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THE DEFINITE INTEGRAL [, AND THE ANALYTIC
THEORY OF NUMBERS.

By

L. J. MORDELL,

of MANCHESTER.

§ 1.
Introduqtion.

Professor Siegel! in a memoir recently published dealing with the manu-
seripts left by Riemann has pointed out that Riemann dealt with some integrals

of the type

Ea

> (Ot + it _
- j et+d dt

—x

in his researches on the zetafunction. Not only can the usual functional equa-
tion be thus found, but also an asymptotic formula is obtained for the zeta-
function of which the first term gives the well known approximate functional
equation due to Hardy and Littlewood.?

Kronecker's evaluation® of the Gauss's sums by special integrals of this

3

kind is classic. Not so well known is his evaluation® of the integral
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1 Siegel 45—48.
? Hardy and Littlewood (3), (4, {5).
3 Kronecker (1), (2).
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in finite terms when # is an integer. The general integral or particular cases
have also been considered by Lerch!, Hardy? Ramanujan® van der Corput?* and
myself. My results which included the complete evaluation of the general inte-
gral, were found in September 1918 and published in 1920 in volume 48 of the
Quarterly Journal. The paper is not well known and has even escaped the
notice of the editors of the Fortschritte. Further, it is not easily accessible
outside of Great Britain. It seems in view of the interest aroused by Siegel’s
paper that it might be desirable to give a more accessible and fuller account of
the integral, and the considerations leading to it and the results deduced from
it. These are concerned chiefly with formulae involving the class number of
definite binary quadratics, many of which are also not easily accessible and
suggest interesting problems for research. I also include some new and allied
results dealing with the approximate functional equation of the thetafunction.

The starting point of my investications was the theory of the positive,
definite binary quadratic form

ax®+ 2hzy + by’
where «, h, b are integers, so that the determinant of the form is
h* —ab= — D < o, say.

Let F(D) be the number of uneven classes of forms of given determinant — D,
that is, classes of forms in which a and b are not both even, and let G (D) be
the total number of classes of forms of determinant —I. It proves convenient

to assume that weights é,é are attached to the forms (a, 0, a), (24, a, 24)
respectively, and also that
F(o)= o, G (o) = —1/12.

The formulae for the class number are nearly a century old. It is well

known that Dirichlet proved that when —D is negative and has no squared

2225 ) )

! Lereh (1), (2), (3).

? Hardy (1).

® Ramanujan (1), (2), (3), (4)-
¢ van der Corput (2).

factors > 1,
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Another formula published by me' some years ago states that for all — D <o,

) VDo 3 s

where N (n) is the number of solutions mod n of the congruence
2= D (mod n).

These series can be summed in finite terms, but none of these formulae
would suggest the existence of the so-called class relation formulae originally
discovered by Kronecker. One is

(1.2) Fn) + 2 F(n—1°) + 2F(n—2%+ - =An)—I'(n),

where the summation on the left is continued so long as the argument of the
function is not negative; I'(n) denotes the sum of those divisors of % which are

=Vn and of the same parity as their conjugate divisors, a weight é being

attached to V'n if this is a divisor; #(n) represents the sum of those divisors of
% whose conjugates are uneven. )

Kronecker proved his formula originally by comparing two expressions for
the degree of the modular equations in the complex multiplication of elliptic
functions. He and Hermite found other proofs from the expansion as Fourier
series of products and quotients of thetafunctions. The real difficulty here of
course is the selection of the appropriate functions. Many very important results
were found by other writers especially Gierster, Hurwitz, who developed his
theory of modular correspondences, Petr and Humbert. A direct method was
developed by myself? depending upon expansions involving certain integral func-
tions connected with the thetafunctions. A more detailed account of the whole
subject and references will be found in Chapter 6 of the third volume of Dick-
son’s History of the Theory of Numbers.

The plan of this paper is as follows. In § 2, I introduce an integral
function, f(x), the study of which led me to consider these integrals. Tt is
shown in § 6 that the general integral can be reduced to three standard forms
corresponding to the cases N (a/c®) <o, >0, =o0. The first is evaluated in § 3

! Mordell (5) 118.
2 Mordell (1).
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by means of f(z), and the second in § 4 by means of an incomplete theta series.
These two forms coalesce when R (a/c?) =0 and this is dealt with in § 5 which
also includes the evaluation of the integral in finite terms when ¢a/c® is a rational
number. A few miscellaneous results are given in § 7. Section 8 deals again
with the case when 7a/¢?® is rational and includes the method of evaluation of
the Gauss’s sums, to which I was led and which T published in 1918: The case
when ¢a/c? is irrational is resumed in § 9 and it is shown to contain, in partic-
ular, the result for the approximate functional equation of the thetafunction.
Finally in § 10, I mention some problems awaiting solution.

A variation of the first standard form had been considered by Lerch!®
nearly forty years ago, but I was not aware of this when I wrote my Quarterly
Journal paper in 1918. He evaluated his integral in two entirely different ways.
In one, it follows as an obvious consequence of some expansions involving func-
tions similar to f(x), which of course are well known in connection with the
expansions of doubly periodic and allied functions. In the other, it is deduced
by an application of Poisson’s summation formula to a series of the type f(x).
His results require the application of contour integration for the transformation
of various integrals. He finds from the value of his integrals, the functional
equations corresponding to (3. 3), (3. 4) and proves that their solution is unique.
Some of his results are given in § 7.

My procedure is fundamentally different. After showing how I was led to
consider the first standard form, I prove by simple contour integration that the
integral satisfies two functional equations which define the integral uniquely. It
is now a simple matter to solve these equations. The whole procedure makes
comparatively little use of detailed results or expansions and is a useful addition
to the known standard methods of evaluating contour integrals, especially when
the results permit of evaluation in finite terms by means of elementary functions.

Another variation of the first standard form had been considered by Ra-
manujan® about the same time as myself. By expressing it as double integral,
he finds the functional equations satisfied by the integral. He does not solve
them except in the particular cases corresponding to my rational Za/c?, or when
the parameters are such that the solution is given by iteration of the equations,
say the first m times and the second 7 times.

These are the only writers on this subject who, as far as I know, have

! Lerch (1), (2).
* Ramanujan (4), 202, 203.
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considered the first standard form. The others have dealt with the second
standard integral. A variation has been evaluated by Ramanujan.! His method

depends upon knowing the result and proving it by an application of Lerch’s

w0

theorem that if P(z) is continuous for x = o and f €% P(x)dx=o0 for all a = o,

0
then P(x)= o for x = o.

§ 2.
An Integral Function connected with the 6 Funetions.

Write as the definition of the thetafunctions,

o o«

2 gaie BN 9 nmix

— Z q e.’.l),’(l.l,’ 0 (23 w) = Z (_ I)" q" e’n"uz,
—® _—

+
m? N\ Lim—1) 1me ;
x w qu em-ua, 70 Z ,z g emniz
m odd odd .
As usual, ¢ ="' with J(w) > 0. We shall sometimes write 6,,(x) instead
of 6y (2, w) when the argument w is obvious and similarly in other cases. We
write

(2.2) 8o = 0, (0, w) Z q.

Some of the simpler properties of these functions are typified by

)

(2.3) e+ 1)=—0,(x) O+ w)=—eriztug, (z)

and so 6,,(x) has a simple zero at the points x==a + bw where a, b are any
integers. Further the thetafunction possesses a simple transformation theorem
of which particular cases are

0 (2 = L) = =iV (=Tl e, 0, ),

w w

(2. 4)
0 (g’ - I_) - V(— i) e e 6y, (x, w),

! Ramanujan (2).
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where the radical here, and throughout this paper, denotes that value with a
positive real part.

Also
6,/ ( — ;) = V(= Tw)0,, (w),
(2.3) o (= 1) V(= i) o

The integral function is defined by the series

1o (_ I)%("L_'l) .147"2 emmniz

(2.6) if, a3, Ve

I+ q"
m odd 1

It is of a type which can be defined uniquely by two equations such as

fle + 1) + fla)=o,
Sflz + o) + flx) = 6y, (z).

For if two integral functions satisfied these equations, their difference d(x)

(2.7)

would satisfy

d{xz + 1) + d(x) =0,
(2. 8) '
dx+ w) + dz)=o,

and so unless d(z)=o0, it would have as many poles as zeros in the parallelo-

ram, vertices at o, 1, w, 1+w, as is easily seen by considering the integral
g ) y g g

f & (2) dz around the parallelogram.

d(2)
Some simple properties of f{x) are
(2.9) S(=2) + fle + w):=0, fla)—f(—2)=0, ()
(2. 10) fla + bw)= (= 1)"** f(o),

if @ and b are any integers, as then 8, (¢ + bw)=o.
Also



Some Integrals and the Analytic Theory of Numbers. 329

+ (_ I); (m—1} q} me

(2. 11) iflo)= D — 11— = 641 6,0,

as is easily proved by putting x::; in the expansion

. + =
£ 000 0o G + 3 (—1EOT i oot (m e n:c) =o.
b1 () modd 2
Hence from (2. 5)
(2. 12) f(o, — (Iu) = —{wf(o, w).

The importance of functions such as f(x) in class number formulae arises
from two reasons. The first is that the derivative f”(0) can be expressed very
simply in terms of power series whose general coefficient involves F(n). Thus
if we take another function of the type f(z) and define an integral function
Joi (@) by

Jolz + 1) = fo (),

Jo (@ + w) + for (%) = by (),

(2. 13)

it can be shown! that

(2. 14) Lo (00 = — an ’ti I (n) Q’_l = —4niQw),

n=—1

say. This gives a simple generating function for Q(w). There are similar func-
tions e. g. fyo(x) which is really f,, (x, o+ 1).
The second reason is that the function

(2. 135) Jo1 () 0 (2)/6,, (),

where 6;(r) is a thetafunction of order s, sometimes permits of a simple expan-
sion from which formulae analogous to (1.2) can be found for

(2. 16) Fn)+2Fn—s. 1)+ 2Fn—s.2))+2F(n—s.3%) + -

See also § 10 in this connection.

! Mordell (1), 116 —119.
42—3343. Acta mathematica. 61. Imprimé le 9 octobre 1933.
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The discovery of such relations should be facilitated by the study of the
function 2(w) and the application of the theory of the modular functions when

possible. Thus the singularities of 2(w) are given by the expansion’

(2. 17) 80w« X i (,) / Vi—ila+bo)ll,

where the double series is summed first for a =0, + 2, + 4, ... and then for

b=1,3,5,... in this order. The symbol (Z) is the Jacobi symbol of quadratic

residuacity. If a is mnot prime to 5, (Z—) =0 except that it equals 1 when

@a==0, b=+1
It becomes important now to discover some simple relation connecting
2(w) and Q(— 1/w). I found that®

t """pdt -
(2. I_8) j ;,,” S = 2 Q(w) + 52 F(—iw) 2(—1/w) + 0 (0, w),

—_

®

e’”‘”‘ dt s n (4 n—1) . w\ n—1 J7 n
(2. 19) fem A Z —1) Flan—1)g} + = 2V (- zw)%(—l)' VF(n) g,

where ¢, = e~ 7",

From these can be deduced relations such?® as

o w© I ' an Vi . 4F(n) 30 (n)
(2. 20) et “2_,1_(”% T A ,,ZII e + 2 gn 4 )
(2.21) D D=4t D () () e 4 2 (=1 Flgns3)

; N ;
n=0 ()l 4z 4+ ;) n—=1 n= 0( 4(4 ))4—3))

where N (z) > o.
The consideration of such questions obviously suggests the evaluation of
f(x/w, —1/w) in terms of f(z, w) and led me to the theorem (3. 1) of the next

! Mordell {5
Mordell {4
Mordell (4.

e
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section and then to the general integral. The result (2. 18) follows on diffe-
rentiating both sides of (3.1) for # and putting x =o0. The integral (2. 18) had
been previously considered by Ramanujan® and he proved the characteristic

property
te= Tl vy [ teret dt
f e2nt__ r: - (l/(_ Zw)) ermf — 1

in a slightly different form and in an entirely different way. He also gives
some applications to the Riemann zetafunction, but naturally the connection of

the integral with the class number was unknown to him.

§ 3.
The First Standard Form.

I now proceed to the proof of the

Theorem.
x I ,
eniwtz—Qntxdt ~f(5’ _— 6) + wa(xy )
(3.1 et — 1 b, (x, v) o

—0

where the path of integvration may be taken as either the real axis of ¢ indented
by the lower half of a small circle described about the origin as centre, say the
path (—e, 9, ©), or as a straight line parallel to the real axis of ¢ and below
it at a distance less than unity. Such a path may be denoted by Po,—;. We
remark again that J(w)>o. The case J(w)=o0 will be treated in § s.

For consider the function ©(x) defined by

(3. 2) 0 (@, @) O(c) =flwlw, — 1/w) + i f(z, o).

It is a meroinorphic function of x with apparently simple poles at the points
x=a+ bw where a and b are any integers. "But when z=ga + bw, the nume-
rator of O(x) is’

! Ramanujan (3).
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?G“‘ﬂ+udﬁwﬂ:o

f(g +0, — I;) + iofla + bw, w)=(— 1)

from (2. 12), and so @ (z) really defines an integral function of x.
The function @(x) satisfies two simple functional equations, namely,

5.9) Ol —1)— O) = i V(= i) exirto,
(3-4) O(r + w) — eriizz=0l O(2) = — i weriEto),
For

— 6, (x, w)(~)(.v—1)-—v=f(»xA;c; Lo— IE) +iof(c—1, w),

x 1 (x 1 .
=0, (;’ - ;0‘) —f (;,;’ — ;) — i f(z, w),
=iV (= o) eriFlo 8, (x, 0) — 6, (x, o) O (z),
and gives (3. 3).
Next

— et g (x ) O (x + w) =f(x--52)7 — ;) +ioflx + o, o),

= _f('z, — ;) + w8, (2, 0) — flz, o),

=—0,(c,0)0O) + 1w, (x ),
and gives (3. 4).
These equations define uniquely the integral function @(z). For if d(r) is
the difference of two integral functions satisfying these equations, then

d{x—1)—d(x)=o,

(3. 5) .
d(x + w) — ezt d () = o.

Hence if d(x) is not identically zero, it must have at least one pole in the

d'(2)

parallelogram, vertices at o, I, w, 1 +w, as is easily seen from f d(e) dz

Another form for the solution of (3.3), (3.4) can be found on noting that
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]

—at—2bt 7. . T W
(3. 6) fe dt'Vle,

—_—®

where the path of integration is P —;. Hence (3.3) can be written as

@@—04MM=wffWH”Wt

—_—0C

This is evidently satisfied by the following value for @{x),

)

enimﬂ—‘)ntmdt
(3.7) @(.z-):wf e,

-—_—0

the integral being taken along Py, —i. But the integral is obviously an integral
function of x, and it will now be shown that it also satisfies the equation (3. 4),
so that the integral is really another form for @(x).

enimt”’—? nte dt
2t g

taken along the sides of a rectangle with vertices A, B, (), D at the points
+ X —4A T X+4(1 —2) where A is any fixed real number with o < i < 1.
Make X — . The integrals along the sides 4 D, O B — o, for writing =1 X +y
so that — 4 <9 <1 — A, the modulus of the integrand is

For consider the integral

0 I enimX’—y,X I

where u is independent of 7. The integral along B 4 — @(z), and that along
D C to — e 2279 @(x + w) on writing ¢ + ¢ for ¢ and noting that

rniw(t+i—2a(t+dr=niwt?—2ntlx + o) —ni(2x+ ).

The integrand is analytic in A B CD except for a simple pole at =0
with residue 1/2 7.
Hence by Cauchy’s theorem

O (x) — e 7R @z + ) =i,

and the identification of @ (x) with the integral is completed.
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The integral arising when — 1 in the denominator is replaced by any
constant d == ¢>7?* gay, has its value given by

@w

(3. 8) f grivti—rntz gt )f[(’lf +iw)o, — 1o +ief(2+lio, o)

N _ — e—ni(l%;-{-‘z Ax+24
e‘l nt . eZniZ.

wb, (z+ o, o)
where there is no loss of generality in assumihg that 0 < R (A) < 1. The path
of integration is the real axis, but if A is purely imaginary, i.e. N (4) == 0, the
real axis is indented by the lower half of a small circle described about the
point ¢ =4, '

For on writing 74 + ¢ for ¢, the integral becomes

€ —7i
eﬂz’(ut?—‘z at(r: dw) dt

e—fti(/‘.2w+2 Art21) T
e'zm — 1

—x-—ii
The path of integration is of the type Py, 1) and the result is given at once
by (3. 1).

§ 4.
The Second Standard Form.

It will be shown in § 6 that the general integral (1) can be reduced to
two standard forms of which (3. 1) is the first. The second is the integral

x

eﬂiwt”—‘z ate dt
(4) [ ~

c‘z,’:wt __ VI

along the path (— =, g, ) or (— %, 0, «), and which we now evaluate. We
still suppose J(w) > 0. The case J(w)=o0 will be dealt with in § 5. The im-
aginary axis of w is a line of essential singularities of the integral considered as
a function of w, so that it will be necessary to distinguish the cases when
R (w) > 0, R(w) < o, and R{w) = o.

Write g = ¢*i9,

(4_ l) 0(3:’ w) ;‘:qe‘.!m,'x + q4e-im';v + q‘.)eﬁﬂix + o

(4. 2) @lr, @) =1+ qe 278 4 gretmix 4 P bmiv 4o
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so that 6 (x, w),.q)(x, w) are parts of the series for 6y, (x, ) and |
(4. 3) ' 0 (x, w) + kq) (2, @) = Oy (2, w).
Then, if R (w) > o, for the path (— o, 0, ),

eriwt—2mte dt 1 i ix ’L @ I)
— o _tgl®, _1)
(4-4) f e2met — g V("w————iw)e bz, ) wt9 w w

—

which on noting (4. 3), (2. 4) can be written as

o

griwt—anty gy I ) : 7 (gc . 1
[ 77 33w . Ly — ]
(4. 5) f pEr T —— V(j“;;)'e g (@, w) - o ¥\o w)

—_—0

It is shown in § 5 that if J(w)=o0 and w > o, then (4.4) holds when () > o,
and (4.5) when J(x) < o. ,
If N(w) <o, for the path (— =, 5, «),

o

enz’wt?——Qnta'dtM — 1 nidho ) N 7 i I
(4. 6) f T — _Vme @ [z, ) + w() W )

wenith—Qntx dt k I il z x 1
(4.7) f T —V(j%_)e 0(90,' W)=~ gl= -~

—®

If J(w) =0, w < o, then (4. 6) holds when J{x) < 0 and (4. 7) when §(x) > o.
Finally if R (w)==o, ‘

«K

em’wﬁ—Qntmdt 1 )
4.8 - = ————— """ § (2, w),
@ 8) [ T = e o)

—0

where the path of integration is the real axis of ¢ indented by the lower halves
of small circles described around the points né/w, (n=o0, *+ 1, + 2,...).
For suppose first R (w) > 0, and write
) - weniwﬁ—?nm dt ~ e—n_i(o:f-z'wt)é/w dt .
(4. 9) 2 (&) = _’”“""’{ T TT—— :‘j

L
— - —

e2nwt — 1
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where we take the paths to be (—o, 0, ). We now find the functional equa-
tions similar to (3. 3) and (3. 4) satisfied by x(x), namely,

(4. 10) ETiREte) (5 1 o) — y(x) = ;I.em'& -+ o)
V(- ‘)

(4 1 I) 2 (x — 1) — (x) = g1 g—ile—1)o

For

(4 IO’) eni(x+w)2/wx (.%' + w) — enixz/wx (.%') — fe”iwt2_2”t(m+‘”) dt

= =1  rilatepe
V(—{w)
from (3. 6), whence (4. 10).
Next

we—ni(x—l—iwt)2/wdt .
to—n)= [ g

—

which on writing ¢ + ¢/w for {, becomes

. w—ifw
e—ni(x—imt)?/w dt
glz—1)= T
—o—i/w

the path now being the indented line (— % —i/w, —i/w, % —i/w) lying of course
below the real axis of ¢ since R (w)> o.

. e—m'(x—icot)?/w dt
f e?nwt — 1

taken around the parallelogram with vertices 4, B, C, D at the points + X — ¢/w,

Consider the integral

+ X and small lower indentations at {=o0 and ¢{= —¢/w. The integrand is

regular within this paralleiogram except for a simple pole at { = — 7/w with residue
~~~~~~~~~~ e 70w Make X — o, then as in § 3, the integrals along 4 D, B C—o,

and (4. 11) follows.

The integral solution of the equations (4. 10), (4. 11) is not unique. It in-
volves an arbitrary additive multiple of 6, (x, w) as is obvious on considering
the equations analogous to (3.5). It can be found by putting
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2 (@) = Az, w) + e B (% — 1).

2] w

For writing 4 (x) for A (z, w), and B(z) for B(x, »), the equations (4. 10),
(4. 11) will be satisfied by taking

A+ 1)=A(z),

(4. 12)
l971i(2a;+w) A (.’,U + w) = A (%)— ____IT_: eni(Zx—l—w),
V(—iw)
B(x +1, —i) =B(§, ~i),

w w W )

(4. 13) ,
e i1 o B (9_0:_], — L) = iz B (E, — l) + * e~ 7ile— 1w

. w W w w W

The latter are equivalent to

B(x + 1) = B(x),
(4. 14) - : o
em(2x+w)B(x + w) — B(ZI}) — 7w em(2x+w)‘

The functional equations for A (z), B(x) can be solved immediately by power
series in €27%% or ¢~27%% and integral solutions are given by

A@) =0, o)/V(—i0), B =iol(z, ),

as is easily seen from (4. 1).
~ Hence
B (x, o) i I
(4. 15) 2(x) = Lby (x, o) + - mFee — — e e g = — ),

(—iw) o w w

where L is independent of . Put 2 =0, then

=]

eﬂiwt?dt 0 O’ o) — 1 Z . . .
[N

2V(—iw) 2w

—®

along the path (— «, 0, ®). Write. —¢ for ¢, then the left hand side becomes

43-—3343. Acta mathematica. 61. Imprimé le 9 octobre 1833.
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w

77 wi?
(4. 15 _f(e__—Z:étm_ .+ e’”"“tz) dt

—

along the path (—o, 0, «), or by addition

I 27 - e,”'mt?di :i._.—i_:_::?
2 \2tw 2w 2]/(—’&(1))

—_—

since the integrand has a simple pole at ¢t =0 with residue 1/27w. Then from
(2.5), L=o0, and from (4. 13),

@«©
7L wit—2 i ¢ I . . ;

€ (mb_t___d:__*_‘_emx?/wg(x’ w)_lg(ﬁ, hl)
e —1 V(—¢w) w \w @

along the path (—o, 0, «) and this is (4. 4).

To prove (4.6), (4.7) where R(w) < o0, we still denote the integrals (4. 6),
(4.7) with the upper path (—«, 0, ©) by x(z). Then (4.10) still holds while
in (4.11), the 70~ must be replaced by —zw™ since the line + « —¢/w now
lies above the real axis of £ Clearly (4. 12) still holds while in (4. 14), — i
must be replaced by {w. Hence (4. 15) is replaced by

0 (x, ) z

(4 16) ya (x) =1L 000 (x, w) + V—,.—:_—_ - c—nix‘-"/wa (ga — I) )

—zw) w w w

which on putting x = 0 becomes

— e V(i) = L6, (o, w) + Qgs—g%__wf)zi)—l + Z—Z;o [000 (o, — LI—U) — I] ;

and on noting (4. 3), we have (4.6). Then (4.7) follows from (4.6) just as (4. 3)
did from (4. 4).

There still remains the case when N (w) = o.

Write now still
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w0

e entwt?—2 ntx dt
w1 R e

-—0

where the path of integration is the real axis of ¢ indented by the lower halves
of small circles described about the points ¢ = ni/w, (n =0, £ 1, £ 2,...). Then

o

em'wt?—2ntxdt I i
. — ___ i wa .
(4 18) f e2mut — 1 ]/*(_ zw) € (%‘, w)

For the equation (4. 10) holds but (4. 1) is replaced by

2z — 1) — % (x) =o.
The solution is now given by

1

x) = L0z, 0) + ———8(x, w).
% ( ) 00( w) V(—~ i) ( )
Put = = o, then
, ~ griotdt I 60 (0, @) — I).
(4 19) . ‘[eant_ I - LoOO (O: w) + V(—zw)( 2

—

Change ¢ into — ¢. The integral (4. 19) becomes

fevorar [
(4 20) —“fgi;t—mff@”lwt dt,

the path of -integration being now indented by the upper halves of the small
circles. Add (4.19), (4.20), then the sum of two of the integrals gives 2w
into the sum of the residues of the integrand at t = ni/w, (n=0, £ 1, £2,...), 1. e.

. = <] .
27 . (2 I
2: e——mnz/w — 600 (O, _— __) .
2T w w

==

Hence

I ‘ 1
_ﬁ + BGOO(Q’ —;;) =2 L0, (0, w) +

0y (0, 0} — 1

V{(—iw)

?

and so L=o.
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It is easy to see that if in (4. 18), the real axis had been indented by upper
halves of small circles, then 6(z, w) must be replaced by — ¢ (z, w).

It is also obvious that just as in (3.8), we can evaluate the integrals (4. 4),
(4.5), (4.6), (4.7), (4.17) when the —1 in the denominator is replaced by a
constant d = ¢>7** where 0 <R (1) < 1 on putting ¢ + ¢4/w for £. But now there
may be several poles of the integrand, i.e. zeros of €*7®!— 1, in the infinite
rectangle defined by + «, + ©—il/w.

§ s.
The Case when the Standard Forms coalesee.

There is, however, another way of solving equaﬁons (4. 10), (4. 11) Which
has the great advantage of also giving the evaluation of the general integral
when  is real. Then the functions f(z, w), 0, (%, ®) no longer exist but some
of the results of § 3, § 4 are still valid. Clearly the two standard forms are
the same since the integrals (4.4) to (4.7) reduce to (3. 1) when ¢ is replaced
by t/w.

Suppose then o is real. The integrals (4. 4) to (4. 7) (and also (3. 1)) con-
verge uniformly in « for all bounded z and hence are integral funections of z.
Thus take the integral (4. 4), say J, and consider the behaviour of the integrand
at the limits of summation {= 1+ . Clearly at {= o, J converges absolutely
and uniformly when R(zr)= -—-w +¢e¢> —o and ¢ is small. At t=— o0 J
obviously converges absolutely and uniformly for R(x) < —e<o. But J also
converges uniformly for 0= R(x) = — w. Thus near R(x) = — w, the conver-
gence of the integral at only ¢ = « need be considered. Write

e—2ntx e2rtlzto)

__—:6—2nt(w+w) .
eant_ 1 e?nwt — 1

Since

e}

fenith2nt(x+w) dt

converges uniformly for bounded z and

|e—2nt(x+w)| < e2ﬂ.st7

the result follows since w > o for J. Similarly near R(x)=o.
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If w is real and positive, the functional equations (4. 10), (4. 11) still hold.
This is obvious for (4. 10) from (4. 10"). It suffices to prove (4. 11) for 0> R(x) > —w
as both sides are integral functions of .

The path of integration in (4.9) can be deformed into the inclined path
(— o0 €%, o, w0 ¢'®), where « is any fixed positive acute angle, by the crude argu-

ment of absolute convergence, since for real X,

. 24 I
Iemwxze wlSI for O£0£a<57t.

The argument leading to (4.11) now applies as the integral along the side

oining the points X ¢ X e¢'® — — vanishes when X — oo, since
1 g p ) P
Iem'(uX?e”"‘I =0

We shall now solve the equations (4. 10), (4. 11) by iteration. TLet m and »
be positive integers. - Then (4. 10) can be written as

i 7t F23

?
—(x+w)? — a2 1 —(z+w)?
e” %(x+w)_ew X(%):_V(t;w_)ew . )
and so
i i n  wi
— (x+nw)? —a? I (& +sw)?
50 e T e ) = e ) = s e
s=1
So from (4. 11) .
(5. 2) w—m) =zl =L 3
5.2 e —m) —y(z) = wgle

Change x into  —m in (5. 1) and apply (5. 2), then

%i(mdm+ nw)? ‘ %(x_m)z 2 " —%(a:—rﬁ
e y(x—m + nw)—e x(cc——m)+aze
r=1
. 1 *i e%i(m—m+sw)2
V(—io) =

; m‘ _at T I n ( o)

. == — — e © R — em’2ws+sw
(5. 3) % () ‘”;_1 = Z_w)g

+ eﬂi(2nx+n2w)x(x — i nw),
where '
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S w®

_”_i(x_m)gfeniwt“’-—2nt(w——m+nw)dt

(5.4) ety (o —m tno)=¢ © o —

The equation (5.3) would still hold if & were not real. Thus if R (w) > o,
(4.4) results at omce from (5.4) on making m and n— + o in such a way
that |[R(@) —m + nR(0)| < R(w). The integral (5.4) is then bounded and

e © " —o0. The restrictions on m and # may then be discarded since the
series in (5. 3) converge absolutely when m, » — + « in any way.

When o is real and z is not real, say I(x) > o (4.4) is still valid. This
can be deduced from (4.4) by putting w =§ + ¢5 and making 5 —>0. The inte-
gral converges uniformly in 7 for 0 < 5 <%’ say if 0 > R(z) > — & and so do the

series for 0 (z, w), 0 (ga — I;) since J (x)> 0. Then (4‘. 4), holding for 0> R(x) > —¢,

-holds for all & with J(x) > o, as then both sides are analytic functions of .
The validity of (4.4) for real w >0 also follows from (5.4). For if J(x) > o,

i)
— = (x—m)?

e v —o0 if w>o0. The integral in (5. 4) is bounded if m, » — + o in such
a way that 0 > R(x — m + nw) > — w, and then the restrictions on m, % can be
discarded since again the series in (5. 3) conver;ge absolutely when m, n — +
in any way.

When o is a rational number, say o = a/b, where a and b > o are integers,
the integrals can be evaluated in finite terms. ’

For

I+ 0(.’1/', (JJ) = i q"z 627”’“’ == i Vg"zﬂia/b-FZnnia;'

n=0 n=0
Put n=r+ Nb, (r=0,1,2,... b—1, N=o0,1,...) then

I+ 6(96‘, w) — Z er’m’a/b+2 raiz+2 Noniac+riNab
r, N

(5. 5)
—1 eﬂirza/b +2raia

1 — enib(2x+ )
=0

on summing for N. Similarly

) b_;l em‘r?a/b——zrnix
(5. 6) @ (x, w):Z | — grib—2zta)
r=0
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It is easy to see that with these values of 6(x, w) etc. that (4.4) holds when w
is a positive rational number not only for J(z) > o but for all z. Arguments
similar to those for (4.4) also apply to (4.3), (4.6), (4. 7).

" Some of these results were given in a different form by Ramanujan® but
my proofs are entirely different from his.

Finally when w > o0 and irrational, and « is also real, the uniform con-

vergence of the integral (5.4) in « shows that if m and # — + © in such a
way that x —m + nw — o,

wem'wﬁdt
x(x—m -+ nCO)’—)%(O):‘/‘eQHwt—‘_‘——I‘)

b1
20 V(- ia)
Also
. i 2
eri@natnto) e~j(x_%) ,
as is obvious from the derivation of (5. 4).
Hence
( ) 1 Z ™ —ﬂ(m‘”r)z I i i ( +s2w) |
x%’z—'lm - e w _’____ emews 8w
wgl V(— te) é ’

the dashes denoting that the particular terms 7= m and s = n have weights 1/2.
Hence if w >0, = is real and the path is (—o, 9, «),

el

eriwt—2nts i . Z‘m’ E(er—ﬂ) 1 ' ﬂ(m+sw)2
(5.7) f——“eg,mt__—l = lim ——;Ze“’ —I——-—___Ze“’ ,

r=1 (_ zw) s=1

—C0

where m—>.+ ®, n—+ 0, x—m+ nw—o.
By writing — ¢ for ¢, —¢ for ¢ and — x for x, we see that for w < o and-
the path (— o, 0, «).

o
gtiwt—2mtx gy

\ . P m %l;(~2rx—r2) 1 i %i(a:+ §i)?
(5.8) : WT:hm -—;gie +]/—j‘26,

(—iw)Z

—w0

where m— + 0, =+, 2+ m+ nw—o.

! Ramanujan (2).
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§ 6.
Reduction of the Integral to the Standard Forms.

There remains now the reduction to the standard forms in § 3, § 4, § 3
of the integral

RN

c‘”ubldt
I= [ et +d’

—x

~ where the path of integration is the real axis of ¢ indented by the lower halves
of any zeros of the denominator. The case ac=0 may be omitted as these
results are well known. The convergence of I requires then R (a) < o.

If ¢ is real, I reduces at once to the first standard form including the case
of real w in § 5. Hence on writing —¢ for ¢ if need be, we can suppose that
¢ is a complex number with R(c) = 0. We consider now the case when R (a)<<o.

Three cases arise according as the real part of a/c® is negative, positive,
or 7ero.

Suppose first N (a/c?) < o. This implies R{c) # o, for R(c) = 0 would make
R (a) > 0. Put

(6. 1) t:-2mvle, miw=4x*alc?, i.e. J({w) > o,

and [ takes the form

x ¢ ® ¢

27 Pnzun-——huxdv
6.2 — = “dv,
(6.2) ¢ e 4o j v

—®x e —x

say. The path of integration is now the line through the origin indented by
the lower halves of the zeros of the denominator and inclined to the real axis
of ¢ at an angle arg ¢ where

I I
s > arg ¢ > — 7,
2 2
since R (c) > o.
Consider now the integral f Vdv taken around the contour formed by

the two lines (indented if necessary) joining the points —p, ¢ (i. e. the real axis)

and the points —oc, oc and the two arcs of the circle |v| = ¢ joining the points
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0, 0¢ and —p, —pc. When ¢— o, the integrals along the arcs tend to zero
since N (a) < o. For putting v = g¢'®, then J(wv?) >o0if o <arg w + 2argc< =,

i.e. 0 <arg alt < m,

which holds since R (a) < o.
The zeros of the denominator are of the form v=n? + d, say where n=o0,

1, ¥ 2,... Only a finite number of them lie within the contour of integration

y

since R(c) % 0. Hence the value of the integral f Vdv is given by Cauchy’s

—_—m e
o0

theorem in terms of the integral f Vdv which was evaluated in § 3.

: cojw '
* éniwv2——2vx d?/'
(6 3) / e2nw1} + d ’
—c®/w
provided wiw = 4ataw?/c, i e.
(6. 4) w=1c/4 na,

so that J(w) > o. ‘

The path of integration can be deformed into the real axis just as before,
since R (2) < o, and the integral reduces to the second standard form. Allowance
must of course be made for the zeros of the denominator which are now of the
form ni/w + 0, say, (=0, * 1, * 2,...). There may be an infinite number of
‘them within the contour, e. g. if 0 < arg (¢/w) < arg (¢/w), but the series of residues
converges absolutely since

] -

w w

and reduces- to a thetafunction with the omission of a finite number of terms.
Thirdly, suppose 3 (a/c®) = 0. Either of the two methods of reduction suffices

since w is real and the integral I reduces to the special cases treated in § 5.
There still remains the case .when R (a)=o0. It suffices to assume J(a) > o

as the results when J(a) < o can be deduced by changing the sign of 7 throughout.

On writing —v for v, we may still suppose R(c) = o.
44—3343. Acta mathematica. 61. Imprimé le 10 octobre 1933.
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When (¢?) < o, (and so R(c) = o), we use (6. 1) and (6. 2) still holds.

It is then easy to see that when o > % (x) > — 1, the deformation of the
path of integration into the real axis and the reduction to the first standard
form still hold. The result then holds for all x by the usual argument.

When () > o, (and so R (c) £ 0), we use (6. 4) and (6. 3), and as above the
integral is reduced to the second standard form.

When J(c®) =0, we may suppose ¢ is purely imaginary, since we have
already considered the case when ¢ is real. We may use either (6.2) or (6. 3)
and the integral is reduced to the form

g

em’mﬁ—?nvx dv
™ + d

— ¢

where @ is real. The value of this integral is included in the results of § 5.

When o> R (x) > — 1, the path of integration can be deformed into the real

axis from —o to + o, indented if need be. The residues arising from the

infinite number of poles of the denominator, i.e. v=n7 + d give rise to a con-

vergent series of the type 8(z, w), or @ (x, w). Thus if R (J) > o, only the values
=0,1,2,3,... can arise and then

Z eniw(ni+J)3—2 az{ni+d)

13

converges absolutely if — n(wR(0) —2J(x)) > o, i.e. if 2J(x) — w N (J) > 0. The
results for other values of x follow as with (4. 4) to (4.7) when o is real.

§ 7.

Miscellaneous Results.

We congider in the present section various applications of and remarks
about the results of the paper.

The functional equations (3.3), (3.4) admit also of solutions of the type
(3.2) but with denominator 6,,(x, w) etc. instead of 8,;(z, @). Thus if in (3. 8),
A=

— 1/2, we find on noting

1 . .
0., (x * Ew’ w) =g M0, (x, w),
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that _
]
eﬂimt“’—Qntz dt
o [T
—x
(7.1) o
. ot 2 ; + o mi+3m ;s
7 = m-/aemmx L= 1, 1 2™ gmnix
.. Z qy e + 4 2 (— I)g(m 1) q
® T+ q7 I+ qm
modd m odd

where ¢, = ¢ 7/, It is easy to show that one of the alternative forms referred

to above of this result is

-]

(,nicut“’—Qnta: dt
0y, (x, ) | -~
00( ) ) egﬂt_*_ I
—w
(7.2) 1
(3 i(ﬂﬂ e;’n,—rz‘u‘/m . ‘f‘ qn“'_;e(mz—l)m':. .
_ - R | — .
w 1+ q.in 1 __q?.n. 1
—» —»

Further (3.3), (3.4) can also be solved by means of integrals of a type
different from (3. 7). _
This is suggested by writing in (3. 1), /0, —1/w in place of x, @ respectively.
We have
we"'ffﬂ/‘”_“”/“’_dt' = o flx, w) + t'f(x/w, — 1/w)
f et — 1 - 0, (@/w, — 1/w) '

)

—

and on noting (2. 4), this becomes

a0

fe‘”"(’—"”)’/“’d_t _ofl—z 0)—7f(ld/o, —1/w).

I ? V(_ z'_a))()u (), )

—x

From (3.1) and (2.9), we have, along the path (—«, 9, =)

v —-ni(t—ix)’/wdt e —— ~ em'wt?—‘zntx dt —
(7.3) f e e L) f e = —V(—a),

We can deduce from this that
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1 y; e—m’(t—ix}ﬁ/u dt y: em’u}l‘?—') tx dt
(7 4) j'}"t" T _— = - — .
. V(—iw) cosh 7t cosh 7t

This result can also be proved by noting that both sides are integral solutions

of the equations
Oz + w) + #2540 @ () = 2 ¢l evix,

(7.5) ' -

,‘ti(.l'—_—_l?)g/w
Olz—1)+@@) =2 7 |
V(—iw)

which cannot admit of more than one integral solution.

Formulae of the type (7.3), (7. 4) have been found by Hardy' and Rama-
nujan® by considering reciprocal functions. )

The work of Lerch®, however, shows that the unique integral solution of
the equations (3.3), (3.4) can be expressed in an infinity of ways. Thus he
proves that if '
© ) qnfeznniu

(7.6) Rl v, 0)= 3 Ry

then the value of the integral

f —»ﬂ—,}‘—(:r+»§—iv)2d
; . : = Je e
(/7) F(U, w) Y E2TE 41

is given by

7 R . i 22 J)
(7.8) l/iﬂm(u, w)F v, w)=Ru,u+ v, w)— I;e‘” IR (u, wtvo I——)v

w w w

where wu is a,rbitrai'y. The proof along the lines developed in this paper would
not be difficult. Thus both sides of (7.8) are integral functions of v since
the residues of the two terms in R cancel for the simple poles at the points
v=—u+ m—nw where m,n are any integers. The functional equations for
¥ (v, ) analogous to (7.5) can be deduced, and then a proof of (7.8) would
follow from a study of the functional equations satisfied by R («, v, w).

! Hardy (1).
? Ramanujan (2).
3 Lerch (1), {2).
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It is easily seen that R (u, v, w) is defined uniquely as the meromorphic

function of v satisfying the equations

Ru, v+ 1, w)— Ru,v, w)=o0,
(7.9)

R (“7 v, w) - eni(? v—2u—w) ¥it (u7 v— w, w) = 000 (u7 w),

and whose only singularities are simple poles at the points m + nw, where m, n
are any integers, and which has a residue — 1/2 77 at v =o0. There is, however,
no need to go into details.

§ 8.
The (Case when ¢ is Rational and the Gauss’s Sums.

The results of § 5 when w is rational contain the formula for the Gauss's
sums. As they are also interesting examples on eleméntary contour integration,
it may be desirable to state the results in their simplest forms and to sketch
briefly the proofs again, independently of § 5. .

Theorem. If ¢ and b are positive integers, then

®

1) ey [N

et — 1

— V(~atb) Ele—mb - 7’2 esm (2@4— )

s=1

—_—

~where the path of integration is either (—o, 0, «), or is a straight line in-
clined to the real axis of 't at an acute negative angle and meeting the im:

aginary axis between {=o0 and {= —z7.
. eriatfo—2ntz g4
(8. 2) {gpmileo—a) — I}IW_:

- V(“aib) za, bt i izb o (2o~ sb'a)
r=1 §=1
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along either the path (—oo, 0, ), or along a line inclined to the real axis of
t at a positive acute angle and meeting the imaginary axis of { between {=o,
t= —1.

For write when w is real

em’wt?—2ntm dt
(8. 3) ww=f_~iﬂ

e2nt — 1

with the inclined path of (8.1). On noting (3.7), so that @ (x) =0 ¥(x), it is
obvious that the equation (3.3) still holds when w is real and so

I

8. ZP. x‘-— I} — iI)‘ xX) — ‘—:e”ixz/w.
(5.4 R

Also

(8.5) Pz + ) — e RO (g) = — §griltoto),

For the rectangle of § 3 is replaced by a parallelogram A B C D, vertices at
T ol 4+ 0+ ¢, The integrals along the short sides of A B CD are zero
if ¢ is an acute angle with @ @ > 0 because of the factor ¢*?“¥ with =t o ¢*+§,
and |£] < 1. Hence (8. 5) follows.

Let now m, n be positive integers. Applying (8. 4), m times,

m—l

(8. 6) P(x—m) — & (x) = e,

V(—iw) =
From (8. 5)

6——rzi(z+w)2/w iy (x + (x)) _ enia?/w iy (1‘) = —9 e—m’ocf‘/w’
and changing z into x + w, * + 2w, ...z + (n — 1)w and adding
n—1

(8 7) e—ni(? na+nio) zp‘(x + nw) — z{;(x) S ZZJ e—nz’(z sz+s2w)
Suppose now = — a/b where a, b are positive integers. Take m =a, n=1".

Multiply (8.7) by e*@d=t¥el write p—s for s, subtract, and note —a = bw,
then (8. 1) follows. It is also easy to see that when o > N (x) > — 1, the inclined
path can be deformed into the path (—oo, 0, ), and then that (8. 1) holds for

0= R(x) = — 1, while (8.4) shows the integral really converges for all z and
so (8.1) holds for all . Similarly when w == a/b, the result (8.2) follows. It
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can also be deduced from (8.1) by changing ¢ into —¢, noting (—o, O, )
becomes (—o; 0, ) and then writing —¢ for ¢ and —x—1 for =. '

On putting x=o0, in (8.1), the well known reciprocity formula for the
. Gauss’s sums follows. This suggested to me the simple proof which I published
in the Messenger of Mathematics® that '

n—1 _
S = Z 627‘2711/1l — Vg (7’ + ¢ n)

+ 7

For write

n-—-l

f(Z) e2nzz _ I Z e2riletrfin

r=0

Then
(f(Z 4 I) ‘—'f(Z)) (eQniz _ I) = g2nilztnln e27ti22/n,

so that

f(Z + I) —‘f(Z) = g2nidn (e2n'iz 4 I).

Consider now the integral f f(2)dz taken around an infinite parallelogram

A B CD of which the parallel sides 4 B, D C are inclined to the real axis of #
at any positive acute angle and cut it at z = — 1/2, # = 1/2 respectively: The
sides B C and D A are parallel to the axis of x and are at an infinite distance
above it and below it respectively.

Then f(z) is analytic within A B 0 D except for a simple pole at z=o0
with residue S/2 mi.

The integral taken along each of the sides B(C and D4 vanishes, while
those along the sides 4B, CD reduce to

B S B

[+ yas = — [@mmn+ ae

o

A

Hence by Cauchy’s theorem

B
S:fe2niz’f/n(62niz+ I)dz
A

The value of this integral is well known, since the path of integration can
be deformed into the real axis from —o to . We need not use this, however,

1 Mordell (2).
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for if in the first part of the integral, we repiace z by z—én and then

throughout put 2= yV n, we have, with & independent of n,

_ S=kVﬁ<I +e—%"m‘).’
Take » = 1, whence

( —Lnq
1= k(r +e 2 )
and the result.

§9
The Approximate Funetional Equation of the Thetafunction.

The results of § 5 when w is irrational include the approximate functional
equation of the thetafunction. This has been the subject of papers by Hardy
and Littlewood®', van der Corput® myself® and Wilton* Its importance makes
desirable a short treatment independent of § 5. T prove the

Theorem. ILet

. o

eniwt2—2nta:dt
(9. 1) q‘(x):f7ﬁ

along the path (—oo, 9, ®), where w > 0 and z is real

Let m =0, » = 0 be any integers and put

m ni n

I — {a—)? .
.2 ) S, e — ew — 82z +sw)
(9. 2) T > >

r=0 §=0

Denote by Sy, . the sum when weights 1/2 are given to the terms r=m, s=mn,
and by Sin . the sum when in addition weights 1/2 are attached to the terms
r =0, §= 0.

Then if m and » arebpositive integers such that o << & =< 1, where

(9. 3) z—m+nw=—E¢

! Hardy and Littlewood (1), (2).
? van der Corput (1), (2).

3 Mordell (6).

* Wilton (1).
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, 2 . 7T 2 2
(9. 4) |%# () + Si,al = f + min (wg/ /)

and so the left hand side — o if m, #— 4 % in such a way that z —m+nw—o.

Algo if in addition o = x < 1,

(9 5) | S;lll., n | = 8 (U_‘/”.

These results hold uniformly for all @ > o and not merely for a usual range

such as 0 < w = 2,
Write « — m for x in (8.7) and add to (8.6). Then

(9.6) enARET RO (1 — g + nw) — F(x) = Smet, n—1.

Also by the argument leading to (4. 15),

£

Teriott 4 I
9. o) = 57 = - - .- .
(0.7 o= G =r

Write (9. 6) as

S p = ¢RI (0 — gy 4 nw) — ()

I a2l {a—m)? 7
4 e ! - Lemnai2atnow)
2V (—iw)

= e~ ni@zino)l (i (1 — g + nw) — P(o)) — ¥ (x)

i (e—m)?
o ew ’ — g nni2ztnw) ,

2 V(— (W)
T — ¥ () + T,
say.
Then from (9. 3),

Tl
— (§+nw)? l
W

21/(1) | 7v2| . le—nni(—?.,:—nu)) — e

LA o E2
:II‘—“(‘,M, gig—-v
w
and so .
9
— . 7L 5"
2|/w|Tg|Smm(~~§; 2)~
w
Also

45—3343. Acta mathematica. 61. Tmprimé le 10 octobre 1933.
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- 2ati
(9. 8) W(—8—wo)= | evor(®, " T M at,
et Tt —

—or
and so _
o *€*
( ) 2 e.!’r[, —1 . I — (,—2,11,:
nai(2a+nw — G £ X0 — LT W : .
e T, & prE dt+ | ¢ I__('___“, dt
0
_ v
=T, + T,
say.

To approximate to these, we require a modified form* of the second mean
value theorem. '
Suppose that for ¢ <x < b, f(x) is positive, monotone decreasing and dif-

ferentiable, and that g(x) is any continuous function (real or complex) of the

f'g(x) da:

1

real variable x. Then

 fran

This is easily proved by putting G (z) = ] g(t)dt, i.e. g(x) = G’ (x) and integrating

< f{a) max

ase=h

fl

the left hand side by parts.
From this follows Wilton’s result® that for M > o

M
(9 9) e | / eﬂimt’ dtl < w_\/._,'
Clearly I < M, and also
1 S| fc.’rimt'-'dtl + ’ fe:n'mt"dtl’
0 M

S - I/' o + '"_I 1
2]" w T W M
since

!'T am indebted to Mr. Davenport for this form which leads to smaller constants than
those I found originally.
? Wilton 179.
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i wt? . I R oty | < 1 .
(9. 10) |fe dtl |f2niwtd(e ) T aneM
M M

on applying the modified second mean value theorem. Then if M > w—":

b

1 1 I
. . < - ,l’ < e
aoM Ve 2Vw

Now Pt - decreases steadily from & to o in 0 =< ¢ < «, taking the obvious

definition at ¢ =o0. For if y = €27 = 1, then from

d (y—1\
@(y—l)_o’

(y— 1)y —y +1=0,

v i -1

y—1 =8y
But since 0 <§ < 1, the left hand side > &y~ except when y=1. Hence by
the mean value theorem and (9. g),

4

(9. 11) | T, < < § max

=<

Next in T, write

I o 2t
; — 6421t_ I T I_— eg—‘z'nt
Then
o i
. 1 2 S
griwt (I 0_2”") dtl=1= —-(I — e )
2 w
< 52 !
< min )
o Vi
Also if
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by the mean value theorem, since x(1 — z%)/(1 — x) decreases steadily from £ to
oin1=a2=o0

For from

o lx(x ——Jc)] o,
dx 1—x | '

(1—a)(1 —(E+ 1)) +w—a257" =0,
1 — 23t — (& + 1)as (1 — ) = o,

1 — g5t .
s = {E 4 1) a5,
o=+

But the left hand side > (§ + 1)2° except when « = 1. Ience

o -y, . &l 1
(9. 12) | 7,] < £ + min (5 (;R/,_:, lw)
n 14 . n"g:‘ 1
.1 I''|=2&w ™+ min (- A
(0. 13 17,1 < 2 (5 )
Hence, and this is (9. 4),
(9 14) | lp(a/) + S;n, nI =2 § w™"* 4 2min (7r ;;’ ",I )
: 2w Vo

If now also 0 =2 > — 1, the formulae (9. 8) to (9. 13) on taking o < £ < 1, show
[P @) —F0)]| <20+ o~
Also from (9. 14) :
IIP‘ (w) + S;n nl <20+ 2wk
Hence
|4(0) + Stun] = 7 0%

I S;r,z nl < 8wk

& 10.
Some Problems.

There still remains the general transformation formula for f(x, w), i.e. a

f( * .“__‘f’_“'fﬁ_)
yo+0 yo+d)

simple result for
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where e, 8, 7,0 are any integers satisfying «d — g8y ==1. I had hoped to deal
with this question fourteen years ago but my attention was diverted elsewhere.
It seems to me mnow that some of the ideas recently developed by Hecke' for
_the transformation of the thetafunctions associated with algebraic fields may be
relevant, but 1 leave this to others.

There is also the question in (2.15) of finding a simple expansion for
Joo (@) 05 (x)/0,y (x) which would lead to class relation formula. Thus?

g:’%:; Oy (2, 2w) = — ;000 (x, o)+ ZBne”"”
0

Ne= —

where for » = o,

On differentiating and putting « ==o0, we find that if m is any integer > o,

Fm)—z2Fm—2.1"+2F(m—2.2%)— - = ;—Ex(—— PERE AN

where the summation in z, y refers to the solutions in integers of

22— 2yt=m

. 1 _1 . . . .
with # > 0 and — ;(w —=y= S %, or is zero if no such solutions exist.
Next
Joo (@) ( g ( |4 46, (2 |+ S\ B, @nis
9 (x)oo3x’3“’" 5 Yot 2%, 2w 1\2%, 2w 2 0 € ,
00 ——
where for n = o,
s én
B, = 3 )z’_;(n+r) »;-(nﬂ—:sr?)’
r=0

! Hecke (1), {2).
2 Mordell (1), 126, 127.
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) . Lin4r) Limz—gpe
B_,=— Z(_ I)E(n”)g‘—’(" 3 1r2)

k)

and 7 is also subject to the condition » =# (mod 2). Also A is independent of
x, but it does not seem easy to find a simple form for A of use for deducing
class-relation formula. This is, of course, the difficulty arising in the general
case and is worth consideration by other investigators.

Here, however, a class relation formula can be deduced as I have already
shown. For if we change z into x + ; and add the two expansions, 4 is eli-

minated. Now differentiate and put x = 0: we find that
Flzm)—z2F(em—3.15 +2F(2m—3.28)— - =(—1)»"13g,
where the summation in 2, y refers to the solutions in integers of
xP— 3y =m
with 2 > o and,
-—;—(x-— )<y < 2

3

An extensive set of formulae of this kind has been given by 'Uspensky‘
and Venkoff which they have investigated by Liouville's arithmetic method.

I may remark finally that there is’a possibility that relations such as (2. 18)
to (2.21) may lead to results about the order of magnitude of the class number
and perhaps supply solutions of questions such as »Is F'(n) =1 for an infinity
of values of »?»
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