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~. I n t r o d u c t i o n .  

i . I .  The present  paper  is concerned primari ly with the following ques- 

t ion: What can be said about the distribution of  the characteristic values of  the 

I/~redholm integral equatio~ 
b 

(i  i) y(x) = Z lK(x ,  ~)y(~)d~ 
a 

on the basis of the general analytic properties of the kernel K (x, ~) such as im 

tegrability, continuity, differentiability, analyticity and the like? 

The l i tera ture  where this and analogous questions are t rea ted  is v e r y  con- 

siderable [HELLI~G~n-To~eLITZ, I]. ~ A relatively small par t  of this l i terature,  

however, has points of contact  with the present  paper, the discussion of the 

majori ty  of papers published on the subject  being based on various special prop- 

erties of the kernels. I t  is assumed frequent ly  tha t  the kernel  belongs to some special 

class of functions,  or tha t  it  coincides with the Green 's  funct ion of a differen- 

t ial  or integro-differential  boundary  value problem. Problems of this sort  

will be excluded f rom the scope of our paper  a l though they are in teres t ing f rom 

a theoret ical  point  of view and impor tan t  for  the applications. 

1 The quotations in brackets [ ] refer to the list of memoirs at the end of this article. 

1--31104. Acta rnathematica. 57. Imprim~ lo 29 avril  1931. 
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The first result concerning the distribution of the characteristic values 

(abbreviated C.V. in the sequel) of a general kernel is due to FREDHOLM him- 

self. I t  was shown by Fredhohn Ix], under the assumption that  K ( x ,  ~) is  
bounded and integrable, that  the set of the C.V. of K coincides with the set 

of zeros of the ~;Fredholm determinant of K,'~ 

where 

and 

Assuming that  

dK(Z) ~-- Z ( - -  I) r (~,.(K)).*', 

b b 

f f (  I 81 8~ 
d~(K)=~ ~,. vi " K ds~ . .. d~., 

,% 8 2 8v 
(I (I 

on the fundamental square 

K ( ~ i s o '  " s") = d e t  (K(&' t,, 

IK(x, F 

a<=x<__b, a<=~ <=b, 

2 , . . . ,  

and using the Hadamard determinant theorem, Fredhohn obtains the estimate 

~2 

from which, by the general theory of entire functions 1, it follows that  the ex- 

ponent of convergence of the set (~,,(K)} of the C.V. of K is ~ 2 .  We assmne 

here and in the sequel that  the terms s ( K ) ~  ),,. of the sequence (s (K)} are 

repeated according to their multiplicities as the roots of d~(~), and that  they 

are ordered so that  

"1 ----< r2 G - "  G r, ~ - . . ;  r~,(K) ~ r,, ~ I~(K)I.  

The exponent of convergence of the set {s will be designated by r  (~. 

i We refer t o  [VALIRON, I and 2] concerning the t e rmino logy  and the facts of the theory 
of entire functions, which are used in the present paper. 
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In the case where K satisfies a Lipschitz condition 

[K(x, K(x, V)[ AI --VI% O < a ~ I ,  

where A is ~ constant, Fredholm shows, by an argument of the same nature, that  

whence it follows that  ! 

1 

.! A*, 

2 
Q (K) 

2 a +  I 

In the case of a symmetric kernel K(x, ~):K(~,  x), WEYL [I; 2, p. 452] 

obtained a more precise result 

3 

using certain extremal properties of the C.V., and assuming that  K(x, ~)is 
OK 

continuous on (~) and that  o-X- is continuous in the interior of (~), while the 

integral 

exists. I t  was also stated by Weyl that  

1 

provided K(x, ~) possesses continuous partial derivatives of order s. 

By a suitable modification of the original argument of Fredholm, MAZgR- 

K I E W I C Z  [I] WaS able to show thut the estimate 

3 

holds for a general unsymmetric kernel K(x, ~), provided it is bounded on (~), 

OK OK 
and Oxx or ~ is continuous on (~). 

1 See also LALESCO [I, pp. 86--'89!. 
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Fredhohn's  formulas are not applicable, in general, when K(x, ~)is not 

bounded on (~) or not  defined on the line x =  ~. In  the case where 

(H, , )  K(x, < '-, 
2 

HILBERT [I, p. 31] introduced the modified Fredholm determinant  

d~,- (Z) ~ ~ (-- i)" ~: (K) Z", 

where d* (K) is obtained from ~, (K) if K(x, x) is replaced by o. This modifica- 

t ion will not  affect the C.V. of K nor the solutions of the integral  equation, 

while, in case the Fredholm determinant  exists, we have the relation 

b 

I d*~-(Z):dA-().) exp i). K(x, x)dx~ 
( t  

[Lalesco, I, pp. I i3 - - i17] .  The modified Fredholm determinant  d~().) may exist 

even when dKO.) does not. This was shown by Hilber~ in the case (H~), and 

extended by CARLE~tAN [51 to the much more general  case where the only assump- 

tion concerning K(x, ~) is the existence of the double integral  

The set of the C.V. of K coincides with the set of roots of d~-(E), and Carle- 

man, by ingenious analysis, succeeded in proving, not  only tha t  d~-(~)is of 

order ~ 2 and of minimal  type if it is of order 2, but also tha t  the series 

[r~(K)] -2 converges and 

, ' = 1  

a result  which had already been established by I. S c o u r  [I] under more restrictive 

conditions. I n  the same paper Carleman gave an estimate for the numerator  

d*K(X, ~; 2) in the expression 

. . . .  
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for the resonant  ~(x, ~; Z) of K, as well as some important formulas for the 

coefficients ~ ( K )  when K(x, ~) is a composite kernel 

b b 

a a 

g S 1  �9 . �9 ds,~--i  ~ ( g l  . . �9 ~ n ) ( x ,  ~ ) ,  

which proved to be of great use in the subsequent development of the theory. 

An important result concerning such composite kernels, namely the con- 

vergence of the series 

was stated first by LALESCO [2]. There is no explicit statement of the hypo- 

theses used in Lalesco's paper 1 and his proof can not be considered as complete, 

at least in the most interesting and natural case when all the >)components>> of 

K ~  L~. A rigourous proof of Lalesco's result (under certain, restrictive hypo- 

theses) is due to G~no~GHIV [4, P. 35]. In the same paper, which was preceded 

by three preliminary notes in the Comptes Rendus [I, 2, 3], Gheorghiu derives 

other interesting properties of composite kernels (on the basis of Carleman's 

formulas mentioned above) and applies them in estimating the exponent of con- 

vergence Q(K) under various hypotheses about K(x, ~) (K is continuous and of 

bounded variation; K has partial derivatives up to a certain order, or is in- 

definitely differentiable). 

The principal results of the present paper were obtained in the beginning 

of 1928 and communicated to the Mathematics Club of Princeton University 

(February I4, I928 ) and to  the American Mathematical Society (April 6, I928 ) 

[HILL~-TAMA~I~, I, p. 423], without our knowing about the investigations of 

Gheorghiu. These results were stated briefly in a note in the Proceedings of 

the National Academy Of Sciences [ftille-Tamarkin, 2]. Our methods, except in 

proving Lalesco's theorem concerning composite kernels, are entirely different, 

and our results are more inclusive than those of Gheorghiu. 

1.2. Carleman [4] established the existence of continuous kernels for which 

Q (K) equals precisely 2, so that, a for t ior i ,  this limit can not be lowered for 

the class L2, although this certainly can be done for more or less wide sub- 

1 Cf. also [Hellinger-Toeplitz, I, p. I55O]. 
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classes of L~. On the  o ther  hand,  it  can be proved tha$ for  the kerne s of 

class Ha 1 

while there  exist  kernels  ~ H~ for  which Q ( K ) ~  ~ - -  [Carleman, 3; see also 
I - q  

Section 2 below]. There  exist  o ther  classes of kernels which par t ia l ly  overlap 

L~. and  to which an extension of the classical F redho lm theory  applies [Hobson, I; 

Hi l le -Tamarkin ,  3]. The  quest ion now is whe ther  such an extension is possible 

for  classes of kernels  which are more  genera l  t han  L o. A na tu ra l  genera l iza t ion 

would be the class of kernels L l) for  which the in tegra l  

7~ 

exists. ~ I t  has been shown in a recent  paper  by the au thors  [ t I i l le-Tamarkin,  3] 

t ha t  the  answer  to this quest ion is negat ive,  a t  least  as f a r  as the kernels  

c Lp are concerned.  Indeed,  we have  examples  of kernels  which are sym- 

metr ic  and  admi t  an a rb i t r a ry  given denumerab le  set of real  numbers  as 

the set of the  C.V., and  also unsymmet r i c  kernels  for  which the set of C.V. 

covers the  whole complex plane (the origin being excluded in both cases), where 

the  num ber  p can be t aken  as nea r  to 2 as we please. I t  seems na tu ra l  there- 

fore  to res t r ic t  the discussion to the  class L~ and to its var ious sub-classes. I t  

will be assumed in the sequel, wi thout  being s ta ted  explicitly, t ha t  all the  ker- 

nels in quest ion c L~. 

I. 3. The pr incipal  me thod  on which we base our discussion is a syste- 

mat ic  use of i n f i n i t e  d e t e r m i n a n t s .  By means  of an a rb i t r a ry  o r thonorma l  

complete  set 
b 

f *  

q 

equat ion (i. I) is readily reduced to an equivalent  system in infinitely m a n y  

u n k n o w n s  

1 In a forthcoming paper by the present authors. By [x] we designate, as usual, the 
greatest integer which is ~ x. 

1 
2 It should be observed that Ha ~ Lp whenever/~ < 
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where 
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~ o  

. v , =  ( i  = 

J= !  

b 
_ . _ _  

By multiplying the equations of the system (I. 2) by suitable factors we  obtain 

an equivalent system which possesses an absolutely convergent determinant. 

This determinant replaces in the present theory the determinants dK(~)and 

d~(~) of the Fredholm-Hilbert theory. The infinite determinant in question can 

be readily estimated with the aid of the Hadamard determinant theorem. The 

whole problem is then reduced to the discussion of the  m e a n  q u a d r a t i c  e r r o r  

of  t he  a p p r o x i m a t i o n  of  K(x,~) by m e a n s  of  t he  m-th p a r t i a l  s u m m a -  

t ion  of i t s  F o u r i e r  s e r i e s  e x p a n s i o n ,  

where 

ff IK(x, ~)--rm(x, ~)pdxd~= ~ 
i = m +  1 j = l  

b 

i=  1 a 

Corresponding to the various analytic properties of the kernel K, various methods 

are available in the literature for estimating this mean quadratic error. In 

each case we obtain an estimate for the order of the determinant of the system 

(i. 2) or of the modified system, as an entire function in g which at the same 

time yields an estimate for the exponent of convergence (~(K). 1 

From an estimate of the type 0 ( K ) ~ 7  we conclude immediately that 

1 

(i) r~(K)n ~'+~--.cc, 

1 I t  shou l d  be observed  t h a t  t he  ides  of  u s i n g  inf in i te  d e t e r m i n a n t s  i n  t h e  t heo ry  of t he  Fred- 

h o l m  in tegra l  equa t ion  is far f rom be ing  new. I t  was  used first  by  H. v .  K o c h  [I, 2] and  subse-  

q u e n t l y  by  PLAS [I], MARTY [I] and  MOLLERUP If, 2]. See also an  i n t e r e s t i ng  pape r  by  S z s  
!I] where  t he  inf in i te  d e t e r m i n a n t s  in  ques t ion  are  t r ea ted  i n d e p e n d e n t l y  of t he  genera l  t heo ry  of 

H. v. Koch.  T he  app l ica t ion  of inf in i te  d e t e r m i n a n t s  to t he  p rob lem of d i s t r i bu t ion  of t he  C.V. 
of i n t eg ra l  equa t ions ,  wh i ch  we give  here,  is new.  
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r~.--r--~ is non-increasing. since the series :~r:-: '-~ is convergent and the sequence , ,  

In many cases we are able to obtain more precise information, namely to 

prove that  

1 

r , , ( K )  . ",' - -+ ~ , (ii) 

or even that  

oo 

(iii) ~ r7~ converges. 

I t  goes without saying that  results of this sort are of interest only 

for kernels which possess infinitely many C.V. No attempt is made here to 

attack the much more difficult problem of the existence of infinitely m.~ny, or 

even of any C.V. for the given kernel K. In this connection we may mention 

only the lemma I I. I below which gives a Useful sufficient condition for the 

existence of infinitely many C.V. in the case of kernels of the type K(x ~). 
1.4. The order of the material is as follows. In Section 2 we discuss 

the kernels of the form K(x--~) where K(t) is periodic and of period (b--a). 1 
From our present point of view the main interest of these kernels lies in the 

fact that  they are very well fitted for construction of examples and )~Gegen- 

beispiele,~ in order to illustrate various situations of the general theory, in  

Section 3 there are collected some facts of the theory of infinite determinants 

and systems of infinitely many linear equations in infinitely many unknowns, 

partly known and partly new. The results concerning the bilinear forms repre- 

sented by bordered determinants are largely new. On the basis of these re- 

sults we give in Section 4 a fairly simple proof of the Schur-Carleman theorem 

and of other theorems established by Carleman in the above mentioned paper 

[5], but in an entirely different way. The result of the next Section 5 is of im- 

portance for the proof of the Lalesco theorem in its most general form, the 

only assumption being that  the components of the composite kernel in question 

should c L  2. This proof is given in Section 6, the method of the proof being 

essentially that  developed by Gheorghiu [4] under more restrictive assumptions. 

Section 7 deals with kernels which include as a special case those possessing a 

derivative of fractional positive order (with respect to x). In Section 8 we con- 

T h e  l i t e ra tu re  on t he se  ke rne l s  is  very  cons iderable  [Hel l inger-Toepl i tz ,  pp.  1391, I534; 

t he  i m p o r t a n t  papers  by  Car l eman  [I, 4] are n o t  m e n t i o n e d  there,  however! .  W e  derive s o m e  
new resu l t s  wh ich  m a y  be of in t e res t  for t he  t heo ry  of t r igonomet r i c  Four ie r  series.  
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sider kernels which satisfy integrated Lipschitz conditions [i. e. which c Lip (a, p) 

according to the terminology of gARDY-LITTI~WOOD, 2]. The discussion of 

Sections 7--8  is based upon an application of the YOV~O-HAVSDORsF-RIr, SZ 

theorem which is applied directly in Section 7, and on the basis of some results 

of SzXsz [31 in Section 8. In Section 9 we utilize some recent results concern- 

ing the approximations by means of Cesgro sums of positive orders [JacoB, I; 

references to other papers pertaining to the subject are found there]. Section 

IO deals with kernels which are analytic (in x) on (a, b). The discussion of this 

section is based upon S. BER~STEI~'S theory of polynomial approximations 

[DE LA VALL]~E Povssi1% I]. The kernels which are entire functions (in x) are 

treated in the next Section I I. Here we utilize the approximation furnished by 

the Taylor series expansion. The last Section I2 contains a summary of all 

the results; they are collected in a single table to facilitate comparison. 

To simplify the formulas we are using the following symbolic notation: 

b b 

(l fl 

ds. 

2. Per iod ic  Kernels .  

We 

(i) 
and 

([h) 

under the assumption that 

take for simplicity a-~o,  b :  2 ~ and consider the integral equations 

y(x)--f(x)+~K, y(x), 

u ( x ) : ~ K ,  u(x), 

K (x, ~) --= K (x-- ~), 

where K(t)c L (is integrable) and periodic of period 2~r. The same properties 

will be postulated for the given function f(x) and the ~>solutions>> of (I) and (Ih). 

We start with the discussion of the homogeneous equation (L). Let 

27r 

f K(t)~ ~k,.d ''t, 21rk,: K(x)e-'"~dx; 

2 - - 3 1 1 0 4 .  A c t a  m a t h e m a t l c a .  57. I m p r i m d  le 29 avr i l  1931. 
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2 ~  

be the formal complex trigonometric Fourier series expansions of K(t) and of 

u(x). On multiplying (Ih) by e -;n~, integrating and using the periodicity of the 

functions concerned, we get at once 

'tin ~ 2 r )~ IOn Un,  

the necessary interchange of order of integration being readily justified by 

Fubini's theorem. Hence the C.V. of (I) are 

(2.  I)  ).n = (2 7r - 1  (17-"~-0, +_ I ,  + 2 , . . . ;  ]g,t:=~=O), 

the corresponding fundamental functions being 

To prove that  the limit 2 for Q(K) can not be lowered for the class of con- 

tinuous kernels (Section I. 2) it suffices therefore to exhibit a continuous periodic 

function K(t) for which the series 21k,,I -~ diverges no matter how small is 

> o. This was done first by Carleman [4]. Hille [i] indicated a general 

method for constructing examples of this nature, which is based upon an entirely 

different principle and is simpler than that  of Carleman. 

I t  is easy to construct examples of kernels K for which e(K) assumes any 

value o < Q < 2  if K c  L_~, and any value 2 < ( ~  zr if this restriction is removed. 

Moreover these examples can be constructed so as to exhibit all three peculiar- 

ities i.--iii, mentioned in I. 3. Indeed by a result due to YOUNG [2, pp. 

443--444] 

F,,, , ,  (t) ~-  F ,  , , , , / l og  ,~)~ - o t " - '  t o g  7 , o < .  < ~ 
? l ~ 2  

I I 
Hence Fa, b (t)c L~, for any p < - - ,  and even for p -  

I - -  a 

On the other hand it is obvious that  if 

I - - a  
- - - -  provided b> I - -a .  

K(t) = ~ , b  (t), 
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I 
then  q ( K ) : 7 - - - '  and we have the case i., ii., or iii. according as 

a 

b~o ,  o < b ~ a ,  or b>a.  

W e  get  the same results if  we allow a >  I, the  kernel  K(t) being cont inuous  in 

this case�9 The case Q ( K ) ~  ~r is represented by the kernel  

cos nt 
K ( t ) ~  ~ leg n 

[Young, 2, pp. 44- -45 ,  48]. The reader  will find no difficulty in i l lustrat ing 

the eaze Q ( K ) =  o. 

Le t  us tu rn  now to the non-homogeneous equat ion (I). I f  s is dist inct  

f rom the  C.V. (2. I), i t  is known [Hitle-Tamarkin, 3, PP. 513, 524] tha t  there  

exists a uniquely determined solution y(x)c  L of (I), provided f ( x ) c  L. On 

sett ing 
+r162 + : 0  

y(x) ~ ~,y~e '~x, f(x) ~ ~ f , e  ''~, 

we get by the same argument  as before 

I - -  2 z ) ~ k ~  

Here  K(t) and f(x) are arbi t rary  funct ions ~ L, while the Fourier  series of y(x) 
is obtained f rom the Four ie r  ser ies  of f(x) by means of the fac tor  sequence 

(I--2:7~:~kn) -1, Using the terminology of M. RIESZ 1 we can say tha t  the se- 

quences 

(2. 2) {(I--IOn)--1), {kn(I--]r IOn yA I, 

are of type (I, I). Since a necessary and sufficient condit ion tha t  a sequence 

~ [~'1], n ~ o ,  be a sequence of ~/~nj be a fac tor  sequence of type (I, I ) i s  tha t  i~-  ~ 

Four ier  coefficients of a funct ion of bounded variation, we have 

l Ix, p. 487--488]. Other references concerning various results of the theory of factor 
sequences are found in this paper. 
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Theorem 2.1. I f  K(x) is a~y fit~wtion ~ L ,  the~ the sequences (z. z) are 

factor sequences that transform the Fourier series of an arbitrary fu~wtion f ( x ) c  L 

into the Fourier series of a function ~ L while the sequences 

I,,(~-~,,)l' i , ( , ~ . i  ~, ~,,r ,~r 

are seque,~wes of Fourier co<~ficie~#s of functions of bou~zded variations. 

We are not aware of any direct proof of this curious result. 

3. Intinite Determinants  and Systems of  Linear Equations. ~ 

In this Section we shall deal with vectors a~(a~, a.~,...) (denoted by small 

German letters) and matrices ?[--~(a,j) (denoted by capital German let~ers) of a 

complex t t i lbert  space ~ ,  that is such that the series 

i~1 i , j ~ l  

converge. The quantities Ilall, II?tll will: be designated as the lengths of the 

vector a and of the matrix ?[ respectively. The notation ~ '  will be used to 

designate the transposed matrix ?l'~(ai~). The vectors that occupy the i4h rows 

of the matrices ~.[, ?[' will be denoted by as, a'i respectively. The usual agree- 

ment~ concerning the elementary algebraic operations with matrices and vectors 

will be assumed without further explanation. 

A matrix ?[ is said to be of class ~'~ if the simple and the double series 

converge. 

(3 i) 

or or 

.(t~)--- Zia~il, il~il ~--- ~ la,~l ~ 
i = 1  i , j=l  

I t  is obvious that ~'~ ~ 92- 

Lemma 3.1. I f  the matrices ~)[~ a~d ~ ~2~~ the~ their product ?[!D~ ~',~, and 

~ ( ~ )  =< II~li. II~ii; il~L~ll--< il~[ll. I1~11. 

1 W e  refer  to F. Riesz I I ] ,  H. v. Koch  ~ I ,  2], J. D. T a m a r k i n  ~I] as to genera l  p roper t ies  of 

abso lu te ly  conve rgen t  inf in i te  d e t e r m i n a n t s  and  the i r  app l ica t ions  to s y s t e m s  of l inear  equa t ions .  
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P r o o f .  Since the elements of the matrix ~ are given by 

c~ 

Z ais bsj ,  

formulas (3. I) are obtained by an immediate application of Cauchy's inequality. 

I f  the matrix 9~ c ~ ,  the infinite determinant 

A (a) ~ A = det (,~O--a~j) (i, j =  i, 2, . . .)  

will be designated as the  d e t e r m i n a n t  r e l a t e d  to the  m a t r i x  ?l. I t  is well 

known that  the determinant related to a matrix ?l ~ ' 2  or briefly, a determinant 

A ~ ~'.2, is absolutely convergent together with all its minors of all orders, and 

remains so if any number of rows or columns are replaced by vectors ~ ~2: The 

same will be true of the determinant 

A (~, ~) 

o x I x 2 

~1  I - - C t l l  - - a l ~  . 

Y2 - - a ~ l  I--a22 . 

which will be designated as the  b o r d e r e d  d e t e r m i n a n ~  r e l a t e d  to t h e  

m a t r i x ,  provided the vectors ~ and ~ ) c ~ .  

If we know only that  ~ c:~2, the related determinant A and the. bordered 

determinant A(~, t)) may not exist. Hence we introduce modified (related) 

determinants and modified bordered (related) determinants of various types. The  

m-th m o d i f i e d  d e t e r m i n a n t  r e l a t e d  t o  the  m a t r i x  ? l c ~  is defined as the 

determinant which is obtained formally from A by multiplying the i-th row 

( i = m  + i, m + 2 . . . .  ) by eaii. I f  we designate b y  A* the m-th modified deter- 

minant of ~, then the matrix ~{* which is related to A~* coincides in its first 

m rows with the matrix ?l, the remaining rows (m + I, m + 2, . . . )  being those of 

the matrix 9g* where 

~? ~ e air aij (i F A j ) ;  a i i =  I - -  e aii ( I  - -  aii). 

The o-th modified determinant A ~ A *  will be designated simply as the  modi-  

f i e d  d e t e r m i n a n t  r e l a t e d  to ~{. The  m-th m o d i f i e d  b o r 4 e r e d  de te r -  

m i n a n t  A,*(~ t)) is obtained from the related bordered determinant A(~, ~)) by 
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multiplying the i-th row ( i = m +  I, m §  2 , . . . )  by eaii. I t  is also obtained from 

A~ by bordering it by means of vectors ~ and t)*('O where i) *(') coincides with t) 

in its first m components, the remaining components being those of the vector 

~ * =  (e~,,, y~, e "= y~, . . . ) .  

We shall establish severM lemmas concerning these determinants; since 

all the determinants concerned will be absolutely convergent together with all 

their minors of all orders, the >~usual~ rules of the theory of finite determinants 

including the theorem of multiplication and Laplace's expansion theorem, will 

hold in the present case. 

Lemma 3.2.  I f  the determinants A a~d B ~ ' ~ . ,  then their product C ~ A B  

also ~ ~'~. The mab'ix (~ related to C is expressed in terms of the mab'iees 9A, 

related to A, B by 

P r o o f .  We have only to apply the theorem of multiplication of deter- 

minants and lemma 3. I. 

Lemma 3.3.  I f  ~[ ~ ~'~, then 

I I H (I --2 ~(aii)~ II~illq 
i=l 

{ , - 2 ' ~ ( ~ ) + l l . ' A l q  \ i = l  [ 

I f  A 0 denotes the eofactor of the element in the i-th row and the j-th column of A, 

then 

[llaAI ~ exp [-2~(;=~ 1 a.)§ IlmW]' 

IA~ l lla,,ll~ e,~p [__2~(,=~xa.) +llmll~ ], 
(i ~ j) 

while for Au we have the same estimate (3.2) as for A. 

All these estimates hold for the determinants thdt are obtained fi'om A or Aij 

by replacing any number (finite or infinite) of the elements by zeros. In  particular 

the same estimates hold for the segments A ('~1, AI.')I of the determinants A, AO, where 
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A(') ~ det (~,:i--ao), i , j =  I, 2, . . . . ,  n, 

a~d A~) is the cofaetor of  the element &j--aij in A('). 

Lemma 3.4. 

(3.3) 

where 

(3.4)  

15 

I f  ?~ c ~ ,  thet~ the m-th modified determinant A~,=~'2, and 

m IA..(a)l _-< rim(a)-= H,,, 

"tn 1 ~ 1 

u , ,  (a) --= I I  [' - ~ .~t(a,,) + II",ll']~ 1-[ e~' ~~ [i --2 .g~(aii)-}- II a;I IV: 
i : 1  i = m + l  

--< i,-~r e~p . ,  . 
i = l  i 

In  particular jbr  m = o we have 

(3.5) [A*(a)[ ~ exp (~ [[a[[~ )" 

The same estimates hold wheJ~ any number of  the elements aij are replaced by zeros. 

P r o o f .  We shall give here only the proof of 1emma 3.4; 1emma 3.3 

will follow from the identity 1 

(3.6) A(a) = A*(a) exp - -  i = 1  " 

Since 9 [ ~ 2  it is seen that aq--m. On ~he o~her hand 

= a 2 a i i =  I - - ea i i ( I - -a i i )  O ( i t ) ,  

a~. = e"ii a 0 = 0 (ao), i # j ,  

which implies ~he convergence of the series ]a,] ,  : ] a , j l .  The proof of (3.3) 

is now readily obtMned by means of Hadamard;s determinant theorem [Hellinger- 

Toeplitz, I, pp. I356--7] on the basis of the simple inequality 

Iq- x < e X ~  x ~  - -  I. 

1 Lemma 3 .3  is known,  in s l ight ly  less favorable form, wi th  laii[, [ajj[ ins tead of ~(aii) , 
{R(ajj). Cfr. H. v. Koch [I, p. 259], SzAsz [I, p. 277], Tamark in  [I, p. 131 ]. v. Koeh 's  formula (I3) 

contains  an obvious mispr in t  since the  te rm 2 ~ (a~).) is miss ing there.  
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W e  have then 

while 

*It ~c ar oc 

t :( )t II Z t t II Zt *t-' 
i = l  j = l  f = m + l  j = l  

Io~,~- a~y= ~-- 2 m ( . )  + Ila,II '~, 
j = l  

j = l  

i8 

o 

L e m m a  3. 5. I f  ?(~ 9o, then the m-th modified bordered determinator A~(~, t)) 
bounded bilinear form as a fuJ2ctio~ of the vectors L ~) i~ the Hilbert space 

The bound of A;,(~, ~) does ~wt exced ]/eH,,(a),  so that 

(3.7) 
m 1 o0 

IA*m(X, t))l ~ II~ll II~llV~ H [ , -  ~ 9~(~,,)+ Ilaill~t ~ exp (_I ~.~][a~]].o/. 
,=1 \2~=m+1 ] 

I f  A* m;~j is the eofactor o.f the element in the i-th row a ,d  the j-th colum,~ in 4" x I l l  ) 

we have aJ~ absolutely co~vergent expansio, 

(3-8) A,,(L l))-~ - -  ~ .  ,,;,~ ?/i (') xj, 
i , j ~ l  

where 

X.y t ~ ,Y2 ~ ' " ' 

In  particular for m = o 

(3. 9) 
/ 

"t', j =  ] 

1./ ~ ' . ~ ,  
i n  ~'~, and 

then the bordered determinant A(~, t)) is also a bounded bilinear form 

(3. II) IA(~,~)I__--<II~IIII~II~/~ exp - - ~  a,, + ~ll~tll ~ , 
i = l  
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ov 

(3" I2)  .A (~, ~)) = - Z A~: i y i x j .  
i , j ~ l  

All  these estimates hold i f  any number of the elements atj are replaced by zeros. ~ 

P r o o f .  By Hadamard ' s  determinant  theorem we h~ve 

IA~,~(~, t~)l ~ ~ ~,  I~1' n [~ + ly~l ~ - 2  9~(a.)+ Ila;ll ~] 1-[ ~"("")[ :"  "] 
i=l i~ l  i=m+l 

_-< y, l~, l~  H(~  + ly,I ~) m . ( . )  < Ikll ~ exp (l l , lr ~) m ,  (a). 
i : 1  i=1 

Hence,  on the uni t  sphere Ilrll = Ilvil = i, 

IA~(~, ~)1 ~ V2 n~((,) ,  

w h i c h  shows tha~ A~,~(~, t)) is a bounded bilinear form whose bound does not exceed 

V e I Ira(a). The formulas ( 3 . 7 ) a n d  (3.9) foll0w at once. The expansions (3.8) 

and (3. IO), and their  absolute convergence are known from the general theory of 

absolutely convergent  determinants.  Formulas  (3. I1) and (3. I2) are derived in 

a similar fashion. 

L e m m a  3 . 6 .  

(s) 

is equivalent to the system 

(s~) ~ - ~ ~ = c* c.~, 

I f  the matrix  9.~ and the vector c ~ ~.z then the system 

[hi, i =  i, 2, . . . ,  m; (m) 
[e~,e~, i = m  + I, m + 2, . . .. 

A necessary and sufficient co~dition that (S) should have a unique solution ~ ~.)_ 

is that the determinant A,~ # o. I f  this condition is .~atisfied, the solution is given 

by the usual formulas, and, in addition, 

(3. i3) 

a W e  refer to Hel l inger-Toepl i tz  It ,  w167 I8, 43] concerning the  t e rminology  and facts of 
Hi lber t ' s  theory  of bounded  quadrat ic  and bi l inear  forms. The fact t ha t  A (~, I)) is bounded is a 
special  case of a resul t  due to BSBR [~]. However ,  Bdbr ' s  me thod  is more complicated and gives 
an es t imate  for the  bound  of A(~, ~) which  is not  su i table  for our  purposes .  

3--31104. Aaa mathematica. 57. Imprim6 ]e 29 avril 1931. 
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The homogeneous system 

~ - - ? { ~ = o  

has non-trivial sdutions ~ when and only when A~,=o.  The classical results 

concerning the general form of the solutions, the number o.f linearly independent 

solutions etc., can be extended to the present case. 

I f  ~[ ~ ~'~, all these results hold u,ith A* replaced by A. The inequality (3. 13) 

is then replaced by 

( ) (3. I4) Ik l l  --< Ilcll VelA1-1 exp - -  }}l a~i + ' II tll" . 
2 

\i=1 I 

P r o o f .  The  f ac t  t h a t  t he  sys tem (S) is equ iva len t  to  (S~), and  all t he  state-  

men t s  of l emma  3 .6 ,  are known,  excep t  fo r  the  fo rmulas  (3. I 3 ) a n d  (3. I4) .~ To 

prove  (3. 13) we observe t h a t  the  so lu t ion  r - -  (xl,  x,2,. �9 .) of (S*) is g iven  by 

whence ,  by (3.9),  

ao 
I ~ ,A."  . 

X i  = 2t.4.: 3' C j ,  
j=l  

Ildl  = (a"+)-i S A~. c; 'xi : --  (A':) -1  A* (~, c) ~ II1-'11 Ilcll V~ I A * I - '  exp 
i , j = l  

F o r m u l a  (3. t4) is p roved  in an  ana logous  fashi'on. 

A case t h a t  is f r e q u e n t l y  m e t  in the  appl ica t ions  of  the  p reced ing  t heo ry  

is t h a t  in wh ich  the  e lements  a 0 are  func t ions  of  a p a r a m e t e r  4. Assuming  t h a t  

these  func t ions  are  ana ly t i c  in )~ we can s ta te  

L e m m a  3 . 7 .  Tn the system 

(Sz) r - -  ?{(Z)~ - -  c(Z) 

let the  coefficients ao(~ ) and the right-hand members c~(s be analytic in an open 

domain A of the complex X-plane. Assume also that [[?[(;~)[[ and IIc(Z)ll a,-e bounded 

in every closed sub-region A o of A.  Then A~(X) is analytic in A and, in case 

A,;,(X) does ,not vanish identically, the solution of (S~) is meromorphic in _11. ~ 

i F. Riesz [I, p. 39], Tamarkin [I]. The system (S~) is obtained from (S) by multiplying the 
i-th equation by eaii (i = m + I, ...,. 

2 Tamarkin [I, pp. I35---i36]; under less general asumptions v. Koch [2, pp. 268--27o]. 
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P r o o f .  I t  is known IF. Riesz, I, p. 34] tha t  

A~(Z) : l im A~ (') (Z) 

where A~(~)(Z) is the n-th segment of A;,(Z), tha t  is the determinant  which is 
* ~, obtained from A~( ) by replacing by zeros all the elements a~i with i or j > ,~ 

By lemma 3.4  then  A,**(")(~) is uniformly bounded in -//o and the analytici ty of 

A~(Z) in _// follows from Montel 's theorem. In  the same fashion we can prove 

the analytici ty of the numerators  in the expressions which give the solutions 

of (s~). 

Lemma 3.8 .  

the parameter Z, 

I f  the matrix ?{(Z) of the system (S~) is a linear function of 

*)~ Where ?{ (~ and ~(1)C~2, then all the modified dete~'mi~,anls A,,(.) are enti~'e .func- 

tions of Z of order not exceeding 2, and of minimal type i f  the order equals z. 

P r o o f .  In  view of the obvious ident i ty 

i t  suffices to give the proof for the case m : o only. Le t  

Then, by lemma 3.4, 

~ ( r )  = m a x  IA* (z) l. 
I~l=r 

_3/(r) ~ C exp (r"[[~(1)[[~), C =  exp (ll~(oql~). 

This shows tha t  the order of A*(Z) is --< 2. On the other hand  we have from 

(3.3) and (3.4) 

~ 1 3 ~ ~ 

[A*(Z)I _-< no(~) - -  I I ~ ( ~ ,  ) [~ - z ~(~,,) + II~,ll'~]~-= [ [ .  I I  = r ~  P~ 
i = 1  

Here we have 

P~ < exp I 
\ i = N +  1 

i : i  i=.N'- t-  1 

:< exp a~ ~+r~ al) ,2 
\ i = / V + I  i : ~ * +  1 / 
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whence, an arbitrarily small s being given, we can take N so large tha t  

) 
The number X being fixed, we can determine now a positive constant  6~- so 

large tha t  

On combining these results we see tha t  

b4*(z)l _-</)1. P.a = o [exp (~r~)], 

hence A*().) must  be of minimal type if it is of order 2. 

4. Integral Equations of Class L~. 

The method of infinite determinants  can be applied to advantage in solving 

the integral  equation 

(I) y(x) =f(x)  + J.K. y(x), 

where K(x, ~)c L.,, tha t  is the integral  

(L~) 

exists. Let  

I, b 

a 0 

~ ~ '  , ~' I ,  2 ~ . . . ,  

b 

--  &j, 

be an arbitrary o r t h o n o r m a l  a n d  c o m p l e t e  se t  of  f u n c t i o n s  f o r  t h e  in- 

t e r v a l  (a, b). We shall use the notat ion 

b b 

a 

to designate the Fourier  coefficients of an arbitrary function f(x) with respect 
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to the sets {~ , (x)}  and {~(x))} .  Then for an arbitrary pair of functions f(x), 
g (x)c  L_~ we have the Parseval identity 

We also set 

(4 '  I )  

b 

(.)~(.) dx = F , f .g ; .  
a ~ 1  

K' (x, g) --= K(g, ,); 

(4. 2) 

(4.3) 

]/~(x) ~ K .  ~,(x), k~(~)~- K'-~,(~);  

b b 

z~fiK)~• f f K(x,~)q~iIx)9~j(~)dxd~--(ki)~=-(k'j)i; 
a a 

(4.4) /ci(~) ~ ~,  • 

or 

(4. 5) ~',(z) ~ E ~ ~,j(,); 
j = l  

(4.6) 

Then a repeated 
linear equations 

K(x ,  ~) ~ ~,  ki(~)~i(x) ~ ~ ,  k'~(x)~i(~) ~~ ,  • 
i = l  i=1  i, j = l  

application of Parseval's identity reduces (I) to the system of 

( 4 . 7 )  y i  = ~  -~ ~ E x i j y j  ( i  = I ,  2 , . . . )  

j = l  

whose matrix (~;j)c52, since [Tamarkin, ,, p. ,38] 

(4. s) 

b b 

i , j = l  " " i = l a  a "= 

b b 

= f d~ f lK(x,~)i~dx=llKII ' 
a (/ 

The results of the previous Sections 2 and 3 are immediately applicable to the 
system (4.7) which, under the additional assumption f ( x ) c  L~, is equivalent to (I). 
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I f  ). is not  a C.V. of (I), the resolvant ~'~(x, ~; 2) of the kernel K(x ,  ~) is 

defined by 

K(x ,  ~)+~(x ,  ~; Z ) =  )~(K~)(x, ~; ) . )~-) .(KK)(x,  ~; ).). 

I t  is obtained from (I) by sett ing - - f ( x ) = K ( x ,  ~). After  a simple computation 

[Tamarkin, I, p. I4o] we get  

~(x, ~; ) . ) -  A~(x,  ~; Z; K)  
A.~(Z, K) (4.9) 

where 

(4. ~o) 

4-") 

and 

(4. , 2 )  

with 

(4. I3) 

A, . ( . ;  K)  ~ A.,(  ) det  ~, 

I 
- -  K ( x ,  ~) k '  1 (x)  ~ t ,  (x )  . . .  

- -  t $  �9 A~(x,~;~.;K)=Am(~,~;~) " - '  ' "  " - "  - " ' ~  " 

/~*(m) (1:~ - -  } -~*(,.) t - -  ) -.* (mi 

. {,,' Ix  0 ( K )  if  i =  [, 2, . . . ,  m ,  

zij . . . .  [ xS(K ) if i = , n +  I, ..; 

We shall omit  the 

Thus 

[ki(~) if i I, 2 , , . . ,  m, 

k*("') (~):- [k~(~) if i = m +  , , . . . ;  

,~ " d ~ . ( I - - Z x . ) ;  z~(K)  =-- z,,~ = e;'*~zo, i C j;  i --  .• = 

subscript or superscript m in our formulas in case m = o. 

- -  *V . @ 

A~(Z) ~ A~ (Z; K)------ A*(Z; K ) ~  A*(Z); 

Ag (x, ~ Z) -=- A~ (x, ~; Z; K ) =  A*(x,  ~; ).; K ) -  A*(x, ~; ).) 

I t  should be noted tha t  

(4. , 4 )  A~, (z)  = e x v  
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A~,(x, ~; ;~)= exp - - Z ~ z a  A*(x, ~; Z). 
i=1 / 

~3 

We are now prepared to prove the following 

Theorem 4. 1. I f  the kernel K(x,  ~)c Le, then with the notation above: 

i. The resoh, ant ~(x ,  ~; ~) of K (x ,  ~) is meromorphie in ~ for  almost all 

(x, ~) on a <= x; ~ <= b, and is given by 

(4. 16) K(x, ~; ~)= A=(x, ~; 1~; K ) A * ( x ,  ~; ~; K) 
A~(g; K)  A*()~; K) 

where the denominators as well as the numerators for almost all (x, ~) are entire 

functions in ).. 

i i .  The totality (g~(K)} of the C.V. of (I) coincides with the totality of the 

zeros of A*(g; K), and 

(4.17) ~ [,',(K)]-"~IIKII', 

each C.V. being repeated according to ,its multiplicity as a root of A*(g; K). 
i i i .  The 

infinite product 

entire function A*()~; K) is of genus i and is represented by the 

( (4-I8) A * ( Z ; K ) = H  I--~,. exp Z,, �9 

The order of A*(~; K) does not exceed 2, and i f  it equals 2, A (*; K) is of 

minimal type. 

iv. We have the estimates 

(4. I9) ~ ~ IA~(Z, K)I _-</Ira(r; K ) ~  U~(,') 

(4.20) 

where r :  ]~,[ and 

( 4 . 2 1 )  f / , n ( r ;  K)---~--- H I - -  
i=1 

[A~,~(x, ~; Z; K)I = / /m  (,'; K)(IK(x, g)[ + r Ve z(')Cx)~.(2)(g)}, 

1 1 

~(~.~,;) + ," Y, I~,A' ~ : ( " " )  ~ - ~ ~ (~ , , )  + ,"~ I~-ol ~ ~ 
j = l  1 i=m+l  j = l  
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r 2[ 
< (, +dIKII )  '~ exp ! 2  2 ;  ~.~]zo[ , 

b b 

: (i + ,-] [ K[ [),, exp [': [f,.'(x. 
a cl i = l  

b b 

( l  f l  

P r o o f .  S ta tement  i. follows from (4.9) and lemmu 3.7". 

can be proved by a simple limiting process. Let  

x ~ , ~ , . ,  zl:'), Iz(:')i = ~?), ,?~ _-< ~~")<=<=~~:~), 

be the roots of the n-th segment A*("i(X) of A*(X;K). 

A*i')(X) : det  (6 , j - -  Xzb), 

it is readily seen that  

2; [x~,,]-,: 2;  ~,,, 
�9 '~1 i=1 

A*(")(X) exp X~x, . ,  I I  
i=1 -- 

? l  

= H  I 

Sta tement  ii. ~ 

Since 

i , j =  I, 2, . . . ,  ~ ,  

From the uniform convergence of A*(')(X) to A*(X; K)  on any finite domain of the 

k-plane it follows that  for a fixed 

(4" 22) X~ n)--~xr aS 95---> oO. 

I t  was proved by Schur with the aid of simple algebraic considerations that  

[,?~]-2 __< 2; i~,:jl ~ 
'r---1 i , j = l  

I This  is the classical theorem of Schur-Carleman referred to in I . I .  
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[ I ,  p .  492]. Hence, by (4.22), 

N 

�9 : 1  i , j : l  

for ~11 values of the integer N, which proves (4.17). This result combined with 

lemma 3.8 shows tha t  the order of A*()~; K ) d o e s  not  exceed 2 [Valiron, 3, 

p. 24]. We have then the product representation 

) A*(Z; K ) =  exp ( a + f i X + r Z  ~) , - - ~ ,  )" exp �9 

Here a = o since A*(o; K)  = I. To determine 7 w e  observe that ,  by a familiar  

result  of LI~DELSr [I, p. II], for infinitely many values of r--~ r162 

(:)! vii1 I - -  ~ exp > exp (-- st2), s ~ o. 

This is compatible with lemma 3.8 only when 7 = o. Finally since 

X A , ( z ;  K) = lira AA*(,"(Z)~ o = O ,  
d~ ~= ~ ~ |  d~ '= 

we have f l : o .  

observe tha t  

Sta tement  iii. therefore is proved. ~ To prove s ta tement  iv. we 

(4.23) ~ Iki(~)l~= [x(~)(5)] ~, ~ I~'~ (x)p = [~.(" (x)l", 
i = l  i=1  

and 

(4- 24) 

b b 

. f F, I~iJ(~)l '~= ~ ,(~)l~d~= d k,(~)l ~ 
i = m + l j ~ l  i = m + l  a a i = m + l  

b b 

= ~ IK(x, ~)l~tx - E l  ' 
o a i ~ l  

while, by Schwarz's inequality, 

Cf. an  a n a l o g o u s  a r g u m e n t  of C a r l e m a n  [5, PP- 2 1 6 - - 2 1 7 ;  2i. 

4 - -31104 .  Acta  mathemat ica .  57. I m p r i m 4  le 29 avr i l  1931. 
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so that 

b b 

a f~ 

K(x. I --<llKII, 

0 ~ I - -  2 .~l(~Zii) + r 2 Z [ 7 - 0 1  ~ :~  I + 2 , l I K l l + , ~ l I K I I  ~ =  ( i  + , . l I K I I )  ~ 

j = l  

I t  remains only to apply lemmas 3.4  and 3.5. 

If  we assume Carleman's results [5], the identity of our determinant A*(~; K) 

with the Fredholm modified determinant d~-(~) follows at once from the infinite 

product representation (4, I8). This identity can also be established directly 

since it is readily proved that A'*(~; K ) a n d  d~-(;~)are h o l o m o r p h i c  f u n c t i o n s  

of  t h e  e l e m e n t s  z o in t h e  H i l b e r t  space  ~ [in the  s ense  of  GXTEAUX, I], 

and that they coincide whenever the number of the elements zo distinct from 

zero is finite. 

I f  the matrix (z(~)c)'2 we shall say that the ker~wl K(x ,  ~)cL'~. In this 

case the series zF.,I eo,werges and we can re2)lace the determina,~ts A*0.; K) aml 

A*(x, ~; ).; K) by the determina~ds 

and 

AO.; K) --= det (d0--).z~j) 

A ;.; K) 

( i , j =  ~, 2 , . . . ) ,  

- K(x, k'l(X) . .. 

)JCl(~) I - -  ) .Z l l  - -  ),X,2 . . . 

) , k2 (g )  - -  )'Z21 I --)~X:t ,  2 . . . 

respectively. The identity of the determinants A().; K) and d~-(~) (classical Fred- 

holm determinant) has been established under certain restrictive assumptions 

[Marry, I; Mollerup, ~, 2]. I t  should be observed that while A(~; K) remains 

unchanged if the values of K(x,  ~) are modified on an arbitrary set of super- 

ficial measure zero, such a modification will affect in general the value of dK(~) 

(cf. Section I. I above). Hence in general the determinants A(2; K) and dA-()~), 

even when they both exist, are not equal? However, it can be proved that 

i F o r  i n s t a n c e ,  i l l  t h e  case  of t h e  V o l t e r r a  k e r n e l  K ( x ,  ~) = I or o a c c o r d i n g  a t  x > ~ or  

x < ~ ,  i t  i s  r e a d i l y  found  t h a t  d A ' ) . ) =  e--i- w h i l e  .4 ) . ;  K ) =  A*().; K ) ' =  I ;  h e r e  a = o, b = I. 
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A (4; K) d~(~) 

27 

p r o v i d e d  (i) t he  set  {~(x)} is u n i f o r m l y  b o u n d e d ,  (ii) t h e  m a t r i x  (zq)c~'~. 
b 

f and  (iii) t h e  eondi tAon K ( x ,  x) d x  = ~_~ z .  is satAsfied. 
a i = 1  

The following theorem gives a basis for an estimate of the growth of the 

C.V. of a kernel H ( x ,  ~) obtained from K ( x ,  ~) by adding a kernel of finite rank. 

Theorem 4.2. I f  K ( x ,  ~) and the funct ions ui(x), v~(~)~L.,, i = , ,  2, . . . ,  q, 

then the resolvant ~ (x, ~; 4) of  the kernel 

q 
(4. :5) H(z ,  ~) = K( . ,  ~) + s,,(., ~), s~(x, g) = y ,  u~(x)~ (g), 

i ~ l  

can be represented by 

(4. ~6) 
B,~(x, r 4) 

where Bm(4) and B, , (x ,  ~; 4 ) f o r  almost all (x, ~) are entire funct ions in )~, and 

(4.27) 
q 

IBm(Z)[ ~ q~[H,,+-; K)] q+l [I + r U V(I + rllKll+l/-~,"~llKll:)]q, 

where 

(4. ~s) 
b b 

a a 

P r o o f .  If  ~(x ,  ~; 4) is the resolvant of K ( x ,  g), it is readily found [cf. 

~BATEMAN, I] that 

(x, ~; z)= 

(~C, ~ ; ,~) 01 (X) . . .  ~q(X)  

E2,(~) I --;~bll �9 . .  - -  4b~q 

E~q(~) --  Zb,;~ . . . I s 

I - -~b l l  --Lbj~. . .  --Zblq [ 
! 

__~ b21. I~.b27 ".' ". I.--~blq[, 

--4b,11 --4bq2 . . . i -  ,~bqq I 

where 
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b b 

a fl 

o, (x) = ,,.;(~) - ~.s~.,,,(x); o_,(~) = , , ; (~ ) -  a.r <;). 

On substituting here the expression (4. I6) for ~+(x, ~; ).)and multiplying the 

numerator and denominator by A ~ ( ) . ;  K )  we get a result of type (4. 26) with 

B. , (Z)  = A,*,, (Z; K) det (co), i ,  j = I, 2 . . . .  , q; 

b 

A,.[)., K) v~(x)uj(x) dx 
a 

b b 

ff - J. v,(,)A,,,(,, g; z; K ) +  (g) d:,~ d~. 

(1 (g 

From (4-20) it follows by Sehwarz's inequality that 

b b 

a a 

b b b b 

<= ...+; K> If f,<., K +, ~, ~, + ,  ~x ~e + ,~v.. f ,.~(.),+l~ +~xf , u.+,+,+ ~e 1 
~'I (/ el a 

/I,gr; K)[U VIIKII + V ~ , - u  VIIKII=], 

and also 
b 

[f vi+ + x I 
a 

<=uv, 

whence for the elements of the determinant det (co) we have by (4-I9) 

I~d ~ ~,,,(,'; K ) [ ,  + , . u  v + r + - u  VIIKll + v%,: UVIIKII:]. 

Formula (4: 27) is now obtained by the Hadamard determinant theorem. 
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5. Semi-definite Hermftian Kernels of  Class L'~. 

A kernel K(x, ~) is H e r m i t i a n  if 

K' (x, ~) --= K (i, x) = K(~,  ~), 

and s e m i - d e f i n i t e  (positive or  negative) if the corresponding Hermit ian  integral  

form 
b b 

o r  

(/ a 

The following theorem is important  for our proof of Lalesco's theorem on com- 

posite kernels and may be interest ing in itself. 

Theorem 5.1.  
i. The series 

I f  K(x ,  ~) is a Hermitian semi-definite kernel ~L '~  then." 

oo 

(5  ~) ~ I,-~(K)]-I 
v : l  

converges. 

ii. 

(5.2) 

The determinant A (~; K) is represented by 

~ ( ~ ; K ) = I I  ~ -  , 

and is an entire function in )~ of genus zero and of order <= I. A ().; K) is of 

the first class [Valiron, I, p. 258 ] i f  it is of order I, hence of minimal type. 

P r o o f .  Wi thou t  loss of generality we may assume tha t  K(x ,  ~) is semi- 

definite positive. Then all the coefficients 

b 

~.(K) = f ~i(x) K . 
a 

~i(x) dx >= o, 

and all the C.V. i ( K ) >  o. Further ,  the matr ix (zi j(K))= (zj i(K))is  t termit ian.  

From the formulas 
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b 

f ,,Ix) K u(x) 
a 

b 

! d dx  : ~, ~ij ?li llj ,  t(,~, : .  
i , j : l  a 

it  also follows tha t  the matr ix (• is semi-definite positive as well as all 

its segments 

(Y.l.~)) ~ -  ( z i j ( K ) ) ;  i , j - -  I ,  2 ,  . . . ,  N .  

This implies tha t  the C.V. Z('*) of all these segments are > o. Since 

and, for a fixed N, 

7l 7~ 

it  is obvious tha t  the series (5-I) converges and its sum is ~ ZZii .  We 
i = 1  

shall prove tha t  
ae ~: 

(5.3) ~ [r~(K)] -1 - ~,  za (K). 
v = l  i = 1  

In  order to do this we observe tha t  each member of (5. 3 ) r ema ins  invariant  

under  any unitary t ransformat ion of the matr ix  (• But  if this matr ix be re- 

duced to diagonal form (• z ' , j = o  if i ~ j ,  we have 

[),v (g)] -1 = [r, (K)] -1 = z'.,., 

so tha t  (5. 3) holds for this particular choice of the matrix (z0). 

always true. 

We then have by formula (3.6) 

Hence (5. 3) is 

A ( 4 ; K ) = e x p  - - ~  xii i - -  exp = i -  , 
i : 1  J : "=  

whence s ta tement  ii. follows at  once [Valiron, 2, pp. 59--6oi. 
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6. Composite Kernels. 

By a c o m p o s i t e  k e r n e l  ~L~  we mean a kernel of the type 

K (x, ~) ~- (K~ K~) (x, ~), K~, K 2 ~ L_~. 

The method of infinite determinants is particularly well fitted for the investiga- 

tion of the growth of the C.V. of such kernels. In this section we give a 

proof of Lalesco's 

Theorem 6.1. 

i. The series 

(6. i.) 

convelyes. 

ii. The 

I f  K (x, ~) is a composite kernel ~ L~, the,n." 

o v  

[,., (K)]-' 

determinant A(~; K)  is identical with the Fredholm determinant 

dx(~), and possesses all the properties mentioned in theorem 5. z. 

A rigorous proof of this theorem is due to S. Gheorghiu [4, PP. 35--36] 

under the restrictive assumption that at least one of the integrals (for each i) 

b b 

a 

is bounded on (a, b). This assumption figures in the proof of Gheorghiu's lem- 

mas (A), (C) and (D). While the proof of lemmas (C)and (D)can be extended to 

the general case of our theorem 5. I, the proof of lemma (A) is essentially based 

upon the above assumption. I t  happens, however, that this lemma (A) is a 

special case of our theorem 5. I which, therefore, provides a foundation for the 

proof of theorem 6. I in its full generality. The proof that we give here is adapted 

to the method of infinite determinants. We might refer for some parts of the 

proof directly to Gheorghiu's paper. We prefer, however, to give a complete 

development for the reader's convenience since Gheorghiu's paper was published 

separately in the form of a Thesis, and is not easily accessible. 

We shall need several lemmas and a convenient notation. We denote by 

- =  ( l i l ) ) ,  - =  ( K , , ) ) ,  . . . ,  
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(6. ~) 

We set 

the matrices (x;j) corresponding to the kernels / ~ ,  / x ~ , . . . .  The coefficient 

of (_~)n in the power series expansion of A (~; K) will be denoted by a, ~an(K) 
so tha t  

A ().; K) = 5', , , , ( -  ~),, = ~ ~,~ (K) ( - ~),,. 
? 1 = 0  ? 1 ~ 0  

(6.3) ~tp;} (K) ~ ~("',~ -= 

Finally, the symbols 

~.;,.~., ( K ) . . .  ~ ; . .  (K) 

~,,,j, (K) . . .  ~,,,j,(K) 

Z - Z ,  Z - = Z ,  
(i : n) (i) ti, i : n) (i, J2' 

will be used to designate the summations 

Z 
i l ,  . . . ,  i n = l  

With  this notat ion we have 

Z } �9 . . 

i~, . . , i n , J ~  . . . .  , J n = l  

Lemma 6.1.  I f  K(x, ~) c L'.~, then 

(6.4) 

[F. Riesz, i, p. 34]. 

~, (K) = ( F, ~+;.'p (K). 
1~ ! (i: n} 

Lemma 6. 2. 

kernel 

(6. 5) 

I f  the kernels K I ( X  I ~) a,~d K.=,(x, ~)cL2, then the composite 

K(x, ~) = (K 1 h~) (x, ~) c L'~, 

and the determinant A (~; K) exists, the coefficients a,,(K) being given by 

I {6.6) ~,(K) - -  (,!)~ 2 ~i. '~)(a;)~'p (G) .  
( i , / :  ~) 
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More generally, i f  

(6.7) K(x, ~ ) :  (h~hS. . .  K.~)(x, ~); K~, K . , , . . . ,  h ~ c L ~ ,  

the~z A (s K) exists, and 

_ _  I 

(6.8) an(K) (n!) ~ ~ jI.n~o(K~) ji?,! 
(i~, .. .,i s:n) " 2~3 

P r o o f .  By Parseval's identity 

o o  

~(K) = F, ~- (K,) ~(K.~), (~:~ (K))=(~I~)(~I~), 

( ~ )  ~I'2~(K~) 

whence, 

33 

by lemma 3. *, (z,~(K))~9' ~ and K(x, g)~L'~. Formulu (6. 6) is proved 

by an argument familiar in the theory of determinants. Formula (6.8) follows 

from a repeated upplication of (6.6)? 

We introduce now two kernels N(~)(K), N('2)(K) related to K and defined by 

(6.9) 2~(1)(K) ~ ( K K ' ) ( x ,  ~), N(2)(K)~(K ' K ) ( x ,  ~). 

We shall designate N(a)(K) and N(2)(K) respectively as t h e  f i r s t  a n d  t h e  

s e c o n d  n o r m s  of K. e When K(x,  ~) is Hermitian its norms coincide and 

reduce to the iterated kernel K(2)(x, ~) which, therefore, may be termed t h e  

n o r m  of K. 

Lemma 6.3. The norms of a kernel K(x, ~)~ L~ are Hermitian semi.definite 
positive kernels ~L'2. The determinants A()~; N ( 1 ) ( K ) )  and A(Z;N(2)(K)) are 
identical and 

(6. io) 
_ _  I an(N(1)(K)) = a. (N(2)(K)) (n!) 2 ~ [ ~ ) ( K ) l  ~ ~ o. 

(i,j:~) 

* Carleman [5, P. 213] gives formulas  which  are analogous to (6.6), (6. 8) for the  Fredholm 
de te rminants .  For  the  sake of completeness  we may  ment ion  also the  formula  

A(). ;  K 0) = A(Z;  K, )  A(Z;  K2), Ko =-- K~ +I;2 --)~K1K2, 

which  holds  whenever  K1, K 2 c L ' :  [Fredholm I, pp. 381--383] and is a direct  consequence of 
the  rule  of mul t ip l ica t ion  of de te rminants .  

2 The kernels  N(1)(K), N(21(K) play  an i m p o r t a n t  r61e in E. Schmid t ' s  theory  of the  
~,adjoint fundamen ta l  functions* of an unsymmet r i c  kernel  K(x ,  ~.) [I, p. 4611. Tha t  is why  these  
kernels  are des ignated by  Gheorghiu  and some other  authors  as t he  Schmid t  kernels  of K.  Our 
te rminology  is analogous to t ha t  used in the  theory  of bi l inear  forms in inf ini te ly  many variables.  

5 -  31104. Acta mathematica. 57. Imprirn6 le 30 avril 1931. 
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P r o o f .  The kernel N(~)(K) 

semi-definite positive since 

is Hermitian since ( K K ' ) ' = K K ' .  I t  is 

b b b 

C1 (l r 

u K ' .  udx>=o. 

N(~)(K)cL'~ by lemma 6.2. A similar proof holds for N(2)(K). 

a,~(N(~)(K)) we apply lemma 6.2 again and observe that 

(6. ~i) ~,:;(K') = ~j , (K),  ~I ' : ) (K')  = ~ '~ ) (K) .  
3 

Lemma 6.4.  For a composite kernel c L~, 

K (x, g) = (h~ h~) (x, g); K, ,  g~ = L,~, 
we have 

(6. ~2) 

To compute 

A (X; N (~)(K)) = A ().; K, K% K'2 K'~) = A (~; K'a/~71 K2 K t2). 

We also need some facts from the theory of entire functions, which we 

collect in 

L e m m a  6.5.  Let f(z)  be an entire function whose zeros, repeated with their 

multiplicities, are 

z ,  z2 . . . .  , z , . ,  . . . ;  [z,,[ = r , ;  o < q _ _ < r ~ = <  . . .  < r ~ = <  �9 

Let n(r) be the number of the r,,'s with r,,< r, and 

M ( r )  ~ M ( r ;  f )  = m a x  If(,~)l, 
Izl=r 

2 ~  

(6 v(,)=_ v(,.; f)= L f o= If(,'e'~)l dW 
0 

We have then: 

_-< log M(,-; f )  

s = 4 ,  K.~-- K'~, K ~ =  K'I .  

P r o o f .  Since the result of the summation in (6.8) is invariant under any 

cyclic permutation of indices (il, i 2 , . . . ,  is) it is seen that A (~; K 1 K 2 . . .  K.~) will 

not change under any cyclic permutation of the components Ks, K ~ , . . . ,  K,. 

Now it remains only to put 
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i. The convergence of the integral 

(6. I4) f ~ d r  

0 

(~: > O) 

is necessary and sufficient for  the convergence of the series 

oo 

(6.,5) Z r-:~. 
' 1 '~1  

ii. I f  , is any number ~ o and ro > O, then 

(6. I6) 

r ~" 

l n ( ; ' )  V( , ' )  V ( r ~  + T ~I  ,.l+'t" 

~'o 7'o 

dr. 

iii. The integral (6. I6) converges whenever the integral 

(6.~7) j rl+~ dr (~>o) 
ro 

does so. 

iv. I f  the order q of f (z )  is not an integer, then the convergence of (6.15) 

for �9 = ~ is necessary and sufficient for the convergence @(6. I7) for ~ =  Q: Or, in 

Valiron's te~minology, i f  f (z)  is of non-integral order, a nece~'sary and sufficient 

condition that f (z )  be of the first class is that f (z)  shall be of the inferior class 

[Valiron, I, pp. 258--265]. 

I t  is convenient  to write 

~ ( r ;  K)--= m ~  IA(~; K)I,  

and to use the abbreviated notat ion 

NJ i) ~ NJ i) (x, ~) =-- N (~)(Kj); i, j = I, 2. 

We  prove now the following lemmas: 

Lemma 6.6.  For a composite kernel 

K (x, ~) = (I<1K~) (x, ~); K,, K~ = L~, 
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we have 1 

(6. I 8) 

(6. ~9) 

P r o o f .  

quality. 

Einar Hille and J. D. Tamarkin. 

1 1 

I~n(K)l ~ [~;,~.(~I1))] 2 [fzn(IV~l))] ~-, 

1 1 

M(r;  K)<= [M(,'; Ni'))] i [M(r; ~-V~I))] ~. 

Formula  (6. 18) follows from lemmas 6.2, 6 .3  and Cauchy's  ine- 

To prove (6. I9) we use the inequalities 

M(r; K) -< . ~  I~,,(K)I r" ~ ~,  [.,,(NI!)),-,,]~-[gn (~r~ 1)) r'l'] 2 

1 1 

=< [M(r; Ni'))]; [M(r;  N~'))] ~. 

Lemma  6. 7. I f  K(x ,  ~) ~ L~ then 

(6.20) M (r; K (2/) ~ M (r; N(')(K)); g (2) (x, ~) = (KK) (x, ~). 

P r o o f .  This is merely a special case of lemma 6 .6  with K~ 

P r o o f  of  T h e o r e m  6. I. By lemmas 6. 7 and 6 .4  

(6.2~) :IL(,.; K~))_-< M(,.; N( ' ) (K))= :1/(,.; ~V!~-~ 2V~)). 

The kernels ' ' ~(~'~ N~ 2~, ,.~ are Hermit ian  semi-definite positive by lemma 6.3. 

by lemma 6. 6, 

1 1 
(6. 22) M( r ;  N~ ~) Ni  xi) ~ [~/(r; N~ 2) _y!2:,)]~.-[M(r; N~ ~) Ni~))] ~. 

=K~=K. 

Hence,  

Since NI 2), 2r ~ ~ L'2 by Iemma 6. 2, all the conditions of ~heorem 5. I are satis- 

fied, and the series (with positive ~erms) 

E [Zv (~12))] - 1, E [~v (A~V~I))] - 1  

converge. I t  is well known, however, tha t  

x From this point oll our proof is merely an adaptation of that of Gheorghiu, with non- 
essential modifications. 
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Hence  the series 
a, 1 

converges which shows that  A()~; N~ 2) NI 2)) is not  only of order _--< I ,  but, in 
2 

addition, of the first class if it is of order L .  By lemma 6.5,  iv., the integral  
2 

f l o g  M(r; N?)N!~)) dr,  
1 +  

ro I'  2 

P o ~ O ,  

converges. The same conclusion holds for the integral  

ov 

f l o g  M ( r ;  1 ~ 1 ) . ~ 1 ) ) d ' "  

1 + 1  ! 

r 0 r 2 

and, by (5.22), (6. 2I), for the integrals 

o~ o~ 

f l~ fl-('-:~-~-!~-N~l) d,- f log M(,'; K (2i) dr 
J ~§ , J .... 1~1_  �9 
ro r 2 2 r0 r 

Lemma 6. 5 shows then tha t  A0.; K (2)) is of order _--<I-and of the inferior, 
2 

I 
hence of the first class, whenever  it is of order "-. Since 

2 

{ ~  (K(2))} ---- ([~,(K)]2}, 

this implies the convergence of the series 

[r~ (K(2))] 2 : ~ ,  [r~ (K)] -1. 
v = l  v = l  

Statement  i. of theorem 6. I is thus established. S ta tement  ii. now becomes 

obvious. 

o i ~  

dition : 

7. Kernels  of Class (fl, q). 

In  this section we deal with kernels tha t  satisfy the following con- 
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For a given pair  of  numbers (fl, q) where ~ > o and q > 2 there exists an 

integer m o ~ o such that the series 

(~, q) ~ ~ ik,,(f)l . ~_ o.(f) 
~,=mo+l 

converges for  almost all ~ on (a, b), and its sum ~7(~) is i~tegrable. 

Theorem 7.1.  I f  the kernel K (x, ~)c  L2 and at the same time K (x, ~)~ (fl, q), then 

_ _  , 3 + 1  

(7. I) , ' , , (g),n q --~or 

P r o o f .  To abbrevia te  we shall  write k, instead of k,(~). W e  shall  use 

the let ters  e for  an a rb i t ra r i ly  small  fixed posit ive quant i ty ,  not  necessari ly the 

same in all the formulas ,  and  m for  a fixed posit ive in teger  which can be t aken  

arb i t ra r i ly  large.  The  le t ter  C will be used-as  a generic  no ta t ion  for  a posit ive 

cons tan t  which does not  depend on ~ and  m. 

Since all the te rms  of the series 

Lebesgue ' s  t heorem will show tha t  

b 

- i  (7. ~) ] ,,,~ Ik,,I . d~ 
~'~#/? o -I- 1 a 

(fl, q) are ~ o an easy appl ica t ion of 

b 

= f ~ (!) d~ = .%. 
(! 

The in teger  mo in (fl, q) can be chosen so large t ha t  ~ 

(7.3) = f i  
r=mo+ 1 a 

< ~ .  

Then  for  any  n > m o and n < n ' ~  or 

(7.4) 
b b 

It t * ?l I ; 

J 
v ~ n + l  a v : n + l  a 

I k, I" d~ < ~.-,~ 

(7.5) 

By theorem 4. I the  C.V. ~ ~ * ~" ~).~(K)I are zeros of A,,(^, K)  where 

A ~ I ,I(Z; K)i _--< / / , .  (r; K) 
b b 

f i [  f ,  ]1 l ~ f  I - -  2 ~ (~Zi i )  + r ~2 k i [  ~ dg ~ e x p  

i=1 a i--m+ 1 a 

[k~l ~ d~]" 
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W e  assume re>n*0 and give first an estimate for  the second factor  

2 
r , k~] ~ d ~  �9 P o =  exp 2 

L / = m + l  a 

Since for  u ~ o 

(7.5) 

we have 

e~*~ C exp (uV), p => I, 

b q 

1 P o < C  exp 2 2rq kil2d~ . 
[ i = m + l  

By HSlder 's  inequal i ty  

(7.7) 

whence 

and, by (7.4), 

We proceed 

Here  we can wri te  

39 

b q b 

(t (t 

b 

Po < Cexp Cr" ~ Ik,[qd~ , 
/='o~+ 1 

P0 < exp (~rqm-13). 

now to the first factor  of the r ight-hand member  of (7.5). 

n . i i  =plp . 
i=1  /=1 *'=too+ 1 

As in the proof  of theorem 4. I we have 

P I  < ( I  +rllKH)m~ exp (r~). 

To estimate P~ we observe tha t  for  a fixed a, o < a < I, and u ~ o ,  

(7" 8) I + u < C exp (ua). 

Hence,  if ~ is a number  analogous to a, we have 
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so ~ha$ 

(7.9) 

b b 

I - -2~(~ .x i i )+  r'-'fl]6']~d~_~< (I + 2F]x/f])(I + r2f]k;F-d~) 
ft f! 

b 

a 

b 

P ~ ( / e x p  2"," zii] ~ exp l r ~ Z  ~ 
. i = m o + l  . ]  It_ i = m o - ~  1 a 

Now, again by HSlder's inequality, 

b b 

Ik ,  J~'dg -= �9 " , , -~ I~,.I-'a 
v ~  1 't'~mO+ 1 a 

~. - -0 '0+1 [ v = - m o + l  [ ICY I '  ~q/2-  ~ 

and, if we choose �9 subject to the condition 2*(fl ~, I )<q ,  we have 

,,, _ 2:*]1_E 
v ~-2.( q_--< Cm 

2,J]~ + 2 ~ - - q  

Hence, by (7.3), (7.7) and (7.9), 

2 f l v + 2 ~ - - q  I 

To estimate P'~ we observe that  

b b 

fl a 

whence it follows by a repeated application of HSider's inequality, 
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b 1 b q - - I  
q __q 

b 1 q--2 b 1 b 1 
q 2q 

'v= ~;'o + 1 'v ~'m,o + 1 ['v =;'~o + 1 j *' 

fl(~ + a--q 

< 8 .7 ,  q , ( ~ ( / ~ +  I )  < q .  

This shows tha t  
~ o + o _ q l  

P'2 < exp e,r ~ m (~ j . 

i f  we take  for  s implici ty a = 2 ~ and write 

we get  

(7 

M(r) = max I A,~, ()~; K ) ,  
lal =r  

log M(r)  _--<log H,,, (r; K)  < r ~ + ,  {rq m - ~  + ,'" m ~ j"  
~(~ + o--q I 

W e  can apply  now l emma 6. 5. Since A,,(o; K ) :  I the lower l imit  of 

in tegra t ion  r 0 can be t aken  so small  tha t  V ( r o ) ~ o .  F rom ii. of l emma 6.5  

(with ~ = o) it  follows tha t  

(7' II) 

gO 

where n ( r ) i s  the  num ber  of the C.V. ) ~ , ( K ) i n  the  in ter ior  of the circle F I - - r .  

So fa r  the in teger  m was arb i t rary ,  r e s t r i c t e d  only by m > m  0. For  a fixed 

r we can use this fac t  in order  to obta in  as low es t imate  in (7. IO) as possible. 

The simplest  way of doing so is to make  the contr ibut ions  of the  two te rms  in 

the brackets  in (7. IO) approx imate ly  equal, which leads to the choice 

m ~ ~ 

6 - - 3 1 1 0 4 .  Acta mathematica. 57. I m p r i m 6  le 30 av r i l  1931. 
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and, after a simple computation, to the estimate 
q 

(7 .  I 2 )  log M(,') __--< log //re (r ; K) < ,r3+'. 

I t  follows directly from (7. I I) or by other methods familiar in the theory of 

entire functions [LindelSf, I, p. 2I; Valiron, 2, pp. 67--7 I] that  

q 

n (r )  < ,~ r, TM, 

which is equivalent to (7. I). 

For our subsequent discussion we shall need the following 

Lemma 7. 1. The kernel K(x, ~)=L~ i f  the series 

(7. I3) 

converges, and 

(7. I4) 

b 

~ D ~ ,  f l>o ,  q=>2, 

2(/5'+ I ) > q .  

P r o o f .  An easy application of HSlder's inequality and formula (7.7)gives 

[i Y, Ik.l"~l.~--< ( . ' - - . ) ~ ,  [ I,~.,1' d.~ 
v = n + l  a ~ 1 a 

q--2 q--2 ~'~' 

_<-- (,,' - -  , , ) ~ -  (b - -  a)  '~ =~+ [ k~ [q d q 
['V 1 

= c ( . ' - . )  ,, Ik~l ~ d~ q. 
( , v - -n+  1 

[Cf. Sz~sz, 4, P. 533]. On setting here in succession 

n ~ O ,  '1'~"~ I ;  ~ ~ 2 if ,  D P =  2 i f+ l ,  t r i O ,  I ,  . . . ,  

and using the inequality 

b 

y, k.,l',d~ 
r  n +  1 a 

b 

= ~ <  
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together with (7. 14), we establish the convergence of the series 

b 

y~ Ik,,l 'd~ = ~.~. 
v=l a 

Thus the sequence 

.f,,(z) = ~ ,  ik~(~)l ~, 

is monotone increasing and such that  

b 

f f~(i) dg 
a 

<= -("2'2. 

n ~ - I ~  2~ . . .  

43 

I t  follows by Fatou's theorem that  its limiting function 

b 

f Ik,(~)l~= ]K(x, ~)]~dx 
�9 =1 a 

is integrable, whence K ( x ,  ~) c L 2. 

7.2. Theorem 7. I admits of an  important application to the kernels which 

possess derivatives (of integral or ~>fractional,~ orders). Before proceeding to 

this application we shall recall some facts of the theory of differentiation and 

integration of fractional order. Following H. Weyl [3, PP. 296--3o2] we in- 

troduce the function We(x) whose trigonometric Fourier coefficients are 

nice 
Co=O, c,=r(~)e 2 ~-~, c-,=~,., v = i ,  2 , . . . .  

For our purposes we need only the case o ~ a ~ i .  The function T.(x) is uni- 

quely defined on (o, 2 z) and can be extended periodically outside (o, 2 z) by 

I t  is readily seen that  on (d, 2 ~) 

2 / 2 (x + ~  7~7~,) a - l -  ~ (2 Tg)a-lTl~ a , o < ( L < , ,  

~V~(x)-- I - L,=o 

( T g - - X ~  ~ I .  
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Hence  W~(x) is continuous for x ~  2 f z ,  while at x = o 

[ z z x ~ - l + t p , ( x )  for x > o ,  

~o(x) = J[~o(x) for x < o, 
(o<c~< , )  

where ~p,~(x)is continuous (in fact, analytic) at  x = o. 

Let  f(x)  be any periodic function of period z z in tegmble  over (o, 2 z). 

Wey l  defines as the a - f o l d  i n t e g r a l  of f(x) the following operation 1 

2,x 

i f ,  (7" I~ )  f a ( X ) -  2 ~-F(Ct) (t) t P a ( X - - t ) d t "  

o 

Lemma 7. 2. I f  f (x) is any integrable periodic fu~wtion, the~: 

i. The fit~wtion f~(x) is integrable a~d periodic. I f  t ~f~j is the set of ~burier 

coefficients of f(x) ,  the set of  Tburie~" coefficie~ts o f f , ( x )  is given by 

I ~f (t -- ,)  - - ~  

f , e  " y , Y - - I ,  2~ . . . ,  

(7. I6) ( . f , ) , _ f i e ,  _ .  "~" 
F ( a )  ].f, e (__ ~ ) - - a  ~ = __ I ,  2, �9 �9 �9 ) 

I 
( 0 , v ~ O .  

ii. I f  f (x) has the mean value zero over a period, 

(7" 17) I f(x)  dx = o, 
J 
0 

the @eration f , (x)  reduces to 

o I f  (7- i8) I : f ( x )  = r(a) f ( t )  (x - -  t) a-1 dt  

when o < c~ < ~, and to a primitive functio~ of f (x)  when a -- I, the infinite inte- 

gral in (7. I8) being an improper Lebesgue integral. 2 

1 W e y l  cons iders  only  t he  case of a con t i nuous  f ( x ) .  
grable  f ( x ) .  

" / 
~ T h i s  m e a n s  t h a t  f = lira . 

We  ex t end  h is  r e su l t s  to a n y  inte-  
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P r o o f .  The fgct tha t  f~(x) is integrable follows from ~ known theorem 

of Young [I]. Furthermore,  on interchanging the order of integrations and 

using the periodicity property of the functions concerned, we have 

2 ~  

1 f dxe_i,, x 
o 0 

2~z 2 ~  

_ i I f e_ i , . s f (8  ) d 8  217g f e -i<x-'~) T a ( x - - s ) d x - -  fi' c, 

0 o 

which proves s tatement  i. When  c~ = I, s ta tement  ii. follows immediately from 

x 2z  

A ( * )  = ~ - ~ + , ) f ( , ) d ,  - -  ~ - .  + , ) / ( . ) d .  

0 x 

and (7. I7). In  the case 

where [Hardy-Littlewood, 

theorem, 

f~ (x) - -  2 z I ' (a)  f (s)  W~ (x --  s) 
- - 2 n + x  

o < a < ~  we observe tha t  I~. f(x)  exists almost every- 

z, pp. 566--567]. On the other hand, by Lebesgue's 

ds 

~u 

iaifs/ ] = I ' I  8) d8 lin}_ (x @ 2 9~'~'.-- 8) a - I -  L (2 Jr') '~-1 j•a 

= lim ~; s) ds x + 2 ~v lim s) (x--s)  ~-~ ds.  
- -2z+gd v=0  - - 2 n z + x  

7.3. Throughout  the remaining part  of this section as well as in sections 

8 and 9 we shall use for our fundamenta l  orthonormal complete set {~,(x)} the 

set of functions 

e i ~ ' x ,  ~ - -  . . .~ - - 2 ,  - - I ,  o ,  I ,  2 i . . .," 

and the fundamenta l  interval will always be (o, 2 z). The fact tha t  for this set 

the subscript v ranges over ( - - ~ ,  ~ )  rather  than  over (I, ~)  will not  cause any 

trouble and it is hardly necessary to restate theorem 7. I for such sets [T,(x)). 



46 Einar  Hil le  and  J. D. Tamark in .  

W e  n o w  i n t r o d u c e  a n e w  class  of  ke rne l s ,  w h i c h  is de f ined  as  f o l l o w s :  

A kernel K(x ,  ~)~(s, a, p~, P2), where s is any integer >=o; a,p~, P2 are any 

real numbers such that o < a N I and Pl, P2 > I, if, as a function of x, K(x ,  ~) 

possess for almost all ~ the partial derivatives 

I)~ K(x ,  ~), . . . ,  D*z K(x ,  ~), 

and, in case s > o, the functions 

D ; K ( x , ~ ) , v = o ,  1 , . . . , s - - I ;  D~ 

are continuous in x on o <= x <= 2 z  jbr almost all ~, while D~K(x ,  ~) can be re- 

presented in the form 

I 2 ~ F ( a i  f G(t, ~ ) T ~ ( x - - t ) d t  == G~(x, ~), a < I, 

(7" 19) D~ K(x ,  ~)= ~ o 

f G(t, ~)dt+C(~),  . ~. 

0 

the function G (x, ~) being such that the integral 

(7-20) 

exists. 

T h e o r e m  7 . 2 .  

I <p<= 2, then ~ 

2 ~  2 ~  

0 0 

d~ 

I f  K ( x ,  ~)cL~ and also K ( x , ~ ) ~  s, c~, p, with 

(7 .2 I )  
--(8 + a -~ I-- 1)___, 

~'. ( g )  ~ ~ ~r 

P r o o f .  To a v o i d  u n n e c e s s a r y  r e p e t i t i o n s  we a g r e e  to  c o n s i d e r  on ly  such  

va lue s  of  ~ fo r  w h i c h  a l l  t h e  f u n c t i o n s  c o n c e r n e d  a r e  def ined .  W e  d e n o t e  by  

p '  t h e  ~>conjugate~> of  p, de f ined  by  

x The assumption of the theorem concerning G (x, ~) reduces simply to G c L2 when p=2 .  
This case (with s=o,  er contains as special cases the theorems of Weyl and Mazurkiewicz men- 
tioned in section I . I .  
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# 
I p ,  p p I 

p p 1)--I p p--i 

and we notice that p = 2  when p ~ 2 .  

We proceed to the proof of theorem 7.2 in the special case where, in 

addition to the hypotheses of the theorem, we have ~ 

(7. z2) J+(~; K)=--J,(~)=D~K(2~, ~) O~ (o, ~)=o,  v = o ,  I, 8.  

On integrating by parts and using lemma 7.2 we see at once *hat for v # o 

2 ~  

I fK (x, ~) *--'~ dx  

0 

2 z  2z~ 

(7.23) - - ( i " ) " f D "  Z(x ,  ~)e-i~dx -- (iv)-8 f '~ ' ~)e - i 'z  z ~ ~ ~ j t * ~ t x ,  d x  

0 0 

2 z  

(iV) -s I f v(x, - 

0 

whence 

(7.24) 

The existence of the integral 

(7.z5)  

2 Z  2 Z  p' 

P '  ~ - - 1  
0 0 

implies that of the integral 
2 ~  

f i G ( x ,  i)l , 
0 

dx 

for almost all ~. For such values of ~ we can apply the Young-IIausdorff 

theorem [cf. Hardy-Littlewood, I, p. 167] with the result 

1 Conditions J s _ l = o ,  J s = o  follow from the hypotheses  of the  theorem when er I, for %va(x ) 
is periodic and of inean value zero over a period. 
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2 ,~ p '  

the term with v = o  being omitted from the summation. The existence of (7-25) 

implies now tha t  all the conditions of theorem 7. I (with fl = p' (s + a), q = 1o') 

are satisfied in the present case. 

To prove theorem 7.2 in its generality we shall t reat  the two cases a =  I 

and o < a < I separately. 

Let  a = I .  By subtracting from K(x,  ~) a kernel of finite rank it is always 

possible to obtain a kernel H(x, ~) tha t  satisfies the set of conditions 

2 ~  

(7 -26)  J-l(e; H)- fH(., d .  = o;  H)=o, i ,  . . . ,  8 ' .  

0 

Indeed, it  suffices to put  

s4-1 x j  

H(x, ~) = K ( x ,  ,~) - -  F ,  ) i  ~j  (~) 
j = o  

This yields a set of (.~'+ 2) equations 

(7.27) 
_ '~1 (2 ~)J-*  

o =  J,(~; H ) :  J,(~; I f)  A ~.a ,jLi~r)/e~ v = - - I ,  o, I , . . . ,  8", 
j : ~ ' +  1 /"  

which determine wj(~) as a l inear combination of J~(~; K), . . . ,  J j - l (~ ;  K) with 

numerical  coefficients. To this kernel H(x ,  ~) we can apply the preceding ar- 

gument  provided it is shown tha t  H (x, ~)c L.~ and tha t  the integral  /, tD ~1 ~r~ 

exists. Using the abbreviated notat ion 

2 z  1 

0 

we have, by Minkowski's inequality, 

I I . f+ gllv ----< Ilfllv + Ilgllp- 

Wi th  this notat ion we can write 
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(7.~s) 

27~ 

~, (D~: + IH)  = f [ G(x ~)-- 
0 

But from (7" 27) 

whence 

j'[I 
0 

2 ~  

O)s+l (~) ~- -2~ I  IDa. K(2  ~, ~) --  D '~ K(o,  ~)] = ~2~r f G  (x, ~) dx, 
0 

1 

On subst i tut ing into (7.28) we get 

27~ 

s~ (D~+~ H) ~ ~'/(11 G I I,) p' d~ = ~ '  L) (G), 
. 4  
0 

which shows the existence of ~)(D~+~H). 
To prove tha t  H(x, ~)cL~ we observe tha t  i ts o-th Fourier  coeffieent (as 

a funct ion of x) is zero since H(x, ~) is of mean value zero over (o, z ~). Since 

H(x, ~) satisfies condigions (7.26) the same urgument  as above in case of the 

kernel K will show the convergence of the series 

The hypotheses of lemma 7. I (with fl = - p ' ( s +  i), q ~ p ' )  being satisfied here, we 

h~ve the desired result H(x, ~)~L,2. 
The kernel of finite rank 

s+ lx j  

.i=O 

since i t  is the difference of two kernels c L 2. This implies tha t  all the func: 

tions ~oj(~)cL~. 1 Consequently we can apply theorem 4.2 with the rSles of K 

i This  is easily proved when  we replace the  powers  by  the i r  express ions  in te rms of nor- 
malized Legendre po lynomia ls  for t he  in terval  (0, 27t). We get  then  

7--31104. Acta mathematica. 57. Imprlm6 le 30 avrll 1931. 
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and H interchanged,  and q replaced by (s+ 2). According to theorem 4.2  the set 

(s  is a subset of the set of zeros of an ent ire  funct ion B,,(),) for  which 

we have the estimate 

(7- z9) IB=(Z)I =< (II,, (,.; H)}~+3P(r), 

where  P(r)  is a polynomial  in r. The funct ion H(x, ~) satisfies the hypotheses  

of theorem 7- I with f l = p ' ( s + 2 ) ,  q = p ' .  Hence,  by the proof of theorem 7. x, 

p 

log H,,(r; H) <= ~rvr 

F rom (7-29) we obtain an estimate of the same type for  

, [ , ]  
log max I B m ( k ) [  < ~ , " ( ~ % ~ : - ' ,  m = r ;;; , ' '+~'-:i  . 

I~-I--r 

This leads to the desired resul t  

,.,,(K),,- 

by precisely the same a rgument  as in the corresponding par t  of the proof of 

theorem 7. I. 

The ease o < c~ < i can be t rea ted  in an analogous, even simpler way. 

Here  we have to satisfy only the eonditions 

J,(~; H ) = o ,  ~ = - - ~ ,  o, ~, . . . , s - - 2 ,  

which can be accomplished by set t ing 

s--1 X3 
H(x, ~)= K(x, ~) -- ~, ~. r 

j=0  

The details of the proof  may be left  to the reader.  

~+1 

s~+~ (.,  ~) = ~ p j (~) ~j. (~), 
j=o  

where  the  ~o'i( D are l i nea r ly  i n d e p e n d e n t  l inear  combina t ions  of the  ~ j  (~). 

e)j ( [ ) ~  L~, hence  t h a t  eoj ;,~ c L2, follows t h e n  immed ia t e ly  f rom the  re la t ion  

s+2 2~ 

j=O 0 

The  fact t h a t  
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7.4. The assumption of the existence of the integral  Ip(G)in  theorem 

7.2 can be replaced by a less restrictive one, with corresponding modifications 

of the est imate for r~(K). This is shown by 

Theorem 7.3 .  Under the hypotheses 

i. K(x ,  ~)~ L~, 

! 
ii. K (x, ~ ) c  (s, 

iii. 2 ~ q < p ' ,  fl<(s+a)p', 

(the last condition 

q) a , p , p  I < p ~ 2 ,  

I +(S+CC)~' < q ~ 2 ( I  +/~), 

q < 2 (I + fl) being unnecessary when s = o ,  o <  a < I) we have 

_ //+1 

(7.3 ~ ) r,,(K) n ~ - - ~ .  

P r o o f .  As in the proof of theorem 7.2 assume first tha t  

(7.3 I) J , (g;  K ) : o  (v-~----I, o, I . . . .  , s), 

these conditions being automatically satisfied when s = o, o < a < i. We shall 

prove tha t  under  the assumptions of theorem 7-3 and this addit ional  assump- 

tion we have K(x,  ~)c (fl, q) which, in view of theorem 7. I, gives the desired 

result. By hypothesis the integral  

2 ~  

0 

exists, whence IIGII, 
we have 

whence 

exists for almost all ~. As in the proof of theorem 7.2 

+ ~r 1 / 

~I~,"+~ < (2~) p (IIGIIY, 

Z Ik I," o <= <= n', 

and 
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[ "' I ~  

2~  

[ Z Ikd" "',~ < c.,,-r (~) = _  c.,-<'+o>',: 
I ~ ' - -n+ l  J q 

Now, by HSlder  inequality,  

2 ~  2~ 

[ 2;"~lk,l' .~ <= Z " ; ~ "  ' -  ~;; ] .E Ik,.I," ," d~ 
L l = n + l  J r = n + l  J L ) . = n +  1 J 

-;p'  + p ' - -  q 

< Cu~+")q(n ') p' 

On put t ing  here in succession 

It ~ 0 ,  II p ~  I ;  )2 ~ 2a~ / l P ~  2 !~+1, # ~ - 0 ~  I ,  . . . ,  

and adding the results we conclude tha t  the series 

2~ 

* = I  0 

converges. In  the same fashion we prove tha t  the series 

converges. Since k 0 = o  it  follows tha t  K(x, ~)c(fl, q). I t  should be observed 

tha t  the condit ion q < z ( f l +  I) is introduced to ensure tha t  H(x, ~)cL~. The 

general  case of theorem 7-3  where the condit ions (7. 3 I) are not  satisfied 

can be t rea ted  in precisely the same manner  as the corresponding case of theo- 

rein 7.2.  

R e m a r k s .  i. The assumptions of theorem 7.3 are obviously less s t r ingent  

than  those of theorem 7.2,  for  q < p ' ,  

ii. The estimates which we have obta ined in this section are of the type 
ii. ment ioned in section I. 3. The following examples show tha t  the est imate 

of theorem 7.2  is the >>best possible>>, not  only in the sense tha t  the exponent  
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I 
8 + a + I - - -  

P 

can not  be replaced by any larger one, but also in the sense ~hat our estimate 

can not  be replaced by more precise estimates of the type iii. of 1.3. 

(I) The function ~ 

(7.3z) F ( t ) - = F ( t ;  a, b, e)~= . ~  v-" (log v) -~ exp {2 z iv[ ( log  v)~+ t]} 

is continuous and its expansion (7.3 2) converges uniformly provided either 

a > �89 c > o, b arbitrury, 

or else, 

a=�89 c > o ,  b> ~(~+e). 

Hence, on setting a ~- �89 K(t) ~ F~ (t), we  get  a periodic kernel for which s - -  o, a :  �89 

p -  2. We have here r ~ ( K ) - - n  (log n) b while the series ~[ra(K)] -1 diverges if 

b ~ i which is compatible with the conditions above if c < I .  

( I I )  Take now the funct ion F ( t ) ~ F ~ , , b ( t )  of section 2. On set t ing 

K ( t ) - ~ F l ( t  ) we ge~ a periodic kernel with (in the notat ion of theorem 7.2) 

i 
I provided b > I - - a .  Here we have Q ( K ) ~ - - - : - - ,  but the 

1--a  I •  
8 ~ 0 ,  o t ~  I~ p - -  

ser ies  

Qr 

[r~ (K)]-e 

diverges if b ~ I + a. 

8. Kerne l s  of  Class Lip  (s, a, p, q). 

This class of kernels is defined us follows: 

Let  s be an integer ~ o ,  o < a <  I, ~ < p ~ 2 ~ q .  The kernel K ( x , E )  c 

Lip (s, ~, p, q) if, for  almost all values of  ~, the partial derivatives 

1 Ingham [I], Hille [2, pp. I8I--I82J. 
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D;. K (x, ~), ~ = i, 2 . . . . . .  , s, 

exist and, in case s ~ I, the functions 

" g  Dx (x,~) ~ = o , I , . . . , s - - I ,  

are continuous in x Jbr fixed ~. Furthermore, the derivative 

D~K(x ,  ~)~K,(x,  ~), 

considered as a periodic function of x outside the interval (o, 2 z) satisfies the con- 

dition 
2:z 

(s. ,) j ' l K ~ ( x  + t, ~ ) - -h ;  (x, ~)1" dx<g(~)~,~ ,  

0 

where g (~)~ Lv, and t is ~ o atzd sufficiently small. 1 

Theorem 8. 1. I f  the ker, el satisfies the conditions 

K(x,  ~)=L~, K(x,  ~):  Lip (s, a, p, ~ ) ,  

then 
1 

(s. 2) ,,,(K) > C n " ~  ' (log ,,)-'~-~. 

(s. 3) 

Proof .  Assume first that s > o  and 

J,(~; K)-----D~K(2z, ~)--D:.K(o, ~)~-o; v = o ,  I , . . . ,  s--I .  

As in the proof of theorem 7. I we have ~ 

(8.4) / / . , (r ;  K) < f i  ~--2~(~x,)  + ,  .~ 

2.n 1 

0 

/ r  ~ , ;  f [l~,l ~ + Ik-~l ~] dE 
0 

1 Condi t ions  of  th i s  type  were first  considered by  Szhsz [3; see also 41, for func t ions  of a 
s ingle  var iable .  Our  no t a t i on  i s  ana logous  to t h a t  of Hardy-Li t t lewood [2]. Condi t ion  (Lp)of 
Sz~sz [4, p. 53I] fol lows from (8. I) by  Minkowski ' s  inequal i ty .  

2 The  s l igh t  difference b e t w e e n  th i s  fo rmula  and  (7-5) is due to the  fact t h a t  here  t he  
subscr ip t  v ranges  over  ( - -oo,  :r r a the r  t h a n  over  (I, 0r 
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Again as in the proof of Sheorem 7- i 

Po ~ exp 
2 

Z (Ik, I-" 

We put for simplicity 

E ~;iI 
C exp Crp' k~]~ / 

i = m + l  

2,"g 

if b,~b~(g)~ ~ Ks(x, ~)e-i*~d~. 
0 

. 

Then on integrating by parts we get 

By an important result due to Szs [4, P. 533] 

whence 

o~ 1)' 

~, [Ib.l" + ]b-,l~"l < C[g(~)]P.~ - ~ ' ,  
v ~ m + l  

(8.5) ~ [Ikd~'+lk_,i,,'] d~< c,,~-(.+,~)~ ", 
* ' = m +  1 

Po ~ C exp { C r p' m-('~+~)P'}. 

To estimate the first factor in the right-hand member of (8.4) we observe 

that  for a suitable choice o f  the constant C which will depend on K, we have 

whence 

2 ~  

o <  ~ - 2 ~ (z~,,,) + ,-~ f Ik, I ~ d ,  ~ < 
0 

fi(...)< C 2 m + l r , , , ,  + 5 

Cr ~', 

This yields the final estimate 
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log M ( r ) - - l o g  max ]A,,()., K)I < C(m log ,-+rV' m-(~+s>~;) 
P-I=" 

To make the contributions of both terms here approximately equal we choose 

Then 

p (a+s) p 

log M(r) < Cr (a'+'~+i)p-I (log r) ("+*+~)~)-~, 

and (8.2) is readily obtained, either directly from the formula (7. I I ) o r  by 

using a classical formula of LindelSf [I, p. 2I] where we have to put 

p + s) p 
= ~ CC 1 (~ ((Z + 8"t- I)])-- I (C~+8+ i )p--I  

The preceding proof holds without  any modification in the case s = o ,  even 

when the condition J0 (~; K ) =  o is not  satisfied. Hence in passing to the gen- 

eral case of theorem 8. I we can assume s > o .  On setting 

s x j  

j = 0 

we can satisfy the conditions 

(8.6) J~(~; H) = o  ( t ,=--I ,  o, I , . . . ,  8--I). 

I t  is plain tha t  (8. I) will not  change if K(x, ~) be replaced by H(x, ~). Con- 

sequently our preceding arguments  hold for H(x, ~) provided it is proved tha t  

H(x, ~)cL~. To show t h i s  we observe tha t  H(x, ~.) as well as its derivatives 

D~H(x, ~ ) , . . . ,  D~HIx , ~) are of mean value zero over (o, 2 z). 0 n  integrat ing 

by parts and applying the above mentioned result of SzAsz we get 

2 ~  
o~ / p' 

V - - - - - ~  0 

The desired result follows then  by lemma 7. I since 2 s p ' +  2 >p ' .  

The transi t ion from the kernel H(x, ~) back to the kernel K(x, ~) can now 

be achieved in precisely the same fashion as in the proof of theorem 7. z. 
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This will yield an estimate for r~ (K) of the same type as in the special case 

above. 

Certain limiting cases of theorem 8. I are of interest. They present them- 

selves when a = o, or a~-I,  or p =  I. We shall classify these cases as follows: 

(I) p :>I ,  a- -o ,  s > o ;  (2) p > I ,  a = I ;  (3) p = I ,  a = o ,  s > o ;  (4) p = I ,  a = I .  

In case (I) by modifying suitably a proof of Hardy-Littlewood [2, p. 

566] we can show that the corresponding class of kernels c ( s - - , ,  I, p , ~ )  

so that theorem 7.2 can be immediately applied here with the result 

- b + ~ -  ~ 
(s .  7) ,.,~ ( K )  ,~ , ~" - ~  ~ .  

I n  

Littlewood 

(s .  s )  

fixed g which does not belong to an exceptional set of measure zero. 

for simplicity that 

o 

case (2) it is readily shown by imitating another proof of Hardy- 

[2, pp. 599--600] that our k e r n e l c ( s ,  i , p ~ p ) s o  that 

,.,, ( K ) , #  

In case (3) we see that  D~-IK(x, g) is absolutely eontinuous in x for every 

Assume 

In this case it is readily proved that 

2re 2~ 2,~ 

O. 0 0 

o a s  [v [ - -~Gr  

This follows immediately from Lebesgue's theorem since the integrand 

2~ 

o 

tends to zero for almost all ~ and is dominated by a fixed integrable function 

8- -31104 .  Acta  mathemat ica .  57. I m p r i m 6  le 30 avri l  1931. 
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2 ~  

0 

Hence  for a given ~ there  exists a positive in teger  m 0 so large tha t  

f lbd" d~ 
0 

<~, I~1>,,o. 

Assuming again tha t  conditions (8.6) are satisfied we see at  once tha t  

2~ 

i b ~c 

~ = m + l  ~) a,- - m + l  

Repeat ing the same argument  as in the corresponding case of theorem 8. I and 

choosing 

we arrive at  the conclusion 

(s. io) 
1 

,.,, ( K ) , , - ~  (log ,)~- '- '  --, ~ .  

The case where condit ions (8.6) are not  satisfied can be t rea ted  in the 

same fashion as before, with the same estimate (8. IO) for  r , (K ) .  

Finally, in case (4) the funct ion /t~(x, ~) is of bounded variat ion in x 

[Hardy-Lit t lewood, 2, pp. 599--600] for  every fixed ~ which does not  belong to 

an exceptional  set of measure zero. Le t  V(~) be the total  variat ion of K~(x, ~) 
over (o, 2~) and let V(~)c  L~. An easy applicat ion of the second law of the 

mean shows tha t  

4 

whence, again under  the hypothesis  (8.6), 

f [Ik, I ~ + Ik_~l ~] ~zg 
~ ' = m  + 1 0 

, ~  C T / ~  - 2 . ~ - 1  " 
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The same argument  as in the previous case (3) will show tha t  

1 
(8. I I) r,~(K)> Cn ~+1 (log n) -*-~.  

59 

R e m a r k s .  i. By analogy with theorem 7.3 the 

8. i tha t  g (g )c  L v, can be replaced by a weaker one, viz. 
P 

condition of theorem 

with corresponding modifications in the estimate of r,,(K). 

ii. We  have excluded from consideration the cases (i') p >  I, a = s =  o and 

These cases lead to interest ing classes of kernels for which (3 t) ~ ) = I ,  g = 8 = 0 .  

the integral  

2~ 2~ 

0 0 

=<p=<2, 

exists, where the case p = I  ( p ' = ~ )  should be interpreted in the sense tha t  

f lK(x, d. 
0 

should be bounded. The case (3') has been investigated (without discussion of 

the growth of the C.V.) in a recent paper [Hille-Tamarkin, 3], the case (i') will 

be treated in a for thcoming paper by the present authors. 

m. The estimate of theorem 8.3 is more precise than  an estimate of the 

type i. of I. 3 (with # = 7 )  but less precise than  an estimate of the type ii. 

Still our estimate is the >>best possible>> in the sense tha t  i t  can not  be replaced 

by an estimate 

kernel 

of the type ii. This is shown by the example of the periodic 

K ( t )  = Z ,p--1 e x p  [i~ ( tog  b'--~ t)] 
,v~2 

[Hardy-Littlewood 3, P. 632; Itille, 2]. This kernel satisfies uniformly a Lip- 

schitz condition of order I/2, whence K ( t ) c L i p  (o, ~,1 2, I). From theorem 8. i 
1 

we get r,~> C~ (log .n) - ~  while actually r,~=n. 
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The periodic kernels 

s i n  v t ~ s i n  ~, t 

can be used to illustrate the limiting cases (3) and (4) respectively, and to show 

that the values 

8 S + I  

of the exponents of convergence can not be improved. I t  is very probable, 

however, that  the presence of the logarithmic factors in the estimates (8.2), 

(8. IO), (8. I i) is due to the imperfection of the method used, and that actually 

these factors should be removed or even replaced by logarithmic factors with 

exponents of opposite signs. 

9- Kernels  of  Class C(s, l, a). 

The result of Szs which was used in the preceding section is based on 

the theory of approximation in mean of a function .f(x) by the Fej~r (or C1) 

means of its Fourier series. Due to several recent investigations analogous 

results are available for the approximation in mean by the C~ means. These 

investigations have been summarized and completed in a recent paper by ]YI. 

Jacob [I] to which we refer for further bibliography of the subject. A scrutiny 

of the results and proofs of Jacob will show the truth of the following 

Lemma 9. 1. Let G(x, ~) be a function of two variables defined on the 

square o ~ x, ~ ~= 2;r a~d extended periodically in each variable outside of it. As- 

sume that: 

i. G(x, ~)~ L~. 
it. On setting 

go (x,  ~, t) = ~ (x + 2 t, ~) + (~ ( x -  2 t, ~) - 2 G (x,  ~); 
t 

(9. I) at(x, ~, t)=[gi--l(X, ~, u)du,  i--~I, 2 , . . . ,  l, l > o ;  

0 

(;,  (x ,  ~, t) - i!  t - ;  g i ( x ,  ~, t); 
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we have for  almost all (x, ~) 

(9.2) f [  e~ (x, ~, t)] 
0 

where 7~ (x, ~; ~) = L~ for  z > o, and 

d t<7~(x ,  ~; v)~:+~ o _--< a < I, 

2 ~  2 ~  

0 0 

is bounded as ~--+o. 

Then the mean quadratic 

mean of  its Fourier series with respect to x can be estimated by 

(9.3) 

error of  approximation of  G (x, ~) by the n-th Co 

2~ 
I +n f ~(~') . g,(~)e i''x, g,(~)~- ' G(x,  ~)e-i"~dx, = AI 5', 

W e  now in t roduce  the  class C(s, l, c~) of kernels  which  is def ined as follows: 

Let  s and 1 be integers >=o and o ~ e < =  I. A kernel K ( x , ~ ) ~ C ( s ,  l ,a)  i f  

jbr  almost all ~ the part ial  derivatives 

D~.K(x,  ~), v=~,  2, . . ., s, 

exist and, in case s > o ,  the derivatives 

D ' K ( x , ~ ) ,  v = o ,  I s - - I  

are continuous in x for  ~ fixed, whereas the derivative 

D~ K (x, ~) == K~ (x, ~) = G (x, ~) 

satisfies the conditions of  lemma 9. i. 

and 

where 

61 

2~2.~ I Cn  -2~ i r e < I ,  6 > l + a ,  f fiG(x, ~ ) - C ~ ( s , ~ ) , ~ d x d ~ < ] c u _ ~ ( l o g  n ) ~ i f  a =  i, (~ - - l+  i, 
0 0 
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With  this notat ion we have 

Theorem 9.1.  I f  K ( x ,  ~) ~ L~ and also K ( x ,  ~) ~ C(s, l, a), then 

(9. 4) 
and 

(9-5) 

1 

Cn "+"+ n)-,-~, r,~(K) > ~ (log when o < a <  I, 

3 

r,, (K) > Cn'* ~- (log n) -'-'2 when Cr I .  

P r o o f .  We star t  with the familiar  assumption 

(9  6) J,(~; K ) = o ,  v = o ,  I ,  . . . , 8 - - I .  

Then, since the polynomial 

~,,(~, ~) = 

gives the minimum mean quadratic error, 

2 g  2.x 2,~ 

( ff Z [l~,l~+l.q-d "~1 d e =  2 ~ IG(*, ~)--,,,~(~, g ) l ' dxdr  
0 0 

2,~ 2,~ 

0 0 

Hence, when o--< a < I, we get 

2zg 2,'~ 

[ I k d ~ + l z - , P ] d ~  = F,, ,  - ~  [Ig,l~-+lg_,l~]d~<Cm-~( .~+~, 
~ = m + l  0 ~ , = m  + 1 0 

which is of the same type as (8.5) in the proof of theorem 8. I, with p = 2. 

This leads immediately to the result  (9-4)- 

When a = I  we have instead 

[Ikd"+l~.-vK d~ 
't' = ~ / t +  1 0 

< C ) n  - 2 ( ~ + 1 )  (log m) '2, 

whence 
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asymptotically the same if 
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log M ( r ) <  C{m log r + r  2 m -2(8+~) (log m)2). 

simple computat ion shows tha t  the contributions of the two terms will be 

nz  

With  this choice of m we get 

[ 1 ]  
r ~ ( l o g  r) '~'~'~ . 

2 2 s + 4  

log M(d< :, (log d 

The result (9.5) then follows from (7. i i )  Or from LindelSf's formula [I, p. 2I], 

ment ioned above. 

The general case of theorem 9. I can be reduced to t h e  special case above 

in precisely the same fashion as in the proof of theorem 8. i and the  remaining 

details may be left  to the reader. 

R e m a r k .  T h e  case where K~(x, ~) satisfies uniformly a Lipschitz condi- 

tion of order a can be considered as a special case of theorems 9. I and 8. I, 

with p = z. I t  is well known [de la Vall6e Poussin, I, p. 52] tha t  in this case 

k ~  O(n -s-~) so t h ~ ,  whereas Gheorghiu found #(K)=< 1 [4, PP. 51--52], 
8-~C~  

2 
thorems 8. I and 9. I yield the estimate e (K) _--< 2 ( s q : ~ ) - + l  which is the best 

possible of its kind. 

io.  A n a l y t i c  K e r n e l s .  

In  this Section we sh~ll assume tha t  the fundamenta l  interval (a, b) reduces 

to ( - - i ,  i) and tha t  the complete orthonormal set {q~,(x)) coincides with the set 

of normalized Legendre polynomials so tha t  

~ ( x ) =  ~ 2p , (x) ;  ~ = o ,  ~, 2,. . . . .  

Theorem 10. 1. Assume that K(x ,  ~) for almost all ~ is analytic in x in 

the interior of an. ellipse in the complex x-plane, whose loci are at the points +_ I 

and whose sum of semi-axes is R, and that for all such values of x, 

(io. i) IK(x, ~)[<M(~), M(i)c L~. 
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Then 
(1--E~ n 

(IO. 21 r, ,(K) > R ' 

P r o o f .  We shall consider only >,non-exceptional,> values of ~. I t  is well 

known [de la Vall6e Poussin, I, pp. I23~I24]  that, under the hypotheses of the 

theorem, K(x, ~) can be approximated by a polynomial in x, Qm (x, ~), of degree 

_-< m, such that  

2 M(~) 
(m.3) IK(x, ~)-Qm(x, .~)1--< R ~ ( R -  i) 

Since the m-th partial sum of the Legendre series of K(x, ~), 

T.(x, ~)- .~ k.(~)~.(x), 

gives the minimum mean quadratic error for a given m ,  it follows at once that 

+ 1  t -1  + 1  

f' f f, k,l'd~= K(x, ~1--T,,(x, ~)l~dxd~ <= Co1r -~', 
v =  + 1  - - 1  - - I  - - 1  

+ 1  

, f  Co= ( / i ' - - , ) '  [M(~)]~d~" 

- - 1  

In view of (IO. 3) and (4.2I) this gives an estimate of the form 

/ 
log max ]A~(~; K)I ~-log M ( r ) <  (I + , )  I))l log 

l~.I=r \ 

If we put here 

[ l o g r  l 
m = ]_log R ] '  

r + Co2 r" R -2 ~)- 

we find after a simple computation 

log M(,-) < (i + ~)(log r)' 
log R 

The desired result is now obtained either directly from (7. I I) or by applying a 

formula of R. MATTSON [I, p. 57]" 
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R e m a r k .  The estimate furnished by theorem m. I is crude and is in a 

ra ther  loose connect ion with the propert ies of the kernel. I t  can not  be con- 

siderably improved, however, in the sense tha t  the exponent ia l  funct ion of n 

as a lower bound for the growth  of the C.V. can not  be replaced by a more 

rapidly increasing funct ion.  This is shown by the example of the periodic kernel  

oo 

for  which R =  I + }f~- so that ,  by theorem Io. I, 

(l--E) n 

r . ( K )  > (I  ~t_ V-2)  -4 - - ,  

while actually rn ( K ) =  e '~. 

~. E n t i r e  K e r n e l s .  

We star t  with a discussion of kernels K(x, ~) which are e n t i r e  f u n c t i o n s  

in  x o f  a f i n i t e  o r d e r  e > o ,  1 for  uhnost  all ~. 

For  grea ter  simplicity we assume tha t  the fundamenta l  interval  reduces to 

(o, I) and tha t  the set ~ \ ~(~(x)/ coincides with the set of normalized Legendre  

polynomials for  the interval  (o, I). W e  shall use the power series expansion 

ar 

K(x, ~)-- ~.~ • 
~ 0  

I f  ~ is fixed, a necessary and sufficient condition tha t  K(x, ~)be an entire 

funct ion of order o is tha t  [Valiron, z, p. 4ol 

- -  ~ l o g v  ] e 

I t  is natural ,  therefore,  to assume tha t  

I zn(~)l < 7(~) exp (-- a n  log n), a ~  I 

1 T h r o u g h o u t  th i s  sec t ion t he  le t t e r  O will  be used  to des igna te  the  order  of I f (x ,  2) as 

an  ent i re  func t ion  in x. No confus ion  can arise w i th  t he  s y m b o l  ~ (K) of our  p rev ious  no t a t i on  

for the  e x p o n e n t  of convergence  of the  set  of C.V., s ince  th i s  e x p o n e n t  reduces  t o z e r o  in sec t ions  

IO and  II .  

9--31104. Acta mathematica. 57. Imprim6 le 1 mai 1931. 
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We  shall assume in addit ion tha t  7 (~)~L~.  As an approximat ing  polynomial  

we can now take 
m 

q,,, (x, 

I t  is readily found tha t  the mean quadrat ic  error  of this approximat ion can be 

est imated by 

1 1 

0 o 

so that ,  for  the same reason as in the proof  of theorem- IO. I, 

and 

1 
cr �9 

Z jlk, l'a < 
0 

C exp (--2am log m), 

log M ( r ) <  (I + ~){ m log r +  Cr ~" exp ( - - z  am log m)}. 

Le t  it be the solution of the equation (for fixed r) 

Cr-" exp (--  2 ate log te) = I.  

I t  is readily seen that ,  for  large values of r, 

whence 

)}l----- fit] -t- I ~ - - - -  
log r 

a l o g 2  r 
log~ r = l o g  log r, 

log MO')<(e +  )(log ,-y. 
log, r 

By the formula  of Mattson,  ment ioned above, we get  

Le t  us now 

of  z e r o  o r d e r .  

tu rn  to the case where K(x, ~) is an e n t i r e  f u n c t i o n  in  x 

We may then  write I 

1 T h i s  d o e s  n o t  e x h a u s t  a l l  t h e  p o s s i b l e  c a s e s ,  b u t  w i l l  s u f f i c e  a s  a n  i l l u s t r a t i o n  of  o u r  

m e t h o d .  T h e  s a m e  r e m a r k  s h o u l d  b e  m a d e  b e l o w ,  i n  c o n n e c t i o n  w i t h  o u r  t r e a t m e n t  o f  t h e  c a s e  

w h e r e  K(x, ~) is  a n  e n t i r e  f u n c t i o n  of  i n f i n i t e  o r d e r .  
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I ~ ( g ) l < z ( g )  exp (--ne~.--l(n~ 
I 

a . . . .  , 7 ( ~ )  C L 2 ,  
z - b e  

where k is a positive integer,  and, as usual, 

We  now have 
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eo(t)~t, ek (t) =- exp (ek-1 (t)), 

logk t~e--k(t).  

�9 ' ' ,  - - 2 ,  - - 1 ,  O, I,  2~ . . .  

l o g  M ( r ) < ( I  q - e ) ( m  log'  r--k- C r  "a e x p  ( - -  2 m e/~-- l (m~ 

We shall t rea t  separately the two cases k =  I and k > I,  assuming in each case 

tha t  m = [ # ]  + I, where tt is the solution of the equat ion 

W h e n  k =  I we have 

o r  ~ e~p { - - ~  , , ~  (t,~ = ~ 

1 

m ~ (log r) 1+~ 

a + 2  

log, ~ t ( r ) - ( ~  + ~)(lo~ ,.)0% 

! 
and, by Mattson 's  formula,  since a - -  

T 'r-Pl __ 2"~+1 5q-1 e ' l  

r , ~ (K)>  exp ( * +  I ) ~ ( 2 . +  I) * n ~ }. 

W h e n  k > I  we have 

1 

m -  (logk r)% 

1 

whence 

There remains the case where K(x ,  ~) is an e n t i r e  f u n c t i o n  in  x o f  

i n f i n i t e  o r d e r .  Here  we assume 

I 
I,~, (g) l<r  (g)e~p (-( , ,~ log~ ,~), k ~  z, ~ =  - - ,  zq- ,~  

7(~) c L~. 
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This gives 
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log M ( r ) < ( I  +e){m log r +  Cr 2 exp (-- 2 am logk m)} 

< (Z + ~) [10~ ~')' ?'l = [lttl -t- I 
logk + 1 ]" ' 

(I I. I) K(x, ~) = Z z*(~)x~" 

then 

(II-3) 

(II.4)  

according as 

( I I . 5 )  

(ii.6) 

( " . 7 )  

where 7(~)c L.2. 

I.f K (x, ~) jbr almost all ~ is an entire function of x, given 

n logk n , k = I ,  2 , . . . ;  

/ ~+1 _~+i ~ -~t  
r , ~ ( K ) > e x p [ z ( ,  + I) ~ ( 2 , +  ~) ~ n ~ t;  

r,,(K) > e~ n ~ , k = 2 , 3 , . . . ;  

( 1  ) 
I~.(~)l<z(_~) exp , + ~  ~ l o g ~ .  ; 

__ ~?+1 1 ) 

1 I 

Theorem 11.1. 

by the expansion 

where it is the solution of the equation 

C, "'~ exp (-- 2 art log~. Ft) = I. 

In view of Mattson 's  formula this yields the result  

rn(K) > exp ,4z(~--~nl~ n ) .  

The results of the preceding discussion can be summarized in the following 
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R e m a r k s .  i. I t  is easily proved that  if we can take ~ = o  in (II .6) ,  

(I I. 7) then formulas (I I. 3), (I 1.4) can be replaced by more precise ones, viz. 

~4-1 2"r "~-bl I 
( I I . 8 )  rn(K) > e x p  ( ,  - - ~ ) , ( z +  I) ~ ( 2 ,  -{- I) z ,'t ~ l ,  

( ' ' - 9 )  r,~(K)> ek { ( , -  ~) n!}. 

ii. A curious example of an application of the formula (II.  2) is presented 

by the kernel 

K(x, g) = sin 2 ~xg ,  o ~ x ,  g <  I. 

This kernel is symmetric and closed since the equation 

1 

f sin 2 ~ x ~ ( ~ )  d ~ o ,  ~v(x) c L.2, 

o 

whose left-hand member  is analytic in x, implies for x=m~2 

1 

f sin ~ ( ~ ) d ~ = o ,  

0 

whence {T(x)--=o. Since our kernel is not  of finite rank it must  possess infinitely 

many C.V. [Hellinger-Toeplitz, I, p. I513]. On the other  hand K(x, ~} is not  

definite since K(x, x ) = s i n  27gx ~ changes the sign on (o, l) [ibidem, p. I5IO]. 

Hence  not  all the C.V. are of the  same sign. On the basis of ~he expansion 

K(x, ~)= 7~, ( -  
I)~ (X ~) 2v+l  
(2~+~)! 

and of theorem i i. I we conclude at once that  

r , (K)  > exp ( - I 4  ~ n log n ) " 

We  are not  aware of any previous proof of this result. 

iii. An example where the kernel is an entire function of zero order is 

presented by 
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Since 

K(x, ~)-= ~e-"~(x~) ", 
~ ' ~ 0  

o ~ x ,  ~=<,. 

l 1 

fu( tf I= x) K"  u(X) dx = e - "  x'u(x) dx > 
0 r ~ O  0 

O 

unless u(x)=--o, our kernel  is definite positive, hence closed. I t  has infinitely 

many C.V., all positive. By theorem I I. I and remark  i. we have 

,',.(K) > e P[ J 

The following lemma may be of use in discussing more general  kernels of 

the type K(x, ~)= K(x~) :  

Lemm& 11.1.  Let K ( x , ~ ) = K ( x ~ ) ,  where K(z) is analytic in the circle 

Iz[ <= R. In order that K(x~) be closed for the interval (a, b), o <= a < b <= VR,  with 

respect to functions ~L2,  it is sufficient that in the power series expansion 

K(z) = ~ a~z" 

the coefficients apk are ~ o, k =  I, 2 where ~ , . . . ,  ~ ( p k )  -'1 dive,yes. 
k = l  

R e m a r k .  We can allow a to be < o  if the sequence i ~p~.~ satisfies additio- 

nal restrictions. 

P r o o f .  I t  is 11o 

known tha t  

restr ict ion to assmne a = o .  Le t  u(x)~L~. I t  is well 

b 

. f  x �9 u (x) 
o 

d x - - - -~  o a s  ~ ----~ o r  . 

Hence  K. u(x) is analyt ic  at  least in the circle Ixl ~ B. Now, if K .  u ( x ) - - o ,  

the coefficients of all powers of x in the expansion of K" u(x )mus t  vanish. 

Since, by hypothesis,  apk~O, we must  have 
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b 

f ~ u(~) d E =  o, 

0 

It--- I~ 2 ~ . . .  

(p~)-' being divergent, this implies u ( x ) = o  for almost all m [cf. Sz~sz, 2, 
k=l 

p. 488; this paper gives extensive references to the l i terature on this question]. 

iv. The following two examples show tha t  the estimate (I i .  2) for k =  I, 

t ha t  is in the case where K(x, ~) is an entire funct ion of finite order, can not  

be improved, in the sense tha t  the exponent  I ' s n  log n can not  be replaced 
4,o 

by a more rapidly increasing function.  They also illustrate the fact  tha t  this 

exponent is inversely proportional to the order Q of K(x, ~). We take 

KI(x' ~)= Jo(]f(I--X*)(I--~*))ei*~ =[/ ;2-a:  ,~d in J +  1- (I) ~On (x) ~On(~) 
~ = 0  2 

[WATSON, I, p. 370] and 

ar 

K~(., ~ ) =  Jo(V(i  - -  x)( i  + ~))go(V(~ + ~)(x - ~))= 2 ~,  &.+~(2)~ . (x)~ . ( l )  

[Bateman, 2, p. 135 ] where 

1 /  2 + I 
~, (x )  = I /  P,,(x) ,~ = o, ~, 2, . . .  

2 

are the normalized Legendre polynomials for tile interval ( - - I ,  I). 

[ t  is readily seen tha t  the first of these kernels is an entire function of 

order I while the second is of order x/2. On the basis of theorem II .  I and 

remark i. we should get the estimates 

while actually we have 

rn (K1) ~ |z~ exp [(n + I) log n - - n  (i - -  log 2)], 
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I2. Summary  of the  results.  

For the convenience of the reader we collect in this section our main re- 

sults concerning the growth of the C.V. for kernels of various classes. All the 

kernels in the table below are assumed to c L_+. We recall the definitions of 

the following classes of kernels: 

Class L'~, pp. 2I, 26. 

Class (~, q), pp. 2i, 38. 

Class (s, a,p~,p2), pp. 44, 46. This class can be characterized briefly 

as the class of kernels for which D~ K(x, ~) is an ce-th integral. 

Class Lip (s, c~,p, q), pp. 53--54. 

Class C(s, l, c~), p. 6I. 

( i) 
Limiting cases of Lip s, a, p,  } ) ~ i  : 

Lip (1) [ p > I ,  r~=o,  s > o ] c  s - - I ,  I , p , p _ ~  P. 57. 

Lip ( 2 ) [ p > I ,  a = I ,  3 ~ o ] c ( 8 ,  I , } ~ , p ~ ) ,  1). 57" 

Lip ( 3 ) [ p = I ,  c~=o,  s > o], D"~.-~K(z, ~) is absolutely continuous in z, 

p. 57. 
Lip (4) [ P =  i, c t=  i, s ~ o ] ,  D~.K(x, ~) is of bounded variation in x, p. 58. 

We set 

I .  I I 
a = s + a +  I - - - - ,  ao-~S+ I - -  ; fft~8"t- 2 - - - - '  

1) .P P 

Properties of the kernel Properties of the C.V. 

I. K(x, ~)c L~ ~r~  ~ converges 

2. K(x, ~):(K1K~)(x , ~), K~, K2cL.,  Z r ~  ~ converges 

i p 3. K(x, ~)cL,.,, is Hermitian semi-definite 5 r ~  ~ converges 

[ I _ f l +  1 
I 4 .  K (x ,  ~) c (fl, q) ,',, n ~ - ~  
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Properties of the kernel Properties of the C.u 

( / )  5. K ( x ,  ~) ~ s, ~, p, r , , ~ - ~ - ,  

6. K(x ,  ~)c Lip  s, a, p ,  r,~ > Cn ~ (log n) - ~ - ~  

7. K ( x ,  ~ )=  Lip  (i) ,',,n -~o---, 

8. 

. 

I O .  

I I .  

i t _  

I 2 .  

14. 

I . . . . .  

J 
i 

i 
; i5 .  

F 

K(x,  ~ ) ~ L i p  (2) 

K(x,  ~ ) c L i p  (3) 
1 

rn n -~ (log n) '~ + ~-* or 

K(x ,  [ ) c  Lip (4) 

K(x, ~) c C(,, z, ~) 

o ~ a < I  

c X ~ I  

K(x ,  ~) is analytic in x in an ellipse 
with foei ut ( - - I ,  I) und sum 
of semi-uxes R, pp. 63 - -64 .  

1 

r~ > C n  *+1 ( log n) - ~ - ~  

1 

rn > ' ; (log n)-~-  

3 

r,~ > Cn ~ + ~ (log n) -~-2 

| - - E  

r~, > R- i  - n 

K(x ,  ~) = ~_j m(~)x ~, Z (~)-~ L.~, 
v~O 

I3. 

[• e x p [ - - ~ l o g k  v] 
. . . . . . . . . . . . . . . . . . .  I 

oo 

K(x,  ~)= ~ z,,(~)x ~, 7(~)~ L~, 
~ 0  

[z.(g)l  < 7 ( ,  ~) e x p  - -  v 1+ 777 

r,~ > exp [ - ~ - n  logk n , 

~ I , 2 , . . .  

*+1  2 z + l  

% = . ( . + ~ ) "  ( ~ . +  ~) �9 

K(z ,  ~) = y~ ~,(~)x ~, Z(~)=L,,  
~ 0  

k = 2 ,  3, . . .  

1 0 - -  3110"~. Acta  ma thema t i ca .  57.  I m p r i m 4  le 1 m a i  1931. 
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