to arrive at results in agreement 

with the experiments. Lord Rayleigh on the other hand, achieved much the 

same purpose by using the Fourier integral, and what we now 2hould call 

Plancherel's the(~rem. In both cases one is astonished by the Skill with which 

the authors use clumsy and unsuitable tools to obtain the right results, and one 

is led to admire the unfailing heuristic insight of the true physicist. 

The net outcome of the work of these writers was to dispel the idea that  

white light consist in some physical, supermathematical way of homogeneous 

monochromatic vibrations. Schuster in particular, was led to the conclusion 

that when white light is analyzed by a grating, the monochromatic components 

are created by the grating rather than selected by it. Thus a great stimulus 

was given to the inves.~igation of the sense in which any phenomenon may be 

said to contain hidden periodic components. The successful completion of this 

investigation is also due t o  Schuster. 

Schuster sums up his conclusions as follows~; ,~Let y be a function of t, 

such that its values are regulated by some law Of probability, not necessarily 

the exponential one, but acting, in such a manner that if a large number of 

t be chosen at random, there will always be a definite fraction of that  number 

t~ only, which lie between t~ and t I + T ,  where T is any given depending on 

time interval. 

~ Writing 

and forming 

t~-}- T t~ + T 

A-= f ,cosxtdt and B =  f y s i n x t d t ,  

t! 11 

R - V~4-~ + ~/~, 

the quantity R will, with increasing values of T, fluctuate about some mean 

value, which increases proportionally to ~ I '  provided T is taken sufficiently 

large. 
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>)If this theorem is taken in conjunction with the two following well-known 

propositions, 

(I) I f  y----cos xt, R will, 

ally to T; 

(2) If  y = e o s l t ,  1 being 

about a constant value; 

apart from periodical terms, increase proportion- 

different from x, the quantity R wiU fluctuate 

it is seen that  we have means at our disposal to separate any true periodicity 

of a variable, from among its irregular changes, provided we can extend the 

time limits sufficiently . . . .  The application of the theory of probability to 

the investigation of what may be called ~)hidden>> periodicities . . . may be further 

ex tended . . . ; )  

While Schuster's statement is perhaps not in all respects clear, it contains 

the germs of all subsequent generalizations of harmonic analysis. First among 

these is the emphasis on the notion of the ~nean. The operator which yields 

r--~-(T y e o s x t d t  or Bi = limT--~ -~i y s i n x t d t  (2. oI) 

tl t, - 

annihilates all functions y(t) made up in a purely fortuitous or haphazard man- 

ner, as well as all trigonometrical functions other than cos x t or sin x t, respectively. 

Hence we may take Aj and B1 to indicate the amounts of cos xt or sin x[ 

contained in y. As a simultaneous indication of these two quantities, neglecting 

phase, Schuster takes ~ A  ~, +B~ which he Supersedes in his ldter papers by the 

somewha.t simpler expression A~ + B~. 

I t  is possible to lend a certain plausibility to this later choice of Schuster 

as contrasted with his earlier, by considering the expression 

I f  

we have 

T 

~ ( X )  = l i r a  I f f (  
- - T  

N 

f ( t )  = ~-a a"dx~t ' 
1 

N 

I 

(2.  0 2 )  

(2. o3) 

(2.04) 
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T 

O(Z,,) = [ a~ I s = lim ' f T--o~ ~TT qD (x) e - a .  z dx. 
- - T  

(2.05) 

This funct ion 99(t) differs f rom f ( t ) i n  tha t  every empli tude of a t r igonometr ic  

t~rm in f ( t )  is replaced by the square of its modulus. 

The expression [an[3 is necessarily positive. I t  is, however, unobservable in 

any actual  case, as we only have a f ini~ interval of time at our disposal. Let  

it be noted that if we put 

T 

' f  99'T(X) = ~ f ( x + t ) f ( t ) d t  (2.06) 

- - T  

and 
T 

O'r(Z,) = ~ qJT(X) e -an~ dx ,  (2.07) 

- - T  

it  is not necessarily t rue tha t  Q'T is non-negative. On the other  hand, if we put  

and 

then 

fA(t)=-f(t) [] t] < A]; fA( t ) - -o  otherwise 

' f f A ( x + t ) f A ( t ) d t  

ea (]~) = ~-~ A x e-i~',~ dx  = t e-ant dt  > 

- - o o  - - o o  

(2.08) 

(2. o9) 

o .  

This suggests an improved method of t reat ing the approximate periodogram of 

a funct ion under  observation for a finite time. 

The periodogram of a funct ion - -  tha t  is, the graph of the discontinuous 

funct ion Q(~n) or its approximate cont inuous analyses QA(k,) - -  contains but  a 

Small amount  of the information which the complete graph of the original June- 

�9 tion is able to yield. Not  only do we deliberately discard all phase relations, 

but  a large par t  of the original funct ion - -  often the most  interest ing and im- 

por tan t  par t  - -  is th rown away as the aperiodic residue. The chief reason for 

this tha t  any measure for a continuous spectral density becomes infinite at  a 
1 7 - - 2 9 7 6 4 .  Acta matheraatica. 55. I m p r i m d  le 7 avr i l  1930. 



130 Norbert Wiener. 

spectral line, while any measure for the intensity of a spectral line becomes zero 

over the continuous spectrum. 

This is a difficulty, however, which has had to be faced in many other 

branches of mathematics and physics. Impulses and forces are treated side by 

side in mechanics, although they have no common unit. We are familiar in 

potential theory with distributions of charge containing point, line, and surface 

distributions, as well as continuous volume distributions. The basic theory of 

all these problems is that of the Stieltjes integral. 

Let us put 

S(~)= I f d ~''- 2:;r~ ~(X)--ix Idx" (2. I f )  

Here the term I is introduced to cancel the singularity which we should other- 

wise find for x=:o. We have formally and heuristically 

Now, 

f eiz(u+~)_eiz(u_E ) S(u+o)--S(u--o) = lira ~(~) 
~ o  2 1 f ix  

oo 

= ~--0 l i m ~  z / q~(x)e''~sinx ~ x  dx 

dx 

] / "n 
= l i r a  ! d~ ~(x)d "~ ~-1 eXdx 

v--o ~ 
0 - - o o  

-- ,r--01im rllr / q ~  (x) e i'~ _I ---CO S l ]  "~z2 ~]X dx 

T 2 I - - c o s  

d x .  

ao 

-= lira ~ ~o (x) d"" 
T ~ r  X~ 

~ a o  

X ~ 

(2. 12) 

(2. I3) 
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is a positive function assuming the value I/2 for x = o ,  with a graph with a 

scale in the x direction proportional to T, and wi~h a finite integral. Hence, 

it does not seem amiss to consider S(u+o)--S(u-o)except for a constant factor, 

as the same expression as #(u). We shall later verify this fact in more detail 

aad with more rigor. On the other hand, again formally, 

S'(u)= I f (2. '4) 

Thus in case ~(x) is of too small an order of magnitude to possess a line 

spectrum, S(u) still has a significance. We shall interpret its derivative as 

meaning the density of t h e  continuous portion of the spectrum o f . f  (t). 

The graph of S(.u) shall be called the integrated periodogram of f(t). We 

shall show later that  under very general conditions, it may be so chosen as to 

be a monotone non-decreasing curve. The amount of  rise of this curve between 

the arguments indicates the total intensity of the part of the spectrum lying 

between the frequencies. This shift of our attention from the perjodogram itself 

to the integrated periodogram, which is monotone but not necessarily every- 

differentiable, is as we have said of the same nature as the shift from where 

g (x) in 

to  (x)in 

.f/(x) g(x) dx (2., 5) 

f f(x) da(x). (2. I6) 

I wish to remark in passing that the formulae for the integrated period- 

ogram are at least as convenient for computational purposes as the formulae of 

the Schuster analysis, that the monotony of t h e  intergrated periodogram avoids 

the possibility of overlooking important periods by an insufficient search, while 

it gives an immediate indication of empty parts of the spectrum which need no 

further exploration; and that the computation of ~(x) and S(u) may be performed 

by such instruments as the product integraph of V. Bush. I a l sowish  to call 

attention to a practical, study of these modified periodogram methods by Mr. G. 

W. Kenrick of the Massachusetts Institute of Technology. 



132 Norbert Wiener. 

CHAPTER II. 

3. The spectrum of an arbitrary function of  a single variable. 

The present section is devoted to the rigorous delimitation and demonstra- 

tion of the theorems heuristically indicated in section 2. Let f(t) be a measur- 

able function such that 
T 

q~(x)--_im 2 7  f (x+t ) jc ( t )d t  (3. oi) 
- - T  

exists for every x. This is the sole assumption necessary in the present section. 

By the Schwarz inequality 
T T 

~(~) ~- ,  ~ rt f If(x If(t) 
- - T  - - T  

It follows from this that q~(x) is bounded. To show this, it is only necessary 

to prove that 
T T 

f lim I / I~ I r--| ~ I f ( x + t )  d r = l i r a  I f ( t ) l ' d t=qD(o) .  (3.03) 
T ~  

- - T  - - T  

We have 

T T 

I I f ,, I I f (x  + t) dr--  I 

- - T  - - T  

T+x --T+z 

T --T 

T+z --T+z 

T NT 
T + z  T ~ x  

< ~ t l l ,  d t  - I 

--T---z --T+x 

T + x  

= l( ~+ >)~-(Lx, f,*(*,,'~*-(I- T ) - - - -  
- T--x 

r - - x  

1f,  I 2(T--x) If(t) dt  . (3.04) 
- - T + z  
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Hence 

T T 

iim [' f ~ f ,:<,>,,~,[ ~_| f~r I f ( x+ t ) l ' d t -  
- - T  - - T  

T+x 

r-| 2(T+ x ) I f ( t ) l " d t  
�9 - -  T - - X  

T--.I~ 

~.) ~/x> f t:('> i' ~' I 
- - T + z  

Therefore 

and 9(x) is bounded. 

As before, we put 
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= o .  (3.05) 

190(x) l <- 90(o), (3.06) 

' fA ,~  (~) = ~ ] (x 
- - 0 0  

x+t)l~dt Ifa(t)l*dt 
- - o o  - - o o  

By the Schwarz inequality 

I 
I~oA(x)l-< 

(3.07) 

(3. o8) 

and 9a(x) is uniformly bounded in x and A for all values of A larger than 

some given value. Furthermore, if x > o, 

if 9a(x) = ~-~ f(x+t)f(t)dt 
- - A  

A A 

_ I f  - ~ f:<.+t,j<,l~,. 2A f(x+t)f(t)dt--2A 
- - A  A - - x  

(3.09) 

We shall have a similar formula in case x is negative. We have further- 

more 
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Since 

it follows at once that  

A 

A - - x  

"1 / -  A + x  " A 

' V / '  f' <~ ~ f ( t )  1' dt  f ( t )  1~ 

A - - x  

A+x 

IIf I --< ~ - ]  If(t) I ~ dt  . 

A--x 

A + x  

a - - |  t) l~dt = o ,  

A - - x  

dt  

(3. io) 

(3. If) 

A 

l i m g A ( x ) = l i m  I f a--| . 4 ~  2 A  f ( x +  t ) f ( t )d t - -9(x)"  
- - .4  

(3. i2) 

Thus 9(x) is the limit of a uniformly bounded sequence of measurable functions, 

and is measurable. Since it is also bounded, it is quadratically summable over 

any finite range, while 9(x)/x  is quadratically summable over any range excluding 

the origin. I t  is, moreover, easy to prove that  

9 ( x ) = l . i . m .  ~A(x) (3. I3) 
A ~ o o  

over any finite range, and tha t  

-,,t~_~x, = 1.i.m. CA(x) (3. x4) 
A ~ ~  X 

over any range excluding the origin. Hence,  

, ~ sin # x  ~(x) sin/*x --  1.i.m. qoatx) : �9 (3. IS) 
X A ~ r  X 

In  as much as the F o u r i e r t r a n s f o r m a t i o n  leaves invariant  the integral  of the 

square of the 'modulus of a function, and. hence .leaves invariant  all properties 

of convergence in the mean, 

. . . .  sin I~x eiUX d x  = 1. i .m.  ~ �9 ~0a (x) s i n / ~ x  
N ~  X X 

__/~r �9 - - a o  

e iuz d x  
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= I I . i . m .  ( d g  (9~a(x)[dt"+~)X+e'("-~)~] 
2 A _ ~ j  j 

0 - - a o  
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dx. (3. 16) 

The inversion of the order of integrat ion is justified as usual by the fact tha t  

the infinite integrM is only apparently infinite. This, let me remark parenthetic- 

ally, is the case also in the next set of formulae. 

The last expression is the l imit  in the mean of a real non-negative quan- 

ti ty, for 

o~ oo 

f ,j~,,~fs. ~.,(x)~."~dx = F~4 ,(~ + tlj'A(t) d t  

ao oo 

I f~l>d f<,l > 2A t t x+ t  
- - c ~  - - o o  

et*Zdx 

c~ oo  

, f ~  f<,~ 2A (t)dt w)e '*(w t)dw 

t o  

i If<-,> I' 2 A W e i~w d w  :> O. 

m o ~  

(3. I7) 

The limit in the mean of a funct ion is determined with the exception of a set 

of points of zero measure, but  the limit in the mean of a non-negative funct ion 

may always be so chosen as to be non-negative. I f  we make this choice, 

The expression 

N 

f 
- - N  

.A --1 

If  f]  --, a,(u)--- l . i .m. I + 9~ ~x 

I - -A 

O. (3" I 8 )  

d x  �9 I9) 
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exists, 

over, 

exists. 

we have 

as the 

I f  we put  

Four ier  t ransform of a quadrat ical ly summable funct ion.  More- 

1 

�9 f e ; ~ ' ' -  I a , (u )  = I ~ ( X ) - - 7 - -  d x  
s x  

- 1  

o (u) = , ,  (u) + .~ (u) 

A 

a(u + ~)--a(u--I~)~- l.i.m. ' f " ,sin,x, _ a--| ~ ~(x) x - -e"~dx  > 
- - A  

(3.20) 

(3.21) 

O. (3" 22) 

Of course, when we say tha t  a l imit  in the mean is non-negative,  we merely 

mean tha t  i t  can be so chosen. Thus the expression a(u) is monotone,  or at  

least can be so chosen, for  example, by put t ing  

-u 

d f.(u)du ~(~1 = 
0 

(3.23) 

a t  every point  where the la t ter  expression is defined. Here  we introduce (3.23), 

because a(u) is now almost  everywhere the  limit of the difference quot ient  of 

- -  a(u) du, which is monotone  as a consequence of (3.22). 
�9 2 8  

0 u--~ 

Thus,  except  a t  a set of zero measure,  a(u) is the limit, not  merely the limit in 

the  mean, of a set of monotone  functions,  a n d  is monotone.  Elsewhere,  at  a 

set of zero measure,  we put  

[~(~ ~ o) + ~(~-o)]. ~(~)--~ (3: 24) 

I t  follows tha t  a(u + i~)-a(u--I~) is of l imited total  var ia t ion over any finite 

interval.  W e  shall show in the next  paragraph tha t  

lira [a(u + l a) - -  a ( u - - # ) ]  

is finite, and tha t  hence a(u+g).--a(u--g) is of l imited total  var ia t ion over 

( - - ~ ,  ~ ) .  I t  is moreover,  quadrat ical ly summable ,  as the Four ier  t ransform �9 of 
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a quadratically snmmable function. I t  tends to o as u ~ +  ~ and hence, by a 

theorem of Hobson 8, we have 

~- [~(u + o + , ) -~ (u  + o-r.)  + . ( u - o  + ~ , ) - . ( u - - o -  t,)l 

00 

f , "VXe I S l  
~ - -  X 

In  particular, if u=tt=v/2, 

dx. (3.25) 

�89 [.(v + o) + o(v-  o)] - ~  [.( + o) + . ( -  o)] 

I f  therefore .we define 

S(u) will exist, and 

r 

i f e it 'x- I 

caO 

8(~ )=  x f e"~-I 2~ 9 (x) - - i x  -- dx, 

s(u)-~(u) = constant. 

dx. (3" 26) 

(3.27) 

(3.28) 

4. The to ta l  spectra l  i n t e n s i t y .  

I t  is manifest  tha t  lira [S(u+lz)--S(u--I~)], or as we shall write it, S(oo)-- 

- -S(- -oo) ,  if it  exists, is a measure of the total  spectrM intensi ty  of f(x). We 

shall p rove . tha t  this quanti ty exists and is finite. 

W e  have 

A A B 

0 0 - - B  

(4- oi) 

The l imit  in the mean is here taken with u as the fundamenta l  variable, and 

with /x as parameter. I t  is not difficult to deduce . f rom the boundedness of 

2[ oo 

8 sin~/zx f dF, f lqD(x)l ~ d x  
0 --ao 

t ha t  we may invert the order of integration,  and get 
1 8 - - 2 9 7 6 4 .  A c t a  m a t h e m a t l c a .  55.  l m p r i m 4  le 7 a v r i l  1930.  
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A B 

- -  1 . i .m.  ~ ( x )  I - - e o s A x  
A X ]  B--| x ~ 

0 - - B  

e iux  d x .  (4. o2) 

To show this, let us remark tha t  

A B A C 

fl'f ~.mf ...... ' f  f..~'o,~,., l ~ -Z--.i d~t " qD(x)Sinttxd"dXx ~ dl~ q~ix)- -x--e  dx  

- - ~  0 - - B  0 - - C  

du 

Qo A B - -C  

_ .~,,flf,,l;.m.[f+f 1 1  ~9,XJ' ' sin"/iua''ff-e ax[ 
- - ~  0 C - - B  

$ 

d u 

A A 11 - - C  

I f  f f] [f f] singxi,,Xdx F < ~-A- ~ du dg, 1 . i .m.  + ~ ( x )  . . . . .  e 
B ~  3? 

--r 0 0 C - - B  

d~t 

A ~ B - - C  

-- ~,~' f ~. f ~ ]'~e - If+ f] ~(*)sin~'xe'~ dx] 
0 - - ~  C - - B  

A ao --(7 

~f [f  f]  -#A d~ + I~(x)l'sin'~x- x~ d x. 
0 C - - z o .  

(4. 03) 

Inasmuch  as this lat ter  expression tends to o with increasing C, 

A B A C 

f f s in  ~ X  I f,,sin~txi,. -i'~dx-= 1.i.m. ~ f dg dx  
I 

~r-~[ d #  1 . i .m.  ~ ( x )  . . . . . .  e B--~ x c-.| z A  J qp(x)---X---e ~ 
0 - - B  0 ---C 

B A 

=l,m I f  e"'f B~| ~ r  sin rex dtt 

- - B  0 

B 

I . f I - - C O S  -- ; A l .  l m . j q ~ ( x )  - ~  AXe'"Xdx, (4. o4) 

- - B  

thus proving our statement.  

Our limit in the mean may be replaced by an ordinary limit, as this limit 

exists, owing to the boundedness of ~(x). Therefore 
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a c~ 

,-oo  x 
lim - [a(u.+#)--a(u--#)] d # -  lim I ~ ( X )  X2 

A ~  " A ~ o  

0 - - ~  

e ~ dx. 
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(4. o5) 

I t  follows from the monotony of a(u+#)- -a(u- -#)  in # that  we may write 

lira [a(u+#)--o(u--#)] = lim I / I x \  ,,,* I - - C O S  

x, 

= ~%.  (4. o6) 

This yields us the existence of o ( ~ ) - - a ( - - ~ )  and hence, according to the last 

paragraph, of S ( ~ ) - - S ( - -  ~).  We have 

=9(~ ' f [  (A) )] A-| ~ - f ( o  
- - o o  

Hence for sufficiently large A 

I - - C O S  
x 2 X d x .  (4.07) 

I s (~  ) -  s ( -  ~o ) - ~ (o) I 

_ maxl~(~)l  + 7g 

A~I~ - - ~  

I - -  COS X 

X ~ 
ax  + ma~ [~(~)-- r 1 + ~  (4. 08) 

I,~1 < a--l, 

Since A is arbitrary, 

I s ( ~ ) - s ( -  ~ ) - ~ ( o )  I -< ~im t ~(~)--~(o) I. I;I--o 
In case r is continuous at the 4rig~n, �9 

(4. 09) 

~(o) = s ( ~ ) - s ( -  ~ ) .  (4. io) 



140 Norbert Wiener. 

However,  ~(x) need not  be continuous at the origin, even if  f ( t )  is everywhere 

continuous.  Thus let f(t)--~sin t ~. 

Then 

T 

--T 

T 

z T~clim T / I - - C ~  2 t 2 2  dt 

o 

_: _I__ lira cos 

0 

u2d?$ 

I 

2 
(4. 1i) 

since 

oo 

f cos u ~ du is a Fresnel integral, and equals ~ .  
o 

On the other hand, if x + o, we have 

T 

9o(x) lira sin ( t+  x) ~ sin t ~ d t  

--T 

T 

If ~- T--| 4-T [-- cos (2 t ~ + 2  t x + x  ~) + c o s  (2 t x+x2 ) ]  dr. 

~ T  

The second par~ of this mean obviously vanishes. Hence  

T 
I 

(x) ----- lira - - =  f cos (2 t ~ § 2 t x  + x ~) d t 
T - - |  

- - T  

= - ~  cos ~ '+  d .  
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-~-~0 

00 

u S du- -s in  [cos~ cos ~ f sin u~du] 
0 0 

(4. 12) 

/ / V- I 
since cos u s du = sin u ~ du -- -~ 2 .  

0 0 

Thus ~0(x) vanishes almost everywhere, S(u) vanishes identically, and 

~(o) ~: S ( o o ) - s ( -  ~o). (4. I3) 

5. Tauberian theorems and spectral  intensity. 

which are 0 

and let 

In  a recent paper, the author has proved the following general Taubel~an 

theorem: Let Ml(x ) and Ms(x) be two fu.~etions bounded over every range (e, l/e), 

x(~-og at o and oo. Let Ml(x ) be measurable and non-negative, 

a o  

f Ma(x)x~Udx 4= o. 
0 

[ - ~  < u < ~ ]  (5. o~) 

Let Ms(x ) be continuous, ex~pt for a finite number of finite jumps. Let f(x) be a 

measurable function bounded below and such that 

(a) 
0 0 

r 

(b) f f zx) Ml(x ) dx  is bounded. 

0 

Then 
ao ao 

' Z ~ o  [~ ] 
0 0 

[ o < Z <  oo] 

(5. o2) 

Here o0 is put i n ~  brackets to indicate that at these points it may be 

consistently substituted for o. There is manifestly no restriction in assuming 
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f(x) non-negative, as the theorem, if true for a given f(x), is unchanged as to 

its -validity by the addition to f(x) of a constant. The theorem assumes a more 

understandable form under the transformations 

x--e~; 2=e-n;  } 
e~M~(e~ = hr,(g); dM,(g) = hr,(g). (5.03) 

I t  then becomes: Let .N,(~) and N~(~) be two bounded functions which are 0(~ -2) 
at + ~.  Let NI(~) be measurable and non-negative, and let 

f 4 = o. [--oo < u <  ~]  (5.04) 

Let 2r be continuous, exeept for a finite ,umber of finite jumps. Let g(~) be a 
non-negative measurable function such that 

(a) 
lim f f 

(b) 

.Then 

(~.). 

f g(~--~) NI(~ ) d~ is bounded. [ - ~ < v < ~ ]  

(5.05) 

The proof proceeds as follows: We shall symbolize by C the class of all 

functions N2(~) , bounded and 0(~ -~) at • ~ ,  and continuous except for a finite 

number of finite jumps, for which (c) is a consequence of (a) and (b) for all 

non-negative measurable functions g(~). Among the functions in C are all func- 

tions N~(~) of the form 

for which / ] R ( ~ ) ] d ~  

N,(~) = f iv1 (v)R(v-~) dv 

converges, inasmuch as the double integral 

(5.06) 
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is absolutely convergent, so that 

0 o  

f &(g) 9 ( v - f )  df 

and 

/ / -- R(~)d~ g(~]--~--r~)N.~(~)d~, 

~ o a  

nm fN,(g)U(,7--g)dg----lim f ~(r gv-~--~)N,(~)dg 
z o  o o  r 

- -  m - - ~  - - m  

(5.07) 

(5: o8) 

A par~icuIar example of such a function is furnished by 

B 

iv,(g) =- f ~,(~) ~,,~ du 
- - B  

(5. o9) 

where v~(u) is con~inuous over ( - -B,  B), while its first derivative is continuous 

except for a finite number of discontinuities of the first kind, and 

,~(B) = v~(--B) = o. (S. io) 

To prove this, let us reflect that .Ar~(~) and Ar~(~) are quadraticaUy summable by 

assumption, and that 

vl(u) ~- t NI(~)dU~d~ (5. I I) 
- - 0 0  

exists, as well as 
E 

v'~(u) -~ 1.i.m. l i~Nx(~)ea'~d~. (5. 12) 
E---* oc d 

- - E  
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By our hypothesis (5.04) 
~,(~) :~ o. [ - ~  < ~ < ~ ]  (5.13) 

Let. us put 
it(u) = l,,(u)l~,, (u). (5. I4) 

Inasmuch as It(u)is absolutely continuous, its derivative may be computed by the 

rules, and 

It,(,,) = ~,(,,) r v, (,,) (5. i 5) 

I now say that  we shall have 

Inasmuch as 

is quadratically summable, 

B 

(r = f .  (.) d.  
- - B  

B 

- - B  

.B 

f it'(u) dur d u  

- - B  

r 

f lR(g) l aft 
- - o o  

(5. I6) 

(5. i7) 

(5.18)  

exists. Since the integrals involved converge absolutely, 

~ B 

B a~ 

m B - - ~  

B 

-- f It(u),,,(u) e - ' ~  d~ 
- - B  

B 

- - B  

(5. i9) 
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This justifies our evaluation of R(~), and proves that  N~(~) belongs to C. The 

following are particular cases which may be probed to belong to C in this 

manner: 
B 

--_/I 

B 

0 

cos Cu du 

B 

0 

Again, 

I --e -1~ cos BE e -i~ sin B~ 

B 

--B 

. . . .  e -i~*~ d u  

(5- 2o) 

B(~+I) 

: i ' l - - c ~  

3 792 ,2 

, , 

~ B ( ~ - - I )  ~ B ( ~ +  i ~ )  + 0  " [ B ~ ~  ~ ~1 (5. 21) 

If  we already know certain members of the class C, we may obtain new 

members of the class in the following manner: Le t  V(~)be a function continuous, 

except for a finite number of finite jumps, such that, when any positive ~ is 

given, we can find two members of C, V1(~ ) a n d  Ve(~), such that  

L(~) -< v(f) _< v~(f), 
while 

- - a o  

Then V(~) itself belongs to C. For 
19--29764. A r i a  mathemaLica.  55. Imprim6 le 7 avril 1930. 

(5" 22) 

(5.23) 
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ao oo 

I f  f I --< l i m  g (7 -- ~) V1 (~) d ~ - -  A V., (~) d 

- - a o  - - a o  

co oo 

-If I + lim g(~]--~) V,(~)d~--A (~)d~ 
~.-., r 

- - a o  - - ~  

< 2 A e .  (5.24) 

and since e is arbitrarily small, this limit is o. Fur thermore,  any linear combina- 

t ion of a finite number  of members  of C belongs to C. 

As a par t icular 'case ,  we have 

I 
[I + ( I  + B ) e - - ~ ]  - '  TB(~) < iy_t_~ < [ I - - ( I - - B ) e = B ]  -1  ~B(~). (5. 25) 

Inasmuch as 
lim (I  - f - B ) e  - ~  = o, (5. 26) 

B ~ z o  

I 
it follows at once that  ]-+-~i belongs to C. 

tha t  the same thing holds of 

P 
�9 ( g - -  q ) S - - r ~  

Again, 

lim QA(~) = sgn (~+ I ) - - sgn  (~--I) --- V(~), 
A ~  

An exactly similar proof will show 

(5. 27) 

and this convergence is uniform except in the neighborhood of • I while we 

always h a v e  for B > o 

I 
QA(~) < B(~+ I) over (I +,}, ~ )  and (--or  - - I  --~) [A large enough] (5. 28) 

Furthermore,  
co 

f Q~ (r de = 4. (5.29) 
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Let us put 

(, +,~) QA(~(,--~,)) = v,(~); ] 

I ___ / 
(I--?]) QA(~(I +r --  ~(~..[_ I) V1 (~)" 

(5. 30) 

We can so determine a large A when V and B are given, that for that A and 

all larger ones, 

V2(~) ~ V(~)>~ Vl(~). (5" 22) 
We have 

f [: [V~(~)--V,(~)]d~= 2" - ' - - - -  
- ' l  ' +  (5 .3 ' )  

which we may make arbitrarily small. Hence 

sgn (~q- ') --  sgn (~-- ,) 

belongs to C. As an immediate consequence, since 

sgn (g+ a) -- sgn (~+fl) 

may be shown by the same means to belong to C, any step function vanishing 

for large positive and negative arguments belongs to C, and hence any function 

continuous except for a finite set of discontinuities of the first kind, and vanishing 

outside of a finite interval, since the latter function may be penned in between 

two step functions enclosing an arbitrarily small area. 

Now let N2(~) be a bounded function which is 0(~ -2) at + r162 and which 

is continuous except for a finite number of finite jumps. Let 

for all ~. We put 
12r < P/(~ '+ ,), 

= ~v,  (~); [I ~1 < M] 
v,(~) [ - P / ( ~  + i); [1~1>__~] 

v~(~) (P/(~' + ,). [! ~1 -> M] 

(5. 32 ) 

(5.33) 

(5. 34) 

The functions VI(~) and V~(~) are-sums of functions of C and functions of the 

form + P / ( ~ +  i) which also belong to C. Bence, they themselves belong to C. 

We have 
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and 
r,(g) > > r,(g) (5 .35)  

f [ Vs(~)-- Vx(~)] d~ < 2 P [:a:--tan -1 M] (5.36) 

which we may make as small as we like. Hence Ne(~)belongs to C. This 

concludes the proof of our generalized Tauberian theorem. 

As a corollary of our Tauberian theorem, Mr. S. B. Littauer has given a 

proof of the following theorem of Jacob: I f  f (t) is a mea.vurable function, inte- 
grable in every finite interval of (o, ~)  and i f  for some given a (o <--a < I) 

(a) 

(b) 

then 

(c) 

where 

T 

f(t) l 
0 

dt < B for  every T; 

T 

lim I f f(t) dt 
0 

:a-= A ~ 

ct~ 

lim -- f(t) d t -  A, 
,-.o IG- t - - I  

0 

~ tz  - -  - -  
Y/:Of 

F(2 "q- a) cos - -  
2 

Furthermore, i f  f(t) is measurable and non-negative (or bounded below), (c) implies (b). 

The particular case of this theorem where a = o  had already been treated 

by Bochner, Hardy, and the present author. 

In all theorems of this type, there is a close relation between the theorem 

which one obtains by letting g �9 infinite and that which one obtains by 

letting g become o. This is to be explained by the fact that the general Tau-' 

berian theorem assumes a perfectly symmetric fman when we make the substitutions 

x=e~; ,~=e'1; M1(X)=NI(~) e~; M~(x)=N~(~)eZ. (5.03) 
If  we take 

MI(x) [or M2(x)] = I if o < x < I; = o otherwise;]  

M,(x) [or M, (x ) ]  - -  4 s in  2 X/2 ] (5- 37) 
. X 2 
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in our general Tauberian theorem, s i n c e / M , ( x ) e ' ~ ' d x + o  and / M~(x)d" 'dx=Vo,  

0 o 

we may deduce the conclusions of the theorem. We thus get the following 

result: Let  

Then the two propositions, 

(a) 

and 

(b) 

are equivalent. 

I/(x) l < B. [o < x < oo ] 

T 

lira _I f r--0 1' f(x) 
0 

d x = A  

ao 

lim 2 ff(Tx) ' - - c ~  x T--o r~ X ~  d x = A 
0 

I 
In  the particular case where f ( x )  is replaced by 2 [go (x) + 99 (-- x)] , we see that  

ao (x) i-oosX.xx, ,5,8, 

implies, and is implied by 

We have (see (3.27)) 

E 

A = l i m  I ;qD(x)dx .  

- - E  

(5. 39) 

00 ~ A 
sin t tx  ei,, z d x  f,-i'..aS(.)=lim._o,,~,' f,-,,.,u~:.f~(.) . . . .  

I 
= lim ~;(9(,~) sin/~), -- ~(),), (5.40) 

except possibly at a set of points of zero measure. To see this, it is only 

necessary to reflect that  it follows from the definition of the Stieltjes integral 

that  if a(x) is of limited total variation over (--oQ, oo), 

oo oo 

f f ( x )  da (x )  ~ l i ra  Z f ( u  .q- 2 rig)[g(u -~ (2 n + I ) g ) - - a ( u  -b (2 n - -  I)~)] 
~ 0  

- - a o  
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8 " 

f -~l im I-- dlt~,f(u+2n,s)[ct(u-l-(2n+l)e)--a(u-t-(2n--I)e)] 
~-...o 2 ~ j 

Let us put 

lira I ff( . . . .  ,,) [,~(u + 4 - - ( , , - , ) ]  
t 4 2 ~  

eJo 

r...- ~a 

du. (5.4I)  

(5. 4 2 ) 

This function will be defined for all real arguments, and we shall have 

f . �9 2 
(5.43) 

Since the function sin u#2 is uniformly bounded, and tends to o over every 

finite range of u as ~--*o, while e -i~(z+" ~) has modulus I, it follows that 

&(~+e)--~(~) is less than ~he sum 'of two terms, one of which is the total 

variation of S(u) over a region receding towards infinity, while the other is less 

than the total variation of 8(u) multiplied by a factor tending to o. Hence 

lira [q)(J.+ ~)--q)(,~)] = o. ( 5 . 4 4 )  
e ~ O  

Thus the function ~(~) is continuous, and indeed, this proof shows it to be 

uniformly continuous. Hence 

x+8 x+8 

lira I f ,--o ~7 q~(~) d~ = lira ! l q~(~) d~ = ~(x). 
x - - $  x - - ~  

(5.45) 

This gives another proof that 

8 

,,m._.o f 
- - 8  

(5.46) 

and indeed proves considerably more. 
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I t  is thus possible to dispense with Tauberian theorems for this part of 

the theory. There is another point, however, where they play a more essential 

r61e. That is in the study of  the generalized Fourier transform of a function. 
T 

"Let T--| ~ T f  [f(x)[~ d x  exist. Then 

- T  

T - -1  T 

[ f+  f 1' ~lXlx. ': ~x = f ,~_lxl ,.+,~lx. _x, ,~ 
1 ~ T  1 

d x  

T 

1 0 

T 1 

- ;. f ,e(x, ,.~x- f ,~x) ,.~x 
- - T  - -1  

T 

= 0 ( I ) +  f2 0 ( I ) ~  x 

1 

=o(i). 
Consequently 

/ /]  If(x)  I* d x 
+ - x~ 

x 

f 2 d x ;  
+ x - -W-]  

1 - - X  

If@) I' df 

(5 .47 )  

( 5 . 4 8 )  

exists. I t  follows from this that  

A 

f .  I 1.i.m. f ( x ) S m - - ~ x . d " : ~ d x  
~ . (u )  = ~ ~ - ~  x 

--A 
exists, and that 

~,,, (,,) = ,  (u + ~ ) -  s ( u -  t,), 
where 

1 A 

f [/ ,~(,,) i s ( x ) ~ ; i  , = . d x  + - -  1.i.m. 
2 ~ . , 1 ~  

--1 1 

--1 

- - A  

(5.49) 

(5 .5o )  

(5 '  5 I ) 

s(u)  has a somewhat artificial appearance, due to the fact that  it is necessary 

to avoid the consequences of the vanishing of the denominator at the origin. 
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We shall see later, however, tha t  we always actually work with ~0~(u) rather 

than �9 s(u). 

As a result of the Plancherel theory, 

oo 

I fls(u+,)-s(u--,)12 
co 

du = I f I f (  ' s i n 2 / 4 x  - -  x)l T d x .  (5.52) 

I t  follows from this by an immediate application of the Tauberian theorem 

associated with the names of Bochner, Hardy, Jacob, Littauer, and the author, 

and already proved in this section, that 

T 

lira I f ,  ' f  ,, - - -  s(u+l~)--s(u--l*)  I' d u :  lim --~ . -02 ,  T - .  ~ If(z) dx. 
--r - - T  

(5.53) 

�9 The meaning of (5.53) is that i l l ( x )  is quadratically summable over every finite 

range, and f ( x ) / x  is quadratically summable over any infinite range excluding the 

origin, then i f  either side of  (5.53) exists, the other side exists, and as,tames the 

same value. 

This formula is worthy of some detailed attention. If  s(u) is of limited 

total variation, we shall always have 

~ ,(u + ~ , ) - , ( u - F , ) l  d .  -< v(s). (5. 54) 

Accordingly, if in addition 
T 

f 
--T 

the function s(u) cannot be uniformly continuous. Again, if 

8(U) = An, [Zn < u < ~n~- l ]  

we Shall have 
~a 

lira ! ( I s(u + t*)-s(u--#) I' du = Z lA.+~--A. I', 
.. ~ o  2 tt J 

(5.55) 

(5.. 56) 

(5.57) 
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T 

so that lira I f l T--~ -2 I' f (x)  dx  
- -T  

the jumps of s(u). 
period 2 ~, 

while if 

then 

represents the sum of the squares of the moduli of 

Let it be noted that if f (x)  is a periodic function with the 

r y 

' f v l x ,  l' ' j v, lim - dx  . . . . .  x) 1~" dx, 
T - - ~ - 2  T 2 ~  

~g 

i f f( - x )  e i''~ dx, 
('ln ~ 2 ";T 

- - T g  

(5.58) 

(5.59) 

[n+~,] 
~,,,(u) = s(u + ~ , ) -  s(u--~,) = y ,  a,,. (5. 60) 

[u--tel + 1 . 

Thus our formula (5.53) is a generalization of the Parseval formula for the 

Fourier series, though it is not a direct generalization of the Parseval formula 

for the Fourier integral. For the Fourier integral, 

ac 

lim I f ] - -  s'(u+~l-s(u-~)l'du=o, 
t , --o 2be 

(5.60 

although s(u) exists, and indeed becomes the integral of the Fourier transform 

of f(x).  In  this case, s(u) is of limited total variation over every finite interval. 

6. Boehner's generalization of harmonic analysis. 

The study of the function s(u) and its generalizations was first undertaken 

by Hahn, although, as we shall see later, on a basis insufficiently general to 

cover the needs of physics. The present author developed the theory for func- 

tions f (x)  with a finite mean square modulus, but the complete generalization 

of the theory is due to Bochner. 

We have so far been interested in the problem of proceeding from f(x) to 

s(x). The question now arises, can we go backward, and determine f (x)  from 

s(x)? We should formally expect 
2 0 - - 2 9 7 6 4 .  Acta mathematica 55. I r n p r l m 6  lo 8 a v r i l  1930. 
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f(x) = f e-'P' ds(u), (6. oI) 

though the integral in question cannot be an ordinary Stieltjes integral, as. s(u) 
is not in general of limited total variation. 

We may, however, develop this integral by a formal integration by parts, 
and we get 

A A 

f e-iX" d s ( u ) :  e - i A X s ( A ) - - e i a Z s ( - - A ) +  i x  f s (u )e - iXUdu  

�9 --A ---A 

1 - - 1  ,B 

[If ~,,~-~ [1. f lf(~)~,A:, ] = e - i a *  ~ f(~) i~ d~ + l - i ' m ' - I  + i ~ d ~  
B~r 2:7K , 

--1 --B 1 

_ _  e i A  x 

1 - - 1  B 

2-rr J'(g) ..... ) : ~ - d g + l . i . m . - - ~ _ =  2 ,r  + . f(g)  ~ , -  g 
--1 --B 1 

A 1 --I B 
I e iu='- I " I ( )e iu'z 

--A --1 --B 1 

B A 

I ; , f ( ~ ) [ . -  _ _ ; _ .  : f ] = l ' i ' m ' 2 ~ r  ] ~ - B - - |  e'A(~--z) e 'A(,--c)+ix ei"(~-~ldu d~ 
--11 --A 

B 

= l ff( /sin 
--B 

(6. 02) 

Even this expression fails in general to converge in the mean as A--~ oo. At 

natural device to choose to compel the desired convergence in the mean is to 

replace this integral by its Cesaro sum, and to investigate the behavior of 

D A f if I --COS ] ) ( ~ - - g )  dA e -'~" ds(u) = ~ f(~) ~-~)~ d~. 

0 --A --~ 

(6. 03) 
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This is the familiar Fej6r expression for the partial Cesaro sum of ~ Fourier 

series, at least in form. The classical Fej& argument will prove that at any 

point of continuity of f(x) we shall have 

2/  

f(x) := lim I f 
--.h'- 

(6. 04). 

and indeed, that  this will in any case .be true almost everywhere. To proceed to 

D A 

' '  f hm = f d A e '*u . - =  ~ j d,(u) = f ( x )  
0 - - A  

--1 oo 
reqllires only ~he re~ection that I f -~- f ] ~  d t eonver~es. 

In a manner similar to that in which we have proved 

(6. 05) 

A B 

- - A  - - B  

(6, 02) 

we may show that 

A B 

f e-i~'~ds(u)=l~i.m. 2 f x) ~ d~ 
P - - B  

(6. 06) 

A 

as a function of A and P. Thus, except for an additive constant, f~i~u 
P 

bears to f(x+~) the relation which s(A) bears to f(~). Similarly, to 

d,(u) 

and to 

f(x) + f(t + x) 
A 

there corresponds f ! ,  + e -~t~) ds(u) 

A 

f(x)+ if(t+x) there corresponds f ( I  + 

P 

i ~-;,-) d ,  (,,). 

(o. 07) 
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By an obvious linear combination of the formulae relating to these four func- 
tions separately (cf. (I. 24)), we obtain 

o0 t * + e  

lim-l~.-.o 2 ~ J  f [ [  I ; ( ,+,) - , (u- , ) l~u 
- - o o  I t - - i s  

T 

- - T  

Here, by definition, 

I t+~ u + *  

f e--aVds(v)=e--it(u+E)s(u+e)--e--a(it--')s(u--e)+it f s(v)e -av 
I t - - i s  I t - - i s  

= ~-'~' (,(u + ~1-,(,,- ~1) 

dv 

Howeveri we have 

(6 .08)  

(6 .09)  

'uq-e 

7 o e-it"ds(v)--e-i~'(s(u 

NOW, 

,)-,(,,-,))] " 

B 

=l.i.m. i f f  ( [ei(U+,)a_ei()a . . . .  
~ _ ~  2 , r i ~  ~ + t) ~ ' - - 

- - B  

ei(U+ ,)(a+t)_ei(U - ,)(a+t)] 
e - - i u t  ] d~ ~+t 

B 

=Li.m. ' f { (~----e"/ "(~ B--| 2 Z--7~ j ( g +  t) e i("+')a g +  t l  - -  d ( ' - - ' ) ;  
- - B  

B 

- - B  

sin ,~ _ sin ,(~+ t!] 

e-m\ ]  

(6. i o )  

and also --< 2. (6. II) 



Generalized Harmonic Analysis. 

Thus, by the use of a Fourier transformation, it follows at once that 

oo 

/lu; �9 

~ e - ' ~  & ( v ) -  e -" ' ( s (u  

- - c ~  , I A - -  E 
�9 ))1' 

+ , ) - , ( u - ,  d u  = O(I). 

Inasmuch as we may readily show that 

~ -  O ,  

and since" 

9(t) lim ' f = _ e - , , , , l , ( u + ~ ) - s ( u - ~ l l ,  du  
t - - .028 

00 t t + ,  

/ [ /  ] + lira I --- e - " ~ d s ( v ) - - c " a ( s ( u + ~ ) - - s ( u - - ~ ) )  [~(u + ~)--~(u--~)] du, 
e---.O 2 8  

it follows by an elementary use of the Schwarz inequality that 

oo 

9(t) lira I f = - -  e - " ' l . s ( u + , ) - s ( u - , ) l ' d u .  
v.--~2 8. 

TMs formula holds in the same sense as (5.53) for each t independently. 

We may deduce frdm (6. o6) the analogous formula 

2 A A 

f 
--2 ~ P 

2 sin Zu 
qA ds(u) 

by an easily justified inversion of the order of. integration. Furthermore, 

it 

f 
- - 2  

B 

I ' f  e i A ~ - 8  tP~, 
dy 1.i.m.~_| 2 ~ i  f (~+Y)-  -~ d~ 

- - B  

B ). 

--B --2 
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(6. i2) 

(6. ~3) 

(6. I4) 

(6. is) 

(6. I6) 

(6. I7) 
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as may be deduced from the fact that  

v)l' f I.f(f+v)l' f - - ~  d~ and ~, dE 
. 5 

~ r  - - o o  

tend uniformly to o with increasing N for all y in (--~t, s Thus to 

a, A 

f f ( x + y ) d y  there corresponds f 2 s i n X u  u 
- - i  p 

----ds(u) 

in the same sense in which  to j~x) there corresponds s(A). I t  follows from 

(5.53) that 
oo A+/z T 1 

lira ~ 2 sin).Uds(u ) d A  = lim x+y) dy 
t,--o2l~J u T--| . 

- -oo  A--~U - -  T - - ) .  

(6. ~S) 

As in (5. o9), 

A+t t  

2 sin ~u . . . .  ds(u) - -  2 sin Z(A +~)s(A+l*)  
A+/z  

2 sin Z(A--~) s(A--,u) 
A - - ~  

A + ~  

- - j - - I . ,  
A--~ 

(6. '9) 

and a~ in (6. Io), 

A + #  

I f 2 sin gu ds(u) 
u 

A--/.* 

2 sin ~ A 
Art 

- -  [s(A + #)- -s(A - - i t ) ]  

A + tt 9. ;( 

f f:  =i ,  ds(u) e-'~d,~--2 e-~ad,~[~(A+~,)--~(A--~,)] 
A - - ~  --~. - - i t  

= fdal.i.m. Lff(~+a) 
. j  B ~ o  7[, 

(6. 20) 

because (6. 1o) holds uniformly over a finite range of a, because of the fact that  



Generalized Harmonic Analysis. 159 

sin #g si_n #(g+a)[  = ~ ~(~-g) [ 0(~--1) (6. zl)  

uniformly over such a range. Hence, as in (6. I2), we may show thag 

o0 A + #  

f~,l/', , ,o_*,:,,(u,_2,~n~, u ,, 
- -  ao A - - #  

- - - -  [s(A + ~) - -s (A--#)]  [! dA-----O(I); (6. 22) 

and by an argument  exactly similar to tha t  leading to (6. x 5), we obtain 

T ~. " 

lim Ill  f I i T-- .  2:T f ( x  + y) dy  d x  - ~,--.olim . . . . . . . .  2 t~ J u s 
- -  T ~ , l  - -oo 

I s ( u + l , ) - s ( u - # ) l ' d u  (6. 23) 

for  each Z independently, in the same sense as that in which we have proved (5.53) 

and (6. t5). 

We now proceed to the part  of the theory tha t  is specifically Bochner's. 

We wish to discuss the h a m o n i c  analysis of functions which are no longer bounded 
T 

�9 

on the average (for so we may interpret  the finiteness of lira f ( x ) l ' dx ) ,  
T-w-* ~ 

- T  

but instead have on the average an algebraic rate of growth as the argument  

proceeds to + oo. That  is, we assume the existence of 

lira I fl~< r-= -2i ~ x)l' dx 
- - T  

(6. 24) 

and we shall take n to be a positive odd integer. By arguments  following 

identically the lines laid down for n-~ I, we show tha t  

~nd hence tha t  

T - - 1  

I f +  rl,J(_~,l'~x J_ [  x - ,  
1 - - T  

= O(1), (6.25) 

If(x) ~ g x 
+ X n + I  

1 . - - 9  

(6. 26) 

exists. We can then  show the existence of 
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1 u ~ + 1  

2~f [(f) ~ ] I f (x )  eVXdv d x  + 1.i.m. 
2 Irg A ~  

--1 0 

.4 - - I  

[f f] ~ + f ( x ) -  - .~  dx. 

x - A  ( ix )  ~ 

(6. 27) 

I f  we now put  

A - v ( s ) = s  u + ~  n - - n s  u §  

n + l  A n + l  

22-- / "  . - -  
~- 1. i. m. J r ( x )  e iux sm a /~x 

--A X 2 

. . . .  

�9 (6.~8) 

we can show by a Plancherel  a rgument  tha t  

r r 

�9 j u t x )  i x , ,  + ~ - -  a x.. 

I t  is easy to show tha t  for  any funct ion F(x), 

T T 1 

I n a s m u c h  a s  

if we put  

I f _I__ f F(x)  xn_l f .~(T.~) yn--1 dy  F(x) d x  = T"  J x "-~ d x  = f l  ( ~  . 

0 0 0 

1 

f y~-i dy = fin, 

0 

F ( x ) / n x  "-1 = G (x), 

(6, ~9) 

(6. 3o) 

(6. 3~) 

(6. 3~) 

the above integral  is a mean of G, in the sense in which means enter into our 

general  Tauberian theorem. Fm-thermore, 

ao r 

�9 1 | + 1  2 n + l T ~  f f  sm ~ x  . sin T M / z x  . 

~ J ~ J . 
0 0 

r 

2 n a(y/~) y - v ~ d y  
(6. 33) 
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then  
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�9 n + l  2 n+1'12 fSln y a  

= J y~ ay- -P , , ,  
0 

2n_ +1 f _ , ,  , s inn+l/~x . 
~t~p,,j.~ix) ~-+~ clx 

o 
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(6. 34) 

(6. 35) 

is another ,  mean  of the  quant i ty  G. I f  we set 

=lnXn--l; [O < X < I ]  

Ml(x) [or Ms(x)] r ; [x _> ~] 

then  

As to 

2 n + l ~  s i n n +  1 x 

Ms(x ) [or M,(X)] : ~rP:- x * ; 

we have 

f MI (x) x ~ dx -- n n+iu  
0 

oo 

f M~(x) x ~" dx, 
o 

#o .  

f sin"+i x X'~--" 
0 

Hence 

dx 

= f ( n + I ) ! [  sin_~x _ s i n ' 2 x  + s i n ' 3 x  - . . ]  

0 ~_ 2 " 2 2 " 2 " 2 " 2 " 

f M2(x) xiUdx:4n(7/+ I ) [  . 
~P~ 

0 

oo 

I v n + 3  T n- -3Wn+51  + n_51n+7T . . . .  sin2xx~U-2dx. 
2 " 2 " 2 " 2 " 2 " o 

We h a v e a l r e a d y  seen tha t  
2 1 -  2 9 7 6 4 :  A c / a  m a t h e m a t / e a .  55 .  I m p r i m d  l e  12 a v r i l  1930.  

(6. 36) 

(6. 37) 

x~,,-2 d x. 

(6. 3s) 
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f s l n  2 X X TM 2 

0 

Thus the question of the possibility tha t  

d x # o .  (6. 39) 

f M~ (x) x ~" dx  
0 

should vanish depends on the possibility of the vanishing of 

. . . .  I - - . . 2  i u - 1  q_ 3 t~-I 

n--__~I i n +  3 w n - - 3 ! n + 5  ! _n.-u 5.! n + 7.! 
2 2 2 2 2 2 

. . . .  . ( 6 .  4 0 )  

I t  i s  easy enough to prove tha t  this cannot  vanish for  n =  I, 3, 5, 7, 9, I I but  

' t h e  author  has not  yet  been able to produce a proof in the general  case. 

In  case this expression does not  vanish, we may apply our Tauberian 

theorem, replacing f (x )  by ]f(x)12+]f(--x)] ~. We shall assume, to begin with 

that  f (x)  vanishes in the neighbourhood of the origin. Then 

and 

T 

 f,s( ,, tim x) 
T ~  

~ T  

dx  = A (6. 4I) 

e~ 09 

~ _  ; [  ,1+1 12 . 2n ? . . . . .  2 sinn_[_l ~ X  . 
lim A~, 2 s(u) d u -  I i m ~ - - -  | [ J ( x )  l - -  11+1 --{~X 
tL~o r ~  j ~ o  ~ n ~  J x 

(6. 42) 

are equivalent. 

We have put  f (x)  -~ o in the neighbourhood of the origin f~ be sure of the 

boundedness of 

In  ~ny case, 

T c o  

I f [ 2 n /* " n+l  
T,' f ( ~ ) l ' d x  �9 and f(x) - - - ~ T -  dx.  

T 

lira x) 

- -T  

d x  

(6. 43) 
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will not be changed if f ( x )  is made to vanish in this neighbourhood. 

Thus 

B t l  

- -  B ~ 1 1  

oo 

lira I s(u) d u 
t t ~ U  ]~l~2 

dx .  
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Moreover, 

(6. 44) 

will not be  changed either, and we may always write: 

,~ T 

lim-. - I -  | l A - ~ - s ( u )  du--~lim I 12 ,.-.o P~ g . l t  . r- |  2--~ x) 
- - a o  - - T  

dx .  (6.45) 

We now 

expect formally 

come to the problem of returning from s(u) to f (x) .  

f ,,+~ .-1 
f ( x )  -~ J e- '"*d 2 s(u)/du ~ .. 

Again, we need to interpret 

We should 

(6. 46) 

by an integration by parts, and again some form of summation is necessary to 

get a more manageable expression. One method is the following: Let us replace 

by 

oo 

f n+ l  n--I 

j e - , - ~ e  - ~ ~ , ( . ) / d ~ T  

c~ 

f ~,+1 .-1 
J e --~='--i'~ d 2 s(u) /du 2 

- - o o  

(6. 47) 

and let us investigate its behavior as ~-~ o. This expression is to be interpreted 

n + I  
by - - -  formal integrations by parts, which conver~ it to 

2 
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I t  then becomes 

m e a n  a s  

o o  

n+l  f n+ l  n-I-1 
(--I) ~ Js,(~)d ~ (e-aU'-~"~)/du -2 -du. (61 48) 

obvious that  this expression will have the same limit in the 

B 

f n+ l  s2 ( . ) ( ix )  T 

--B 

e - '~  du [B--', ~ ] (6. 49) 

�9 I t  here will, however, be f(x) if Ix] > A, and will be o otherwise. To see this, 
n+l  n+ l  

d 2 d 2 
we need only compare ---c~(e -~uL~'~) with -- ,T1 e-tU~. A similar result holds 

dx ~ dx -V  
for sl (u), and the final result is that  over any finite interval not including the 

origin, 

ao 

f nq-1 n--1 

s(u)/du ~ . f(x) ~ -  1.i.m. l e-a"~'u~ d 2 (6. 5o) 
a---,o J 

- - a o  

7. T h e  Hahn generalization of harmonic analysis. 

Up to the present we have concerned ourselves rather with questions of 

convergence in the mean than of.ordinary convergence. Retaining our previous 

notation, in the case where n=T,  we may raise the further questions: when does 

A 

f e - ~  ds(u) 
- - A  

exist for all u as an ordinary Stieltjes integral, rather than a generalized Stieltjes 

integral such as we have treated in the last section? When does 

A 

lim I e~"~ ds(u) 
d 

- - A  

converge in the ordinary sense? These questions furnish the vital link between 

the generalized harmonic analysis of Hahn, and that  developed here. In the 
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second problem of this section, it is at present not likely that  we can obtain 

conditions that  are both necessary and sufficient. The necessary and sufficient 

answer to the first question is manifestly that  s(u) should be of limited total 

variation over any finite interval. We have 

B 
I r e i v x -  e ~ux 8(v)-,~(u) = Li.~. ~ j f ( x )  r 

- - B  

d x  

B " 

B--~ i x  d d~ 
- -B  0 

B - -B  
I f e i v B - - 8  t u b  ]" . -  I "  

= ~ " ~  ~" t i-~ J s(~) ~ § ~-''~-~-''' . - - :  i B  J f( f)  d f 
0 0 

B x 

+ j [  x '  x, ~ e '~ d x  ,f(~)d~ . 
- - B  0 

I f  now we assume that  

it follows that  

�9 '(~)- f fm a~-- o(x-1), 
o 

ot~ 

f [ i v x - ~ r  s(v)--s(u) ----- i F(x) [ x~ x~ e 'u~ dx.  

(7- ox) 

(7.02) 

(7.03) 

Inasmuch as by our assumptions 

f ~'(x) ,,,.~ f ~'(x_}) o,u, dx and j ~ - e  ax 
J x ~ 
1 1 

converge and represent functions with quadratically summable derivatives, s(u) 

is of limited total variation over any finite region. Thus (7. o2) is a sfffficient 

condition for the answer to our first question to be in the affirmative. 

Let  us now suppose our first question affirmatively answered. The formal 
: A 

integration by pal~s by which we have defined #e-~'=ds(u) in the general case 
a ]  

- - A  
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may now be carried out, and all our quasi-Stieltjes integrals become ordinary 

Stieltjes integrals. If, on the other hand, s(u) is not of limited total variation, 

Hahn adopts a generalized definition of the Stieltjes integral identical in content 

with that here given. In  either case, we have already seen that 

and that 

Moreover, 

A B 

f e --'~" ds(u) = 1.i.m. I ; f (~)  sin A (g--x) d~, 
~_~ = j  ~ - x  

- -A  - - B  

oo 

f ( x ) = l i m  I f f( l --Cos 2 A (~--X) d ~ 
A - =  ~ A  ~) @ - - x ) '  " 

- - o o  

(7- 04) 

(7. o5) 

1.i.._.m. ~ f f ( )  
- - B  

I - - C O S  2 A (~--x)--2 A (~--x) sin A (~--x) d ~ 
(~--x) ~ 

00 

I ~ A I  I - - c o s  2 ~ . ~ - - 2  w s i n  ~) ~ 

boo 

- [ s ( e  + . . . . .  i _ c o s  
m - d w  

ao 

+ f(~/" ~-cos 2 w - - 2 w s i n w  
-- .--  dw  

14) 2 

=2~=f[f(r 
- -D 

I - - C O S  2 W - - 2  W sin W 

W u 
dw 

+ - -  
- -D  

L[f.+fl[s(  
- -  c~ . D  

l--COS 2 w- -2w sin W d w  ~ �9 (7. o 6 )  

Thus a sufficient condition for 

oo 

f ~-" d,(,,) =f(~)  
--o@ 

(7.07) 
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is that  f(x) should satisfy locally one of the sufficient conditions for the conver- 

gence of a Fourier .series, and that  

converge 

or what is ~he same, that  

fl 
J I 

- - o o  

(7.08) 

exist. This condition thus constitutes a sufficient solution of the Hahn problem. 

To such a function we may add any function with a .convergent Fourier series, 

without destroying the fact that  it solves t tahn 's  problem. 

Another condition under which (7. o7) holds is that  f(x) should be (if the 

form 
g (x). h(x) 

where g(x) is periodic, and h(x) bounded and monotone at • oo, and that  f(x) 

should, satisfy one of the sufficient eonditions for the eonvergenee of a Fourier 

series to its function. As in the previous ease, the proof of his assertion made 

by Hahn depends simply on the faet that  the seeond term of the last line of 

(7. o6) will then vanish with increasing D, while the first term is azymptotically 

equal to the differenee between the Cesaro and ordinary partial sums of the 

Fourier integral of the function f(x) mutilated by being made to vanish outside 

the interval (--D, D). I t  then follows from the Fej6r theorem and the fact 

that  the eonditions for the convergence of such a Fourier integral and of a 

Fourier series are the same, that  t tahn 's  theorem holds. 

The class of functions for whieh s(u) exists as an ordinary Stieltjes integral 

is too narrow to eover the physically interesting eases of continuous speetr~. 

To see this, let f(x) be a function for which 9(x) and S(u) exist, and let 

(7.09) 

Let us suppose that  
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exists for every 

exists. Then 

Norbert Wiener. 

T 

r (x)---- T--| ~/,  + t)f('D(t)dt 
- - T  

x, and hence that 

I I* e ~ ' u x -  I 

sc~)(.) = ~ j q~(~)(~) - U -  d x 
- - a o  

(7. IO) 

(7. I I) 

~ T 

~~ (x)= liT~m~ 2 T 4 ~ J 

--71 --~1 

-,1 -n-~ 

- - 2  *1 o . - ~  

2~ ij 
4,?' ~(x-v)(~-Ivl)dv; 

- - 2  *l 

(7. 12) 

A 

f �9 
81V)(u +12)-- S(~)(u--t,) = l l.i.m. 9(~) (x) Sm l~x d~  dx 

:TV, A - - o o  , X 

- - A  

2 "1 A - - y  

- - 2  ~ --A..-.~j 

A 2~ 

=l ' i 'm" I f f a - - |  qD(x)dx (2~--[Y[)sinl~(x+Y)d~(~+V)dYx+y 

- - A  - -2  
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A u + #  2~ 1 

f 
- - A  u - - p  - -  2 "1 

u + #  

d'x j w~ 

A 

A 

~ -  1.i.m. ~(x) 
A ~ v  4 

--A 

u + t t  

__ f I --CO8 2 WT] ( ~iu'x__ I I 1.i.m. dw 90 (x)---.- - d  x 
A ~  4 7~7 ~ w~ ~X 

u--/z --A 

u+/t  

. . . .  I f I --COS 2 W~ f e iw~- I d x  
4 ~ , ~ j  w~ d w d  ~o(x) 7i x 

"a--p, - -  ~ 

u4- t t  u4-t~ 

f f sin ~ ~w d S(w" . . . .  !_ I - - c ~  dS(w)~-  I ~ v  ~- " ' I; (7. I3) 
2 r/~ W ~ 

u- -~ t  u- - Ix  

A 

,s('Z)(u + e) - -s%(u-- t )  -~ 1.i.m.a_~ ~ f f ~  (x) SinxeX_ ~u." dx  

--A 

- ~  l . i . m ,  I__}__ d~ '(x+ ~) sin t x  d ~  dx  
A ~ c  2 7E~ X 

u + t  

--~ u--t  

Although this is not in general an ordinary Stieltjes integral, we may integrate 
by par~s and then invert ~he order of integration, and thus obtain 

u + t  W u + t  

(7" I 5 )  

Hence, by (5.53) and (6.23), 

Qo('7)(O) = lira ~T  lim I f sin ~ ~/u, , i~ 

9.2--29764. Aet, a mathernatica. 55. Imprlm6 Io 14 nvHl 1930. 

du. (7. ,6) 
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By (7. I4), 
2~ 

~l~)(~ = 4 V ~ 

[ ' /  ] - 4 ~  ~ 2~d~ ~ ~(~)d~ , 
0 - - X  

which in combination with (5.47) leads us to 

lim 9~(~ ) (o) ---- S(oo  ) - -  S ( - -  ~ ). 
~--.0 

In  other  words, 

eo 

l i m l i m  I Fs in  ~ / u .  . 

- - c o  

I f  we now assume tha t  

(7. I7) 

(7. ~8) 

du -= S(~)- -S(- -oo) .  (7. I9) 

lim ~o(n)(o) = 90(o), (7. 20) 
~W-*0 

it follows from (7.2I), (7.22), and (5.54) tha t  

eo 

lira lira j -  I [ I  s ~ !  ~u]  v - ' ~ 1 7 6  ~/,,,, j,s(u+,)--s,u--~,,~du=o,I ( ~1 (7. 2 I )  

or since sin~u/~u tends to I as ~1~o 

lira lira I + l s ( u + 4 - - . ~ ( - - - 4 p d u = o .  (7.22) 
. 4 ~  E~0  2 ~e 

A - - ~ e  

I f  90(x) is a continuous function, not  only shall we have (7.2o) as a conse- 

quence of (7. I7), but all the functions ~0(~)(x) will be continuous, as follows from 

(7.12). Then, by (6. 15), we shall have 

lira I_~_ _ e - ' ~ .  s.u + 4 - - s ( , , - - ~  . '  d~. = e-;"~ d S(,,). (7.23) 

- - o o  - - ~  



I t  follows 

limit of such a polynomial, 

lim.__.o 2 a .If- l P(u) I ~(, + , ) - ~ ( u - , ) I  s d ,  = f i , ( , )  dS(~). 
--oo --r 
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at once that  if P(u) is a trigonometrical polynomial, or "the uniform 

(7. 24) 

For the transition to the 

we need only make appeal to the boundedness of 

o~ 

lirn I / 18(u + ~ ) - 8 ( u - , ) I  s d . .  
~ 0 2 G  J 

case where P(u) is a uniform limit of a polynomial 

(7.25) 

(a) 

(b) 

if 

Hence, by Fej~r's theorem, P(u) may be any continuous periodic function, and 

because of (7.9.2), any continuous function differing from o only over a finite 

range, as the change in the left side of this expression due to making P(u) 
artificially periodic tends to o as the period increases. 

I t  follows at once that  under the hypotheses: 

~0(~)(x) exists for every x and 7; 

~o(x) is continuous; 

lira ! l [ s ( u  + e) --s(u--~)[2 du:o ,  (7. 26) 
E ~ 0 2 $  d 

over any interval, S(u) is a constant over any interior interval. Thus if s(u) is 

of limited total variation over any finite interval, and is continuous, S(u) reduces 

to a constant, and the spectrum of f(x)vanishes. In other words, the very 

natural hypotheses (a) and (b) are inconsistent with the existence of a continuous 

spectrum, provided s(u) is of limited total variation. To see this, we need only 

notice that  almost everywhere 

S(u.)-- S(ul) = lim ! ; ]s(u + ~)--s(u--~)is du 
" ~ - - , 0 2 8 ,  d 

= sum of squares of jumps of S(u) between ul and u~. (7. :7) 
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Thus the expansion of f(x) in an ordinary Stieltjes integral is not adequate 

to the discussion of such continuous spectra as occur in physics, inasmuch, as 

in these cases, as we shall see in section 13, conditions analogous to (a) and (b) 

are fulfilled. 

CHAPTER III .  

8. H a r m o n i c  ana lys i s  in more  than one d imens ion .  

The elementary function of harmonic analysis in one dimension is e 'u~. 

n dimensions, this is replaced by 

e i (u ~ x l  + �9 � 9  + u a x n) 

In 

which we may write vectorially 
e t ( U ' X )  , 

where the vector X represents the argument of the function to be analyzed, and 

the vector U the vectorial frequency. I f  we keep the term (U. X) invariant, 

and X varies cogrediently, U varies contragrediently. Thus the familiar duality 

relation between Fourier transforms is intimately connected with the point-plane 

duality of geometry. This is why the relation between position-coordinates and 

momentum-coordinates in modern quantum physics appears as a Fourier duality, 

while the same relation appears in the theory of relativity as the relation between 

a certain cogredient tensor and a certain contragredient ~nsor. 

Practically the whole generalized theory of harmonic analysis so far deve- 

loped is susceptible to a generalization to n dimensions. This generalization has 

been carried out by Mr. A. C. Berry, who has been kind enough to furnish me 

with the following summary of his Harvard doctoral thesis. 

I t  is necessary to introduce certain notations at once and to make a few 

preliminary remarks. Let there be given a real n-dimensional space and, in it, 

some fixed reference point, or origin, O. I f  X is an arbitrary point of this space, 

the symbol X shall be used to denote not only this point, but also any real 

n-dimensional vector equivalent to the directed line segment OX. Let f(X) be 

any complex, measurable function defined for all such real arguments X. Here- 

after it will be assumed that all functions with which we start satisfy these 

requirements. I f  R is any measurable point-set, then 
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f f ( x )  d r.v (8. o~) 

R 

shall mean the n-dimensional volume integral, in the sense of Lebesgue, of j~X) 

taken over the region R. Since, in general, n-dimensional >>spheres)> will be 

employed as regions of integration,  it  will be convenient to use the notat ion 

(r; X) to signify a sphere of radius r and having its center at  X. The vector 

interpretat ion of X enables us to write 

(r; Y) (r; O) 

The >)volume>> or measure, of an n-dimensional sphere of radius r is known to be 

n_ 
�9 ~ 2  ~.n 

which quanti ty,  hereafter,  shall be denoted by the symbol v(r). Thus the 

average of a function f(x) over a sphere of radius r about ~he point Y is 

(r; Y) 

Corresponding to the theorem, in one dimension, tha t  a function is almost 

everywhere the derivative of its integral, there is here ~he fact  that ,  for almost 

every ]7, 

l imv(r) ,  f (X)  dVx-=lim x r_0v  f (x+ r )dvx=f ( r ) .  (8. o5) 
(r; Y) (r; O) 

For any positive integer m it  readily follows that ,  almost everywhere, 

f f lim d t~,~.., d Vx.~ f(X,) d Vx, 
(r; Y) (r; Xs) (r; X~) 

f f f 
(r; O) (r; 0) (r; O) 

.... f ( r ) .  (8.06) 
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The classical Stieltjes integral, for fu_nctions of a single variable, 

f f(x) e~ (x), 

may be defined under suitable conditions as the following limit: 

~-.olim I f § r)-cp(x-r)} dx. 
- - a o  

(8.07) 

(8. 12) 

It  will 

handle certain region-functions M to appear later. If  the expression 

i /  
lira f(X) M(r; X) d Vx 

~o 

If  one denotes by (r; x) that interval of length 2 r  which has its center at the 

point x and if  one constructs the following function of an interval: 

M(r; x)= 9~(x+r)--qo(x--,'), (8.08) 

then this limit may be written in the form 

oo 

which may be called the Stieltjes integral of the point-function f with respect 

to the point-set-function M. Proeeding by analogy we shall call the expression 

l i m ~  ff(X)M(r; X)dVx, (8. ,o) 
,--.o v~r) J 

QO 

when it exists, the Stieltjes integral of the n-dimensional point-function f with 

respect to the region-function M, and shall denote it by the symbol 

f f ( i )  dxM. (8. 11) 
ao 

be necessary to introduce a generalization of this integral in order to 
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exists it  shall be called the ruth Stielt jes integral  of f with respect  to M and 

will be denoted by 

f f ( x )  dycM. (8. 13) 
clo 

A funct ion f (X) shall be said to be quadrat ical ly summable over all space, 

or q. s. over ~ ,  provided it satisfies the requirements  laid down above and 

provided tha t  

f {f(X){* d Vx (8. I4) 

exists. A one-parameter  family of funct ions f ,(X), e~ch of which is q. s. over 

~ ,  is said t o  converge in mean to a funct ion f ( X ) ,  also q. s. over ~ ,  as n o o o ,  if 

lira f I f (X)-- f . (X)I '  d Vx = o. (8. I 5) 
, ; t ~  oo 

ao 

We are now in a position to discuss the harmonic  analysis of a given 

funct ion f (X).  The fundamenta l  theorem is, of course, Plancherel ' s  theorem on 

the Four ie r  t ransform.  In  n dimensions this reads as follows: 

I f  f (X) is q. s. over ~ ,  there exists its Fourier transform 

) 
R 

where the expanding region R is selected from an arbitrary one-parameter family 
of regions which are such that ultimately R covers and continues to cover almost 
any given point of space. All such transforms m'e equivalent; i.e. any pair of such 
functions can differ at most on a set of zero measure. Furthermm'e, g( U) is q. s. 

over ~ and satisfies the equality 

f ig(U) I ~ d Vu = f If(X)12 d Vx. (8. 17) 

a9 o o  

For  any integer  m ~ I, there  exists as an absolutely convergent  integral  
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/ f f dV~.., dgr, g(T~+T2++T~+ U)dVr, 
(r; o) [r; o) (r; o) 

(2~)n/2 f (Z)  ei(X'T) dVT ei(X'V)dVx, (8. 18) 

(r; O) 

which yields the following explicit formula for g(U): 

I ) i f  /" r--O [2 71;) n/2 IV(7)] m f ( X  ei(X �9 T)d V r  ei(x. u) d V x ;  m =  I ,  2 , . . . ;  (8. 19) 
(r; O) 

this limit existing for almost every U. Conversely, g( U) possesses a Fourier 

transform and this is f ( - - X ) :  

f (X)  = l.i.m, r - ~ l  2 ( g(U)e-"X'~) d V,.  (S. 20) 
R--~ t2 m J 

R 

An equivalent statement is that  / ( X )  is the Fourier transform of g(U). As 

above, we may write explicitly, for almost every X, 

f (X)  = .-.olim'(2 I),,/2 ~ ,-.~ U (8.  2 I)  rv(nl,~ ) e-i(v. T) d VT e--i(x, u) d Vv; m= I, 2 , . . . .  

Qo (r; O) 

Finally, if f~(X) and f ,(X) are each q. s. over oo, and if gl(U) and ge(U) are 

their respective Fourier transforms, then 

f A(x)g.(x) d V. = fA(U)gl(U)d Vu. 
c~o 

(8. 22) 

We are thus possessed of a harmonic analysis of any quadratically summable 

function. For a given such function f (X)  this consists in associating with almost 

every vector frequency U a complex amplitude g(U). I t  is suggestive to imagine 

this g(U) as the density of a complex mass distribution in the U space. The 

converse procedure by which we rebuild the given f (X)  from this mass distribu- 

tion may be described formally as follows: We begin by multiplying the density 

of this distribution by the factor, 

e--i(x, u) 
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thus altering the complex phase of the density in an simply periodic fashion. 

This done, we calculate the total mass of the resulting distribution and find it 

to be f(X). 

Now, there exists a very important class of functions to which exactly 

this harmonic analysis cannot be given, namely the n-tuply periodic functions. 

I f  such a function f (X) be also q. s. over an arbitrary finite region, it is known 

to possess an n4uple Fourier series representation: 

f (X) ~ .~ ak d( x" u~); (S. 23) 

where the summation is effected for all points Up which are vertices of a certain 

rectangular network. This analysis can also be interpreted as a mass distribu- 

tion. Here, however, the spread is not continuous but consists of masses a~ 

concentrated at the corresponding frequency points U~. Yet the process by 

which f (X) is reobtained is again that of calculating the total mass of a distri- 

bution. 

If  one seeks a uniform method of treating these two types of mass spreads, 

one naturally is led to construct a region-function: the total mass in an arbitrary 

region. Knowledge of this function is equivalent to knowledge of the particular 

distribution in question. The advantage derived in employing it is that  it is of 

the same order of magnitude for the various types of spreads whereas the densities 

are not. We shall see that this region-function can readily be calculated. To 

effect a return to the given function f(X) we shall employ the Stieltjes integral 

which will simultaneously correctly modify the complex phases of the spread 

and determine the total resulting mass. Let us note how easily all this is 
carried out. 

However, we can handle at once a more general problem. Let  f (X) be a 

function such that, for some integer m, the product 

f (x){fr  ~' (8. 24) 

(r; O) 

is q. s. over m. Let the Fourier transform of this product be denoted by 

I / { f  }m M(m)(r; U ) =  R - - ~  t2 ~ l . i . m . ~  f (X) dlx'T)dVT e*(X'V)dVx. (8. 25) 

r (r; O) 
Hence 

23 -- 29764. Aeta mathematica. 55. Irnprim6 le 14 avril 1930. 
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/" I / f(X) e i d VT = 1.i.m. R--~ (2~) n/2 e--i(x'o)M(m)(r; U) dVu. (8.26) 

; R 

Integrating the above expression we obtain the result: 

(8; Y) (r; O) 

Now since 

-- I f { f  e-i(x'v)dVx} e-i(Y'v)M(m)(r; ~:),,/2 
| (~; O) 

,......o~(~T]~ d(X'T)dVz = i, 
(r; O) 

(8.27) 

(8 .  2 8 )  

and since f(X) is summable, it follows that 

f f( I ; f { f  } X) dVx~-lim(2z)n/2[v(r--o )]d e-~(x'u)dVx e-i(Y'U)M(m)(r; U)dVv. (8.29) 

{8; Y) r162 (s;O) 

The right hand side is precisely an m{h order StieRjes integral. We have, then, 

f i f { f  } f(X)dVx--(2~r)~/., e-i(x'u)dVx e-i(r'v)d'~M ('), (8. 30) 

(8; Y) | (s; O) 

and, therefore, for almost every X, 

f(x) = lim(2 :),, 2 , - - 0  , i ) f { f  } Y~ e--i(T. V) d VT e -i(X" u) d~M(,~). 

(s; O) 

(8. 3I) 

That the function MC')(r; U) constitutes a harmonic analysis of the given 

f(X) is established by the following considerations.  I t  is a matter of simple 

calculation t o  show that if f(X) is itself q. s. over ~ ,  M C1) (r; U) exists and has 

for i ts  value the total mass in the sphere /r; U) of a distribution of density 

g(U). I t  is similarly easy to show that if f (X)  is possessed of a Fourier series 

development, M (1) (r; U) exists as a limit in the mean and is equal to the sum 

of those Fourier coefficients ak which correspond to frequency points U lying 

in (r; U). As we have seen above, M I1) (r; U) determines the mass distributions 
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which constitute the harmonic analysis of f(X).  In the same fashion M (2) (r; U) 

determines M (1) (r; U); etc. 

While, then, we are justified in considering that  M (m) (r; U) is a harmonic 

analysis of f(X),  we must yet determine for what class of functions f (X)  the 

region-function M will exist a t  least for some integer m. I t  can be shown t h a t  

the function 

f d( x ~) d VT (8. 32) 
(r; O) 

n + l  

is bounded for all X and is of the order of I XI- ~ for large values of I x I .  

This at once establishes the fact that  if, for some positive p, the quotient 

f(x) 
I+lXl" (8.33) 

is q. s. over o~, then a value of m can be determined for which Mira/will exist. 

Furthermore, a generalization to n dimensions of a Tanberian theorem such as 

given by Jacob readily shows that  if f (X)  is q. s. over all finite regions and is 

such that  for some positive p the expression 

if [v(r)]~, If(X) I ~ d gx (8.34) 

(r; O) 

is bounde4 for sufficiently large values of r, then it too belongs to the class in 

question. An n-tuply periodic function is included in this last type of function 

f(X). Essentially, then, the function~ which we can harmonically analyze are 

those which are ))algebraic on the average* as I XI--* 0r 

When we come to the study of the energy spectrum of a given function 

f(X) we again subject the function to a harmonic analysis but not in such great 

detail as before. In the corresponding mass spread we are no longer interested 

in the complex phase of the various masses and densities present, but solely in 

their absolute values, or, more precisely, in the squares of these absolute values. 

Obviously, again, there will be different orders of density, or, as we may say, 

different orders of energy in the component oscillations. For the functions of 

the class described above there will exist for some value of k -  o the limit 

if ~ o ( X ) = l i m ~  f (T ) f (T - -X)d  Yr. (S. 35) ~.-~ [v~r)j 
(r; O) 
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The harmonic analysis of this latter function will show that  its mass distri- 

bution consists of the squares of the absolute values of the highest order den- 

sities that  appear in the distribution corresponding to f(X). Terms of lower 

energy level do  not appear. Thus, the total mass of the distribution corresponding 

t o  ~(X) does not necessarily coincide with although it will never exceed the 

total energy which could be calculated from the spread associated with f(X). 
Precisely as in the one-dimensional case it can be shown that  

,~ I~(x) l -< ~(o) = lim If(T) d Vz. (8.36) 

(r; O) 

From this boundedness it follows that  the product 

(r; O) 

(8.37) 

is q. s. over ~ ,  and hence that  there exists M(1)(r; U) formed with respect to 

r This function is at present only defined as a limit in the mean. I t  is 

des i red  to show that  it can be so defined that  for any given U it will be a 

monotonic non-decreasing function of r. This is carried out as when n =  I by 

a series of limiting-processes which do not alter any monotonic properties. To 

begin with one shows that  if 

then 

_ I f "~T; ] ~0,(X) [v(s)] k f,(T)~(T--X)d 

f~(r) = / f (T) ;  IT in (,; o)] 
( o ; [T elsewhere] 

(s. 3~) 

Furthermore one notes that  

~(X) = lim q~.(X). (8. 39) 8~r 

f l/ I ' I f i ( T )  e i(T'r) d VT > o, ~.(x)  r ~)d vx  = [v(~l]k 
Q0 

(8.40) 

precisely as in the one-dimensional ease. From this it follows that  the function 
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' f  ){( Ms(r; U)-=(2-~r)~ q~s(X e'(X'T)dV d(x'v)dVx 
*) 

r (r; O) 

i f f  - -  (2 ~)n d VT q~s(X) e i(x" r) d Vx 
(r; V) | 

(8.4I) 

for given U is monotone non-decreasing in r. I t  is reudily seen that 

f M(r; U) d Vu = lim f s(r; u) d Vu, (8.42) 

(r'; U')  (r'; U') 

and hence that  for given r' and U' the integral on the left has ~he same mono- 

tone property with respect to r. Finally since, for almost every U', 

[ "  
p I 

M(r; U ) ~ - l i m ~  |M(r; U)dVv, 
~'~o v~r ) d 

(r'; U') 

(8.43) 

we see that, in so far as it is thus defined, M(r; U) has the desired property. 

Since the point-set on which M is not defined constitutes at most a set of zero 

measure, it is a simple matter to define 21/for all r and U so that  for each U 

will be a monotonic non-decreasing function of r. 

The total spectral intensity of f(X), or more accurately, the total spectral 

intensity of those components which are associated with the maximum energy 

level, is given by the limit 

lim M(r; U), (8.44) 

if this exists. One fairly readily shows that 

M(r; u) -< (s. 45) 

and, because of the monotony, hence that  the limit in question exists and lies 

between o and r The details of the argument whereby one next shows that 

lim M(r; U) = lim ~ J qD(X) d Vx ~ q~(o) 
r ~  ~ r ' ~ 0  V ( r )  

(r'; O) 

(8.46) 

will be omitted here to avoid too much complication. 
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9. Coherency matrices. 

The spectrum theory of our earlier sections is a theory of the spectrum of 

an individual function. There are, however, many phenomena intimately con- 

nected with harmonic analysis which refer to several functions considered simul- 

taneously. Chief among these are t hephenomena  of coherency and incoherency, 

of interference, and of polarization. 

I t  is known to every beginner in physics that  two rays of light from the 

same source may interfere: that is, they may be superimposed to form a darkness, 

or else a light more intense than is ordinarily formed by two rays of light of 

their respective intensities. On the other hand, two rays of light from inde- 

pendent sources or from different parts of the same source never exhibi t  this 

phenomenon. The former rays are said to be coherent, and the  latter to be 

incoherent. Although it is mathematically impossible for two truly sinusoidal 

oscillations to be incoherent, even the most purely monochromatic light which 

we can sensibly produce never coheres with similar light from another source. 

The physicist's explanation of incohereney is the following: the interference 

pattern produced by two sources of light depends on their relative displacement 

in phase. Now, the relative phase of two sensibly monochromatic sources of 

light is able to assume all possible values, and since light probably consists in 

a series of approximately sinusoidal trains of oscillations each lasting but a 

small port ion,  of a millionth of a second, this relative pbase assumes in any 

sensible interval all possible values with a uniform distribution which averages 

out light and dark bands into a sensibly uniform illumination. 

This explanation of ineoherency is unquestionable adequate to account for 

the phenomenon which it was invented to explain. Nevertheless, it is desirable 

to have a theory of coherency and incoherency which does not postulate a 

hypothetical set of constituent harmonic trains of oscillations, which at any rate 

must become merged in the general electromagnetic oscillation constituting the 

light. The present section is devoted to the developm.ent of a theory of cohe- 

rency which is as direct as the theory of this paper concerning the harmonic 

analysis of a single function, and indeed forms a natural extension of the latter. 

In interference, the components of the electromagnetic field of the constit- 

uent light rays combine additively. Accordingly, the theory of coherency and 

interference must be a theory of the harmonic analysis of all functions which 
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can be obtained from a given set by linear combination. Let us see what the 

outlines of this theory are. 

We start from a class of functions, fk(t), in general complex, and defined 

for all real arguments between --~r and r162 For the present we shall assume 

this  cla~s of functions to be finite, although this restriction is not essential. Let 

f(t)=-a, f l  (t) + aj~(t) + ' .  + a,~f,,(t) (9. 0I) 

be the general linear combina~i0n of functions of the set. We shall have 

T 

r 2-TI f f(t+ ~)jit) dt 
- - T  

T 

j ,  k = l  - - T  

(9. 02) 

in case the latf~r limits exist. The necessary and sufficient condition for this to 

exist for all linear combinations f(t) of functions of the set is that 

T 

9~j.k(v)=lim I f r-- .  -~2 ])(t +~)j~(tldt 
- -T  

(9.03) 

should exist for every j, k, and ~. Then 

~(~)= Z N, ~ ~(~) .  
j k 

(9.04) 

Again, we shall have formally 

I f e i * ~ -  I 

- - o o  

c~ 

i f r  
3 k 

d~, (9. o5) 

where we may write 
oo 

I f e i u * -  I d,. (9. 06) 

If  q~j.k(v) exists f o r  every j, k, and ,, we may readily show that each Sjk(u) exists. 

Clearly 
T T 

- 

q~kj(z)=lim fk ( t+~)j ) ( t )d t - - l im ( t - -~ ) f k ( t )d t~ j k ( - -~ )  (9. 07) 

- - T  - - T  
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and 

I f - -  e iu~- I  I f - -  e - i u ~ -  I -- s.(u) = ~ j ~ ( - ~ )  ~ d~ = 2 -~ fjk(~) ----_iz d~ = Sjk(U), (9" O8) 

so that the matrix 

II 8~(~,) II 

is Hermit ian.  This matrix determines the spectra of all possible linear combina- 

tions of f l ( t ) , . . . ,  fn(t). Since it determines the precise coherency relations of the 

functions in question, we shall call it the coherency matrix. 

Let us subject the functions fk(t) to the linear transformation 

Then 

and 

gi(t) = ~ ajkfk(t). (9. 09) 

T 

~pjk(~) = lim I f 
l m --T 

oo 

I f e i u ~ ' I  d'l; Z Z ajlCtkm Slra ('t~). 

(9" IO) 

(9" II) 

Thus the new coherency matrix II Tj~(u)ll may be written 

M~. II & ( u ) l l  M,, (9. '~) 
where 

Mt II.Jkll, (9. I3) 
and 

M~ = II a .  II- (9. I 4) 

In case the transformation with matrix M t has the property 

M~. M , =  M,. M , =  I, (9. 1.5) 

it is said to be unitary. For such transformations, 

II T~II = M ~ .  IISj~II" M ~  -1. (9" I6) 

A matrix Ila~kll is said to be in diagonal form if all the terms aj~ for 

which j 4= k are identically zero. By a theorem of WeyP, every Hermitian matrix 
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may be transformed into a diagonal matrix by a unitary transformation. Since 

we may regard a diagonal matrix as representing a set of completely incoherent 

phenomena, this transformation is of fundamental  importance in the characteriza- 

tion of the state of coherency of the functions determining the matrix. Together 

with the numerical values of the diagonal elements of the diagonal matrix, it 

indeed consitutes a complete characterization of the state of coherency of the 

original function. In  the case the values of the diagonal elements are distinct, 

this characterization is indeed to be carried through in but a single way. 

The production of incoherent functions is a simple matter, when we have 

once settled the existence theory of functions with given types of spectra. Let 

f~(t) be any bounded function such that  ~0(~) and consequently S(u) exists. Then if 

f~(t) = f ,  (t) e 'vlSI, (9- 17) 
we have 

T T 

2G f )i;( f lim t + z  t ) d t = l i m  t + ~:)J;(t) 
- - T  - - T  

ei(vIT+7]~l--rlti ) dt  

T 

' f  ) ( ,) --~Z--=~lim f , ( t + z ) f , ( t  exp i VI t+~l ~-. -t at, 
- - T  

(9. 18) 

and hence, since t--+| exp (i v l t + * l  - 1 ; ~ )  -- i , t + z l  + 

and 
~)'~2(~-) = ~)ll ('$') 

s , , ( u )  - -  & ,  (,,). 

(9. I9) 

(9. 20) 

On the other hand, if for example f ( t ) =  e i)'t, 

T 

~o,,(z)--~lim I fA(t+~)j~(t)~-",Odt=-o; 
- - T  

&,(u)=&,(u)=o.  

(9-2i) 

Thus the coherency matrix of f~(t) and fs(t) is 
2 4 -  29764. Acta mathematica. 55. I m p r i m $  le 14 avr i l  1930. 
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&~(~) II Io ~ (9. 22) 

The coherency matrix of VTf~(t) and o is 

that of fl(t) and f~(t)is 

that of A(t) and ill(t)is 

S11(u) 2 oil 23, 
0 0 

II I ill $11 (U) ; (9" 24) 
I I 

II I :ll s ,~(u)  . . (9. 25) 

complex. Thus if 

we have 

Let it be noted that  the coherency matrices of real functions are in general 

f,(t) =f~( t  + Z), (9- 26) 

T 

9,~(.) = lim I flf~(t+).+ .)f~(t)dt (9. 27) 
T ~  

--T 

= ~n(~+ Z); 

and hence 

S12 (")  : ~011 (T"~ Z ) -IdT= e-iVZdSn(v)TSl~(--or 
(9. ~8) 

giving the coherency matrix with derivative 

II 7ll I . z~. 

s'~ (~) 
I �9 

etVZ (9. 29) 

In  optics, coherency is generally considered for light of one particular fre- 

quency. From that standpoint, the coherency of a set of functions fl(t), . . . , f~(t)  



with 

quency u by the matrix 

s ~ ( , ) ,  . . . ,  s~,~(, 
. . . . . . . .  . 

1 1 s ; ~ ( u ) ,  . . ,  s ~ ( u ) l l  
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continuous differentiable spectra may be regarded as determined for fie- 

(9-30) 

or in the case of functions with line spectra, by 

Sll(U-~ O)--Sll(~t--O), . . . ,  ~ln(~'~-O)--~ln(~--O)ll  

s . , ( u + o ) - S . ~ ( . ' o )  . . . .  , s ~ n ( - + o ) - S . ~ ( ~ - o ) l l  

(9-3I) 

We may regard these matrices in a secondary sense as coherency matrices. 

Coherency matrices of two functions are of particular interest in Connec- 

tion with the characterization of the state of polarization of light. As everyone 

knows, this characterization is identically the characterization of the state of 

coherency between two components of the electric vector at right angles to one 

another. With this interpretation, matrix (9. 22)represents unpolarized light, 

matrix (9.23) light polarized completely in one plane, while 

II: :U (9. 32 ) 

represents light completely polarized in a plane perpendicular to the first. Matrix 

(9.24) and matrix 

II II Ill 
represent light polarized respectively at 45 ~ and at I35 ~ to the first direction. 

Matrix (9.25) and matrix 

represent respectively light polarized circularly in a counter-clockwise and a 

clockwise direction. 
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When  the matrix of completely polarized light, whether linearly, ellip~ically, 

or circularly .polarized, is brought into diagonal form by a linear unitary trans- 

formation, the resulting diagonal matrix will have only one element distinct 

from o. On the other hand, completely unpolarized ligh$ has the diagonal  ~erms 

as a measure of the amount  of polarization of the diag- equal. This suggests 

onal matrix 

II: 
or of any other matrix equivalent to 

quantity 
t2 - -b .  

.o]],b (9. 35) 

it under a unitary transformation, the 

(9. 36) 

I f  we subtract from our original diagonal 

matrix 
a + b  

0 
2 

a + b  
0 

2 

matrix the completely incoherent 

(9. 37) 

which is invariant under every unitary transformation, we get the matrix 

a_b2 o II 
b - - a  

o - -  
2 

(9, 3 8) 

which may be regarded as a representative of the quantity a--b. This suggests 

that  given any coherency matrix 

we may take A + D  

the matrix 

to represent the intensity of the corresponding light, and 

II 
(9. 40) 



as its polarization. 
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Thus horizontal polarization is represented by the matrix 

II i 
polarization at 45 ~ by the matrix 

JI ~ o'11 
and circular polarization by the matrix 

These are 

(9-42) 

(9.43) 

the same matrices which Jordan, Dirae and Weyl have employed to 

such advantage in the theory of quanta. 

Since the most general Itermitian matrix of the second order may be written 

a + ~ + 7 + d (9 .44)  
7 - 6 i  a-~ll= Iio o i i - i  o .' 

it appears that  all light may characterized as to its state of polarization by 

given the total amount of light it contains, the excess of the amount polarized 

at o ~ over that polarized at 9 o~ the excess of the amount polarized at 45 ~ over 

that polarized at I35 ~ and the excess of that  polarized cireularly to the right 

over that  polarized circularly to  the left. This characterization is complete and 

univocM. The totM intensity of the light may be read off any sort of a photo- 

meter. The excess of light polarized horizontally over that polarized vertieMly 

may be determined by a doubly refracting erystal in one orientation, and the 

excess of light polarized at 45 ~ over that  polarize4 at 135 ~ by the same crystal 

in another orientation. I t  is possible furthermore to devise an instrument which 

will read off the amount of circular polarization in the light in question. The 

three latter instruments possess some very remarkable group properties with 

respect to one another. Either portion of the light emerging from any one of 

the instruments will behave towards the other two exactly like unpolarized light. 

Rotation of the plane of polarization of the light through 45 ~ will change the 

reading of the first of the last three instruments into that  of the second, and 
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the reading of the second into minus tha t  of the first, leaving the reading of the 

third unchanged. There are precisely analogous uni tary t ransformations inter- 

changing any other pair of the three instruments,  leaving the reading of the 

remaining ins t rument  untouched. These t ransformations together with their  

powers and the identical t ransformation form a group. 

A fact  concerning polarized l ight  which is so apparently obvious tha t  it is 

generally regarded as not  needing any proof is tha t  all l ight is a case or l imiting 

case Of partially elliptically polarized light. I t  is nevertheless desirable to prove 

this statement.  Completely elliptically polarized l ight  with the coordinate axes 

as principal axes has a coherency matr ix of the form 

IIA  
A B i  Bz ]l 

(9- 45) 

and hence partially polarized l ight  with the same principal axes has a coherency 

matrix of the form 

P = �9 (9.46) 
A B i  B ~ ~ 1)3 

We wish to show tha t  the general coherency matrix 

r+~i 
(9.47) 

may be 

way tha t  

t ransformed into this form by a real uni tary t ransformation in such a 

T . M . T - I = p .  

To do this, we need only put  

Ilcos ~ sin ~11 2z. (9.48) 
T = ; where tan  2 ~o = a - -  

sin ~o --cos ~o 

Thus the axes of polarization of M are I and 2 directions when we replace 

ft(t) and f2(t) by 

gl(t) = f i ( t )  cos 90 +f=(t) sin t 
~; (9. 49) / g~(t) = --f~(t) eos ~o +fz (t) sin ~; 
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the ~> lengths >> of these axes are respectively 

A = {-~ [(~--~)~+4 (7~+ 5~)]'i2 + ~ [(~'~)~+ 4 7~]'/2}'/~;/ 

B---- [ (~ - -~ )~+4(~ , '+~ / ] ' ~ ' - - - [ (~ - -~ / '+4 ) ,T  j' ; 

(9. 50) 

and the percentage of polarization 

IOO(I 4 (~'2-~ (~)~'/2 (9" 5 I ) j 

The connection between coherency matrices and optical instruments, which 

we have already mentioned in the case of polarized light, is of far more general 

applicability. An optical instrument is a method, linear in electric and magnetic 

field vectors, of transforming a light input into a light output. In general, this 

transformation, in the language of Volterra ~, belongs to the group of the closed 

cycle with respect to the time, in the sense that it is independent of the posi- 

tion of our initial instant in time. Such a transformation leaves a simple harmonic 

input still simply harmonic in the t ime, although in general with a shift in 

phase. 
An example of an optical instrument is a microscope. This may be regarded 

as a means of making an electromagnetic disturbance in the image plane depend 

linearly on a given electromagnetic disturbance in the object  plane. Telescopes, 

spectroscopes, Nicol prisms, etc., serve as further examples of optical instruments 

in the sense in question. Among these, a particularly interesting ideal type is 

the conservative optical instrument, in which the power of the input and the 

power of the output are identical. This power depends quadratically on the 

electric and magnetic vectors, so that a conservative optical instrument has a 

quadratic invariant for the corresponding transformations. When only terms of 

the one frequency of e i'~t are considered, this quadratic positive invariant becomes 

Hermitian, and has essentially the same properties as the expression 

X i x  1 q- X~X~ -4- " A- XnXn (9. 52) 

which is invariant under all unitary transformations of x , , . . . ,  xn. Thus the 

theory of the group of unitary transformations is physically applicable, not only 
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in quantum mechanics, where Weyl has already employed it so successfully, but 

even in classical optics. I t  is the conviction of the author that  this analogy is 

not merely an accident, but is due to a deep-lying connection between the two 

theories. 

In quantum mechanics, while all the terms of a matrix enter in an essential 

way into its transformation theory, only diagonal terms are given an immediate 

physical significance. This is also in precise accord with the optical situation. 

Every optical observation ends with the measurement of an energy or power, 

either by direct bolometric or thermometric means, or by the observations of a 

visual intensity or the blackening of a photographic plate. Every such observa- 

tion means the more or less complete determination of some diagonal term. 

The non-diagonal terms of a coherency matrix of light only have signifiance in 

so far as they enable us to predict the energies or intensities which the light 

will show after having been subjected to some linear transformation or optical 

instrument. This fact that  new diagonal terms after a transformation cannot 

be read off from the old diagonal terms before a transformation, without the 

intervention of non-diagonal terms, is the optical analogue for the principle of 

indetermination in quantum theory, according to which observations on the 

momentum of an electron alone cannot yield a single value if its position is 

known, and vice versa. The statement that  every observation of an electron 

affects its properties has the following analogy: if two optical instruments are 

arranged in series, the taking of a reading from the first will involve the inter- 

position of a ground-glass screen or photographic plate between the two, and 

such a plate will destroy the phase relations of the coherency matrix of the 

emitted light, replacing it by the diagonal matrix with the same diagonal terms. 

Thus the observation of the output of the first instrument alters the output of 

the second. In this case, the possibility of taking part of the output of the 

first instrument for reading by a thinly silvered mirror warns us not to try to 

push the analogy with quantum theory too far. 

Coherency matrices form a close analogue to the correlation matrices long 

familiar in statistical theory. If  we have a set of n observations x (I), x (21, . . . ,  x (n) 

all made together, and this set of observations is repeated on the occasions 

I, 2 . . . .  , m thus yielding sets x~ ~), . . . ,  x~n); ~(~1), . . . ,  x(2"); . . . ;  �9 .. ; x~ ), . . . ,  x~), the 

correlation matrix of these observations is 
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I~t �9 gft ~t~ 

E(x l ) ', v . . . . . .  E X.J k k ' , X!~) x!n) 
1 1 1 

1 1 1 
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(9. s3) 

under the transformations 

(9. 54) 

The so-called coefficients of correlation and of partial correlation and the lines 

of regression of x on y and of y on x have this type of invariance. 

Correlation matrices and their derived quantities are the tool for the 

statistical analysis of what is known as frequency series, series of data where 

no such variable as the time enters as a parameter. In the study of meteorology, 

of business cycles, and of many other phenomena of interest to the statistician,- 

on the other hand, we must discuss time series, where the relations of the data 

in time are essential. The proper analysis of these has long been a moot point 

among statisticians and economists. As far as it is linear relationships which 

we are seeking for, it is only reasonable to suppose that  coherency matrices 
2 5 - - 2 9 7 6 4 .  Ac ta  mathemat ica .  5 5 .  I m p r i m 6  l e  1 4  a v r i l  1 9 3 0 .  

x I = kx; / 

Yl ly. J 

. . . . . . . . . . . .  �9 . . . . . .  ~ 

m m ~n 

x (~) x(1} x(kn/ 
1 1 1 

This symmetrical matrix represents the entire ~amount and kind of linear rela- 

tionship to be observed between the different observations in question. The 

further analysis of the information yielded by a correlation matrix depends on 

the nature of the data to be analysed. Thus if the two observations of each 

set are the x and y coordinates of the position of a shot on a target, the rota- 

tions of the x and y axes have a concrete geometrical meaning, and the question 

of reducing the matrix to diagonal form by a rotation of axes is the significant 

question of determining the ellipse which best represents the distribution of 

holes in the target. On the other hand, if the quantities whose correlation we 

are investigating are the price of wheat x in dollars per bushel and the marriage 

rate y, rotations have no significance, as there is no common scale, while on the 

other hand, the significant information yielded by the matrix must be invariant 
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must play the same rSle for time series which correlation matrices play for 

frequency series. In statistical work, the group of transformations which will 

most frequently be permissible is as before 

g,(t)-= Aft(t); 
[A and B real] (9. 55) 

g~(t) ~- Bf2(t) .  

Under this group, the significant invariants of the Hermitian matrix 

are 
ll  l'u' ii I S'~, (u) s ~  (u) 

= ' , & , ( u ) ]  , ,.(~) s , , ( u )  IS', (u) ' - ' / "  

(9. s6) 

(9. 57) 

which we may call the coefficient of coherency of f l  and ~ for frequency u, and 

s; , (u)  and .,(,,) = -  s i, (,,) ' (9. ss) 

the coefficients of regression respectively of f l  on f~ and of f2 on fl .  The 

modulus of the Coefficient of coherency represents the amount of linear coherency 

between f l( t)  and f~(t) and the argument the phase-lag of this coherency. The 

coefficients of regression determine in addition the relative scale for equivalent 

changes of f l  and f~. 

The computation of coefficients of coherency and of regression is to be 

done in the steps indicated in their definition. In the case where only a finite 

set of real data are at our disposal, distributed at equal unit intervals from o 

to n, say x 0, x 1, . . . ,  xn and Yo, Yl, . . . ,  Yn, the steps of our computation are: 

n - - k  
I 

-'Z 
0 

n--k  
I 

n - -k  
I 

( ~ ) ~ :  = ,~ ~ u,y~+~; 
0 

[o --< k--< n] (9. S9) 
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~b 

~P,{[(90k)m + (9ok),~] cos ku + i [(90k)~t--(90k)l~] sin ku}-- (9oo)~/2 

o o +  o o +  

(9. 60) 

[~o " -11/, (9,~). eos , ~ u - ( 9 % ) . / ~ ]  

,~ (,,) = r (,,) ~ - -  - - ~  ; 
l ~  (~0/..)2 ~ COS ]C~--(~0)~J2 j 

[~ (~)" 
if2 (u) = r (~) [~o  ({?jOk),l 

. "1 *I= 
cos Ku-(~o),,/2] 

. 11/~ 

cos ~u-(~Vo)**/2] 

(9-61) 

In  case we have at our disposal methods for performing the Fourier transforma- 

tion, we may compute these coefficients directly from graphs. Several devices 

for this purpose are now being developed in the laboratory of Professor u Bush 

in the Department of Electrical Engineering of the Massachusetts Insti tut  of 

Technology. 

m. Harmonic analysis and transformation groups. 

Inasmuch, as the theory of Fourier series forms a special chapter in the 

theory of expansions in general sets of normal and orthogonal functions, it is 

reasonable to expect that the theory developed in the present paper is but a 

special chapter in the theory of general orthogonal developments. An attempt 

to translate the present theory into more general terms, however, incurs at once 

somewhat serious difficulties. This is due to the fact that  the theory of the 

Fourier series involves only one fundamental Hermitian form, 

if f(x)f(x)dx; 
- - Z ;  

the closely related theory of 

form 

I0. 0I) 

the Fourier integral involves only the analogous 
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f f(x)./(~)ex; 
- - 3  

IO.  0 2 )  

while 

form 

the present paper involves besides this latter form the singular quadratic 

T 

i f / (  - 
M~f(x)) =:r__~lim 2--.7; x)f(x)dx. (Io. 03) 

- - T  

The forms (i0. o2) and (io. o3) are quite independent of one another in their 

formal properties, but the complex exponentials e ~u~ stand in close relation to 

both of them: to (IO. 02) because if a < b, c < d, 

r162 b d 

f~xfl'e'~*~ f~-*'~v =2~v  [length common to (a, b )and  (c, d)]; (Io. 04) 

- - 3  ( I  �9 C 

and to (Io. 03) because 
T 

i f ,~  / ~  [ .  + v] (io. o51 lim ~ j e  e - ' ~ ' ~ d x = l I  [u=v]. 
- - T  

is finite. Let 

In  the classical Plancherel theory, o n l y  the first form is in evidence; in the 

Bohr theory of almost periodic functions, only the second; in the theory of the 

present paper, the two play an equal r61e. 

Weyl has developed in some detail the relations between the theory of 

unitary groups and the theory of periodic and almost periodic functions. The 

groups which he introduces are one parameter groups of linear functional trans- 

formations leaving (I0.03) invariant. The Weyl theory is manifestly not suscept- 

ible to an extension to more general, forms of harmonic analysis, unless a way 

is found to take cognizance of the invariance of (IO. 02) as well. This is the 

purpose of the present section. 

Let us restrict the functions f(x) which we discuss in the present section 

to those for which 

fl~x)~dx (,o. o6) 
J I  + x  ~ ' 
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[o; [l~l > A] 

.fA(x) = If(x);  [Ix[ <- A] 
(Io. 07) 

and let sA be the transformation leading from f(x) to fA(x). Let T be a trans- 

formation which is linear, and with an inverse, and is defined for all functions 

f(x) subject to the finiteness of (IO. o6). Let T preserve (Io. o2) invariant, and 

in case (Io. o3) is finite, let 

Then since 

and 

it follows that  

f I(TsA--sA r) f(x)I '  d x :  o(A). 

A-~ V~I dx=M~(lf(x) ]'), 

lim 
.~-~ V54 VA 

dx -~ o, 

co 

M~(I Tf(x)I ~) = lira dx :M~( l f ( x )  I'). 

(I0. 08) 

(IO. O9) 

IO. I0) 

�9 ( i o .  i i )  

The transformations T form a group. I f  T~ and T~ are of this form, 

f [(r, T, sA--sA r~ T,)f(x)[' dx 

ao 

---- f [[(rl T2sA-- l',sa T~) + (Ttsa r,--sA I'1T,)]f(x)]' dx 

f f, <--2 [rlT~sA--rlsAT~)f(x)[ 'dx+2 (Tls~T2--s.~TiT2)f(x)[~dx 

-- 2 f I (T~sA 
- - r  

--sA T,)f(x)]' dx+ 2 f ](T18A--sA TI) T~f(x)]' dx. (I0. 12) 
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Furthermore, 

f l(l~-'sA - -  s , ,  T -  1)f(x) I s d *  = f I ( ~ -  r 8~ T - - ' ) f ( x ) I '  d~ 

- f I dx. 
- - 0 r  

(m. '3) 

Thus the product of two transformations satisfying (Io. o8) and the inverse of a 

transformation satisfying (Io. o8) likewise satisfy (Io. o8). 

An example of a transformation satisfying (m. 08) is 

for 
raf(x) = f (x  + it), (I o. 14) 

aa 

f I( T~sA--sa T~)f(x)I'dx 

-< fill(x-A-z)i s + 10qx + A -z)I  s] dx=o(A). 
0 

(IO. IS) 

If  T satisfies (IO. 08) and (IO. 02) is invariant under it, we shall call it properly 
unitary. Let us consider a one parameter group consisting of all properly unitary 
transformations U a, where 

U a+~' = U ~ U~'. ( Io.  I6) 
Let f(x) be such that  

exists for every t. 

(t) = M ,  [ (V' f (z ) ) / (x ) ]  (io. 17) 

Clearly, by the Schwarz inequality, 

~(t) --< [Ms (I gtf(x) I ~) M~ (If(z)I~)] '~' 
o o  

0 0  

- - r  

= ~0(0~ (IO. 18) 
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I t  follows that  go(t) is a bounded function, and that  

199 

B 

S(u,, u s ) =  l.i.m. I f sin (u.--ul)t/2et(%~)t B--| ~ go(t) - t d t 
- - B  

(IO. I9) 

exists when ue--u~ is given as a quadratically summable function of u~+u 1. 

this one need only apply Plaucherel's theorem. 

Let us put 
oo  

I [ [u'~.Ax)] ..Ax)dx. go., ( t ) = ~-A 
- - o o  

For 

I0. 20) 

I f  condition (Io. I7) holds for every t, we have 

o0  

go(t) =A--| ~' f [,. uT~x)] , . f , x ) d x  
- - o o  

(IO. 2I) 

which we may readily reduce to the form 

go (t) = lira goA (t) I0. 22) 

by means of (IO. 08). 

to be uniformly bounded in A and t, for 

lim go.~ (o) = go (o). 

Let us now introduce a new assumption concerning U'. 

formation W taking f(x) into UZf(a) (a fixed) preserve 0o. o2) invariant. 

~p(x) = WsA f(x) 

we have, by the new assumption and (Io. 20), 

We may easily prove goA(t) not to exceed go.i(o) and hence 

(io. 23) 

Let the trans- 
Than if 

(I0. 24) 

,.(,> = f . ,  (....:~ ....:(~ 
--oo 

oo 

i f , (  ~( 2A x+t) x) dx. 
- - o o  

(io. 25) 
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As we may readily see (cf. (I. 29) ) ~a(t) is absolutely in~grable over (--oo, oo), 

and 
r 

qoa(t)d'adt (IO. 56) 

- - a o  

exists, and is real and positive. Indeed, we might have replaced our new 

assumption by the assumption tha~t 

oo 

- - a o  - - o o  

(io. 27) 

is positive-definite, and exists for every quadratically summable f (x) .  

Thus it appears that 

oo 

 tul . l = ; f   AItl 
. l t t + i t ~  

sin (u , - -u , ) t /2e , (~- ) ta t  (m. 28) 
t 

exists, is monotone in u~ and us, and has the property that 

s~ (.,, ~,)+ s~ (.,, u ,)= sA (-i,-~). (io. 59) 

To see this, we need only reflect that  

Now 

so that 

I t  1 

(io. 30) 

~0(t) sin (us--Ul)t/2 = 1.i.m. qDA(t) sin t ~,u~---uvt/2, (10. 3 x) 
t A--| t 

S(ul, u,)  : 1 . i .m.  SA(u,, u~). (IO. 32) 
A - - o o  

From this we may readily conclude that 

s(.,,  .~) + s(u~, . s ) =  S(u,, .~), (to. 33) 

and that  S(ul, us) may be so defined as to be monotone in both arguments and 

increasing in u2. S(ul, u~) is the analogue to S(us)--S(ul) in our earlier sections. 
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Hence 

As in (5.47) 
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u ~ u  q,(t) t" t. 

0 - - c ~  

- - 6  
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(xo. 34) 

(m. 35) 

(m. 36) 

We thus have arrived at a spectrum theory closely paralleling the theory 

here developed for trigonometric expansions. Thus for the general case of 

harmonic analysis, it is the group theory of transformations satisfying (Io. o8) 

and (m. 24) which i s  important, rather than the  recognized theory of unitary 

transformations. 

Transformations U s with the prope~ies demanded in this section make 

their appearance in physics in connection with the SchrSdinger equation, which 

often has its Eigenfunktionen also Eigenfunktionen of an operator analogous 

to U s. A more specific instance of Utf(x) is 

U~ f(x)  = dAt f ( x  + t). (i o. 3 7) 

CHAPTER IV. 

1 i.  E x a m p l e s  o f  f u n c t i o n s  w i t h  c o n t i n u o u s  spectra .  

The  theory of harmonic analysis which we have so far developed has as 

one of its purposes the analysis of phenomena such as white light, involving 

continuous spectra. We have not yet proved o u r  theory to be adequate to this 

purpose, for we have not yet given a single instance of a continuous spectrum. 

This lacuna it is the purpose of the present section to fill. To this end, we 

shall only consider functions f(t) which over every interval (n, n +  I), n being 

an integer, assume one of the two values, I and - - I .  For such a function, the 

existence of 
26--29764. Acta  mathematiea. 55. Imprlmd le 15 avril 1930. 
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T 

--T 

for all arguments  will follow from its existence for all integral  arguments,  in- 

asmuch as, if x lies between n and n + I, 

so tha t  

T T 

2 T t + x ) f ( t ) d t - -  t + n +  I ) f ( t ) d t  
2 T  

- - T  - - T  

4- - -  

T 

- - T  

T 

9 (x) =l i_m f ( t + x ) f ( t ) d t  (;;c-- n) ~0 (n -I- I) -t- (n + I --x) ~0 (n). 

--T 

I I. 0 I )  

(I I. 02) 

An example of a funct ion of this sort is given below, where the sequence of 

signs represents the signs of f(t)  over the intervals both to the r ight  and the  

left  of the zero point:  

+ ,  + ;  + , - - "  --  -t 

+ ,  + ,  + ;  + ,  + , - - ;  

repeated twice 

+ ,  + ,  + ,  + ;  + ,  

+ , - - ,  + ;  + . . . .  + ,  + ; - - ,  + , - - ;  

, , + ;  , , repeated four times 

+ ,  + ,  - - ;  + ,  + ,  - - ,  + ;  etc. repeated eight  times 

(I I. 03) 

Each repetit ion of a row is here counted as a separate row. In each row, all 

the possible arrangements  of n symbols which may  be either + or --  occur arranged 

in a regular  order. Thus in each row, the possible arrangements  of p pluses 

or minuses occur equally of ten ,  except for the modification incurred by the 

possibility tha t  such an ar rangement  may overlap one of the major  divisions 

indicated by a semicolon in the above table. These semicolons become more 

and more infrequent  as we proceed to later rows in our table, and do not  affect 

the asymptotic distribution of sequence of p signs. 
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Thus the possible sequences of p signs occur with a probability approaching 

I/2~ at t h e  end of a comported row. However, the ratio of the number of terms 

in a row to that  in all previous rows approaches zero, so that  the effect of 

stopping at some intermediate point in a row becomes negligible. In other words, 

( n u m b e r  of r epe t i t ions  of a pa r t i cu la r  s equence  of p t e r m s  in  first n) 

lira 
n 

= i/2 . (I I. 04 )  

Hence 
r 

lira t + re)f (t) dt 
T ~  ~ 

- - T  

Inasmuch as obviously 

we see that  

I t  follows that  

T 

lim t)] 
- - T  

-~o. [m=an  integer =#= o] (II.OS) 

d t  = i ,  ( i  i .  06) 

f -I*l; [1"1-< o7) 
t o.  

S(u) 2-z dx  ( I -  x sinUx d x  I--cos " = - -  ) Z ~-- V ~ v d v "  ( I I .  0 8 )  
t 

- - ~  0 0 

I I - - C O S  ~ 
Thus the function f(t) has a continuous spectrum with spectral density 

This fact that  the spectrum has a spectral density is an even more restrictive 

condition than the condition that  it should be continuous. 

Every monotone function is known to be the sum of three parts: a step 

function with a denumerable set of steps; a function which is the integral of 

its derivative; and a continuous function with a derivative almost everywhere 

zero. This latter type of function has been ignored as a possibility in spectrum 

analysis. With  both line and continuous spectra we are familiar, but the 

physicists have not considered the possibility of a spectrum in which the total 

energy of a region tends to zero as the width of the region decreases, but not 

proportionally in the limit to the width of the region. Nevertheless, functions 

with a spectrum of this type do exist, as Mr. Kurt  Mahler has proved. I am 

incorporating into this paper an extremely ingenious note of Mr. Mahler, already 
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published in the Journal of Mathematics and Physics of the Massachusetts In- 

stitute of Technology, giving an example of this kind. 

Let ~ be a simple q-th root of unity, q being any positive integer greater 

than I. Let ~ be the conjugate complex numbers so that 

~ =  1. (I1.  09) 

We define the arithmetical function Q(n) by the functional equations 

Q(O) : I  ; 

e(qn + 1)=~'e(n) for I l = ~  I, 2, . . . ,  q- -11 
L ~ I  ~ O, 1, 2, _1 

I I. IO) 

We have thus defined Q(n) unambiguously 

may write 
~(.) = ~ql,) 

for every positive integer n. We 

(i i .  i i )  

where q(n) is the sum of the digits of n in the q-ary system of notation. 

Our problem here is to give an asymptotic evaluation of 

n--1 
&(~) = ~ ~(z)~(z+ k), 

l=O 

for arbitrary positive integral values of k and large values of n. 

have the obvious formula 
&(.) = . .  

We shM1 use this as a basis on which to determine 

I I. I2) 

I f  k=o ,  we 

(ii .  I3) 

n--1 
sl(.)  = ~, e(0~(l+ 1). ( i i .  14) 

l=0 

We may deduce at once from our fundamental equation (I I. IO) the functional 

equations of Sl(n), namely 

&(o)=o, 

& (q n + 0 = ~  sl  ( . )+  ((q- ~). + z) ~. [1=o, i , . . . , q , i ]  (ii. I5) 

As is obvious, these equations determine Sl(n) unambiguously. 
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We now see, however, that  the series 

satisfies the same functional equations (:I.  ! 5 ) a s  Sl(n)and hence is identical 

with S:(n). We thus have 

Now let 

We see that 

+~'{[~1-bl} +~{b] - [~]}  -~- " ' ' .  ( I I .  I7) 

q~_<_ n < q ~+:. (!!. !8) 

~1,~) ~ ~/,~,- [:l}+ ~, {[:1 -[5]} + +:,+1 {[~1 -[~,1} 
�9 ~ + ~ +  ... + ~  + o(,-) 

( ~ )  I 
= . ~  ! - = + o(~) + o(~), 

I - - - -  
q 

or by ( ! ! . !8)  

S 1 (n) - -  q -  I q ~_  ! n + 0 (log n). 

(, i. :9) 

II. 20) 

Formulae (11. I3) and (I I. 20) are only special cases of the corresponding formula 

for arbitrary k. We obtain this in the following manner. 

Since 

Sk(qn+l)=Sk(qn)+O(!) ,  [/=0, 1,2, . . . ,  q-- i ]  ( i i .  21) 

we need only consider Sk(qn). For this we have the formula 

Sq~+~(q,)  ~ ( (q-X)  s : ( n )  + z sK+iCn)). (I 1. 22) 

We define a sequence a(k) by the functional equations 

~(o) = :  

(! !. 23) 
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Then it is always true that 

&(. )  = ~(k)n + o (log .).  (I I. 24) 

To begin with, we have proved this theorem for k = o  and k =  I. Formula 

(1I. 23) shows, however, that  we may prove 0 I .  24) in general by a mathematical 

induction with respect to k. 

a(k) is a very complicated arithmetical function. For small values of its 

argument (K=o ,  I ,  .--, q- - I ,  Z=o,  I , - . . ,  q - - 0  we have 

~-~ 

a(Kq + J,) = ~a'+z (q + K)(q--),) + ((K-- i)(q--Z) + (q--K--  I)Z) ~q- K ~  s " 
q(q-~) 

(i I. 25) 

It is natural 

formula 

to extend our definition of a(k) to negative values of k by the 

a(- -  k) = a(k). (I I. 26) 

Formula (I I. 24) is then true for negative as well as for positive arguments. 

I t  is natural to investigate the functions 

Tk (~1 = y ,  ~(Z) a(i + k) 
0 

(II .  27) 

which arise from a in the same fashion as & arises from Q. 

ourselves to the case 

~=~;  ~ = ~ = -  ~. 

We have here the equations 

We shall confine 

~(~) = a(k); ] 
o(: k) = ~(k); 

6(2/c-~- i )= - ~(~)-~(kq-2 i )  [ 
( i i .  28) 

l tence we have the following formulae: 
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n - -  1 , 

T2 k(2")~--~ Z (($(2m)(7(2m-.~2]g)-~-ff(271l--[- i)($(2m-~-2]g2i - I)) 
s n = 0  

= n--l(z ff(~n)ff(~t+ k) + ((~(m)-t-6(m+ I ) ) ( (~ ( /+~)+f f ( /+k+  ,))) 
m ~ 0  4 

or 

and fur ther  

I - 3 Tk(.)~- T2k(2 ") --  2 I T / c _ 1 ( . )  ] [ 

! 

4 - -  4 Tk+l(n) I < eonst. 

(I I. 29) 

(,x. 30) 

(II. 3I) 

?t- -1  

T~/c+, (~ .)  = E (a(~ m) a(~ m + ~ ~ +x)  + ~(~ m + ,) ~(2 ~ + ~ ~ + ~)) 
m = 0  

"-- i (ff (m) a(m a(m) + (r(m q" I ) a( ~ ) 
2 2 

~ 0  
or 

I r2k+l(2 ")-t- T/c(.)-t- rk+l( . )  I < eonst. (II. 33) 
The array 

( . . . ,  e ( n ) , . . . ,  e(I), e(o), e ( I ) , . . . ,  ~(,), . . . } = { . . ~ ,  a - , , , . . . ,  a- l ,  ao, a l , . . . ,  an , . . . }  

defines a funct ion 

and 

where 

j a~  if It-hi_< I/8 
f(t) = 

[o  if for no n, I t - h i - <  ,/8 

T 

+ ([ 4 1 ) ( [  :]) = - a  ~ +  Q ~ - -  r +  , T- - : -2T  t + ~ ) f ( t ) d t =  I 
4 --T 

I - - 4 [ x [ ;  - - - I < x <  

o .  

We have 
r 

L f eiU~-- S(u) = 9~(~)--ix : dr, 
- - o o  

where S(u) is of l imited total  variation. Then  

(i i. 34) 

(I I. 35) 

(I I. 36) 

I Sl 
s(~ + ~ ) -  s ( ~ - d  = - �9 d~. 7g 

- - o o  

(I I. 37) 
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Hence  by (6. I5) 

oo T 

if l i ra - -  e - ' ' [ S ( u + e ) - - S ( u - - e ) [ 2 d u = l i m  qD(x• 

- - o o  _ _  ~ 

(I I. 38) 

Hence if the finite or denumerable  set of discontinuities of S(u) are at  u~, u~ , . . .  

and have values A~, A 2 , . . . ,  respectively 

r 

o f 
a l .  I = h E  - - -  e-"u I S(u + e)--S(u--E)[2 du = s ' 8.--.o2~J 

T 

= lim qo(x+l,)~(x) 
T ~  

~T 
d x  (I I. 39) 

and exists for  every ~,. However ,  

where 

so tha t  

exists for  every k. 

T 

lim ~v(x + ~)~(x) 
T ~ o v  

--T 
d x = - ~ ,  R ~,-- ~ + , ( Ix .4o)  

1 

n(x) = f Q(~) QCx+y) 
1 

d r ,  ( i i .  4 l) 

] f  we put 

lira ~/~(n) 

71--1 

~ ( k ) =  lim Tk(u) l imI_~aa(1)a(l+k)  
n ~ * o  ~ ? z ~ o o  n l~0 

(I I. 42) 

we may conclude from our equations for Tk tha t  

flY(2 k) : ~ff(k-- I) 4- 6 "/:ff(lg) 4- q:ff(lg -1- I ) .  
8 

�9 ff(2/~+ I ) : =  - -  "Cff(~) ~ ~ff(/~ ~. I}. 
2 

(I i. 43) 
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I t  follows tha t  if 

then  for every k 
"i~(O) = O, "~g(I)  = 0 

. ( k )  = o. 

( ' , .  44) 

(I  I.  45) 

We now pu t  k = o  in (I I. 43), remembering tha t  

~(--k)=~(k). 
We obtain 

~ ( 0 ) : = ~ ; ~ ( I ) = 3 ~ ( I ) .  

Hence ~ ( o ) = ~ ( 1 ) = O  and ~(k) is identically o. In  other words, 

(, I. 46) 

(II .  47) 

r,(,)=o(,). (I I. 48) 

As a(2 k)=a(k), a ( I ) = - - I / 3 ,  we see tha t  we cannot  have 

lim a(k) = o, 

and hence we cannot  have 

I t  is thus  impossible tha t  

s(~) = f  
- - q o  

lim 9 (*) = o. 
~ oo 

S'(v) dv+ S(--  oo ), 

(I r. 49) 

( I I .  5 O) 

( I I .  5 1 ) 

for then  we should have by (5.43), (5.46) 

lim 9(z ) - -  lira f d u = o .  ( , , .  52) 

On the other hand, as 

we must  have 
~ ' ( o )  = o ,  

lim i__ f l s(u § = o 
E~O 2 8 

(i t. 53) 

I t  follows tha t  S(u) is a continuous function which we have already seen not  

to be the integral  of its derivative. This theorem of Mahler  thus leads to a 

new type of spectrum. 
2 7 -  29764. Aaa mathematiea. 55. Imprim6 le 15 avril 1930. 
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~2. Spectra depending on an infinite sequence of  choices. 

In  the last section we gave concrete, well defined examples of functions 

with various continuous types of spectra. The present and the following sec- 

tions are devoted to the generation of such functions by methods which instead 

of always yielding functions with continuous spectra, almost always yield s u c h  

functions. The distinction is precisely analogous to that  between rational mechan- 

ics of the classical kind and statistical mechanics. Theoretically, all the mole- 

cules of gas in a vessel might group themselves in a specified half of its volume; 

practically, such a contingency is unthinkably improbable. 

The notion of probability is a new element not occurring in classical 

mechanics, but essential in statistical mechanics. I t  applies to a class of con- 

tingent situations, and has the essential properties of a measure. So too the 

idea of >>almost always>> in harmonic analysis depends on some more or less 

concealed notion of measure. In  the present and the ensuing sections, we shall 

assimilate this notion of measure to that  of Lebesgue, so that  >)almost always>> 

will translate into >>except for a set of Lebesgue measure zero>>. 

Consider a sequence of independent tosses of a coin. By a sequence, we 

mean a record such as, >>heads, tails, heads, heads, tails.>> For such a finite 

sequence, the probability is 2-",  where n is the number of tosses. That is, it is 

the same as the measure of the set of all the points on (o, I) with coordinates 

whose binary expansion begins . IOI IO. This mapping immediately suggests a 

definition of probability for infinite sequences of tosses. The probability of any 

set of sequences of tosses is defined as the Lebesgue measure of the set of 

points whose binary representations correspond to sequences of tosses in the set, 

in such a manner that  I corresponds to >>heads>> and o to >>tails>>. 5 We can 

even represent sequences infinite in both directions by binary numbers in such 

a way as to define the probability of a set of sequences, by having recourse to 

some definite enumerative rearrangement of such a sequence. 

I f  we have made >>probability>> a mere translation of >>measure>>, >>average>> 

becomes the equivalent of >dntegral>). We are accordingly able to use the entire 

body of theorems concerning the Lebesgue integral in the service of the calculus 

of probabilities. 

We have not yet, however, Correlated with our sequence of throws func- 

tions susceptible of a harmonic analysis. To do this, we take a certain zero 
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point on a doubly infinite line to correspond with the zero point of our doubly 

infinite sequence of tosses, and if the n th  toss is a hea~l, we define f(t)  to be I 

for n < t < n + I ;  if a tail, to be - - I .  The question we wish to ask is: what  is 

the probability distribution of spectrul functions S(u) for these functions f ( t )?  

We have, taking f ( t ) ~ a , ,  for n < t < n +  I, 

n 

22. f f(t+m)f(t)dt= :n (I2. o1 

--Tt 

Since the distribution of each as between negative and positive values is sym- 

metrical and independent  of tha t  of every other, 

I f JO if  r e + O ;  (I2. 02) 
Average 2 n - - f ( t  + re) f  (t) d t = ~ I i f  m = o .  

When  re=o ,  this average is indeed identically I. In  every other case, when m 

is an integer, 

R 

I 

- - n  

--= Average 4 n  ~ (a,,-~ o--,, + ,.. + o~+~_~ a,,-~) ~ 

I 2 ~ 
----- Average 4 n ~ ( ~ - ~  a - n  + ' "  + a~+~-~ a~'---~) 

='= I / 2  ~l, ( I 2 .  0 3 )  

since the averages of a l l  the non-square terms vanish. Hence 

yt ~t 

- : [:(t + re) f  (t) d t > A (i 2 . 0 4 )  
. ]  

over a set of values of f(t)  with total  probability 

_<_ A_. ( 2.05) 
2 n ~' 
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Since the sum of these lat ter  quantit ies forms a convergent series, with remainder 

after  n terms tending to o as n increases, we must  have 

n~ 

lim I f f(t + re)f (t) dt < A, (i 2.06) 
n ~  2 ~ 2  

except in a set of cases of arbitrarily small and hence of zero probability. Hence 

except in a set of cases of zero probability, 

lim 2 ;  ~ f f ( t + m ) f ( t ) d t = o .  
n ~ a o  

(12.07) 

Here the procedure to the l imit  runs through integral  values of n. This 

can be generalized at  once. Let  P be bounded, and let 

n 2 <~ T < ( n +  I )  ~. 

Then 

T n ~ T ---n ~ 

- -  T = - - n  ~ n ~ - -  T 

Thus if 

then  

PdZ 

n ~ ( n + l )  ~ n ~ 

- - n  u --(n + 1)2 --n~ 

if T 2-~ P d ;t +,~ T 

(n + 1)~ n ~ 

' f + ] - - - - ' 2 ( n + I )  ~ P d ~ - - ~ ' 2  ~ Pd~ . (I 
- - ( n + l ) ~  - - n  2 

n 3 

n ~ o t )  

T 

T ~ o o  

- - T  

2. 08) 

(12.09) 

We thus  see tha t  in case m is an integer other than  zero, we almost always have 
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T 

lim I f f(t+m)f(t)dt-- O. 
T~  ao 

--T 

I2. I0) 

As in (I I. o7), we may conclude that  

~(x) = 

o; ( x >  i) 

I - -X;  ( O < X <  I) 

I"[-X; ( - - I  < X < O )  

o; ( - i  < x )  
and that  

I F eiUX--I ,f( s i n u x  
S ( u ) = ~ J ~ ( x ) _ _ - - ~ x  d x = - ~  i - - X ) - - x  d x =  

I --COS V 
V ~ 

I2. I I) 

dv. (i2. i2) 

These propositions are true, not always, but almost always. Thus a haphazard 

sequence of positive and negative rectangular impulses almost always has the 

spectral intensity 

I , - c o s v  ( ,2.  I3) 
"~ V ~ 

which is numerically identical to the square of the Fourier transform of a single 

rectangular impulse. To see this, we need only reflect that the Fourier trans- 

form of such an impulse is 

1 

I ; e i U X d x : V 2 _  s i n~ /2  ~ I - - e o s ~  
g ~ J  v ~ u = ~ u '  

1 

( ,2.  ,4) 

I t  would not be a difficult task to generalize this remark to impulses of 

other than rectangular shape. The essential generalization to make this fact of 

physical interest is, however, to eliminate the equal spacing of the individual 

impulses, to reduce the sequence of impulses to such an irregularity as is f o u n d  

in the Brownian motion. This is the problem of our next section. The prin- 

cipal difficulty is that  the fundamental Lebesgue measure to which we reduce 

our probabilities is not so obviously at hand. There is no continuous infinity 

of choices which bears an obvious analogy to that involved in building up a 
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binary fraction. Nevertheless, the distribution involved in the time paths of 

particles subject to the Brownian motion can be reduced to a Lebesgue measure, 

certain functions connected with these paths can almost always be analysed 

harmonically, and their spectra will almost  always have a certain fixed distribu- 

tion of energy if frequency. In  other words, the properties of the distributions 

and functions of this section furnish an excellent working model for those to  

be expected of the functions discussed in the next section. 

~3- Spectra and integration in function-space. 

From the very beginning, spectrum theory and statistics have joined hands 

in the theory of white light. The apparent contradiction between the additive 

character of electromagnetic displacement in the Maxwell theory and the observed 

additive character of the quadratic light-intensities is on the surface of things 

irreconcilable. The credit for resolving this antinomy is due to Lord Rayleigh. 

He considers the resultant of a large number of vibrations of arbitrary phase, 

and shows that  the mean intensity of their sum is actually additive. He says, 

>)It is with this mean intensity only that we are concerned in ordinary photo- 

merry. A source of light, such as a candle or even a soda flame, may be 

regarded as composed of a very large number of luminous centres disposed 

throughout a very sensible space; and even though it be true that the intensity 

at a particular point of a screen illuminated by it and at a particular moment 

of time is a matter of chance, further processes of averaging must be gone 

through before anything is arrived at of which our senses could ordinarily take 

cognizance. In the smallest interval of time during which the eye could be 

impressed, there would be opportunity for any number of rearrangements of 

phase, due either to motions of the particles or to irregularities in their modes 

of vibration. And even if we suppose that  each luminous centre was fixed, and 

emitted perfectly regular vibrations, the manner of composition and consequent 

intensity would vary rapidly from point to point of the screen, and in ordinary 

cases the mean illumination over the smallest appreciable area would correspond 

to a thorough averaging of the phase-relationships. In this way the idea of the 

intensity of a luminous source, independently of any questions of phase, is seen 

to be justified, and we may properly say that  two candles are twice as bright 

a S  o n e .  ~> 
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Thus Rayleigh's statistics of light is a statistics in which the quantities 

distributed are amplitudes of sinusoidal vibrations. Such a theory involves a 

preliminary harmonic analysis, perhaps of a somewhat vague nature, but definite 

enough to be useful in the hands of a competent physicist. There is an alterna- 

tive approach to spectrum statistics, which is of a more direct nature. Imagine 

a r e s o n a t o r - -  say a sea-shell - -  struck by a purely chaotic sequence of acoustical 

impulses. I t  will yield a response which still has a statistical element in it, 

but in which the selective properties of the resonator will have accentuated 

certain frequencies at the expense of others. I t  seems on the surface of it 

highly plausible that  the outputs of two such resonators will almost always be 

additive as to intensities rather than merely as 

>>Chaos>> and >>almost always>> - -  there 

behind these terms. The simplest phenomenon 

to amplitudes. 

lies an entire statistical theory 

to which the name >>chaos>> may 

be applied with any propriety is that  of the Brownian motion. Here a small 

particle is impelled by atomic collisions in such a way that  its future is entirely 

independent of its past. I f  we consider the X-coordinate of such a particle, 

the probability that  this should alter a given amount in a given time is inde- 

pendent (I) of the entire past history of the particle; (2) of the instant from 

which the given interval is measured; (3) whether we are considering changes 

that  increase or changes that  decrease it. I f  we make the assumption that  the 

distribution of the changes of x over a given interval of time is Gaussian, it 

follows as Einstein has pointed out that  the probability that  after a time t the 

change in x should lie between x 1 and x~+ dx~ is 

- - -  e , / C ' d X l .  (I 3. oI)  

Here c is a constant which we may and shall reduce to I by a proper choice of 

units. The particular manner in which t enters results from the fact that  

- -  - -  e t, e t2 d x .  (13 . 02) V~( t l+t~)  e t,+t, I 

This fundamental identi ty is tantamount to the statement that  the probability 

that  x should have changed by an amount lying between x~ and x l + d x  ~ after 

a time t~ + t~ is the total compound probability that  the change of x over time 
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t 1 should be anything at all, and that  it should then migrate in a subsequent 

interval of length t~ to a position between x 1 and xl § dxl. 
A quantity x whose changes are distributed after the manner just mentioned 

is said to have them normally or chaotically distributed. Of course, what really 

is distributed is the function x(t) representing the successive values of x. (There 

is no essential restriction in supposing x(o)~o.) Thus the conception of a purely 

chaotic distribution really introduces a certain system of measure and consequently 

of integration into function-space. This gives us the: clue to the statistical study 

of spectra. We determine the response of a resonator in terms of functionals 

of the incoming chaotic disturbance. We then ask, >>What is the distribution 

of various quantities connected with the spectrum of this response, as determined 

by integrating these quantities over function-space with respect to the original 

chaos?* Let it be remarked that  the theory of integration appropriate to this 

problem is that  developed by the author in his >>Differential-space>>, and not the 

earlier theory of Gs which forms the starting point of most researches in 

this direction. 

Before we can attack these more difficult problems we must establish out 

theory of integration on a firm basis. To do this, we shall establish a corres- 

pondence between the set of all functions and the points on a segment of a 

liue A B of unit length, and shall use this correspondence to define integration 

over function-space in terms of Lebes~o~e integration over the segment. Let me 

say in passing that  in my previous attacks on this problem, I have made use 

of a somewhat generalized form of integration due to P. J. Daniell. This form 

Of integration, at least in all cases yet given, may be mapped into a Lebesgue 

integration over a one-dimensional manifold by a transformation retaining measure 

invariant. In as much as the literature contains a much greater wealth of 

proved theorems concerning the Lebesgue integral than of theorems concerning 

the Daniell integral - -  although the latter are not particularly difficult to es- 

tablish - -  it has seemed to me more desirable to employ the method of mapping. 

This method of mapping is an extension to infinitely many dimensions of a 

method due to Radon. 

The method of mapping consists in making certain sets of functions x(t), 
which we shall call >>quasi-intervals>>, correspond to certain intervals of A B. Our 

quasi-intervals will be sets of all functions x(t) defined for o - -  < t.<_ I such that 
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~(o) = o; 

xH <-- x(t l )  <-- x~ ;  

x~  <-- x(t~) <-- x~2; 

xs~ <-- x(ts) <- xa~; 
. . . . . .  , 

Xnl ~ X(tn) ~ Xn2. 

(o <-- tx <-- t~ <-- t3 ~ " <-- t~ ~ 1). 
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([3.03) 

our definition of probability, the probability tha t  x( t )  should lie in this By 

quasi-interval is 

~1~ Xn 2 

~-"/~[ t , ( t , - - t , ) ( t3-- t~) . .  "( t , -- t , , - , ) ]  - ' /~ f f 
~'11 ~"tl 1 

-exp _~2 t c l  _ ~k-- gk--1)'(tk--tk--1) - 1  �9 (I3.04) 
2 

Clearly, if the class of all functions x( t )  be divided into a finite number  of 

quasi-intervals - -  some of which then must  contain infinite values of xh 1 or xh2 

- -  the sum of their  probabilities will be I. 

The quasi-intervals with which we shall be more specially concerned are 

the quasi-intervals I ( n ;  ka, k s , . . . ,  k . , )  for which 

th = h 2 - " ;  (t --<h--<2") / 

xh~ - -  tan  ( k ~ 2 - " ) ;  ( ~ 3 . 0 5 )  / 

xh~ = t a .  ((k~ + ~ ) ~ 2 -") ;  J 

where kh is some integer between --2 n-1 and 2'1-I--1, inclusive. I%r the 

probability tha t  x( t )  should lie in this interval let us write 

P ( I ( n ;  k , , . . . ,  k~-)~. 

Let  us notice tha t  I (n ;  k l  . . . .  , k~,) is made of a finite number of quasi-intervals 

I ( n ;  11, . . . , /~ ,+1) ,  and tha t  the sum of the pr9babilities belonging to the lat ter  

gives the probability belonging to the former. 

Let  us now map t h e  four quasi-intervals I ( i ;  kl, k~) on the segment A B ,  

assigning to each in order an interval with length equal to its probability. Le t  
28--29764. Ac2a maShematica. 55. Imprirn6 le 16 avril 1930. 
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us map the quasi-intervals I(2; i~1, ke, ks, k4) into intervals of the segment A B ,  

t rans la t ing  probability into length,  and in such a manner  tha t  if 1(2; 11, l~, 13, l~) 

forms a portion of I ( I ;  k 1, k~), their  images s tand in the same relation. I f  we 

keep this process up indefinitely, we shall have mapped all the quasi-intervals 

I (n ;  k~, k~ . . . .  , lc~n) into intervals of A B  in such a way tha t  probgbility is trans- 

lated into length, and tha t  the end-points of the intervals of A B  form an every- 

where dense set. 

Up to this point, our mapping has mapped quasi-intervals on intervals. We 

wish to deduce from it  a mapping of functions on points. As a lemma for 

this purpose, we shall show tha t  the functions x(t)  for which for any tl and t.2 

tha t  are terminat ing binaries, 

I I --  40 hl t l - t ~  I '/' (~3.06) 

may be enclosed in a denumerable set of quasi-intervals such tha t  t h e  sum of 

the probabilities of these quasi-intervals is O(h-" )  for a n y  n. 

To show this, let us represent tl as the binary fract ion 

O " a 1 a 2 a 3 �9 a n  . . . .  

and t~ as the binary fract ion 

o �9 b 1 b~ b a . . b n . . . .  

Let  ta be a number  whose binary expansion may be made to agree with t ha t  

of t~ up to and including a~ and with tha t  of t~ up to and including b~. We 

shall choose ta so tha t  j is as large as possible, even though  this may necessitate 

the use of an expression for t~ ending in 11 l .... tO agree with the smaller of 

the quantit ies t~ and t 2 and of a te rminat ing expression for ta to agree w i t h  the 

larger. The interval from tl to t s will then  be expressible in the form 

0"00'0~+i~+2"", 

where there are j consecutive o's after  the final point, and every c is o or I. 

The interval from t~ to t.~ may be expressed in a similar manner.  In other 

words, the interval f r o m  tl to t~ may be reduced to the sum of a denumerable 

set of intervals f rom terminat ing binaries to adjacent  te rminat ing  binaries of the 

same number  of figures, such tha t  there are not  more than  two intervals in the 

set of magni tude 2 - - ~  where k is any positive integer, and such tha t  every 

interval is of one of these sizes. 
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Hence,  if it  is for par t icular  

fulfilled, 
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[ ~2--tl1 ~ 2--1--J.  (I 3. 07) 

values of t~ and t~ in question that  (I 3. 06) is 

I x ( t , ) -x( t~)  I >- 4o h- 2 0 (l+j)l* 

> h .  21--(1+j)/~/( I - -  2"7- 1/4') 

oo 

I f  we now appeal 

interval f rom m .  2 - j - k  to (m+ I)" 2 - j-k,  where m and 

o - - < m < 2  j+/r we shall have 

I(~ x ~ - x  ~2W~- l > h 2-(~ +k)/'. 

= 2 h Z 2 - h / 4 .  (I 3. 08) 

our analysis of the interval (tl, t~), we see tha t  for some 
are integers and 

j +  1 

to 

k 

(I3. o9) 

Thus if for any pair of values tl and t~ tha t  are terminat ing binary fractions, 

I x( t l ) -x( t~)  I >- 40 hi t,--.t~ I ~1", (I 3. Io) 

then for some integers m and i (m < 2*) 

I ~ (m 2- ' )  - ~ ((~ + 1 )  ~- ' )  I > h.  ~-'~'. (, 3.11  ) 

I t  merely remains to determine the measure  of a denumerable set of our quasi- 

intervals I(n; kl, . . . ,  k~n) containing all the functions x ( t ) f o r  which, for some 

m a n d  i, (I 3. 1I) h o l d s .  

To begin with, let m and i be fixed. Since our selected quasi-intervals 

ul t imately divide the range of values of x ( m 2 -  0 and of x ( ( m + i ) 2 -  0 to an 

arbi trary degree of fineness, there is no trouble in proving tha t  the functions 

satisfying (I3. I I) may be enclosed in a finite set of selected quasi-intervals of 

total  probabil i ty not  exceeding 

oo 00 

+ V - f f ~  e dx, 

h . 2 - i / ~  h . 2 i/~ 

(13. I2) 

where s is arbitrarily small. I f  we sum for m and i, we get  as the sum of the  

probabili t ies of all our enclosing sets a quant i ty  not  exceeding 
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eta 

2i+l f e_z,d x 

h.  2 iD' 

2 i + 1 e - h  2i/4 <ZV  
i=1  

2 i  + l _ n i  h _ 4  n 

< ~-~ V ~  (,3. 13) 

for sufficiently large h. As usual ~2 represents an arbitrarily small quantity. 

Expression (I 3 . [3) clearly can be made to vanish more rapidly than any given 

negative power of h as h becomes infinite. 

Let us now reconsider our mapping. If  we leave out the ends of our 

intelwals, which form a denumerable set "of measure o, every point on A B is 

uniquely characterized by and uniquely characterizes an infinite sequence of 

intervals, each containing the next, and tending to o in length. If  we reject a 

denumerable set of quasi-intervals of arbitrarily small total probability, the 

remaining quasi-intervals and portions of quasi-intervals all contain functions 

satisfying the condition of equicontinuity 

I = ( t , ) -x ( t , )  I < 4o h I t , - - t ,  I '1', (13. 14) 

so that if we modify A B  by the removal of a set of points of arbitrarily small 

outer measure, as well as by the removal of the end-points of our intervals, 

every point of A B is characterized by a sequence of intervals closing down on 

it, by the succession of corresponding quasi-intervals, and by the uniquely deter- 

mined function x(t) common to this sequence of quasi-intervals and satisfying 

(I3. I4). i t  follows at once that except for a set of points of zero measure, we 

have determined a unique mapping of the points of A B  by functions satisfying 

(13. I4) for some h. Thus any functional of the latter functions determines a 

function on the line, which may be summable Lebesgue.  In  the latter case, we 

shall define the average of the functional as the Lebesgue integral of the cor- 

responding function on A B. 
Among the summable functionals are the expressions 

e(x(t,), x(t,) , . . . ,  x(t,)), 
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where P stands for a polynomial. This is readily seen to be the case when the 

expressions t~ . . . .  , t,~ are te rminat ing  binaries, and the extension to other values 

follows from the equicontinuity conditions we have already laid down. To see 

this, let us note tha t  we have already given information enough to prove tha t  

the upper average (corresponding to upper integral) of 

[max Ix(t)I]" 

is finite. This funct ional  will, however, simultaneously dominate 

P(x( t l ) ,  x(t,z), . . . ,  x(tn)) 

in which we suppose P of the nth  degree, and the set of approximating func- 

tionals 
P(x( t~ ) ,  x ( t , )  . . . .  , x(tl,,)); 

P(X(tml),  X(tm2), . .  ., x(tmn)); 

in which t~ l , . . . ,  tmn, . . .  are terminat ing binaries, and lim t m n : t n .  That  these 
m~ao 

functionals are actually approximating functionals results from the fact  tha t  

P ( Y , , . . . ,  Y,) 

is continuous, and tha t  x(t) is almost always continuous. Now, there  is a theorem 

to the effect tha t  if  a sequence of functions uniformly dominated by a Lebesgue 

summable funct ion converges for each a rgument  to a limit, and if the Lebesgue 

integrals of these functions converge to a limit, this limit is the Lebesgue inte- 

gral of the limit function. This proves our theorem. 

In  case t~ ~ t 2-< �9 ~ tn, the average of P(x(t~), . . . ,  x(tn)) is readily seen to be 

~ [t l ( t~-- t l ) . . .  (t,~-- tn-2)] -1/2 d~l d~n -P(~I . . . .  , ~n)" 

[ ] 2 �9 e x p  - - ~  t~ -1  - -  ~1  ( ~ k - -  ~k--1) ( tk - -  tk---1) - 1  (I  3" I 5) 

2 

In part icular,  if t I --~ t~, 
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' f f  Average ( x ( t , ) x ( t , ) ) =  ] /~rt , ( t~-- t , )  d~l 
- - o o  - - ~  

- - -  tl/2" 
and if tl =< t~ N t~ ~ t~, 

(I 3. 16) 

I Average (x(t,)x(t2) x(ts) x(t~)) = - - .  . . . . . .  _ . . . . . . . . .  

V t ,  ( t , - - t , ) ( t , - - t , ) ( t , - -  ts) 

tl t~ 
2 

[ 
exp ~-  ~ -- ~ C--t.- i : ~  / 

_ _ _  + t, t..~. (13. I7) 
4 

The expressions jusg given are absolutely summable. Accordingly, by the 
familiar rules for inverting the order of integration, if al(t), a~(t), as(t), a,(t) are 
of limited total variation over (o, I), 

1 1 1 1 

Averagefx(,,,.l(,,f.(,,,..(,)=f~,..(,,f,..(.) 
0 0 0 t 

1 1 

0 t 

1 1 . 

f ~ (0~2(I)--'$(t)) d~ (t) J- (..(,)-..(,I) ,..(,I 
0 0 

- f ~176 ~ 
1 

-- f [",( ' )--gl(t)][g2(I)--~2(t)]  a t ;  
o 

(I 3. I8) 

1 1 1 1 

Average j'x(t) dal(t) f x(t) da~(t) f x(t) da~(t) f x(t) da, ( t )  

0 0 0 0 

1 1 1 1 

0 t. a u 
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1 1 1 1 

0 t $ u 

- } - 2 2  other  te rms r e p r e s e n t i n g  di f ferent  orders of a~, a~, as, a4 

1 1 1 1 

= 
0 t s u 

1 1 1 I 

,f ,f + -  d a , ( t  d a s ( u  d a , ( s  da~(v) 
2 

0 t u s 

1 1 1 I 

0 u t 

1 1 1 1 

+ -- % u ~ v da~ a s s 
2 

o u v t 

1 1 1 1 

0 u t v 

1 1 1 1 

t - -  2 ~ 

0 t u v 

-t- all other  terms  r e p r e s e n t i n g  di f ferent  orders o f  a 1, a~, as, a t 

1 1 1 1 

=I f f f  ao#) f ao,(v)+ete. 
0 t 0 u 

1 1 

= 4 f[,,,(I)-,,,(t)l[,,,(I,-~,,(t)]dtfk, s(I)-,,s(s,][,,,(r,-,q(,)]as 
0 0 

1 1 

if f + - [a , ( I ) - -aa( t ) ] [as (1 ) - -as ( t ) ]dt  [ a ~ ( I ) - - a ~ ( s ) ] [ a , ( t ) - - a , ( s ) ] d s  
4 

o 0 

1 1 

+ 4 f[=,(I)-g,(t,][ga.(l,-ga.(t,]df[g,(I,--g,(8,][gs(l)-g$(8,]d8. 
0 0 

(I3. I9) 
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The point  of this last a rgument  is t ha t  

may be wri t ten 
t s  s t  t u  . . . .  + _ _ + _ _  
2 2  2 2  2 2  

and tha t  we may then  take advantage  of the existence in our  expression of all 

permutat ions  of al, a~, a.~, a 4 to relabel our  variables s, t, u, v so as to add the 

terms of our  expression toge ther  again in a more symmetrical  way, and 

represent  it as a sum of three  products  of integrals such as we have already 

evaluated. 

u p  to the present,  we have been considering probabili t ies depending on a 

basis funct ion x( t )  defined over (o, I). For  the purposes of harmonic analysis, 

we wish to replace this by a basis funct ion defined over (--~o, ~) .  W e  may 

do this as follows: Le t  

1 ,~ cot-- 1 (__~) 

1 

x(I/2).  (13. 20) 

As x( t )  is almost  always bounded, this will almost  always exist. Then 

moot -1  (--p) 

Average (:(fl)--:(a))' : 2fc o, ~ 
1_ cot__l(__a ) 

(13 . 21) 

in the  case t ha t  fl > a. This is merely a par t icular  case of (13. 18) .  I n  the case 

tha t  (a, fl) and (7, ~) do not  overlap, a similar a rgument  will show tha t  

Average (~(fl) - ~(a))(~(7)--~(~)) = o. (13 . 22) 

Thus ~(~) has essentially the same dis tr ibut ion propert ies as x(t) ,  but  over 

( - - ~ ,  oo ) in s t ead  of (o, I). 

W e  might ,  of course, have defined our  distr ibution of ~(*) originally, wi thout  

any recourse to tha t  of x(t) .  In  any case, we should have bad to make use of 
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the fact that this distribution has certain equicontinuity properties, and these 

are somewhat easier to develop over a finite than over an infinite interval. The 

function ~(v) represents the result of a haphazard sequence of impulses, uniformly 

distributed in time, extending from --r162 to or in such a way that their zero 

value is taken to be at ~ = o .  I t  is consequently immediately available for a 

harmonic analysis such as we discuss in this paper, while x(t) is itself immediately 

adapted only for a Fourier series analysis. 

Now let ~(~) represent the characteristic response in time of some resonator, 

the so-called indicial admittance. I t  may be real or complex, but we shall assume 

~(~) V I + ~  t o  be of limited total variation over ( - - o o  oo) and ~ to be quad- 

ratically summable. As an immediate consequence of these assumptions, 

03. 
We have 

1 cot-- 1 (__~) 

(i )) _ )] 
d c s c t - - x  cot-1 ( . ~  l / I  + ~:~ +x ( I /2  

ao ~ 

- - ~  - - a  1 

1 

0 

~rt+ csc ~rtda(--cot zt)] 

f x(t)d[O(--cot csc 
0 

(I3. 24) 

Bence if ~l(v), ~2(v), ~a(v), and ~4(~) satisfy the conditions we have laid down 

for ~(v), 

ao Qo 1 

- - c J o  - - ~  0 

~ t a l ( - - c o t  z t) a~ (-- cot z t )d t  

ao 

29--29764. Aeta mathematlCa. 55. Imprlm@ le 29 avril 1930. 

(I3- 25) 
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0 0  rio o o  a o  

~o o~ 

- - ~ o  - - o o  

4 . ]  . ]  
- - ~ o  - - 0 0  

- - a o  - - ~  

(I 3 . 26) 

We thus have succeeded in generalizing our theorems concerning the averuges 

of products of linear functionals to the case where the basis function has an 

infinite range. 

We wish to apply these results to the harmonic analysis of an expres- 
o o  

sion t ~ ( ~ ) d , $ ( ~ + ~  ). To do this, we must evaluate the following averages: 

- - 0 0  

T oo 0o 

- -  T - - o o  - - a o  

T ~ oo 

i j. [f  f ,] = 2 ~/~ dZ Average g(~)d,~(.+Z) g(a)d~(a+Z 

~ T  - - z o  - - 0 o  

T oo 

~ T  - - a o  

o o  

(I3.27) 

T 

,f (Here as in what follows, the inversion of the operators ~ d~ and Averuge 

~ T  
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is permissable, since t.he integral to which our mapping process leads us is 

absolutely convergent.) 

W ~ ~ 

�9 [~j. fe( )f~(.)- 'f, 1' Average d). , )d#(x+) .  de(o+Z)--  2 a(*)l*'dx 

T T or oo or 

i f  f f~ ,f ,f = a v e r a g e 4 ~  dZ d,, (~)dO(~+Z ~(,)d~(a+Z ~(~)da(~+~,). 
- - T  - - T  - - ~  --~o --Qo 

or or 

f i[f �9 ~(~)ao(~+,)-  4 Ie(,) d, 
- - o o  - - ~  

T T 

{ I f  I' L~ faz  [ d , , '  ~(,+z)5(~+.)a, 
4 z J  j 4 

- - T  - - T  - - ~  

2 T  2 T  oo 

- - 2  T - - 2  T - - ~  

- - r  

- - o c  

~ f  {If 'a( 1' If [', _< du o(, ~+u)d. + a(~)~(,+u)d. 1. (13.28) 

The function in the bracket in the last expression will be summable since &(z)is, 

as we see from (I. 28). 

It follows that for any positive number A, 

T .0o oo 

- - T  - - a ~  - - m  

(I3. 29) 

except for a set of values of x(t) not exceeding 

i f  {If I' If I S I'A ~ du &(~)a(~+u)d~ + a(x)a(~+u)d,  
- - o o  - - o o  - - ~  

in outer measure. Let 

~} (13.30) 

T now assume the successive values i, 4, 9 , . . .  Then 
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the probabil i ty tha t  (I3.29) fails to be satisfied for some T from I/n ~ on does 

not  exceed the remainder  of the convergent  series 

co oo 

f {If , l'+lf , I'}[ I ' ] 8-; '  du 8(3 3+u ~ a(x)6~(3+u d~ I -~- + - -[- . . . .  
4 9 

Inasmuch as this remainder  is arbitrarily small, we almost always have 

n ~  2 n ~ 
�9 ......~ | - - 0 o  - - o r  

(I3. 3I) 

(I3. 32) 

Since, however, A is an arbi trary positive quanti ty,  

n ~ oo a~ 

lira ~ 3 , .93+~ --  ,93  ~ 
7 t ~ 0 O  

d ~  I ~ o .  (I3. 33) 

As in the preceding section, we may conclude tha t  

T oo 0o 

lim dZ da(a: + Z) = O(r) ] ~ d . ,  
T ~ o o  

- - T  - - 0 o  - - r  

(13. 34) 

except in a set of cases of zero probabili ty.  

Let  us now consider 

A 0o ~o 2 t  

- - A  - - o o  - - a o  - - A  

( I3 .35)  

for rational values of A, ,9(3) being subject  to the conditions alrea~ly laid down. 

Let  us put  
0o 

f ~(3) d ~ (~ + ~) =f(~) .  ( 13. 3 6) 

- - 0 o  

W e  have almost always, for any denumerable  set of values of A, as for example, 

for all rat ional  values of A, 
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T A oo A 

If [ If I lira dZ f(]~ + l~)dl~ = d~ O.(~ + tt)dl~ 
T ~ : c  

- -  T - - A  - -  ~ - - A  

229 

(I3. 37) 

This results from the fact that  the sum of a denumerable set of null sets is a 

null set. As before, let us put 

1 M - - 1  

,(,,) ~ f  ,'=-, , [f  f ]  ~" = f ( x )  - _ _  ..... d x  + - - -  1. i .m .  + f ( x )  ~ d x .  
g X  2 It, I f ~ c e  

--1 1 - - M  

(i3.38) 

I t  then follows from (13. 34) and (13. 37), with the help of (6. 23), that we shall 

almost always have 

' f  2f lim ~-~ I s ( u + ~ ) - - s ( u - - ~ ) l S d u ~  I~(~)l~d~, (I3.39) 
~ 0  

and (for all rational A) 

lim I f 4 s i n ~ A u  
,-.o 2-~ J u* I*(" +*)--*(u--*) I'd,, = 

- - o o  

A 

T . (I 3.40) 

Now let us put 

Then 

a ( z )  . . . .  

M 

1 l.i.m.f~p(u)d~,du. 
V2~ If-~ 

- - I f  

A ao 

- - A  - - 0 0  

( I3 .4  I) 

(13.42) 

Thus if ~(~:)VI + ~  is of limited total variation and ~(z) is quadratically summ- 

able, we almost always have for all rational A 

o0 A 2 00 

f~lf,(~+,,~l =f,,o(u),,4_ sin s A u 
U s 

- -  d u .  (I 3.43) 

In  other words, we almost a lways have for all rational A, 
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and 

. _ o j  ,,~ I ~ ( u + ~ ) - ~ ( . - ~ ) l ~ - I ~ , ( , , ) l  ~ d~, 

~-oJ  le 

= 0 ,  (I3. 44) 

(~3.45) 

Thus we almost always have 

~ 

lira IP(u)~• (,3.46) 
~ - ~  3 - e 

. - - o o  

in case 
~ ,  A, sin* ;V,(u) 

P(u) u ~ (I3.47) 
1 

it foll0ws from (I 3. 45) ~hat we may even replace P(u) by 

Q(u) -uniform )~mi~ P.(u) ( ,3 .4s)  

where P~(u) is of the form given above for P(u). Thus by the Weierstrass 

theorem, Q(u) may be the quotient by u ~ of any continuous periodic function 

with any period. Since we can approximate by such a function Q to any con- 

tinuous fanc~ion vanishing at + ~ ,  our sole condition on Q may be replaced by 

q(u)~-o(,) at u = + ~ .  (t3-49) 

Even  this does not represent the utmost extension of our theorem.  I t  

follows at once by subtracting from I a Q vanishing outside of a finite range that 

")"} ~ - ~  ~-o ~ _~ 7 [ ~ ( ~ + ~ ) - ~ ( u - ~ ) i ~ -  du-~o .  ('3. 50) 

Thus a bounded modification of Q for large arguments produces a decreasing 

effect as the range of modification recedes to infinity, and we have as our sole 

condition to be imposed on r continuous function Q that 

Q(u)~O(I) at u:+__oo. ( ' 3 . 5 I )  

A case of peculiar importance is where e -~'u-~ Q(u). Here 
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a o  oo  

l im'f  , ) (  ,, . 

- -  e -i*'~ s(u+~ --s  u - -~  2 d u =  e - ' 'u u 
~-..-~ 2 

(I3.52) 

This exists for evel'y ~ for almost all x(t). Thus by (6. I 5), 

oo 

f l, du, 
- - r i o  

(~3.53) 

and 90(~) exists for every ~, for almost every x(t). 

I j* e iu~- I 
S(u)= ~ q ~ ( x ) - - i ~ - d x ,  

so that we get by (5.42), (5.45) 

q~(x) = f e - - ~  dS(u). 

We have 

for every ~. 

As in section 3, let us put 

(I3. 54) 

(~3.55) 

already shown ~v and S to exist on the assumption that q0(~) exists 

We have, by (I 3. 53) and.(I3.55),  for almost all x(t) 

al~ u 

- - z o  - - o ~  

O. (I 3. 56) 

vergenee of (13.56). 

every interval, and 

By processes now familiar (of. (I 3. 46)), we. can replace e -i '~ by functions Q which 

are merely continuous and bounded. We here make use of the absolute eon- 

' f l ' d r  over Hence the average of S ( u ) - - 2  ~ p ( v ) [  vanishes 

and consequently 

- f l ,,dv -- o; (I3" 57) 

I [3, 
s'(,,) = 21 ~0(~,) (13.58)  

except for a set of values of a zero measure. Inasmuch as S'(u) is the spectral 

density of f(x), we see that as a consequence of our assumptions that  ~(~) is 
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quadratically summable and of limited total variation when multiplied by V I +,~ 
oo 

the spectral density of is half the square of the modulus of the 
t /  

- - o o  

Fourier transform of ,% Another way of phrasing this fact is: i f  a linear reso- 

nator is stimulated by a uniformly haphazard sequence of impulses, each frequency 

responds with an amplitude proportional to that which it would have i f  stimulated 

by an impulse of that frequency and of unit energy. An even simpler statement 

is: the energy of a haphazard sequence of impulses is uniformly distributed in ~'e- 
quency. This law of distribution bears a curious analogy to that  predicted for 

white light by the incorrect Boltzmann law of radiation. The physical conditions 

which lead to this law of distribution of energy in frequency are that  the 

sequence of impulses in question should be distributed over every interval of 

time in a Gaussian manner, that  their past should not influence their future, 

that  very many should occur over the smallest period of time to be investigated, 

and that  the modulus of the Gaussian distribution of these impulses for a given 

time interval should depend only on the length of this interval. These conditions 

are approximately realized in the case of the Schroteffek% where an electrical 

resonating circuit is set in vibration by the  irregularities in the stream of elec- 

trons across a vacuum tube. I t  might also be realized in the ease of an 

acoustical system set in oscillation by such a noise as that  of a sand blast. 

Theoretically this equipartition of energy might be used in the absolute calibra- 

tion of acoustical instruments. 

Just  as the average of an expression depending on a single function x(t) 

may be reduced a Lebesgue single integral, s o  a similar average depending on 

two independent functions x(t) and y(t) may be reduced to a Lebesgue double 

integral. On the assumption that  ~1(,) and ~9~(~) satisfy the conditions we have 

already laid down for ~9(,) and that  

1 1 co t - -  (--z) 

I 

]/2 

co t - -  1 (--v) 

1/2 

I 1 csezt--y (~cot-(--T)) 

-~-X(I/2); I 
+y(i/2);/ �9 

(I3.59) 
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3/ 

, f ~%,2(*)- . __ l . i .m .  W~,2(u)d"*du (13. 60) 
V2 7/: M ~  

--M 

it is easy to prove by methods substantially identical with those already employed 

tha~ 

ir f I 
�9 2 

lira ~(~:)dS'l(~:+Z ) -t- ~](,)dae($ +).1 dZ (I 3. 6I) T ~ c ~  
- - T  - - ~  - - z v  

almost  always has a certain definite value. Inasmuch as a normal distribution 

for x(t) implies the same for --x(t), 

T ~o ao 

tim ~ f l  f ~(~)d'9"l(Z+~)+ ~)J~ 
T ~ Q c  

(I 3 . 62) 

almost always has the same value. Subtracting, we almost always have 

T ae> 

T ~  ~o 

- - T  - - a r  - - o o  

=O. (I3. 63) 

I f  we work in a similar manner with 

T ~ 

l~:+ __+ ~ ~ +  d~, 
T ~  

- - T  - - ~  - - r io  

we see that  almost always 

,j, ,] 
Hence almost always 

30--29764. 

lira I f ~_.~ 21 ~ ~(~)da#+Z ~(~)d~ +Z 

Acta mathematica. 55, Imprim6 le 29 avril 1930. 

dZ=o 

(I3, 64) 

(I3: 65) 

(I3. 66) 
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and the coherency matrix of ~(~)d~l(~+)~ ) and V(T)d~(v+s is almost always 

I [~ 

0 

0 

I 

(13.67) 

As a direct consequence, if the motion of a particle is independently haphazard 

in two directions at right angles, and if this motion influences a resonator with 

the same characteristics in the two directions, the coherency matrix of the motion 

of the resonator is unpolarized. 

In the opinion of the author, the chief importance of this section is in 

showing in a systematic manner how the Lebesgue integral may be adapted to 

the needs of statistical mechanics. I t  is no new observation that  sets of zero 

measure and sets of phenomena, not necessarily impossible, of probability zero, 

are in essence the same sort of thing. I t  is not, however, a particularly easy 

matter to translate any specific problem in statistical mechanics into its precise 

counterpart in the theory of integration. The author feels confident that  methods 

closely resembling those here developed are destined to play a part in the 

statistical mechanics of the future, in such regions as those now being invaded 

by the theory of quanta. 

CHAPTER V. 

14 The spectrum of an almost periodic function. 

The last paragraph was exclusively devoted to functions with continuous 

spectra; we now come to the most important known class of functions with 

spectra that  are discrete. This is the class of almost periodic functions, the 

discovery of which is due to Harald Bohr. Let f(x) be a continuous function, 

not necessarily real, defined for all real values of x between --oo and ~ .  I f  

is any positive quantity, Bohr defines ~ to be a translation number of f(x) 
belonging to 8, in case for every real X, 

I f (x  + I -< 8. o i )  
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In case, whenever, ~ is given, a quantity L ,  can be assigned, such that no inter- 

val (a, a + L.) is free of translation numbers .~ belonging to ~, f(x) is said to be 

almost periodic. Bohr's most fundamental ~heorem is: the necessary and sufficient 

condition for  a function f (x)  to be alniost periodic is that for any positive quantity ~, 

there exist a finite set of  complex numbers A t, A~ . . . .  , A~ and a set of  real numbers 

.41, . d , , . . . ,  A . ,  such that for all x 

I n 
f ( x ) -  ~.j .AkeC4k z < ~.. 

1 

(I4. 02) 

The next  few sections of this paper are devoted to the proof of this 

theorem. In this proof we shall avail ourselves of the following theorems of 

Bohr concerning almost periodic functions, which are susceptible of a completely 

elementary proof: 

Any finite set of almost periodic functions is simultaneously almost periodic, 

in the sense that  for any e, L, may be assigned for the whole set at once, in 

such a manner that  in any interval (a, a + L,), there is at least one translation 

number ~,, such that for every funct ion f ( t)  in the set, and every t, 

I f ( t + , , ) - f ( t )  I -< e. (I4. 03) 

Hence any continuous function of a finite number of almost periodic functions 

yields an almost periodic function, as for example the sum or the product of a 

finite number of almost periodic functions. The limit of a uniformly convergent 

series or sequence of almost periodic functions is almost periodic. Every func- 

tion that  is periodic in the classical sense is almost periodic, and the same is 

true of 
~.Ane iAnt , (14. 04) 

in case Z~IA,, [ converges. 

If  f(t) is almost periodic, 

Every almost periodic function is uniformly continuous. 

z + T  

M {J'} =r--| -~ ( ,4.05) 

exists as a uniform limit in z. If  f( t)  is almost periodic, so is 

9(t) = M,  ( f (x  + t)](x)}. (I4. o6) 
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(Here and later the symbol under the 3I  indicates the variable on which the 

averaging is being done.) If  f(t) is a real non-negative almost periodic function, 

and M ( f } = o ,  f ( t ) i s  identically zero. 

I f  f(t) is almost periodic, then since q~(t) is also almost periodic, it is 

continuous. Let us form 

S(u)= 1 f e i '~-1 2 z  qD(X)~x dx. 
- - r  

From theorems already established 

(I4. 07) 

~(o)= s ( ~ ) - s ( -  ~). (I4. o8) 

Let the discontinuities of S(u) be at u - - i>  ~,,,... These form a denumerable 

set, as S(u) is of limited total variation, and indeed monotone. Le~ 

am = S (Z,, + o ) - -  S(Z,,-- o). (~4. 09) 

All these coefficients an are positive, and 

Z an < S ( : r  ~) = M{ I/IS}. 
1 

Let us form the function 

(14. IO) 

7(t) = 9D(t) -- ~-a ake--iakt, (I4. t 1) 
0 

As a simple computation will show (el. (4. o5)), 

ao 

i f  e/UX-- I I •(X)---7----dx = S(u)--Sl(.U), (14 . 12) 

where S~(u) consists of the sum of all the jumps of S(u)with abscissae less than 

u, together with half the jump (if any) with abscissa u. Hence 

ao 

~7~ f ciux - -  
&(u) = y ( x ) - - .  ~ d x  ( ,4.  13) 7 ZX 
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is a continuous funct ion of l imited total  variation, say V. Let  the total  varia- 

tion of Sz(u) over the runges (--~r --B) and (B, :r be V(B). 
We have 

I S~(u+~)-s~(u-~) I ~ d,, 

-= 2,I [ + iSdu+,l__So(,,__,)l.~d,. + ~*I Sdu+,)--Sdu -,)pdu 
A - - ~  - - . t  

_< , n ~  I _S.~(~,) I + I S~(u+ ~)-S~(u- ~11 d,, 

2J. --~r 

A 

+ max I S~(v + e) --S~(v--e) [ ~-~ 

- - A  

<_ 
A + E  A 4 3 ~  A - ~ 5 6  - - . - 1 + ~  - - . . l - - s  

+f +f+ +f 
A - - ~  A + $  A + 3 *  -- .-1--~ - - . -1--3  ~ 

- - A - - 3  e 

+ f +  " 
- - A - - 5  

l s~(~ + ~ ) -  S ~ ( u - ~ )  I 
I du + max I s . , ( ,  + ~ ) -  s . , . ( , -~) I ~ i 

- - A  <- v ~ A 

-.4+~ - , ,+ ;~, --A+ [~r 

. [ f  + f + + f],s~(u+~)-s.(u-~), -A-~ -a+~ _a+([2A]_2)~ 

du 

---E 

- 8~ (,, § A + ~11 + + I S~ (u - -  A + ~1 - -  S~ (u - -  A + ~) I + I S~ (.~-- A - ~) 

-S~(u--A--3 ~)1 + .} d , + m ~  I S..(v+~l--S~(~--~)l 
- - A  ~ v ~ A 
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 01} 
<~ 2 V(A-2e )max lS~ (v ) l  + V m a x  IS~(v+d-s~(v-dl. (,4. 14) 

- - A  ~ r -< A 

Since the function S(u) is uniformly continuous over any finite range, this gives us 

o o  

lira _I  f l 8~(, + ~ ) -  s ~ ( u -  ~)I' du <_ 2 V(A--,t2) max I Se(v) I. 
, ~ 0  2 8 , ]  

('4. '5) 

However, V(A--v)  tends to zero as A tends to infinity, and may be arbitrarily 
small. Hence 

lim~,--02 r f ] S'(u+s)--S~(u--e)12du-=~ ('4. ,6) 

Applying (5.53), we get 
T 

lim I f ~--~ 2 T  17(t)l 'dt--o.  
- - T  

(I4. 17) 

Since, however, 7(0 and 17(t)l' are almost periodic, we must have 

which yields us 

and 

7(t) = O, (14. IS) 

S(u) ~- Sl(u ) (I4. 19) 

~(t) -- ~ ,,~-"-~'. 04. ~o) 
1 

Thus S(u) is a step function, and the spectrum of an almost periodic function 
is a pure line spectrum. 

15. The Parseval theorem for almost periodic functions. 

A further result is 

M (q~(t) e~X* ̀) = ak. 

If we remember the uniformity properties of 

functions," this yields 

(I5. oi) 

the means of almost periodic 
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Hence 

T U 

ak=  lim ~ feiaktdt lim I f 
- - T  ~ U  

dx 

U T 

=lim i f j  i f  v--,~ 2-U (x)e--'~k~ dx l im f (x  + t)e'ak(~+t)dt 
- - U  --T 

U T 

----lira I ~(x)e_i~k~dxli m f(y)e kYdy 
- - U  - - T  

= I ~x (f(x)~,-k=} I'. 

M{If l  ~} = ~o(o)= S(o~)-8(-o~) 

= S , ( ~ ) - - S , ( - ~ r  

= Y~ I M ( f ( ~ )  ~ ' ~ }  I ~. 
o 

(I 5' 02)  

(I5.03) 

This is a precise analogue to the Hurwitz-Parseval theorem for periodic functions, 

and is the well-known fundamental theorem of Bohr. 

16. The Weierstrass theorem for almost periodic functions. 

The present section 16 is devoted to the proof of the approximation theorem 

for almost periodic functions, which tells us that the necessary and sufficient 

condition for a function to be almost periodic is that  it can be expressed as the 

uniform limit of a trigonometrical polynomial. The main idea of the present 

proof is due to Weyl, although the form of the argument is much changed 

from ~hat on his paper. The essence of the proof is that  harmonic analysis is 

not applied directly to the' almost periodic function discussed, but to certain 

related functions derived from what Bochner calls the Yerschiebungsfunktion of 

the given function. In the discussion of the many different extensions of almost 

periodic functions, there is a function in each case analogous to this Verschie- 

bungsfunktion which is almost periodic in the strict Bohr sense. As we shall 

see in the next section, this enables us to carry over to these more general cases 

practically the entire Bohr approximation theorem redefined to suit each particular 

definition. 
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Let f(t) be almost periodic. Consider 

We have 

g (x) = max If(x + t)--/(t) I. 
t 

I g (x + z ) ~ g  (x) l ~ max I If(x + t + , ) - f ( t )  I - I f (x  + t ) - f ( t )  II 
t 

~< max If(x + t + ~) - f ( x  + t) l 
t 

= m a x  l f ( t  + ~)_ f ( t )  l. 
t 

(16. 0I) 

(I6. 02) 

Hence any translation number for f(t) pertaining to e is a translation number 

for g(t) pertaining to ~, and g(t) is almost periodic. I t  is this function which 

Bochner calls the Verschiebungsfunktion of f(t). 
We have already indicated the fact that any continuous function of an 

almost periodic function is almost periodic. Let HE(U) be befined as follows: 

Let 

I I ; [ 0 ~ U ~ 8 / 2 ]  

/ /~ (u)  = 2 v [~/~ < u -< ~ ] 

12 
n~[.q(x)] 

~ ( z )  = ~.~H~[.q(~)] 

(I6. 03) 

(I6. 04) 

Since Hdg(x)] is somewhere positive, and it is everywhere non negative and 

almost periodic, MxH~[g(x)] cannot vanish. Hence ~ (x )  exists and is almost 

periodic. 

Let 

f~(.)  = M~ {f(t) ~,~(.--t)  }. (i61 05) 

The existence and almost periodic character of f,(x)are proved without difficulty. 

The definition of ~G ensures that 

I f ( * ) - / ( t ) l  <- ~ (i6. 06) 

if ga~(x--t)=4=o. Hence, since f~(x) is a mean of these values of f(t), 

max [ f (x ) - - f i (x )]  <~ ~. (I6. 07) 
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Similarly, if 
5,)(x) = M, ~f , ( t )v , , (x  t)~, (16. 08)  

J~')(x) exists and is almost periodic, and 

max I~')(x)-f,(x) I -< ~. 
i t  

(,6. 09) 

Hence, by (I6.07) and (16.09), 

We have 

maxlf l~) (x) -~x) l  ~< 2 ~. (I6. I0) 
;g 

J~')(x)=Mt (~,(x--t) M~ (f(~) ~( t - -  ~);). (I6. I I) 

Bearing in mind the uniformity properties of almost-periodic functions, we have 

f~*) (x) = M. { f( .)  Me (~O, (x-- t) tp~ (t -- 3) )). ( 16. 12) 

However, by (I4. 2o), 

M t { ~ ( x - - t )  ~P~(t--$)} = Z akeiax{~-~) (I6. I3) 
1 

o o  

where all the coefficients ak are positive, and ~, ak converges. 
1 

Since 

Hence 

o0 

f(')(x) = M,  f(*) ~_~ ake'ak ('~-*) }. (I6. I4) 
�9 1 

T 

- - T  

(16. 15) 

it follows that we can invert the order of M and ~, and that 

Inasmuch as 

j~')(x) = ~_~ ak e 'akit M { f ( . )  e-ak* }. 
1 

I M ( f ( . )  ~-"~~91 ~ ma~ If(~) I, 

(16. 16) 

f~)(x) is the sum of a uniformly convergent series of trigonometric terms. 

is to say, we can choose N so large that 
31--29764. Acta mathematica. 55. Imprim6 le 29 avrll 1930. 

(i6. I7) 

That 
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and hence that 
I j m a x  

.e 1 

i ~  . x  J - - i ~  v ake k M , j ~ ) e  k } -< ~, (z6. I8) 

max .f(:r) --  Z ake'~'k~ ] I  (.f(~)e--ak ~ ~ <-- 3 e. 
1 

(i6. I9) 

In other words, we have proved Bohr's approximation theorem, to the effect 

that  it is possible to approximate uniformly to any desired degree of accuracy 

to an almost periodic function by means of trigonometrical polynomials. 

17. Certain generalizations of ahnost  periodic functions. 

I t  will be noticed that  in the proof of the Weierstrass theorem for almost 

periodic functions, the spectrum of the function to be analyzed was not directly 

introduced, but rather that  of the auxiliary function Vp,(t). In many cases, when 

the function f ( t )  is not almost periodic in the classical sense, an auxiliary func- 

tion ~E(t) m a y  be defined, which will be almost periodic in the classical sense, 

and which may be employed to establish the approximation theorem for f(t) ,  in 

whatever sense this theorem may hold. I t  would be possible in this manner to 

establish the approximation theorems for the almost periodic functions of the 

generalized types of Weyl, Besicovitch, Stepanoff, and others, but one example 

will suffice to show the power of the method, and to this we shall confine 

ourselves. This example, which is due to Mr. C. F. Muckenhoupt, is that  of 

functions almost periodic in the mean. 

We shall confine our attention to functions J[x, t) defined over the range 

(-- or < t < ~ ,  x o --_< x --< xl) , quadratically summable in x, and continuous in the 

mean in t in the sense that  

x l  

lim f t)--f(x, t +,)12dx 
' ~ 0  

~'0 

= 0 .  (I7.0I)  

We shall say 

for all t, 

that T e  is a translation number of f(x, t) pertaining to e in case 

.f I f (x ,  t + , , 1 - f ( x ,  t)12 d x  < e 2. (i 7.02) 

;1- o 
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In case,  given ~, we can always assign a finite quantity L,, such that  each 

interval (A, A+L~) contains at least one translation number ~ pertaining to ~, 

then f (x ,  t) is said to be almost periodic in the mean. I case f(x,  t) is almost 

periodic in the mean, Mr. Muckenhoupt's theorem is: 

Given any positive quantity ~ there can be assigned a bqgonometrieal polynomial 

N 

t)= F, ('7. o3) 
1 

such that 
Al(x), As(x) , . . . ,  A,,(x) 

are all quadratically summable, and for all t, 

Xl 

f If(x, t) -- P,(x, t) 13 
92 0 

(I 7.04) 

There are a number of elementary theorems which Mr. Muckenhoupt proves 

along lines not differing in any essential way from those followed by Bohr in 

the proof of the corresponding theorems for functions almost periodic in the 

original sense. Thus every function almost periodic in the mean is bounded in 

the mean, in the sense that  
Z1 

f it(x, t)]* dx (17.06) 

~o 

is bounded; and is uniformly continuous in the mean, in the sense that  

lim max t If(x, t)--f(x, t+~)12 dx ~- o. (I7. 07) 

XO 

In this and subsequent formulas, the maximum value indicated by ))max)) 

need not be actually attained. Any finite set of functions almost periodic in the 

mean are simultaneously almost periodic in the mean, in the sense that, given e, 

an L,  may be assigned in such a manner that every interval (A, A + L,) contains 

at least one ~ which is a translation number pertaining to ~ of all the functions 

of the set. Hence the sum of two or more functions almost periodic in the 

mean is almost periodic in the mean. Similarly, the product in the ordinary 

sense is almost periodic in the mean. The uniform limit in the mean of a set 

d x  < ~2. ( i7.  o5 ) 
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of functions almost periodic in the mean is itself almost periodic in the mean. 

If  f(x, t) is almost periodic in the mean, 

a + T  

1.i.m.T_~ T f f(x't) dt (I 7. 08) 
a 

exists as a uniform limit in the mean in a, and is independent o f  a. 

represent it by the symbol 

M ( f(x, t)). 

We shall 

(17.09) 

Mr. :Muckenhoupt now puts 

2-1 

x 0  

t + z)--f(x,  z)12 dx.  

Clearly 

2" I 

I g(t + ~)- g(t) l ~ m f f  f IIf(x, t + �9 + z ) - f (x ,  z)12- If(x, t + z ) - f (x ,  z)131 dx 
aro 

2-t 

2-0 

2-1 

2"tl 

07. io) 

t + �9 + ~)--f(x, ~)1 + If(x, t + ~)--f(x, ~)112 dx} 1/2 

11/2 
t + ~ + e l - f ( x ,  ~1 I - I f (x ,  t+z l - f (x ,  z)II 2 dxi.  (~7. ~ i1 

To evaluate this, let us consider the maximum of each of the integrals under 

the radical sign separately. The first does not exceed 

2-1 

f If(x, I dx; 
~o  

(r7. I2) 

the second does not exceed 

x t  

maxf.~ If(x, ~+~)--f(x, ~)12 dx. (I7. 13) 

Hence we may write 
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Ig(t+*)-g(t)l -< 16 [max 
Xl 

f lf(x,~+ 
2:0 

�9 ) - f ( x ,  ~)1 ~ dx] 1/2 

921 

[ z=f 11,  If(x!  )pdx] , 
XO 

I f  ~ is a translation number  of f(x, t) perkaining to e, we have 
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(I7. I4) 

.g(t+,,,-g(t),<-I6,[ma,~fJf(x,z)pdx] 1/2, 
x~ 

(17. I5) 

so that  any translation number of f(x,  t) pertaining to e is a translation number 
of g(t) pertaining to 

2:1 

�9 ( I7 .  I6)  

X@ 

Thus g(t) is almost periodic in the classical sense, and is distinct from o unless 

f(x,  t) is independent of t, in the sense that  f(x,  t l )=f(x , t2) almost everywhere. 
As in the last section, let 

and let 

l!  ; [ o -< 5"-< d2] 
H,(U)=  _2__,U [,/2_< g_< ~ ] 

s 

; [, <-U ] 

(17. 17) 

~p~(t) ---- H~[g(t)] 
MH~[g(t)]" (i 7. i8) 

As before, H~[g(t)] 

As before, we put  

and 

is dictinct from o, and ~(x)  exists, and is almost periodic. 

f~(x, t) = M~[f(x, ~)~p~(t--~)], (17. 19) 

f(*)(x, t) = M.[f(x,  .)~p~(t--~:)]. (17. 20) 

A proof precisely parallel to that  of (i6. io) and (I6. I2) shows that  
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and that  

As before, 

maxt f {j(x,  t ) - f ( , ) ( x ,  l){~ d x  <-- 4 ~. 

f(*l(x, t) = M , [ f ( x ,  a) M.[%(t--.)~p,(.--a)]]. 

o0 

0 

(I 7. 2I) 

(I 7. 22) 

(I7. 23) 

where all the ak's are positive, and ~, ak converges. 
0 

Hence 

We have 

Hence  since 

f(~) (x, t) = M,~ x, a) ak e i~k(t-") . 

Xl 

lim M~ x, a) ~_j akdak I*-~ d x  
go , N 

/ --<~=.| ak max [f(x,  a)[~ d x  = o. 

Xo 

~a ak 
0 

(17. 24) 

(17. 25) 

converges, we can invert the order of M and ~ in (I 7. 25) , and get 

j4*)(x, t) = 1.i.m. ~, ake 'ak tM[f(x ,  a) e--iak~ 
0 

(I7. 26) 

This convergence in the mean is uniform with respect to t. Combining (I 7. 25) 

and (I 7. 26), our theorem is proved. 

This theorem has an interesting dynamical application. Really significant 

dynamical applications of almost periodic functions have been rather scarce, as 

no one has yet produced an example of an almost periodic function entering 

into a dynamical system with a finite number of degrees of freedom in which 

the frequencies or exponents are not linearly dependent (with rational coefficients) 

on a finite set of quantities. However, dynamical systems with an infinite number 
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of degress  of freedom are familiar enough in connection with boundary value 

problems, and in these, it is well known that the solution may involve an infi- 

nite linearly independent set of time frequencies. Mr. Muckenhoupt has succeeded 

in showing, under certain very general conditions, that the solution of such a 

problem is almost periodic in the mean with respect to the time, the space vari- 

ables playing the r61e above assigned to x. In this proof, the existence of an 

integral invariant such as the energy is of the utmost importance, as is also 

the condition that  when all the coordinates and velocities of the system are less 

in value than some given constant, the energy is also necessarily less than 

some constant. 

Let us consider as an example a vibrating string, whose density and ten- 

sions are functions of position, but not of time. Let the mass density be tt(x) 

and the tension T(x). The equation of motion is then 

O [T(x)OY ] , ,O~Y (I7. 27) 

We consider the ends to be fixed, giving us 

y(Xo) = V ( X l )  = O,  (I 7. 28) 

and we take T and #, as is always physically the case, finite and positive. We 

shall also suppose them to have bounded derivatives of all orders. 

Thus the total energy of the system is 

Xl 

~Ot ! + T(x) ~Oxl ] 
a" 0 

dx. (I7. 29) 

If  we assume density and ~ension independent of the time, we have 

or by (i7.27), 

Ot ~ -  + dx, 
xo 

xl 

21 ot = ~ r(x) + T(x)OV~ ~0 dx 
ZO 

Ot ].~.o o.  

(I7. 3 O) 

i7.3i) 
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Thus the to~ l  energy is invariant, as was to be expected from physical considera- 

tions. 

Inasmuch as O"y/Ot J' also satisfies equation (I7.27) and boundary conditions 

(I 7 . 28), we see that all the expressions 

2.1 

\g~+~l + r ( x )  ~ 1  J 
a-o 

dx (17. 32)  

are invariants, at least if y(x, t) is sufficiently often differentiable. 

term E~ the (n+ I)st energy of the system. 

Let us now Lake Oy/Ot and Oy/Ox to be continuous, and let 

We shall 

Clearly N o --> o, and 
Eo<E; /~(x)>_M; T(x)>_T. 

2.t 

f lOy\ ~ 2 L o 2 E 
~Ot) dx < M <----M 

TO 

(I7. 33) 

Xl 

Similarly, f / O Y ~ ' d x  is bounded, 

~o 

Fur themore ,  sinee 

provided only the first energy N o is finite. 

X 2. X 

[r ] f  f(o ) "Oy 3< , 
dx  "" dx,  Y' = Ox d x  - Ox 

TO To 2.0 

(I7. 34) 

by the Schwarz inequality, y is bounded. Similarly, if /~'~ is also bounded, 

O~y 2 .03u z ~ z 
f ( o ) ~ ) d x ,  f (Oxi ) t )da ,  and f \ x l  (O-yt dx  
:tO a'O 2.0 

(I7.35) 

will be likewise; in the last case, as a result of (I 7. 27); if N~ is also bounded, 

~'I 2.1 2.t ZI  

~ 0 ~ ]  dx, and j ~xS]  dx  (I 7 . 36) 

2.0 2.0 2.0 2.0 

will be, and so on indefinitely. 
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Le t  us now introduce 
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If[ I ( v , y , ) =  I , J - y , l ' +  ox ox I~t  --- o i  d x  I 
'r 

(17. 37) 

as the distance between two functions,  y(x, t) and y~(x, t). I f  we write 

oc 2 g i n x  ac 2 z c inx  

v~y,.a,,(t)~,-~o; v,~  ~B , , ( t )~ , -~o  ; 
--or --~c 

we may approximate  unijbrmly to (y, Yl) by 

Xl ![ N 2_/zin.:r 

Z (A"--B")e~'-~*~ 
--3" 

I + ( l l__X0)~ ] + ] Z  ( 4 ' n - -  B ' n ) e  : r ' - x ~  [ d X (17. 3 8) 
i - - N  I 

for  all funct ions y and y~ for  which E o and E~ are finite, since then 

931 

, ,~ lA, , ( t ) -  B.(t)l ~ (2~)' JOt'~! " 

--ac 9"0 
(17.39) 2" 1 

A' t ' I ~- .... ' ~ " - x ~  t ~  Y,n' l  ,()-.B,,(t) 12,~V j ~,~:dt) a.~ 
xo 

are uniformly b o u n d e d .  Now, a bounded region in space of m dimensions m a y  

be divided into a finite number  of compar tments  such tha t  the distance b e t w e e n  

two points in the same compar tment  does not  exceed ,~. Hence  we can divide 

the entire class of funct ions y(x, t) for  which L o and E 1 are finite i n t o  a finite 

number  of classes such tha t  the distance between two funct ions in the same 

class does not  exceed e. 

Le t  us do this, and let  us discard every class which is not  actually repre- 

sented by y(x, t) for  some value of t. Then we may assign a t ime-interval L'~ 

within which y(x, t) enters every class tha t  it ever enters. Then,  whatever  �9 

may be, we m a y  determine v~ between o and L'~ such tha t  

0(x,  ~), v(x, ~,))2 < ~. 
Since 

v(x, t ) - v ( x ,  t + ~ - O  
32--29764. A c t a  ma themat i ca .  55, Imprim6 le 3 mai I930. 

(~7.40) 
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satisfies the differential equation (I 7. 27), 

2,1 

�9 T o 

+ t) _ o?,(x, + ] 
d ,z'. ( I7 .4 I )  

is invariant,  and since for t =  $~, 

(~ -<- (max t~ + max T)(y(x, ~,), ?/C~', ~))'~ 

< (max tt + max T) e, 

it follows tha t  f o r  all t, 
(~ < (,pax ~ + max I')~, 

(I7. 42) 

(~7.43) 

a n d  hence by (I 7. 34) and (~7.37) 

/ Xl  --be o 
ly( .z , t )--y(x, t+r,--v~) I < 2 M - - ( m a x # + m a x T ) e .  (17. 44) 

Since for every 3, there is a value of ~ between o and L'~, there  is a 

value of ~--~t over every interval of length L',. Thus y(x, t) is an a almost 

periodic function taken with respect  to the time, uniformly in x, and is a ./br- 

tiorf almost periodic in the mean, in case E 0 and E~ are finite. I t  follows tha t  

we may so determine A~(x), . . . ,  A,(x); ,:11, . . . ,  ./1~ tha t  for all t, 

a'! 

1 

I t  is possible to go fur ther  than this, as Mr. Muekenhoupt  has done, and 

to show that  the method we have given for obtaining j~(.r, t), fl~)(x, t), and 

Ak(x) eiAk (t) assures us tha t  all the functions 

(17. 45)" 

A (x) e'a  '' 

are solutions of the original differential equation, or tha t  the functions 

are all solutions of the ordinary differential equation 

dx  (T(x) A'k (x)) + ~1~ !~(x) A~(x) = o; (I7. 46) 
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- -  that is, are what is known as Eigenfunktionen of the dynamical problem. 

This proof rests on the fact that  each one of these functions may be obtained 

from its predecessor, and ultimately from f(x, t), by a process of weighted averaging 

in the variable t which transforms every solution of a linear differential equation 

with coefficients constant with respect to the time into another solution of the 

same equation, or at least of the corresponding integral equation. Hence, if 

y(x, o) = F(z) ;  Oy(x, o) Ot - - o  is a possible set of initial conditions for the m o t i o n  

of the vibrating string. We may write 

?~ 

F(x) = l.i.m. ~, Ak(x); (I7. 47) 
I 

where the Ak(x) are in general Eigenfunktionen of the problem that  depend on n. 

Thus if the set of possible initial conditions of the string is closed, as we may 

show to be the case by direct methods, every quadratically summable function 

may be expanded in terms of a denumerable set of Eigenfunktionen, and the 

Eigenfunktionen may be shown to be a denumerable closed set. 

The methods of Mr. Muckenhoupt are susceptible of extension to the treat- 

ment of a much wider class of Eigenfunktion problems, in any finite number 

of dimensions. The detail of this extension awai ts  further investigation. 
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