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Introduct ion.  

The present paper communicates a number of new properties of arbitrary 

real functions, of which the most important is the theorem on the measurable 

boundaries (w 2). This theorem associates with every function f(x) two measur- 

able .functions - -  its ~)measurable boundaries)) - -  between which the given 

function lies almost everywhere, in the sense of measure; moreover, tl~e clustering 

of the points of y =f(x) is maximal (exterior metric density I) at almost every 

point of these measurable functions. A general function, in a certain sense, is 

essentially represented by its measurable boundaries, as is shown by the diverse 

applications (w 3) of the central theorem of the present paper. This central 

result, it seems, is the most informative that has appeared concerning the essential 

internal structure of an arbitrary function. 

Section ~ gives a useful decomposition of a general set into two compo- 

nents, the one measurable and the other >)homogeneously non-measurable.)) This 

property, though easily derived, seems not to have been explicitly remarked. 

Section 2 proves.various theorems on general functions, including the theorem 

on the measurable boundaries. Section 3 gives various applications of this 

theorem, and section 4 briefly discusses several related questions. 
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The  fol lowing 

plicit ly r e m a r k e d  :~ 

Theorem I. 

S e c t i o n  I .  

A T h e o r e m  on G e n e r a l  Sets .  

theorem,  easily derived, does not  seem to have  been ex- 

Every non-measurable set S of Euclidean n-space admits a 

decomposition S = M + N into a mcasu~'able subset M and a non.measurable subset 

N such that at every point of N the metric density ~ of both N and N, the comple- 

ment of N, is i ;  this decomposition is unique i f  sets of measure zero are regarded 

as negligible. 

Proof .  W e  suppose,  as we may,  t h a t  S is bounded and lies in the  sphere 

P. Le t  m be the  m a x i m u m  measure  of measurab le  subsets of S; m is a t ta ined  

as the  measure  of some subset  M of S, for  if Mr,  r--~ I, 2, . . .  oo, is a sequence 
ao 

of measurab le  subsets  of S of measure  m,. with lim m~ = m, the  set  ~ M,. is a 
1 

measurab le  subset  of S of measure  m. Le t  S - ~  M + N;  N there fore  contains  

no measurab le  subset  of posit ive measure .  W e  shall  call a set >>homeogeneously 

non-measurable~> if, like N, i t  contains  no measurab le  subsets of posi t ive measure.  

By a >>measurable envelope,> of a set A we unde r s t and  a measurab le  set  conta in ing  

A and of measure  equal  to the exter ior  measure  of A s. Le~ T be a measurab le  

envelope of h r. I t  follows t h a t  me(NT) -~  re(T) where N - I - - N ,  for  otherwise  

N T - ~ N  would conta in  a measurab le  subset  of posi t ive measure .  T is thus  also 

a measurab le  envelope of N T .  Since the  metr ic  densi ty  of a measurab le  set is 

i a t  >>almost>> all of  i ts  points  - -  i. e., with the possible except ion of a set of 

measure  zero - -  a n d  the  met r ic  densi ty  of a set  is a t  every point  equal  to the  

met r ic  densi ty  of  any of its measurab le  envelopes, i t  follows t h a t  the  metr ic  

1 Cf., for example ,  t he  t h e o r e m  of K a m k e :  E ine  beschr~inkte l ineare  Menge  die fas t  in je- 

d e m  ihrer  P u n k t e  eine pos i t ive  innere  Dich te  h a t  i s t  messbar ,  Fund .  Math .  vol. X (I927) p. 433, 
wh ich  is a n  i m m e d i a t e  consequence  of our  T h e o r e m  I. 

T h e  met r i c  d e n s i t y  of a se t  S ( =  ex te r ior  me t r i c  dens i t y  - -  b u t  for b r e v i t y  we discard 

t he  ad jec t ive  ,)exterior,,) a t  a po i n t  x is the  l imi t  (if i t  exis ts)  of t h e  re la t ive  ex te r ior  measu re  of 
S in a sphe re  P enc los ing  x and  of in f in i t e s ima l  r ad iu s  - -  t h i s  re la t ive  ex te r ior  m e a s u r e  m e a n i n g  

t he  rat io  o f  me(SP), t h e  exter ior  m e a s u r e  of S-P, to t h e  v o l u m e  of P .  i f  t he  l im i t  of t h i s  rat io 

does no t  exis t ,  we have,  a t  a n y  rate,  i t s  l im  sup  (l im i n f ) ~  uppe r  (lower) met r i c  d e n s i t y  of S a t  x. 

Cf., for example ,  Cara th6odory ,  Vorlesun.qen i~ber reelle Funktionen, T e u b n e r  Verlag,  I927, 

p. 260. 
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density of both N and N T  is I at almost every point of T; hence the metric 

density of N and N= is I at almost every point of N. This is tantamount to 

the statement of the theorem, since, as far as the argument is concerned, N 

may be replaced [by the subset of its points where the metric density of both 

N a n d  -~ i s  I. 

To show the uniqueness of the decomposition, on the assumption that  sets 

of measure o may be neglected, it is sufficient to note that  if S =  M~ + 571 is 

another decomposition of the type considered, M N I  being equal to M - - M M ~  

is measurable. According to hypothesis, the metric density of _N~ is I at every 

point of N l, hence 2V~ cannot contain a measurable subset of positive measure. 

I t  follows that  rn (MN1) -~ o. Likewise ,~(3I~N) -- o, so t h a t  M and M1, on the 

one hand, and N and N~, on the other, are identical if sets of zero measure 

are negligible. 

I t  may be remarked that if A and B are any two given sets, the n~etric 

density of A is either o or ~ at almost every point of  B. For if I '  is a measur- 

able envelope of A, then at almost every point of B T, the metric density of T 

and therefore of A is I; and at almost every point of B ~  ~, the metric density 

of T and therefore of A is o. 

S e c t i o n  2. 

The Tl!eorem on the Measurable Boundaries of an Arbi t ra ry  Function.  

Let now y----f (x) be a given real function, 1 uncondit ioned except that  to 

every x there corresponds at least one value of y, the number of y's associated 

with x permissibl~ varying with x. For convenience, we assume also that  f (x)  

is bounded; the case of f unbounded is not substantially different and can be 

treated by such a transformation as J : :  f I + I J l '  We shall say that  the point 

(~, 7) of the xy-plane is >>fully approached>> by the curve y - - f ( x ) ,  i f  for every 

> o, the set L;n~:  Eif(~)_,ll<~, which signifies the set of x's for which there 

is at least one value of f (x )  such that  I f ( x ) - - 7 [  < e is of metric density I at 

~. I f  an e exists such that  E ~  is of metric density o at ~ we shall say that  

the point (~, 7) is >>vanishingly a2oproached>) by y : f ( x ) .  I f  (~, *l) is no t  vanish- 

For greater simplicity of exposition, we deal with functions of one variable, though  the 
a rgument  of this  section applies equally well to functions of n variables. 

34--34686. Acta mathematlca. 65. Imprim6 le 19 f~vrior 1935. 
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ingly approached,  we shall say tha t  it  is ))positively approached!); in this case, 

if e is a given positive number,  the metr ic  density of E ~  ei ther  does not  exist 

or is positive, tha t  is to say, in both  cases, the upper  metr ic  density is positive at ~. 

I n  connect ion with t h e  modes of approach just  defined, we have the 

fol lowing two theorems,  the first of which is known but  included for  exposi tory 

completeness.  

Theorem II .  1 I f  f (x) is an arbitrary, o,e- or many-valued function, the 

set of n~tmbers ~ such that there i.~' a point (~, f(~)) not ful ly  approached by 

y = f ( x )  is of  measure o. 

Proof .  I f  r and s are two real numbers  and r < s ,  let E , 8 = E , < f ( ~ ) < s  

be the set of x's such t ha t  there  is at  least one value of f (x)  sat isfying 

r < f ( x )  <s .  According to the theorem on the decomposabil i ty of an arb i t rary  

set into a set of measure o and a set which has metr ic  density x at  each of its 

points, ~ we may write JE~, = Z ~ , -  Hr~, where Z~8 is of measure o and H~s has 

metr ic  densi ty I a t  each of its points. Le t  Z be the sum of all Zr,  as r and s, 

r < s ,  range  independent ly  over the set of ra t ional  numbers ;  Z is of measure o. 

Let  (~,f(~)) be a point  of y = f ( x )  such tha t  ~ does not  belong to Z;  ~ there- 

fore  belongs to H,.s for  all ra t ional  r, s sat isfying r < f ( ~ ) <  s. Since Hr~ has 

metr ic  densi ty I a t  ~ and is a subset of Er~ the metric density of Ers is I at  

~. I t  follows tha t  (~,f(~)) is fully approached by y = f ( x ) .  

T h e o r e m  III .  The set of points ~ for which an V exists such that (~, ~) is 

positively but not ful ly  approached by the curve y----f(x) is of  measure o. 

Proof .  We define the funct ion  f*(x)  as the one which, for  every x, is to 

take  o n  all the  values f ( x ) a n d ,  in addition, all the  values V such tha t  (x, V) 

is positively approached by y - ~ f ( x ) .  Now suppose (~, V) is a point  of the 

(x, y) plane not  fully approached by y = f ( x ) ;  then  it cannot  be fully approached 

by y = f * ( x ) .  For  by the definit ion of full  approach,  there  exists an e > o 

such t ha t  the lower metr ic  densi ty of E ~  equals a number  k less than  I, hence 

there  exists a sequence of intervals  I ,  of infinitesimal length l~ such tha t  

lira m e ( E ~ I , ) / l , =  k, and since we may neglect  a finite number  of v's we may 

assume tha t  m e ( E ~ L ) / l ~ <  It', a number  between /c and I, for  all v. Le t  M~ be 

1 Cf. Blumberg, New Properties of All Real Functions, Trans. Am. Math. Soc., vol. 24 
(I922), Theorem IX in conjunction with the first sentence of Concluding Remarks. 

2 Cf. for example, Blumberg, Bull. Am. Math. Soc., vol. 25 (I919) , p. 352. 
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a measurable envelope of / ~  = E~I~/~, and M, ~ / ~ -  M,.  The relative measure 

of M~ in 1~ is greater than I - - / J .  Let M,==M* + Z,  where Z,  is of measure 

o and M~* is such that at each of its points the metric density of ~r, is I. 

The metric density of E~ is therefore o at every point of M* and hence no 

po in t  (x, y) with x in M~ and V ~ e < y <  ~ + s is positively approached by the 

curve y ~ f ( x ) ;  no such point is, therefore, on the curve y-~f*(x). Con- 

sequently, if /~* has the  same meaning for f *  as E ~  for f ,  we conclude that ~e 

m~(E~I~)/l~<]c' and therefore (~, V) is not fully approached by y-~f*(x). 
~qow let A be the set of ~'s for which there is at least one point (~i V) 

positively but  not fuliy approached by y = f ( w ) .  Then (~, V) is on the curve 

y ~f*(x) ,  and as we have .iust seen, it is not fully approached by y ~-f*(x). 
Therefore according to Theorem II,  A is of measure o. 

Definition. The ,>metrical upper boundary,> u(~) of a one- or many-valued 

function f(x) at ~ is the lower boundary ~(= greatest lower bound) of all 

numbers k such that the set Ef(~)>k is of metric density 0 at ~.t Likewise, the 

metrical lower boundary l(~) of f(x) at ~ is the upper boundary of all numbers 

k such that the metric density of Ef(~)<k is 0 at ~. The ~metrical saltus)~ of 

f(x) at ~ is defined by the equation s ( ~ ) =  u ( ~ ) -  l(~). 

The points (~; u(~)), (~, l(~)) are respectively the highest and lowest points 

on x ~ ~ positively approached by y - - f  (x). For since Es>~/f)+~ is, for every 

positive e, of metric density o at ~, the point (~, k) is vanishingly approached 

by y-~f(x) for every k > u(~}. On the other hand, (~, u(~)) is positively ap- 

proached by y-~f(x) .  For if this were not so, there would exist a positive 

such that E~(~)_~<f<~(~)+~ is of metric density o at ~; but this; together with 

the fact that /~>k is of metric density o at ~ for every /c > u (~) would imply 

that Ef>~(~)-~ is of metric density o at ~, in contradiction with the definitional 

property of u(g). Likewise, (1 (~), ~) is the lowest point on x ~ g positively ap- 

proached by y-~f(x).  

Definition. The one-valued function f(x) is said to be ~;metricaUy upper- 
semi-continuous,~ at the point ~, if for every positiveE, the set /~J>](~/+~ has 

metric density 0 at, ~; in other words, if u(~)_--<f(~). Similarly, f is metrically 

lower-semi-continuous at ~ if l (~ )~f (~) .  If  f is both metrically upper-semi- 

1 cf. Kempisty, Sur les ]b~lctions a2proximative,nent descontinues, Fund. Math., vol. u 
(I924), p. 6. 
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continuous and lower-semi-continuous at  ~, we have u(~) = f ( ~ )  ~ l(~); we then 

say tha t  f is >)metrically continuous at ~.~ 
We have the following 

Theorem IV. u(x) is everywhere metrically upper-semi-contim, ous. 

Proof. I f  ~ is a part icular  value of x and e > o, there exists for every 

positive 7 - -  on account of the definitional property of u(x) - -  a positive number 

h such tha t  me(IEf:~,~(~)+~) < 17 for every interval I enclosing ~ and of length 

l <  h. I f  E is the complement of I.,f>~(~)+~ with respect to the interval I,  we 

have m i ( ~ ) >  ( I -  7)/, where ~i (E)  stands for the interior  Lebesgue measure of 

E .  Le t  M be a measurable subset of E of measure > (I - -7)1 and such tha t  

the metric density of M is I at  each of its points. I t  follows tha t  for every 

point x of M, we have u(x) ~ u(~) + e. Therefore the relative exterior measure 

in I of IE,,>,,(~).~ is < 7, and this holds for all I ' s  of length < h .  Since 7 

is arbitrari ly small, the metric density of L,,>~(~)+~ is o at  ~, and therefore 

u(x) is metrically upper-semi-continuous at  ~. 

We shall now prove tha t  u(x) is metrically lower-semi-continuous almost 

everywhere. Le t  ~ be a point where u(x) is not  metrically lower-semi-continuous; 

hence, for some positive e, the metric density of " /'~,,(~,.)<u(~)-~ is not  zero, in other 

words, there exists a positive number 2~ and a sequence of intervals In con- 

E raining ~ and of infinitesimal length In such tha t  me(L~ ,~(z)<u(f)-~) > pln. Let  7 

be a point of L~ such tha t  u(7 ) < u(~)--~.  According to Theorem I I I ,  u(x) is 
metrically upper-semi-continuous at  7, and we may therefore enclose 7 in an in- 

, < terval I~ lying in L~ and of arbitrarily small length l~, such tha t  me(I~I~,,(~)a~(i)-~) 
< 71~ where 7 is infinitesimal with l~. Since the exterior measure of the set 

of available 7's is greater  than  pl~, we may, according to the Vitali Covering 

Theorem, select a finite number  of non-0verlapping intervals of type I~, such 

tha t  the sum of their  lengths is gra ter  than  pl,~. Hence m~(I,E,(~)<u(~)-~) is at 

least (I -- ~)pl~, and therefore the lower metric density at  ~ of E~(~)>__u(f)-~ is at  

most  I --29 + 7P. I t  follows, since V is infinitesimal, tha t  g is one of the ex- 

a p p r o x i m a t e  T h e  no t ion  of me t r i ca l  c o n t i n u i t y  as here  defined is ident ica l  w i t h  t h a t  of ,, 

cont inui ty , ,  accord ing  to Denjoy,  Bull .  de la  soc. m a t h .  de France ,  vol. 43 (I915) P. I65. Since 
m a n y  t ypes  of a p p r o x i m a t e  c o n t i n u i t y  are poss ible ,  - -  see, for example ,  B lumberg ,  On the Charew- 
terization of  the Set of  _Points of  )~-Continuity, A n n a l s  of M a t h e m a t i c s ,  2 d s e r .  vol. 25 (I923), 
p. 118 - -  t im t e rm  , ,metrical  cont inu i ty , ,  de s igna t e s  t he  pa r t i cu la r  p rope r ty  in ques t i on  more  de- 

f in i te ly  t h a n  , , approx ima te  cont inui ty , , .  
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cept ional  points  of the curve y ~ u(x) at  which the  approach  is not  full, the  

to ta l i ty  of such ~'s const i tu t ing,  according  to Theorem I I  a set  of measure  o. 

I f  ~ is not  one of these except ional  points,  u(x) is met r ica l ly  lower-semi-contin- 

uous  at  ~. 

H a v i n g  now proved  t h a t  u(x) is metr ica l ly  upper-semi-cout inuons  every- 

where and  lower-semi-cont inuous a lmost  everywhere ,  we conclude t h a t  u(x) is 

metr ica l ly  cont inuous  a lmost  e v e r y w h e r e ?  Likewise  l(x), the  metr ica l  lower  

boundary  funct ion,  and s(x), the met r ica l  saltus, are a lmost  everywhere  metr ic-  

ally continuous.  Now a function which is almost everywhere metrically continuous 

is measurable. For  let g(x) be metr ica l ly  cont inuous  a lmost  everywhere .  F o r  a 

given n u m b e r  k, we may  wri te  Eg(.~)>l~-~ M + N, where  3 /  is measu rab le  and  

N, if  no t  the  null  set, homogeneous ly  non-measurable .  I f  ~ belongs  to  N, the  

metr ic  densi ty of bo th  Eg>k and  E~<~ is I a t  ~; therefore  g(x) is no t  met r ica l ly  

cont inuous  a t  ~, and  since g(x) is metr ica l ly  cont inuous  a lmos t  everywhere ,  N 

is of measure  o. /~.q(~)>~ is thus  m e a s u r a b l e  for  every k, and  hence g(x) is 

measurable .  We  may  the re fore  s ta te  

Theorem V. The metrical upper boundary, lower boundary a~d saltus are 

measurable fu~wtion s. 

I t  is known of a measurab le  func t ion  t h a t  i t  is met r ica l ly  cont inuous  

a lmos t  everywhere.  But  obviously not  every measurab le  func t ion  can be a 

met r ica l  uppe r  boundary ,  since a me t r i ca l  upper  boundary  is metr ica l ly  upper- 

semi-cont inuous everywhere  wi thou t  except ion;  an a rb i t r a ry  change  of func t iona l  

values at  the points  of a set  of measure  o would preserve the  measurab i l i ty  of 

a mensurable  funct ion,  bu t  by means  of such a change  we can e l iminate  the  

p roper ty  of met r ica l  upper  semi-cont inui ty  a t  var ious  points.  I t  is also evident  

- -  a t  any rate,  this  follows f rom the nex t  theorem - -  t h a t  not  every funct ion 

which is metr ical ly  upper-semi-cont inuous a t  every point  can be a metr ica l  uppe r  

boundary .  One way of ful ly charac ter iz ing  a met r ica l  uppe r  bounda ry  is as 

follows: 

In fact, every function which is metrically upper-semi continuous almost everywhere is 
metrically lower-semi-continuous almost everywhere, because, if f(x) is metrically upper semi. 
continuous almost everywhere, it is necessarily measurable, as the following brief argument shows: 
Let E=Ef(x)<k, where k is a given constant. By Theorem I, E = M +  N, Mmeasurable, N 
homogeneously non-measurable. If ~ belongs to E, f(x) is metrically upper-semi-continuous at ~; 
and s is positive, then Ef>f(~)+~ is of metric density o at ~. If ~ is chosen so that f(~) + ~ < k, 
E.f>k is of metric density o at ~. The metric clustering of the complement of E is thus in- 
finitesimal at almost e~ery point of N; therefore N is of measure o, and hence f is measurable. 
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Theorem VI. A necessary and sufficient condition that a function f(x)  be a 
metrical upper boundary is that u (x), the metrical upper boundary off(X), be iden- 

tical with f(x).  
All that  requires proof is that  the condition is necessary, namely that  

the metrical upper boundary v(x) of a metrical upper boundary u(x) is identical 

with u(x). Since u (x) is metrically upper-semi-continuous, it follows that 

v (x)_-< u (x). Suppose, contrary to our assertion, we have v(~)< u (~) for some 

point ~. Then E~k,  where k is a number between v(~) and u(~), is measurable, 

according to Theorem V, and of zero metric density at ~, so that for a variable 

interval I enclosing ~ and of infinitesimal length It, we have 

where ~ is infinitesimal with 1i. I f  t is a point of /Eu<k, the metric density 

of Ef~k is o at t, so that  we can enclose t in an interval It of length It as 

small as we please and lying in I such that  me([tE/~k)< ~llt, where ~t is in- 

finitesimal with L According to the Vitali Covering Theorem, we may select a 

set a of non-overlapping intervals It containing all of IE,,<k except a set of 

measure o. The set IEf(~)~k is partly inside and partly outside the intervals 

of a; the former p a r t  is of exterior measure < ~tli, and the latter part of 

exterior measure _--< s i l l ,  so that  m~(IE/>=k)< (st + ~l)lx, i. e., the relative meas- 

ure of E / ~  in I is infinitesimal with 11. Therefore u(~)_--< k, which is a con- 

tradiction, and hence v (~)= u (~). 

I f  f(x) is a metrical upper boundary, we have just proved that  u(x)-~f(x); 
and since (~, u(.E)) is positively approached by y-~f (x)  for every ~, it follows 

that  a metrical upper boundary function f(x) is positiveIy approached at  every 

point of y ~ f (x ) .  A metrical upper boundary function f(x)  thus possesses the 

properties of metrical upper semi-continuity and of positive approach for every 

x. Conversely, if f(x) has these two properties for every x, it is a metrical 

upper 1)oundary. For on account of the metrical upper semi-continuity of f(x) 
at x, we have u ( x ) ~ f ( x ) ;  and on account of the positive approach of (x,f(x)) 
by y = f ( x ) ,  we have u(x)>:f(x). Therefore u(x )=f (x )  is metrical upper 

boundary function. We thus have 

Theorem VII. A necessary and sufficient condition that f(x) be a metrical 
upper boundary is that f be everywhere metrically upper-semi-continuous and that 
y = f (x )  approach all of its points positively. Likewise, a metrical lower boundary 
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is completely characterized by the properties of ~etrical lower-semi-continuity a~d 
positive approach. 

Consider a point ~ such tha t  (~, u(~)) is not  fully approached by the curve 

y = f ( x ) .  Therefore, for some positive e, the  metric density at  ~ of E =  

= E,~(~)_~</(~)<uCT)+~ is no t  i, so tha t  there is a positive number  h and a sequence 

of intervals L, enclosing ~ and of infinitesimal length l~, such tha t  me(EL,) < 
< (I --  h) l~. Hence there is a measurable subset M~, of S~ --  EL~ of measure 

> hl~ and of metric density I at  each of its points. Since f (x)  ~ u(~)- -  s or 

u (~) + e at every point of Mn, u (x) must  also be ~ u (~) --  ~. or ~ u (~) + e 

at  every point of Mn. Therefore 

and hence E,~(~)-~<u(~)<u(~)+~ is not  of metric density I at  ~; ~ is thus, according 

to Theorem II ,  one of the exceptional points aggregat ing  a set of measure o. 

We conclude tha t  for  almost every x the point (x, u(x)) is fully alJproached by the 
curve y = f(x) .  Similarly for 1 (x). 

This shows, on the one hand,  how rich, f rom the point of view of measure, 

is the clustering of the points of y = f ( x ) a t  the points of y=u(x ) , y -= l ( x ) .  
On the other hand, the set of x's for which f ( x ) >  u(x) or < l(x) is of measure 

o. For  let ~ be a point at  which u (x) is metrically continuous.  According to 

the definition of metrical  upper boundary,  we can enclose ~ in an interval  I~ of 

8 
length 17 such tha t  ,~, (IfE/(~) >,~(fl+ ~) < ~ l~, where e and V are arbi t rary positive 

numbers.  We may fur thermore,  on account of the metric cont inui ty  of t~(x) 

at ~, choose I7 with the addi t ional  property tha t  

Therefore, for every point  x in a measurable subset M~ of I~ of measure 

> ( I  - -  e) l~, we have both f (x)  ~ u(~) + V/2 and u(x) ~ u(~)--17/2 , hence 

f (x)  ~ u(x )+ 17; Since the ~'s at  which u is metrically continuous const i tute a 

set of measure b - - a , -  (a, b) being, as we suppose, the interval  of definition of 

f (x)  ~ we may, according to the Vitali Covering Theorem, select a set of non-over- 

lapping Ie's with length sum equal to b -  a, hence the sum of the measures of 

the  corresponding M~'s is > ( i -  e ) ( b -  a), Consequently the interior  measure 

of the set of points w h e r e , f ( x ) ~ u ( x )  + ~7 is > (I -- e) (b -- a), and since this  
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holds for all positive e and V, the set of points at which f ( x ) >  u (x ) i s  of 

measure o. 

Summarizing, we may now state the following 

Theorem VIII. With every given one-or many-valued function f(x), there 

are uniquely associated two measurable functions u (x) and l(x), the respective metric 

upper and lower boundaries of f (x)  at x; these functions are respectively metrically 

upper-semi-continuous and lower-semi-continuous. Moreover, for every x, the points 

(x, u (x))i (x, l (x)) are positively approached by y -~ u (x), y = 1 (x) respectit:ely; and 

for almost every x, these points are fully approached by y ~ f ( x ) ;  on the other 

hand, the set of point; x for which f (x)  > u (x) or f (x)  < l(x) 'is of measure o. 
Conversely, i f  u (x), l(x), with u (x) ~ l(x), are 2 given functions which are metric- 

ally upper- and lower-semi-continuous respectively, and y~-u(x ) ,  l(x) respectively 

approach every point (x, u (x)), (x, 1 (x)) positively, there exists a function f (x)  having 

u (x) and l(x) respecti,:ely as metrical upper and lower boundaries. 

To prove the converse part of this theorem, suppose tha~ the interval (a, b) 

is decomPOsed into two sets Mt and M~ ~ necessarily non-measurable --  such 

that each has metric density I at every point of (a, b); let f ( x ) =  u(x) or l(x) 

according to whether x belongs to 21/1 or M s. We shall show that the metrical 

upper boundary of f (x) ,  which we now denote by v(x) is identical wi~h u(x). 

For, since u(x) is, by hypothesis, metrically upper-semi-continuous at every point 

~, the set E,,>,,(~t+~ has metric densi ty  o at ~ for every e > o ;  therefore, since 

f (x)  <= u(x) for all x, the set Ef>,,~(~)+~ has metric density o at ~. Hence 

v(~) ~ u(~). On the other hand, since every point on y ~ u(x) is positively ap- 

proached by this curve, E~-E,(~.)>,~(i)_~ has positive upper metric density 

at ~ for every positve e; and since u(x) is metrically upper-semi-continuous, it 

is, according to the last footnote, measurable, and Ea is therefore measurable. 

Since M 1 and M~ are each of metric density I at every point of (a, b) i t  follows 

that me(E~ M~)= m (E~), and we may conclude, because of the identity of f (x )  

and u(x) on E l M  i, that Ef(~:)>~(~)-~ has positive metric approach at ~. Therefore 

v > u ( ! ) ,  a n d  h e n e e  (!) = u 

Theorem VI I I  shows with a certain explicitness the degree of arbitrariness 

possessed by an arbitrary function. Except with the aid of recent developments 

in the Theory  of Point  Sets, one cannot see how mathematicians could have 

surmised tha t  every function f (x)  is necessarily built, so to speak, on the scaffold- 

ing of two functions u (x), l(x) of a relatively restricted nature - -  belonging 
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to a cer ta in  subset of the set of measurable  funct ions,  - -  buil t  in the sense 

t ha t  on the one hand, y - ~ f ( x )  has only a negligible set of points above y-~u(x) 

or below y ~ l(x), while on the o ther  hand,  almost  every point  of these curves 

is as *richly>> approached as possible - -  in a t ru ly  significant sense. 

Since, according to a theorem of Borel  ~, every measurable funct ion  equals, 

for  every positve e, a polynomial  funct ion,  with a possible er ror  < e, and ac- 

cording to a theorem of u  *, every measurable  funct ion equals a funct ion  of 

class ~ 2, according to the Baire  classification, except  in a set of measure o, 

we have the fol lowing theorem as a consequence of Theorem V I I I :  

Theorem IX. a) With every function f (x)  we may, for every ~ > o, associate 

two polynomials Pl (x) and p,  (x) such that the set of points at which f ( x ) > p l ( x ) +  

or < p,  ( x ) - - e  is of exterior measure less than e, and the exterior measure of  each 

of the sets Eif(,)-p,(,)[>~ and Eif(,)-v,(~,)l<~ is" at least b--a--e,  b) With every func- 

tion f (x)  we may associate two functions gl (x) and g, (x), each of  Balre's second 

class at most, such that gl (x) ~ g, (x) everywhere, g~ (x) ~ f (x)  and g~ (x) ~ f (x)  

almost et:erywhere, and the two points (x, gl(x)), and (x, g~(x)) are, for almost 

every x, ful ly  approached by y - ~ f ( x ) .  

These formula t ions  serve to indicate the degree of smoothness  an a rb i t ra ry  

funct ion necessarily possesses. 

We prove addit ionally the fol lowing 

Theorem X. For every function f(x),  defined in the interval (a, b), there 

exists, for  every positive ~, a measurable subset M of (a, b) of  measure > b - - a - - e  

such that, for  every x of  ~1/I, u (x) and l(x) are equal respectively to Uo(X), 10 (x), 

the ordinary upper, lower boundary (--least upper bound, greatest lower bound) of 

f (x)  at x on the understanding that these four numbers are computed with respect 

"to M, i. e.. that the ~,alues of f (x )  outside of M are neglected. 

Proof .  According to Theorem VII ,  f ( x ) ~  u(x) almost  everywhere.  In  

vir tue of a theorem of Lusin ~, u (x) being measurable,  is cont inuous  wi th  respect  

to some measurable subset M of (a, b) of measure > b - -  a --  e, e being a preus- 

signed positive number:  We assume, as we may, t ha t  the metr ic  density of M 

is I at each of its points. Fur the rmore ,  according to Theorem V I I I ,  the  

See, for exumple, Sierpifiski, Fund. Math., vol. I I I  (I922), p. 316. 
Rend. Lomb., vol. 38 (I9o5) , p. 599. 
See, for example, Sierl)iflski, 1. c. p. 320. 

35--34686. Acta  mathe, matlva. 65. Imprim6 le 19 f~vrier 1935. 
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approach of y = f ( x )  is full at almost every point of y = u ( x ) ,  and we may 

therefore assume, there being nothing more involved than the discarding of a 

set of measure o, that  for every ~ of M the point (~, u(~)) is fully approached 

by y = f ( x ) ;  and since the metric density of M is i at each of its points th i s  

approach is also full via M. Therefore, for ~ in M, u (~) computed with reference 

to M, equals ~(~) computed with reference to the entire interval (a, b). More- 

over, since we may assume for our present purposes that f ( x ) <  ~ (x) in M, and 

since u (x) is continuous at ~ with respect to M, it follows that  the ordinary 

upper boundary u 0 (x) of f ( x )  at ~, computed with respect to M, is < u (~). But, 

of course, uo(~)>----u(~) with respect to M, so we conclude that u (~)=  Uo(~) with 

respect to M. Similarly l (~)= 10(~) with respect to M. 

Remark.  I f  r is allowed to be o, this theorem becomes false, as the fol- 

lowing example shows: Let S be a nowhere dense, perfect subset of (a, b) of 

positive measure. Define f ( x )  to be o in S and I in its complement S. Since 

the metric density of S is i at almost all of its points, we have u ( ~ ) = o  for 

almost every ~ of S. I f  M is a set of measure b - - a  such that, for every x 

of M, ~ ( x ) ~  uo(x) with respect to M, then at almost  every point x of S M  we 

have Uo(X ) == o, hence a neighbourhood exists for such an x in which there  are 

no points of b;M, whence r e ( M ) <  b - - a  contrary to our supposition. 

S e c t i o n  3. 

Applications of  the Theorem on the Measurable Boundaries. 

If  f ( x )  is an arbitrarily given, bounded, one-valued function, defined in the 

interval (a, b) we difine the upper Lesbegue integral of f in I =- (a, b) as follows: 

Let I ~ -  M 1 + M 2 + ... + Mn be a decomposition (6) of I into a finite number 1 

of non-overlapping measurable  se~s M1, . . .  kM,~; and ~,, v ~- I, . . .  n, the upper 

boundary of f (x )  in Mr. Then the upper Lesbegue integral o f . f  in I ,  in sym- 

bols ; f ,  is the lower boundary of ~m(M,)~,. for all possible decompositions of 
L ]  
1 

type (6). Likewise j /  ( : l o w e r  Lesbegue in t eg ra l  of f in I ) i s  the upper 

I 

There is no advantage in using an infinite number. 
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boundary of 2 m  (M,)l, for all possible decompositions (~), where l, stands for the 

lower boundary of f in 2~I~. Then we have 

Theorem X. The Lebesgue upper (7ower) integral of a bounded one-valued 
fu,nction equals the Lebesgue integral of the metrical upper (lower) boundary func- 
tion associated with f(x). 

For if + > o is given, there exists, on account of the measurability of ++(x), 

the metrical upper boundary of the given function f(x), a decomposition of 

the interval I of definition of f into n non+overlapping measurable sets 

I ~ M : + . . . + M ~  such that  the sattus of u in M~, v-= 1 , 2 , . . . n  is less than 

e. Therefore the Lebesgue integral of u over I differs from ~ m (M+)~+ by less 

than ( b -  a)+, where /~+, represents the upper boundary of u in  Ms. .Let M~ be 

the set of points where f ( x )>  u(x); according to Theorem VIII ,  +71/o is of mea- 
n 

sure zero. Let I ~  ~ M : ,  be a new decomposition of I, where M,--~ M + - - M o ,  
0 

v = :, 2, . . .  n. If  ,u:., v~- I . . . .  n, represents the upper boundary of f in M:., 

we have /~:. _--< g~ and therefore, since m(M~)= o we have 

++ / 
n, <= n+ ( M , , )  < . + - -  a)  +. 

0 I 

I t  follows from the definition of j ; f  that 

suppose I =  ~ M ,  is a decomposition of I i n t o  
1 

f f ~ / u .  On the other hand, 

1 I 

a finite number of non-overlapping 

measurable sets. Let Z~ be the set of points of M~ at which the metric density 

of M~ is not equal to 1, i. e., either does not exist or is less than I; then Z,  

is of measure o. Let M ' = M , , - - Z ~ ,  v ~ t , 2 , . . . n ,  and I=M~.+M~+...+M,;+ 

a second decomposition, of I, where M~ ~ Z+. We have /~m(M~) 

where ~+ is the upper boundary of u i n  M:. Since M',, v :  :, z, . . .  n, has 

density : at each of its points,  and the point (x, u(x)) is positively approached 

by the curve y : f ( x ) ,  it follows that /~: ~ ~+, where /~: is the upper boundary 

of f in M:, v-~ : , 2 , . . . + + .  I f  /~, is the upper boundary of f i n  M,,  we have 
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f 
Therefore f f >= f u, and hence f f = f u. Similarly f f -- f l (x). 

I I 1 I 1 1 

I t  is known that  one method for deriving properties of continuous func- 

tions is to approximate them by means of >)step-functions>,, i. e. functions con- 

stant except possibly at a finite number of points. Again, there are well known 

general procedures for deriving properties of measurable functions from properties 

of continuous functions, or we may t.ransform properties of step-functions or of 

linear functions into properties of measurable functions without the mediation 

of continuous functions. Now Thorem VII I  gives us a means, as we shall see 

more definitely in the illustrations to follow, of deriving properties of general 

functions from known properties of measurable functions, and thus constitutes 

a last link in a general procedure for converting theorems on functions y - c o n -  

stant to theorems on general functions. This essentially amounts to saying that  

this theorem, in conjunction with methods already known, may enable us to derive 

properties of general functions from properties of intervals. We shall now give 

illustrations of this passage, by means of Theorem VIII ,  from theorems on 

measurable functions to theorems on general functions. 

Ex. I. Extension oat' the theorem of Borel on the approxin~ation of a mea- 
.Yarable function by means of a polynomial function. This extension has already 

been mentioned above. 

Ex. 2. Extension of a theorem due to Vitali. The ~heorem in question 

concerning measurable functions asserts that  for every measurable function m(x) 
there exists a function g (x), of Baire's second class at most, such that  g (x)~--m(x) 
almost everywhere. Since u(x), the metrical upper boundary function of a given 

function f(x) is measurable, there exists a function g(x)of Baire's second or 

lower class, such that g (x) ----- u (x) almost everywhere. Suppose, for simplicity, 

that  .f(x) is defined in the interval (o, I), and let T =  the set of points x such 

that  (x, u(x)) is fully approached by both y ~ u(x) and y =f(x).  According to 

Theorems I I  and VIII ,  T is of measure i. i f  e is a given positive number, 

and ~ a point of T, we may enclose ~ in an interval I~ such that  the exterior 

measure of the points x of 1~ for which the inequalities [f(x)--u(~) I < ~, 
2 
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[ u ( x ) - - u ( ~ ) [  < e hold is grea ter  than  ( I -  ~2)/~, where l~ is the length  of i~ and 
2 

is, independent ly  of ~, as small as we please. Le t  S~ be the set of points x 

such tha t  I f ( x ) - -u (x ) ]  < e; therefore  me(S~T~) > (I --  2~))/~. Since a set of 

non-overlapping intervals I~ can be chosen with sum of lengths  equal to i, we 

conclude tha t  me(~) > I - -  2 ~2, and hence ~ne(St)= I; the  set of points x where 

I f ( x ) - - g ( x ) l  < e is therefore  of exter ior  measure i. This  conclusion amounts  

to an extension of Vitali 's  theorem to an uncondi t ioned funct ion,  and we may 

state the theorem:  

I f  f (x)  is a given function, there exists a function g (x) of Baire's second class 

at most such that for every positive e the set of points where g (x) differs f i rm f (x)  

b?l more tha, e is ~' interior measure o. 1 

Ex. 3. Extension of  a theoren~ of Denjoy. Denjoy has shown ~ tha t  i f  f ( x )  

is a cont inuous function,  the >>directional angle~ of the curve y - - f ( x )  is, for  

almost every x, e i ther  o ~ - -  when the derivat ive exists; or I8o ~ - -  when the 

lower Dini  derivative on one side equals the upper  Dini  derivat ive on the other,  

and the o ther  two Dini derivatives are +__ ~r respectively;  or 36o r - -  when the 

upper  derivatives are both  + cr and the lower derivatives, bo th  ~ r  G . C .  

Young h a s  shown a tha t  if in the hypotheses  of this  theorem we subst i tute  

for  the condit ion of cont inui ty  of f t ha t  of measurabi l i ty ,  the conclusion remains 

valid. More recently,  Saks and Banach have shown 4 tha t  the same conclusion 

holds for  an entirely unres t r ic ted  f (x) .  Now for  us the quest ion comes up 

whether ,  by means of Theorem V I I I ,  we can prove the theorem of Denjoy for  

an unres t r ic ted  function,  assuming its t ru th  for measurable functions.  This turns  

out to be really so, the necessary ad jus tments  requi r ing  no invent ion to speak 

of, as the fol lowing a rgument  shows: 

Le t  f (x)  be any funct ion  whatsoever,  and  u (x), l(x) its metric upper,  lower 

boundary  functions.  Since a set of measure o is negligible in o u r  present  con- 

siderations, and the set of points x where f ( x ) >  u(x) or < l(x) is, according to 

Theorem VI I I ,  of measure o, we need to discuss the direct ional  angle only at 

those points ~ for  which u (~) ~ f(~) ~ l(~). I f  u (~) > f(~) > l(~) it  follows, t ha t  

A proof of some  l e n g t h  of t h i s  t h e o r e m  was  pub l i shed  by  Saks  and  Serpiflski ,  F u n d .  Math .  

vol. X I  (I928), p. IO 5 . 
.o Jour .  de Math .  (7) vol. I (1915) , p. lO 5. 

Proe. Loud.  Math .  Soe. (2) vol. 19 (I917), p. 36o. 

4 F u n d .  Math .  vol. IV (1923), p. 2o5, and  vol. V (I924) , p. 98 . 
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the directional angle at  (~,f(~)) is 360 ~ - -  at  least for almost every ~ sat isfying 

these inequalities - -  because, according to Theorem VII I ,  for almost every 

both (~, u(~)) and (~, l(~)) are fully approached by y =f(x) .  W e  may thus restr ict  

the discussion to the case where f ( ~ ) - - u ( ~ )  or f (~ ) - - / (~ ) ;  and since these two 

cases are similar, we may assume tha t  f(~)=u(~).  Let  the function u(x)be 
defined as equal to u(x) if u ( x ) ~  f(x), and equal to f(x) if u ( x ) < f ( x ) .  Since 

~(x) equals the measurable function u(x) almost everywhere, i t  is itself men- 

surable, and since we are here 

measurable functions,  we can use 

or 360 ~ at  almost every point 

assuming tha t  the Denjoy theorem holds for 

the fact  tha t  the directional angle is o ~ or 180 ~ 

of y--~ ~(x). We distinguish the two cases: 

(a) u ( ~ ) >  l(~), (b) u(~)- - / (~) ,  at  the same t ime assuming in both cases, as we 

may, tha t  the directional angle of y .... u(x) is o ~ or I8o ~ or 360 ~ at  (~, u(~)) and 

tha t  (~, u (~)) and (~, l(~)) are fully approached by y - - : f ( x ) .  

Case (a) u (~) > l(~). I f  the directional angle of y -- '~ (x) is o ~ at. (~, ~ (~)), 

we conclude, since f(x) ~ ,~ (x) for every x and (x, u (x)) and (x, l(x)) are positively 

approached for every x, that  the directional angle at  (~, f ( ~ ) ) =  (~, u(~)) of the 

curve y =.f(x) is I8o ~ The conclusion is the same and the reasoning similar 

if the directional angle of y =  ~(.~:) is I8o ~ at (~, ~(~)) provided D - a n d  D+,  the 

upper left  and lower r ight  Dini derivatives of y =: ~(x) at ~ are equal to +.or 

respectively; if, however, the directional angle is I8o ~ but D_, D + --~ +_ or re- 

spectively, it follows similarly tha t  the directional angle of y =f (x )  is 360 ~ at 

g. Finally,  it  follows in the same way tha t  if the directional angle "of ?t-= ~ (x) 
is 360 ~ at  ~, then the directional angle of y - - f  (x) is also 360 ~ at ~. 

Case (b) u ( ~ ) =  l(~). As before, we consider the measurable function a(x),  

and likewise the measurable funct ion l(x) equal to l (x ) i f  f(x)>= l(x), and to 

f(x) if f i x ) <  l(x). Since sets of measure o are negligible for our present 

purpose, we may assume tha t  the directional angles at ~, both for y----a(x) and 

for y - ~  l(x) are o ~ or I8o ~ or 360 ~ , and also tha t  (~, ~(~)) is fully approached 

by y = ~ (x), and (~, i(~)) fully approached by y = i(x). I f  the directional angles 

at  ~ are o ~ for both y = 5 (x) and y = i(x), it  follows, since ~ ( x ) ~  u(x)~ l(x)~Z(x) 
for every x, tha t  the curves y--~ ~(x), y - ~  i(x) have the same directions at  ~; 

and fur thermore,  since 5 ( x ) ~ f ( x ) > =  l(x), tha t  the curve y = f ( x )  has this same 

direction at  ~. I t  follows similarly, if y = 5(x) has a direction at ~, and the 

direct, ional angle at  y-= i(x) is I8o ~ at ~, tha t  the sides of this I8o ~ angle lie 

along the direction of y----~(x) at ~; consequently,  since (x, u(x)) and (x, l(x)) 
are, for every x, positively approached by y - - f  (x), and ~ ( x ) > f ( x ) > =  i(x), the 
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d i r ec t iona l  ang le  a t  (~, u ( ~ ) ) ~  (~,f(~)) is 18o ~ for  the  curve  y-~f (x ) .  Likewise ,  

we see t h a t  t he  d i r ec t iona l  ang le  f o r  y - - f ( x )  is : 8 o  ~ a t  ~, i f  t he  d i r ec t iona l  

ang le  of  y = i ( x )  is o ~ and  the  d i rec t iona l  ang le  of  y ~  ~ ( x ) i s  I 8o  ~ a t  th i s  

point .  I f  t he  d i rec t iona l  angles  at  (~, ~ (~)) are  I8O ~ fo r  b o t h  y =  ~(x) and  y=i(x), 
t h e n  if the  infinite der iva t ive  on one and  the  same  side of  ~ is of  d i f fe ren t  

s ign  fo r  these  two curves,  i t  fo l lows t h a t  the  d i r ec t iona l  ang le  fo r  y -~ f (x )  is 

360~ bu t  if t he  infinite der iva t ive  on the  same side of  ~ is of  the  same s ign 

f o r  these  two curves,  it fol lows,  because  ~ ( x ) ~  i(x) fo r  every  x ,  t h a t  t he  sides 

of  these  two  i8o  ~ angles  lie a long  the  same s t r a i g h t  line, and there fore ,  s ince 

(x~ u(x)) and  (x, l(x)) are, fo r  every  x ,  pos i t ive ly  a p p r o a c h e d  by y - ~ f ( x ) ,  t he  di- 

r ec t iona l  angle  of  y-~.f(x) is also I8o  ~ a t  ~. F ina l l y ,  i t  fo l lows read i ly  wi th  

the  aid of  the  cons ide ra t ions  used above,  t h a t  i f  fo r  a t  leas t  one  o f  the  curves  

y - - f i ( x ) ,  y = l(x) the  d i r ec t iona l  ang le  is 360 ~ a t  ~, t h e n  the  d i r ec t iona l  ang le  

of  y = f ( x )  is 36o ~ a t  ~. 

Ex. 4. Extension of a theorem of Arzela. T h e  t h e o r e m  we have  in m i n d  

is the  one  t h a t  gives a necessa ry  and  suff ic ient  cond i t ion  fo r  the  c o m p a c t n e s s  ~ 

of  an  infinite set  T of  c o n t i n u o u s  func t ions ,  l y ing  in a g iven  in terval ,  namely ,  

t h a t  T be )>equibounded>> and  >>equicontinuous>>. ~ This  t h e o r e m  can  be ex t ended  

to measu rab le  func t ions ,  as F r 6 c h e t  has  shown.  "~ N o w  since, in one  sense, t he  

essent ia l  n a t u r e  of  a f u n c t i o n  is d e t e r m i n e d  by its me t r i ca l  boundar ies ,  we shall,  

fo r  our  p resen t  purpose ,  r e g a r d  two func t i ons  as iden t ica l  i f  t he i r  me t r i ca l  

bounda r i e s  are  respec t ive ly  i d e n t i c a l  This  c o n v e n t i o n  a m o u n t s  to  r ep lac ing  a 

f u n c t i o n  by 2 measu rab l e  func t ions .  W e  t h e n  define the  d i s tance  d ( f l ,  f~) ( : 6 e a r t )  

be tween  2 func t i ons  .fl and  f~ as the  sum of  the  d i s tances  be tween  the i r  respec- 

t ive met r ic  boundar ies ,  u n d e r s t a n d i n g  by the  d i s t ance  be tween  two measu rab l e  

func t i ons  m l(x) and  m~(x) the  g r e a t e s t  lower  b o u n d  of  all n u m b e r s  ]~ such  t h a t  

]m I ( x ) -  m 2(x)l < 1~ excep t  in a set  of  measu re  < k. W i t h  th is  def in i t ion  o f  

d is tance ,  it fo l lows t h a t  the  set  of  all f u n c t i o n s  is m a d e  a me t r i c  space.  I t  then  

1 A set T lying in an abstract space S in which convergence of a sequence of elements has 
meaning is ,compact,, if for every infinite sequence of elements of T there is a subsequence con- 
verging to an element of S. 

T is ,>equibounded, if there is a constant M such that ]f(x) l < M for all x's of the 
interval and all functions f(x) of T. T is ,>equicontinuous, if for every ~ > o there is a ~ > o 
such that I x , -  x 2 ] <  (~ implies I f (x , ) - - f (x~)[  < ~ for all f s  of T. 

s Fund. Math. vol. IX (I927) p. 25 . In a note by E. H. Hansen, Bull. Am. Math. Soc. 
vol. 39 (:933) P. 397, the result of Fr6ehet is deduced directly from a general criterion for com- 
pactness in metric, complete spaces. 
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follows - -  and the proof  may be made as in Hansen ' s  note  - -  that a necessary a~d 

sufficient condition that a sequence {f,} of functions be compact is that they be >>almost 

equibounded,> ~ and that the set of  their meb'ic boundaries be >>almost equicontinr176 

S e c t i o n  4. 

Additional Remarks. 

Other boundary .functions. For  brevity we shall speak only of upper bound- 

aries. Among  those tha t  immediately suggest  themselves are: 

a) The  ordinary upper  boundary  funct ion u (x), defined as the  upper  boundary 

(maximum) of f (x )  at x. u(x) is an upper  semi-continuous funct ion,  and con- 

verseiy, every upper  semi-continuous funct ion is an upper  boundary  function,  

namely of itselfl 

b) The d-upper boundary 'Ud(X), defined as the upper  boundary  of f (x)  at  

x when denumerable  sets are regarded  as negligible. '~ u,~(x) is again upper- 

semi-continuous, and non-denumerably  approached at  each of its points. Con- 

versely, if f is upper  semi-continuous and non-denumerably approached et  each 

of its points, it  is a d-upper boundary,  namely of itself. Fu r the rmore  the number  

of points of y ~ f ( x )  above its d-upper boundary  is a t  most  ~r for  every such 

point  is enelosable in a >>rational,~ rectangle  - -  i. e., one bounded by x = r~, 

x = r~, x ~ rs, x = r~ with the r 's  ra t ional  - -  conta in ing  at most  ~r such points. 

A similar resul t  holds in the case of the f -upper  boundary,  >>f>> denot ing here 

tha t  finite sets are negligible. 

The  e-upper boundary,  >,e>> denot ing  tha t  exhaustible sets are regarded as 

negligible. I t  is easily seen tha t  the e-upper boundary is upper-semi-continuous, 

and inexhaust ibly  approached at  each of its points. Conversely, an upper-semi- 

cont inuous funct ion with the la t ter  property is an e-upper boundary  - -  of itself. 

The  set of abscissas corresponding to points of y - - f  (x) above its e-upper 

{fn} is sa id  to be , ,a lmost  equibounded , ,  if for every  pos i t ive  ~ t he r e  ex i s t s  a cons t an t  
k s u c h  t h a t  ]fn(x)] < k for every  x and  every  n excep t  for t he  x ' s  be long ing  to a se t  E n ,  de- 
p e n d e n t  on n ,  and  of ex ter ior  m e a s u r e  < E. 

A set  { f}  of m e a s u r a b l e  f unc t i ons  is a l m o s t  e q u i c o n t i n u o u s  if for every  posi t ive  e the re  
ex i s t s  a pos i t ive  n u m b e r  d i n d e p e n d e n t  of the  f's, and  a se t  E/ v a r y i n g  w i th  f and  of m e a s u r e  

< e, s u c h  t h a t  for every  f and  every pair  (,~, x~) of x ' s  no t  in  Ef a n d  s u c h  t h a t  I . % -  x ~ ] <  d,  

we have If(x,) -- f(x~)l < ~. 
Cf., for example ,  B lumberg ,  Certain General laroperlies of Functions, A n n a l s  of Math. ,  

z '1 set. ,  vol. X V I I I  (I917) p. :47. 
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boundary  is exhaustible. Similar results hold in the case of neglect of sets of 

measure zero. 

We finally add  a few remarks concerning the structure of a .genera l ,  real 

funct ion between its measurable bouudaries. I f  such a bounded funct ion f ,  lying 

in (a, b), is given, and Yo ---<-f< Y~, we divide the interval  (Yo, Y~) into 2 equal 

parts,  each of these 2 intervals into 2 equal parts, and so on, designat ing the 

2 intervals of the first stage by Io --(Yo, Y~), I~ ~ (Yl, Y~); the four intervals of 

the second stage by I00 = (Yoo = Yo, Yol), lol ~- (Yol, Yl), 11o = (YlO ~-Yl, Y11); 

111-~(Yzl, Y~); and so on. Let  .Eo-~ Eyo<=.:~,, E I =  Ey~ <=:<~.~; Eoo-~- Eyoo~_/<yo, , 
Eol=Eyo,<=f<V,o, )~lO.~Z.ulo<=f<v,,, ~711=~;y,,~f<y2; and so on. W i t h  each of 

these E ~ , ~  . . . .  ~ we associate F~ . . . . . . . .  ~,,, one of its measurable envelopes;  

I'~ . . . . . . . .  ~ may be taken to be a G~, i .e. ,  a product  of a sequence of open sets. 

Every F is, except for a set of measure zero, the sum of the 2 I"s  of the next  

stage whose subscripts, except for the last, a r e  identical  with those of the 

given F - -  (and in accordance with this property, we have (a, b ) ~  F 0 + .I'1 except 

for a set of measure o). Thus the pat tern of the metric clustering about  the 

curve points of an arbi t rary funct ion is completely given by a sequence of G~'s: 

Fo,  F1; Foo , I01 , /11o , F l l  ; . . .  T w o  functions with the same system of associated 

F's  are such tha t  if a point  (~, ~) is fully approached by the one funct ion i t  is 

fully approached by the other. Since there are in all c Gn's, there a r e  for the 

tota l i ty  of real functions,  of cardinal  2 c, only c possibilities for the pat tern  of 

metric clustering. This reduction from 2 c to c in itself indicates a procedure 

for associating with general funct ions properties relat ing to metric clustering. 

Suppose, conversely, we have given an infinite system of F's, each a G~: 

r -~-~ (a, b); F o , / - ' 1 ;  roo,  FOl, r i o ,  F l l ; . . . ,  with the property tha t  every I" is, 

except for a set of measure o, the sum of the 2 F's  of the next  stage having 

one addit ional  subscript. We show tha t  a one-valued funct ion exists having the 

given r ' s  for its associated set of F's,  - -  always, of course, with the .possible 

neglect of sets of measure o. For let Eo and E~ be two non-overlapping sets 

such t h a t  they lie respectively in r o and /11 and Eo + E1 : F (~-- (a, b)) except 

for a set of measure o, both E o and E~ having respectively metric density I a t  

each of their  points. Next  let Eoo, Eo~ be two non-overlapping sets ly ing re- 

spectively in Foo and Fol, such tha t  Eoo +/~ol  = Eo, except for a set of measure 

o, both E oo and Eol having respectively metric density I a t  each of their  points. 

In  the same way a pair of sets E~o, EH is associated with  Flo, F~;  and in the  

same way we define E~ . . . . . .  k for every sequence of subscripts consisting of o's 
36--34686. Acta mat, hematlca. 65. Imprim~t le 6 mars 1935. 
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or I 's.  I f  x '  is a point  of (a, b) and does not  belong to an exceptional  set of 

measure o, it lies, for  a given ~, in one and just  one E with n subscipts, say 

in 1~,' . . . . .  %; . we then set f(x)~ lira y~,, ... an" I t  is clear tha t  this f has asso- 

ciated with it, except  for  s e t s  of measure o, precisely the original  sequence 

of I"s .  

Again,  if f is given, let  us associate with it, as above, t h e  sets E~, . . . .  %. 

E~ . . . . . .  ,~ is the sum of 2 non-overlapping sets M . . . . . .  ~,, and N~ . . . . . .  ~,, the  former  

measurable and the la t ter  completely non-measurable.  I f  T is the set of points 

common to an infinite number  of M's, it  can be shown wi thout  difficulty, that ,  

except  for  a set  of measure o, I '  is precisely the set of points where the measur- 

able boundaries of f coincide. 


