ON THE UNSYMMETRIC TOP.*

By

JOHN J. CORLISS
of ANN ARBOR, Mich., U.S. A.

The problem of the motion of a heavy rigid body about a fixed point is
an old problem, — one of which much has been written but of which little is
known. Euler! first stated the equations of motion in the final definitive and
elegant form in use today. They are

(1) 1 ﬂ.’l + (L— L) wy w3 = H,
(2) L wz + (I —I) w, w3 = H,
(3) I, C‘.’s + (I, —I) w, 0y = H,.

The angular velocities w,, wy and w, ‘are connected with Euler's angles
@, @ and ¥ by the equations:

(4) . o= w, cos @ — w, sin @
(5.) d’l-———-wl sin @ cot @ — w, cos @ cot @ + w,
(6) = o, sin @ cscO + w,cos Dcse O

or by the equations:

(7) W, = @ cos @ + ¥ sin O sin @
(8) wy = — @sin @ + ¥ sin O cos
(0) : Wy, = @ + ¥ cos G. 7

* I wish to thank Professor Peter Field of the University of Michigan, under whose direc-
tion this investigation was carried out, for his many suggestions and encouragement.
! Euler: Mémoires de L'Académie de Berlin, 1758.
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The origin is the fixed point, and the following notation is used: (x, ¥, 2)
denotes the fixed system of axes; (z,, ¥,, 2,) the moving system, which is taken
coincident with the principal axes of the momental ellipsoid at O; (f, g, h) are
the coordinates of the center of gravity; w,, w;, and w; are the components of
the instantaneous angular velocity vector along the moving axes; H,, H,, and H,
are the components of the instantaneous moment vector, H; I,, I, and I, are
the principal moments of inertia at O; M is the angular momentum vector; and
w is the weight of the body. The figure illustrates the geometric meaning of
Buler’s angles, and the table gives a convenient means of finding components.
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The values of H,;, H,, and H, are:

(10) H, = g(—w cos ©) — h{— wsin O cos D)
(11) H, = h{— w sin @ sin @) — f(— w cos O)
(12) Hy = f(—w sin O cos @) — g(— w sin @ sin D).

The classical integrals are:

(13) Liw} + Liw; + Lw; = E — 2w|fsin @sin @ + gsin @ cos @ + hcos O
(14) L0, sin Osin @ + Lyw,sin O cos @ + Liwscos @ =k
(13) (sin @ sin @)? + (sin O cos D)® + cos® @ =1.

The first integral expresses the fact that the total energy remains constant, .
the second that the projection of the angular momentum upon the vertical is
constant, the third is a trigonometric identity.

" The literature upon the Top Problem is extensive but it is a literature of
special cases. Euler' and Poinsot? studied the case in which the exterior forces
are zero, or are such that their resultant passes through the fixed point. La-
grange® and Poisson* solved the case for which (1) I, =1, and (2) f=g=0.
Mme. 8. Kowalevski® solved the case for which (1) I, = I, =21, and (2) k=o.
It may be remarked that nothing is gained in generality by not assuming
g =h=o0, since any pair of perpendicular axes in the equatorial plane may be
taken as principal axes. The difference in this case and that of Lagrange lies
in the fact that in the case of Lagrange the center of gravity lies on the un-
symmetric axis while in the case of S. Kowalevski it lies on one of the sym-
metric axes. ‘

R. Liouville® has shown that for (1) I, =1I,, (2) h=o0, and (3) the ratio
Z—I{§=n (where # can be any integer, which because of the relation I, < I, + I,

1 .
cannot exceed 4) a fourth integral independent of the classical integrals (13),
(14), (15) exists, and hence the problem is solvable.

! loe. cit.
. ? Journal de Liouville 1™ série 16. Théorie nouvelle de la rotation des corps, Paris, 1834.
# Mécanique Analytique, p. 25I.
¢ Journal de I'Ecole Polytechnique, 16th book, 1815. Traité de Mécanique, 181I1.
5 Mme. 8. Kowalevski: Acta mathematica 12, p. 177, 1889.
¢ Mémoire présenté au concours du prix Bordin, en 1894. Acta math. 20, p. 239, 1897.

54—3298. Acta mathematica. 59. Imprimé le 16 juillet 1932,
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For the four cases just given, the initial conditions are perfectly arbitrary,
hence there enter in the solution six constants of integration. Three of the
six quantities giving the mass distribution are arbitrary so that for these cases
there enter in all nine arbitrary constants. These four cases are unique in that
they are the only cases for which a fourth algebraic integral (not a combination
of the classical integrals) can exist. They exhaust all the possibilities of solving
the problem for perfectly general initial conditions. R. Liouville®, Poincaré” and
Ed. Husson® have all obtained the theorem: In order that in the case of the
movement of a heavy rigid body around a fixed point, an algebraic integral may
exist, that is not a combination of the classical integrals, and which does not
implicitly involve the time, it is necessary that the momental ellipsoid (of the
body) belonging to the fixed point, be an ellipsoid of revolution, the initial con-
. ditions being assumed to be perfectly arbitrary.

Since there are no more algebraic cases that can be solved for perfectly
general initial conditions, recent writers have sought to solve the problem for
special initial conditions and for special mass distributions. This has been done
in a very few cases.

~ W. Hess” agsumes that for the mass distribution two conditions hold:
L+ LE_f*+

(1) g=o0 and (2) A I

N. Joukowsky'® has shown that these two restrictions imply that the center
of gravity, G, lies on the perpendicular through the fixed point, 0, to a circular
cross section of the reciprocal momental ellipsoid

2 2

z 2
1, I,

In addition Hess assumes that the extremity of the impulse vector, M,
lies initially in said circular cross section. The motion is such that throughout

the whole movement the impulse vector, M, lies in this plane.

¢ loc. cit. :

" Les méthodes nouvelles de la Mécanique céleste, Paris, 1892.

Acta math. 31, p. 71, 1907; Toulouse Ann. 8, p. 73, 1906.

® Math. Annalen 37, p. 153, 189o.

 Jahresbericht der deutschen Mathematikervereinigung. V (3), p. 62, 1894.

8
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0. Staude!' studied the case for which the motion consists of a uniform
rotation about a vertical axis fixed in the body. He shows that there are o?
such axes and that they form a cone of the second order whose equation is

(Iy— L) fy.2, + (I;— 1) g2y, + (I, — L) hw,y, = o.

8. Tschaplygin'® and D. N. Gorjatscheff'® independently solved the problem
under the restrictions:

(1) L=IL,=41, (2) g=h=o0 (3) k=o.

W. Stekloff'* and D. Bobyleff!® studied a special case of the Kowalevski case.
They assumed

(1) L=TIy=21I,

@) f--h=o
and found a particular solution subject to the initial conditions

(3) wy=o0 and

wg sin @ sin @
I

(@) w0,= —

With these initial conditions the instantaneous axis of rotation remains throughout
the course of the movement in the z,y, plane. The two solutions were published
in the same volume, the treatment of Bobyleff following that of Stekloff.

W. Stekloff!® has another case in which he assumes

(1) h=g=0 ~ (2) sin@cos @ == Aw,w,
cos @ = Bw,w,

where 4 and B are undetermined coefficients. The solution contains one arbitrary
constant and if the movement is to be real the I's must satisfy the inequalities

IL>20, L>I>I,.

'l Crelle, Journal fiir Math. 113, p. 318, 1894.
2 Moskau Phys. Seet. 10, Bd. 2, 190I.

13 Moskau Math. Samml. 21, p. 431.

4 Moskau Phys. Seet. 8 heft. 2, p. 19, 18g6.

15 Moskau Phys. Scct. 8 heft. 2, p. 21, 1896.

' Moskau Phys. Seet. 1o, Lief. 1, p. 1, 1899.
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D. Gorjatscheff’” following in the footsteps of Stekloff found a particular
solution by assuming:

(1) g=h=o0
{2) wfsin ©cos @ = 4w w,
w fcos @ = (B+ Cow})w,w,

where A, B, and C are undetermined coefficients.
The I's must satisfy the equation

II, = sin G sin @ (I,— L)(I, — 21,).

-The solution involves one arbitrary constant.
D. Gorjatscheff'® has two other cases which are practically the same. The
restrictions for both cases are:

(1) =L=41,

(2) f=9=0
(3) k=o.

S. Tschaplygin'® generalized the work of Gorjatscheff. He assumes

S. Tschaplygin?®® generalized; the assnmptions of Stekloff and Gorjatscheff.
He assumes

() g=h=0
(2) asin @cos @ = Aww, + Dwyof

(3) acos @ = Bo,w; + Coyo}

where A4, B, C, and D are undetermined coefficients.

'" Moskau Phys. Sect. 10, Lief. I, p. 22, 1899.

® Moskau Math. Ges. Am. 16, 1899. Moskau Samml. 21, p. 431, 1899.
¥ Moskan Phys. Seet. 10, Lief. 2, p. 31, 1890.

*0 Moskau Phys. Sect. 12; Lief. 1, p. 1, 1904.
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The I's must satisfy the relation
wz(Zszls) e, —L)=4L1.

We come now to a development in the recent history of the top problem.
P. A. Schiff** suggested that instead of using as variables the vectors
w,, wy and w,, that the three scalars ', U, and S be used, where

___I1w? + Lw; + Lo,

T
2
Uslfwf + Lo+ Lo
2

S=flLw;, + gLw, + hlw,.

T is the kinetic energy. U is the square of the angular momentum divided
by two and S is the dot product of the impulse vector and the coordinates of
the center of gravity. Schiff very simply and elegantly transformed the Euler-
Poisson equations into equations involving T, U, and S. These equations have
come to be known as the Hess-Schiff reduced differential equations. Hess first
" suggested the idea of using 7, U, and S as variables.

The Hess-Schiff equations created widespread interest.

P. Stickel?® and O. Lazzarino®® considered the Hess-Schiff equations at
length especially with reference to their equivalence to the HulerPoisson equa-
tions. 1f 8, T, and U are all variable then the two systems are equivalent.
Assuming each constant separately merely leads to known cases.

N. Kowalevski®* restricted himself to the case for which the center of
gravity lies on a principal axis, i.e., f=g=0. N. Kowalevski observed that
although the integrals of Stekloff, Gorjatscheff, and Tschaplygin had been ob-
tained under widely different conditions, that they all have a similar analytical
character. He set out to find all possible cases for which w; and w; can be
expressed as polynomials of the third degree in w;. He shows that the condi-
tions he obtains give rise to the cases of Stekloff, Gorjatscheff, and Tschaplygin,
and also to a new case, the details of which he does not carry out. N. Kowa-

21 Moskau Math. Samml. 24, p. 169, 1903.

2 Math. Ann. 65, p. 538, 1908. Math. Ann. 67, p. 399, 190Q.

28 Rend. d. Soc. reale di Napoli, (3a) 17, p. 68, 1911. R. Accademia dei Lincei atti 28,,
p. 266; p. 325; P. 341, 1919. R. Accademia dei Lincei atti 28, p. 9; p. 259; p. 329, I9IQ.

24 Math. Annalen 65, p. 528, 1908.
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levski's conditions are long and complicated and hence better suited to verifying
old cases, than to picking out restrictions which lead to new cases. It is, there-
fore,- no wonder that he missed the case of P. Field® and those given in this

paper.
New Cases.
First Case.
For the first case treated the assumptions are: (1) that the center of gravity
is on a principal axis, i.e., f=¢=o0, and (2) that the projection of the angular
momentum upon the vertical is zero, i.e., k=o0. The results obtained are

extremely simple and interesting for that reason if for no other. With these
assumptions equations (1), (2), and (3) may be written in the form

(16) Lo, + (I,— L) w,0, = wh sin @ cos @
(17) Lo, + (I, — I,) w,w0s = — wh sin @ sin @
(18) Lo, + ([,—I) 0,0 =0

and (13) becomes
(19) , Liw! + Lo, + Ljw, = E — 2whcos 6.

‘In order to simplify the study of the problem let us eliminate sin @ sin @,
sin @ cos @, cos @, and di¢ from equation (14) by means of equations (16), (17),
(18), and (19). This gives

{20) LI(L—1,) [—ol(zo,dw,) + 0, (20,dw,)] +
+ (L —2)w] + (I,I;—21})o; — Loy + LE] Logdwy =
2whkl;dws.

Eliminating the same quantities from the identity

(sin @ sin @) + (sin @ cos @)® + (cos @) = 1

gives
(21) w; [ — L) 2 w,dw, + LI, — I) 204d w,)® +
w; [I(I, — 1) 20 dw; + Is(Is;Iz) 2wgdwy)® =
{4w?h? — [E — (I 0! + Lo} + Lw})®*} I;do].

# Acta mathematica, Vol. 56.
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Equations (20) and (21) may be simplified by a change of variables. Let

(22) du=2L,(I, — I,) wydwy + 2 L(I,— I,) w;d s
or u= IL(l,—1I,)o; + LI, —I)w,

(23) dv=2L(I,—L)wdw, + 2 [,(I;—I,) oydw,
or v= I(I,—I)w, + L(,—IL)w;

we see that

(24) Lv+ Lu=(,— L) Ilw} + Lo, + I,0}]

(23) and  u+ov=(L—L)[Lo!+ Lol + L.

In terms of the new variables, % and v, equations (20) and (21) become

(26) —p—~L(L— L) w}) du + [u— I(I, — L0} dv +
E(L — L) — (u + o)) [ wgdw, = 2whk I(I, — L) dw,
(27) Lv—I(I; — I,) w}] du® + I, [u— I(I, — I,) 0?] dv?
+ LLL [E(I, - L) — (u + v)*dw? = 4 [, LI}(I, - L)w*h*d w?.

I—1)

Finally we may still further -simplify the problem by another change of
variables. (Of course both these changes might be combined into one, but it
seemed best to preserve the logical sequence.)

Let us agsume

(28) (t=I1w; + Lo, + I,0;

E(L,—IL)—(u+7v)
(I1—I2)

(29) n=
- From equation (25) we see that
(30) n=FE— (Lo} + Lo; + L)

and consequently from equation (19) that

:~—n .
(31) cos @ swh

‘ Solving equations (28) and (29) for # and v we have:
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u=—[Ljn+§—LE]
v= [Izn +&— LE]

In terms of the new variables equations (26) and (27) become after dividing

out the common factor (I, —I,)

(34)

(35)

(36)

[E—~np—Lw)di+ E—Tw;)dy + Lnow,dew, = 2whk I;dw,
["‘g"’?(Il + 12) + E(Il + IB) + Is(Is'—Ix“"I2)w§] d§2 +
LL[E—Twildp + 2L I,|—n+ E— Lw;]dSdn +
LLI'p*dw = qw*ht L, do’.
Squaring equation (34) and multiplying through by I,I, gives
I1IQ[E_7]_I3‘”§]2d§2 + LLE—~1I wPdn? +
2L LIE—n— Lol [f— L o}ldkdy =
LLzwhkI,— I;nw,)*dw;.

Multiplying equation (35) by [ — I;wi] and from the result subtracting

equation (36) gives

(37)

“"g—ﬂ(ll + I2) + E(I1 + I2) + 13(13'—11_12)W§] [§-—I§w§] -
LIL[E—n— Lol d& =
{{LLT; (4w*h? — )] [ — L w}] —
LI[2whkI,— I'nwy?}do? .

Equation (37) may be written in the form

i)

IIIZI:

(de)
{1112 % - §}n2 n {Il E—LE+ L~ o] +

(i)

L L1,

LiE—LE+ LI, — I o] 4 4whk13ws}n +
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T {4w2h2<§—1:w§) FE—LE+ LT~ Iyl

(g0
= LE+ I(I; — I) o] LII —4w”h“'lc’}=o.

Equation (38) is worthy of study. First we note that it is a quadratic in 7.
Consequently we see that if, in our attempts to find solutions, we assume & to
be an algebraic function of w,, that the solution for # will be algebraic. Hence
in attempting to solve equation (34) we shall choose only such functions of w,
for £ as will lead to a solution of equation (34) which will be algebraic, since
the solution for 7 must satisfy simultaneously equations (34) and (38), or the
equations (34) and (33).

If we rewrite equation (34) in the form (39) we see that it is linear in type:

dE 2 d§ |
) dn (dws I‘jw% B (_Ifw,s E)d—,3 + 2whkl,
39 doy  E—riey "7 3 )

(35) [—5—77(11 + Iz) + E(Il +Ig) + IS(IS_II_I2)w:]d§2 +
LLE—Twldy® + 21 L|~ 9+ E— Lo} dfdn +
LLIpde’ = 4wk, ,I}dw’.

So far we have shown that: (1) If § be an algebraic function of w, then
n will also be an algebraic function of wy; and (2) we have reduced our problem
to the study of the two equations (39) and (335).

Stickel* and Lazzarino* have shown that for S, 7T, and U all variable
the Hess-Schiff reduced differential equations are equivalent to the Euler-Poisson
equations. The variables used here differ only by. constants from the Hess-Schiff
variables, consequently we may regard these two equations as necessary and
sufficient conditions that the values of & and 7 (£,  and w; being all variable)
gatisfying equations (39) and (35) will lead to values of w,, ws, wy satisfying
equations (16), (17), and (18). As a check upon the numerical work the values
obtained in the cases given below have been substituted directly in equations
(16), (17), (18), (7), (8), and (9).

Equations (39) and (35) are entirely general, the only restriction so far
bemg that ( ) S=g=o0. They are especially adapted to the search for new

d Sec references already given.

55—3298. Acta mathematica. 59. Imprimé le 16 juillet 1932.
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particular solutions. As a first effort toward finding a new particular solution
let us assume

(40) =TI (aw; +b)
(41) - n=Ae; + B

where a, b, A and B are arbitrary.

Let us now see if we can choose @, b, A, and B so that £ and 7 shall
satisfy simultaneous equations (39) and (35). It is to be expected that in order
to satisfy these conditions that we shall have to impose certain restrictions
upon the constants of integration, and perhaps on the I's.

Substituting for § and 7 in equations (39) and (35) and equating coefficients
of like powers of w, gives us after a great deal of numerical work the following
values of a, b, 4, and B, together with certain restrictions on ¥ and k:

(42) | k=o

which means that the angular momentum vector remains in the x% plane
throughout the motion

(Is - Il)(I:-} _Iz) :

(43) a= (13_211)(13_ 2T
eI, I,~ (I, + L) ,Jwh
b p——
4 1(I,— L)1, — 1)
(43) _ _zal
(47) pLL—2LI,—2L1+ Ljwh

(Is —Il) (Is '_Iz)

Equation (47) imposes a restriction upon the total energy. This is essenti-
ally a positive quantity so that the I's must be chosen so as to make E positive.
Retracing our steps we find for w} and o) the values

2 (I, — L)1 s whily—21)(I,—21)
48) T (Ly—2I)(I,— 1) [w3 N (I3—11) (I;— L)* ]

3 __ (L—I) T s wh(ly—2L)(I,—21) )
(49) T (I3 —2 L) (I, — L) [0)3 N (I;— L) (I;— L) ]
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To find the values of @. From (48) and (49) the derivatives of w, and w,
with respect to w; are

(50) d-uﬁ — (_Il'— I?) IR wg
dwg (I, —21,) {1, — 1) w,
(SI) d(l)E _ __(I";_Il)_‘l:"lwﬂ

doy,  (L—2L)([—L)w,
and using equation (18) we find

dw, __ (I — I) w, 04

(52) dt N (Is —"_Z_Il)
dwy _ A AN
(53) e s ok

Substituting these values in equations (16) and (17) and dividing one by
the other gives us tan @

(Li—2T)w, .

tan @ =
(54) Iy — 21w,

To find the value of #. From equations (7) and (8) we get

(55) o~ Wsin@cos® _ o
w, — ¥ sin O sin @

and making use of equations (52), (53), (16), and (17) we find that i has the value

(56) (—2L)w; + (I5-- 2 1)) wi] wsiii:

Wh(I.‘g: 2I])(I.q__2_1_2)
([3 - VIl):(VIs - Iz)

(I,—2@)w + (I, — 2 L)w}].
From equations (48) and (49) we find that

(57) (I3—21)0; + (L,—2L)w; = Lo, _

consequently equation (56) may be written

(58) (= 2120l + (L — 2 L) w}) 0 F =

whily—2I)(L—28) | .
(Is'—Il) (Is_Izj 3@al

To integrate % we shall now show that it is equal to D.
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Differentiating equation (54) gives

Li—21 wzwl - w,w,

2 — 8.
(59) sec’ @@ I— 21, ol

Replacing sec®® by its value from equation (54) and w, and w, by their
values from equations (52) and (53} and simplifying gives

(60) (Is— 2L o} + (I;—2L) v} 0=
wg (I3~ I){I;— 2 L)w; + (I;—1I) (I3—21)w}].

Again from equations (48) and (49) we have

(61) (li— 1) (I —21L)w; + (I — L) —2L)w, =
whI(Iy— 2 L) (I, — 2 1))
(L— L) (I, M

Hence the equation for @ becomes

) U2k + (2 je o= WA 2 I 2 o,

Comparing equations (58) and (62) we see that

(63) W0
and hence
(64) W= @+ (.

For convenience we shall take C,=0. To obtain the equation of the body,

or the polhodal cone we must eliminate the w's from its general equation

vi_ 2
(65) | n_v_
) Wy W,

Carrying out this work gives as the equation of the body cone
(66) (2, — L)a} + (2I,— L)y: + Iz} = o.

Let us assume I, > I,.
Then if
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(66') 2, > 1> 21,

equation (66) is that of a cone whose axis is 0Y,.

It I, > 21, is that of a cone whose axis is 0Z,.

To obtain the equation of the space or herpolhodal cone. Let w:, wy,
and w. denote the components of the angular velocity, w, along the fixed axes
0X, 0Y, and OZ respectively. Then referring to the figure we see that

(67) w;= @cos¥ + Dsin Osin P
(68) wy = O sin ¥ — D sin O cos ¥
(69) w, =% + Dcos O

Remembering that (for ¢, =0) @ = ¥ we may rewrite these as

{70) w:= @cos @ + ¥ sin @sin @ — w,
(71) w, = Osin @ — Psin Ocos @ = — w,
(72) w, =@ + Feos O = wy.

(See equations (7), (8), and (9).)
The general equation of the space cone is

(73) ==

2 R
Wr wy Wz

It follows that the equations of the body and space cones are the same
only that of the body cone is referred to the moving system of axes while that
of the space cone is referred to the fixed system of axes.. The equation of the

space cone is
(74) (21, — I)a® + (2, — L)y* + Le* =o.
3
To find the angular velocity, we must form the sum
(75) = w} + o) + w;.

Using equations (48) and (49) we find

(76) o AL—L)L,—1) 2whly

4 = — 7 Y J—

(I?::VZIl) (Ia_" 215) @ (Is— 1) (1y — 1) .



438 John J. Corliss.

To find the time we use equation (IS)lwhich may be written

(77) t—f Jados__

— 1) v, w,

We see that it is necessary to know for what values of w, the product
w,w, is real, since the time is real. Hquating to zero the right hand members
of equations (48) and (49) and solving for w, we get

(78) w, = *t V(L( - I—I)(I(3 ))th + AW
(79) wy= 1 ‘/ - (I Il() A’E ))w_: + AP,

where the superscript (1), for example, indicates that this value of w, results
from setting w; =o0.

We must now study the restrictions that must be placed upon the I's in
order that the time shall be real.

If we assume that I, > I, then we have:

First:

(80) For I, >1; 2L<I,<zI

we see that A and AP are both imaginary hence for this choice of I's we
cannot have real mofion.
Second:

(81) For I,<I,; 22L<I,<z2I

we see that A is real, while 4? is imaginary.
Plotting w; against w;w; we obtain the graph

Fig. 2.
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Third:
(82) It I, > 21, > 21,.

This case is impossible since the moments must be such as to form the
sides of a triangle. We have

(83) Li<I + 1,
but from equation (82) it follows .
I,> I, + I,.

Thus we can have real motion only in the second case.
The inequalities of equation (81) may both be expressed by the single
inequality

(84) - 2L< < I,.

Making use of equations (48), (49), (78), and (70) the integral for the time
may be written

- B—2l)Iy—2L) [ dws e,
(85 )= l/ (L= INL—1) J V= [(wy — AD) (w0, + AD) (w5 — AP) (w0, + AD)]

where the sign is to be chosen so as to make the time, t,. positive. Note in
figure that w; may become zero.

It is easy to verify that equation (84) is the only restriction on the I's
necessary to satisfy the conditions imposed on the I's by equations (47), (66",
and the fact that cos @ must be less or equal to one.

To obtain a geometric picture of the motion. As cos @ =1 when w;=0
this is a convenient starting point.

From equations (48) and (49) we find that

wh I,(I,—21,)
(11 - 12) (Ia - I1) (I3 - Iz)

(86) W) = —

whI,(I,— 2 1))
(Il - I2) (Is - Il) (Is - Ie)

(87) L wy=
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Since ¥ = @ we may use equation (54) to find their value when w, =o0

I,— 21
g2y 28 <71
(88) tan® @ 1,- 21,
hence )
o 1/ _ (L—=1)
(89) ¥ = @ = arctan l/ (L~ 21
and )
o _(I,—21)
0 ¥+ =2 arctanl/—— — 2
(90) (Ig—21,)

The angle between OX and 0X, is @ + ¥ so that at the instant at which
wy; = 0 the diagram giving the motion is as shown in Fig. 3.

2

Z,

Fig. 3.

The motion consists of the rolling of the body come, s,, over the space

cone s.
Second Case.
This case is a special case of the 8. Kowalevski case. The method of

procedure is identical with that just given for the First Case, so I have merely

given the results.
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For this case the restrictions are:

(1) f=g9=0
(2) I=I,=2I,

@ k=1p]/ "

(4) E=nILd*

where % must be greater than or equal to one, and b® is given by the equation

__wh 2

2 —_— —_—
(5) b_I3 n+ 1.

The expressions for w} and w) as functions of w, are

= — [0 —2bw,— b

6) w
(7) o

:
y = — 2wl + 2bw,—nb¥.

The time and the angle ¥ are given as functions of w; by elliptic integrals.

Further study of equations (30) and (35) should lead to a few more part-
icular solutions.

We remark once again that though the literature upon the Top Problem
is extensive, it is entirely a literature of special cases. Klein and Sommerfeld
in their huge work on the »Theorie des Kreisels», page 391, have suggested the
possibility of interpolating between known cases, and upon the basis of continuity
between the two movements. Hence if we can find enough special cases, we may
yet hope to know something of the top problem.

56--3298. Acta mathematica. 59. Imprimé le 5 aofit 1932.



