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I. I n t r o d u c t i o n .  Our  presen~ object  is to establish the asymptotic properties 

of the solutions of a l inear  differentiM equat ion of order  n 

(~kl) Ln(x  , Z; y) ---- ~ lan--k(X, Z ) y ( k ) =  0 
k=O 

[1no(X, z) ~ o; ,~n(x, z) ~ o] 1, 

in so far  as the  parameter  E is concerned.  The theory  will be given for  the  

complex plane of E; moreover ,  no restrictions will be made concerning the s 

series solutions of (A1). The coefficients in (A1) will be assumed to be indefinitely 

1 f(k) (k > o) here and in the sequel denotes --0kf 
= O x k  �9 

1--36122. Aaa mathematiea. 67. Irnprim6 le 19 mars 1936. 
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differentiable in x ( a ~ x ~ b )  and analytic in )~ for I ~ I ~ Q > o ( ~ r  being 

representable by convergent series of the form 

(]) la(X, Z) -~ ~ la,.(x) Z"--" (integer m). 
~ ' ~ 0  

Here the ~a,(x) are indefinitely differentiable on the closed interval (a, b). More 

generally, the coefficients in (A~) will be allowed to be merely asymptotic in 

certain regions to such possibly divergen~ series. In the latter case the obtained 

results will be valid in correspondingly restricted regions of the Z-plane. The 

interval (a, b) will be taken sufficiently small so that the formal series solutions 

will maintain essentially the same characteristic features for all x in the interval. 

The main results are formulated in the Fundamental Existence Theorem of w 6. 

Applications of this Theorem will be made to non-homogeneous and integro- 

differential equations, as well as to some boundary value problems. 

The precise notion of asymptotic relationship, employed in this work, is 

as follows. Let R be region, extending to infinity, bounded by regular curves 

and situated in the k-plane. Let f (x ,~)  be defined for ~t in R and a ~ x ~ b. 

Suppose now that a series (convergent or divergent) 

~'=--1[ 

(integers H and p; p _-->_ ~) 

be given, whose coefficients s,(x) are defined, each being bounded for a ~ x ~ b .  

We shall saTy that f (x ,  ~) is asymptotic to s (x, ~) in ~, at ~ = or in the region 1i 

and for x in the inter~,al (a, b) provided for every m (m-~ ~, 2 , . . . )  

(2) 
m - - 1  ,j, m 

f ( x , z ) =  s,,(x)Z ,, 

where f,~(x, Z) is defined for x in (a, b) and for Z in R and 

(2a) ]f.~(x,Z)l<=fm (a<_---x<=b; Z in R). 

Here the numbers fm (m = I, 2, . . . )  are independent of x and ~. Such an asymp- 

totic relationship will be said to be in the ~)ordinary sense~) or ~>to infinitely many 

terms)). Whenever a function f ( x ,  ~) has all .the properties stated above, except 
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t h a t  in (2) the n u m b e r  m canno t  be t aken  g rea te r  than  m o (a fixed integer), the 

asymptotic relationship (2) will be said to hold to m 0 terms, 

(2 b) f ( x ,  ,~) ~0s(x, ~) (Z in R;  a <= x G b). 

According to this  nota t ion,  

(2 c) f (x ,  z) z) 

would s ignify t h a t  f ( x ,  ~) is a sympto t i c  to s(x, ~) in the  ord inary  sense. F o r  

convenience in place of ~ we shall  wri te ~ ,  Since the  f ~  (m : I, 2 , . . . )  in (2 a) 

are independen t  of x the a sympto t i c  re la t ionships ,  specified above, will be said 

to be uniform in x for x in the  closed in te rva l  (a, b). 

Le t  c be a point  of the  in te rva l  (a, b). Suppose f ( x ,  ~)is  a func t ion  defined 

for  ~ in /~ and  for  all x of (a, b) dis t inct  f rom c. Le t  funct ions  &(x) (v-~o, I , . . . )  

be defined for  all x of (a,b) dis t inct  f r o m  c. I f  (2), (pa) hold  wi th  the  

fm (m = I, 2 , . . . )  deno t ing  some posi t ive func t ions  of x ,  defined on (a, b) excep t  

possibly a t x - - - - c ,  t h e n  we shall  wri te 

(3) f ( x ,  Z)~ s(x, Z) (Z in B; x in (a, b); x #  c) 

(to m 0 or to infinitely m a n y  t e r m s -  as the  case may  be). Such an a sympto t i c  

re la t ionship  will be t e rmed  non-uniform in x.  

The l i t e ra ture  in the  field under  cons idera t ion  is very extensive.  No effort  

will be made  to give extensive references.  Of the  cont r ibu t ions  of the  ear l ier  

wri ters  those,  which f rom the point  of view of the presen t  pape r  are of out- 

s tanding  impor tance ,  are due to G. D .  BI~HOFF~,  J .  D .  TX~ARKI~ 2, R. E. 

LAZ~GER s and  P. NOalLLOS.* The  first two of these au thors  assume t h a t  the  

1 G. D. BIRKHOFF, On the asymptotic character of solutions of certain linear differential 
equations, Trans. Am. Math. Soc., vol. 9 (I9O8), PP. 219--231; also Boundary value and expansion 
problems .... Trans. Am. Math. Soc., vol. 9 (I9O8), pp. 373--395. G. D. BIRKHOFF and R. E. 
LA~OER, The boundary problems and developments ..., Proc. Am. Acad. Arts and Sciences, vol. 58 
(I923) , pp. 5I--I28. G. D. BIRKHOFF, Quantum mechanics and asymptotic series (an address), Bull. 
Am. Math. Soc., vol. 39 (I933), PP. 681--7oo. 

2 j. D. TAMARKIN, A work published in 1917 (in Russian), Petrograd. J. D. TAMARKIN, 
Some general problems of the theory of ordinary linear differential equations and expansions of a~ 
arbitrary function in series of fundamental functions, Math. Zeitschrift, vol. 27 (I927), pp. 1--54. 

8 R. E. LANGER, ef. BIRKHOFF and LANGER in a preceding reference. R. E. LANGER, The 

asymptolic solutions of ordinary linear differential equations . . .  (a symposium lecture), Bull. Am. 
Math. Soe., vol. 4 ~ (I934) , pp. 545--582. Also cf. a series of papers by the same author, con- 
cerning some special problems, in volumes 25 (/923), 31 (I929) , 32 (193o) , 33 (I93I), 34 (I932), 36 
(1934) of the Trans. Am. Math. Soc., 

4 p. ~OAILLO~, D~.vdoppements asy.,vptotiques darts /es dquations diffdrentielles lindaires i~ 
parambtre variable, M4moires de laSoe, des Sc. de Liege, Troisieme S6rie, Tome IX (1912), I97 pages, 
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roots of the characteristic equation of (A1) are distinct for all values of x under 

consideration. Under this hypothesis the formal series solutions are, of course, 

of a restricted type. In the work of T~MARXI~ the coefficients of the equation 

(or system) are allowed to possess a suitable finite number of derivatives. As 

seen from his work, such a lightening of the conditions upon the coefficients 

results in the solutions being asymptotic to the formal series to a finite number 

of terms only. The results of the present paper could also be suitably extended 

so as to apply to equations whose coefficients possess merely a limited number 

of derivatives. However, for convenience of demonstration it will be assumed 

throughout that  the coefficients in (A~)are all indefinitely differentiable with 

respect to x. The work of TA~xRxI~ contains also a very substantial treatment 

of boundary value problems. 

An elegant treatment had been given by BIRKHOFF and LARGER for the 

case of a linear system, with coefficients linear in the parameter. 

In NOAXLLO~'S work the general case is considered and it is proved that  

there always exists a full set of linearly independent formal series solutions. ~ 

On the basis of the latter NoAIH~o~ obtains actual solutions, which 

I o are asymptotic to the corresponding f o ~ a l  series to a finite number of terms 

only. On the other hand, 

2 ~ the asymptotic relations are l)rbved only along a f i xedray  in the plane of 

the parameter. 

Some of the solutions obtained in the present paper will have the fol- 

lowing properties. 

A. They will be asymptotic to the corresponding formal series to infinitely 

many terms (that is, in the ordinary sense). 

B. The asymptotic relations will be valid in certain regions, extending to 

infinity in the complex plane of  the parameter. 

The distinction between 2 ~ and B will be appreciated in view of the fol- 

lowing considerations. Let R be a sector 

a l ~ a n g l e ~ = a ~ ;  a j < e ~ ;  I ~ ] ~ q  > o .  

I f  it is known that  along every ray in R a function is asymptotic to a series 

i Formal solutions of the type found by NOAILLOI~ were known to exist a number of years 
earlier. Cf., for instance, L. SCHLESINGER, ~ber asymp~oti8ch6 Darstdlung deF Losungen . . . ,  
Math. Annalen, vol. 63 (I9O7), pp. 277--30o (in particular, p. 282). However, previous to I~OAIL- 
LON'S work existence of a full set of such solutions had not 7Qeen proved. 
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(say, of the form s(x, ~)), it does not necessarily follow that the asymptotic rela- 

tionship holds throughout R.  

Inasmuch  as investigation of the asymptotic properties of the solutions of 

(A) is concerned, the present paper has a significance analogous to tha t  which 

certain papers by T~JITZI~SKY have in the fields of ordinary l inear difference 

(with BII~KtIOFF) 1, q-difference ~ and differential equations 3 (no% containing a 

parameter). The three papers, jus t  referred to, together  with the work at  

hand present a certain aspect of unity.  These papers derive their significance 

fi'om the fact that, when a class of analytic .functions is at hand, the problem of 

central importance is to investigate the nature of the functions in the vicinity o.f 

their singular points. 

2 .  

in the form 

(A) 

Some P r e l i m i n a r y  Facts ,  I t  is convenient to write the equation (A~) 

L(x, ~; y) ~ ~ A~(n-k) an-k(oc, A)ylk) -- o, 
k=O 

v : 0  

(k = o , . . . n ;  x in (a, b)). 

W i thou t  any loss of generali ty i t  will be assumed t h a t  ao(X, ~,)~ I. Moreover, 

it  will be supposed tha t  the ser ies  an(x, ~) is not  formally zero. The involved 

integer H wilt be taken the smallest possible. I f  H_--<o, while an-k(x,~)= 

-~ an-k(x, ~) (k = o, I , . . .  n), the la t ter  series being convergent,  we have an ana- 

logue to the Fuchsian Theory. In  fact,  as H. P o n ~ c A ~  proved, in this case 

there exists a full  set of solutions analyt ic  in ~ at  ~ = ~ (provided, of course, 

tha t  the init ial  condi t ions  are of the same character). 

The characteristic equation associated with (A) is 

k=O 

1 G. D. BIRKHOFF and W. J. TRJITZINSKY, Analytic theory of singular difference equations, 
Acta mathematica, vol. 60 (I932), pp. I--89. 

W, J. TRJITZINSKY, Analytic theory of linear q-difference equations, Acta mathematica, 
vol. 6I (I933) , pp. 1--38. 

8 W. J. TRaITZI~SKY, Analytic theory of linear differential equations, Acta mnthematiea, 
vol. 62 (I934) , pp. i67--226, 
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Le t  r = Or(x) (i = I, . . .  n) be its roots. The interval  (a, b) will be suitably chosen 

so t ha t  the following is true for every pair of functions Q,(x), Qj(x)(i  ~ j ) .  
Either  Qi(x)----Qj(x) (a < x <= b) or Q~(x)r qj(x) for every x in the interval (a, b). 

Moreover, this interval can be so chosen that ,  as a consequence of 5TOA~LLOS'S 

exists a full  set of formal (in general divergent) series solutions work, there 

sat isfying 

(A*) 

and of the form 

n 

L*(x,  ~; s) - -  ~,)dl('~--k)a~_k(x, ;t)s (k) - - 0  
k=O 

(3) si(x, ),) = eCt~ ('~' ~) a~(x, ]~) (i --~ i , . . .  n), 

where 
k i H--1 k i H - : a  

(3 a) Q,(~, Z) = ~ q;, o (x) Z ~, 
~ 0  

(the k~ positive integers), 

r 

(3 b) . , (x ,  Z) = E o,. r(x)z k~ (i = , , . . .  ,,). 
r ~ 0  

Here tile funct ions qi,~(x), ai, r(x) are all indefinitely differentiable and are finite 

in the interval  (a, b). 

The integer H,  in a sense, has a significance in the theory of equations 

(A) analogous to tha t  which the rank of a singular point has in the theory of 

ordinary l inear differential equations wi thout  a parameter.  

The leading coefficients i n  the Qi(x, ~) are connected with the roots of the 

characteristic equation by means of the relations 

<l) tX\ _ _  ~2). (4) q~,o( ) = •i(x) (r - I . . . .  

W h e n  the roots are all dist inct  (for all x in (a, b)) the integers ki in the formal  

ser ies  (3), (3 a), (3 b) are each equal to unity.  The corresponding theory has been 

developed in the essential particulars by BIlCKHOFF (when H----I) and by Tx- 

MARKI~ (when H is any integer). When  multiple roots are admit ted  some of 

the k~. may exceed unity.  I f  (~1---- Q, (x) is a root of multiplicity m there will be 

v (I ~ v ~ m )  corresponding series si(x,~) such that ,  if i k, ~k, . . .  ~k are the assoc- 

iated values of the ki, on one hand we shall have 

~k + ~k + ... + ~k = m 
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and, on the  o ther  hand,  it  will be possible to obta in  a set of m l inear ly  in- 

dependen t  fo rma l  solutions (associated with the  roo t  Q~) by fo rming  all possible 

de te rmina t ions  of the  ment ioned  v series. Any series (3) which satisfies ( A ) h a s  

ki dis t inct  de te rmina t ions ,  ob ta ined  by le t t ing  2 describe closed circuits (I,  2 , . . . ,  

k i - - I  t imes,  s a y ,  in the  posi t ive  sense) a round  ~.-~ or Each  of these de te rmina-  

t ions will sa t is fy  (A). This  is a consequence of the  fac t  t h a t  for  each circuit  

the series a, -k (x ,  ~) r ema in  unal tered:  Accordingly,  t h e  series (3)can  be grouped 

SO tha t  the e lements  wi th in  the same g roup  are g iven by the  to ta l i ty  of all 

de te rmina t ions  of a cer ta in  one series; on the  o the r  hand,  no pa r t i cu la r  series 

f rom one group  will be a de t e rmina t ion  of a series f rom ano the r  group.  Ac- 

cording as a series (3) conta ins  or  does not  conta in  f rac t iona l  powers  of ~ it  

will be t e rmed  anormal or normal. ~ 

Associa ted  with the  equat ion (A) is the  system, which in ma t r ix  no ta t ion  

will be wr i t t en  as 

(B) 

where 

Y(1)(X, Z) = Y(X,  ~)D(x,  Z), Y ( x ,  J~) -~ (yi, j (x,  ~))~, 

Z) = 

0, O, 

I~ O~ 

O, 

�9 , , - Z " ' l a n ( x ,  Z) 

' ,  , - -  Z z I ( ~ - 1 )  a n - 1  ( x ,  Z) 

, I ,  - Z % ~ ( x ,  Z) 

i = z)) .  

Here  (yt, j (x ,  ~)), for  instance,  denotes  a ma t r ix  which in the  i-th row and i a  

the j - th  column contains  the  e lement  y~,i(x, ~) ( i , j  = I, . . .  n). I f  (yi, j (x ,  )~)) is a 

ma t r ix  solution of (B) t hen  

(5) z))  ' ---- (Y~', 1 ( x ,  Z)) 

1 This de.finition is analogous to that employed for linear differential and linear difference 
equations without a parameter. By analogy to the results of the paper by W. J. TRJITZISISKY~ 
Laplace integrals and factorial series in the theory of linear differential and linear difference equa- 
tions, Trans. Am. Math. Soc., vol. 37 (I935), PP. 8o--I45, one might expect that the method contained 
therein would lead to convergent factorial series developments whenever the series (3), corresponding 
to a multiple root of (2), are all normal and have the same exponential factor exp. Qi(x). This, 
however, is not the case. 

" Y .~ (x ,  z) = (y~. ~ (x, z)) = ~ y~. j (x, z) . 
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and the yi, l(x,  it) ( i = - i , . . .  n) will constitute a fundamental set of solutions of 

(A). On the other  hand, if functions y,(x,  i t ) (=y ; ,~ (x ,  it)) i =  I , . . . n  form a full 

set of solutions of (A), the matrix 

(6) Y(z,  i t )=  (y~,j (x, it))= (y~-~)(x, it)) 

will satisfy (B). 

In  the sequel use will be made of the formula 

(7) y(~, it)= ~,~,,(~, it) f ~(~, it)~,,,~(~, it)dx 
~ 1  

which, under appropriate conditions, represents a solution of the non-homogeneous 

equation 

(8) L ( ~  it; y) = ~(~, it). 

In (7) the y~,l(x, it) (~=  I , . . .  n) are elements of a fundamental set of solutions 

of (A) and the ~,~,j(x, it) (.1"~--T,...n) are the elements in the n-th row of the 

inverse of the matrix (y~T 1) (x, it)). 

Analogous facts can be stated for a system 

(C) Y(')(x, it) = Y(x, it)B(x, it), r ( x ,  i t )=  (y,. j(x, it)), 

B(x ,  it) -= (b,,j (x, it)) , ]B(x, i t ) ] ~ o  (a < x < b ; ] it [ >= q > o) , 

where the coefficients bi, j (x ,  it) are of the same type as those in (A). The ele- 

ments in the i4h  row (i----- I, 2, . . .  n) will constitute a solution of the system. 

I t  is not difficult to relate to (C) a single differential equation of order n and 

of type (A). I t  can be shown that (C) is formally satisfied by a matrix 

(9) S (x, it) = (sl, j (x, it)) = (eQ~C~, ~) ai, j (x, it)), 

where the Qi(x, it) and the ai, j(x, it) are expressions of the form of (3 a )and  (3b), 

respectively. Such a matrix can be found  so that  formally ] S ( x ,  it) l does not 

vanish. This is of course under the supposition, which we shall make, that  the 

determinant of the formal matrix, corresponding to B ( x ,  it), is not zero. 

I t  will be convenient to introduce the definition 
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Definition. A series o f  the f o rm  

r 

q~ X (k a posit ive integer), 

whose coefficients are defined on a closed interval  (a, fl), wil l  be termed a o-series. 

In ~he sequel, whenever we write 

(IO) (I(X, ~) ~ Z eGr(x'2) ~Tr(X, )~), 
r 

where the a~(x, ~) are a-series and the G~(x,s are functions defined for the in- 

volved values of the variables, the implication will be that 

a(x,  ~) = ~ e(~r t'~, ~) ar (x, ~) 

where the functions a~(x, ~) satisfy asymptotic relations 

(IO a) a t (x ,  ~) ~ ar(X, ~). 

The above statement refers also to the case when ~ is replaced by ~;. 

. 

(i) 

where 

(I a) 

Formal  Integrat ion.  We shall now solve the formal equation 

y(~) (x, ~) - eQ(~, ~)a(x, Z), 

k H - - 1  k H - - ~  

Q(x, ~) = ~ qo (x) 

(positive integers k and H) 

r 

(I b) a (x, ~) = ~, a,. (x) ~-  ~ 
~ ' ~ 0  

and where the 

on (a, b). The series (I b ) m a y  be divergent. 

solution of (I) will be 

(2) y (x, ~) = F ~r (x) 
r = 0  

2--36122. Acta mathematlca. 

coefficients q~(x), er(x) are indefinitely differentiable and finite 

When Q(x, ~) - o then a formal 

67. Imprim~ le 19 mars 1936. 
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where 

(o ~ m < k H - -  I) 

is not  a constant.  
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~7~ x) (x) = a~ (x) (r = o; I, . . . ) .  When  Q (x, Z) ~ o the funct ion qm (x) 

will be not  identically zero. I t  will be assumed tha t  q~ (x) 

Le t  J ,  denote a perfect  subset o f  the interval (a, b) such that in J ~. 

Iq~ ' (x)  l > ~ > o .  

On let t ing 

(3) y(x, z) = eQ( ~, ~)v(x, 2) 

i t  is  observed tha t  ~7(x, Jr) satisfies 

(4) ~2(1)(x, J()= a(x, ~t) - -  Q(1)(x, Z)~7(x, ),). 

I t  will be shown tha t  (4) is formally satisfied by a series 

e~ 
r 

(5) ~(.% z)= 2~ ~,.(x) z- ~:. 
r ~ O  

In  fact, on subst i tut ing (5) in (4) we obtain 

(6) Y,(~';'(x)-~r(x))Z ~:=-z, ,  Y, i." (x) Y,~(xlZ- ~)-r-- 
r ~ O  a = m  r = O  

r r 

= - z , , ~  z -  ~ / ,  (x), 

where 

q. t ~-~(~). 

Here a,  is the smaller one of the numbers k H - - I ,  v. x 

f ~ ( z )  = o 

so tha t  (6 )can  be wri t ten in the form 

- - 1  r ~ '  r 

(81 ~ ~--@r+..(X) + ~ - - % ( X ) = O ,  
r = - - k H + m  r = O  

I t  is noted tha t  

( ~ = o ,  I, . . .  m - - , ) ,  

i Here and in the sequel Z = o; whenever fl < a .  
ct 
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The equations 
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gr(X)-~ fr+kH(X) + ~(,'I)(X) - -  (~r(X). 

11 

fr+kH(X)'--O ( r : - - k H + m , . . . - - I )  

are satisfied if 

(9) ~0(x) = ~i(x) . . . . .  ~k,~-.~-l(x) = o. 

On using (9) and (7) it is observed that  (8) is equivalent to the set of equations 

F 

(io) yr(x) --- ~ q~l~(x) ~r+k,,-~(x) + ~1~(x) - ~r(x) - o (,- >= o). 
t ~ m  

In (Io) a' is the smaller one of the numbers k H - - I ,  r +  m. Thus, for 

r < = I c H - - m - - I ,  we have a ' = r + m  and, for r > k H ~ m - - I ,  a ' = k H - - I .  
Accordingly, in view of (9), relations (lO) may be written as follows 

r+m 
(IO a) (~)tX~ (17 q~ ~ ) V,.+kH--m(X) = ar(X) - -  "~ q,~ (X) ~]r+k,,-~(x) 

a=m"t-1 

( r =  o, ~ , . . .  k i ~ / - , , -  I), 

k l I - - I  

(IO b) q~>(x) V,.+~,-,,(x) = a,(x) --  VP>(x) --  ~, q~>(x) 'O,.+kH--,~(X) 
a = ~ + l  

( r =  k H - - m ,  k H - - m  + I , . . . ) .  

It  is seen that  equations (Ioa) determine uniquely functions 

q~'(x)' ~ , _ _ ~ + ~ ( x ) , . . . ,  ~ . _ ~ _ ~ .  

On the other hand, equations (lob) determine insuccession functions 

( ~  ~) ~ . _ ~ ( ~ ) ,  ~ . _ ~ . ~ ( x ) ,  . . . .  

Functions (I I), (II a) are all indefinitely differentiable and finite in A~. 

We note that  if y(x, ).) is a solution of 

(I2) y(I)(X, ~ ) =  e Q(x, ~) (T(x, Z), 

then ~(x, ~ ) =  h(~)y(x, )~) (h(~) a function of ~ only) satisfies the equation 

(I3) ~(1)(x, Z) = h(Z)eQC~, ~)a(x, Z). 
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Lemma i. Given a formal equation (i3), where Q(x, ~) and a(x,Z) are of the 
form (I a), (I b), there exists a formal solution 8(X, ~) -~ h(Z)y(x, ~). Here y(x, ~) 
satisfies (I). When Q(x, Z ) ~  o, then y(x, Z) is given by (2), the involved coefficients 
being indefinitely differentiable and finite on (a, b). When Q(x, ~) ~ o, y(x, ~) is 
of the form (3), (5). In this case the involved coefficients satisfy (9), (Ioa), (Iob) 

and they are indefinitely d~fferentiable and finite in d~ (cf. the statement in italics 
following (2)). 

Note. When Q(x, ~ )~  o the coefficients, involved in the solution referred 

to in the above Lemma, are uniquely defined at  every point of (a, b) for which 

q(~)(x) does not vanish. They are indefinitely differentiable (that is, possess a 

unique derivative) at each such point. In  the neighbourhood of a point where 

q(1)(x) ~-o  these coefficients may become infinite. The order of infinitude may 

be estimated with the aid of (ma)  and (Iob). 

4. Analytic  Integration.  Consider the equation 

(I) y(1)(x, ~) ~ e q(~, z) a(x, ~) 

where Q(x,~), if not identically zero, is the function so denoted in w 3. As a 

function of x, let a(x, ~) be indefinitely differentiable on (a, b), when Z is in a 

certain r e g i o n  R extending to infinity. Such a region /t  ( IZI~  Z0 > o), satis- 

fying either one of the two conditions 

(I a) ,~ Q(')(x, Z) ~ o (x in (a, b); )~ in / t ) ,  

(Ib) ~RQ(1)(x,i~)~o (xin(a,b);  Z in / / ) ,  

will be supposed to exist. Moreover, it will be assumed that  a(x, ~).is analytic 

in Z for ~ in /~ (when x is in (a, b)) and that  

(2) a(x,Z).~a(x,Z) (x inA~; ) . i n_R;  w ~ k H - - m + 2 ) .  

Here a(x, ~) is given by (I b; w 3) and d~ is defined in the italicized statement 

following (2; w 3). We shall first consider the case w h e n  Q(x, ~ ) ~ o .  
According to Lemma I (w 3) the formal equation 

(3) s(1)(x, z) = eQ( , a (x ,  Z) 

possesses a formal solution 
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(3 a) 8(x,]~)=ect(x,:~)]~-- ~_~sr(x)~,--~:---~eq(X, it) g(x,~) 
r=O 

(~,.(z) - -  v~,-~+~(~)),  

where the coefficients are indefinitely differentiable and finite for x in .,J~. 

t be an integer such that w > t > k H - - m - - 2 .  Form the function 

(4) t ( . .  ~) = ~ ,  ~ ~ -  ~ - ~ -  F,  *r (*) ~-- ~ = ~ ~' ~ ~(*, ~). 
~ ' ~ 0  

An application of the transformation 

(s) v(x,  ~) = t(x, ~) + ,(~,  ~) 

Let 

will yield 

(6) z (~1 @, ~) = eQ ('~, ~/a (z, ~t) - t(~l(x, ~t) = e~(~, ~) 9 (x, ~). 

In  view of (2), (4) and (I a; w 3) it follows that  

r = O  r ~ O  

\ a ~'~'rl, ; r = O  

Here b~(x) is defined on L/~ and 

(7 a) I b~(~)l < b~ (~ in  J~). 

Denoting the product of the two summations in the second member of (7) by 

~p(x, )L), we have 
t '  

~)(x,~)---~- ~h , ( x )~  -~  ( t '=t  + k H - - m - - 2 )  
~ 0  

(8) 

where 

(8 a) h~(x) = F,  ~ ' + o ( x ) ~ _ ~ ( x ) .  

Here al is the greater one of the numbers o , v - - t +  I and a~ is the smaller 

one of the  numbers v, k H - - m - - I .  Thus, in particular, 
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(8 b) 

(8 o) 
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,v 

( I )  h, (x) = ~ q~+o(x) s,_~(x) 
cr=O 

( v : O ,  I , . . . k H - - m - - I ) ,  

k l I - -m- -1  

h , ( x ) =  ~ q~�89 
~ = 0  

( v = k H - - m ,  k H - - m +  I , . . . t - - 2 ) .  

Accordingly,  it is noted tha t  for v < t - - 2  the h,(x) are independent  of t. 

this fact  in view we w r i t e  (7) in the form 

(9) 

(9 ~) ~,(~, z ) =  b,,,(x) 2 

(~, x) = ~,  (x, x) + ~.~(~, z), 

(9 b) 

w W--1  ,, t '  + 1 ~, 

+ a, (x) 2 -  ~ - s,_~,~+,, (x) z -  ~' 

v = t - - 1  

In  (9 b) 

Wi th  

r 

S ( t )  / \ ,-~u+~kx) = 0 for v < k H - -  m). 
j, 

the coefficients of /~ k (v = o , . . . ,  t - - z )  are independent  of t; in view 

of (8 b), (8c) and since the s t (x)= ~kH--,~--r(X) satisfy relations (9), (Ioa),  (Iob) 

of w 3, it follows tha t  these coefficients are all zero. Thus ~(x, 2 ) =  ~l(x, ;~). 

Let, as is possible, t = w .  In  consequence of (9a) and (6) we then have 

b , - - I  \ 

(~o) ~(~)(x, z) = e~( x, ~)z- ~ - )  aw(~, z), 

(~oa) Igw(x, 2)l<=g~ (x in J,; it in R), 

where gw(x,~) is defined and finite in L/~ and g~ is independent  of x and ~. 

With (c, d) denoting a closed interval contained in zI, (a <--_ c < d <= b)we shall write 

q#--I / 
(II) ~ k z(x, 2)= eq(~',2)gw(u,~)du (x in (e,d)), 

7 

where 7 = c  when (I a) holds and 7 = d  when (I b) holds. Consider the  first case. 

We  h~ve 
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(~) 

so tha t  

Q(u, ,~) - Q(x, )~) = - / Q(1)(v,.~) dv 

[Q(~,z) - o(x. z)] ~ f -  ~Q,,,(v, Z) dv 

In  view of (I a), the integrand in the last member is equal to or is less than 

zero for ~ in R,  provided c ~ u ~ x ~ d .  Accordingly, in the first case 

(i3) [Q(u, z) - Q(x, z)] __< o ( c ~ u ~ x ~ d ;  Z in R). 

When (I b) holds, on writing (I2) in the form 

we obtain 

Q(u, z) - Q(x, z) = f Q.)(v, z) dv 

u 

[Q(u, ,~) - Q(x, ,~)] ~ f ~ Q(X)(v, ,~)dv 
v~x 

(c<=x<=u<=d). 

Since the integrand in the last member is equal to or is less than  zero, (i b) is 

seen to imply the inequality 

(~Sa) [q(u,  z) - Q(~, z)] _-_< o (e~x<--_u~d;  ~ in R). 

In consequence of (ii), (Ioa) and by virtue of (t3) or (I3a) (as the case 

may be) it follows that  

9~ 

~Z--1 f Iz ~ ~ ( x , Z ) e - ~ ( ~ , ~ ) J <  e~E~(",~'-Q(~,~)llgw(u,Z)lldul 

(~4) x 

< g w ] l a u l  <=(a - e)g,o ( ~ < x _ _ < a ;  z in 2~). 

Thus 
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Iz~o(x,z)l=<~. (~ in (e,d); Z in R), 

the  func t ion  Zw(X, Z) being  defined for  x in (c, d) and  )~ in R .  

By (5), (4 ) (wi th  t-----w) and (I5) 

(16) y(~,z) =~(~,,~)z" ~ [E08~(~)z -~' + z - ~  e,o,(~, z) 

(w~ = w - -  k H  + m - -  1 -->_ I), 

where ew,(X,Z) is defined for x in (e, d) and  Z in R.  Moreover,  

( ,6a )  I c,,,, (x, z) l =< c~o, (x in (c,d); Z in R); 

here ew, is i ndependen t  of x and ~. 

the  form 

(17) y(x, Z) ~S(X, )~) 

The relat ions (16), (x6a) can be wri t ten in 

(x in (e, d); Z in R), 

where s(x, )0 is the  formal  solut ion of the  formal  equat ion (3). 

W h e n  Q(x, )~) -  o, an analogous solut ion y(x, ~,) can be obta ined so t ha t  

(I7) holds with w~ replaced by w. 

Assume now tha t  R is defined by (I a) and  replace (2) by an asymptot ic  

re la t ionship  in the  ordinary sense. In  view of the  preceding the problem (I) 

will t hen  possess an infinity of solutions,  in general  dist inct ,  such t ha t  

(I 8) iy(x, ,~) ~i eQ(~' ~) g(X, ,~) 

(x in (c,d); Z in R; i =  1, 2 , . . . ;  w~ < w, < . . . ) .  

Each  of the  funct ions  

(18 a) ,~(x,  z) = ,y(x,  z) - ,~(o, z) (i = i ,  2 , . . . )  

will cons t i tu te  a solution. Since iz(c, ~)---- o (i'~- I, 2, . . . ) ,  these funct ions  are 

i ndependen t  of i and are seen to represent  a single solution,  say z(x,).). In  

view of (I8) and  (I8a)  we have, for x in (c,d) and for  ~ in R ,  

(I9) z(x,  ~) ~ e Q(x, z) $(x, ~) - -  e q(c, ~) g(c, X), 
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where the asymptotic  relat ion is  to infinitely many  terms. 

in (c, d), by (13) 

] e~(~,~'/-Q/~,~)[ =< I. 

For ~ in R and x 

I f  there exists a positive number , and a region R~, extending to infinity and 

forming part of R (R defined by (I a)), such that 

[eQ(C,~)--Q(~,~)l~O (c + e ~ x ~ d ;  ~ in /t~), 

then  (I9) is seen to imply 

(20) ~ s (x ,  (c + e G x G d ;  ~ in /~1). 

W h e n  R is specified as in (I b) uu analogous result  can be obtained. 

In  view of (5), (5), (io) and (I I) a solution y(x, ~), for which (17) had been 

stated, can be represented in the form 

X 

(2I)  y(x,~) = t(x,~) + ] [eQ(u,x)a(u,~)- t(1)(u,~)]du 

-~ t(7 , Z) + lee(" ,~)a(u,Z)du 

where 7 ~ c or 7 ~ d, as the case may be. 

Lemm& 2. Consider the equation (I) where a(x, ~) is a known function satis- 

fying (2). Suppose there exists a region R so that either (i a) 0r (i b) holds throughout 

the region. Let s(x, ~) be a formal solution of the formal equation (3). Define zI, 

as in w 3 and let (c, d) (a <= c < d <~ b) be a closed interval contained in J~. The 

equation (I) will then possess a solution y(x, s defined for x in (c, d) and for 

in R and satisfying for these values o f  the variables the asymptotic relation (I7) 

(with w l ~ - w - k H  + m - -  I, when Q ( x , ~ ) ~ o ,  and w l - ~ w ,  when Q(x ,~ )=o;  

of. 

I f  the asymptotic relationship (2) is in the ordinary sense and t~ 1 exists as 

defined in the italics preceding (20), then there exists a solution z(x, ~) satisfying 

in the ordinary sense the asymptotic relation (20). A similar statement can be made 

when R is defined by (I b). 
3--36122. Aeta mathematica. 67. Imprim6 lo 19 mars 1936. 
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(c) 

(~) 

5. I t e r a t i o n s .  W e  shall now consider a system 

Y(t)(x, 2) = I7(X, 2 ) B ( x ,  2) 

B(x, 2) = (b;,j (.% 2)) ~ (~,,~ (x, 2)) 
(x in (a, b); a < b; 2 in R ' ) . '  

(cf. (c) of w 2), 

In  the series 

(r, k positive integers) 

the coefficients are finite and differentiable for  x in (a, b); these series may be 

d ivergent  for  all 2. I t  will be assumed tha t  formally the  de te rminan t  ](fl;,j(x,2)) I 

is no t  identical ly zero. The formal  system associated with (C), 

(c,) 

possesses a matr ix  solution, whose elements are certain possibly d ivergent  series, 

(2) s ( ~ ,  2) = ( . ,~(~,  2)1 = (~(~', ~)~,,j (~, 21), 
c~ 

(2 a) ~,,~ (x, 21 = Y, o,,,:~(x)2-- ~. 
V~0 

Here  the Qi(x, 2) ( i =  I , . . . . n )  are of the form (3a;  w 2). 2 The coefficients of 

various powers of 2 in (2 a) and the Qi(x, 2) are finite and differentiable on (a, b). 

Fo rm a matr ix  

(3) r ( ~ ,  2) = (t,,j (x, 2)) = (~Q,c~, ~)~;,j (x, 2)), 

where the funct ions Ti, j(X, 2) a r e  obtained from the  a~,j(x, 2) by delet ing in the 

la t te r  series the powers of 2, 

($) 
(3 a) z -  (~ = o, ~ , . . . ) ,  

t being a suitable positive integer.  I f  we define .E(x, 2)----(ei, j(x, 2)) by the 

equat ion 

To start with, w is assumed suitably great. /~ contains at least a region R, to be de: 
fined below. 

Throughout, k is taken as the lowest common multiple of all the involved k i. The 
interval (a,b) is taken suitably small. 
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(C~) T(')(x, it) -~ T(x, i t )E(x,  it), 

it is observed that  the funct ions eid(x, it) are expressible as convergent  series in 
1 

powers of itk with coefficients defined for x on (a, b). These series are computed 

as elements of T-1(x, it) T(1)(x, it). In  each element ei, j(x, it) a certain initial  

number  gt of the involved coefficients is obviously independent  of t. These co- 

efficients are correspondingly the same as those obta ined by formally calculat ing 

the elements in the matr ix  S-l(x,  A) S(~)(x, it); tha t  is, in view of (Ca), they ~re 

correspondingly the same as the initial g~ coefficients of the  various powers Of 
1 

itk in the  series fl,.,/(x, it). The precise nature of the dependence of gt on t is 

immaterial  for our purposes. Of importance is the evident property l imgt ~ oo. 

Thus,  t can be chosen depending on w so that ,  in view of (I) and in view 

of the s tated facts,  it is possible to assert  tha t  

(4) B (x, it) - -  E (x, it) ~ H (x, it) y o (a' = a' (u,)) 

(x in (a, b); Z in n ' )  

where a'(w) can be made arbitrari ly great,  whenever  w can be made to approach 

infinity. Accordingly,  

(5) H(x, it) = (it ' h~.~. (~, it)), 

[ h~, j (z, it) [ ~ h(a') (i, j = I , . . .  n), 

where h(a') is independent  of x and it for  x in (a, b) and it in R.  

The t ransformat ion 

(6) r (~, it) = z (x, it) r (x, it), 

applied to (C), will result  in the  system 

(7) z(1)(x, it) = Z(x, it) C(x, it), 

z (~, it) = (z~,~(~, it)), 

C(x, i t )=  (ci, j (~, it)), 

where 

(7 a) 

On replacing 

(7 b) 

C(x, i t ) :  T(x,  it) B (x, i t ) r - ! ( x  I it) --  r(1)(x,  i t ) T - l ( x ,  it). 

T(i)(x, it) and B(x, it) with the aid of (C~) and (4) it follows tha t  

c(x ,  it) = T (x, z ) H( x ,  it) T-1 (x, it). 
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r - ~  (x, z) = (e-QJ<~', ~)~,,~(~, z)). 

Here  the funct ions u (x, 2) Z-e (e independent  of t; e ~ o) h~ve bounded absolute 

values for  x in (a, b) and 121 > 2o > o. By (3), (5) and (8) f rom (7 b) we then have 

t7 

(~,,~(~, z)) = (e%'r  ~h~ .(x, Z)), f , J  (9) 

(9 ~) I h ~ (x, Z)l < h~ (x in (a, b)" Z in /~'), i , j  ~ 

where a =  a(w) and ~ ( w ) - ~ ,  whenever  w can be indefinitely increased. 

and in the sequel Q~,fl(x, Z) = Q,(x, Z) - Q~(x, Z). 

Here 

W e  shall 

for all x in (a, b), ei ther 

o r  

suppose tha t  in the Z-plane there  exists a region R such that,  

Q?~(~, z) = ~ qi')(z,  z) =- 

(11 x Z) > , . .  

. .>9~0/~) '  2) ( I < ~ < n )  
�9 ' n  ~X~ ~ ~ _  

. . = ~ O ( ~ ) ( x , Z ) < ~ O I ~ l  ' Z)< <~of~)~x  Z). ~ ' ~  ~ v + l  ~x~  ~ ~ ' ' ~  "~n ~; 

I f  in ( I o ) a n d  (II), for  some values of the variables, > or < is replaced by = ,  

the results obtained below will continue to remain valid. 

Fi rs t  it will be assumed tha t  (Io) is the case. 

W i t h  x in (a,b),  let a = X o  < x , ~ x . z ~ ' ' '  < x m - l ~ x ~ - x .  Wri te  

v ~ =  x~--xk-- ,  ( k =  i , . . .  m) and choose the xi i f = o ,  t , . . .  m) so tha t  max. v k ~ o ,  

as m-~r162 Let  Y l , . . .  Y~ be some numbers  such that  

x~-~ -< yk --< x~ (k = ,, . . .  ~) .  

Consider the matr ix 

(I 2) Zm (x, 2 ) =  (~l,j: •,) = (~ "-~ vi C (Yl) 2)) (./~-~ v 2 C(~]2, 2)) ., �9 (~r~ Vm G (~]va, ~)) 

( I -~  (6r the ident i ty  matrix). 

By the classical theory of Product- integrMs the l imiting matr ix  

f a  

(I2 a) Z(x, 2) -~ lim Z,~(x, Z) -~- I (C(x, Z) dx + I)  
d 
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exists and constitutes a matrix solution of (7). I t  will be found possible to 
investigate the asymptotic properties of the elements in the f i r s t ,  rows of 
Z (x,)~). We have 

(I3) Zm(x ,~ ) - - I+  iv~.,C(~fk,,,~)+ ~Vk,vk.C(yk,,Z) C(yk.,i)+ "'" 
k~:l kl< k2 

+ ~ ~k,~.,...v~ c(y~,, z) c(~, ,  z)... c(uk,, z) + ... 
k~ < . �9 �9 <k s 

"~ ~21 "'" ~:vr C ( ~ l ,  Z ) ' ' "  C(~]m, Z) = I "~- ~ L8,  L8  = (~/,j:8). 
s=l  

On using (9) and on writing h;,j(x,Z) in place of h~j(x,Z), the l~,~:, ~re seen to 
be of the form 

i 1 1~ O" Cr 

kl< �9 " " <k8~, 

where 

i eWi, jhi, r,(yk,, ,~)hr,,r,(yk,, ,~)"" hrs_l,j(yk ,, )~)}, 

Wi,  j = Qi, r, (~k,, Z) -~- Qr,, r, (yk~, Z) -~- "'" -~- Qrs._2, rs__l (Yks__l, Z) 

+ Q.._~,j(w., z). 

Regrouping terms, 

(I4) W~,r + [Qj,,(x,Z) - Qj, dy,., z)] + [Q.._~,~(yk.,Z)- Qrs_Di(yks_ 1, ).)] 

@ [Qr.~,, (yk., Z) - -  Qr.,i (yk.., Z)] + [Qr,,i (yk,, Z) -- Qr,,r (yk,, ~)]. 

By (~o) 

(15) ~QJ'~(x,Z)~o (x in (a, b); g in R) 

for i = I , 2 , . . . ,  and j = I , . . . n .  A condition (15) is of the form ( Ib ;  w 4). 

Tiros, in view of (13 a; w 4), (I5) is seen to imply 

(16) ~[Q~,~(u,Z)- Qj,(y,Z)] ~o ( i =  I , . . . , ; j =  I , . . . n )  

for a~y~u~b and for ~l in R. Since in (14) k~<k~<...<ks it follows that 

a ~ y k , ~ y ~ . . ~ - . -  ~ y k  8 ~ x  (~b) .  
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Accordingly,  b y  

brackets  of the  

i = I, . . . .  and j = I, . . .  n, 

follows tha t  
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provided x is in (a, b) and ;~ is in R.  

(16), the real parts  of the functions contained in the square 

second member  of (14) are all equal or are less than zero for 

Whence  it 

(I 7) ~ W~,j < ~R Q,,j (x, it) 

( i = l , . . . ~ ;  j =  I , . . . n ;  x in (a,b); ~ in R). 

Thus, by (13), (I 3 a) and (I7) , it follows that ,  for i = I ,  . . .  T, 

(~8) I ~,,J:,~ - ~,,;I--< Y, I l,,~:.l--< l ~,,;(~,~ I �9 

�9 I '~, .  �9 �9 % I I z I ~ I h,, ~, (y~,, z ) . . .  %_~,.~ (v~,, Z) l .  
8 ~ 1  k l <  <:k  8 r l ,  . . .  r s _ _ l = l  

Take the subdivisions equal, 

0 ~ Vk~ ~ Vk2 ~ "'" ~ Vk s -  - -  
x - - a  b - - a  

m m 

Using (9a) from (18) we then obtain, for i_--<., for  x in (a,b) and for Z in R,  

o . .  } 

ftZ ~n 

= �88 Y~ ~ I z l -  
s = l  /1"I'<: �9 �9 �9 < k S  ~. 

= I ] e Q i ,  J ( x ' x ) ] [ - - I  + ( I  + hl~']-~) mira 
Now 

so tha~ 

and 

h - ~  h + ~ l Z l  * <  eVn-lzl k, 

f(m,Z)--(l + h lzF~)'~< ehlzC ~ 

ff 

- - I  + f ( m , Z ) < [ Z ]  k n f ( h ) ,  

(h = (b - -  a) n hr 
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where nf(h)  is independent  of m and )l, but  depends on a ( =  a(w)), 
of (I8a)  the la t ter  inequali ty implies tha t  

_ 2  
Zi, i : m =  dt, j + 4 ~eqi, i(x,~)Si,j:m (I9) 

where 

( I 9 a )  

( i - -  I ; . . .  ~; j = I , . . .  n; x in  (a, b); Z in B).  

For  the  l imiting functions z~,j(x, 4) we have, for  x in (a, b) and )~ in R ,  

(~o) 
o" 

Zi, j(X, 4) = (~i,j -J- ~ k eQi, j(x'2) ~i,j(X, ~), 

I3~, j(x, 4) 1 < f (h)  (i = I , . . .  z; j = I , . . .  ~). 

By (6), (20) and (3) we accordingly  have 

( 2 I )  

23 

In  view 

yr ~(x, z) = z:,.(x, z) tr.~.(x, z) = F, [,L.,. + :~,.(', ~). 
r = l  r : l  

U 
�9 z ~ ~,,  (~, z)] : ,  (', ~) ~. , /~,  z) = :,(. ,  ~) [~, Ax, z) + z -  z ~ , / ~ ,  z)] 

where 

(.,a) 41 l----I Z I < .f(hl . = .(w) 

( i =  i , . . . ~ ;  j =  I , . . . n ;  x in (a, b); 4 in R). ~ 

On taking,  as is possible, a = a ( w ) <  t (=-t(w)) relat ions (2I) are seen to imply 

that ,  for i < v and j - -  I . . . .  n, 

y,:,i(x,i~)ysr 4 ) (x in (a, b); 4 in R;  a---- a(w)). (22)  

In  the case when there exists a region R,  for which (~I) holds, we obtain 

an analogous result, the corresponding Product- integrals  being taken along the 

path extending from b to x. 

The fo l lowing Lemma can be now stated. 

' l ar, j(x, Z) I < ~1 @ in (a, b); Z in R). 
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Lemma 3. Suppose a system (C), (1) is given. Let S(x, k) be a correspo,ding 

formal matrix solution (2). Let  T(x ,  k) = (t~,j(x, k)) be the matrix formed by deleti,g 

in S (x, ,~) the powers (3 a) (t = t(w) a suitably great integer). Define C(x,/~) by (7 a). 

Case I. There exists a region R so that (Io) holds. In  this case determine 

the matrix Z (x ,  k ) =  (z~,j(x, k)) by the Product-integral 

z) = f Z)dx + ,) 
a 

Case II .  There exists a region 13 such that (Io) holds. 

define a matrix Z (x, k) by 
T, 

z)=f(c(x, Zld  + 1) 
b 

In  this case we 

The matrix Y (x ,  k) = Z (x ,  k) T(x,  k) will satisf~ the system (C). I f  there 

exists a region R such that (Io) or (I~) holds, we have 

(2s) :Y (x, k) = .w Y (x, k ) ~ ) S  (x, k) (x in (a, b); k in R) 

in the first ~ rows. Here a(w) --) ~ , whenever it  is possible to increase w indefinitely. 

As the elements  in Y(x,k)  depend  on w, the  above L e m m a  does no t  ne- 

cessarily imply t ha t  if the  asymptot ic  re la t ions (I) are in the ordinary sense 

those  in (23) would  also be in the ordinary sense. 

6. T h e  F u n d a m e n t a l  Ex i s t ence  T h e o r e m .  Consider  the equat ion  (A; w 2). 

Suppose t h a t  the  asymptot ic  relat ions (I; w 2) are valid in the ordinary sense 

for x in (a, b) and  for k in a region R' coincident  with  or con ta in ing  the  region 

R,  defined below. The  interval  (a, b) will be assumed such t ha t  the formal  equa- 

t ion (A*; w 2) has a full  set of formal  solut ions 

(I) s ,(x,  ~) = eQ~( ~, ~) o,(x,  k) 

( i =  ~, . , .n;  cf. (3a; w 2), (3b; w 2)) 

of the  charac ter  specified in w 2. 
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Consider all possible differences Qi, j(x, )~) ~ Qi(x, )~) ~ Qj(x, )~) which are such 

that in the polynomials 
k H--a 

(~) Ql~(x, z) = ~q l :  1).~:o (x)Z ~ (m = m~,~) 
a=m 

t h e  leading coefficients q~}:~(x)~-qa)i, m/~'] [ '~ - -  ~tj,~(1)m ( x )  a r e  n o t  identically z e r o .  

that there exists a closed interval (c, d) so that for all functions (z) 

(2 a) I q~}:~(x) l ~ ~ > o (x in (c, d)). 

Assume 

I t  will be assumed tha t  in the  Lplane  there exists a region R (extending 

to infinity) such that,  for  all ~ in R and for  all x in (c, d), we have ei ther  one 

of the fol lowing two cases. 

Case I. 

0 (11 x, Z) > !}t (3) ,~ Q~I)(x, ),) . . . . .  ~ _v~ ( .  Q(~I)+ 1 (x , ) . )  . . . .  ~ 0 (1) (x ,  ~) 

> ~  t~(1).lg~.~_t_ I,(X,Z~! = . .  .:~Q(1)(x,)~).>...>~Q(~_l+l(x,)~)~ . . . . .  ~ Q~(,(1) X ~,) 

(I ~ TI < T2 < ' ' "  < T,--I  < T,. : n ) .  

Case II .  Inequalities (3) with > replaced by < .  In connect ion with t h e s e  

inequalit ies a remark is made similar to tha t  fol lowing (I I; w 5), 

Case I will be discussed first. 

By Lemma 3 (w 5) the system (B; w 2), associated with the equat ion (A), 

has ~ solutions, 

(4) ,yV-1)(x, Z) (i = f , . . .  T~; j = 1 . . . .  n) 

such tha t  

(4 a) ly~-l)(x, z) u,~, s~ j-1)(x, 4) 

(i---- I , . . .  ~ ;  j =  i , . . .  n; x in (c, d); ~ in B). 1 

The elements lyi(x, 4) ( i -~ I , . . .  T1) will form a linearly independent  set of T1 

solutions of (A).  The number  w 1 in (4a) and the numbers  in the sequel can be 

made arbitrari ly great  by suitable choice of the matr ix T(x, ~), used in L e m m a  3. 

1 L e m m a  5 con t inues  to  hold  when  the  power  series factors,  i nvo lved  in t he  formal  solu- 
t ions ,  are a l lowed to con ta in  a f inite n u m b e r  of pos i t ive  powers  of )Yk. To s t a r t  wi th ,  wl wi l l  
be supposed  to be suff ic ient ly  great .  

4--36122. Acta mathematica. 67. Imprim6 lo 19 mars 1936. 
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We form the equation 

(5) L~,(x, Z; ,y) - 

l y l  ~ t - 1 )  (X, Z), . . . ,  lYl (X, Z) 

o,~,-~)/z Z), (x, Z) 
l y e ,  k' , �9 �9 " ,  l Y ~  

k=o 

I11 
~ O  

l y  ('t'l) (X, J~), l y  ('Q-l) (X, Z), . . ,  lY (X, ~*) 

]y~Vt)(X, Z), ly~ "c ' - I ) (x ,  Z), . . . ,  l y l ( X ,  Z) 

l.Sr-g 1 k , ] ~ . . . , 

(,~o(~, z) - ,). 

By replacing in (5) the lye(x, Z) ( i =  I , . . .  ~) by the series s~(x, Z)and  the various 

derivatives of the ~y~(x, ~) by the corresponding derivatives of the s~(x ,Z)we  
obtain a formal equation 

"gt 

(6) L~*, (x,  Z; lY) ~ Z l~"Q-k( x, Z)ly (k) ~ -  0 (I~0(X, Z) ---- I ) .  
k=0 

The coefficients here are a-series, in general divergent. In view of (4a), there 

exists a number v I ~ vl(wl) < w 1 so that 

(6 a) , ~ , - , ( x ,  z ) ~  ~,~,- ,(x,  z) (k - o , . . .  ,~) 

for x in (c,d) and Z in R. The set of functions (4; J ~  I) being linearly in- 

dependent, every solution of (5) is a linear combination, with coefficients in- 

dependent of x,  of these functions; accordingly, every solution of (5) is a solu- 

tion of  (A; w :). H e n c e  there  e . i s t~  an analytiC f a c t o r i = t i o n  of  (A), 

(7) L =- L~(x, Z; ~v) - -  L,_~,  L ,  (~, Z; ,V) = o, 
'/},--~'! 

(7 a) L~-~,(x, Z; lz) - -  ~-a lb~-~,-~(x, Z)lz(k)(x, Z) 
k-0  

(/,o(Z, z) --- ,). 

Since the determinant ](s~J-')(x, g))] ( i , j  = I , . . . , 1 )  formally is not identi- 

cally zero, by a reasoning analogous to that just employed a formal factoriza- 

tion of L,~ = o is found, 

* L *  * 

k=O 
(,~0(x, z) - i).  
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Here  the coefficients are a-series.: By (8) and in view of the fac~ tha t  formally 

L*(&,+i(x, ;~)) = o (i = I , . . .  n - -  TI) , 

it follows that  the equation 

(9) L* (x, i~; iz)=o ?I--T 1 

has a full se~ of formal  solutions 

(9 a) I~,Qq-i(X, ~) r 8 )') = L~,( ~,+i(x, 4)) = e%+~(~, : ~ , + ~ ( x ,  l)  

(i = I . . . .  n - ~:) 
1 

where the :!p,~+~(x,~) are a-series with, possibly, a few positive powers of ~k 

present. 

Also, in view of the involved asymptot ic  properties,  

( :o)  :b~ (~, i )  ;; ,~, (x, i )  

(i = o . . . .  n - -  , , ;  x in (c, d); g in R). 

Here  r : - ~  rl(wl) and lim ri(wi)----cr Accordingly,  it is observed tha t  the equa- 

tion L~-~, (x, g; i z) = o is of the type to which Lemma 3 can be applied. This 

can be effected by associating with this equation a system of order n -  , :  and 

of the type  of (B; w 2). On taking account  of (9a) and of (3) i t  is noted tha t  

Lemma 3 enables determinat ion of the  asymptot ic  propert ies  of those solutions 

which correspond t o  the series (9 a) for  i = I , . . .  ~ - -  ~:. W e  have , ~ - - , :  dist inct  

solutions of L~-,~(iz ) = o, xZ,,+~(x, ~) ( i =  I , . . .  *~-- , : ) ,  such tha t  

(:i) z(J-:)tx ~)~ ~:~-a)(x ~ 1 ,~2-bi ~ , ] q l l  ~z + i  t ~ / 

( i =  : , . . . ~ - - ~ : ; j = I , . . .  n--$~) 

for x in (c,d) and ~ in R.  Here  ql can be made arbi trar i ly g rea t  by suitable 

choice of T(x, ~) in each of the previously involved applications of Lemma 3. 

The same refers to the qi involved in the subsequent  asymptot ic  relations. On 

taking account  of (7) it is observed tha t  besides the vl solutions :yi(x, ~) (i-= : , . . .  ~:), 
previously obtained, the equat ion (A) has %- -~ :  o ther  solutions, 

t T h e  lfln--,l~k(x) a r e  i n  i n t e g r a l  p o w e r s  of  a r a t i o n a l  p o w e r  of ~,; t h e  l a t t e r  p o w e r  m a y  

b e  d i s t i n c t  f r o m  t h a t  i n v o h ,  e d  i n  t h e  c o e f f i c i e n t  o f  Ln*. A s i m i l a r  r e m a r k  h o l d s  f o r  s u b s e q u e n t  

f a e t o r i z a t i o n s .  
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each satisfying the non-homogeneous equation 

( I~)  i~t(2y ) : i~*v,+i(x, Z) 

This fact is a consequence of the factorization (7). 

Now, by (8), (7) of w 2, a solution of (13) is given by 

"gl 

Z) = Z lYr(X, Z ) I  iZ*t+i(X' Z)lyv~,r(X, Z)dX, 04) 2Y~l+i(x~ 
r:l  , ]  

where 

(i-- I , . . .  ~ - - ,1 ) ,  

(I < i <  ~--,1). 

(' 4 a) (lY*', j(x, )L)) = (,y~j-1)(x, Z))--I (i, j = I , . . .  3,). 

On formally computing the elements gi, j(x, ~), defined by the relation 

(I4 b) (gi, j (x,  Z)) = (s~J-1)(x, Z)) -1 ( i , j  : ] , . . .  ~1), 

(I4a) and (4) are seen to imply 

(i 5) (,:0,,j(x, z)) ~ (~ , , / x ,  z)) = (~-'~J(~, '~oi,/~,  z)) 

(i, j----- i , . . .  ~ ;  x in (c, d); ~ in R), 

where ax, j(x, ~) are series of the same description as the l~,+i(x, ~) in (9a) and 

q' can be made as great as desired by suitable previous applications of Lemma 3. 

By (I5), (tl) and (9a) the integrand displayed in (I4) satisfies the relation 

(I6) ~z~,+,(z,Z),~,, ,(x,Z)q~ie%+,,~(~,z)~9~,+i(x,Z)a~,, ,(x,Z)=e'~(~'~)~P(x,Z) 

(/ = I, . . .  3 2 - 3 1 ;  ] ' - - -  I , . . .  T 1; X in  (C, d);  Z i n  R). 

By (3) 

0(1) (x, ~) < o (x in (c, d); ~ in B); 

moreover, by definition of the interval (c, d), the derivative of the highest  power 

of ,~ in Q~,+i,r(X,)~) is distinct from zero throughout  (c, d). Thus, on one hand, 

application of Lemma I is possible in order to find a formal solution of the 

formal equation 

( i e  a) vr z) = e ~(x, ~)~v(x, Z) 
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(the coefficients of the solution are here defined on (c, d)). On the other hand, 

on the basis of the stated fact and in view of the inequality satisfied by 

{RO (1) (x, it) (cf. I b; ~ 4), by Lemma 2 (w 4) it follows that  the integrals dis- 

played in (I4) can be so evaluated that, to a number of terms, 

( I6  b) f ,~ eQv,+i,r(X, 2) ~i, r(X, it) (x in (c, d); Z in R). 

The formal series in  the last member of (I6b) is a solution of (I6a). 

( 4 g ; J = I ) ,  (x6b) and (14) we have 

(I 7) 2V~,+~(x, it) ,% e%+i (< a)~a~,+~(x, it) = 2s~,+i(x, it) 

(i = ~ . . . .  ~ , , -  ~1; x iu (~, d); it i~  n ) .  

Analogous ~o the manner in which (5)had been established we now construct 

which is satisfied by the % solutions 

(I 8 g) ,,yi (X, Z) = lYi (g, it) 

(IS b) ,y~,+~(x, Z) 

( i =  I , . . . '~1) ,  

(i = I , . . .  n - -  ~1)" 

In view of (I4) the functions (i8a), (i8b) are seen to satisfy all the needed dif- 

ferentiability conditions. Analogous to (6) we now have a formal equation 

('9) L~* (x, it; ~y) ~ ~, ~a~.~-k (x, Z)~y(k) = o 
k = 0  

which is satisfied by ,~ distinct formal solutions 

(19 a) esi(x, it) --~ lsi(x, it) (i = I , . . .  %), 

~,~,+, (x, z) (i = ~ . . . .  n -  ,1) .  

Moreover, for x in (c, d) and for it in R, 

(20) ~a,(x, z) ~ ~., (x, it) (i = ~ , . . .  ~0 .  

By 

the equation 

( , s )  L~. (~v) --- ~ ~a~,__~(x, Z)~y(kl = o,  
k=0 
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Equa t ion  (A) will be analytical ly factorable as follows 

(2I) L~ (x,)~; ~y) ~- L, , -~ L~ (x,)~; ~y) = o,  

(2I a) Ln-, , (x ,  Z; ,z) -~ ~ ,b,,-,.~-,(x, s Z) 
k = 0  

(~b0(~, ~) --- ~). 

A formal  factorizat ion,  s imilar  t o  (8), (8 a), will also take place, 

�9 L *  ~ *  [ L* (x, ~, ~y) - -  n -~  z ~  ix, ~; ~Y) ---- o,  (22) 

n - - ~  2 

(~2 a) L~_~,(x, X; ~1 =-- ~ ~-~,_~(x, ;~1 ~(~)(x, ;~1 
k = 0  

Moreover,  

( i =  I , . . .  n - - ~ ;  x in (c, d); )~ in B).  

(23) 

(24) 

(~o(~, ~) -= ~). 

The equat ion  L*n-~, (x, ~; ~z)----o will possess n -  z~, dis t inct  formal  solut ions 

~,+,(x,  ;~) = L*~(s~.~+,(x, ;~)) = e%+,( ~, ~�9 Z) 

(i = I , . . .  ~ -  n), 

has a solut ion 

r ~ l  

where 

for  x in (c,d) and  )t in R .  An equat ion  

(26) L~ (BY) = ~zz.~+, (x,).) 

where the  2~0~.+~(x, ;l) are a-series�9 

On mak ing  use of (3) and  applying L e m m a  (3) to the  system (B; w 2), 
associated with the equat ion  Ln-~(x,  ~; ~z)----o, the  la t te r  equat ion  is seen to 

possess ~s--~2 solutions,  ~z~2+~(x, ~ ) ( i =  I, . . . ~ 3 - - ~ ) ,  sat isfying relat ions 

~ /J 11 (x, X) (25) ~z(~7~) (x, z) q2 ~.~7,  

( i =  I , . . . ~ - - n ; j =  I , . . .  n - n )  
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~z~.~+i (x, Z)~)~., r(X, 4) ~% e%+~,r ('~, ~) ~+~'(x ,  4) 

( i =  I , . . .  ~a--~2; r =  i , . . .  v2; x in (c, d); s in R). 

31 

Here the 2~+~(x, ~) are a-series. 

With  the inequality 

is seen to be 

Lemma we get 

(27) 

~Q(1) ~(x,)~) < o (x in (c,d); Z in R) in view, Lemma 2 "r247 
applicable. In  (26a) evaluating the integrals according to this 

~y~.+~ (x, Z) 7,,~ e%+~(~' ~) ~ + ~  (x, Z) = ~s~+~ (x, ~) 

( i =  i , . . .  ~ - - % ;  x in (c, d); 2 in /~). 

Thus we have. obtained the asymptotic form of % solutions of (A), lyi(x, ,~) 

( i =  i, ...~1), ~y~,+~(~,z) ( i =  ~ , . . . n - ~ ) ,  ~y~§ ~) ( i =  i~ . . . n - ~ ) .  All  of 
these could be denoted by 3Y*' (x,),) (i = I . . . .  z3). 

Beginning with Iterations (Lemma 3) we follow in succession by v -  I triple 

operations, each consisting of  (I ~ a Factorization, (2 ~ Iterations and (3 ~ Integra- 

tions (according to Lemma 2). We thus obtain a full set of solutions, yi(x,~) 

(i-~ I , . . .  n), satisfying (A) and such that for x in (c, d) and ~ in R 

(28) y~ (x, z) = ~y~ (x, ~) ~ e~( '~, ~)~a,: (x, z) = .  (x, z) (i = i , . . .  n). 

Moreover, 

(z8 a) y~J-1)(x, 4) .~ s~)-l)(x, Z) (j = 2 , . . .  n). 

Such solutions can be constructed so that w has as great a value as desired. 

However, these solutions may depend on w and thus we axe not in the position 

to assert the asymptotic relations (28), (28 a) in the ordinary sense (cf. ~ I). 

Precisely similar conclusions are reached when the region is specified as 

in Case II. 

Analogous results hold for  a system (C) (w 2). 

We shall now obtain solutions possessing asymptotic properties in the 

ordinary sense. According to the preceding developments the equation (A) has 

an infinity of fundamental sets of solutions, 

ry, (X, Z), ~y~ (X, Z), . . . ,  ~yn (X, Z) (r  ~ I ,  2, . . . )  

such that, on writing 
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(29) 

we have 

(29 a) 

where 

(30) 

That  is, 

(3~) 

(3I a) 

(31 b) 

(3I e) 

W. J. Trjitzinsky. 

r Y ( X ,  Z) --~ (ry~ j - l )  (x, Z)) = (ryi, j (x, Z)) ( i , j =  I, .. . n) ,  

rY(37, Z) qr S (x ,  Z), r]T--I(x,  Z) : (ryi, j (X,  Z)) ~ S - l ( x ,  Z) 

( r =  I, 2 , . . . ;  a 1 < a~ < . . . ;  x in  (e, d); Z in B)  

s (x, z) = (eQi( ~, ~') a,,~ (~, z)), s -~ (x, z) = (~-Q/~, ~)~,,j (x, z)) 

(a~,j(x, z), ~ , j (x ,  ~) a-series; i , j  : I, . . .  n; I S ( x ,  Z)l # o, formally). 

~r----I �9 ] ~y;,~(x, z) = e  ~;r i ,~: ,(x)Z- k + a~.j(x, z) z-o~/k , 

dr--1 v 

Io~'~(x, z)l ,  I~:'J(x, z)l < a~ ( ,-= ,, ~ , .  ; ~ in (c, d); X in R). 

Each of the infinitude of matrices 

rz (x ,  z) - -  (~z,,~(x, z)) = rY-~  (~,, z )~y(~ ,  z) ( , .=  i, 2 , . . . )  

constitutes a matrix solution of the system (B; w 2), associated with (A) [the 

,zi, x(x,~.) ( i =  I , . . .  n) will form a set of solutions of (A)]. Since 

(32) r Z ( e ,  ;t) = I (r = I, 2 . . . .  ) 

it follows that  the matrices , Z ( x , Z )  are all identical and represent the same 

matrix, say, Z ( x , Z ) .  Thus 

(33) Z(x,  z) = r r - l ( c ,  z ) r r ( x ,  z) ( , .=  i, 2 , . . )  

and Z ( x , X )  is independent  of r. By (33) and by (3I), (31 a), 

(34) 

n 
z,.j (x, z) = Y, equip, ~/-Q~r ~/~i.~:~ (x, z), 
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at---1 a t - -1  __ [~ '+ 0~ 

(34a) ~,,j:s(x,i)= ~.~ ~.~ #,:,,:, ,(c)a~,. i :~(x)Z ~'~: " 
a ,=--m a- ---.m 

+ x), 

where, in view of (31 b), 

lo,.+ ,,,~ 

(x in (c,d); Z in R; r =  ~ , e , . . . ;  i , j , s =  ~,...n). 

33 

Here  br 

t ionship 

(34b) 

is independent  of x and 4. Whence  (34a) is seen to imply the rela- 

ar 

, r = - - m  f f = - - ~ l  

(x in (b, d); ~ in R). 

In  the first and in the last  member,  above, r does not  enter;  moreover,  a,. can 

be indefinitely increased. Accordingly, 

(3s) * X ~.j:8(x, 4) ~ ]/,j:8( , Z) (x in (c, d); ~ in R). 

In the sense that the elements of  Z(x, 4) are of  the form (34), while the asym- 

ptotic relations (35) hold for the involved functions, we may write 

(36) 

(x in (e, d); ~ in R). 

W h e n  x = c the formal  matr ix  in the second member  of (3 b) reduces to I and 

the  symbol ~ i s  replaced by = .  A similar result is obtained for the solution 

Z (x, X) =~ r -1 (d, ~), r ( x ,  Z) (r = ~, 2 , . . . ) .  

W h e n  / t  is specified as in Case I we have inequalities, valid for ;~ i n  R,  
5 - - 3 6 1 2 2 .  Acta mathematlca. 67. I m p r i m 6  ]e 20 m a r s  ]936.  



34 

(H1) 

W. J. Trjitzinsky. 

f tu 4)du < o ~ [Qs, l(X, ,~) - Qs, I(e, ),)] = ~h~s,l~"~(') , 
o 

(c<x<=d; s>=~ ~- i), 

,~ [q,,n(X, 4) - Qs, n(d, Z)]-- f ~ Q~',),, (u,)~)du < o 
a 2  

d 

(C ~ X < d ;  8 <_~ T,,--1). 

On the other  hand,  in the  Case I I  

(H~) ~ [ Q,,n(X, Z) - Q,,~ (e, z ) ]  = j:.~ Qi'A (u, 4) du < o 
r 

(c < x <= d; ,+ <= ~,_~), 

.~ [Q,.~(x, z ) -  e,,,(d, Z)] = 

x, 

f ~ Qi',', (+~,, z) du < o 
(l 

( c<=x<d;  s > ~  + i). 

There may exist a subregion R o of R,  which extends to infinity and throughout 

which one of the following four sets of inequalities holds, for all positive a and for 

some .fixed positive ~, 

(GI) ]eQs, l(X'~)--Qs, 1(c'2)] < I~]-ah((~) 

(O,) I e~,,,,(',~)-~,,-<~,~> I < IZl-"h(~) 

(Gs) ] e%.(x,~)-Q~,. (~,~) ] < ] Z ]-~ 

Here  h(a) is 

correspond to 

aries have at 

On the  other  

existence of a region R o is assured. 

Consider  the  solut ion Z(x ,  iL/, 

( s > ~ , + 1 ;  c + e < x < d ) ,  

(s =< ~,_1; c<=x<__d--,), 

(s_< ~,,_i; e+~<__x<__d), 

(s>~ + I; c<=x<d-~). 

defined and finite for every finite a ( >  o). The inequali t ies  (Gt) 

the eases (Hi) (i = I , . . .  4), respectively. When R o exists its bound- 

infinity the limiting directions of the corresponding boundaries of R.  

hand,  when the limiting directions of the boundaries of l~ are distinct 

sat isfying (36), The  propert ies  of Z(x, 4) 
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may be investigated fu r ther  if, as will be  supposed to be the case, a region R o 

satisfying (G1) exists. We  write 

(37) zi, j (x, Z) = eq, (x, ~.)- Q, (~, ~) ~i, j (x, Z), 

(37 a) ]~,j(x, Z) = ~2~',~ (x,).) + ri,~(x, )~), 

(~7 b) ~,~ (x, Z) : Y, ~,,~:~(x, z), 
s = l  

(37 c) ri,~(x; Z) == ~ eQ~ ,(~,,z - ~  ~(c,Z) ~,,j:s(x, )~). 

By (35) and (37b) 

(38) 

Since, by (35), 

( i , j  : , , . . .  n; x in (c, d); Z in R). 

l~,~(x, z)l < 31zl ~ 
( i , j =  I , . . .  n; x in (c, d); Z in /t) 

on taking account  of (G1) f rom (37 c) we obtain 

(38 a) r;,~ (x, z) ~ o 

( i , j =  I . . . .  n; e + a ~ x ~ d ;  Z in Ro). 

* X in view of (38), (38a) and (37 a) we have (~i,j(x,Z))~(8i, j ( , Z ) ) .  Thus, 

cordingly, we shall write 

(39) z (x,  ~) ~ (e ~, (":, ~ ) -  o, (~., ~.) ~ j (x ,  Z)) 

(c+e-<lx_--<d;)~ in Ro). 

Ae- 

The solution Yl(x ,  ~ ) =  (cii, j e ~'(c'~)) Z(x,;r will have the property 

Y l ( x ,  Z) ~ (e ~'(~'~) ~i,~* (x, Z)) (c + ~ = < x =< d; Z in 2%). (40) 

W h e n  /~ exists as defined in Case I and //o is specified by (O~) a matr ix  solu- 

tion Y~(x, )~) may be constructed so tha t  

(40 a) :Y~(x, ~) ~ (e% (x, hi ~, j (x, ~)) (c ~ x ~ d - -  ~; ~ in ]~o). 
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When // is characterised as in Case II, solutions Ys(x, ~), Ya(x, )~) exis~ such 
that, depending on whether /~o is specified by (Gs) or by (Ga), we have either 

(4ob) Ys(x,)~)~(e%(Z,~)]~,:(x,)~)) ( c + e ~ x ~ d ; ) ~  in Ro) 

o r  

(4oc)  y~(x,~)-(eQ,(~,~)~,:tj(x,~))  (c<x<=d--~; ~ in R0). 

* X In (4o), (4o a), (4o b), (4o c) the formal series ~, j ( , ~) arc z-series. The construc- 
tion of Y~(x, 4), Y~(x, ~), Y~(x, 4) is along lines similar to those employed in the 
construction of Y,(x, ~). 

Precisely analogous results will hold for a system (C) (w 2). 
The results obtained above will be summed in the following Theorem, 

stated as relating to a differential system (C) (w 2). 

Fundamental Existence Theorem. Let (c, d) (c < d) be an interval as speci- 

fied in the italics in connection with (2) and (2 a). Assume that there exists a region 

R ,  as specified in Case I or in Case l I  (above). The following can be stated con- 

cerning solutions of the system (C) (w 2), whose coefficients satisfy the stated asym- 

ptotic relations in the ordinary sense (that is, to infinitely many terms)for x in (c, d) 

and for ~ in R (at least). 

I. There exists an infinity of  matrix solutions ,Y ( x ,  ~) (r---- I, 2, . . .) such that 

(4,)  ~ Y (x, ~) ~ S (x, ~t) = (e~(~, ~) ~, ~ (x, ~)) 
( i , j = = I , . . . n ;  c ~ x ~ d ;  X in R; r = I , 2 , . . . ) .  

Here al < a~ < . . . .  (lima,. = ~).  The asymptotic relations (4I) are uniform in x. 

S(x, ~) is a formal matrix solution of the formal d(fferential system corresponding 

to (C). ~'ormally I S (x, 4) I ~ o. 
II. The matrix solution Z ( x , ~ ) - ~ Y - l ( c , ~ ) ~ Y ( x , ) ~ )  is independent of r 

(r=- I, 2 , . . . )  and it satisfies the asymptotic relation (35) in the ordinary sense for 

x in (c,d) and for ~ in R .  The matrix solution ~Y- l (d ,~)rY(X,~)  will bealsoin- 

dependent of r (r-= I, z, . . .) and it  will have properties analogous to those of  Z(x, ~). 

III.  I f  there exists a subregion R o of R ,  as defined in the italics in connec- 

tion with (G~), (G2), (Gs) and (G4), we shall have at least one matrix solution which 

is of  the form of one of  the following matrices 

I71(x, ~), r~(x, ~), y~(x, ~), y~(x, ~). 
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Accordingly, this solution satisfies in the ordinary and uniform sense one of the 

asymTtotic relationshilas (4o), (40 a), (40 b), (40 c). 

Note.  The determinant  of a formal matr ix occurring in (40), (40 a), (4ob), 

(4oe) ma~y formally be equal to zero even though  the de terminant  of the  cor- 

responding actual  matr ix  solut ion will be, of course, dist inct  f rom zero. I t  is 

also tO be noted that  inasmush as the coefficients of the system (or single equa- 

tion of order n) are analytic in ;~ (it # r the same will be t rue of the solutions 

(when the initial condit ions are analytic). 

7. Non-homogeneous  Equa t ions .  In the theorem of w 6 the elements in 

the first row of any part icular  matr ix  solution will const i tu te  a f u n d a m e n t a l  

set of solutions of the differential  equation (A) (w 2), provided the theorem is 

applied to the  system (B) (w 2), associated with (A). Consider  now the non- 

homogeneous  equat ion 

(i) L(x, ~; y(x, ~)) -~ a(x, ~) 

where L is the differential operator involved in the left member of (A) and 

d o  qe 

(~ a) a(x, z) - ~ . , ( x ) ~ - ~  = %(x, z), 

the asymptotic relations being valid, in the ordinary sense, for ~ in B and for x 
in (c, d) (c < d). The region R will be specified, say, as in Case I (w 6) and it  

will be assumed to exist. I f  yl(x,~), y~(x,g), . . . ,  y,,(x,g) denote a f u l l  set of 

solutions of the equat ion Z-----o such that ,  on wri t ing 

(2) r ( . ,  z) = (v~J-,)(x, z)), Y- , (~ ,  z) = (#~,s(*, x)) 

we have 

(2 a) r (x, x) ~ s (x, ~), y - 1  (x, x) ~ s - l ( . ,  ~), 

where the asymptot ic  relations are valid in a certain sense 1 for x in (c, d) and 

for  )L in / / ,  then a solution of (I) can be given in the form 

1 Necessarily, in the problem now at hand, we have to deal with solutions of the homo- 
geneous problem for wbich [S(x,~t) l does not formally vanish~ 
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(3) y(x, Z) = F, y,(x, Z) j a(u, ~) ~ ,  ~(u, Z)du. 
r = l  

I f  the involved integrals are evaluated with the aid of Lemma 2, the asym- 

ptotic properties of the solution y(x, ~) can be investigated. 

We shall be looking for ~ solution whose asymptotic properties are in the 

ordinary sense. Assume that in R not only inequalities of Case I (w 6) hold but 
that also 

(4) 

I t  follows than  that  

(5) leQ'(~'~)-Q'(~'~)I < , ,  

o > ~r Qi')(x, z) ( c ~ x ~ d ;  Z in R). 

I eQvt+l' l(x' X)--Qv~+l, 1 (c, l) I ~ I ,  

l eqn'*,--l(X'~)--qn'v~--l(C'Z) I ~ I 

( c + ~ < = x ~ d ;  ~ in R; e > o ) .  

Suppose there exists an infinite subregion R1 of B such that 

(Sa) I eQ'(~'~)--Q'(c'~)I-o, I e~,+','(~'~)--Q~,+l,'(c'~) I ~ o,  

I eQn' ~ , - I  (x, ~) --Qn, ~,--I (c, a) I "" 0 

(c+ e ~ x ~ d ;  Z in R,). 

Consider a matrix solution of the homogeneous problem, 

(6) Y(~ ,  z )  - -  (y/-~)(~,  c, z)) = , . ~ - ' ( c ,  z ) ~ r ( ~ ,  z) (,- = ,,  2 . . . .  ) ,  

as given by (31 c; w 6). Since 

~(---I(x, ~) = (yi, j (X, e, ~)) = r y - - l ( x ,  ~)r Y(C, ~) 

it is observed at once that  

(j--l) (C~ X, (6 a) (~),., j (x, c, Z)) -~ Yt . Z)); 

that  is, the elements of Y-l(x,  Z) are obtained from those of Y(x, Z) by inter- 

changing x and c. In  view of (36; w 6), we accordingly have 

n 
(7) r(x, z)- ( Z  e, Z))= S(x, Z), 

' 8 ~ 1  
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(x in (e, d); )~ in R;  ~*,j:.~(x, e, Z), ~*j:8(e, x, )~) a-series). 

By (3), (7 a) and by L e m m a  2 i~ follows tha t  t h e  in tegral  displayed in (3) can 

be evaluated so t ha t  

(s) a(u, Z) ,o~,,.(u, z) ~ F ,  ~%(~, ~-)-Qo(~, ~)~~ ~: ~(~, x, z) 

( r =  I , . . .  n; c + e _---< x ~ d; Z in' R1; W,~:o(c, x, Z) a-series). 

Now, (8), (7) and (3) will imply that 

n 91 

(9) y(x, Z)~ ~_~ ~ e%,o~s,~(x, Z) 
s = l  a = l  

Here  

(9a) ~,,  o = q., ~(x, z) - Q.~..(c, z) 

and ~#, z(x, Z) i s  a a-series defined by 

(e+e<=x<--_d; i in R~). 

(9 b) w, ~(x, z) = ~ ~*, 1 :.(x, c, i )  v,,,,.:.(c, x,  z). 
r---1 

In  view of  (5 a) i t  is concluded t h a t  

. y (X,  i )  ~ eQ1, n (x, l ) - - q l ,  n (c, l ) ~ ( X ,  i) (Io) 

where ~7(x, ~), 

(Ioa) 

(e+ ~<=x<=d; ~ in _R1) 

is a a-series. This  is a consequence of the  fact  that ,  in view of (5a) and  in 

view of the inequali t ies of Case I (8 6), we have 

T h e o r e m  I. Consider the non-homogeneous equation (I). Assume that there 
exists a region R, as specified in the italics 2receding (4), and assume that there 



40 W . J .  Trjitzinsky. 

exists a subregion R~ of  R so that (5 a) holds. The equation (I) will then posses.s 

a solution y(xiE) satisfying to infinitely many terms the asymptotic relation (Io) 

(where e > o). 

An analogous theorem can be stated when R is defined as in Case I I  (w 6). 

8. Integro-different ia l  Equations.  We shall now apply the Fundamental  

Existence Theorem for the solution of the integro-differential equation 

(I) L(z,~;y(x,~))=a(x,~) -~- f b(u,x,~)y(.,~)du( --~ V(x,X;y)). 

Here a(x, Z) ~ o and L is the d~#~erential operator of  the left member of(A)  (w 2) and 

(I a) a(,T., ~) ~ Z (~.(x) ~ - ~  = ~0( x, ~), 

(1 b) b(u, x, ~) ~ ~,  fl,(u, x)Z -~" = fl(u, x, ~). 

The asymptotic relations are assumed valid for  ~ in R (a region specified, say, as 

in Case I (w 6)) a,~d for x and u in the interval (c, d). The latter interval will 

be assumed to be the one for which, according to the Fundamenta l  Existence 

Theorem, the asymptotic properties of solutions of (A) are stated. Moreover, it 

will be assumed that  the asymptotic relations (I a) and (I b) are uniform in u 

and x (c =< u, x =< d).l 

Equation (A) will possess a set of solutions yi(x, ~) (i = I , . . .  n), 

(2) (y?'-~)(~, z))~ (eQ,(~, ~)a,,j (x, z)), 

(2 a) (y?-~)(~, z))-' = (.~, j(x, z)) ~ (e-Q~'<~, ~) ~,, j (x, Z)) 

(i,j---- I , . . .  n; x in (c, d); Z.in R); 

here the a~,j(x,~) and the at, j (x,~) are a-series. By (Ia), (i b), (2) and by (2a) 

(3) la(x,Z)l  _-< IZl~a, Ib(u,x,Z)l < IZl~b, 

1 Extension of the notion of uniformity of an asymptotic relationship (cf. w I) from one 
variable to several is quite obvious. 
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(3 a) I y7 "')(x, z) I < 1  ~ '  ~~ ~) I y, I ~,; (~,  z) I < I ~ %  (~' ~)11 z I ~ y 

( i , j  = I , . . .  n; x and u in (c, d); Z in R). 

On wr i t ing  
~t 93 

" t ' ~ l  
C 

in view of (3 a) i t  fo l lows  tha t ,  for x in (c, d) and  Z in R ,  

(5) 
t2 

Suppose there  exists a region R~, extending to infinity and forming part of 

If,  for  x in (c, d) and 2 in R~, 

(7) I~(~, z)l ~< I,~ I~/~. (~ - c), 

then,  in view of (6b), f rom (5) it  will follow tha t  

(8) 11~(~)1 --< n~y ~ I ;l I~+~)/~ (~ - c),+,f(,. + ~) 

(x in (c, d); ~. in .R,). 

On the other  hand,  by (3), i t  will follow that (7 ) impl ies  

(9) 

6 ~  3fi12B. 

,~ QI))(x, Z) ~ o (x in (c, d); Z in R , ;  ~ =  I , . . .  't~). 

.~ [Q~(z, i) - ~(~, ,  z)] =< o 

( ~ = I , . . . n ;  c G u < = x G d ;  ~ in R1). 

(r _~ o) 

c 

(x in (~, d); ~ in R1). 
dcta  mathematica, 67. Impr lm6 le gO m a r s  1936. 
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(5 a) 

Thus  

(6b) 

R I such that 

(5) ~Q~')Ix, ]~) ~ o (x in  (c, d); ~, in /~1). 

Since R is defined as in Case I (w 6) the condi t ion  (5) implies 
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Func t ions  zt(x, Z), c,:(x, Z) (i = o, I , . . . )  will be defined in succession by the 

re la t ions 

( io) 

(i o a) 

L(~, Z;Zo) = a(~, Z) --= %(~, Z), 

L (x, z;z,) = e (x, z) _-- f b (~, x, z) ~,- ,  (,,, z) d,, .  

By (7; w 2) and in view of (1o) and ( ioa) ,  on using no ta t ion  (4) we may write 

(i ,) z , ( x ,  z ) =  F ( c , )  (i = o , ,  . . . .  ). 

Unless s ta ted otherwise the  fol lowing inequali t ies  will be for x in (c, d) and for 

Z in Rl .  F rom (Io) i t  follows tha t  

(,2) I%(x,Z)l--< a01zl ~176 ( a o =  ~; ~ o = ~ ) .  

By virtue of ( I I ;  i = I) and  since (7) implies (8), 

(12 a) Izo(X, Z) l ----< ~olZl'~ <0 (~o:~ 'Y%; ,~o=V + "). 

Thus,  by (io;  i = I) and since (7) implies (9), 

I ~ (x, Z) l __< a, l z lo , /~ (~-~)  ' a, = y ,  , ~ , = h ' +  ~o �9 

Cont inuing ,  the  fol lowing inequali t ies  are obta ined 

( n Y~ a~ : ) 
zx ~ 3 ' ~ ~ + % ' 

( 1 a s = 4 ,  ~ = # + ~l , 

I~ , (% l) l < ~, I z I~,/~ (x - ~)~ 

I ~(~ ,  x) I --< <,~ I z I<,,/~ (x - ~)' 

By induc t ion  it  can be shown tha t  

(~3) I c,(x, z) l =  < a,I z I<'<~(x - e)~', 

(, 3 a) I ~,(.% z) I ~ ~, I z I~,/~ (~ - ~),,+, (i ---- o, I, . . . ) ,  

where 
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b 2"i-1 2 a 
( I 4 )  ai 2i zi ny ~'-_+ I 

(I4a) 8, = r] + a,:, gi = fl "{- ~'/--1 ( i= 1,2,...). 

Now from (14) ~nd (I4a) 

(I 5) zi ny~b 
zi--1 {2i) {2i + I) ~ ~i-1 *] + ~ ( i  = I ,  2 . . . .  ).  

Thus 

Zo h'2' (h = ny~b) 
(I6) & ~ i ! 3 .  5 . . . ( 2 i +  I) 2 ' 

(I6a) 3 ,=*0  + i(v + fl) ( i =  I, 2 , . . . ) .  

The series 
~o 

( I 7 )  y (X, t~) ~ .  Z * i ( X }  Z) 
i=O 

is absolutely and uniformly convergent  for x in (c, d) and for Z in any finite 

part  of B1. I n  facL by (I 3 a), (I6) and (16a), for  these values of the variables 

we shall have 

(,7a) ly{x, Zll < ~lz,(x,Z)l  <=(x-cl~olZl ~ / t (x  
i=O 

where f(u) is the function, entire in u, defined by 

(I7b) f (U)= I + . =  i ! 3 . 5 ~ _ ~ i  + I ) .  

-o)l lTg, 

In  view o f  (io) and (Ioa),  the  series (i 7) represents  a function,  defined for x 

in (c, d) and for )~ in R 1 and satisfying (I). Such a solution will be mfique in 

every case when zero is the only solution of the equation 

L(x, Z; V(< Z)) ---- fb(~ ,  x, Z)v(u, Z) d~. 
C 

Theorem II.  Consider the integro-differential equation (i), specified in the 
italics following (I). Assumethat there exists a region Ri, as defined by (6). The 
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equation will  then possess a solution y(x, ~), defined for  x in (c, d) and for  ~ in RI 

and satisfying for  these values of  the variables (I 7 a), (I 7 b). Moreover, this solu- 

tion will  be analytic in ~ for  7~ in R 1 (~ ~ ~;  x in (c, d)), provided the involved 

coefficients have the same property. 
An analogous result can be stated when R is defined as in Case I I  (w 6) 

and also when d is made to play the role of c. 

9. Concerning Boundary Value Problems, Let L ( x , X ; y )  be the dif- 

ferential polynomial involved in the left member of (A; w 2). Of various pos- 

sible formulations of Boundary Problems, associated with the operator L,  of 

special significance is the following. 

To determine a funct ion y (x, ~) which satisfies 

(i) L (x, = f ( z )  

and the boundary conditions 
d 

(I a) M,(y)- Z f 
k =  l ~] 

c 

= o  ( i =  I , . . . , ) .  

Here the operators Mt are linearly independent, the involved integrals are in 

the sense of Stieltjes and the ai, k(x) are functions of bounded variation. When 

f ( x )  = o the problem is termed homogeneous; otherwise it is called non-homo- 

geneous. A n  extensive treatment of the problem (I), (I a) has been given by 

Tamarkin 1, who presents developments under the assumption that  the roots of 

t h e  characteristic equation of (A) are distinct and that  in (A) H = I (there are 

also some other hypotheses). In the case when H is allowed to exceed unity 

and the roots of the characteristic equation of (A) are not required to be distinct, 

development of an adequate Boundary Value Theory (leading to expansions of 

arbitrary functions) necessitates some restrictions on the nature of the poly- 

nomials Qi(x, ~) (i = I, 2 , . . .  n). Thus, for instance, we would have to assume 

tha t  the various regions, for which (A) has solutions of known asymptotic form 

(as implied by the Fundamental  Existence Theorem), abut on each other. A re- 

quirement of this type would mean that  the functions 

1 j. D. Tamarkin, Math. Zeit., foe. cir., pp. I---54. Concerning the possibility of the homo- 
geneous and non-homogeneous problem and concerning the Green's function, enabling representa- 
tion of the solution of the non-homogeneous problem (I), (I ~)in particular see Tamarkin, loc. cir., 
pp. 5--Io. It will be assumed that the reader is acquainted with these facts. 
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(2) ~[Q?'(x, Z ) -  Q.?)(x, Z)] ( i # j ;  i , j =  i , . . . n )  

would have to be all independent  of x at least after a function of x (only) has 

been divided out. However, it is not the aim of the present paper to present 

developments based on s u c h  a hypothesis. 

Of particular importance is the special problem (I), (I a) 

(3) L(x, i ;  y (~ ,  4)) = f ( ~ ) ,  

(3 a) i j ( v )  - -  A(Y) + D j ( ~ ) =  o,  

(3 b) 6) (y) ~, y(k-~)(c, 4) c~, ~, /)3(y) = ~ y(k-~)(d, 4) dk, j 
k = l  /r 

[e~,~, di, j eonstnnts;  le*,~l, Id, ,j l  ~ o; i , j =  ~, . . .h i .  ~ 

We shall be concerned merely with the following Problem. 

For what values of Z is the non-homogeneous problem (3), (3 a), (3 b) possible, 
when L is the unrestricted operator of (A)(w 2) and (c, d) (c < d) is the interval 
for which the Fundamental Existence Theorem had been stated? 

The stated problem is possible for those and only those values Z for which 

the determinant  

(4) ~ (z) - I(M~. (v,)) I (i, j = ~ , . . .  ~) 

does not vanish. Here yl(X, )~) . . . .  , y,~(x, Z) denotes a set of n distinct solutions 

of (h). The values for which J ( Z ) - - o  are called characteristic values. 

Let  the elements yi(x, 4 ) ( i - - I  . . . .  n) be those in the first row of the 

matrix Y(x, i~) = r y - l (e ,  4), Y(x, ~), referred to in Par t  I I  of the Fundamenta l  

Existence Theorem, as applied to the system B (w 2) (associated with the: equa- 

tion (A)). On writing 

(5) c=(e~, j ) ,  D=(d~,~),  r (x, Z) = b ,  j (c, z, z)) = (ylJ-1) (~, x, z)) 

it follows that  

(6) (z) = 1  Y(e, z) c + Y(d, Z) D I ------ I C + r (d ,  Z) D I. 

1 Cf. Tamarkin, loc. cit., p. Io. Also cf. Birkhoff, loc. cir., and Birkhoff and Langer, loc. cir. 
There are, of course developments due to a number of other writers. All these developments are 

for a restricted operator L .  
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By taking the interval (c, d) sufficiently small it is observed that  the neigh- 

borhood of 4 = 00 is divided in a finite number of regions (each bounded by 

regular curves extending to infinity and nowhere intersecting for 141> ~o > o, 

where 40 is sufficiently great), 

(7) R1, Ri,2,  R2, R2,3, Rs,  . . . ,  R~V-l, 2V, RN, /~v, 2V+l (or R2y, 1) 1 , 

such that  

I ~ Interior any particular region R,(I  < v <= n) there exists no curve along 

which, for  some i and some j (i #: j) and for  some x in (c, d), 

(8) ~{ O(1)(X,,.$ , )~) ~-  ~t QJl)(x, 4), 

2 ~ Every region R,,,+l (t < v < N) can be included in a sector whose angle 

is as small as desired. 

The last part of the above statement is a consequence of the fact that  

every function Q,(x, ~ ) - Q j ( x ,  Z), which is not identically zero, is of the form 

(2; w 6), (2a; w 6). In fact, as seen from (2; w 6), we have for every function 

of this type 

where, for 4 - ,00 ,  h~,j(x, 4)--*o uniformly in x for x in (c, d)). Here ~vi, j(x} is 

the angle of ql.l!~:~(x) and 0 is the angle of ).. Let  us define the B~,j: x curve as 

a branch, extending in the bplane to infinity and satisfying (8). Such a curve 

is defined for every x in (c,d). Moreover, in view of (9) it follows that  any 

particular curve B],j: ,  has a limiting direction 0=Si,~.(x), where 8 satisfies the 

equation 

( kH--ms) =~ (9 a) cos + 

Since the angle of q~l~.,, (x) is continuous in consequence of previously made 

hypotheses, the variation of Oi, j(x) can be made as small as desired by choosing 

the interval (c, d) sufficiently small. This, however, implies 2 ~ From the rela- 

tion (9) it also follows that, if for a fixed i and j the angle of ql.l~.(x) is in- 

Here /~N, 2V+I is adjacent on one side with RN and on the other with R, .  
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dependent  of x, all the corresponding curves B~,j:~, formed by varying x from 

e to d, wilt have l imit ing directions independent  of x. Thus 

3 ~ I,f all the functions q~(x) ,  involved in (2 a; w 6), have angles independent 

of x then every region t~,~+1 (I <= v <= N) can be included in a curviIinear sector 

bounded by two curves with the same limiting direction at infinity. 

In  every region R,  the real parts of the Q~I)(x, ~) (i = 1 , . . .  n) can be ordered 

for x in (c, d), for instance, as in Case I. (w 6). According to Par t  I1 of the 

Fundamenta l  Existence Theorem, associated with  R ,  there will be a matr ix  solu- 

t ion * Y(x, Z), such tha t  

*z 

( :o )  "Y(z,  z) - ( y~,/c, x, z)) ~ eQ.:', ~:-Q~(', ~> ~,.,j :~(c, z ,  Z - -  r ( e ,  x, z) 
x S = I  

(x in (e, d); Z in n~; el. (36; w 6)). 

The formal  matr ix  in the last  member  of (:o) is independent  of v. In  general, 

of course, inequalities of Case I (w 6) will be for a set of subscripts dist inct  

f rom tha t  displayed. For  a given v the *y(c,x, ~) possess analyt ic  continuat ions 

in the complete vicinity ([~] ~ ~0 > o) of Z = ~ ;  this being t rue for  every x 

in (e, d), 1 

Since 

"r(c, z) - -  I (, = :, 2 , . . .  N)  

it will follow that 

' r ( ~ ,  z) = *  r ( x ,  z) . . . .  ~ r  (~, z) = r (~, z). 

In  other words, the matrix Y(x, Z) involved in (6) has the asymptotic property (:o) 

fog. ~ i~ (c, d) and fo," Z i ,  ~ (~ = ~ , . . .  N).  
There will be no loss of generali ty to assume, as we shall, t ha t  

(: :) * .(c, d, Z) ~ * (c, d) S 8~,j: -~- ~i,j,s:, , 

where 

I I  a) ~,*, j , .  :0 (c, d ) -  ; , , .  :0 (c)..,~ :0(d) 

1 We assume now that the coefficients in (k) are analyti'c in the complete vicinity of 9. = cr 
(Z# ~; IZI-->_ X0 > o). 
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(el. (30; w 6) and (34b; w 6)). ~ 

definition. 

W. J. Trjitzinsky. 

I~ will be convenient  to introduce the following 

Definition. Consider the regions R~ (v = I , . . .  2~') o f  (7). Let the totality 

( i f  any) of identically vanishing functions Qs(d, ~ ) -  Q,(e,g) be denoted by 

(~2) Q.w (d, Z) - -  Q.~ (c, Z) (w - -  ~ . . . .  p ) .  

Any particular region R1 may contain a finite set of non-overlapping closed subregions, 

(~ 2 a) R~ (i = ~, 2v,,), 

each extending to i~finity and such that 

(I2 b) lira [ eQ.('*,~)-q.(*.a) I = o 

for every s # s~o (w = I , . . .  Q). Here the limit is taken when ~--*o0 in a region 

R' ( i ~  I , .  2~) We shall define R' �9 ,t . .  . as a particular set of regions R~,i 
( i =  I, . . . 5r,; v ~- 1 , . . .  N). Replacing (Izb) by the condition 

(I 2 c) lim ] eQs (e. ~.) - q~ r ~) I = o Is # s~,, (w =- ~ . . . .  q)] 

we similarly define a totality of regions R". 

The functions displayed in (I2b) and (~2c) will be assumed to approach 

the l imit  uniformly.  

Define a matr ix  

~ '~ ) 
(I3) M c,d = (c,,~-~ ~ ~, ~,* k, ~:o (c,d)dk,~ ( i , j =  , , . .  . ,n). 

"W=I k = l  

The matr ix  obtained by interchanging e, c,:,.~ ( i , j =  I , . . . n )  

(i,j = I , . . .  n) will be denoted as M g,c. 

Since 

r - '  (x, z) - (y, , j  (.% c, z)) ~ r (x, c, z) 

(x in (c,d); ,~ in R~; v = I , . . .  n), 

with d, d~:,j 

in view of (6) and (io) it  will follow tha t  

1 Refe r r ing  to w 6, we have  t aken  m = / 2 = o  and  [(at, j:o(X)) [ # o ( c < x  < d). 



(I4) 

(~4~) 

W e  h~ve 

Theory of Linear Differential Equations Containing a Parameter.  

~r ~ I C + r (c ,  d, Z)DI, 

I Y-~(d, 1~)[ J(Z) ~ I t ( d ,  ~, z) c + DI 
(Z in B , ;  ~ , =  I , . . .  n ) . t  

l { ~  + q;*,J(~, a, z)}l 

where 

Thus ,  on wr i t ing  

~(z)  = I {;v/~, ~ + q,,~(~, d, z)} I, 

in view of ( i2 b) i t  fol lows tha~ (uniformly)  

l im q~, j (c, d,  )~} = o (i, j = I . . . .  ; )~ in R') .  

Accord ing ly ,  one .may wri te  

(~5) j (~ )  = ]Me, a [ + ~(c, d, ~), 

where 

(I5 a) lim ~(c, d, 2) = o (2 in R') .  

Similar ly ,  wi th  the  aid of (i2 c) i t  m a y  be d e m o n s t r a t e d  t h a t  

(~6) I Y-~(d,  ~)1Z(Z) = 12~',e I + ~(d ,  e,Z), 

where  

( I6a)  l im ~[(d, c, 2) : o (2 in ~ " ) .  

The  fo l lowing  theo rem can be now stated.  
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1 ([4), for instance, means that A()~) can be obtained by replacing the formal a-series, in- 
volved in the second member , by certain functions asymptotic, as stated, to these series. 

7--36122, Acta mathematica. 67. Imprlm~ le 20 mars 1936. 
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Theorem I I I .  Consider the no~-homogeneous boundary problem (3), (3 a), (3 b). 

Let (c, d) (c < d) be a suitable i'nterval. Let a particular set of regions t~' and a 

particular set of regions B"  be specified as in the Definition above. Let matrices 

M +,+', M d,c be de+fined by (+3), ( I ,  a). Suppose the determinants IM+,'+I, IM'+,+ I ave 

distinct from zero. The non-homoge++eous problem will then be possible for every Z 

i~ R' and for e~,ery Z i~ R",  provided [Z[ >_--- Z o > o .  Here Z o is a .fixed number, 

dependi~g on the choice of  R'  and It". 

T h e  determinants  ]Me, a I, ] M  (t,c] will certainly be distinct f rom zero when 

there exist no identically vanishing functions (I2). 


