
ON T H E  U N S Y M M E T R I C  TOP.* 

BY 
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The problem of the mot ion of a heavy r igid body about  a fixed point  is 

an old problem, - -  one of which much has been wri t ten  but  of which lit t le is 

known. Euler  1 first s ta ted the equat ions of motion in the final definitive and 

elegant  form in use today. They  are 

(I)  110)1 ~- (~3- - I2)0)2  O93 = /~1 

(2) I3 ~.~ + (I1 - I8) 0), ~8 = / ~  

(3) ~8 ~8 + (x~-  L) ~ ~ = s/8. 

The angular  velocities 0)1, 0)2 and 0)2 a r e  connected with Euler 's  angles 

O, q) and ~ by the equations:  

(4) (~ -~ 0)1 cos (P --  0)2 sin �9 

(5) ~ = - - %  s i n ~ c o t O - - o J  2 c o s @ c o t O + 0 ) 3  

(6) ~ = % sin @ csc O + 0)2 cos @ csc O 

or by the equations:  

(7) 
(S) 

(9) 

0)1  ~ O COS q) + ~S sin O sin @ 

0)~ = - -  O sin q) + ~s sin O cos @ 

0)8= & + 4  s c o s O .  

* I wish to" thank Professor Peter Field of the University of Michigan, under whose direc- 
tion this investigation was carried out, for his many suggestions and encouragement. 

1 Euler: Mdmoires de L'Acaddmie de Berlin, I758. 



4 2 4  J o h n  $. Cor l i ss .  

The origin is the fixed point, and the following notation is used: (x, y, z) 

denotes the fixed system of axes; (xl, Yl, zl) the moving system, which is taken 

coincident with the principal axes of the momental ellipsoid at O; (.f, g, h) are 

the coordinates of the center of gravity; w~, eo~, and eos are the components of 

the instantaneous angular velocity vector along the moving axes; HI, H~, and H 3 

are the components of the instantaneous moment vector, H; 11, I~ and I s are 

the principal moments of inertia a~ O; M is the angular momentum vector; and 

w is the weight of the body. The figure illustrates the geometric meaning of 

Euler's angles, and the table gives a convenient means of finding components. 
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The values of / /1,  H~, and  H 9 are:  

(IO) //1 = 9 ( - -  w cos 0) - h ( -  w sin 0 cos q)) 

(I I) H~ -~ h ( - -  w sin 0 sin (P) - - f ( - -  w cos 0) 

(12) H a = f ( - - w  sin 0 c o s  ~ ) ) -  g ( - - w  sin 0 s i n  O). 
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The  classical in tegra ls  are: 

(13) lxo~ ~ + I~o~ + Iao~8 = E - -  2w [ f s i n  Os in  q) + g s i n  Ocos  q) + hcos  @] 

(I4) Ixw l sin O sin @ + I2w~ sin O cos q) + I a w  a cos O ~ k 

(15) (sin 0 sin q))~ + (sin 0 cos q))~ + cos ~ @ : I .  

The  first in tegra l  expresses the  fac t  t h a t  the to ta l  energy remains  cons tan t ,  

the  second t h a t  the  pro jec t ion  of the  angu la r  m o m e n t u m  upon  the  ver t ical  is 

constant ,  the  b i r d  is a t r igonomet r ic  identi ty.  

The  l i t e ra ture  upon the  Top Prob lem is extensive but  it  is a l i t e ra ture  of  

special  cases. Euler  x and  Po inso t  ~ s tud ied  the  case in which the  exter ior  forces 

are zero, or are such t h a t  the i r  r e su l t an t  passes t h rough  the  fixed point .  La-  

g range  a and  Poisson 4 solved the  case for  which (1) I i  = I~ and  ( 2 ) f = g  ~ O. 

Mine. S. Kowalevsk i  5 solved the  case for  which (1) I 1 = I2 ~ 2Ia and  (2) h ~ - o .  

I t  may  be r emarked  tha t  no th ing  is ga ined  in genera l i ty  by not  assuming  

g = h = o, since any  pair  of perpendicular  axes in the equator ia l  p lane may  be 

t aken  as pr incipal  axes. The  difference in this case and tha t  of L a g r a n g e  lies 

in the  fac t  t ha t  in the  case of  L a g r a n g e  the  center  of g rav i ty  lies on the  un- 

symmet r ic  axis while in the  case of S. Kowalevski  it  lies on one of the sym- 

metr ic  axes. 

R. Liouvil le 6 has  shown t h a t  for  (I) /1 = I~, (2) h : o,  and  (3) the  ra t io  

2/3 
Ix ~ n (where n can be any integer ,  which because  of the  re la t ion  I a ~ I x + L 2 

cannot  exceed 4) a f o u r t h  in tegra l  independent  of the  classical in tegrals  (13) , 

(14), (15) exists, and  hence the  problem is solvable. 

x loe.  cir. 
2 Journal de Liouvilte I TM s6rie I6. Th6orie nouvelle de la rotation des corps, Paris, x834. 

M6cmaique Analytique, p. 25i. 
4 Journal de l'Eeole Polyteehnique, 16th book, t8I 5. Trait~ de M6eanique, 18II. 
5 Mine. S. Kowalevski: Acta mathematica I2, p. I77, I889. 
n M6moire pr6sent6 au coneours du prix Bordin, en x894. Acta math. 2o, p. 239, x897. 

54--3"298.  Ac~a ma~hematica. 59. Impr im4  le  16 ]uil let  1932. 
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For the four cases just given, the initial conditions are perfectly arbitrary, 

hence there enter in the solution six constants of integration. Three of the 

six quantities giving the mass distribution are arbitrary so that  for these cases 

there enter in all nine arbitrary constants. These four cases are unique in that  

they are the only cases for which a fourth algebraic integral (not a combination 

of the classical integrals) can exist. They exhaust all the possibilities of solving 

the problem for perfectly general initial conditions. R. Liouville ~, Poincar67 and 

Ed. Husson s have all obtained the theorem: In order that  in the case of the 

movement of a heavy rigid body around a fixed point, an algebraic integral may 

exist, that  is not a combination of the classical integrals, and which does not 

implicitly involve the time, it is necessary that  the momental ellipsoid (of the 

body) belonging to the fixed point, be an ellipsoid of revolution, the initial con- 

ditions being assumed to be perfectly arbitrary. 

Since there are no more algebraic cases that  can be solved for perfectly 

general initial conditions, recent writers have sought to solve the problem for 

special initial conditions and for special mass distributions. This has been done 

in a very few cases. 

W. Hess 9 assumes that  for the mass distribution two conditions hold: 

(I) g = o  and (2) i l f ~  + I.~h ~ f2  + h ~ 
m 

N. Joukowsky ~~ has shown that  these two restrictions imply that  the center 

of gravity, G, lies on the perpendicular through the fixed point, o, to a circular 

cross section of the reciprocal momental ellipsoid 

x: + z', 

In addition Hess assumes that  the extremity of the impulse vector, M, 

lies initially in said circular cross section. The motion is such that  throughout 

the whole movement the impulse vector, M, lies in this plane. 

loc. cit. 
7 Les m6thodes nouvelles  de la M6canique e61este, Paris,  1892. 
s Acta math .  3 I, p. 7 I, I9O7; Toulouse Ann.  8, p. 73, 1906- 

Math.  Annalen  37, P. 153, I89 ~ 
,o Jah resbe r i ch t  der  deu tschen  Mathemat ikervere in igung.  V (3), P. 62, I894. 
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O. Staude n studied the case for  which the motion consists of a uniform 

rotat ion about  a vert ical  axis fixed in the body. He shows tha t  the re  are ~ 

such axes and tha t  they form a cone of the second order whose equation is 

(Iz - - I s ) f y ,  z ,  + (13 - - 1 1 ) g z ,  x ,  + (1, - -  I z ) h x ,  y ,  = o .  

S. Tschaplygin 12 and D. N. Gorjatscheff 13 independently solved the problem 

under  the restrictions:  

z =I =4I  (2) a = h = o  (3) 

W. Stekloff 1~ 

They assumed 

and D. Bobyleff ~'~ studied a special case of the Kowalevski case. 

(1) := I s  211 

(2) f : : h - ~ o  

and found a part icular  solution subject to the initial conditions 

(3) c a ~ = o  and 

w g sin 0 sin (4) w,w~ . . . .  

W i t h  these initial conditions the instantaneous axis of rotat ion remains th roughou t  

the course of the movement  in the x l y  t plane. The two solutions were published 

in the same volume, the t rea tment  of Bobyleff following that  of Stekloff, 

W.  Stekloff 1# has another  case in which he assumes 

(I) h = g =: o (2) sin 0 cos q~ - -  Awl~o~ 

c o s O - - B e o  lw 3 

where A and B are undetermined coefficients. The solution contains one arbi t rary 

constant  and if the movement  is to be real the I ' s  must  satisfy the inequalities 

/ , > 2 !  a, I 2 > I i > I s .  

u Crelle, Journal fiir Math. I13, p. 318, I894. 
1~ Moskau Phys. Sect. IO, Bd. 2, IgOI. 
t3 Moskau Math. Samml. 21, 1 a. 431. 
~4 Moskau Phys. Sect. 8 heft. 2, p. 19, 1896. 
15 Moskau Phys. Sect. 8 heft. 2, p. 2], I895. 
IB Moskau Phys. Sect. lo, Lief. I, p. l, 1899. 
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D. Gorjatscheff 17 following in the footsteps of Stekloff found a particular 

solution by assuming:  

(1) g = h = o  

(2) w f  sin O cos O = A 0)10)2 

w f c o s  O = (B -~ /0)21) 0)10)3 

where A,  B ,  and  C are undetermined coefficients. 

The I ' s  must  satisfy the equation 

IlI~ = sin 0 sin �9 (12 --  I~)(11" 212). 

The solution involves one arbi t rary constant. 

D. Gorjatscheff is has two other cases ~vhich are practically the same. 

restrictions for both cases are: 

(i)  /1 = I2 = 413 

(2) f = g = o  

(3) k = o 

The 

S. Tschaplygin 19 generalized the work of Gor.~atscheff. He  assumes 

(I) L = / 2  = 4 / 3  

(2) h = o 

(3) ~ = o .  

S. Tschaplygin 2~ generalizedi the assumptions of Stekloff and Gorjatscheff. 

He assumes 

(I) g = h = o  

(2) a sin O cos q) = A w 1 oJ~ + D 0)2 0)~ 

(3) a c o s O  =BwloJa + C0)a0)'~ 

where A, B, C, and D are undetermined coefficients. 

17 Moskau  P hys .  Sect.  IO, Lief. i ,  p. 22, [899. 
18 MDskau Math .  Ges. Am.  I6, 1899. M oskau  S a m m l .  2I ,  p. 43[ ,  r899. 

19 Moskau  Phys .  Sect.  IO, Lief. 2, p. 31, I899. 
~0 Moskau  P hys .  Sect.  I2, Lief. I, p. t ,  19o 4. 
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The  I ' s  must  satisfy the relat ion 

od2&-&)(2&-l,) = 44I . 

W e  come now to a development  in the recent  history of the  top problem. 

P. A. Schiff .1 suggested tha t  instead of using as variables the vectors 

~1, wE and oJ~, tha t  the three scalars T, U, and S be used, where 

T =  + + 

2 2 2 2 2 2 
U =  I,r + I2r + I .  eo2 

S ~fli~ i + gI~% + hI3~o ~ . 

T is the kinetic energy. U is the square of the angular  momentum divided 

by two and S is the dot  product  of the impulse vector  and the coordinates of 

t h e  c e n t e r  of gravity.  Schiff very simply and elegantly t r ans formed  the  Euler- 

Poisson equat ions into equations involving T, U, and S. These equations have 

come to be known as the Hess-Schiff reduced differential  equations.  Bess  first 

�9 suggested the idea of using T, U, and S as variables. 

The tIess-Schiff equations created widespread interest.  

P. Stgckel ~ and 0 .  Lazzarino ~3 considered the Bess-Schiff equations at  

length  especially with reference to thei r  equivalence to the Euler -Poisson  equa- 

tions. I f  S, T, and U are all variable then  the two systems are equivalent.  

Assuming each constant  separately merely leads to known cases. 

N. Kowalevski~* restr icted himself  to the case for  which the center  of 

gravi ty  lies o n  a principal  axis, i .e . ,  f-~g-----o. 51. Kowalevski  observed tha t  

a l t hough  the  integrals  of Stekloff, Gorjatscheff ,  and Tschaplygin had  been ob- 

tained under  widely different conditions, t ha t  they all have a similar analyt ical  

character .  He  set out  to find all possible cases for  which w~ and oJ~ can be 

expressed as polynomials of the th i rd  degree in ~3. H e  shows t h a t  the condi- 

t ions he obtains give rise to the cases of Stekloff, Gorjatscheff ,  and Tschaplygi.n, 

and also to a new case, the details of which he does not  carry out. 1~. Kowa- 

21 Moskau Math. Samml. 24, p. 169, 19o3. 
22 Math. Ann. 65, p. 538, 19o8. Math. Ann. 67, p. 399, I9O9. 
22 Rend. d. Soe. reale di Napoli, (3 a) 17, p. 68, 191I. R. AcCademia dei Lineei atti 28,, 

p. 266; p. 325; P.. 34I, 1919. R. Aceademia dei Lincei atti 282, p. 9; P. 259; P. 329, 1919. 
24 Math. Annalen 65, p. 528, 19o8. 
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levski's conditions are long and complicated and hence better suited to verifying 

old cases, than to picking out restrictions which lead to new cases. I t  is, there- 

fore , -no wonder that he missed the case of P. Field e5 and those given in this 

paper. 

N e w  Cases .  

Fir s t  Case. 

For the first case treated the assumptions a r e :  ( I ) t h a t  the center of gravity 

is on a principal axis, i. e., f = g - - o ,  and (2) that the projection of the angular 

momentum upon the vertical is zero, i.e., k = o .  The results obtained are 

extremely simple and interesting for that reason if for no other. With these 

assumptions equations (x), (2), and (3) may be written in the form 

(x6) Ix~o , + ([a--  I~) a/~a/~ - -  w h  sin 0 cos r 

(I7) [2~o~ + ( t x - -  I s ) a / l a / s = - - w h s i n  Osin �9 

(18) / awa  + (13- -11)a / to )  , : -  0 

and (I3) becomes 

(I9) /la/~, + I~a/]  + I sa / ]  = E - 2 w h  c o s  O.  

In order to simplify the study of the problem let us eliminate sin O sin q), 

sin Ocos @, cos O, and d t  from equation (I4) by means of equations (I6), (17), 

(I 8), and (19). This gives 

(20) I l I 2 ( I 1 - -  ~2) [-- a/',(2a/~dw2) + a/~ (2wxdw,)  ] + 

+ [(/~ Is -- 2I~) w2, + ( I s i s - -  2I~)w~ - -  ~ w ]  + I,aE ] I ,  w s d w  s --- 

2 w h k I 3 d w  s. 

gives 

(2I )  

Eliminating the same quantities from the identity 

(sin O sin q))z + (sin O cos ~)~ + (cos O) ~ : I 

a/~, [[,(Ii - -  Is) e a/,d~% + I3 ( I  1 - -  In) 2 a/sda/,] ~ + 

a/] [Ii(Ix - -  Is) 2 cot da/1 + I s ( h  " I , )  2 a/,dw.~] ~ = 

{4w.'h s - -  [E - -  (I~w~ + I ,w]  + Iaa/l)]'} I~doJ]. 
. . . . . . . . . . . . . . . . . . . . . . .  

a5 Acta mathematica, Vol. 56. 



(22) 

(23) 
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Equations (20) and (2I) may be simplified by a change of variables. 

d u  -~ 21o(11 - -  lo) taodtao + 218(11 - -  18) toad~% 

or u = ~ (11 - -  Xo) ~,2 + Z~(Xl-- Xs) o,~ 

d v  = 2/1(I  1 --I2) old~o, + 2 5(18 --I~) ~sd~o 8 

o r  v =  /~(11--/~)~o~ + Xs(Zs--X~)oJ~ 

we see that  

(24) 

(~) 
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Let 

and u + v = (;1--  13) [I1 ~ + I0 ~]  + I8 ~]. 

I n - t e r m s  of the new variables, u and v, equations (20) and (2I) become 

(26) - [v-I8(Z8-I~)0,2 . ]  d~ + [ . - -  ;8(;rl--;8 "~1 dv  + 

[E (Z~ - -  12) - -  (u + v)] ~ r162 = 2 w h k  Is ( l~  - -  I~) doJ 8 

(27) I s [v - -  I8 (18  - -  Io)  (z)~] d u  0 -{- X 1 ['I~ - -  18(11 - -  ~ )  0,}2.] d v  2 

I l I~ 1~  [ E ( I a - -  I o) - -  (u + v)] ~ do~] ~- 4111012~(Zl--1~)w~h~ 
+ (11 - -  h )  

Finally we may still further simplify t h e  problem by another change o f  

variables. (Of course both these changes might  be combined into one, but  it  
seemed best to preserve the logical sequence.) 

Let us assume 

(28) ~ = z~ ~ + 1~ ~ + I~ 2 

E (I, - 10) - (~ + v) 
(29) r / =  (1, -- I~) 

From equation (25) we see tha t  

(30) v = E - ( x ~  + 1o,~ 2, + 13,~) 

and consequently from equation (I9) that  

(3~) cos O =  v 
2 w h  " 

Solving equations (28) and (29) for u and v we have: 
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(32) U = -- [11~ + ~ -- /1 ~] 

(33) v = [I ,v + ~ -  I~E] 

In terms of the new variables equations (26) and (27) become after dividing 

out ~he common factor (/1--I,)  

( 3 4 )  [E--~-- I3o~]  d~ + [~--~o~] d v + 1 ~ o 3 d o 3  ----- 2whkI3do3 

(3s) [ - ~ - v ( I 1  + I~) + E(I~ + I,) + I3(I3- -I~--1 , )o~]d~'  + 

I l I , [  ~ -  I~0]] d v'  + 2I~I,[-- v + E--I3w]]  d~d v + 

~ ~ ~ - - 4 w  h I i 1 ~ I ~ d o ~ .  

(36) 

Squaring equation (34) and multiplying through by I l i  , gives 

1~o~] dv + I , I , [E--v- - I3o" ,]~d~ ~ + 11I,[~-- ~ ~ ~ ~ 

2 L I ~ [ E - -  v --13o:] [~ " I~ o~+]d~drj 

--I~vo3] do~. I i I , [ 2 w h k I  3 ~ ~ 

Multiplying equation (35) by [~--1]~o]] and from the result subtracting 

equation (36) gives 

(37) {[ ~--  T](I1 "~- I2) "{- -E(11 '{-/2) -~ 13(I3--11--I~)0~] [~--f~o~]- 

IlI~ [ E "  v - 13 o~] *} d~ ~ = 

{[I~I,~ (4w~h ~ -- V~)] [~-- 11 o~] - -  

111, [2whO-r3 - -  I~ vo3] *} do~. 

Equation (37) may be written in the form 

\doJ (38) {Ii~ ~\doJ ~}V'+ {I, [~--IoE+. 13(I~--13)o:] 111,1:--+ 

+ i2(i,-i3)o:1 } i1101 ~ + 4 w h k i 3 ~  "l + 
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14 w~ h~(i-- I~ co ~.) + [~ - I1~ + Is(-q - -  I s )  co ' . ]  �9 

d cos!, _ 4w' h"k'} = o .  �9 [ ~ - - I , E + I , ( 5 - - I , ) c o ' . ]  i,x,i.- 
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Equation (38) is worthy of study. First we note that  it is a quadratic in 7. 

Consequently we see that if, in our attempts to find solutions, we assume ~ to 

be an algebraic function of cos, that  the solution for 7/ will be algebraic. Hence 

in attempting to solve equation (34) we shall choose only such functions of cos 

for ~ as will lead to a solution of equation (34) which will be algebraic, since 

the solution for ~ must satisfy simultaneously equations (34) and (38), or the 

equations (34) and (35). 

If  we rewrite equation (34) in the form (39) we see that  it is linear in type: 

(39) d w  s " --(~ ~ 1 ~ ] )  .... V =7 - -  (~--I~ co;) 

(35) [--~--~/(I ,  + I~) + 1,~(I, + I~) + Is(I~--I ,--I~)co~] d~' + 

I,I~[~--I~co',] dv ~ + 2I ,  I , [ - - V  + E--I3co;] d~d v + 
2 $ 2 

So far we have shown that: (I) If  ~ be an algebraic function of co s then 

will also be an algebraic function of co3; and (2) we have reduced our problem 

to the study of the two equations (39) and (35). 

St;s and Lazzarino* have shown that for S, T, and U all variable 

the Hess-Schiff reduced differential equations are equivalent to the Euler-Poisson 

equations. The variables used here differ only by constants from the Hess-Schiff 

variables, consequently we may regard these two equations as necessary and 

sufficient conditions that  the values Of ~ and V (~, V and cos being all variable) 

satisfying equations (39) and (35) will lead to values of col, co.~, cos satisfying 

equations (I6), (I7), and (I8). As a check upon the numerical work the values 

obtained in the cases given below have been substituted directly in equations 

(16), (I7), (I8), (7), (8), and (9)�9 

Equations (39) and (35) axe entirely general, the only restriction so far 

being that (I) f = g = o .  They are especially adapted to the search for new 

- -  * -Sec- ;e ie rences  a l ready given�9 

55--3298. Acta mathernatica. 59. Imprim6 le 16 juillet 1932. 
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particular solutions. As a first effort toward finding a new particular solution 

let us assume 

(4o) ~ = I]  (ato] + b) 

(4 I) ,2 = A.co] + B 

where a, b, A and B are arbitrary. 

Le t  us now see if we can choose a, b, A, and B so tha t  ~ and ~ shall 

satisfy simultaneous equations (39) and (35). I t  is to be expected tha t  in order 

to satisfy these conditions that  we shall have to impose certain restrictions 

upon the constants of integration,  and perhaps on the I 's .  

Subst i tut ing for ~ and ~ in equations (39 )and  (35)and equating coefficients 

of like powers of % gives us af ter  a great  deal of numerical  work the following 

values of a, b, A, and B, together  with certain restrictions on E and k: 

(42) ~: : 0 

which means tha t  the 

th roughout  the motion 

(43) 

(44) 

(45) 

(46) 

(47) 

angular  momentum vector remains 

b = 

(Is - -  Xl)(Zs-- ~r~) 
( I s -  211)(zs-  213) 

[2 Il  I ~ --(I~ + I2)Is]wh 
I s ( I s -  x~)(/:.~ - x , )  

A ~ - -  2 a.lY 3 

B ~ 2wh 

.E  = [ 2 [ l  I'~ - -  2 I l  I s  - -  2 [~ l s  + I~ ] tv h 

(Is - I,) (Is - ~r~) 

in the x y plane 

Equat ion (47) imposes a restriction upon the total  energy. T h i s  is essenti- 

ally a positive quant i ty  so tha t  the I ' s  must  be chosen so as to make E positive. 

and 2 the values Retracing our steps we find for w, ~% 

( h - h ) I s  [ ~ wh( -rs - -2~) ( /~ -211) ]  
(4 s) r (]8__ 211) (i1__ 5) t ~8 ~-]-1) ( / ~ ) ; ~  -- ] 

.(Is--I,)Is [ w h ( I s ' e L ) ( I s - - 2 1 1 )  1 
(49) to, - -  (1 s --  2 I2) (/1 -- 1=) [to~ -- ( i~ - i -~ ( ] - f~  ~ I~  J 
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To find the values of q). 

with respect to tos are 

From (48) and (49) the derivatives of to, and to.> 

dto I (l.q - -  L)Z.~to s 
(so) a tos - ( z s -  ~ Ji)(If -~S ,o~ 

d to~ _ (Is - -  I,)I.~to.q 
(St) altos ( h -  2 h ) ( ~ - h ) t o ~ .  

and using equation (I8) we find 

(5 2) d to~ __ (I., -- /~)_w~ m s 
dt  ( I ~ - - 2 I , )  

(s3) d to~ _ (z., - _ ! , ) . , , 2 , _ %  

Substituting these values in equations (I6) and (x7) and dividing one by 

the other gives us tan q) 

(I.~- 2 L)to, 
(54) tan q) = ( i  s -  219_)to, " 

To find the value of W. From equations (7) and (8) we get 

o3 - -  W sin 6) cos �9 
(55) - -  tan q) 

to1 - -  ~ s in  0 s in  �9 

and making use of equations (52), (53), (I6), and (I7) we find that qb has the value 

(56) [ ( r~-  2 I~)'to2~ + (I3-- 2 I,)~to',] to~,v = 

wh(l .~--  2I~)(I.~-- 2 I~) r(~ 
( h - I i ) ( & - i , )  ~ , h -  ~r~)to: + ( z~-  ~h)to2,]. 

From equations (48) and (49) we find that  

(57) ( I ~ -  211)to~ + ( I ~ -  2x#o', = I~to', 

consequently equation (56) may be written 

" 2 2 . _ _  (58) [ ( I s -  211) to, + ( [ 3 -  2I~ffto~] t o ~  

w h ( I q -  2/1) ( [3-  2/8)[into~]. 
( I ~ - - I i ) ( I s - - I ~ )  

To integrate ~u we shall now show that it is equal to 0 .  
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(59) 

J o h n  J .  C o r l i s s .  

Differentiating equation (54) gives 

sec~ q ) O  ~_ I ~ - -  2 1 1 .  T ~ w , - - ~ , 0 ) ~  . 
I s -  2I, 0)~ 

Replacing sec~O by its value from equation (54) and 0)~ and  0)2 by their 

values s equations (52) and (53) and simplifying gives 

(60)  [ ( i s -  21 , )~0)~ + ( i s -  2I~)'0)22] ~ = 

0)s ((Is - -  I , )  (Is  - -  2 I , )  0)2 + ( i  s _ I , )  ( I  s - -  2 I,)~o2,]. 

Again from equations (48) and (49) we have 

( 6 I )  

(62)  

( 1 5 - - I 1 ) ( / 3 - - 2 1 1 ) ~  "~- ( [8 - -  I2) ( [s - -  212)to~ ~-  

whI.~(I.q-- 2I~)(I.q-- 2 l~) 
. . . . .  (~s- •  i,) - 

Hence the equation for (~ becomes. 

(63)  

and hence 

(64) 

wh I s ( I s  - -  2 [ 1 ) ( I  s - -  21~)0):4 . 

( i s  - i ~ ) ( l s  - i , )  

Comparing equations (58) and (62) we see that  

For convenience we shall take. C O =~ o. To obtain the equation of the body, 

or the polhodal cone we must eliminate the ~o's from its general equation 

2 2 2 
(65)  x ,  _ .~, _ z ,  

2 2 2 
0)  1 0)2  0)~ 

Carrying out ghis work gives as the equagion of the body cone 

(66) (211- - I s ) x  2, + (2 I~- -  Is)y 2, + I~z:, ~ o. 

Let us assume I1 > I~. 

Then "if 
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(66 ~) 2 I 1 > I s > z Is 

equat ion (66) is t ha t  of a . cone  whose axis is O Y~. 

I f  I s > 2I~ is tha t  of a cone whose axis is OZj. 

To obtain the  equat ion of the 

and ~: denote the components  of the 

O X,  0 Y,  and O Z respectively. Then  

(67) 

(68) 

(69) 
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space or herpolhodal  cone. Le t  (oz, co,j, 

angular  velocity, w, along the fixed axes 

refer r ing  to the figure we see tha t  

cox : (~ cos ~P + ~ sin 0 sin 

w,r = (~ sin T -- ~ sin 6) cos 

co~ = ~ + (b cos  6).  

Reinembering tha t  (for c o = o) q~ = • we may rewri te  these as 

(70) ~ = d) cos �9 + ~ sin e sin �9 = % 

( 7 x )  coy - -  6 s i n  q )  - -  T s i n  Ocos ~) = - -  ~ 

(TZ) ~o = & + ~ c o s  o = o,~. 

(See equations (7), (8), and (9).) 

The general  equat ion of the space cone is 

x ~ .y~ z ~ 
(73) o,~-- ~o~----i;,~ ' 

I t  follows tha t  the equations of the body and space cones are the same 

only tha t  of the body cone is refer red  to the moving system of axes while tha t  

of the space cone is re fer red  to the fixed system of axes .  The equation of the 

space cone is 

(74) ( 2 I , - X ~ ) z  ~ + ( 2 1 , - x s ) y  ~ + Isz  ~ = o .  

To find the angular  velocity, we must  form the sum 

(751 0, 3 = ,o~ + ~o~ + ,.',. 

Using equations (48) and (49) we find 

_ 4 ( I 3 - - I 1 ) ( 1 ~ - - I ~ )  ~ 2whI~ 
(76) r (I~-- 2-/~ ~ s  =2 219) w. (Is - -  I~)(is--  Is) 
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To find the t ime we use equat ion (18) which may be wri t ten 

f I.qdc% 
(77) t =  J (i~- "I~) ~1~% " 

W e  see tha t  it is necessary to know for  what  values of ~% the product  

ohio ~ is real, since the t ime is real. Equa t ing  to zero the r ight  hand  members 

of equations (48) and (49) and solving for  o~ a we get  

(78) ~ = --+ V ( f s - - I , ) ( I s - - I z )  ~ = i A(~ I) 

(79) o ' s =  + l/-(I'~---2L)(I"--2g)wh Ai ~) 
- -  V (1 8  - - / 1 )  ~ (4 - -  i s )  - -  -+" ' 

where  the superscript  (I), for  example, indicates tha t  this value of t% results 

f rom set t ing ~*, = o.  

We must  now study the restr ict ions tha t  must  be placed u p o n  the I ' s  in 

order  t ha t  the t ime shall be real. 

I f  we assume tha t  11 > I~ then we have: 

Firs t :  

(8o) %'or Is > 11; 2 ir~ < I3 < 2/1 

we see tha t  A(, 1) and A(8 ') are both  imaginary hence for  this choice of I ' s  we 

cannot  have real motion. 

Second: 

(81) For  I s <  /1; 2 I , < I  s <  21; 

we see tha t  A~ ) is real, while A~ ) is imaginary.  

P lo t t ing  o~ a against  oJ',~o~, we obtain the graph 

(t) 

/ o 

2 
tO t t,O 2 

~(A(la ' , o) 

\ 
Fig. 2. 

fx)  3 
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Third : 

(82) I f  13 > 2 / 1 >  21~. 

This case is impossible since the moments must  be such as to form the 

sides of a triangle. We  have 

(83) h < / 1  + I~ 

but f rom equation (82) it  follows 

I3>/1+I: .  

Thus we can have real motion only in the second case. 

The inequalities of equation (8I) may both be expressed 

inequali ty 

by the single 

(84) 2I~ < /3 < / 1 .  

Making use of equations (48), (49), (78), and (79) the integral  for the time 

may be writ ten 

(85) t =  +_ V (h-2xl)(h-2z~) ( 
~ ) ~  J V =  [(% - Ai")(0)2 

--A~ 1) 

d0)3 

+ A~ ~)) (03 A~ 2~) (02 + A~))) 

where the sign is to be chosen so as to make the time, t, positive. Note in 

figure tha t  03 may become zero. 

I t  is easy to verify t ha t  equation (84) is the only restriction on the I ' s  

necessary to satisfy the conditions imposed on the / ' s  by equations (47), (661), 

and the fact  tha t  cos O must  be less or equal to one. 

To obtain a geometric picture of the motion. As cos O = I when 0) 3 = o 

this is a convenient s tar t ing point. 

From equations (48) and (49) we find tha t  

(86) 0)~ = --  

(87) 

w h e n  o 3 = o .  

w h  I3( h - -  2I~) 

(/1 - -  h )  (I3 - -  [ 1 ) ( h  - -  h )  

w h  tT.s(Ig-- 211) 

(1~ " h ) ( h  - -  [ , ) ( h  - -  I~) 
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(88) 

hence 

(89) 

and 

(9 ~ ) 

(0  3 

John J. Corliss. 

Since T ~ �9 we may use equation (54) to find their  value when ~o 3 ~ o 

tan2 @ =- - -  . / ~ -  21"1 
I s - - 2 I s  

V-  (~-2z,) 

V (I~-2I,) ,~. � 9  ~ arctan - (z~-:  2 ) ~ 3  

The angle between O X and O X 1 is (P + ~/~ so tha t  at  the ins tant  at  which 

: o the diagram giving the motion is as shown in Fig. 3. 

Z 

Z0 

X,  
Fig. j. 

"y:. 

The 

cone s. 

motion consists of the rolling of the body cone, s~, over the space 

Second Case. 

This case is a special case of the S. Kowalevski case. The method of 

procedure is identical with tha t  just  given for the First  Case, so I have merely 

given the results. 
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For this case the restrictions are: 

(i) f = g = o  
(2) I ,  = I~ = 2z~ 

(3) k = I3b V n  +12 

(4) E = n I y  

where n must be greater than or equal to one, and b ~ is given by the equation. 

V 2 
(5) 5S = / 3  h 'r/q- I . 

2 and ~ as functions of wa are The expressions for w, ~ 

(6) to~ = --[to~ 2bto~--b s] 

(7) ~ = - 2 [ ~  + 2 b ~ - - . b ~ ] .  

The time and the angle T are given as functions of t% by elliptic integrals. 

Further study of equations (39) and (35) should lead to a few more part- 

icular solutions. 

We remark once again that  though the literature upon the Top Problem 

is extensive, it is entirely a literature of special cases. Klein and Sommerfeld 

in their huge work on the >>Theorie des Kreisels>>, page 39I, have suggested the 

possibility of interpolating between known cases, and upon the basis of continuity 

between the two movements. Hence if we can find enough special cases, we may 

yet hope to know something of the top problem. 

56--3298. Acta ~ t h e m a t i c a .  59. ImpUre6 le 5 aofit 1932. 


