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Pre face .  

The  class of BoAr's [I], [2], [3] ~ almost periodic funct ions may be considered 

f rom two different  points of view. On the one hand  it  is the class of cont inuous 

funct ions possessing a certain s t ructural  proper ty  which is a genera l isa t ion of pure 

periodicity,  and on the other  i t  is the class of l imit funct ions  of uni formly 

Convergent sequences of finite t r igonometr ic  polynomials.  The  main  par t  of 

BoAr's theory  of a. p. funct ions  of a real  variable d e v e l o p e d i n  his first two 

papers [I], [2] was devoted to the proof  of the ident i ty  of these two classes. 

Fu r the r  development  of the theory  of almost periodic funct ions was directed 

to general isat ions of the theory.  Corresponding to the two different  points of 

view of the class of a. p. funct ions the generalisat ions went  in two different  

directions. On the one hand  there  were fu r the r  s t ructural  generalisat ions of 

pure periodicity.  The first generalisat ions were very impor tan t  ones given by 

W.  Stepanoff  [I], who succeeded in removing the cont inui ty  restrictions,  and 

character ised the generalised almost periodici ty no t  by values of the funct ions 

at each point,  but  by mean values over intervals  of fixed length.  ~q. W ien e r  

studied almost periodicity and gave a new proof  of the Fundamenta l  Theorem 

by means of representa t ion  of funct ions by Four ier  integrals  [I], [e] and in- 

dependent ly  of Stepanoff  he arr ived at  one of his (Stepanoff's) generalisations. 

1 The investigations in this paper were completed in a collaboration between the authors 
several years ago. The final redaction of the paper belongs to A. S. Besicovitch. An account of 
the principles of this paper was given by H. Bohr at the Congress at Bologna I928 and in his paper [4], 

The list of papers referred to is given at the end of this paper. 
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H. Weyl [I] also gave a new method in the theory of almost periodic functions 

based on integral equations. His method led him to a new structural generalisa- 

lion of almost periodicity, which was wider than one of Stepanoff's types of 

almost periodicity. 

The .second direction of generalisations of almost periodicity was that  

followed by Besicovitch. Corresponding to the definition of almost periodic 

functions as limits of convergent sequences of trigonometrical polynomials, Besi- 

covitch enlarged the class of almost periodic functions by considering the con- 

vergence of sequences in a more general sense than uniform convergence, and 

by defining almost periodic functions as limits of such sequences of trigonometric 

polynomials. The purpose of his generalisation was to enlarge the class of almost 

periodic functions to the extent of existence of the Riesz-Fischer theorem. 

However, all these generalisations were not just directed by the idea of a reci- 

procity between structural properties and the character of convergence of sequences 

of trigonometric polynomials, though important results were given by S. Bochner 

[2], H. Weyl [I] and R. Schmidt ill. 

We give in this paper a systematic investigation of structural generalisa- 

tions of almost periodicity and we establish a strict correspondence between 

various types of almost periodicity and the character of convergence of cor- 

responding sequences of polynomials. ~ 

This question, being of interest for the theory of almost periodic functions, 

acquires also its importance on account of the connection of almost periodic 

functions with general trigonometric series. The fact is that  any a. p. function 

f(x)  ha~ a ))Fourier series)~ in the form of a general trigonometric series 2~ajeib ~ 

(~j any real numbers), and the sequences of trigonometric polynomials )~convergenb 

to f (x )  converge formally to this series (i. e. the coefficients of the polynomials 

converge to those of the series). 

Thus while studying various types of almost periodicity we study at the 

same time a large class of general trigonometric series (including for instance 

all series for which :~[a[ ~ is fi~ite) with appropriate character of convergence. 

In order to show clearly the idea of our investigation we shall first illustrate our 

problem on some known results concerning purely periodic functions. 

1 In  papers  on th i s  ques t ion  by  A .  S. Bes icovi teh  and  H. Bohr  i l l  and  by H. Bohr  [4] was  
g iven  t he  genera l  idea  of t he  p r e s e n t  i nves t iga t ion  and  the  m e t h o d  was  carr ied ou t  on t he  c lass  
of S. a. p. func t ions .  La te r  on was  p u b l i s h e d  a pape r  by  P. F r ank l i n  [I] in  w h i c h  he  ar r ived 

pa r t l y  a t  t he  r e su l t s  pub l i shed  in our  paper ,  and  pa r t l y  a t  new  resul t s .  
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In this w we shall quote 

used later. 

I f  f(t) is given in the interval - - ~ < t < r 1 6 2  

(lira, lim, lira) of the expression 

+ T  

2~ l f ( t ) d t ,  I as T-~  
f a  

d 
- -  T 

are denoted by the symbols 

M{f(t)},  M(f (O) ,  M(f ( t ) )  

CHAPTER I. 

Auxiliary Theorems and Formulae. 

some theorems and formulae, which will be 

then the various limits 

and are called mean value, upper mean value, lower mean value. 
If  :instead of f(t) we have a function of two or more variables then we 

indicate the variable with respect to which the mean value is taken by a suffix: 

we write for instance Mtff( t ,  x)}. 

In  the same way, if f(i) is a function of an integrM variable i given in 

the interval - - ~  < i <  + ~ ,  we denote the various limits of the expression 

i=+n 
I Z f ( i )  a s  n ~ o o  

2~t+I i=--7~ 

by the symbols 

M(f( i )} ,  M{f(i)}, M{f(i)}.  

If  f(i) is defined only for positive integers then we denote by these symbols 

the limits of the expression 

a s  
n i ~ l  

H61der's Inequalit ies.  

Let p and q be positive numbers satisfying the condition 

I / p  -~- I / q =  I 

and ~(t), ~(t) two non negative functions: then we have 
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(i) 
b 

f q~ (t) ~p(t) 
a 

Similarly we have 

A. S. Besicovitch and H. Bohr. 

b b 

a a 

(2) 
ll rn,~ , l lp l~ l  ]l/q 
Y,~(~)~,(i) =< | Z ( ~ ( i ) ) " |  {w(~)) ~ - 

From (I), (2) we conclude immediately tha t  

(3) 
or more generally tha t  

(4) 

(5) 

M Ire p . 'tD} ~ [M{cf lv}]  'Ip [M( lpq} ]  'lq 

~s_ (m. v-,) ~ [_M(q~,,)],~,' [JT{~,D]'/~ 

Formulae (3), (4) and (5) hold whether  q~, ~0 are functions of a continuous variable 

t or of an integral  variable i. 

Fatou ' s  Theorem.  

Let  f ( t ,  n) be a non negative function given for all t in a finite interval  

(a, b) and for all positive integral  values of n. Then we have 

b b 

(6) l l i m f ( t ,  ,~)at <~ lim f f ( t ,  n)at.  
a a 

This formula also holds if n is a continuous variable. As an immediate  corollary 

we have 
b b 

(7) (t, x)} at <= M~ f ( t ,  x) at . 
a a 

Lemma I. SmootMng an integrable function. 

Let f( t)  be a function integrable (L) in a finite interval (a, b) and let 

t+d 

fd(t)=  f /(.)au 
t 
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Then for any fl < b 

lim/ 
~ 0  

a 

Remark .  W e  observe tha t  

periodic with the same period. 
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I f ( t ) - D ( t ) l d t  = o .  

if f(t)  is periodic then f~ is continuous and 

Some Inequal i t ies .  

I) I f  f (t) is a non negative function then 

b t+6  b§ 

f ,, /,(.),. , f ,<,),,. a t a 
2) I l l ( t )  is a non negative function and i f  p' < p", then 

b b 

(,o) [~ f (.(,);.,.,1" ~ [~ f (.(,);.,, dr] i,p'', 
a a 

(I I) ~l ([f(t)]P'}'/P' <= M ([f(t)]f'} lip''. 

3) I f  9~(t) and ~p(t) are non negative and i f  p ~ I ,  then 

b b b 

(,2) [ r ~Pdt]I/P [J~fJPdt][- d'~ ]i/p. 

C H A P T E R  II .  

Purely Periodic Functions. 

w 2. Notation and Problems. 

We shall consider functions f (x)  given on a circle of radius r ~  I .  We  

shall always mean by x any amplitude of a point of t h e  circle. Thus the  func- 

tions f (x)  are periodic with period 2z .  
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W e  shall talk of functions in terms of geometry.  Any function is considered 

as a point of a ~ffunctional space),. 

We  first .define the distance between two points (i. e. functions). We  give 

various definitions of the distance and correspondingly we define various ~)func- 

t ional  spaces,>. 

In the class of continuous functions we define the distance d[ f (x ) ,  9(x)] 

between two functions f (x )  and ~(x) (the uniform distance) by the equation 

d If(x), ~(x)] = up. b. I f (x)-  ~(x) I. 
--.if_--< X <  ~ 

We define fur ther  the symbol d [f(x)] by the equation 

d [f(x)] = d [f(x), o] = tap. b. If(x) I. 

I t  is obvious that  in the funct ional  space defined in this way the Triangle 
Rule holds true, i .e.  

i f  f (x), qD(x), ~p(x) are any three fiowtions (points) of this space the inequality 

d [f(x),  ~p(x)] N d br(x), ~(x)] + d [f(x),  ga(x)] 

is satisfied. 
In  the class LP(p> I), i .e.  in the class of functions which are measurable 

and whose p-th power of modulus is integrable (L), we define the distance 

alp[f (x), 9(x)] between two functions f (x ) ,  ~(x) by the equation 

[if ,pdx] lip " dv [f(x), 9(x)] = 2-~- If(x) -- ~ (x) 

We define fur ther  the symbol d p[f(x)] by the equat ion 

+ z t  

[if, d r [f(x)] = d p If(x), o] -= f (x)  ]pdx . 

On account of (I2) the Triangle Rule holds true also in this space, i .e.  if 

f(x),  qD(x), ~p(x) are any three points of this space we have 

dp [f(x), go(x)] ~ d ~ [f(x), q)(x)] + d v [q~(x), go(x)]. 



Almost Periodicity and General Trigonometric Series. 209 

For the case of p =  I we write d[f(x), ~(x)], d[f(x)] instead of d'[f(x), ~(x)], 

d ~ If(x)]. For the case of purely periodic functions we shall consider only the above 

distances, i .e. the distances 

d [f(x), ~(x)], d ~ [f(x), ~(x)] (p_--> I), d If(x), ~(~)]. 

We have the following formulae 

(I 3) d [f(x), ~v (x)] > d p [f(x), 99 (x)], 

(I 4) dp' [f(x),  ~9 (x)] __--< d ' "  I f (x ) ,  ~ (x)], 

for I < p  

for p '  < p "  

the first of these formulae is obvious and the second one follows from (IO). 

When we wish to speak of any of these distances without specifying a definite 

kind we shall write dg[f(x), q~(x)]. 
Thus we have a general formula (Triangle Rule) 

d, If(x), ~(x)] _--< dg [f(z), ~(x)] + d~ [~(~), ~(~)]. 

We call a point (a func t ion) f (x) -a  limit point (limit funct ion)of  a sequence 

of points 

(f~ (x)} 

if dg If(z), A(x)] -~ o, as . -~ ~ .  

We call a point f(x) a limit point of a set ~ of points (functions), if the 

set i~ contains a sequence of points {f~(x)} such that f(x) is its limit point. 

A set 9/ augmented by the set of all its limit points is called the closure of the 
set 9X and is denoted by 

cg (~). 

Corresponding 

closures 

to the various definitions of the distance d ,  d p, d, we have the 

(is) c (~) ,  cp(~), c ( ~ )  

The set 9/ is called a ))base)) of each of these closures. 

We have now to prove a very simple theorem which is of importance fo~ 

the further theory. 

27--31104. .,4cta matkematica. 57. Imprim6 le 22 juille~ 1931. 
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Theorem on Uniform Closure of  the  Base. 

The 

symbols 

IO~ 

(,6) 

c( t) 

closure of a set ~[ and the closure of the set e (2[) are identical, or in 

ca - (c 

I t  is obvious tha t  

2 ~ Let  now f (x)  belong to Co(C(2)). I f  it belongs at the same time to 

then it also belongs to c q(~d), as ce(?[)~c(2[).  If, however, f (x )  does not 

belong to c(~ 0 then c(? 0 contains a sequence of po in t s  {9~(x) )such  tha t  

(T7) dg If(x), ~0,(x)] ~ o, as n -~ oo. 

qg~(x) belonging to c(?[) we conclude that  ?[ contains a point fn(x) (which may 

coincide with qD.(x)) such tha t  

a (x), fn  (x)] < Jl 

and consequently tha t  

(I 8) dg [~, (x), f,, (x)] < i .  
n 

By the Triangle Rule 

do [f(x), fn(X)] ~ do [f(x), 90,(x)] + d g  [q~n(x), f,,(x)] 

and thus by (I7), (I8) 

dg [f(x), f,(x)] -~ o, as n --~ o0. 

f,~(x) belonging to ?1 we conclude tha t  f(x) belongs to co(?l ). 

Thus i n  ei ther case, whether  f (x)  belongs to c(?l) or not, it belongs to 

ce(?I). Consequently 

(T9) Ca (C (9~)) c Co (2/). 

By (T6), (I9) the theorem has been proved. 

After  having introduced the above notat ion and ideas we pass to our pro- 

blems for the case of purely periodic functions. We have two different problems: 

1 The  e q u a t i o n s  ~ ~ ~ ,  2 c !8 exp res s  resp. t h a t  2 con ta ins  ~ ,  and  t h a t  2 is con ta ined  in ~ .  
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P r o b l e m  I. To characterise the classes of functions which can be approximated 

in some of the above mentioned ways by finite harmonic polynomials, i.e. by finite 

sums of the form 

(20) s(x) : zajd   

where j are any positive or negative integers and ai any real or complex numbers. 

P r o b l e m  I I .  To find an algorithm for the definition of functions s(x) ap- 

proximating a given function of each of the above classes. 

In this case we take for the class ~ the class of all finite harmonic poly- 

nomials, i .e .  the class of functions s(~) defined by (2o). We denote this class 

by A| Then our Problem I may be formulated in the following way: 

I. To characterise the closures 

c{A| c(A| c~'(A| ( p > I ) .  

We shall consider each of these closures consecutively. 

i. e. 

w 3. Problem I. 

Denote the class of all continuous functions (on a circle of radius r - - x ,  

continuous functions with period 2~) by the symbol (c.f.}. We have 

the theorems: 

Theorem I, 1. The closure c(A| is identical with /c r~  i.e. .J.]~ 

c (A | : r kC. f.~c. 

:% The fact that 

(2I) 

is obvious. 

2 ~ . The formula 

(22) 

c = (c.,f} 

(c. 4 )  = c (A| 

expresses the famous theorem of Weierstrass that  ~ny continuous periodic func- 

tion can be uniformly approximated by harmonic polynomials. 
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Corollary. For  the case 9.1=A| the theorem on uniform closure of the 

base may be expressed by the formula  

(23) c~ (A| = c. ((c.f .}) .  

Theorem I, 2. The closure c (A| is identical with the class L (the class of 
integrable (L) functions el| on a circle of radius I), i.e. 

(24) e (A| = L .  

I ~ Le t  f (x )  be any funct ion belonging to c(A| 
~fi,(x) I of funct ions of A| such tha t  sequence t ~, 

i .e .  such tha t  

d[f(x),fn(x)]---~O, as n - - - ~ ,  

(:5) f if(x) o a s  n " - - 4 0 .  

Then there  exists a 

From the l imit ing equat ion (25) it  follows t h a t f ( x )  is a measurable function,  

and then f rom the existence of the integral  (25) follows t h a t f ( x )  is integrable (L). 

Thus  

(z6) c (A| c L. 

2 ~ . Le t  now f (x )  be any funct ion of the class L .  Then  on account  of 

the remark  to the lemma I of w I there  can be found a cont inuous funct ion 

f~r(x) such tha t  d [f(x),fr(x)] is as small as we please, which shows tha t  f (x )  
belongs to the closure c((c.f.}) and consequent ly  on account  of ( 2 3 ) t o  the 

closure c(A| Thus  

(27) L c c (A| 

By (26), (27) the theorem has been proved. 

Theorem I, 3. The closure cV(A| is identical with the class .Lv, i.e. 

cv (A| = L , .  



(2s) 
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I ~ . In  the same way as in Theorem I, 2 we prove tha t  

c ~) (A| c Lp. 

2% Let  now f(x) be any function of the class L v and Q a positive number. 

Define the function fQ(x) by the equations 

f(~(x) -= f (x)  if 

and 

,~ f (x)  
f~(x)  = ~ 

If(x)] _-< Q 

if If(x) l > Q. 

To any positive number  ~ corresponds a value of Q such tha t  

(29) dr If(x), fQ(x)] < -~- 
2 

fq(x) belonging to the class L there exists a continuous funct ion q~(x) such tha t  

]q~(~)l__< Q ~nd that 

(30) 

We have 

d [f~(~), ~(~)] < (2 Q)I-~. 

dP [f~(x), ~(x)] =< {(2 Q)~-~ d [f~(x), ~(x)]}x/~ 

and consequently by (3 ~ ) 

(31) dr [f~(x), ~(x)] < -~. 
2 

By (29) , (3 I) and by the Triangle Rule 

dr i f ( x ) ,  ~(x)] < ~  

which shows tha t  f(x) belongs to cP({c.f.}) and on account of (23) to cP(A| 
Thus 

(32) Lp c cP (A| 

By (28), (32) the theorem has been proved. 
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w 4- Problem II .  

By the theorems I, I; I, 2; I, 3 it has been proved that any function of 

each of the classes (c.fi}, L, LP(p> I) can be approximated in a definite way 

by harmonic polynomials. Now we pass to Problem I I  of the definition of an 

algorithm for the construction of these approximations. For all our classes this 

will be given by Fej&" sums. 

Let f (x)  be any function of one of our classes. Take its Fourier series 

+oo +~ 

' f f(t)e-~.dt.  (33) f(x) ~ ~ : L e  ~ ,  A, = ~ 

The Fej~r sums a.v(x) (N positive integers) are given by the expressions 

+N 

(34) a,v(X) =- Z A,, z(i - ] :) )1~ ei~x 

or by the equivalent integral expressions 

+zt 

(35) as(x) - ~ . f ( x  + t)K_~-(t)dt 

where the ,kernel>) /C~v(t) is given by 

+2r K]~.(g) ~-:~,~N ( [ -  ~[) e--i~'t= I I s i n  1/2 "Nt~2 

We shall prove that the functions ax(x) give required approximations for 

all our classes. 

Theorem II, 1. I f  a .functiw~ f (x)  belo~gs to the class ( c . f }  then 

a I f ( x ) ,  ~ , . (x)]  - ~  o ,  a s  N - ~  2 .  

This is Fejdr's well known theorem; we shall not dwell on its proof. 

Uniqueness Theorem. I f  two fu~wtions f (x) ,  g(x) belong to the class {e. f.} 

and ha~'e the same Fourier series, then 
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d [f(x),  g(x)] = o. 

Denote  b y  a.~(x), a~(x) the Fej6r  sums for the functions f(x),  g(x). The func- 

tions f(x), g(x) having the same Fourier  series we conclude on account  of (34) 

tha t  a~(x), r are identical, i .e.  

o~(~) = ~ ( ~ )  = .~,(~). 

By Theorem II ,  I 

Consequently 

whence 

d [f(x),  g(x)] <= d [f(x),  a~(x)] + d [g(x), a~(x)] -~ o, as N - ~  ~ ,  

d [ f ( x ) ,  g(x)] = o 

(36) 

For  

whence 

I f  a function f(x) belongs to the class L then 

d If(x),  air(x)] --~ o, as N --. oo. 

W e  prove first the following auxiliary inequality. 

I f  f (x) is any function of the class L, the,, 

d [~(x)] =<d [f(x)]. 

a~(x) = ~  f ( x+  t)Kx(t)dt, 

if d [~T(x)] = ~ I.~,(x) ldx <= 

<= ~ dx f (x+t)[KN(t)dt= 

which proves the theorem. 

Theorem II,  2. 
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-4-~ ~ 

+..'r. 

' fK~(t)dt = d If(x)] 2~  

which proves the formula (36), since on account of a well known property of 

Fej~r's kernel we have 
+ r r  

From (36) we obtain the following inequali ty:  

I f  f (x) and g(x) are any two functions of the class L then 

(37) d [~.(x), ~.(x)] _--< d If(x), g(x)]. 

In order to prove the formula (37) we have only to apply the formula (36) to 

the function f(x)--g(x) and to observe tha t  a~:.q(x)= a~(x)--~.(x) and tha t  

d [a~-:-.q(x)] = d [a~,(x), ~.(x)], d [f(x)--g(x)] = d ~f(x), g(x)].. 

We shall now prove Theorem I I ,  2 by showing tha t  corresponding to any 

fixed positive number E we can choose an integer N O such tha t  

(3s) d [f(x), a~(x)] < e for all N > No. 

For f (x)  belonging to L we can {on account of the Remark to Lemma I of 

w i) find a continuous funct ion ~(x) such tha t  

(39) d If(x), ~(x)] < -~ 
3 

and an integer N o such tha t  

(4o) a [~(x), o~.(x)] < -~ 
3 

for all N >  N 0. 

We have then for N > N  O 
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d [f(x), of(x)] =< d [f(x), q~(x)] + d [~0(x), oVa(x)] + 

q- d Ion(x), af~,(x)] ~ 2d [f(x), ~(x)] + d [~(x), r 

whence on account  of (39), (40) 

d If(x), of(x)] < e 

217 

and thus  Theorem II ,  2 has been proved. 

T h e o r e m  II,  3. I r a  function f(x) belongs to the class L p ( p >  I) then 

d~ If(x),  ~ (x ) ]  -+ o, as iv--+ ~ .  

As in the preceeding case we first prove an auxiliary inequali ty:  

I f  f (x) is any function of the class Lv then 

(41 ) d p [a~-(x)] ~ d~' [f(x)]. 

We  write 

(42) IoN(x)] <= ~ f if(x+t)]K~(t)dt. 
- - I t  

By HSlder 's  inequali ty 

f 
+rt +~ 

= ( 2 ~ ) T  I f @  + t)I, Ks(t)dt} ~/p 

and thus  by (42) 
+g$ 

lair(x) I p ~ ~ f ( x  
--r 

+ t)Ip ~ ( t ) d t  

whence 

2 8 -  31104. A c t a  m a t h e m a t i c a .  57. Imprim~ le 22 juillet 1931. 
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= d~ If(x)], 

which proves (4I). 

Now we pass to the proof of Theorem II ,  3. 

We write 

f ( x )  = f~(x)  + RQ(x) 

+ ~  
la/p 

I f ( x  + t)IPdx] = 

Let  Q be a positive number. 

where fQ(X) is defined by the equations 

f~(x)  = f ( x )  

and 

if If(x) l =< 9 

,q f (x )  if If(x) l >  Q. f~(x)  = ~ 

Given a positive number  e we can always find a number  Q such tha t  

(43) d p [RQ(X)] < ~- 
3 

and then on account of Theorem II ,  2 an integer N O such tha t  for N > N O 

(44) 

From the inequality I~j~(x)l_< Q we eonclude 

(45) d v [f~(x), afq(x)] _--< ((2 Q)p-ld [fQ(x), afq(x)]} lip . 

By (44), (45) 

(46) 

Observing tha t  

we write 

dP [fQ(x), o/~ (x)] < -~. 
3 

~(x)  = ~/Q(x) + ~Q(x) 
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d r If(x), as ~ d r I f(x),  fQ(x)] + dV [fq(x), af~(x)] + d p [o/q(x), @(x)] = 

= d~ [/%(x)] + d, [fdx), ~J~(x)] + d~ [~(x)]  =< 

_-< 2d~ [R~(x)] + 4~ [f4~), ~k(x)]. 

By (43), (46) 

dr If(x), af.(x)] < 

which proves the theorem. 

Uniqueness Theorem in the Class Lv (p>= I). 
of the class L~ (p ~ ~) have the same ~burier series then 

de I f ( x ) ,  g(x)]  = o .  

The proof is identical with that  for the class {c. f i} .  

219 

I f  two funct io,s  f ( x )  and g(x) 

CHAPTER IIL 

w 5. General Closures and General Almost Periodicity. 

We now pass to our main problem, i.e. to the investigation of various 

classes of functions given in the whole intervM -- 0r < x < + ~ which can be 

approximated in some way or other by finite trigonometric polynomials 

(47) s(x) : Za,  da, ~ 

where the exponents ~t, are any real numbers, and the coefficients a, any real 

or complex numbers. We denote the class of all polynomials (47) by A. We 

shall consider only those approximations which preserve the main characteristic 

properties of the functions s(x) (those relating to oscillations). 

Then we have to consider only approximations which involve some sort o] 

uniformity in the whole interval --  ~ < x < + ~ .  

For, as Besicovitch has shown [I], the class of functions which can be 

approximated by a sequence {sn(x)} of polynomials (47), even uniformly in any 

finite interval ,  is too wide: this class contains in fact all continuous functions. 

As in Chapter I I  we shall talk of functions in terms of geometry. We 

call a class of functions a functional space, and any function of this class a 
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point of the funct ional  space. We first define the notion of the distance of 

two points. Corresponding to various definitions of the distance we define 

various >)functional spaces~). 

We introduce the following definitions of the distance between two points 

(functions) f(x) and ~(~). 
t ~ We  define the dist.ance D If(x), r by the equation 

(48) D If(x), q~(x)] = .up. b. If(x) q~(x)I. 

We define fur ther  the symbol D lf(x)] by the equation 

(49) D [f(x)] = D If(x),  o} -- up. b. If(x) l. 
- - ~ <  X - - : +  0r 

2 ~ . We define S .d i s t ance  of the class p ( p ~  i) relat ing to the length 1 

D~, [f(x), q~(x)] by the equation 

(5o) 
x + l  

Ds[, If(x), q~(x)]-- up. b. [7t f If(t)- qD(t) Ipdt]|l/P. �9 

x 

We define the symbol Dz~ If(x)} by the equation 

~ + l  

[If 11 ,, (5I) Dsf  [f(x)] =- Ds], [f(x),  o]_=<.<+| up. b. ~ [f(x) l 'd  z . 

When  any of the numbers :p, 1 is equal to I we drop it in our notation. 

we write D~,l, Dsp, Ds instead of Dsl', Ds~, Ds~. 

I f  p '<p"  we have an account of (to) 

(52) Ds~" If(x),  ~(x)] ~ Ds l / [ f (x ) ,  ~(x)]. 

Thus 

0 ,  

(53) 

and we write 

(54) 

We define IV. distance of class p Dw~, If(x), ~(x)] by the equation 

Dw~, if(x), ~(x)) = lim D,.p If(x),  ~(x)], as l -+ oo 

Dwp If(x)] = Dwp [f(x),  o]. 
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For  the validity o f  this definition we have to prove the existence of the 

limit on the right hand side of (53). Obviously it is enough to prove the 

existence for the case of ~ (x ) -=o  and p =  I, i .e .  to prove the existence of the 

limit 

(55) lim D,,  [f(x)], as 1--* oo. 

I f  D.r [f(x)] is infinite for on.e value of 1 then it is also infinite for all 

others and thus in this case the limit (55) exists. Suppose now tha t  D~.~ [f(x)] 

is finite for all values of l. Let  /0, 1 be any two positive numbers  and n the 

positive integer such that  

(56) (n - -  I) lo < l ~ n 1 o. 

W e  have 

x+l x+nlo 
I l l  ??~l~ f If(x) ldx <= , lo J If(x) l dx 

x 
and thus 

nlo D 
(57) Dsl If(x)] < y s,,,o [f(x)] 

We  have evidently 

(58) 

l + l,~ _ 
< Z -  O,,,, [f(x)]. 

If(x)] =< D,0 [f(x)]. 

By (57), (58) 

(59) Dsz[f(x)] < (l + ~"-) D~,,o[f(x)], 

from which we conclude 

(60) lim Ds, [f(x)] _--< Ds,o [f(x)]. 

(60) being true for  all values of lo we conclude tha t  

(6,) lira Ds, [f(x)] =< lim Ds, o [f(x)] = lint Ds z [f(x)], 
l - - a r  1 .~or  l ~ Q r  
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which proves the existence of the limit (55) and thus the existence of the limit 

on the r ight  hand side of (53). 

In  the same way as in 2 ~ we write Dw instead of Dw,.  

4 ~ We define B.distance of class p (p > I) Dzv If(x), f(x)] by the equation 

(62) D Bp [f(x), ~0 (x)] = [ M ( l f ( x )  - 9~(x) [p) ]~/~' . 

In the same way as before we write 

(63) DB,, [f(x)] - D#,  If(x), o]. 

I f  the number  p is equal to one we drop it in our notation.  

Now we easily find 

and hence by definition 

Thus by (60) we have 

(63, 

By 

(63, 2) 

D d, > DBp 

Dwv > Dep. 

D [f(x), f (x)] > D~. I, > D,d,  ~ Dry, p > x. 

Ds~' < .Ds~" , Dw~)' < Dwv", DB~' < D~p" for p' <p".  

These are the only distances which we shall consider in our general investigation. 

When we wish to speak of one of these distances without  specifying a definite 

kind we shall write 

De. [f(x), 9(x)]. 

I t  can be readily seen tha t  the Triangle Rule holds in the general case, i .e.  

if f(x),  q~(x), tp(x) are any three functions then 

(64) Do If(x), ga(x)] =< De [f(x), ~0(x)] + Do [~(x), ~p(x)]. 

I f  a funct ion f(x) and a sequence (f,,(x)) of functions are such tha t  

(65) Do [f(x), fn(x)] --4 o, as n -+ ~ ,  

then we say tha t  the function f(x) is a G.limit of the sequence (f,,(x)). 
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Corresponding to the par t icular  meanings of DG [f(x),f~(x)], namely 

D ,  D sl, , D w~, , D Bp , 

we write 

~ 3  

f (x)  = l im f,, (x), = S~. lira f,,(x), = Wv. limfi~(x), = B~'. limfi,(x). 

I t  is easy to see tha t  if S~.limf,(x) exists, then  SP.limfi,(x) also exists and we 

have S~.l imf~(x)= SV.limfi,(x). 

Remark .  We  shall indicate the kind of uniqueness which lies in the 

definition of a l imit funct ion of a sequence {fi,(x)} of functions.  W e  conclude 

f rom (64) tha t  if f (x)  is a V; l imit  funct ion of the sequence {f,,(x)} then  every 

fhnct ion f ' (x)  which satisfies the condit ion 

(66) DG [f(x) ,  f '  (x)] = o 

is also a G. l imi t  funct ion of the sequence {f~,(x)) and no other  funct ion can be 

a G. l imi t  of this sequence. I f  

then  

I f  

/ )  [ f ( x ) ,  f ( x ) ]  = o 

f (x )  for all x .  

Dsp If(x),  f ' (x)]  = o 

then  f ' (x)  may be any funct ion which is equal to f (x)  at almost all points. 

the cases when 

DWp [f(x),f '(x)] -~ O, or DTsp [f(x),f '(x)] = o 

In  

the funct ions f (x ) ,  f'(X) may aiffer at  a set of points of finite and even of 

infinite measure.  

Thus, l im fn(x) is defined in a completely unique way; two determinations oj 

SClim fn(x) differ fi:om one another only in a set of measure zero; but two deter- 

minations of 14rClimfn(x), and a fortiori also of BP.limf~(x),  ntay differ from one 

another at a set of  positive and indeed infinite measure. 
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We call a function f(x) a limit function of a set 92 of functions if f (x ) i s  

a limit function of a sequence {f,~(x)} contained in 92. The set 92 with the set 

of all its l imit functions is called the closure of the set 92 and is denoted by 

c (92). 

Corresponding to various definitions of the distance we have the closures 

(67) csp(92), c (92) (p>= ,). 

The set 92 is called a base of the closure Ca(92). In  the same way as in 

Chapter  I I  we can prove a 

Theorem on Uniform Closure of the Base: The closure of the set 92 and the 

closure of the set C(92) are identical, or in symbols 

(68) C.  (92) = C.  [C(92)1. 

At  the beginning of this chapter  we indicated the general nature  of our in- 

vestigation: we can now define their  scope precisely by means of the symbols 

tha t  have been introduced. 

We shall study the closures 

(69) C(A), Csp(A), Cwp(A ), CBT)(A) 

where p ~ i and A is the class of all polynomials (47). 

We have 

(69, ,) C(A)cCsp(A)c  C,,p(A)c CBp(A ), p ~  I 

and if p'<p" 

(6 9, ~) e . ~ " ~  C J ,  C,,.~"c C..~', C j ' =  C j .  

As in the case of periodic functions our task falls into two parts: 

To characterise the closures (69) by structural properties o/ 

To find an algorithm for the construction of proper approxima- 

tions to functions of various closures. 
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The so lu t ion  of these two problems for  the general  case of the closures 

(A), (A), C ]  (A) (p-->_ 

will be based on the solution for  the special case of the closure C(A). 

As in the case of periodic funct ions we shall omit  the invest igat ion Of this 

fundamenta l  case and merely quote its results. 

W e  have first to give the  definition of almost periodic functions. 

Let  f (x )  be a function,  cont inuous in the whole interval  --r  < x < + ~ ,  

and e a positive number.  I f  a real  number  ~ satisfies the condit ion 

(70) ~) [f(x + ~), f(x)] _--< e 

then  we call the number  ~ a (uniform) translation number of the function f (x)  

belonging to e. Denote  by E ,  If(x)] the set of all such numbers  , .  

Before giving t h e  definit ion of almost  periodic funct ions we have to give 

an auxil iary definition of a proper ty  of numerical  sets. 

I f  to a set E of real numbers corresponds a positive number 1 such that every 

interval (a, b) of length 1 contains at least one number of the set E then we say 

that the set E is relatively dense. 

Definition of Uniformly Almost Periodic Functions. 

I f  the set ]~ [f(x)] is relatively dense for all positive values of e then we say 

that the function f (x)  is a uniformly almost periodic function (a.p.function). 

We shall denote  the  class of all a.p .  funct ions by the symbol {a.p.}.  

T h e  theory of a . p .  funct ions was created by I t .  Bohr  and has been deve- 

loped in his three papers  in Acta  math.  [I], [2], [3] and later  in a series of his 

own and other  author ' s  papers, W e  shall not  enter  here  into the theory  of 

a .p .  functions but  assume its fundamenta l  results to be known to the reader.  

The main resul t  of Bohr 's  first two papers gives the solution of Problem I 

and Problem I [  for  the case of the closure C(A). 1 

The resul t  concerning Problem I can be expressed as follows: 

New methods  in Prob lem I and in Prob lem I I  h,~ve been  given by  S. Bochner  [I], N. 
Wiener  [I], [21, H. Weyl  [I], (3. de la Vall6e Pouss in  [I]. 

29--31104. Acta mathematica. 57. Imprim6 le 23 juillet 1931. 
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(7i) 

Theorem I C(A). 

A. S. Besicovitch and H. Bohr. 

The closure C(A) is identical with {a .p .} ,  i.e. 

C(A) --~ ' ~a.p.j .  

Corollary. For all closures which are considered in this paper we have 

(72) C~ (A) = Co [(a.p.}]. 

The proof follows from (68), (7 I). 

The study of the general closures c (Ao) and c v (A| in the case of purely 

periodic functions was based on the results concerning the clsssical closure 

c (A| Similarly our investigation of the general closures 

(73) Csp (A), CwP (A), C~p (A) 

will be based on Theorem I C(A). 

Each of the classes (73) will be characterised by some kind of *almost 

periodic* property. 

For this purpose we introduce the following definitions. 

Sp. almost Periodic Functions. 

If  for a given function f (x)  a real number �9 satisfies the condition 

(74) D• [f(x + ~), f ( / ) ]  ~ 

then we call the number �9 an S~. translation number belonging to 8. Denote by 

S~. E,  If(x)] the set of all these numbers. 

I f  the set S~. E,  [f(x)] is relatively dense for all positive values of ~ then we 

say that the function f (x)  is S~. almost periodic (S~. a.p.). 

I t  can be easily seen that for any 1 an S~. a.p. function is also an S p. a.p. 

function. Therefore we shah in future speak merely of SP. a.p. functions. 

W~. almost Periodic Functions. 

I f  a function f (x )  is such that to any ~ > o corresponds an 1-~l(~), for which 

the set SP.E~[f(x)] is relatively dense, then we say that the function f (x)  is 

W ~. almost periodic ( Wp. a.p.). 
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Thus the difference between S~. a.p. functions and W p. a.p. functions is that  

in the latter class 1 varies with r. 

I t  is easy to see that  i f  iim l(e)is  finite then a WP.a.p.  function is an 
~ 0  

S~. a. p. function. 

Remark. We shall always assume that  S~.a.p. 

functions belong to the Lebesgue class Lp. 

functions and W p. a.p. 

B~. almost Periodic Functions. 

We shall first give a definition of a property of numerical sets. 

A set E of  real numbers is said to be a satisfactorily uniform i f  there exists 

a positive number l such that the ratio of  the maximum number of  terms of  E in- 

cluded in an interval of  length 1 to the minimum number is less than 2. 

I t  is obvious that  a satisfactorily uniform set is relatively dense. 

W e  say that a function f ( x )  of the class L p is B p. almost periodic (Bp. a.p.) 

i f  to any ~ > o corresponds a satisfactorily uniform set of  numbers 

(75) " ' ' T - - 2 < T - - I < T o < T I  < T 2 <  "'" 

such that for  each i 

(76) M . ( [ f ( x  + *i) - -  f ( x ) [  p} <: ~v 

and that for  every c > o 

x+c 

- -  flI(x+ (77) M ~ M , -  z,) - -  f ( x ) [  ~ 
r 

9~ 

d x  < e p. 

We call the numbers ~i of (75) BY. translation numbers of the function f ( x )  

belonging to r. I t  may seem to be more natural to replace the condition (77) 

by the condition 

(78) M ~ M i { I f ( x  + ~,) - -  f ( x ) [  F} < ep. 

We shall further investigate also this kind of almost periodicity, but as in the 

conditions (77), (78) we use upper mean values the smoothing process by which 
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the condition (77) differs from the condition (78 ) appears to be of importance. 

We shall denote by the symbols {S~'. a.p.}, { Wp. a.p.}, {B ~. a. p.} the classes 

of all S~. a: p. functions, W~'. a.p. functions, Bp. a.p. functions. 

When we wish to speak of a function of one of these classes without 

specifying a definite one, we shall call it a G.a.p. function. 

Thus we have introduced three kinds of almost periodicity beside the uni- 

form one. Sp. almost periodicity is the nearest to the uniform one. I t  restricts 

~c.f.j. The typical the class L~' as uniform almost periodicity restricts the class r 

property of imitation of values of functions, for values of argument increased 

by translation numbers, is substantially maintained. But the imitatdon at each 

point characterising a . p .  functions, is replaced by >>integral imftation~ of values 

over an interval of a fixed length. In other words, the uniformity of imitation 

belongs not to particular values of the argument but to intervals of a definite 

length. BJ'. almost periodicity is as will be shewn the widest generalisation of 

the uniform one. The imitation due to this class of almost periodicity appears 

only as a general effect of the whole class of translation numbers and over the 

whole range of values of x. When we study this class of functions in connec- 

tion with Fourier series we shall see that  BP. almost periodicity is probably the 

generalisation of almost periodicity to its natural bounds. 

W p. almost periodicity is intermediate between the Sl' and B p kinds. 

(79) 

CHAPTER IV. 

S~'. a.p.  F u n c t i o n s  a n d  W ~. a.p.  F u n c t i o n s .  

w 6. S.a.p. Funct ions .  

Theorem I C~,(A). The closure Cs(A) is ide~tical with {S.a.p.} ,  i.e. 

(A) = ( s .  p . ) .  

I ~ . We shall first prove that  

afiy function of C~(A) and e any positive number. 

(so) 

Let f (x)  be In order to 
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prove (8o) we have only to prove tha t  the set S. E~ If(x)] is always relatively 

dense. Take a funct ion s(x) of A such tha t  

(8I) / )s  [f(x), s(x)] < ~ �9 
3 

Let  z be any number of the set /E~ [s(x)]. We have 
3 

(82) 
9 s  [f(x + ~),/(x)] __< Ds [f(z + ~), 8(x + .)] + ~ ,  [8(~ + .), 8(.)] + 

+ D~ [.(x),/(~)1 =< ~D~ If{x), .(x)] + D [~(. + ~), 8(x)] < 

which proves tha t  

(83) 1i75 Is(x)] c S. E~ If(x)] .  
3 

The set E~[s(x)] being relatively dense we conclude tha t  so is the set S. E,[f(x)], 
3 

and thus (80) has been proved. 

2 ~ W e  shall rmw prove tha t  

(84) {S. a. p . ) c  C~(A). 

Let  f ( x )  be S.a.p.  and consider the functions 

{8~) f~(x)=~ff(t)dt for 0 < 6 < ,  

93 

already studied by Stepanoff. Given ~ > o ,  let ~ be 

S. E ~  If(x)]. We have 

(86) 

whence 

any number of the set 

[ If~.(x + z) --  f~(x)] = ? [f(t  + z) - - f ( t ) ]  dt 

x 

x+8 

=< z f  Is(t+0 ") -f(t)ldt =<~ 

x 

(87) 

which proves tha t  the functions fa(x) are a .p .  functions. 
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We shall now prove tha t  

(88) f(x) = S. l imfa(x),  as d--*o.  

Observe tha t  for  any x o and for  any e > o and , c  S. E ,  If(x)] we have 

:to+ 1 

(89) ~o 

whence 

: to+l  x + d  

xo z 

;ro+1+d ~ :to+2 

<' f, f f' ~ f (~+ , ) - - f (~ ) [d~  dx < f (~A- , ) - - f (~ ) ld~<2~  
x~ ~--3 :to 

(90) s. E, If(.)] c 8. E2, [f~ (x)]. 

Given ~ > o ,  let  1-~-1~4 ) be a number  such tha t  every interval  of length 

l contains an 8. t rans la t ion number  of f(x) belonging to -~ and consequently 
4 

(on account  of (9o)) an S. t ransla t ion number  of fa(x)belonging t o ~ .  Cor- 

responding to any number  x o we can determine a number  

~ =  s. E~ If(.)] = s. E~ [fa(.)] 
4 2 

such tha t  the point  x 0 + z lies in the interval  (o, l). Then 

(91 ) 

�9 %+1  z a + l  

f It(.)- s~(.) ,.x =< f I,(.)-z(~+ ./1~. 
go go 

+ 

: to+l  zo-kl 

+ I f (x  + ~)- fo ' (x  + ~)]dx + 

frO XO 

x o + ~ + l  l+l 

- 4,1 + I f (x ) - - f~(x) ldx  + ~,~ < 4 ~ + If(x) - f a ( x ) l d x .  
X .  + "c 0 
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By Lemma I of w I there exists a number  d o such tha t  

/+1 

/ , (92) I f (x)  - fi,(x) l d x  < ~ V for all d < do. 

0 

From (9I) ,  (92) we conclude tha t  given 7 > 0  there always exists a positive 

number 6 o such tha t  for all 6 <  6 o and for all x0 

i. e. 

Zo+l 

f lf(x) --fl(x) ldx < V 
9~ o 

Ds If(x), f~(x)] < r/ 

which proves (88). From (88) we conclude tha t  

{S. a.p,} c C~ [(a.p.}], 

and (84) follows on account of (72). The Theorem I Cs(A) follows from (80) 

and (84). 

(93) 

T h e o r e m  I Cw(A). 

w 7. W.a.p. F u n c t i o n s .  

The closure Cw(A) is identical with {W. a.p.}, i.e. 

c ~  (A) = ( W. a. p.}. 

I ~ We shall first prove tha t  

(94) Cw (A)c { W. a. p.}. 

Let  f(x) be any function of Cw(A). In  order to prove (94) we have only to 

show tha t  to any positive e corresponds an 1 such tha t  the set &. E~ [f(x)] is 

relatively dense. 

On account of the definition of Cw(A) there exists a sequence (sn(x)} of 

functions of A such tha t  

(95) D w  [ f (x ) ,  ,~(x)] --, o ,  as ",, ~ oo. 
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Dw being the limit of Dsl, as l--* ~ ,  we can say tha t  to the funct ion f(x) 
corresponds a sequence (sn(x)} of funct ions of A and a sequence {/,} of positive 

numbers  such tha t  

(96) D , ,  If(x),  s,(x)] --+ o, as n -* cr 

Then  to any e > o corresponds an ~ such tha t  

(97) Dzt, If(x),  sn(x)] < e .  
3 

Now in the same way as in the case of Theorem I Cs(A) we see tha t  

(9 8) E. [s,,(x)] c St,. E ,  [f(x)] 

and consequently tha t  the set St n. EE [f(x)] is relatively dense, which proves (94). 

2% W e  shall now prove the converse, i .e .  

(99) { w . . .  v.} c,v (A). 

The proof of this par t  of the theorem in the case of the closure Cw(A) is con- 

siderably more difficult than  in the  case of the closure Cs(A). W e have first to 

prove two lemmas. 

Lemma 1. IU. a.p.fimctio~s are >> IV-bounded>>, i. e. for  a~y W. a.p.function f(x) 
Dw[f(x)] is finite. 

Evident ly  it  is enough to show tha t  there  exist two positive numbers  L 

and Q such tha t  

( oo) [f(x)] =< Q. 

Define L by the condit ion tha t  when ~ =  I the set 

(io0 &. If(x)] 

is relatively dense. Le t  l > o  be a number  such tha t  every interval  of length  1 

contains at  least one number  of this set. To any real x o corresponds a number  

of the set such tha t  the number  x 0 + ~  belongs to the interval  (o, l). We 

have then  for  any x o 
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(~o~) 

Xo+L 

f is(x)idx 
:i." 0 

which proves (ioo).  

:~o+ L xo+ L 

'f, =< If(x) - f ( x  + ~)1 dx + ~ f (x  + ,)1 dx 
:~;o 2"0 

Xo+'~+L l+L 

I -t- f(x)ldx<_-- I + I f ( x ) l d x =  Q ,  

~'o+~ O 

L e m m a  2. W . a . p .  functions are >> W-uniformly continuous% i. e. to any W.a.p.  

function f (x )  and to any ~ > o there exist numbers L > o and d o > o such that 

(,03) DSL [ f (x  + d),f(x)]  < r for  all d < d o. 

Define  the  numbers  L and 1 u n d e r  the condi t ions  that  the set 

( I04)  SL. E~ I f (x)]  

i s  relat ively dense and that  every interval  of  l ength  1 conta ins  at least  one 

number  of the  set (Io4). To any x o corresponds a number  ~ o f  the set (Io4) 

such that  the number  x o + z belongs to the  interval  (o, 1). 

W e  have  for any 6 > o  

( I05)  

~o+L 

' fW( Z x 

~0 

xo+L 

+ d) -f(xllclx ~ L f I f ( x  + d) - -  f @  + d + , ) l d x  

Wo 

Xo+L aSo+L 

+ I f ( x  + d + ~) - f ( x  + ~) I d x  + Z 

Xo :Vo 

~o+L+~ 

--< + f IS(x + d)-f(x)l dx + 

Xo+'~ 

l+L 

< 2  L J" = - e + I f ( x  + d) - - f ( x )  ldx .  
3 

0 

Obviously  we can define d o > o such that  for any d < d o 

3 0 - - 3 1 1 0 4 .  A v t a  m a t h e m a t i e a .  57. Impr im6 le  23 juille~ 1931. 
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(m6) 
l + L  

0 

By (io5), (Io6) the lemma is proved. 

Now we shall proceed to the proof of (99) or of the following statement  

equivalent to (99) 

(~ o7) { w .  a. p.)  c c ~  [(a. p .  )]. 

In  order to prove (IO7) we have to prove tha t  to any IV. a.p. function f (x)  and 

to any e > o corresponds an a.p .  function ~v(x) such tha t  

(,os) D , ,  If(x), ~0(x)} < , .  

We shall construct a kernel K(t). We first choose the numbers L i ,  1 so tha t  

the set 

(I 09) SL,. E ,  [f(x)] 
4 

is relatively dense, and tha t  any interval of length 1 contains at  least one number 

of the set (IO9). Define now the numbers d o and L 2 so tha t  for any [d[<80 

(I lO) DsI., [f(x + r~), f(x)] < e .  
4 

Now, by (59), for any function p(x) we have 

( i i , )  DSe,[p(x)] < 2DsL,,[p(x)] if L ' >  L" 

and hence when L &  max(L1, L2) we have 

(II2) DsL[f(x+ d),f(x)] < -* for any d < d 0  2 

and 

(II3) DSL [f(x + *),f(x)] < ~ for any �9 of the set (IO9). 
2 

By (ii2), ( i i3) 

(114) ~S L [f(x + * + d), f(x)] < e. 
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We construct the intervals L~ ( n = o ,  + I, +2  . . . .  ) of length 2do 

( I I~ )  *7~--do< X <  % + d o 

so that  ~,~ belongs to the set (Io9) and lies between the numbers n ( l +  260)- - [ l  
2 

and n(l  + 260)+ i l. The intervals I,~ do not overlap because 
2 

(,~6) (1 + 2,~0) + ! l + ,~o = (n + ~) (1 + 2 ~o) - ~- 1 '~0. 
2 2 

We now define the kernel K(t)  by the equations 

I 
K ( t ) - -  e ~- ~oo( lA-  2{~0) f o r  t ~ f n  (~t~---O, + I, +_2, . . . )  

K(t )  = o for all other values of t. 

Evidently 

7+T 
d o  

t ]  

7 

uniformly in y. 

We shall now prove that  there exists a sequence 

(118) I < T I <  T 2 <  . . .  < ~n - ' - -~  

such that the mean value 
+T~ 

i f / (  lim - ~ -  x 

-T n 

+ t )K( t )  d t  

exists for  all values of  x in the whole interval - -  ~ < x < + ~ .  

By Lemma I D w [ f ( x ) ]  is finite. Consequently there exists a number k > o  

such, that  D~x [f(x)] < k for all ~ > I ,  whence 

+T 

II/ I (II9) 2 ~  f ( x + t ) K ( t ) d t  < c k  for T >  [ and for a l l x .  
2 

--T 



236 A. S. Besicovitch and H. Bohr. 

Take  an enumerable  set  of  numbers  x 1, x~ . . . .  which is everywhere  dense in the 

whole in te rva l  - -  00 < x < + oo. By means  of the  )>diagonal argument)> we can 

const ruct  a s e t  

such t ha t  the  l imit  

1 < T I <  r , <  r~ < r . - ~  

+T~ 

(I20) ~ - - |  lira 2-L,.. ff(x,. § t )K( t )d t  
--T,~ 

exists for  every Xm. We  shall now prove  t ha t  the mean  value 

(i2,) 
+Tn 

,f lira 2T~ f ( x +  t) K( t )dt  

- - T  n 

exists for  all values of x.  Given ~ there  exists 61--~ 61(.2)> o such t ha t  

(122) Dw [f(t + 6), f(t)] < ~ 
2 e  

(on account  of L e m m a  2). 

for  all 6 < 8 1  

Le t  x be any  real  number :  take  a n u m b e r  x,, so t ha t  [x--x,~ I < 81. We  

conclude on account  of (I22) and of the definit ion of D w  t h a t  

(123) 

+T~ 

,f 2T,, I / ( x + t ) - f ( x a  
--Tn 

+t ) ]d t  < Dw[f (x+t ) , f (x , .+ t ) ]  + ~ <  ~ 
2 e  e 

for  all sufficiently large n, whence 

(I 24) 

+T~ 

['f 2Tn f ( x +  t) K ( t ) d t - - -  
- -  T n 

+ ~  

2 T,~ ~ f (x , ,  + t) K(t) dt 
- - T  n 

+ T n 

, f  <=c2~,, ' I f ( x + t ) - - f ( x m + t ) l d t < v  

--Tn 

for  all sufficiently large n. ~ being a rb i t r a ry  we conclude t ha t  the l imit  (121) 

exists wi th  the  l imit  ([20). 
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We write 

( I 2 5 )  

+ T~ 

q~ (x) :n--lim~ ~ f (x  + t) K (t) d t. 
--T n 

We have 

(I26) 

+ T~ 

I'f  I I~(x  + 6) - ~(x) l =n--| 2 T~, { f ( x  + (l + t) - -  f ( x  + t)) K (t) d t  

--T n 

+ ~  

~ l i m c  I f ( x + 6 + t ) - - f ( x + t ) l d t ~ c D w [ f ( x + ~ ) , f ( x ) ]  
?l~ao 

which proves (on account of Lemma 2) that ~(x) is continuous. Next, to ~- there 
C 

exists a length lo such that  the set Slo. E~_[f(x)] is relatively dense. For each 
c 

number ~ belonging to this set we get, applying (I26) to the ease d = ~, 

I f (z  § ~) - -  f ( z )  l ~ c D w  [f(x + ~), f(x)] ~ c Ds,o ~f(x + ~), f(x)] N 

which proves that ~(x) is an a . p .  function. 

Finally we prove t h a t  9(x) satisfies 

theorem. By (117) 

(127) 

and thus 

(lO8) and in this way complete the 

+ 1' 

f(x) =m--| ~T f f(x)K(t)dt 
- - T  

+ T~ 

I ' f  I ] 9(x) - - f ( x ) l  =,_lim| ~ [ f (x  + t) --f(x)]  K ( t ) d t  ' 

--T~ 

+T~ 

,f, =< lira ~ f ( x  
n-- -~  2 l ' n  

+ t) - - f ( x )  l K ( t  ) d t  

whence 
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x + L  x + L  + T n  

'f kf [ f (~)-  ~(~)ld~_-< d~hm. 2 If(~ 
x x --T n 

+ t) - - f (~ ) lK( t )  dt. 

Applying Fatou 's  theorem and then reversing the order of integrat ion we have 

x + L  

i f If( Z ~)- 

+ T n  ~ + L  

q~(g) Idg < lira 2--T,] 

- -  T n x 

+ t) - f (~)  [ d~ 

< J-It (D.,. L [f(x + l), f(x)] K(t)). 

Assuming now that  L has been chosen as in (II2), (II3) , (II4) , we have 

D~. L [f(x + t), f(x)] < 

for all values of t for which K(t) differs from zero, whence 

x + L  

' f i r (  ~ ~)- 
2~ 

q~(~) I d~ < ~ M{K(t )}  =- e 

which proves (Io8) and consequently (99). Theorem I Cw(A) follows from (94) 

and (99). 

Remark .  W e  conclude from (II7) and (I25) that  if [ f (x) l  =< Q for all x 

then also [~p(x)[ ~ Q. 

w 8. Sv. a.p. and W p. a.p. Funct ions ,  p > I. 

Theorems I Czv(d ) and I C~,a,(A ) (p> I). The closure C~p(A) is identical 
with {SP.a.p.} and the closure Cwv(A ) is identical with ( WP.a.p.}, i.e. 

(,29) C~,v(A ) = (Sp. a.p.}, 

(I 30) Cw, (A) -- { WP. a.p.). 

I ~ W e  have first to prove that  
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( I 3 I )  G ,  (A) = {s , .  , .  p.), 

(I32) 
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(~36) F~ Is(x)] ~ S~. E~ If(x)]. 

which shows that  

0 3 5 )  

(134) ~ / ~  [s(x)] 

(I33) Ds[  If(x) 8(x)] < f .  
�9 ' 3 

Fur ther  we have for any 

Ds~ ~ [f(x + ,), f(x)] <= Ds~ " [f(x + ,), 8(x + ,)] + 

+ Dz~ " [s(~c + ,), 8(x)] + Dz~. Is(x), f(x)] 

8 8 
< - + 1 ) [ 8 ( x  + ~), 8(~)] + - < ~, 

3 3 

Thus the set S~.E~[f(x)] is relatively dense, which proves (132). I f  f ( x )  is a 

function of the closure Csv(A ) then we can put  L = I  in the formulae (I33), 

(I35), (I36) and so obtain the result  tha t  f (x)  belongs to {S~'.'a.p.}: this proves ( I30 .  

2 ~ . W e  have now to prove the converse 

(I37) ' p '-= % ( A ) ,  ~8 . a. p . j  

(,3s) { W p. a.p.} ~ Cwp (A). 

Lemma.  To any WP.a.p.function (SV.a.p.function) f (x)  and any e > o  cor- 
respohds a bounded W p. a.p.function (S v. a.p.function) g(x) such that 

(~39) Dwv If(x),  g(x)] < e (Dsp If(x),  g(x)] < e). 

Let  N be any positive number.  W e  define the funct ion f•(x) by the 

equations 

Let  f (x )  be a funct ion of the closure C,,p (A). Corresponding to any s > o there 

exists a number  L > o and a function s(x) of A such that  
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(I4O) 

(I4I) 
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f~v(x) =f(x) w h e n  I f (x ) [  < N ,  

fa.(x) = ~" f ( x )  zv|f(x)l when I f ( x ) l>~v .  

We have for any pair x~, x~ of real numbers 

If.,.(x,)- f~-(x~)I < If(x,)- f(x~) I 

from which we conclude tha t  if  f ( x ) i s  a W ~. a .p .  function (Sv. a .p .  function) then 

so  is  f~(z). 
By the definition of WP.a .p .  functions, to any ~ there corresponds an L > o  

such tha t  the set 

( I42)  S p. E~ [ f (x ) ]  
3 

is relatively dense. Le t  l > o  be a number  such tha t  any interval of length 1 

contains at  least one number  of the set (i42). Then to any real x o corresponds 

a number  �9 of the set (I42) such tha t  the number  Xo + ~ belongs to the interval 

(o, 1). W e  have 

(I43) 

~+L ~,+Z 

[ i f  1lip [ i f  z l i (~)-s,, ,(x) l ,~] =< z If(x)-f(x+~)l'dx] 11"+ 
:to 

~ + L  xoq-L 

[,f [, + Z I . f ( x  + ~1 -f~,.(x + ,)l,dx] + Z 
xo 

l + L  

a -~ + I I f ( x ) - - f ~ ' ( x ) l P d x  + - .  
3 3 

0 

Given the numbers ~, l, L we can chose h r so tha t  

(i44) 

By (I43), (I44) 

l + L  ]l/p  
If(x) - f ~ v ( x )  l" ~ l x  < - .  

3 
o 

(I45) Ds~ If(x), f~v(x)] < ~,. 
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If  f (x )  is an S p.a.p, funct ion then we can put  L = I  in all above formulae. 

Thus we see that  (I39) will be satisfied by taking g(x)=f,v(x) .  
After  the Lemma has  been proved the proof of both s ta tements  (I37), (I38) 

presents no difficulty. The proof  being identical in the two cases we shall give 

it for the second case only. Given a W p. a.p. funct ion f (x)  and a number  ~ > o 

we define an _hr>o so that  

(I46) Dye p [f(x),  fee(x)] < -~ 
2 

where f•(x) is defined by (I4O), ( I 4 0  and is a W p. a.p. function, and therefore 

also a W.a.p.  function. On account of Theorem I Cw(A) and of the remark 

at  the end of w 7 to any e > o  there corresponds an a .p .  funct ion r and an 

L > o such that  the conditions 

8 p 
(147) DSL[fN(x),qg(X)] ~ (~)  (21u 1-~ 

I ~(x)I _-< x 

are satisfied. W e  have 

(i48) 
Xo + L :to+ L 

f i/p  (2 A T,I--1 {i f lip• 
~0 ~0 

By (I47), (148) 

(I49) D,s ~ [fee(x) q~(x)] < ~ �9 
�9 ' 2 

By (146), (149) 

(I5o) Dwp [f(x),  T(x)] < ~ .  

The number  s > o  and. the Wp. a.p. function f (x )  being a rb i t ra ry  in ( I 5 0 )  w e  

have proved (I38). In  the same way can be proved 037).  By (I3I), (I32), (I37), 

(I38) Theorems I Cap(A ) and I Cwp(A ) have been proved. 

3 1 - - 3 1 1 0 4 .  Acta  mathematica.  57. I m p r i m 4  lo 23 ju i l lo t  1931. 
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C HAPT E R  V. 1 

Bp. a. p .  Funct ions .  

w 9- Some Notions and Theorems on Translation Numbers. 

We pass now to the investigation of the general closure C~p(A) and of 

the class of Bp. a.p. functions ( p ~  I). But we have first to quote some theorems 

and notions concerning translation numbers of a .p .  functions. 

Let f ( x )  be an a .p .  function. We denote as usual by 

(, 50 E, If(x)] 

the set of all translation numbers of f (x )  belonging to e. We denote by 

(i 

the set of all integers of the set (i 5 i). Instead of the symbol (I 5 2) we shall some- 

times write only /~, omitting the sign of the function. Evidently the set E ,  is 

symmetrical with respect to the origine. 

We have the following theorems. 

Theorem 1. 2 For any a .p .  function f (x )  and for any , > o  the set 

E~ [f(x)] 
is relatively dense. 

We say that the set E~[f(x)] is almost periodic with an error ~ 7 ( > o )  

if there exists a posit ive 0 < s and a positive Io such that, (a, b)being any in- 

terval of leng4h > I0, the points of 

E~ If(x)] X (a, b) 

translated by any number of E~ [f(x)] go over on to points of ]~[f(x)]  

again, with the exception of at most ~(b--a) of them. We shall express this 

condition otherwise by saying that the points of ~ If(x)] • (a, b) translated by 

any number of Ee [f(x)] have a >>relative loss~> ~V.  

I f  a set E~ is almost periodic with an e~'ror as small as we please then we 

say that the set E~ is almost periodic (a.p. set). 

1 We are indebted to Mr. H. D. Ursell  for valuable simplifications of some of the proofs of 
this  Chapter.  

H. Bohr [I]. 
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In  other words: 

243 

A set E~ is a.p. @ to any 7 > 0  there corresponds a positive Q<e and aposi- 

tlve I o such that, (a, b) being any interva~ of length >1o, the points of E~ • (a, b) 

translated by a~y number of Ee go over on to the points of E~ again, with the 

exception of at most 7(b--a) of them. 

I t  is easily seen tha t  an a .p .  set / ~  is always satisfactorily uniform. 

We have 

T h e o r e m  2. ~ For any a.p. function f(x) the set 

/ ~  If(x)] 

is a.p. for almost all ~ > o. 

I o. B . a . p .  F u n c t i o n s .  

Given any a.p. set E~ of numbers ~i we define the function K(t)-~ K(t, d) 

(d < I) by the conditions 

K(t) = I for all intervals vi ~ t <: vi + d, 

o otherwise. 

L e m m a  1. The function K(t) is W.a .p .  

For given 7 > o there exis.t positive numbers Q and L > I such tha t  the points 

of ~ • (c, c + L) for any c t ranslated by any number  of Ee  have a >)relative loss>) 

7. Then for any ~ belonging to Ee 

c+L 

f ,K(t +v)--K( t ) ld t<= ZVLL+ , 

c 

d < 3 ~  

which proves the lemma, since Ee is relatively dense. 

L e m m a  2. The product u(t)v(t) of a trigonometric polynomial u(t) and a 

W. a.p. function v(t) is a W.a.p.  function. 

' A. Besicovitch and H. Bohr [2]. 
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Let D [u(t)] = M .  
nomial s(t) such tha t  

Given ~ we can find an 1 > o and a tr igonometric poly- 

Ds, Iv(t), s(t)] < z3 

since v(t) belongs to Cw(A). We obviously have 

Ds, [u(t) v(t) , u( t )  s(t)] 

<--_ MDst Iv(t), s(t)] < 

which proves tha t  u(t)v(t) is W.a.p. since u(t)s(t) is a t r igonometric polynomial. 

Lemma 3. I f  f ( t )~  CB(A) then also f(t) K ( t ) c  CB(A). 

Given ~ there exists a t r igonometric polynomial a(t) such tha t  

D .  [f(t), a(t)] < -~ 
2 

consequently 

(153) DB If(t) K(t), a(t)K(t)] < ~ .  
2 

On account of Lemma 2 a(t)K(t) is W.a.p. Consequently there exists a poly- 

nomial s(t) such tha t  

(154) Dw [a(t) K(t), s(t)] < -~- 
2 

By (~53), (~54) 

which proves the lemma. 

D~ [f( t)K(t) ,  s(t)] < e 

/.,emma 4. I f  f (t) belongs to the closure CB (A) then M{f(t)} exists. 

Given s > o  we can always write 

f(t) = s(t) + O(t) 

where s(t) is a t r igonometric polynomial and M{10(t)l} < - -  
4 
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There exists T o > o such tha t  

and 

Consequently 

+ T  

2~I f lO(t)lat < 
- - T  

for all T > T O 

+ T  

, 4 
- - T  

+ T  

- - T  

Thus for any pair of numbers T' ,  T "  each of which is greater  than  T O we have 

+ T'  + T "  

- -  T '  - -  T "  

d e  

which proves the lemma, 

Corol lary 1. M{f ( t ) }  exists for any S. a.p. and for any W.a.p.funetion f ( t ) .  

Corol lary 2. I f  {z~} ( i = . . . , - - 2 ,  - - I , O ,  1 , 2 , . . . ;  % = 0 ,  z~-~-=--~:-i) is an 

i 
lim - = p 
i ~ o  T i  

a.p. set then the limit 

2id 
a s  i - - - ~  ~ 

exists (and evidently is > o). 

For  

M { g  (t)} =- lira - -  

exists, since K(t)  is W.a .p .  

Remark .  An a.i0. s6t {z~} being satisfactorily uniform there exists a number  

b such tha t  v(b)<2#(b) where Ft(b), v ( b ) a r e  the minimum and the maximum 

number of numbers z~ on any interval  of length b. We  obviously have 

. ( b )  < p < < 

b = b 
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where p has the same meaning as in Cor. 2. Denoting by n(t, T) the number 

of ~'s in the interval (t--T, t+  T) we have for T >  b 

- - - ~ - <  + I j z T < 3 P .  

Lemma 5. I f  f (t) belongs to CB (A) then so does If(t)[. 

Given ~ > o  there exists a trigonometric polynomial a(t) such that  

Evidently 

DB[f,  a] <: e .  
2 

DB [ I f l ,  I,,11 < 
2 

As [a(t)] is a.p.  there exists ~ trigonometric polynomiM s(t) such that  

Thus 

which proves the lemma. 

_D [I o(t)[, s(t)] < 
2 

DB I[f(t)], s(t)] < E 

Lemma 6. I f / ( t )  belongs to CB(A) and i f  (vi} ( - - ~ < i < + w ,  % : o ,  
�9 -i-~---~i) is an arbitrary a.p. set (i. e. an a.p. set belonging to an arbitrary a .p .  
function) then 

x+3 

exists for every x a~d every d > o. 

Evidently we may assume d <  I. Define ~ purely periodic function p(t)with 
period I by the condition 

p(t)~-f(t) for x ~ t < x + r .  

The function p(t) obviously belongs to CB(A) and consequently f ( t ) - -p( t )  also 

belongs to C~(A). On ~ccount of Lemm~ 5 the function [ f ( t + x ) - - p ( t + x ) [  
(as u function of t) also belongs to CB(A). 

On account of Lemmas 3 and 4 the mean value 
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Mt{if(t + x) --p(t + z) l K(t)} 

exists. But  

Mt { I f ( t  + x) - -  p ( t  + x) l K (t)} 
*n +d 

= lira ~ f lf(t 
2T,~j  

2 n +  I 
l i l n -  

2 ~:n 

2 n +  i 
= l i m - - - -  

2Tn 

+ x) --p(t + x) lK(t) at 

+ n  * i+8  

I ~ flz(t + + )ldt 
2 n +  I i n 

r 

+ n  •  

I --~i f l f ( t+TD-- f ( t ) ld t .  
2~-[-  I i n 

By Lemma 4, Cor. 2 

2 n +  I 
l i m - - ,  a s  ~ - - * o o  

2 Tn 

exists (and is # o )  und consequently the limit 

x+8 ?1" 

lim 1--3---2•+1,._Z n f lf(t + ,,1 - f(t)] dt 
93 

ulso exists, which proves the lemma. 

Theorem I r (A). The closure CB (A) is identical with the class {B. a.p.), 
i.e. CB (A) = {B. a.p.}. 

i ~ We shall first prove that 

Cz (A)c  {B. a.p.}. 

Let f (x)  be a function of C~ (A) and % any positive number. We put 

f (x)  = s(x) + O(x) 

where s(x) belongs to A and 
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Choose ~ < ~o so tha t  the set E , ( s (x )}  is a.p., and let  its members  be wr i t ten  

*t. Then  the condit ion expressed by (7 6) is evident ly fullfilled; in fact  we have 

for  each i 

(r 56) M~ {If(t) - - f ( t  + ~,)l} < M, {I s(t) - s( t  + ~,) I~ 

+ Mt(lO(t)ll + $tt(lO(t+ 3;)1} < 3~o. 

Wo now proceed to prove the condit ion (77). By Lem m a  6 

z+c 

exists. By (6) and (9) 

+ T x+c 

l - T f J ] 1 i I I f  } 2 c I f ( t ) - - f ( t + ~ ) l d t  dx  
- -T x 

+ T x+c 

N 3 I i ~  C If(t) - - f ( t  + 3,)1 dt dx  

--T x 

T+c 

<= f ,f(t)-j(t +*,)ldt. 
--T 

Hence  for  every c > o we have 

x+c 

+ T  

<= ~_~lim i'~T f lf(t)-- f( t 
- -T 

+ ~ 3 l d t .  

In  this relat ion we write 

If(t) - f ( t  + ~)l ~ ~ + I o(t)[ + I O(t + ~)l 

and so obtain 



Almost Periodicity and General Trigonometric Series. 

(157) 
x + c  

~ e + So + l i m M i  1 I O ( t + ~ ) l d t .  
T ~ a o  

- - T  

Now 

+ ~7, + T %~ + T 

2~+~ ,= ~ = 2T(2n+1) IO(t)ln(t, T)dt .  
--T ~, n--T 

By (155) 

( I 5 8 )  

+ n  + T ~n+  T 

I Z ' f ,  , 2n+I , .=_ , , 2 -T  O(t+z~)ldt< 3p 2n + i 

and by Lemma 4, Cor. 2 

(I59) 

%~ + T 

lim --~-- f lo(t)lat 
n ~  2 n + I  

*_n--T 

= i ~ { I  o(t)I). 
P 

By (158), (I59) 

(16o) 
+ T  

if l im Mi~ [O(t+*,)Jdt<= aM{lO(t) l )  < 3*o 

- - T  

and so finally by (I57), (I6o) 

x + c  

x 

Since e0 is ~rbitrary, (I56) ~nd (16I) show tha t  f(x) is B.a.p. 

2 ~ We have now to prove that  {B.a.p.}~CB(A). 
an impor tant  lemma 

3 2 - - 3 1 1 0 4 .  Acta mathematlca. 57. I m p r l m 6  1o 23 juille~ 1931. 

W e  commence 

249 

with 
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then 

Lemma 7. l f  f ( t)  is a B.a.p.function and 

t + 6  

= f<<.> 
t 

~rt {If(t) --fa(t)]) ~ o, as ~ ---, o. 

The function f(t) being B. a.p. ,  to any ~ > o corresponds a satisfactorily uniform 

sequence {~,,} such tha t  the inequalities (76), (77) hold with p =  I .  Denote by 

ft(b), v(b) respectively the minimum and maximum number of numbers zi in an 

interval of length b: we choose b (as we may) so large tha t  

(162) v(b) < 2~t(b). 

The fact  tha t  the function fa  approximates the function f in mean in any fixed 

interval arbitrarily closely is stated by Lemma I of w I. Le t  V be any positive 

number  less than  b and put c=b+~] in (77). I t  follows tha t  we can choose a 

so tha t  

a + b + ~  __If (~63) M~ ~ -  v If(t) -- f ( t  + ~) l dt < ~. 
a 

W e  shall deduce from (I63) tha t  both f and f~ >>imitate>), in mean over the 

whole line from - - ~  to + oo, their  values in the interval (a, a +  b) with an ap- 

proximation arbitrarily small with s. Combining this result with 1emma I of w I 

we shall obtain the result desired. We  have 

a + b  a + b  

M, f If~.(t + ~ ) - - f ( t + ~ i ) l d t  <= Mi f lf,(t 
a a 

a + b  a + b  

+ + flf (t)-.f(t)ldt 
a a 

a+b+(~ a + b  

f f <~ 2M~ I f ( t+~ , ) - - f ( t ) [d t  + I fe( t ) - - f ( t )]dt  

ft 
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by (9). 
obtain 

If  6<~/ is so small that  the last integral is less than be we at once 

a + b  

Mi f [fe(t + ~i) - -  f ( t  + *i) l 
a 

dt < be + 2(b+~)e < 5be. 

Thus for n sufficiently large we have 

a + b  

< s b e .  

Writing this in the form 

(I64) 

a + b + *  n 

I f Z(t)lfa(t)--f(t)[dt< 5be 2 n + I  
a + z _ _  n 

we see that  in the interval (a+z-,~+b, a+z,~) the factor Z(t) lies between /~(b) 

and v(b) and that in the rest of the range of integration, it lies between o and 

v(b). Write 

T .  = r a i n  ( a  + ~ ,  - -  a - -  b - -  ~ - , , ) ;  

for n sufficiently large both the terms in the bracket are positive. 

gives 

tt(b) f l f ~ ( t ) - - f ( t ) [ d t  < 5 be. 2 n + i  

Then (164) 

Writing this formula for n + I we have 

+Tn+x 

f lf~(t) - - f ( t ) [  
-T.+I 

5 b e ( 2 n + 3 ) .  dt< ,(t,) 

Hence for T,  ~ T _~ T,,+I 

+ T  if 2 T If~(t) - - f ( t ) l  d t 
- - T  

+ ~n+i 

, f  < 2T. If~(t)-f(t)ldt 
- - T n +  1 

5 be(2n + 3) < 
2 2'. t,(b) 
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and thus 

(~6S) MtilfJ(t)--f(t)l} < t i m  5 b , ( 2 n +  3) < 5*v(b)< me. 
, - - =  2 T, ,~ , (b)  --- ~,(b) = 

Thus the left  hand side is arbitrarily small with (i: this proves the lemma. 

We now suppose as we may f ( t )  is real and positive and define a funct ion 

go~(t) by put t ing 

Then 

t+d 

qD~(t) = M~ u+~,) du. 

t 

t+d t+d 

t t 

By (77) 

I- ' /  + ~)d , ,  ~ M,-~ I f ( ' ,  + ~1 - - f ( u )  l du .  
t 

M, If~(t) - q~(t) I _-<~, 

in particular q~(t) is summable with the continuous function f~(t). By (I65) we 

now have 

(I66) M, If(t) -- ~e(t) I --<i ~ e. 

But if �9 be any real number  we have 

t.+(~+~ i 

Iq~(t + ~) _ q~e(t)l < L/,- I f ( u + . ) - - f ( u ) l d u  

t+*. i 

I I f < - ~ I f (u  + 3 ) - - f ( u ) [ d u  

t+v__ n 

I 
< - M , , { I f ( u  + ,1 --f(u)]} lira *'. 

i f  k be the value of lim z'~ then every B. translat ion number  o f f ( t ) be long -  
I.I--,o n 

ing to ~ is a uniform translat ion number, a fortiori an S. t ranslat ion number,  
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of q~j(t) belonging to 7- I t  follows tha t  q~(t) is an S.a.p. funct ion (we do not  

assert tha t  it  is an a . p .  funct ion  because we have not  proved it  continuous). 

Thus  we can find a polynomial  s(t) such tha t  

and a fortiori t ha t  

Mt{I s ( t ) -  ~<~(t) I} =< ~. 

Combining this with (I66) we obtain 

M < { I f - s l )  =< ,2~ 

and since ~ is a rb i t rary  f(t) belongs to Cs(A).  

w i i .  BV.a.p. Functions. 

Theorem I CBp (A). The closure C~p (A) is identical with the dass {Bp. a.p.}, 
i.e. %~ (A) = (B.. a.p.}. 

Given a funct ion f(x) we define fly(x) by t h e  equat ions 

f~v(*) = f ( x )  when I f(x)l ~ N 

f . ( x )  ~ N S ! x ) .  when l / (x ) l  > N 
I f (x)  I 

f(x) =f~(.) + R~(~). 

x~ Lemma  8. I f  f(x) c CBv (A) then 

Given e we can find a polynomial  s(x) such tha t  

DBp I f - s ]  < ~ .  

For  any N>=D[s] and for  all x we have 

I s~<(.)l  = I f (x)  --f~v (x) I ~ I f (x )  - 8(X) I 

and we write 
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and therefore  

DI~ v [f--fh.] <= D,,, [f -- s] ~ ~, 

which proves the lemma. 

Since f (x)  belongs to CB~(A), it  belongs also to CB(A) and so does A,'(x). 
Now in proving tha t  CB(A)c{B.a.p.} we showed that ,  given a funct ion f~v of 

CB(A) we can find corresponding to any V > o an a.p.  sequence {zi} (where i 

runs f r o m - - ~  to + ~ )  such tha t  

and 

m 

Mt{If~c(t+ ,,) --JX.(t)[} =< ~ for  all i 

x + c  

f If,,-(t 
x 

+ ~,) - - f x ( t ) ld t  <= for  all c > o .  

We choose V=~, '  (2~r) I"--p and find for  all i 

DBv [f,~- (t + ~,) - -  f,~- (t)] ~ e, 

(,67) DBv[f(t + z ; ) - - f ( t ) ]  =< ~ + 2DBp[Ra-(t)] <= 3~. 

We also find for  any c > o  

x.+c 

x 

X + C  x + C  

9a ;g 

x + e  

+ M , -  R~,(t)l~d 
C 

;r + c  

x 
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since it  is easily seen tha t  

I d t } = -  RN(t) x{ fls (t)lp _ Mt{I 1'>}. 
:g 

Now R~v(t) belongs to CBv(A ) and hence 

belongs to CB (A). 

As in the proof of Lemma 6 of w IO it follows tha t  

x + r  

x 

955 

exists, and hence by Fatou 's  theorem 

+T x+c 

- - T  x 

+ T x+c  

{if f 
- - ' 1 '  2~ 

T+c  

- - T  

~n + T + c  

= lim ~ - -  (IR~v(t)lpZ(t)dt 
n~o 2 n +  I J I 2 T  

*--n-- T 

where ~(t) is non-negatlve and does not  exceed the number  of numbers  *i in the 

interval  (t--T--c, t+T). Choose b as in w 1o, (I62) so tha t  v(b)<2t t (b) .  Then  

,~(t) < (2~T,/~ + I)  v(b) 

and 

z + c  

e j  
x 

~,(b) " ' m  ~" < - -  ' ,  - - M = ( I R ~ ( ~ ) l ' }  < = M ~ { I R ~ ( x ) l ' } ,  
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the a rgum en t  proceeding exact ly  as in L e m m a  7 of w IO. W e  now have 

z + c  

f 11,1,, I f ( t + * , ) - - f ( t ) l P d t l ]  <~ (2 + 2'>)e < 4e. 
x 

Since e is a rb i t ra ry  these results  combined with (I67) show t h a t  f ( x ) i s  By. a.p. 

2 ~ L e m m a  9. I f f ( t )  is B".a.p. then 

D~, I f - - f x ]  ~ o, as N ~ ~. 

Given any e > o  we 

for  every b > o 

can find a sat isfactor i ly  un i form sequence {.i} such t h a t  

x + b  

x 

< ~P. 

As in L e m m a  7 we choose b so large tha t  v (b )<2#(b ) :  we can then  find an a 

such t h a t  

Hence  also 

a + b  

M~i b f [f(t +~,)--f(t)l  p dt 
tI 

a + b  

< for every N .  

a 

Take  now N so large t ha t  

I t  follows tha t  

( I 6 8 )  

a + b  

b If(t)  f - -  f x  (t)I" dt < rP. 

a + b  
~ I  " 

,~  J If(t+ ~,) -- f~v(t +~) I p dt 
a 

< (3 ~)~. 
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Now 
n a+b 

i f ( t + z , )  - - f ~ ( t + . , ) I  p d t  

a 

a+b+%z i~  
= b(2n+ I) If(t)--f2v(t)lPZ(t)dt 

a + ~___q~ 

where Z(t)>=#(b) in the interval (a+b+,-~, a+~n). Hence 

a+b f ~)1 ~ d t>  tt(b) lira *'~. ~h{If(t)-L~.(t)l ~} 
= b I"~---~ n 

g 

>= ~- Mr{ i f ( t )  - f~v (t)I ~} 
2 

and so by (I68) M,{lf(t) --fN(t)I p} ~ 2(3 e)p. 

Since this holds for all N sufficiently large, the lemma is proved. 

Now f ~  being B~.a.p. is clearly also B.a.p. and therefore belongs to 

CB (A). Being bounded it also belongs to C~p (A). Thus we can find a polynomial 

s(t) of A such t h a t  DBp [f~.--s] is arbitrarily small: since, by Lemma 9, D~ [f--f/] 
is arbitrarily small so is DBp If--s], and thus f belongs to CB~(A ). Combining 

1 ~ and 2 ~ we obtain the Theorem. 

CHAPTER VI. 

Algorithm for Polynomial Approximation. 

w 12. Problem I I  in the Case of a.p. Functions. 

In Chapters IV and V we have given a solution of Problem I of Chapter 

I I I .  Let us now pass to Problem II, i.e. to the construction of art algorithm 

for the approximation by finite ~rigonometrical polynomials to functions of 

various types of almost periodicity. 

3 3 - - 3 1 1 0 4 .  Acta matheraati~L 57. I r n p r i m 6  lo 23 ju i l le t  1931. 
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For the solution of this problem in the ease of purely periodic functions 

we started from Fourier series. The required approximations were given by 

Fej6r sums. 

The solution of Problem I I  for various types of a.p. functions will be 

based on that  for the class of a .p .  functions. In the theory of a .p .  functions 

the notion of Fourier series is a fundamental one. I t  has the following meaning. 

I f  a function f (x)  is a .p .  then it can be shewn that  the mean value 

M {f(t) e -'~'t} 

exists for all real values of ~, and that it may differ from o for at most an 

enumerable set of values of 

z/l ,  J / ~ , . . .  

Writ ing 

we call the series 

M{f ( t )  e-~A, ,'} ~- A,, 

the Fourier series of f (x)  and write 

f ( x )  ~ Z A , e ' ,  ~. 

I t  will be shewn further that  the Fourier series exists in the same sense 

for all types of a.p. functions, which have been considered. 

In the case of a .p .  functions a solution of Problem I I  was given by 

H. Bohr [2]. In  this case it is a problem of a construction of a sequence 

{s,(x)} of finite trigonometrical polynomials, which approximate the function 

f (x)  uniformly in the whole interval - - ~ < x <  + ar Bohr's sums s,,(x)con- 

tained as exponents only the Fourier exponents of f (x ) ,  a fact of importance 

for the extension of the theory to the case of functions of a complex variable. 

An essentially simpler method of obtaining such approximation functions s,,(x) 

was given by Bochner [I], who succeeded in extending the Fej~r summation 

method of classical Fourier series to the class of a.p .  functions. In a later 

paper ([3] P. 205 footnote) he extended the Fej~r summation also to the class of 

S.a.p .  functions, giving thus a solution of Problem I I  for this class. Like Bohr, 

he started from the representation of the ,,Fourier exponents>> _//, with the help 
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of a ~)base)~ a~, a.~, . . .  By a base we mean a sequence of linearly independent ~ 

positive numbers al, a .2, . . .  (which generally is infinite but in particular cases 

may be finite) such that  every exponent l / ,  may be expressed as a finite linear 

form in the a's with rational coefficients, 

As was explained in Chapter II, Fej~r in his summation of Fourier series 

of purely periodic functions f(x) ,  with period 2~, used as approximation sums 

the expressions 

= f 
--  7C 

where the ))kernel)) was given by 

�9 t 2 

Bochner replaced Fej6r's simple kernel by a finite product of such kernels 

(I70) K(t )  = K lnl'nv~;,O .. . . .  ..... :~p)'P ( t ) =  K,,,(~at) ... K , ~ ( ~ t )  - -  

: ~ (I--]Y|'] "'" (I-- [~p) ~--'(~'(~'+'''-b~p{3p) ' 
- - n l ~  qq <: + n  I 

--np<=~p< +~p 

where the fl's are linearly independent numbers: This composite kernel has the 

same characteristic properties as the Fej~r kernel: it is always positive and its 

mean ~alue is equal to I (the constant term in the polynomial expansion of 

K(t )  being I on account of the linear independence of the fl's). 

1 a l ,  a2  . . . .  a r e  s a i d  t o  b e  l i n e a r l y  i n d e p e n d e n t  i f  n o  e q u a t i o n  o f  t h e  f o r m  

r x cQ -]- r ~ c ~  ~- �9 �9 �9 -]- r 2 v a  N ~ o 

h o l d s  i n  w h i c h  N ~  I a n d  t h e  r n  a r e  r a t i o n a l  a n d  n o t  a l l  z e r o .  
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We form an expression similar to (x69) 

, , ( x )  = . . . . . .  r (x) = M ( f  (x + t) KI"~,8,, ............ ,3 ...... ~,,lv~l (t)}. 

We have 

f ( x  + t) ~ 2~A,d  A,~ e iAvt . 

Multiplying f ( x +  t) by each term of the right hand side of (17o) and taking mean 

value we find 

~fl,, fl~, ~pl T t l /  OZp / 

- - n p  ~ ",'p ~ n p 

where 

(I73) -4,, = vlfll + "'" + vI'~v 

and A, is to be interpreted as zero when the linear combination (I73) of fl's is 

not an exponent in the Fourier series of f ( x ) .  

We call the kernel (I7O)))Bochner-Fejdr kernels) and the polynomial (I72) 

))Bochner-Fejdr polynomiaL). We call the numbers fl~, {t.~, . . . ,  ~p ,basic numbers)) 

and the numbers nl, n2, . . . ,  ~p ))indices)) of Bochner-Fe.]~r kernel (or polynomial). 

We shall further use the notation a~ (x) instead of the detailed notation 

, f l ,  , (~,, . t i p /  

and we shall use the notation az,(x),  alto(x),..,  for Bochner-Fej6r polynomials 

corresponding to different systems of basic numbers and indices. Bochner takes 

as basic numbers for his polynomials, numbers formed from a's (base of f ( x ) ) .  

In fact he puts 

Cg I Ct~ . g p  

where N1, N 2 , . . . ,  Np are positive integers: His result is 

Theorem II C(A). The sum 

.N 1 --, oo, N~ --* 00, . and "1 

a~ (x) tends uni formly to f (x) ,  as p - - , ~ ,  
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A sequence of Bochner-Fe.i@r polynomials 

. . . .  

261 

is called >>Bochner sequence)> if the basic numbers and the indices satisfy the 

condition of the above theorem. 

(I75) 

Remark. From the expression (I72) it can easily be seen that  

ffl ~ '  ~ . . . . . . .  np ~ ( X ) =  (~I n,, n . . . . . . . .  p,~'p41 . . . . .  ,~p+q~(X) 

if all a's of the base of f(x) and the numbers f l~ , . . . ,  flq form a linearly in- 

dependent system. Thus the sequence (174) remains unaltered if we add new 

basic numbers, linearly independent with the base of f(x),  and with arbitrary 

indices, in other words the sequence (174) is identical with the sequence 

75) (x),  (x) ,  . . .  

if for any i B /  contains all basic numbers of Bl with the same indices plus 

any number of other basic numbers which form a linearly independent system 

with all a's. 

The notion of a base of the exponents of the Fourier series was introduced 

by H. Bohr [2] in order to connect the theory of a.p.  functions with that  of  

purely periodic functions of infinitely many variables: it was by means of this 

connection that  he gave a solution of Problem II. I t  was also used for the 

investigation of the set of values which all a . p .  function may take. These 

investigations of Bohr and the above Bochner-Fej4r summation show how im- 

portant is the notion of a base of the Fourier  exponents and how close is the 

connection between an a.p. function and its Fourier series. 

w ~3. Problem II in the General Case. 

We shall now show that  generally for all types of a.p. functions, which 

have been considered in this paper, a solution of Problem I I  can be given by 

Bochner's sequences. 

We have first to prove 
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Theorem I on Existence of Fourier Series. 

For all types of a.p. functions the Fourier series exists. 

According  to the definit ion of a Four ier  series we have to show t h a t  

I ~ for  any  a.p. funct ion f (x)  the mean  value 

+T 

M {f(x)  e -*a~) = l im ~ t ' f (x)  e -'~'~ dx  
T ~  2 1  ] 

--T 

exists for  all real  values of ~, and t ha t  

2 ~ i t  may  differ f rom nough t  for  a t  most  an enumerab le  set of values of A. 

As the  classes { S p. a. p.}, { IVp. a. p.~ (p ~ I) and ( B p. a. p.} (1o> I ) are included 

in the class (B. a.p.} the proof  given for  the la t ter  class will be a genera l  proof.  

The s t a t ement  I ~ is an immedia te  consequence of l emma 4, w Io, since 

for  a n y  real  A the function f ( x )e  - i ~  belongs to the  class {B .a .p . }=  CB(A) 
f toge ther  wi th  the funct ion  f (x) .  W e  now determine  a sequence ,s,~(x)j of finite 

t r igonomet r ica l  polynomials  such t ha t  

B.  lira s~(x) = f ( x ) ,  as , -~ ~ ,  

whence 

(I77) B. lira s~(x) e - ' ~  = f ( x ) e  - i ~ ,  as n --* r162 

I t  follows a t  once f rom (I77) t ha t  

l i r a  M {sn(x) e -~ ' x }  - -  M {f(x) e-~a*}. 

For  any  fixed n the num b er  M{s,,(x)e -ia~) may  differ f rom o only for  a finite 

n u m b e r  of  values of ~ namely  the  exponents  of  sn(x), f rom which we conclude 

t ha t  

lira M(8.(x) e- '") ,  as 

m a y  differ f rom o for  a t  mos t  an enumerable  set of values of ~, which proves  

the  s t a t emen t  2% 

Theorem I I .  

8eq,ue~ce 

I f  a function f (x )  belongs to the closure CG (A) then any Bochner 

,qBn (X), 
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satisfies the condition 

(I78) D o [ f ( x ) , a f  (x)]--~o, as n - ~ .  

We shall first .prove the theorem joint ly for the case of the closures Csp(A), 

Cwp (A) (p ~ I) and then- fo r  the case of the  closure CBp (A). 

i ~ . In  the same way as in the case of Theorem II ,  3 of Chapter  I I  we 

can prove the following 

Auxiliary Inequality. 

I f  ~p(x) is a function of the closure Cwp (A) then for any Bochner-Fej~r poly- 

nomial a~ (x) and for any L > o we have 

(179) Dsp Ia~ (x)] --<_ Dsp L [~p (x)l. 

Let  now f ( x )  be a function of Cwp(A), and let 

(~so) at, (x), a~,,(~),... 

be a Bochner sequence. We shall prove the theorem for the case of the closure 

Cwp(A ) by showing tha t  given e there exists a number L > o  and an integer n o 

such that 

(~s~) 29~ If(x), a~, (x)] < 
for all n > n o, 

We know tha t  to a given e there corresponds a number  L and an a . p .  

funct ion ~(x) such tha t  

(~s2) ~s~ [f(~), ~(x)] < ~-. 
3 

We shall show tha t  we,can satisfy (18i) by this value of L .  

We  form a base of ~0(x) by taking all numbers of the base of f ( x )  and by 

adding if necessary some other numbers. We form a Bochner sequence of ~(x) 

(~s3) ~,  (x), a:~, (x) , . . .  

in such a way tha t  for all n B ' ,  consists of all basic numbers contained in 

Bn with the same indices and possibly of numbers of  the base of ~ (x )which  do 

not  belong to the base of f ( x ) .  Then on account of the remark tO w I2 we have 

af n (x) = af, n (x) for all n 

(we shall use this fact  also for the proof of the formula (I96)). 



264 A. S. Besicovitch and H. Bohr. 

Putt ing in (I79) ~p(x)=qD(x)--f(x), B=B', ,  and observing that 

we shall have on account of (I82) 

(i 84) D,~.~ [a~PB, (X), aYBn(X)] < 3" 

The sequence (i83) being a Bochner sequence and ~(x) being an a.p. function 

we have 

(I85) up. b. [ ~o(x) - -  ~ ,  (x)] < ( 
3 

for all n greater than a certain integer ~*o, whence 

(is6) (x)] < 3 

By (I82), (186), (I84) the inequality (181) is proved, which shows that 

(I87) D,,~0[f(x), a:B, (X)]-oO, as n - ~ .  

In the case when the function f(x) belongs to Czp(A ) we may put in the 

inequality (t82) L = I  for any r and thus we shall have the inequality (I8I) 

satisfied by L - - I  for all values of r. Consequently in this case 

(I88) Dsp[f(x ), a~, (x)] ~ o ,  as n-~oo.  

Thus the theorem I I  has been proved for the cases of closures Czp, Cwp (p>= I). 

Remark. In the case when the function f(x) belongs to Cwp (but not to 

Czp) the inequality (I8I) is somewhat sharper than the limiting equation (I87) 

which we had to prove. For it shows some feature of uniformity of the 

approximation to the function f(x) by the functions of the sequence (i8o). We 

have really that  for a given e the inequality (i8I) is satisfied by the same value 

of L for all n > no, a fact which cannot be deduced from (I87). 

In the case of p = z  this property of approximation b y  trigonometrical 

polynomials was discovered by R. Schmidt [I]. 
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2 ~ . We pass now to the proof of the thearem in the case of the closure 

C~p (p>= I). As before we shall first prove the following 

Auxiliary Inequality. 

I f  a function ~p(x) belongs to C,,'p(A) then for any Bochner-Fej& polynomial 
aw B (x) we have 

( 1 8 9 )  

We have 

By HSlder's theorem 

D~v [~ (x)] _--< D~, [~(x)]. 

a~(x)= M{~p(x + t)KB(t)}, 

l a~ (x) l =< M{I ~p(x + t) lKB(t)}. 

I a~ (x)I v ~ Mt {I ~p(x + t)I v Ks(t)} 

and thus 

(I 90) {DBp [aB~(X)]}V ~ ~ r  Mt {I W( x + t)I v Ks(t)} -~- M~ Mt {I ~p(t)I v K s  (t--  x)}. 

To any V > o correspond values of L as large as we please and such that 

(19I) 

L 

M~MtiI~P(t)I~ < Mt{l~P(t) lvKB(t-x)}dx + 7. 

0 

By (I9O), (I9I) and by Fatou's theorem 

( 1 9 2 )  

But for sufficiently large values of L 

L 

o 

L 

f  Bit x, x} 
o 

(I93) 

By (x92), (I9.3) 

dx < M{KB(t)} + ~ -- 1 + 7. 

(DBv [a~ (x)])p < (1 + 7) Mt {I ~p(t)Iv) + 7. 
34--31104. Aeta  mathemat lca .  57. Imprlm6 le. 23 juillet 1931. 

+ 7 -  
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being arbi t rary we have 

{D~v [a~ (x)]}v < M, {[ ~pit)Iv) 

which proves (x89). 

Now we can arrive immediately to the proof of our theorem. 

tha t  to any e corresponds an a . p .  function 99(x) such tha t  

(I94) DBp [f(x), 99(x)] < _e. 
3 

We  know 

We define fur ther  a Bochner-Fej6r polynomial a~(x) such that  

(I95) u p . b .  1 99 (x) - -  (x) I < 
3 

Put t ing  in ( I89)~p(x)=f(x)--99(X) we have 

DBp [a~ (x), a f (x)] < D~v [f(x), 99(x)1 

and by (I94) 

([ 9 6) D,~ [a~ (x), G (x)] < ~ �9 
3 

By (I94), (I95), (196) 

D~p [f(x), af~ (x)] < 

which proves the theorem. 

Uniqueness Theorem. 

I f  two G.a.p.funetions f(x),  g(x) have the same Fourier series then 

Da If(x), g(x)] = o. 

The proof is identical with the one for the class *e r  of w 4. . W " d  " I  
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Appendix. 

B.  a. p .  Functions. 

When giving the definition of B. a. p. functions, we mentioned a possible 

variation of conditions by which the functions have been defined. By this 

variation we obtain a new class of a.p. functions, defined as follows. 

Definition. We call a function, f ( x )  a B. a.p. function i f  

M~ (I f(x)I} 

is finite and i f  to any e > o corresponds a satisfactorily uniform set of  ~mmbcrs *i 

such that 

(i) M~ W(x) -- f ( x  + *,)l < 

for  all - - ~ < i <  r162 and 

(~) ir~ M, If(x) - - f ( ~  + ~,)1 < e. 

We call numbers *i B .  translation numbers of f ( x )  belonging to e. 

The. class of all ~t. a.p. functions is denoted by {/~. a.p.}.  The conditions 

by which B. a.p. functions are defined seem to be simpler and more natural than 

those by which B. a. p. functions are defined, as the condition (2)does not involve 

the smoothing integration,  in. the definition of B. a:p. functions, but the class 

{B .a .p :}  has the advantage of being identical with the closure CB(A). I t  will 

be proved that  {B. a.p.} is contained in {B.a.p.} and that  they are very near 

each other, in fact  from some point of view identical to each other. For though 

{B. a.p.} is not contained in {B. a.p.}, but to every /]. a.p. function corresponds 

a B . a . p .  function with the same Fourier series. On account of this connection 

we consider the study of the class {B. a.p.} as a study of {B. a.~.} from point 

of view of a.p. properties given by (2). 

Lemma 1. I f  A1, A2, . . .  is a set o f  finite real numbers such that M i A i >  c 

then to any i' corresponds an i " >  i' as large as we please and such that 

Ai,+l + Ai,+2 + ... + A~,, > ( i " - - i ' ) c .  
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The proof is obvious. 

Theorem 1. (B. a .p .}c(B,  a.p.}. 

In  order to prove Theorem I we first prove the following lemma. 

Lemma 2. I f  f(x) is a tl.a.p, function and (*i} are B.a.p. translation 

numbers of f(x)  then 

1 1 

0 0 

Lemma 2 is true when we mean by Mi in (3) the upper mean value corresponding 

either to all v, ( - - ~  < i <  cr or only to ~ with positive indices ( o < i <  ~). The 

proof in both cases is identical, but as the writing of formulae is slightly simpler 

for the second case we shall prove the lemma for this case. 

If(x) - f ( x  + 3,)1 dx = f ~ ,  If(x) - f ( x  + ~)ldx + a 

Proof. Suppose tha t  the lemma is not  true and tha t  

1 1 

(4/ M,f 
0 

where a > o. 

We shall first give the idea of the proof. On account of (4) we conclude 

tha t  to any positive number  e corresponds an integer n as large as we please 

and such tha t  

1 n f --'/(X~-Ti) l"v~i{If(x)--f(x-~Ti)]}--$]dX>(1--2~" 
0 

For  sufficiently large values of n the in tegrand is negative in the whole range 

of integrat ion except a set @ c (o, i) of arbitrarily small measure. 

Thus 

k If(x) - f ( x  + ~)1 - -M* {If(x) - f ( x  + ~D I} - ~] 
i = 1  

d x > a - - 2 ~ .  
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Mi (If(*) - - f (x  + ~,)l} and ~ ~ If(x) I = If(x) I 
Tt i = 1  
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being summable and independent of n we conclude that  for sufficiently large 

values of n 

f 
@ 

The meaning of this inequality is that  we can construct in each of the intervals 

(zi, z i+  I) ( i = I ,  2, . . . ,  n) a set ~ congruent with ~ and such that  

. x d x > a - - 3 e .  

By choosing a suitable n we can take for ~ a set of arbitrarily small measure. 

I t  follows that  we can construct in each of the intervals (*i, ~i + ~) ( i =  I, 2 , . . . )  

a set @~ such that  

Mi ; [ f (x )]dx  > a -  3e 
J 
@i 

and that  

m~i----)o, as i - -*~.  

These sets naturally are no longer congruent. 

be the characteristic function of E.  We have 

c o  

Let E =  ~ ~i and let ~(x) 
i = l  

(5) M{9(x)} = o, M{9(x)If(x)I} > b 

(we call the second of the above numbers >>the upper mean value of If(x) l along 

the set E>>) where b > o  is some constant. 

Now we take into account the almost-periodicity condition (2). On account 

of this condition the values of the function If(x) l on almost any interval are 

roughly speaking imitated throughout the whole range of values of x. 
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By (5) we conclude t h a t  we can find an in terval  (c, d) such tha t  

d 

f  ( )lrlx)idx= f lS(x)id > 
c (c, d). E 

and tha t  the  mean  densi ty  of  E on (c, d) is as small  as we please. On account  

of the above >,imitation property>) we can cons t ruc t  a set G of a rb i t ra r i ly  small  

density, imi ta t ion  of the set (c, d). E in the  whole range  of values of x ,  on which 

the  mean  densi ty of I f(x)l is g rea te r  than  b. W e  define in some way a sequence 

of non over lapping  sets 

G1, G~, . . .  

s imilar  to G, of decreasing mean  density,  on each of which the  mean  densi ty 

of lf(x)l is g rea te r  t han  a fixed constant ,  and  thus we come to the conclusion 

t ha t  Jl~{if(x)l } is infinite which is impossible on account  of the  definition. I n  

this way we shall  prove the  lemma.  W e  shall  prove it  in four  stages. 

I ~ . W e  first  prove t ha t  there  exists a set  E of values of x such t ha t  if  

O(x) is i ts  character is t ic  funct ion  then  

a 
(6) M,{O(x)} = o and M , { O ( x ) I f ( x ) I )  > 4b 

where b > o is to be defined later.  

Le t  

(7) o < ,  < a 
4 

and let  l 7 > o  be such that ,  @ being any set of points  in the  in terval  (o, I), we 

have  

(8) f If(x) ldx < , ,  i f  m R  < V. 

W e  can evident ly  find a n u m b e r  ~o such t ha t  the set @ of all values of x in 

(o, I) for  which the inequal i ty  

(9) 
?1 

.t ~ I/(~)-/(x §  > ~7,1/(x)-i(x + .,)1 +~ 
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is satisfied for at least one value n--> no, is of measure less than ~7. We have 

then for any n ~ n  o 

(io) 

o r  

(iI) 

n 

(o, l)--e (o, 1)--e 
1 

<= f-~,lf(~)--f(x+ *,)1 dx + 
0 

1 

.= f ( x )  - - f ( x  + -D I,/x < I f ( x )  i f ( x  + ~,11 d .  + 
(0, 1)--@ 0 

and consequently 

1 

(I2) Mi - - f ( x  + < 

(0, 1)--~ 0 

We have 

(13) 

By (4), 

1 

o (o, ~ ) - -~  

+  ,,flf(x)-f(x + z , ) l d x .  

( I 2 ) ,  ( 13 )  

(I4) 

and 

(I5) 

consequently 

f [f(x) ldx + ~L f'lf(~ + <ld~ >--_ a - -  ~. 

By (7), (8), (15) 

(16) ~ f [f(x + z~)[ dx > a_.2 
@ 



272 A. S. Besicovitch and H. Bohr. 

Denote by kr the number of all *i satisfying the inequality 

( I 7 )  ( j - - I ) b  <~ Ti < j b  

and suppose that  b is so great that  the ratio of the greatest of kj to the smallest 

is < 2, which is possible, since the sequence of numbers *i is satisfactorily uni- 

form. Thus there exists an integer k such that  

( I 8 )  k <5 ]r < 2 k  

for all j .  We take now those numbers ~, which satisfy (I7) for an odd j and 

denote them in order of their greatness by 

We denote the other ~i by 

�9 F 
TI ~ T2, ~ . . .  

p !  tt  

Then at least one of the two inequalities 

(I9) M i / [ f ( x + ~ ' ' ) l d x > a ' 2  "@if  ] f(x+*/ ') ldx>a-2 

is satisfied. Suppose that  it is the first one. P u t  in ( 1 7 ) j = : 2 l - - I  and denote 

by h that  one (or one of those) of the numbers ~, of (z7) for  which the integral 

(I9, I) flf(. + ~i)[ dx 

has the maximum value. We shall have by virtue of (I8) 

  flf(x + 6)ldx >= ~, f lf(x+./)ldx 
(2/--2) b _~ ~t' < (2l--1) b 

.f If(x+ti) o_ ~i, f 
i = l  ~ v 2 n b  

> 

n 2 k n 

y, f lf( x+  */)[dx 
O <= ,~i' < 2nb  > I e 

2 kl-~ ks + " + k~n-1 
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But  k t + k  a + . . .  ~-k2n-1 is the index of the largest ~i' which is < 2nb. Then 

we conclude from (2I) 

(22) f + t')l dx >~- I--Mi2 ,~f If(x-F ~q')ldx > a~'4 

Thus corresponding to any V > o  we have a set ~m(o ,  i) of measure < V ,  for 

which (22) is satisfied. Let  us give to V a sequence of values 

( 2 2 ,  I )  ~]1 > ~ > " ' "  ~Tn ~ 0 

and let us denote the corresponding sets ~ by 

~ 1  ~ ~ 2  ~ " " " 

Denote by t~J) the Value of t/ corresponding to ~ = ~ j .  We  have for all j 

(23) 2 ( i - -  I)b ~ @ < 2ib 

and 

(24) Mi f I f (x  + t~)) I dx  > 41 a. 

e~ 

From (24) we conclude on account of Lemma I tha t  we can choose numbers 

il < i2 < i3 < "'" such tha t  

i l  

fir(. 

and tha t  

, i x f  I n t~) )]  d x  > - a ,  [ f ( x  + t~) ) [  d x  > - a ,  
4 i~--i I - -  I i 2 4 

I 
I f ( x  + t~31) [ d x  > - a ,  . . . 

i a -  i~-- I 4 "~-1- 
~3 

(26) in -- in-1 "--) oo, as n ~ oo. 

The difference between any two consecutive numbers of the sequence 

(27) t(1), t(s), t(1) r t(2) -, t[~), t(3) , 
1 2 " " ")  i 1 ~ i 1 + 2  ~ i 1 + 8  " * ") ~e i 2 +  2 " " " 

3 5 -  3 1 1 0 4 .  Ac ta  mathemat ica .  5 7 .  I m p r l m 6  l e  2 4  j u i l l e t  1 9 3 1 .  
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is always greater  t han  b. Deno t ing  by [ ~ +  u] the set of the numbers  of 

each increased by the number  u, and observing tha t  all the  sets ~j are included 

in the interval  (o, I), we see tha t  no two sets of the sequence 

(28) [r + t~,)] [~, + t~,)], [e~, + tl.[)], [ ~  + t(~) ] 
�9 . .  i 1 + 2  ~ . . .  

have points in common. 

its character is t ic  function.  

of (22, I) tha t  

Denote  by E the sum of all sets of (28) and by O(x) 

Remember ing  tha t  m~j  < , ] j  we conclude on account  

M~ {O(x)} = o.  

We conclude fu r the r  on account  of (25), (26), (23) tha t  

(29) M, (O(z)If(z)I} > ~ -  
= 8 b  

Definition. I f  F is a set of  points and O(x) its characteristic function then 

we call the numbers 

M, {O(x)}, M~ {O(x)), M~ {O(x)} 

the upper density of F ,  the lower density, and simply de~sity and we denote then by 

D(F),  D(F), D(F). 

As we said before we call the number  (29) the upper mean value of ]f(x)] on the 

set E .  In  the same way is defined the lower mean value on the set E .  

2 ~ We now proceed to const ruct  a certain class of sets of arbi t rar i ly  

small density on which the upper  mean value of ]f(x)[ is grea ter  than  some 

fixed number.  Le t  d be an arbi t rar i ly  small  positive number.  Take q 

a 

(30.) o < ~1 < 96~ 

and let  ai be B. t rans la t ion numbers  of f (x)  belonging to I - so tha t  4 el, 

(3i) M~ Mi [f(x) -- f ( x  + ai) l < q 

(where 21I~ and 3Ii are taken  only over positive values of x and i). W e  choose 

a number  c > o sat isfying the following conditions 



(32 ) I)  

(33) 2) 
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[E. (o, e)] 
2C 

< d  

275 

o 

C 

 fo( o x) If(x) ldx > ~ - ~, 

o 

4) the ratio of the maximum number  of numbers  ai lying on a segment  of 

length c, to the minimum number  is < 2. 

Let  e ~ > o  be such tha t  

(3 5) f o(x)if(x) i 
@, 

# 

for  any set @ ' c ( o ,  c ) o f  measure less than  e~. We can find an integer  n o such 

tha t  the set @' of all values of x of the interval  (o, c) for  which the inequali ty 

(36) 
n 

i ~.= IS(x) - f ( x  + ,,)1 ->- iT; I f (x)  - f @  + .DI + ~, 

is satisfied for  at  least one u > u 0 ' ,  has a measure < e 2. W e  have then  

(37) ni=l 

By (33), (37) 

(3S) 

and a f o r t i o r i  

(39) 

f f If(x) - - f (x+m)  ldx < M~lf(x) - - f ( x+@. ldx  + e,c. 
(o, c)--~' (o, c)--~' 

_if M i -  W ( x ) - A x + ~ D l d x <  2~, 
C 
(0, c)--~' 

i f  Mi-  If(x) - - f ( x  +ai) ldx < 281. 
C 
E. (o, c)--~' 
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I n  a way  ana logous  to  one used in I ~ f r o m  (I7) to (22) fo r  def ini t ion of  

n u m b e r s  tt we can find a set  of  n u m b e r s  

such t h a t  

(40) 2 i c  <-- 8i < 2(i  J- I)C, 8i+1 - -  8i > c f o r  i =  I, 2, 3, - . .  

and  t h a t  

(4~) I f If(x) - - f ( x  + *) ldx  < 4~, 
E. (o, c)--~' 

(st is t h a t  o f  o, wh ich  renders  the  in t eg ra l  

f lf(x) - - f ( x  + o,)1 d .  

E. (o, c ) - ~ '  

m i n i m u m  (and no t  m a x i m u m  as in (I9,  I)) when  i varies  in some interval) .  

Obse rv ing  t h a t  

(42) M ~ I B ,  I > M ~ I A ,  I - M~I A~--B,I 

a nd  p u t t i n g  

Ai='-c flf(x)iax, Bi =Ic flf(x+.)l 
E. (o, c)--~" E. (o, c)--~' 

dx 

we shal l  have  

, f..,a.).-,,(. 
E. (o, e)--e' E. (o, c)--e' R. (o, c) - r 

+ ,,)I} dx [ 

and  a for f ior i  

(43) I f [  f ,  ~ f ,  7 f ( x + . ) l d x > = !  f(x) l d x - -  f(.)[dx 
�9 C C 

E. (o, c)--r E. (o, c) ~'. E 

1.:. (o, c)--W 

+ *,) l dx. 
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By (34), (35), (4I), (3 o) 

I f  o (44) M i c  I f ( x  + si)[dx > ~ -- 6e 1 > I-6b" 

E. (o, c) 

The sets 

(45) [ E .  (o, c) --}- st] i =  I, 2, 3 . . . .  
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are non overlapping. Denot ing by G the sum of all sets (45) and by ~o(m) the 

characteristic funct ion of G we shall have 

(46) M{9~ (x)} --  m { E .  (o, c)} < d 
2C 

and also on account of (44) 

a 
(47) _M~ {~(x)If(x)I} > 

32b 

Thus corresponding to any number d > o we can construct a (,>segmentwise periodie*) 
a 

set G of density < d on which the lower mean value of [f(x)[ is > 32 ~ �9 

Remark .  Le t  H be any subset of G, Define the funct ion fl(x) by put t ing 

f l(x)  = f ( x  - -  s,) 

A ( x )  = f ( x )  

x ~ (st, s / +  e). H 

for all other values of x.  

i x I ,  2~ . . .  

We evidently have for any x in the interval (o, c) 

(48) ]fl(x) - A ( z  + s,)] < If(x) - f ( x  + s,)l 

and consequently the inequMity (41) remains true if we put in it  f l (x)  instead 

of f ( x ) .  But then  (47) remains also true. Thus we have 

a 
(49) M~ {~0(x)IA(x)]} > 32 ~ 

3 ~ . We shall now show tha t  corresponding to any e > o  there exists 

a number 6 such tha t  the lower mean value of If(x)] on the set G - - H  is 
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a 
> 3 2  b - - , ,  if  H is any subset of G subject  to the only condit ion tha t  D H <  ~. 

Given e > o ,  let d be a number  such tha t  for  any set U c ( o ,  c) 

(so) f If(x) l d x  < 2 c ,  

U 

if  only m U < 2 ~ c .  Le t  H c G  be a set such tha t  D ( H ) < ~ .  Define now a 

funct ion f~(x) in the following way 

f~_ (x) = f ( x  -- si) 

~ 0  

s i ~ x < s i + c  i = I , 2 , . . .  

for  all o ther  values of x.  

At  all points of H we have 

(5 I) f~.(X) = f l  (X) 

where f l (x)  is the funct ion defined in the above remark.  Let  no" be such tha t  

for  all n > no" 

(s2) m {H.  (o, .,, + c)} < 2 . c d .  

Consider the integral  

f lf~(x) ldx, 
H. (0, Sn + c) 

for  any set 

count  of (50) 

(53) 

the funct ion [f~(x)[ has the same positive values on n intervals  (si, si + c) 

i =  I, 2 , . . . ,  n (the values of I f (x)  l in (o, c)) and is zero for  o the r  values of x 

in (o, s,  + c); therefore  the above integral  is less than  n-times the maximum of 

the integral  

f lf(x) l dx  
u 

U in (o,c) of measure <= I - m [ H . ( o , s , + c ) ] < 2 c ~  and thus on ac- 

I f,f ( x)ldx < - -  
8n + C 8n + e 

H. (0, Sn + C} 
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Denote by ~p(x) the characteristic function of H.  By (53), (51), (4o) 

(54) 

By (49) 

(55) 

M~ {~(~)IA(x)I} --< ~. 

a 
M~ {(~(x) --  ~(x))IA(x)I} > ~ - ~. 
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But at the points of G - - H  f~(x) = f ( x ) .  Therefore 

a a a 

(56) M . { ( ~ ( x ) -  g,(x))lf(x)[} > 32b - ~ > 645 if ~ < 64b 

Thus corresponding to a set G there exists a number 8 such that the lower 
a 

mean value of If(x)] on any set G - - H  is greater than ~4b i f  only H is a subset 

of G of upper density less than 8. 

4 ~ Let G 1 be one of the above sets and 81 the corresponding vMue of 8. 

We take a set G~ of density d~<d~ and denote by 8~ the value of 8 cor- 
2 

responding to the set G =  G2. We construct fnrLher a set G~ of density 

d3 < 82 and so onl Consider now Mx{[f(x)]}. Evidently it is greater than or 
2 

equal to the lower mean value of If(x)] on the set 

(57) G1 + Ge + . . .  + G~ 

for any s. But the set (57) consists of the s non-overlapping sets 

G 1 -- G I(G~ + Ga + " + Gs), 

G~-- G2(G~ + G4 + "" + G~), 

( 5 7 ,  I )  . . . . . . . . . . . . .  

Gs:- i  - -  Gs-1 G~, 

Gs.  

Observing that  
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(5s) b G~(G~+~ + G~+2 + . . .  + G,) ~ D(G~+~ + Gi+2 +""  + G,) 

< di+~ + di+2 + "" + d, < 6i + cYi+a + ... + 6,-x__ 
2 2 2 

% 6i + di + c~i 
2 4 8 - +  < ~  

we conclude tha t  the lower mean value of ] f (x) l  on any of the sets (57, I) is 

a 
grea ter  than  64 ~ and thus the lower mean value on the set (57) is grea ter  t han  

a 
s 6 4 b '  and consequently 

a 

]t I~ (If(x)I} > s 6 4 -b  

s being arb i t rary  we have 

(59) .31~ { I f ( x ) I )  = r162 

which is impossible since f (x)  is a B. a.p. function.  Thus  Lemma 2 is proved. 

Evident ly  we may replace in (3) the limits of in tegrat ion o, I by any two 

numbers  a < ~ ,  so tha t  the lemma should be formula ted  as follows. 

L e m m a  2. [ f  f (x )  is a B.a .p .  function2 then for a~y a, f l>a  

(60) M, f l f ( x ) - - f ( z + , , ) l d x ~ =  f J]li{]f(x)--f(x+*,)l}dx. 

P r o o f  of  Theo rem 1. Le t  f (x )  be a B . a . p .  function.  Then  to any , > o  

corresponds a sat isfactori ly uni form set of numbers  *i such t h a t  

(6i) ~I~ If(x) - - f ( x  + z,)l < e for  all i 

and 

(62) Mx M; {If(x) - -  f ( x  + ~,) I1 < ~ . 

Remember ing  tha t  if 0(x)_--> o then  
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b ~ + c  b + c  

f fo(.).. 
(I X g 

we conclude tha t  
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(64) 
+ a  x + e  a + c  

f ? f f 
- - a  x - - a  

dx.  

Applying Lemma 2 to the left  hand side we obtain 

+ a  x + c  a + c  

i f v i i f 
- - a  x - - a  

and passing to the l imit  we have 

g4-e 

~. ,v f lf(x)-f(x+<l 
x 

By (62) 

(66) 

dx _--< M,  M; I f (x) --f(x + ~,)1. 

z + c  

o~ 

for  all positive values of c. 

The existence of the inequalit ies (6i) and (66) proves Theorem I. 

T h e o r e m  2 (converse theorem). To any B. a. p. function corresponds a B. a. p. 

function differing from the first function only by a fmwtion the mean value of 

whose modulus is zero. 

Let  f (x )  be a B.a.p .  function.  We consider the set of funct ions  

f (x )  + 9~(x) 

for  a given funct ion f (x )  and for  all funct ions ~0(x) which satisfy the c o n d i t i o n  

M {I ~ (x) I} = o. 

3 6 - - 3 1 1 0 4 .  A c t a  m a t h e m a t i c a .  57. Imprimg le 24 juillet 1931. 
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W e  call this set a B. a. p. functional class (B. a. p. f . c.) All funct ions of a (B. a. p. f . c.) 

are B.a .p .  functions.  Two such classes are e i ther  identical  or have no funct ion  

in common. All funct ions of a B. a .p . f . c ,  have the same Four ier  series. Our 

theorem may be formula ted  as follows. 

Theo rem 2. Any ( B . a . p . f  e.) contains a B .a .p . func t ion .  

Thus on account  of this theorem we shall conclude tha t  with respect  to 

Four ie r  series the classes of B. a.p. funct ions and of B. a.p. funct ions are identical.  

We  shall give the main idea of the proof wi thout  en ter ing  into every detail. 

The  proof will be based on the fol lowing lemmas. 

Le t  Ip(x) be an a . p .  funct ion and E an a.p. set of t rans la t ion numbers  *i 

of some funct ion (not necessarily of ~p(x)). W e  denote by the symbol 

M,{~(~ + ~,), (~, ~)) 

the  mean 

condit ion 

value of nt/mbers ~p(x+~i) corresponding to 

a_--<x+ ~;=<~. 

all ~i sat isfying the 

Lemma 1. 

Lemma 2. 

M, ~ ( x  + ~)) e,~i~.ts. 

The difference 

~ ( ~ ( x  + ~,), ( . ,  fl)) - -  i , . { ~ ( x  + ~)) : ~ (x, ~, fl) 

tends to zero, as f l - - a ~  + oo, uniformly in x and a. 

Lemma 3. To any B . a . p .  function f~(x) and to any sequence {~,,} of positi,:e 

numbers corresponds a series of a . p .  functions 

~l(X) + ~ ( x )  + ~ ( x )  + . .  

such that 

(67) 

(68) 

M~ {iA(x) --  ~l(Z) - -  ~ ( x )  . . . . .  ~,(x) I) < ~,, 

Lemma * has been proved in the preceding par t  of the paper. Lemma 3 is 
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quite obvious. The proof of Lemma 2 is similar to those relat ing to the existence 

of mean values connected with a.p. sets. 

Passing now to the sketch of the proof of Theorem 2 let f l ( x ) b e  a B.  a.p. 

function and 

(69) q~l(x), q%(x), . . .  

a series of Lemma 3 corresponding to fi(x).  We assume tha t  the series ~ is 

convergent. We take a sequence of rapidly increasing numbers 

(70) l o = o < l ~ < l ~ < '  1 , ~ .  

We define a funct ion f ( x )  by the equations 

(7~) .f(~) = q~,(~) + q~(~) +. . .  + ~n(X) 

for x belonging to the intervals 

ln--1 ~ X < 1~, --  1, < x =< --  l,~-,. 

Let  {~,~'} be another  set of positive numbers (,,, '-+ o, as n - +  ~) .  We  study 

the behaviour of the expression 

+ T  

f l f ( x )  - ~ l (x)  . . . . .  ~,,(x) I d x .  (7~) ~ , , (T)  = ~ .  
I 

- - T  

I t  can be shown tha t  if the numbers of (7 o) increase rapidly enough then 

for values of T belonging to the interval 

llv <= T <= l~e+~ N >= n + I 

(73) I @,,(T) --  M{I ~0,,+l(X) + ... + ~ ( x )  + o~0z*+l(X)l}l < stN+I 

where I 01 =< I.. 1 t tenee  

' A s imi la r  r e su l t  is  p roved  in  deta i l  in Bes icovi tch ' s  paper  [I]. 
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(74)  31.~ { i f ( x )  - -  r  - - . .  

By (67), (74) 

c~ 

- ~,(x)l} ___< ~ i =  {l ~i(x) l) 
i=n+l 

oo 

< Z ~'n. 
i~n+l  

M= ' lf i (z)  - f ( x ) l )  = o. 

(75) 

Thus f ( x )  is a B. a.p.  funct ion of  the same functional class as f i (x) .  

We study now the behaviour of the expression 

(x, T) -= Mi (J f (x )  - -  f ( x  + ~i)], ( - -T ,  + T)}.  

In  a way similar to tha t  which had to be employed for the proof of (73), and 

on account  of Lemmas I and 2, it can be shown that,  if the numbers  of (7o) 

increase rapidly enough, then for values of T in the interval (&, l,~+1), 

(76) [ T ( x , T ) - - M i { l f ( x ) - - q ~ , ( x + ~ i )  . . . . .  ~,,(x§ ~i)[, ( - -T ,  + r ) } [  

< ~',~+, + ~f ,{ l  ~/t+i(x -~ Ti)]). 

We write (76 ) for 

1~, <= T <= l.v+~ ( N >  n + I) 

and we conclude that  

(77) IT (x ,  r )  - -  i i  {l/'(x) --  ~ , ( x +  ~i) . . . . .  ~,,(x +~i)l ,  ( - -T ,  + T ) )  I 

< ~';+, + Mi{l~ .+l (X + ~,) + ' + %~.-(x + ~i)], ( - -T ,  + T ) }  

A certain rapidity of increase of the numbers  of (70) can secure the inequali ty 

(7 s) M, {I ~n+l(X + ~,) +---  + ~x (x + ~,) I, ( -  ~, + ~)} < 

for any n, N and T ~  (l~, 1N+l). 

Thus 

(79) IT(x,  T ) - - M i { l f ( X ) - - ~ , ( x + ~ i ) - -  . . . .  ~.(x + ~,)1, (--T, +T)}I 

< ~'~,-+, + ~Mi{l~, ,+,(x + ~i)I) + "  + 2z[i(l ~,.+i(x + ~i)I}. 
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Suppose tha t  for  a given value of x the series 

(8o) Mi {I ~,(x + ~,)I} + m {I q,~(x + *,-)I} + "  
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converges. Then, as the second term of the left  hand side expression of (79) 

tends to a limit, as T - ~ ,  i t  is not  difficult to conclude tha t  W(x, T) tends to 

a limit, as T--~ ~ .  

Take now an i~terval  (d, d + I) of values of x.  

convergence of the series (8o). W e  have 

(81) 

Consider the quest ion on 

d q l  d + l  

d d 

< LMx {I qD,,(x)l} < L~n 

where L denotes the maximum distance between two consecutive ~.  Denot ing  

by s~(x) the sum of first j terms of (80) we conclude on account  of (8I) 

d4-'I 

(82) fsj(x)dx < L[M,{I~o,(x)I } + e.a + 23 + ""] for  any j. 

d 

The series Zen being convergent  we conclude tha t  the series (80)converges 

for  almost  all values of x ,  and consequently the limit of W(x, T) ,  as T--* w, 

exists for  almost  all values of T ,  i .e .  

(83) M~ (If(x) -- f ( x  + ~)]} 

exists for almost all values of x.  

In  Chapter  V we have proved tha t  if f ( x ) i s  a B. a. p. funct ion then  to any 

> o corresponds an a.p. set of numbers  ~i such tha t  the condi t ion 

x + c  

(84) - f ( x +  < If(x) dx 
t ]  

x 

for  all c > o  is satisfied. 

On account  of the existence of mean  value (83) we can apply Fatou 's  

theorem to the inner  mean value of (84). W e  have 



286 A. S. Besicovitch and H. Bohr. 

(85) 
z + c  

1c f _nL If(x)--f(x + *,)1 
x 

x + c  

f i:{x)-l(x + 

x 

By (84) 

and consequently 1 

(86) 

x + c  

x 

+ 7:,)ldx < 

:~I, M: If(x) - - f ( x  * *i) l < q 

which proves tha t  the funct ion f ( x )  is /~.  a.p.  Thus Theorem 2 has boen proved. 

Example of  a B.a.p.  Function which is not B.a.p.  

Let  a, b, l be positive numbers such 

define the function r in the following way 

1 
tha t  m - -  is an integer. We 

a + b  

(I) ~ { x ,  l, a, b, c) = c 

= O  

k ( a + b ) < x < k ( a + b ) + a  k = o ,  I , . . . , m - - I  

for all other values of x. 

Define now the function 

(2) f ( x )  = ~ g,(x --  2'*, I,,, a,,, b,,, Ca) 
n = l  

where 

(3) In-'~ [Vn-] (integral part  of |/n-n), I 
a,~ + bn 

We have 

a n  I 
, - -  , Cu = 2 n V n .  

- -  22n  Cln + bn n 

] I ,  {f(x)} = o 

and thus f ( x )  is a B . a . p .  function. 

t If p(x)>=o then J)x 
x + c  

{-: f = ,,. 
2; 
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Let  now 

(4) o < z ~ < z ~ <  . . ,  

be an arbi trary ))satisfactorily uniform ~ (and consequently relatively dense)sequence 

of numbers. 1 
t t Then there exists n o such tha t  for all n ~ no 

(5) n k  ~-~ *'n "< 2 n k  

where k is some positive members. We shall prove tha t  

d+l  

(6) / M~[f(x) - -  f ( x  + *~)ldx ~- 

d 

for any value of d, 

Let  1 be a positive number such tha t  any interval of length l contains at  

least one of the numbers (4). 

Le t  d have a fixed w l u e  and let A be an arbitrarily large positive number. 
r 

Choose n o ~ n o such tha t  

(7) 
r 

i) Max If(x)[ + A < V~o 

(8) ii) l . o =  [V%%] > l + l .  

Then each interval (2 n, 2" + 1,,) for n ~ n o contains at  least one of the intervals 

( ~ +  d, ~ + d §  I); denote such wa interval (or one of them, if there is more 

than  one) by 

(%+d, % + d +  i). 

Let  n l ~ n  o and u l >  2. Consider the values of the functions 

(9) f(x + %) for . = . 1 ,  "1 + I , . . . ,  S . , - -  i 

in the interval (d, d + I). In  the interval (d, d + I) the funct ion f ( x  + ~i,~) takes 

the same values as the funct ion 

i The  meaning  of te rms  ~satisfaetorily uniform,, ,  >)relatively dense,, for one sided sequences  
like (4) is clear. Obviously when  (6) has  been  proved for any one-sided s.u.  set,  i t  is also proved 
for any  two-sided s.u.  set  of number s  v i .  



288 A. S. Besicovitch and H. Bohr. 

~(x, &, a,,, b,, e~) 

does in a cer ta in  in terva l  of length  I belonging to (o, /.) and thus f(x + %) is 
4 

equal  e i ther  to o or to 2 ~]fi~. Denote  by ~/1) the set of values of x in the 

in terva l  (d, d + I) for  which a t  least  one of the funct ions  (9) differs f rom zero. 

W e  shall  prove t ha t  

2 

Let  ~n denote  the  set of values of x in (d, d + I ) f o r  w h i c h f ( x + % ) # o .  Then  

( I  ~) ~(~) - -  (2.,,, + (2.,,,+~ + . -  + ~s, , , -~ .  

W e  have 

I 
~ll ~ n  ~ - -  " 

(~n consists e i ther  of  2 2'~ equal  intervals  or of 2 2~ + I intervals  of which all 

in ter ior  intervals  are equal  to one ano the r  and  the sum of the two ext reme 

intervals  is equal  to the length  of an in ter ior  interval .  Define now 

(~2) ,~.[~,,+~ x (~,,, + r~,,,+l + . . .  + e,,)].  

The  set 

( ,3) (2n, + r&, l+ l  + " "  + (2.,, 

is a set of non over lapping  intervals,  whose number  is 

(I4) 2 2nl + 2 2n*+l  + " ' "  + 2 'ln ~ 2 .  2 2n.  

Now if ~ is any interval ,  then  it  is easy to see tha t  

(~5) 

There fore  

m I(-'f.,,+~ X a] ~< ~a .+l  + a, ,+~.  
( t n + l  + b n + l  

(i6) m [e.,,+, x (e,,, + e,,,+, + - . -  + e , , ) ]  

< [m (e,,, + e,,,+, + . . .  + e.,,)] a,,+, 
an+l + [)n+l 

2 n 
2 . 2 a n + l  
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and by (I I )  

We have 

~an+ l  2 . 2 2n ~ I 
< + < - - + - - .  

an+l  + b~,+l (n + I) 22n+l ~ + I 22n 

(,7) D$ [~n, ~- @n,+l 2v " ' "  27 ~n  2V ~ .+1]  = 

= m[@nl ~- ~n ,+ l  -t- "'" + ~n] + On@n+1 

- , ,  [e , ,+ ,  x (~,i ,  + e ~ , . :  + - . .  + ~,)] 

> m [@nl + @n,+l + ' "  + ~ ]  + , - - g  I 
95 + I 2 2n 

~ ( I - - ~ ) ( n I 1  + - I ~ 1 + ,  

(< > ( ,__~)  I -]- ~ 

-1- " + 22n~ 

I I 

22nl +1 22n 

+ - +  _ - -  2 

22111 

Putting in (I7) n + I = 8 n  1 -  

>2) 
+ 8n1__ I 

shall have (observing that I + , I w e  
\ ~1 n l  q- ' 

( is)  Z > 2 ( i - Z )  ' 
2 

which shows that Z > - .  
2 

Now let x be uny point of ~ .  for n ~ n  o . W e  have 

4 4 

f ( x  + M = 2~ V ~  > 2 n V ~  

4 4 

I f (x)  - f ( x  + M I ->- 2,, ~ - Max I f (x)  l >= 2 - (V~o  - Max If(x)I)  
d < . x ~ d + l  d<<_x<~d+l 

and by (7) 

(,9) 

and a fortiori 

37 - -31104 .  A c t a  m a t h e m a t i c a .  

If(x) - f ( x  + ,,,,) I > 2"A 

i : i  n 

If(x) - - f ( x  + z , ) [  > 2 '~A 
i = l  

57. Imprim6 le 24 juillet 1931. 

2 8 9  

+ . . .  
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whence 

By (5) 

i = i  n 

Y, W(x) - f ( .  + ~)1 
i=1 2n/r 

i. >7,,~ -A" 

(20) '=~ > --2~kA > 27~ k 
2,,+ [V;~] 2 . 2 n 2 

Denote  by M ( x ,  n', n") the maximum of 

If(x) - f ( x  + **)1 

as n varies f rom i,,, to in"--1. W e conclude f rom (20) tha t  

(2I)  M ( x ,  "1 ,  8n l )  > ~ A  
2 

for  all values of x belonging to @(1). 

We take now a sequence of integers 

nl~ ~2~ ~3~ " �9 

such tha t  n 2 ~ 8 n l ,  n a ~ 8 n 2 , . . .  

Wr i t e  

(22) ~(s) = @,,j + ~,~+1 + �9 + es,,j-~ ( j =  i, 2, 3 , . . . ) .  

At any point  x of @(J) 

(23) i ( x ,  ~S, 8,j)  > -~A. 
2 

L e t  ~ be the upper  l imit of the sequence of sets 

(24) ~(I), ~(~), . . . 

i .e .  the set of points each of which belongs to an infinite number  of sets of 

(24). Then  
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(25) m ~  >_- ! .  
2 

Let  x be a point  of ~ and let  

( ~ ( - / , ) ,  @ ( J ~ ) ,  . . , 

be the  sets which conta in  x; then  for  any  s =  I, 2, 3 , - . .  

i . e .  

~(~, n~., 8nj~) > -kA 
2 

I f(x)  " f ( x  + *i) l 
i ~ 1  >k_A 

n 2 

for  a t  least  one n in any in te rva l  i% =< n <= i s%-1 ,  which proves t h a t  

(26) Mi {If(x) - - f ( x  + *,)1} __>-- ~ A. 
2 

By (2s) ~na (26) 

d + l  

(27) f ~r, {If(x) -- f (x  + ~,)l} dx >--_ ~4 A. 
d 

A being arb i t ra ry  we have 

d-l-1 

(28) f Mi[f (x )  - -  f ( x  + ~t)[clx = ~ ,  
d 

and thus  

Ms ~ , f l f ( x )  - f ( x  + ~,)I} = 

for  any sat isfactori ly un i fo rm set of numbers  ~i, % . . . .  , which proves t ha t  f ( x )  

is  no t  a B. a. p. funct ion.  
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