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I n t r o d u c t i o n .  

An attempt was made ~, by the present writer, to examine theoretically the 

diffraction patterns associated with the symmetrical optical system, as modified 

by ~he presence of the geometrical aberrations of the system, and the investiga- 

tion was carried out as far as the first order aberrations were concerned, and 

for the region in the neighbourhood of the axis of the system. But, in order 

to consider the effects in the outer parts of the field it appeared necessary, as 

a preliminary measure, to examine the higher order geometrical aberrations them- 

selves, and this ~, accordingly, has been undertaken in several papers. The five 

first order aberrations, commonly known as the 'five aberrations of vo~ SEIDEL' 

- -  although these had all been discussed fully by HAMIL~OS, by Ai ry ,  and by 

CODDINGTO~ long before the time of vo~ SnID~.L - -  are spherical aberration, coma, 

curvature of the field and astigmatism, and distortion. And, in a detailed examina- 

tion of these it becomes evident that  one of them stands altogether apar~ from 

the others, and this in several respects: this aberration is curvature of the field 

and astigmatism. The condition for the absence of curvature of the field, the 

condition, that  is to say, that  a flat field should, in the absence of astigmatism, 

be reproduced as fiat, is found to be independent of the positions of the object- 

image planes and of the positions of the pupil-planes, and also of the separa- 
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tions of the several refract ing surfaces of the optical system. Moreover, the 

condition has a peculiarly simple form, especially when compared with the con- 

ditio~s for the freedom from the other geometrical aberrations of the optical 

system. The condition referred to is, of course, the vanishing of the well- 

known a n d  so called ~Petzval-sum~ : that is, ~ ---- :~z/ttte' -~ o, z being the power 

of the surface separat ing media of optical indices tt and re', and the summation 

extending throughout the optical system. 

I t  will be noticed that the condition involved i n  the expression given above 

is in form very simple, especially when compared with the conditions for freedom 

from even the other first order aberrations; and the aberrations of higher orders 

lead, for the most part, to increasingly complicated expressions. The very sim- 

plicity of this condition suggests that  it has a meaning more extended than that 

commonly assigned to it; just as the well-known 'sine-condition', and also 'Her- 

schel's condition', have definite geometrical meanings not only, as they are com- 

monly presented, with regard to the first order aberrations alone, but also with 

regard to certain aberrations of all orders: and, indeed, they are themselves but 

special cases of the recently discovered and very general 'optical cosine-law'. 

Accordingly, in the present paper the clue afforded by the 'Petzval-condition' 

is followed up, and the extent and the meaning of this condition are investigated 

more fully: and, in particular, a complete generalisation of the 'Petzval-condition' 

is obtained, for the higher order aberrations. And this is found to raise another 

and a more general problem, namely, that  of the separation, into three types, of 

the geometrical aberrations of the general symmetrical optical system, of all 

orders, according as these aberrations possess properties which we have named 

'invariant', or 'semi-invariant', or else are completely unrestricted. The condi- 

tions attaching to the aberrations of the first two types, and, more especially, 

to those of t he  first type, are of a peculiarly simple nature, - -  and this for 

aberrations of all orders. And a corresponding simplicity of geometrical meaning 

is found. I t  is hoped, then, that  the results obtained, themselves of theoretical 

interest and importance, may be of use in the design of optical systems. 

The investigation falls naturally into three parts, namely: 

Par t  Ii in which is undertaken a qualitative investigation of the geometrical 

aberrations of the general symmetrical optical system. Here each 

several aberration is shewn to fall under one or other of three cate- 

gories; the properties of each  category are examined, and the total 

number of aberrations falling under each is found. 
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Part II: 

Part Ill: 

i n  wh ich  is u n d e r t a k e n  a q u a n t i t a t i v e  i n v e s t i g a t i o n  of  t h e  v a r i o u s  con- 

d i t i o n s  o b t a i n e d  q u a l i t a t i v e l y  in  P a r t  I .  T h e s e  v a r i o u s  c o n d i t i o n s  a r e  

f o u n d ,  exp l i c i t l y ,  fo r  t h e  g e n e r a l  s y m m e t r i c a l  o p t i c a l  sys t em.  

i n  w h i c h  is u n d e r t a k e n  a n  i n v e s t i g a t i o n  of  t h e  g e o m e t r i c a l  m e a n i n g s  

a n d  i m p l i c a t i o n s  a s s o c i a t e d  Wi th  t h e  c o n d i t i o n s  o b t a i n e d  q u a l i t a t i v e l y  

a n d  q u a n t i t a t i v e l y  i n  P a r t s  I a n d  [ I .  

T h e  on ly  p a p e r s  k n o w n  to  m e  a n d  b e a r i n g  in  a n y  m a n n e r  u p o n  t h e  s u b j e c t s  

of  t h i s  p a p e r  a r e  t h e  f o l l o w i n g ,  n a m e l y ,  

The Changes in Aberrations when Object and Stop are Moved: T. S ~ I T , ,  

T r a n s .  Opt .  Soc.  (Lond.)  ( I 9 2 1 - - 2 2 ) ,  lqo. 5. 

The Additon of Aberration, s: T. SMITH, T r a n s .  Opt .  Soc. ( L o n d . ) ( I 9 2 3 - - 2 4 ) ,  

5~o. 4. 

P a r t  I. 

I. T h e  m e t h o d  u n d e r l y i n g  t h e  p r e s e n t  i n v e s t i g a t i o n  is b a s e d  u p o n  a modi -  

f i ca t ion  of  t h e  C h a r a c t e r i s t i c  F u n c t i o n  i n t r o d u c e d  b y  HAbit ,TON ~, k n o w n  m o r e  

c o m m o n l y  as  t h e  Eikonal of  Bruns. I t  is n o t  w i t h o u t  i n t e r e s t  to  n o t i c e  t h a t ,  

a l t h o u g h  t h e  n a m e  ' E i k o n a l '  is due  to  B r a n s ,  t h e  f u n c t i o n  i t s e l f  a p p e a r e d  a t  a 

m u c h  e a r l i e r  da te ,  in  H a m i l t o n ' s  o r i g i n a l  se r ies  of  P a p e r s .  T h e  d e t a i l e d  deve-  

l o p m e n t  of  t h e s e  f u n c t i o n s ,  a n d  t h e i r  a p p l i c a t i o n  to  t h e  t h e o r y  of  t h e  s y m m e -  

t r i c a l  o p t i c a l  sy s t em,  have  been  g i v e n  e l s e w h e r e  by  t h e  p r e s e n t  w r i t e r  ~, so t h a t  

a n  o u t l i n e  only ,  in  b r i e f e s t  pos s ib l e  f o r m ,  is n e c e s s a r y  in  t h i s  f i r s t  p a r a g r a p h .  

1 The surprising extent to which Sir WXLI.IA~t HAMILTON bad applied his very general 
theory to the actual consideration of particular optical systems, whether symmetrical or quite un- 
symmetrical, is only revealed by a careful perusal of his celebrated Papers on The Theory of Sys. 
terns of Rays. These have recently been published in the Edition of his Collected Works, Vo- 
lume I, Geomeirical Optics, by the Cambridge University Press, nnder the very able and joint Edi- 
torship of Professors Conway and Synge: here certain papers are published for the first time. And 
in  them the general functions introduced by Hamilton are applied to the symmetrical optical 
system, a project which frequently he mentioned in his published works, but to which, in them, 
lie never seems to have addressed himself. But even in the papers published, for example, in 
I855--34 there is given an investigation of the aberration known afterwards as coma, and this 
for a system quite unsymmetrical; and the discovery of this aberration has commonly been attri- 
buted to KIRCHItOFF, at a much later date, who himself was working with functions akin to those 
introduced by Hamilton. For additional information concerning these matters, and other matters 
connected with them, reference may be made to a paper~ by the present writer, On the Optical 
Writings of S~r William Rgwan Hamilton, Mathematical Gazette, July t932 , Vol. XVI, No. 219, 
pp. I79~I9 t .  

The Symmetrical Optical System: Camb. Tracts in Mathematics and Mathematical Phy- 
sics, No. 25. 
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P F, r '  A' 

We consider a symmetrical optical system of which A A' is the axis, P and 

P '  two conjugate points upon A A', and /~'~ and F 2 the principal foci. Pn  and 

P'n' are the perpendiculars from P and P' upon the incident and emergent 

portions of a ray of light, the direction cosines of which, referred to convenient 

and parallel axes, the one set in the 'object-space' and the other set in the 

'image-space', are respectively L, M, N, and L', M', N'. Then the Eikonal E, 

with base points P and P', is defined as being equal to the optical path from 

n to n', measured along the ray; that  is, 

t~ 

where # is the optical index of the medium in which the element of length ds 
is measured. A function of great theoreti'cal and practical importance is the 

'focal-eikonal', Eo, defined by means of the base points F 1 "and F,.,, the principal 

foci of the optical system; that  is, 
712 

>:o-- f, ,  d,, 

where n 1 and n~ are the fee t  of the perpendiculars upon the ray from the points 

F~ and F~. Further, if we denote by e and e 0 respectively the values of these 

functions when the ray coincides with the  axis A A' of the system, we have 

P ~ ~ 2  

e= f #ds, and eo= (#ds ,  
P 1; 1 

in each case the path of integration being the axis of the optical system; and 

it is convenient to absorb the constants e and e o in the more general eikonal- 

functions. We write then, 
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J ( E -  = , ,  - -  ag, a n d  Z ( &  - -  Co) = U ,  

where J is the 'modified power' of the optical system, and is given by the relation 

tt t*' J = K, 

K being the power as commonly defined, aud tL and t~' the optical indices of the 

end media. The form u ~ �9 is explained subsequently. 

In general a ray of light, as presented above, has f o u r  degrees of freedom, 

but, owing to the axial symmetry of the optical system, t h ree  variables only are 

needed, and each of the preceding functions, namely, E. and Eo, ~ -  a) and U, 

may be regarded as depending upon three variables alone. The choice of these 

variables is of considerable importance. We may choose, for example, a, b, and 

c. given by the relations 

a = M e + N ~, b ~-  M ! ~ [ '  + N N ' .  and c ~ M'" • N' ' .  

Another choice, the explanation of which is indicated later, is the following, 

namely, co, fl, and 7, where 

a d  ~ -  a ~ 2 s b  +.s'~ c,  ] 

rid "~ = a - -  (s + m) b + s m c , ]  

7 e l ' + : a - 2 m b +  m ~c, 

that  is, 

a = m  ~  s ~7, 

b = m a - - ( s  + m)~ + .~7, 

c = a - - 2 f l + 7 ;  

here d is a certain convenient constant which may be taken to be d ~ s - - ~ ,  

where m and s are respectively the paraxial, or Gaussian, (reduced)magnifications 

associated with the conjugate points P and P', and with the pupil-planes of the 

system. Thus d is equal to the (reduced and modified) distance between the 

exit.pupil and t h e  paraxial image plane. 

The conjugate and normal planes through P and P '  will not, in general, 

be free from aberration; incident rays, that  is to say, passing through a point 

upon one plane will not, in general, pass through any corresponding point upon 

the other plane. But we may shew that if it were indeed possible for these two 

normal planes to be free from geometrical aberration, that  is, if there could be 

a one-to-one correspondence in points between them, then the eikonal-function 

E ~ e, and also the function u -  @, would depend only upon the variable 7; 

and conversely. This property gives the suggestion for the form of the variable 
28--36122.  Acta mathematica. 67. lmprim6 le 28 septembr~ 1936. 
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7, and then the forms of the variables a and fl follow from considerations of 

symmetry. 

The eikonal for an actual optical system - - o n e  subject to geometrical 

aberrations - -  will contain terms involving also the variables a and ~, so that, 

if we write u ~ f ( 7 ) ,  the form of this function f being at present undetermined 

(and it may be determined subsequently so as to satisfy other conditions), then 

in the expression u ~ do we may regard the function (9 as containing all the 

terms involving a and fl, and so as summing up in itself the departure of the 

system from 'ideal' imagery, for the particular pair of conjugate planes chosen. 

We may, therefore, appropriately name (9 the aberration-function, and we observe 

that  it gives completely the aberrations of the optical system for the conjugate 

planes through P and P.', at paraxial magnification m: and that it depends upon 

these aberrations alone. In other words, we have separated the Gaussian per- 

formance of the system from the departures from this performance. 

Actually, the aberrations are given by the relations 

0(9 0(9 . 0(9 /)(9 
Y ' - - m Y = O ~  + r o O M ,  and Z ' -  m Z = o ~  +toO-N, 

where Y and Z are the co-ordinates of the point of intersection of the incident 

ray with the normal plane through P, and Y' and Z'  are the co-ordinates of 

the point of intersection of the emergent ray with the normal plane through 

the conjugate point P'. 

Now, we may write 

do 7 ) =  7) + dos (- ,  fl, r) + �9 + do,, (- ,  fl, :') + ' 

where (gn(a, fl, 7) is a homogeneous function, of degree  n, in the three variables 

, ,  fl, and 7: do0 and do1 are omitted, since the aberrations depend essentially 

uPOn the terms of the second and higher orders in a, fl, and 7. The coefficients 

appearing in the various functions COn (e, fl, 7) give completely the aberrations of 

the optical system of the several orders, and we name them therefore 'aberration- 

coefficients'. For example, if we write 

8(92 ~ 6 1 a 2 - -  46. ,af l - t  - 2qsa 7 + 4a~fl~-- 4a,,,~y + (r~7 ~ 

the a-coefficients give completely the five first order geometrical aberrations, for 

the term in a~ depends only upon the variable 7, and so is annihilated by each 

of the operators 
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0 0 0 0 
6~M' + mcg=_]kt' and ~gN~ + m~-~.  

In particular, the coefficients a s and a~ together give the astigmatism and 

the curvature of the field, each of the first order. So we have outlined a method 

of investigating the qualitative nature of the geometrical aberrations, and we 

have now to consider their quantitative aspect. But, in passing, it will be noticed 

that we have separated these aberrations into various 'orders', depending succes- 

sively upon the functions O~(a, fl, 7); thus, @.z(a,/3, 7) gives the aberrations of the 

first order, (Pa(a,/9, 7) those of the seco~2d order, and, more generally On+l(a, fi, 7) 

gives the aberrations of the n'th order. And this is the manner in which the 

aberrations of a symmetrical optical system are commonly presented. 

I t  is clear that the f ocal-eikonal U, introduced in the preceding scheme, is 

a constant of the optical system; that is, U is independent both of the positions 

of the conjugate axial points P and P',  and also of the positions of the pupil- 

planes of the system. In  other words, U does not depend either upon m or 

upon s. We may regard U as a function of the three variables a, b, and c 

alone, a n d  the coefficients of the various terms in the expansion of this function 

are the quantities which we calculate in the computation of the optical system. 

Moreover, the functions u -  �9 and U differ only by reason of their dif- 

fering base points, and there is therefore a purely geometrical relation between 

them, namely, the following relation, 

u - -  q)~- U + (I -- L)/m + (I --  L')m. 

If, then, we know the function U we can calculate immediately the aberration 

coefficients, and so the aberrations themselves, for any symmetrical optical system, 

for any conjugate planes and for any pupil-planes. 

I t  is convenient to calculate .the function U step by step, and we make 

here, for the first time, the assumption that  the surfaces of the system are 

,~pherical: and we may shew that the focal-eikonal for a single spherical surface, 

separating media of optical indices /~ and #', is given, without any approxima- 

tion, by the relation, 

v u : V ( I  + v z ) + v ( L +  L ' - - 2 ) - - * , ~  
where 

v~- i~# ' / (~ ' - -#)  ~, and Z +  2( L L '  + b - - I ) ~ o .  

1 The Symmetrical Optical System, Camb. Tracts in Mathematics and Mathematical Physics, 
No. 25, Oh. V. 
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The radius of curvature does not appear explicitly, since the eikonal is 

supposed to have been multiplied by the 'modified' power of the system. The 

expression is clearly a function of the variables a, b, and c, since L e--- I - - a ,  

and L ' ' =  I - - e ;  and the general focal-eikonal, for any number of co-axial 

spherical surfaces, is similarly u function of the variables a, b, and c, - -  where 

now, however, these variables refer to the system as a whole. 

2. The essential relation, upon which we concentrate, is the purely geo- 

metrical equation of paragraph I, nalnely, 

'll  - -  ( D  " -"  ~'T + .  ( I  - -  L)/m + (~ - -  L ' ) m .  (i) 

Here the expression upon the left-hand side of the equation is a function of the 

variables a, fl, and 7, while the expression upon the right-hand side is a function 

of the variables a., b, and e; and between these two sets of variables there exist 

linear relations given in paragraph I: moreover neither s nor m appears in the 

function U. We expect, therefore, various invariant relations between the coef- 

ficients appearing upon the two sides of the equation, and these we proceed to 

investigate. 

Front the relations of the preceding paragraph we have, 

0 . 0  0 0 
O .  m Oa + mO-b + Oc 

i) 

- - O f f  

0 , . 0  0 
-2smi)-~i + t~-~-~.4hb + 2 0c '  

0 _ s+ 0 0 0 
i)~,- o~+~o-b +O~ ' 

0 0 0 0 
d"O. = O~ + b~ + - 

d,,O O 0 
and --  " O h =  2SOc~ + (~' + re)O# + 2m 

I d . O  ,, 0 0 
b~ --8 b. + 8mb~ + m '~;  

0 

0 7 ' 

that  is, we have relations between the operations of differentiation with respect 

to the several variables. We define new operators 1I, P, ~ and O, by the following, 

0" 0 2 0"' 0 ~ 
H ~ 4 iji/-O b --  ~._,' P =--- 4 0 e O a  --  ?) b "~' 

0 0 0 0 

0 7 ' Oa' 

and from the above relations we have immediately, 
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H - ~  d~ P, and ~ -  d~ O. 

The operators 

I t  follows that  

/7 and are commutative, as also are the operators P and 0. 

f'2P I'gq ~ d2(P+q) OP pV. 

where p and q are any positive integers. 

Let us now apply these operators, the one to the left-hand side and the 

other to the right-hand side of the relation (I), considering only the terms of 

degree p + 2q in the variables a, fl, and 7, or the variables a, b, and c; terms 

of lower degree will, of course, be annihilated, while terms of higher degree we 

omit for ghe present. On the left-hand side we shall obtain a linear expression 

involving the aberration coefficients appearing in that  part of the aberration- 

function q) which we have written @p+~.q, that  is, a linear relation between the 

aberration-coefficients of order p + 2 q - - I .  Let this expression be written ~0. 

On the right-hand side we have a function of the coefficients appearing in U, that  

is, a function of certain constants of the optical system - -  independent, that  is 

to say, of the quantities.s and m; and we have, in addition, a multiplying factor 

do-(p+q), or ( s - - m )  :lv+'j), so that, if we write the resulting function f ,  we have 

the relation 
~_ d ~ (v+q) f , 

o r  

9 = (s - -  m)2 (~'+'~!j: 

We have assmned that  q # o ,  for then the terms ( I - - L ) / ~ +  ( I - - L ' ) m ,  

appearing in (I) are annihilated; otherwise, if q ~ o, we have always in ~0 terms 

involving m. 

I t  follows tha t  if, for any particular optical system, f =  o, then also will 

9~ ~ o, and this latter result will be true for all values of s and m: tha t  is, we 

have a relation between the aberration coefficients of order 2 + 2 q -  I, which 

is independent of s and of rn. While, if f #  o, the function 9 will depend upon 

s and upon nb but only through the factor (s--m).  Now, 9 denotes an aberra- 

tion of order 2 + 2 q -  I, more strictly, a linear relation between the various 

aberration-coefficlents of this order, as we defined them above. We have obtained, 

then, an aberration which we may name an 'invariant aberration', in the sense 

tha t  i f  this aberration vanish for any particular single pair of positions of the 

conjugate planes and of the pupil-planes of the optical system then the aberra- 

tion will vanish for all pairs of positions of these planes. On the other hand, 
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if q~ ~ o, then the magnitude of this aberration will depend upon the positions 

of these planes through the factor ( s - -m)  alone; that  is, it will depend only 

upon the relati~;e positions of these planes. 

As the simplest example in illustration of the preceding general theory, we 

may write p ~ o  and q---- I, that is, we consider simply the operator H alone; 

and we know that  
H=-- d~ P. 

Applying the operator H to the left-hand side of (i) we have, taking only the 

second order terms, which are written out at length in paragraph I, 

/ / (u  - -  O) = - - / / O ~  = a s .  a~, 

and the operator P, applied to the second order terms in U, will give some 

constant quantity, a constant of the optical system, which we may write z~; we 

have then 
P U - ~ .  

Thus 
- - m )  = 

the quantity z~ is in fact the 'Petzval-sum', and, subsequently, we shall prove that 

in the usual notation. If  z~----o, then, from the preceding relation, as--a~ ~ o, 
for all values of s and m: that is, a flat field is, in the absence of astigmatism, 

reproduced as flat, - -  as far as the first order aberrations are concerned. 

3. Again it is seen, from the relations of paragraph 2, that the operator 

O involves only the quantity m, and not the quantity s, since /)a 

0 O O O 
- - m ~ o a § 2 4 7  

Also, we have, from these same relations, 

~QP IIq ( 0 ) r-~ (12(p+q) Op eq lm2 ~ Oa 0 0 )" 
�9 

I f  we apply the operator ~PIlq to the left-hand side of the equation in 

paragraph i, retaining therein only the terms of degree p + 2q + r in the 
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variables ~, fl, and 7, we obtain a linear function of the aberration coefficients 

of order p + 2 q + r - -  I. Let  this function be written ~p. Applying now, to the 

other side of the equation, the equivalent operator, retaining therein only the 

terms of degree p + 2 q + r in the variables a, b, and c, and assuming that q ~ o, 

we have a function of the optical constants of the optical system, containing the 

quantity m but not the quantity s; let this function be written f(m). Then, by 

reason of the above relation between the operators employed, we have 

= (8 - m )  Ip§ 

If, therefore, f (m) -~  o the function ~p will vanish for all values of s; otherwise 

the value of ~ will depend upon s and upon m through the factor ( s -  m), and 

also directly through the value of m, but  not directly through the value  of s. 

We have here, then, an aberration ~0 which we may name a 'semi-invariant' 

aberration. Clearly, in the same manner, we may define 'semi-invariant' aberra- 

tions the vanishing of which depends only upon s, and not upon m. And, finally, 

we have entirely unrestricted aberrations, the vanishing of which depends both 

upon s and upon m. 

We may sum up the results o f  the two preceding paragraphs as follows. 

There exist linear relations between the aberration coefficients, of every 'order', 

of each of the three following types, namely: 

I. the invariant type: the vanishing of which is independent of the conjugate 

planes chosen, and also of the pupil-planes (and, as we find subsequently, 

in the case of the most important sub-class of the invariant type, independent 

also of the separations of the component surfaces of the optical system). 

2. the semi-invariant type: the vanishing of which depends either upon the 

positions of the conjugate planes, or upon the positions of the pupil-planes, 

but not upon both of these, and 

3. the general, or unrestricted, type: the vanishing of which depends both upon 

the positions of the conjugate planes, and also upon the positions of the 

pupil-planes of the optical system. 

I t  will be seen that the preceding classification of the aberrations of the 

symmetrical optical system cuts altogether across the usual division of these 

aberrations into 'orders', - -  based, as this division is, upon the idea of the 

'orders' of small quantities. But  the new classification corresponds, in the first 

place, to certain physical properties of the optical system, and, in the second 
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place, to a certain str iking simplicity of calculation; for we shall find, in the 

sequel, t ha t  the aberrations of the various types have certain geometrical  pecu- 

l i a r i t i es ,  and also tha t  the conditions a t taching to the invariant  type are of an 

exceedingly simple form. 

4. We proceed now to enquire how the geometrical  aberrations of any 

part icular  'order' are distr ibuted amongst  the three general types to which we 

have been led, namely, the invar iant  type, the semi-invariant type, and the un- 

res t r ic ted  type. And we consider, in the first place, the funct ion q)2n(a, fl, 7) 

homogeneous and of degree 2 n in the variables a, fl, and 7; this function gives 

then  completely the aberrations of 'order' 2 n -  I. 

Now, from the preceding paragraphs,  the operators 

0"- ~_o q l Iq ,  

where q takes successively the values I, 2, 3, . . .  n, when applied to the function 

$ ,n(a ,  fl, 7) lead to invar iant  aberrations. We have therefore n invariant  aberra- 

tions of order 2 n -  1. I f  we wish to consider the aberrations of order 2 n we 

must  use the funct ion q).2 ,,+l (a, ~, 7), homogeneous and of degree 2 u + I in the 

variables a, fl, and 7. In  this case the appropriate operators are the following, 

namely, 
.Q2 n - - 2  q + 1 Hq,  

where .q takes successively the values I, 2, 5 , . . .  ". And again we have n in- 

variant  aberrations of order n. 

We consider next  the semi-invariant aberrations, which will follow from 

0 
applications of the operators Y] and H, together  with ~ for the s-invariants, or 

0 
07 for  the m-invariants. We take then the general  operator  

where p +  2 q +  r +  t - -~2n,  and apply this to the funct ion (P2n(~,fl:7). This 

will lead immediately to some linear funct ion of the aberration coefficients, of 

order 2 n -  i;  an m-invariant if 7 " : 0 ,  or an s-invariant if t = o :  while, of 

course, if r = o  and s - - o  we obtain invariant  aberrations of the first type, 

already investigated. 
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W e  consider, in the first place, the s- invariants ,  for  which t - -  o: then,  since 

p +  2 q + r ~ 2 n ,  there  are  2 ~ - - 2 q +  I sets of v a l u e s o f  p and  r sa t i s fy ing  this  

c o n d i t i o n ,  for  every value of q; so t h a t  the  to ta l  n u m b e r  of invar ian t s  ob ta ined  

in this way is 
n 

q~l  

since q takes  successively the values I, 2, 3, . . .  n. But  of these  there  will be 

one, for  each value of q, for  which 7" - o ,  and  which there fore  is an inva r i an t  

of the first type;  the  to ta l  n u m b e r  of s - invar iants  is the re fo re  n ~ -  ~. There  is 

an equal  n u m b e r  of m i u v a r i a n t s ,  so tha t ,  finally, we have,  as the  to ta l  n u m b e r  

of semi- invar iants  of order  2 n ~ I, the  expression 2 n (n  ~ I). The  to ta l  n u m b e r  

of abe r ra t ion  coefficients, appea r ing  in the homogeneous  func t ion  q)2~(a, ~, 7), 

is (2 n + I)(2 n + 2)/2. R e m e m b e r i n g  now t h a t  there  is a lways  one te rm,  namely  

t h a t  one in the  var iable  7 alone, which  is ann ih i l a ted  by the  operators ,  we see 

t h a t  the  num ber  of unres t r i c ted  aber ra t ions  , of the  th i rd  type,  is 4u .  

The  preceding  p a r a g r a p h  deals wi th  the  d is t r ibut ion  of the  aber ra t ions  of 

an odd order,  namely,  of order  2 ~z ~ I. F o r  the  aber ra t ions  of an even order,  

for  example  of order  2~,  we consider  the func t ion  02"+l (a ,  fl, 7), to which we 

apply opera tors  of the  same genera l  form. Then,  r epea t ing  the  a rgumen t ,  for  a 

given value of q we have  p + r + t = 2 n  + I - -  2 q, and  therefore ,  if t = o, the re  

are 2 n + 2 ~ 2 q sets of values of p and  r sa t i s fy ing this  condit ion,  so t h a t  the 

to ta l  num be r  of s-iuvariants,  ob ta ined  in this  manner ,  is g iven by  

q=l  q=l  

but, of these, ~ are invar ian t s  of the first type,  for  which 7"= o and t = o. Thus  

the n u m b e r  of s- invariants  is n(n +I)--n,  or n~: and  the  to t a l  n u m b e r  of in- 

variants,  of both  kinds,  is 2 n ~. I n  this case the number  of unres t r ic ted  aberra-  

t ions is 

(2 n + 2)(2 ~, + 3)/2 - -  n - -  2 n ~ - -  I ,  

t h a t  is, 4 n  + 2. 

Final ly ,  we may  summar i se  our resul ts  concern ing  the d is t r ibu t ion  of the  

aberra t ions ,  of all orders,  a m o n g s t  the three  types,  as follows, namely ,  

29--36122. Acta mathematica. 67. Imprim~ le 28 septembre 1936. 
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number of number of semi- number of total number of 
order of  invariant invariant unrestricted 

aberration: aberrations: aberrations: aberrationa : aberrations: 

2 , ~ - -  I . . . . .  ~ . . . . .  2 ~ 7 ( ,  - - - I )  . . . .  4 n  . . . .  n ( 2 n  + 3). 

2 ~  . . . . .  n . . . . .  . 2 n  ~ . . . .  4 n +  2 . ( 2 4 2 + I ) ( n + 2 ) .  

In  part icular ,  for  the aberra t ions  of the  first few orders, we have the fol lowing 

scheme, namely, 

I . . . . .  I t . . . . .  o . . . . .  4 . . . . .  5. 

2 . . . . .  1 . . . . .  2 . . . . .  6 . . . . .  9- 

3 . . . . .  2 . . . . . .  4 . . . . . .  8 . . . . .  I4. 

4 . . . . .  2 . . . . .  8 . . . . .  IO . . . . .  20. 

5. We may give here a simple i l lustrat ion of the preceding invest igat ion;  

thus  we may write the funct ion  ~ ( a ,  ~, 7) in the form 

8 ffJ2(ct, fl, 7) = a~ ~ - -  4 a ~ c t f  + 2 abet 7 + 4 a ,  f "  - -  4 a s f ) ,  + a67 ~ 

= a~ n ' - - 4  a~ a f t +  2 (a~ + 2 aa)(7 a + 2 fl~ - - 4  a.~ f17 + a~ 7' + 4 (~--a4) (Ter--fl~)/3. 

The  numerical  coefficients appear ing in the first line of the r ight-hand side of 

this equat ion are those arising from the expansion of (a - -  2 b + c) ~, a funct ion 

of impor tance  in connect ion with the focal-eikonal. Hence,  

and for a system of co-axial spherical surfaces, the end media having optical  

indices uni ty ,  we have, 

I (xdm-1 m), 
- = = K Z 

where K is the  p o w e r  of the whole system, and x~ is the power of the surface 

separat ing media of optical indices F~z-~, ttx: and, of course, ~ is the usual  

'Petzval-sum'.  

Or, again, we may write, for  the aberra t ions  of the second order,  

~0 3 (c~, fl, 7) . . . .  3 (~3 + 4 ~4) (7 cr + 4 fl~) cr - - 4  (3 % + 2 ~7)(3 7 e + 2 fl~) fl /5 

+ 3 (~6 + 4 ~8) (7 c~ + 4 Y') 7/5 + { 12 ( ~ "  ~) ~z--24 ( ~ - -  ~7) fl 

+ i 2  + 

Here  the  expressions *3--z~, *5--z7, %--*s are semi-invariants,  while the expression 

z s - - ,~ - -2 ( ,6 - - zT)+z6- -z  s is an invar iant  of the  first type. 

x T h i s  i n v a r i a n t  r e l a t i o n ,  t h e  s i m p l e s t  of  i ts  t y p e ,  is, of  cou r se ,  t h e  ' P e t z v a l - s u m ' .  
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P a r t  II. 

I. Our next step must be the calculation, for the general symmetrical 

optical system, of the 'invariant' and of the 'semi-invariant' functions which have 

emerged from the purely qualitative investigation of Par t  I; and this is readily 

effected by the use of the operators introduced there. We regard such an optical 

system as composed of co-axial spherical surfaces, and we observe, in passing, 

that  we have not hitherto supposed the component surfaces to be spherical, but 

only that  they are surfaces of revolution about the axis of the system. In  pro- 

ceeding, however, to evaluate the various functions which we have obtained we 

limit ourselves here to the consideration of spherical surfaces since, in practice, 

these are most commonly used. We have to evaluate the expressions for a single 

spherical surface, and then to investigate the 'addition' of these expressions 

corresponding to the. 'addition' of the various single surfaces, which together 

form the composite optical system. I t  will be convenient to address ourselves 

immediately to the second investigation. 

2. Let there be two symmetrical optical systems, having the same axis of 

symmetry, and let ~ and ['~, F 1' and I;'~', respectively, be  their principal foci: 

F F' 
F: F," p,' 

let 2" and F '  be the principal foci of the combined system. Let L, _M, N; 

L', M', .N'; and L", M", N", be the direction cosines of the three portions of 

a ray of light, incident, intermediate, and emergent respectively, where the axis 

of the system is taken as the common (x) axis of reference, and the remaining 

axes are parallel in threes, and rectangular. Let the modified powers of the 

component systems be J~ and J~, and that of the combined system be J ;  and 

let the modified and reduced eikonals be U1 and U~, and U respectively. 

Then we have the following relations, namely, 

F2~'  =--J /J iJ2 ,  F' F~' = + JJJ~J, and F~ F =  + JJJJ~; 

in each case these distances are 'reduced', are multiplied, that  is to say, by the 

optical indices of the media in which severally they are measured. Fdrther, we have, 
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l/~ = --  ( M M '  + NN' ) ,  U~ : - -  (M' M "  + N '  N") ,  and U : -- ( M M "  + N N " ) .  

These are the first terms in the expansions of the focal-eikonal functions, and 

are correct therefore to the second order in the quantities M, N, M', N', M", 

and N". 

The partial differential coefficient of an eikonal gives a co-ordinate of the 

point of intersection of the ray with the normal plane through the corresponding 

base point; and we have, then, 

~z o (u / j , )  + M.  1,', z,', o (U/J)=o~II 

the 

points associated with the functions U and U1. 

second term being the correction needed on account of the different base 

or, 

and similarly, 

Thus, 

- -  M " / J - =  --  M ' / J i  + MJ~ /JJ1 ,  

J M '  = J ~ M  + J~M",  

J N ' = - J . z N + J 1 N " .  

We write now, 

a = M  2 + . N  ~, a x : - - M  2 + N ~, a ~ - - M  '2 + N '~, 

b = M M "  + N N " ,  bt = M M '  + N N ' ,  b~ = M ' M "  + N ' . N " ,  

c = M  ''~ +.LY , c I -  M '~ + N '~, c~_ + 

(i) 

Then from 

a I : a 

Jb~ = J~a + J~b, 

J~'c~ = J ~ a  + 2 J ~ J l b  + J21 e, 

relations (I), on nmltiplication by the appropriate factors, we have, 

j 2 a _ ~ = j ~ a + 2 J 2 J i b + J ~ c ,  

J b , =  J~b + J lc ,  

C 2 = C. 

These relations give the values of our fundamental variables a, b, and c 

for the two component systems, in terms of the similar variables for the combined 

system. 

3. Now we may regard the first system as composed of 4 - -  I sub-systems, 

i, 2, 3 , . . .  4 - - i ;  and the second system as comprising a single system 4, 

together with a block of n -  4 sub-systems, ~ + I, . . .  n. These systems are not, 
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of necessity, single spherical surfaces, but  may themselves be general symmetrical 

systems. The combined system is then composed of n sub-systems. 

I t  follows at once, from the preceding paragraph, that  

J ~ a ~ - J ~ , ~ a  + 2 J ~ , ~ J , , z - l b  + J~,~.-lc,  

Je  c~. ~ J~+~,~a+ 2J).+i,nJ1,). b -]" J[,~c; 

where, for example, a~ is the a-variable associated with the sub-system )~, and 

J~,~ denotes the modified power of the system comprising sub-systems )t to q~ 

inclusive. 

In the notation of the preceding paragraph we have, 

Ja~ ~ J~ b 1 + J1 b~, 

and, if we apply this to the second block of sub-systems, we have 

J~,,~cx~-J~.+~,~J~,nb~ + J~J~.,,~b~+i,,. 

Whence, substituting for b~+~,,~, and remembering that, on account of the con- 

tinued fraction definition of the modified power J ,  

gz Jl, n + gl, ) . -1Jz + l, ~ -~ J-l, ~ g)., , , 

we have the following expression for b~, namely, 

J~ bx -~ J~.,,~J)~+l, n a + (J l , z - l  Jz+ l,u + J1,),Jz, n)b + J1,;~.--10TI,~. C. 

We may collect these results as follows, 

J ~ a ~ =  J~,~,a + 2Jz,  nJl ,~.- lb + J~, ; . - lc ,  

J~b~ = J~.,,J~.+l, na + (J~,~J1,;~ + J.~+l, nJ-~,~-l) b +.Jl , ) . -1Jl ,~  C, 

J e c z ~ J ~ + i ,  nc § 2J:~+~,nJ~,~b + J~,~c.  

These then are the generMisations of paragraph ~, and they tell of the 

state of the ray at ~ny intermediate stage of its progress through the combined 

opticM system. It  will be noticed that  J has been written in place of J~,~, the 

modified power of the composite system. 

Further we have, 
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= j 0 . 0 
j ~  O J ~  ,~,~-- -I- J~ n ~.+~ , ~ -  + J~.'+l,~)c~, 

Oa ' u a z  ' " ' Obj. 

s o J~ --2J~,nJ~,~_lba~ + (J~.,,,J,,~ + J~+~,,,J~,~_i) b~ ~ 

o s 
J S  O = c " + J l ' ~ - l  J l ' x  O-tv. "~ ; 

0 
+ 2 J~.+l ,,. Jj, ~ - , 

the operators being applied in each case to the variables indicated. 

4. Our fundamental operators, involving the variables a, b, and c, are the 

following, namely, 
0 ~ 0 2 t) . 

P ~ 4 o c O a  Ob ~, and 0----~a, 

these for the 'invariant' 

have the operators 

and 

functions: and for the 'semi-invariant' functions, we 

O _ s  ~ 0 0 0 
07 Oa +*' 0-b § O-c ' 

0 O r 0 
o~ =m~oa  + m~/, + 0C" 

Here s and m are reduced magnifications associated respectively with the pupil- 

planes and the object-image planes. We may use a suffix notation to indicate 

operations upon the variables associated with the sub-system )., and then we 

have immediately, from the relations of the preceding paragraph, 

j 2  p = ( j 2  p ) ~ ,  

and 

J~' O = - J ~ , , ~ O ~ ' 4 -  J ~ , n J ~ + ~ , , ~ -  "t- J~+z , n  0 

These are the 'addition operators' for the 'addition' of the sub-systems, as far 

as the 'invariant' relations are concerned. The similar operators, for the addi- 

tion of the 'semi-invariant' relations, are 

j~  0 O 0 
~ -  (Jl,~-l+ ~. J~ ,~ )~a  ~ + (J1,~-1 + m J~,~)(Jl,~ + mJ~+~,n)~  + 

+ (J~, ~ + rn&§ ~ ; 

and a similar expression involving s in place of m, to give j ~ O .  
O7 
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5. Since we wish to find the 'invariant' and the 'semi-invariant' relations 

in terms of the optical constants of the s);stem as a whole, we concentrate upon 

t h e  focal-eikonals, U(a, b, c) for the whole system, and Uz(a)., ha, c).)for the 

several sub-systems. Now, between these quantities there is a relation 

(U/J) = ~ (U/J)~ + ... (I) 
).~1 

where the terms omitted arise from the adjustment of the various base-points, 

and depend, therefore, each separate term, upon one only of the variables az, 

and c~, and not upon the variable bz at all. These terms then are each 

annihilated by the operator P, or Pz, which appears, in every case, at least once. 

In  our application of the operators then we may omit these terms, as playing 

the part of 'constants" Moreover, we have divided the U-functions b y t h e  

modified power J ,  or Jz, since these functions have previously been 'modified', 

that is, multiplied by the quantity J,  or Jz. And therefore (I) reduces to a direct 

geometrical relationship. 

In the previous paragraph we have found relations between operators applied 

to the system as a whole and corresponding operators involving, in each case, 

only the variables associated with a particular sub.system. Accordingly, we apply 

these operators, the one set to the left-hand side of (i), and the other set to 

the right-hand side of (I). As perhaps the simplest example we have 

n 

(j2 p)r ( U/j)  = ~, (J~ .P)'~ ( U/J)~, 
2 = 1  

where the operator P has been applied r times. We proceed to other examples later. 

6. Hitherto, the sub-system 2 has been any optical system whatever. We 

proceed now to take, as our  unit sub-system, the single spherical surface separating 

media of optical indices tt and t{. And, for the simplest class of 'invariants', 

we have merely to apply the operator Px, repeatedly, to Uz, the focal-eikonal 

for this single spherical surface. Moreover, the base-points may be moved, if 

necessary, in any manner along the axis of the surface, for the terms introduced 

thereby contain, each one of them, only one of the variables a~ and c~., and the 

variable bz not at all; and so these terms are annihilated by P~. 
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Now, we have, 

U ~ = ( I  + vz)~/~/V + L + L ' - -  I I v - -  2, 

where v = gtt ' /(g'--tt)` ' ,  and 7~ + 2 ( L L '  + b -  I ) =  o. 

omit t ing the suffix Z, 

v U = O  + . . . , ~  

Effectively, we may write, 

the remain ing  terms being annihi lated by the operator  P, where 

0 3 =  I + v g .  

Now, U is a funct ion of a, b, and c; but, if we write s = L L ' ,  we may 

use the variables ~ and 0, and then we have, by direct  differentiation, 

,o  o ( o   )vo 
P - - - - - e  - -  + - - - .  

Actually, the result  of a few applications of this operator  to the funct ion U 

may be found by direct methods. Thus we have, 

P U = - -  I / ~ 0  

/)s U = - -  3 ~ (I/e50 - -  v/e4O 3 + v'/eaOr'), 

p 4  U = - -  33 53 ( I /e  7 0 - -  v/~ 6 03 + 6 vV5  ~' 0 ~ - -  v U P  07), 

�9 , . . . . . . . .  , �9 �9 . �9 , , �9 . �9 �9 �9 � 9  . 

And, since we need only the coefficients of the appropriate  terms of U, we 

write in these expressions a = b = c = o, tha t  is, we write ~ = I, and 0 = ~ ; and 

then  we have, 
P U = - - ] ,  

P 3  U - - ( I - v ) ,  

P a U = - - 3 ~ ( I  - - v +  vu), 

p 4  U = - -  3" 5` ' ( I  - - v  + 6v3/5  - -  vS), 

The corresponding conditions are found by writ ing r =  I, 2, 3, �9 �9 �9 in the formula 

of paragraph  5; and we have, 

1 0 / v  iS in fact the modified and reduced eikonal for ,~ single spherical surface, separating 
media "of optical indices /~ and /~', the base-points being coincident at  the centre of curvature of 
the surface. 
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for r ~  I, Z ( J ~ ' P )  ( U / J ) ~  Z J P U  ~- - -  Z J - ~  - -  Z(z/tttt' ) == - - ~ ,  

for r =  2, 2 ( J ~ P ) ~ ( U / J )  ~-  2 j 3 p ~  U =  - -  2 ( U / ~ t ~ s  - -  V) ~ - -  qD'3, 

for  r -  3, Z ( J ~  P ) ~ ( U / J ) =  Z J ~ P a U =  - z ( z / ~ ' ) ~ (  ~ - v + v ~) = - ~r~, 

etc. 

I t  will be remembered that  v ~/~/~'/(/~'--/~)~, and it is seen that  these 

conditions are precisely analogous to the 'Petzval-condition', and that, indeed, ~ 

is the 'Petzval-sum'. 

7- But it is of interest to examine the general case. To this end we 

notice that 
p ( i / e q O p )  - -  q~/eq+20p + (~ - -  2q )pv / eq+lOP+ ~ 

and so we assume, as covering the general case, 

p m  U -~ Ar~, 1/~ 2m-10  + A.~, 21g 2" -~  0 ~ -~ . . . .  + A ~ ,  2 . ~ - 1 / g  ~ 0 ~m-~  , 

and then, by an application of the operator P to each side of this relation, we 

have, for the A-coefficients, the partial differenee equation 

A m +  1, 2p--1 -~- (2 'In - -  .p)2 A m ,  2 p - I  -1- (2  p - -  4m - -  I )  (21) - -  3)  v A m , 2 p - - a .  

Let us write further 

A ~ +  l,~.p-1 = tp (m, p) v v - 1 A ~ +  ,, 1 

and then the partial difference equation for the function ~p(m,p) is 

( 2 ~ -  0"~  (~, p ) =  ( 2 ~ -  p)~ ~ ( , , -  ~ ,p )+  ( 2 p -  4 , , ~ - 0 ( 2 p - 3 ) ~ ( , , ~ - ~ , ~ ) - 0  

Now clearly we have 

and the appropriate 

these conditions, is 

V 2 ( , * , 0 - I ,  and VJ (~, 2) ---- -- ~, 

solution of the difference equation in ~p(m,p), subject to 

~('`i,p) = ( _  ,>-1 r ( 2 ~  - p  + 2) r ( ~ )  v ( 2 .  - 0 
2 r(2,,,) r ( m - p  + 2) [r(p)]-" 

expressed in terms of Gamma-functions. 
3 0 - - 3 6 1 2 2 .  Acta mathematie.a. 67. Impr im~  le 30 s ep t embre  1936. 
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I f  now, in the expression for P~U, we write e = I, 0-~ I, we have 

m 
p m  U =  Am, 1 Z ~) (Tgl - -  I, p)  v p-1 = ~4m, 1 ~'~m (?.'), say ,  

1)=1 

and the corresponding 'invariant' condition is, 

Z (Z/#~tt)2 m--1 Um(?)) ------ ~21.--1 ~---O. 

We have here then a complete generalisation of the 'Petzval-condition': 

indeed, writing m =  I , ~  is the usual 'Petzval-sum'. We have written the 

generalised expression ~2~-1 to indicate that the condition applies to aberrations 

of order 2m- -  I; that is, we have a generalised 'Petzval-sum' for each set of 

aberrations of odd order. And it will be noticed that  each of these conditions 

depends upon the powers of the optical surfaces and upon the indices of the 

media separated by these surfaces, and upon no other quantity at all: and that 

the conditions are very simple in form, and easy of application. 

8. On the i n v a r i a n t  re lat ions  o f  the second class. We have  considered, in 

the preceding paragraph, only those invariant relations which involve the operator 

P alone; but invariant relations are obtainable also from the joint application 

of the operators 0 and P, where, 

0 j~ j ~ , ~ _ _ +  , Obj .+ ~ + I " 0 c ~ "  
0 = ~ a '  and 0--~ J~., ,, J~+1 ,, 0 j~ 0 

' Ogl). 

These operators have to be applied to functions of ~ and 0; and we have 

O a k - - O a ~ . ~ O ~ - - 0  ( ~  - -  2 L z - 1  O0 i~g ' 

0 ~.'z 0 
oi; - - bO' 

0 c~. OCt. 0 2L:~ O0 O-e ' 

where Lz denotes the direction cosine of the ray af ter  incidence upon the surface ~. 

I t  follows then that  

"3 0 I (L~j~.  0 
v~ (L~. J~, n - -  Lz-1J~.  +1, n) 0-0 2 ~ " ' J~  O =  ~ ,., ~ + L ~ - l  J~ +1 ,~) �9 
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Z~ow, for a single application of t he  operator O, we have 

j 20=v;~( j~ . , , __ j~+l ,n )~  0 I 2 j :  ~ ) 0  e 
-2 00 -- ~ (J~''' + ~+~' " 

And therefore, 

This then is an 'invariant' relation, the only one of the second order: and others 

follow immediately in the same manner. 

9. On the semi.invariant relations. The m-invariants arise from an application 

of the operator 

to the general eikonal, where p, q, and r, are any integers such that  q ,~ I; and 

0 I0 ~ 02 0 
0 ~ -  a ,  P ~ 4 0 c O  a Ob. ~, and O7 -----s~a + s + 0-c; 

these variables and operators refer to the system as ~ whole. 

O O 
arise similarly by replacing UT~-: by 0~ '  where 

The s-invariants 

We have also 

0 0 0 0 
o~ 0~'  O~ oa 

and 

; o 
j 2  = (Zl,).-1 2v s Jx, n)' 0a~ 

Je p =- (j'~ P)z 

0 

0 
+ (J~,~ + sJ~+l,,~)~oc ~ 

and, as previously, we apply these operators to the relation 

U / J  = ~_j (U/J)~ + . . .  
;t=l 
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As an example, we may consider the special case obta ined by wri t ing p = o, 

q = I, and r =  I; t ha t  is to say, we deal with aberra t ions  of the second order. 

Since, in our  usual notat ion,  we have 

P U =  --  i/eO 

for  a single spherical surface, we have, by a direct  applicat ion of the preceding 

0 
opera tor  ~. . ,  the  expression 

u~ 

I j $  , 

2 I OJ~ s e~J-7-j J 1 -  {(J,,2-1 + s & , , )  ~ + (Ji, x + sJ~.+i,n) ~} 
~.~1  

the  summat ion  extending t h rou g h o u t  the optical system. The vanishing of this 

expression then  is an example of a 'semi-invariant '  re la t ion;  since s alone is 

involved, and not  m. Other  relat ions may be found  readily in the  same way. 

As ano ther  special case let  us write p----o, q and r being unrestr ic ted,  save 

only tha t  q4( I : fur ther ,  let  us assume tha t  s = I, and tha t  the optical  system 

is thin, so tha t  

= Z J,.. 

Then 

and 

7) . 0 0 0 
r ~ ~J7r + 0-~,i + 0c; = c12 (say) 

(;)r 
(J~ P)q [5 ( U I J ) =  (J~ Pi",~" : ,~ ~2 ( UIJh .  

The operators  P and d are commutat ive,  and we may shew that ,  i f  q =  i, the 

r ight -hand side of this re la t ion is 

7~ 71, 

~.J(r) J~.= f(r) ~J~., 

where f ( r )  is a certain funct ion  of r. The vanishing of this then  for  any value 

of r leads to the 'Petzval-condit ion ' ,  namely,  

~ J ~ .  -~ ~,  z/#F~' = o. 
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The more general case, in which q # I, leads to 

~9, f (r, v~.) J~,, 
).=1 

where here v .... # ~ ' / ( r  #)~, and the vanishing of this leads to a generalisation, 

of a quite different kind, of the Petzval -eondlhon.  

A p p e n d i c e s  t o  P a r t  II. 

i. We have to evaluate the operator P'+6", applied to the eikonal for a 

single spherical surface. The operators P and 6, involving the variables a, b, 

and c, are commutat ive;  and we know tha t  Pq, operating upon the eikonal for  

a single spherical surface, leads to a series of terms such as 8 -~0  -~, where 

v and co are positive integers, and 

8 =  LL ' ,  0 ~'-- t + v z ,  and Z +  2 ( L L ' + b - -  I ) = O .  

Since 6 is a l inear operator, with constant  coefficients, we have 

6 r S - v O  . . . . .  0 ~ a ' 6  r 8 - - "  + r ( J lC~O - ~  " 6 r - 1  8---v .37 . . .  

Now,  with our usual  notation,  

L " = I - a = l  (say), and L ' 2 - - I - c = l '  (say); 
so tha t  

0 0 0 0 0 0 
d=--Oa + Ot~ + Oc O1 + Ob ol '  

and 

Also, if t > I, 
8 = V i i '  0 = - 2 , , ( V h '  + b - -  

where we write 1 = l', after differentiation. 

--- O, 

Now, af ter  pe r fo rming  the various operations indicated above, we have, as 

usual, to write a = b = c = o ,  tha t  is, e-~ I, and 0 = I .  Then, denot ing this  by 

the suffix zero, we have, 

( 6 8 ) o = - - I ,  (6 '~e)0=o for n >  I,  
and 

(6 '~ 0)0----- o, for ~ > o. 
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Further, we have, 
(~r ~-~)0 - -  ~ (~ + i ) ( ~  + r - ~ )  

(~ ~ - ~ ) o  = o 
and 

and these are the results used in paragraph 9. 

2. A certain ambiguity is apt to arise from the use of the phrase ~the 

geometrical aberrations of order n~, in connection with the symmetrical optical 

system, whenever n is greater than unity. Either of two meanings may be 

assigned to this phrase. 

(a) We write the aberration-function q~ (a, fl, 7) in the form 

ao 

r (6, ~, z) : Y, ~,,§ (~, ~, ~), 

where the function ~n(e, fl, Z) is homogeneous, and of degree n, in the variables 

6, fl, and ~,. Now, we may concentrate attention upon the function ~P~+l(a, fl, 7); 

corresponding to the appearance of this function alone there is a displacement 

from the Gaussian focus, upon the paraxial image plane, which we may denote 

by J~,  and which comprises a finite series of terms, homogeneous and of degree 

2n-a t-  I in e (the radius of the exit-pupil) and I;1 (the distance of the Gaussian 

focus from the axis of the optical system). Then we may speak of this dis- 

placement, either as a single group, or else with regard to its several terms, as 

>>the aberration, or aberrations, of order n~>, and this is the method which we 

have followed in the text. 

(b) We may take the general, and complete, aberration-function 

(~, ~, ~,) : ~ ~+~  (~, ~,~) , 

and operate upon this in the manner indicated in the text. Corresponding to the 

appearance of this complete function, consisting of an infinite series of groups of 

terms, there is a displacement from the Gaussian focus, upon the paraxial image 

plane, which we may write ~...!J~. Here each zr comprises a finite series of 
~ = 1  

terms, homogeneous and of degree 2n + I in Q and ](1. And we may speak of 

the group zr as ~>the aberrations of order n>~. 
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The group of terms A~ will not differ qualitatively, either by excess or 

defect, from the group of terms z/~; the aberration curves derived from A~ and 

An are of the same type and number of types. But there is a quantitative 

difference; for the coefficients of corresponding terms, and groups of terms, will 

not be the same. The reason is, of course, that  the expression A~ allows for 

the effec% upon >>the aberrations of order n>>, of the presence of the aberrations 

of lower orders: hence, indeed, the possibility of the balancing of the aberrations 

amongst the various orders. 

These considerations do not affect the analysis of Part  I of  this paper; 

but in Part  I [  we have used certain first approximations. For example, we 

derived the result 

J 2 a ~ J ~ , , a  + 2 J ~ , n J l , ~ - l b  + J~,~.- ic .  

Here a closer approximation would exhibit ai as a series of terms containing 

powers of a, b, and c, involving also the aberrations of the system. But if we 

consider aberrations of any given order, in the absence of those of lower orders, 

then we may legitimately use the first approximations: and accordingly we have 

adopted, in Part  II,  the alternative (a) above. 

P a r t  III. 

i. We proceed now to seek the geometrical implications of the 'invariant' 

and of the 'semi-invariant' relations which have emerged from the investigation 

undertaken in Part  I, and which have been evaluated quantitatively, for the 

general symmetrical system," in Part  II, - -  for a system, that  is to say, the media, 

surfaces and separations of which are supposed given. And, in the first place, 

we change our variables slightly; we write 

a~-lfJ,  2 f l = ~ ,  and 7 : 0 ;  

for these have been used in a detailed examination of the geometrical aberra- 

tions of the symmetrical optical system, to which it is convenient here to make 

reference) In this notation our 'invarianff operators, save for an irrelevant 

multiplying factor, are 

0 ~ 0 3 0 2 ~ 0 and ~ - -  + + - - "  
H =- o~p o0 0 9  ~ ' 0-0 09~ O~p ' 

1 The Aberrations of a Symmeb'ical Optical System: Trans. Camb. Phil. Soc. XXIII. No IX. 
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while the 'semi-invariant' operators are 

0 0 
a n d  b-i " 

In the paper indicated the aberrations are grouped in 'orders', depending 

successively upon orders of small quantities; and their geometrical meanings, and 

corresponding aberration curves, are fully investigated there. I t  is shewn that 

each 'aberration', of each order, falls into one or other of two categories: for 

each aberration belongs either to the S-(spherical)-type, or else to the C-(coma)- 

type. Here then we have a quite different grouping of the aberrations, and 

the two types are sharply differentiated by their possession of various properties. 

For our present purpose we may mention only one such property: namely, that 

for members of the C-type change of focus, from the paraxial image plane, is 

of no advantage, - -  indeed, the aberration displacements are the same upon planes 

equidistant from t h e  paraxial, or Gaussian, image plane. The C-type may be 

named then, in this sense, the 'symmetrical' type. But with aberrations of the 

S-type the matter stands quite otherwise, for, with them, change of focus is of 

advantage, and they may therefore be said to belong to the 'unsymmetrical' 

type. A smaller aberration curve, that  is to say, may be obtained by change of 

focus. Indeed, in the absence of astigmatism, and f o r  a given annulus  o f  the 

exit-pupil,  a point image may be obtained by a suitable change in the position 

of the receiving plane: but, for varying annuli of the exit-pupil, these images 

are distributed along a 'central line', joining the centre of the exit-pupil to the 

Gaussian, or non-aberration, image point. We have then for these higher order 

aberrations, of the S-type, something in some ways akin to the astigmatism 

and curvature of the field of the first order - -  already well-known. 

If, now, we use the Characteristic-function, in place of the Eikonal, we 

have a corresponding Aberration-function, depending upon the variables 0, q% 

and ~p: and any general term of this function may be written 

Ap, q, r OP ~/)q ~/) r, (I) 

while the corresponding aberration displacement, upon the paraxial image plane, 

is given by 1 

y = (o./d), cos  (2 ,. cos  + q), 

H Z = 2 q Ap, q, r (Y1/d) "'p+q (q/d) q+2 r--1 2 r cos ~ q91 sin q~l, 

Trans. Camb. Ph i l  Soc. XXIII .  No. IX. w 3. 
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where the origin of coordinates is the paraxial image point, at distance Y~ from 

the axis of the system, and Q, q~l are the polar coordinates of the point of inter- 

section of the ray with the exit-pupil. 

The A-coefficient here is an aberration coefficient of order p + q + r ~, 

and it is to a series of terms such as (I) that  we apply our operators. 

We consider, in the first place, successive applications of the operator // .  

We notice that  this operator alone is to be applied only to aberration terms 

of an odd order, for which then p + q -r r is equal to an even integer: and it 

follows that  all terms for which q is odd are annihilated by the operator H. 

Now~ even values of q indicate that  we are dealing with aberrations of the 

S-type, for which therefore change of focus is beneficial. Those of our invariant 

relations then which arise from applications of the operator / / a l o n e  - -  and do 

not involve the operator t~ deal with the S-type aberrations. And these 

appear, in the sequel, to be the simpler ones. 

5. Let S be the centre of the exit-pupil, of radius Q, and Q the point of 

insersection of the image plane with the axis S Q of the optical system: let /)1 

. ol Y, 

be the Gaussian image, of coordinates I71, Z1, in the plane QP1, referred to Q 

as origin; so that  QP1 is equal to I71, where we have assumed ZI-~ o; and this 

is secured by a proper choice of axes. Let a ray intersect the pupil-plane in a 

point at distance Q from S, the angular coordinate of this point in the pupil- 

plane being q~l, referred to the radius of the exit-pupil parallel to QPI: and let 

this ray intersect the image plane in a point of coordinates z/Y, J Z ,  referred 

to P1 as origin. Then, if we assume the presence of the S-type of aberration 

alone, we have 
31--36122.  Actamathema~ica, 67. Imprira6 le 27 noveinbre 1936. 
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J Y = kl cos 90l, 

z / Z  = k~ sin 901. 

Here  k l  and k~ depend  upon powers of Q, of Yl, and of cos ~ 901, and a l so  upon 

the aber ra t ion  coefficients; but, if we confine ourselves to suitable groups of 

terms, kl and k~ will be homogeneous  in Q, and also in Y1. 

Two rays for  which 90t = o, or z ,  which therefore  are axial rays, intersect  

in a point  upon the centra l  line SPj :  and also two rays for  which 901 = +--z/2 

intersect  in a (different) point  upon this  cent ra l  line. Other  rays  do not, in 

general,  in tersect  this centra l  line at  all, and we have then  something akin to 

the  usual a n d  well-known first order  ast igmatism. But  if kl = k2 = k then all 

rays fi'om a given annulus of  the exit-pupil intersect  in a point  upon this  central  

l ine; but  the  position of this point  depends upon the value of Q. W e  have then, 

corresponding to the  whole of the exit-pupil, a series of such points distr ibuted 

along the cent ra l  line S P t ,  something af te r  the na ture  of the e lementary  spherical 

aberrat ion.  Indeed  the distance x, f rom the plane QP1, of the point  corresponding 

to a given value of Q is x = kd/Q, where d is equal to the (reduced, and modified) 

distance S Q. If ,  in addit ion,  k = o, all such points coincide with P~, and we 

have a flat field, as far  as this group of terms is concerned.  

3. Le t  us, in the  first place, consider the first order  aberrat ions.  We deal 

then  with a homogeneous  quadrat ic  funct ion  of the  variables 0, 90, and ~p, and 

a single applicat ion of our  opera tor  H annihi lates  all terms except  

�9 .. + a s ~ O +  an9 2 +  ... 

and, for  these,  gives the expression 

The  corresponding aberra t ion displacements are 

d3A  Y =  2 Y~ Q(a:~ + 4a4) cos 901, 

d ~ A Z --  2 Y~ e (a~) sin 901, 
or, 

d ~ ~ Y = 2 Y~ e (a3 - -  2 a~ + 6 a4) cos ~ ,  

d ~ J Z = 2 Y ~ 0 ( a ~ - 2 a ~ +  2a4) sin 90t. 

Ast igmatism, of this order,  is absent  if a 4 ~ o, and then  we have 
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d ~ ,J  Y =: 2 Y~ q a3 cos q~l, 

d s ,~t Z = 2 Y~ # as sin 991. 

A l l  rays therefore  pass t h rough  a point  at  distance x f rom the  Gaussian image 

plane, where 
x = 2as ( Y J d )  ~. 

The aggregate  of all such points, for  vary ing  object  points, gives a surface of 

revolut ion about  the axis of the system, tha t  is to say, a curved field. Moreover,  

the condi t ion for  the flatness of this field is a s ~ o, ori since as t igmat ism is 

assumed absent,  a 8 -  2 a~ ~ o. T h a t  is, f rom paragraph  6, P a r t  I I ,  the  condi t ion is 

~a = ~ z / ~ '  ~ o ,  

in the usual  notat ion.  This is t h e  usual 'Petzval 'condi t ion ' ,  and is well-known: 

we give it  here  because a single infinity of exactly analogus results  follow in 

precisely the same manner .  

4. W e  proceed now to seek a double appl icat ion of the opera tor  / / ,  and 

we deal therefore  with te rms  of the  fou r th  order  in our  variables O, 9,  and V2: 

t ha t  is, we deal with the  th ird  order  aberra t ions .  The appropr ia te  terms of the  

aberra t ion-funct ion  are the  following, namely,  

. . .  + C70~)  ~ + C8~q9~) + e99  ~ + . . .  

An applicat ion of the opera tor  0 ~ - 0 # -  0 9  ~] to this  expression leads to  

c 7 - -  c s + 6 eg, 

apar t  f rom an i r re levant  mul t ip ly ing factor.  This then  is our  par t icular  ' invar iant '  

funct ion,  of the  aberra t ion  coefficients, of the  th i rd  order. 

Now, the corresponding displacement  upon the  Gaussian image 1 plane is 

given by 

d 7 J y = 4 Q a  y ~ { ( 2 e  s + 8e9) cos u91 + 2 c  s + e7} cos 91, 

d T z t Z =  4 q  s Y~ {2 Cs cos ~ 91 + 07} sin 91. 

i f  the  ast igmatic  effects, for  this group of terms,  be absent  we mus t  have e s -~ o, 

and c 9 ~- o; and then,  

1 Trans. Camb. Phil. Soc. XXIII. No. IX. w I7. 
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d r d Y =  4Q8 y~ c7 cosg~, 

d T ~ Z  = 4q3 y ,  c7 sin ~1. 

Rays therefore, from a given amlulus of the exit-pupil, meet in a point at 

distance x from the Gaussian image plane, given by 

x d  6 = 4 Q  ~ Y~ c7. 

This relation gives the position of the point P, upon the 'central-line', and it 

will b e  no~iced that the position of P depends upon the annulus of the exit- 

pupil chosen. Corresponding, then, to the complete exit-pupil we have a series 

of points distributed along the 'central-line', that  is to say, we have a sphericM 

aberration effect. And these points will all coincide with the Gaussian image/)1,  

giving a flat field for this order and group of terms, only if c 7 ~ o; t h a t  is, in 

the absence of astigmatism, if 

cT - -  cs + 6 co - ~  o .  

But this, arising from a double application of the operator H, is from 

paragraph 6, Par t  II,  the condition ~ = o: namely, we have 

~ .  = z ( ~ l m , ' ) "  ( .  - ~ ) =  o .  

where v ~--/~'/(/~'-/~)", in the usual notation. 

5. I t  is evident now that we have a series of conditions ~1, ~'8, ~6, 

�9 �9 �9 ~2n-1, �9 �9 corresponding to aberrations of orders I, 3, 5, . .  �9 ( 2 n - -  I ) , . . . ,  

given by 
~ ,  -= z (~ /~ ' )  = o ,  

~ .  - =  z ( ~ / , ~ ' ) "  (~ - v) -- o .  

~ - z ( ~ / ~ ' ) ~ ( ~  - v + v ~) = o ,  

�9 ~ ~ . . . . .  �9 . . . .  �9 �9 * 

~ . - 1  =- z (~ /m~' )  ~ " - 1  ~ (v) = o ,  

where v ~ i ~ l ~ ' / ( l ~ ' - - ~ ) ~ ,  and an(v) is the function of paragraph 7, Par t  II.  

These conditions are in every way analogous to the 'Petzval-condition', and, 

indeed, the 'Petzval-condition' is the first and simplest of them. They form, then, 

in the aggregate, a complete generalisation of this well-known 'Petzval-condition'. 

And the geometrical implication of any one of them is that  its satisfaction, in 
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the absence of astigmatism (of a generallsed type), involves *flatness of field* for 

the particular order of aberration indicated. Moreover, as with the 'Petzval- 

condition', these conditions are, 

I. independent of the positions of the object and of the image planes; 

z. similarly independent of the positions of the pupil-planes of the optical system; 

3. independent of the separations of the component surfaces of the optical 

system ; 

4. particularly simple in form; 

5. dependent only upon the powers of the separate surfaces, and upon the 

indices of the media between these surfaces. 

They form then the complete class of optical conditions to which the 

'Petzval-sum' belongs; of which, indeed, this sum is the simplest member and 

the only one hitherto known. 

6. We proceed to consider the 'invariant' relations of the second class, 

those, namely, which arise from joint applications of the two operators H and 

t2: and we know that there are many more of these than of the simpler type 

arising from applications of H alone. Moreover, since 

O 0 0 ~---- ~-~ + - - + - -  
z O~ O~p' 

the resulting relations between the aberration-coefficients involve coefficients both 

of the C-(coma)-type, and also those of the S-(spherical)-type: and, in conse- 

quence, the aberration displacements, d Y and J Z, up0n the Gaussian image 

plane, are homogeneous, for any given order of aberration, in Y1 and Q 

together, instead of being homogeneous in Y~ and Q s e p a r a t e l y -  as with the 

relations arising from applications of the operator H alone. We deal here, then, 

with aberrations which do not naturally fall together into a group, in the ordi- 

nary investigations. Further, the resulting expressions, or conditions for freedom 

from these aberrations, while being independent of the positions of the pupil- 

planes and  of the object-image planes, yet involve the separations of the optical 

surfaces, in addition to the powers of these surfaces, and the indices of the 

media between them. We derive optical conditions, then, which are not so simple 

in form as those of the preceding paragraph, while ye t being very simple when 

compared with the usual conditions. 
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As the simplest example we consider the single !invariant' relation associated 

with the aberrations of the second order, which arises from an application of 

the operator ~2 H.  That is to say, we apply these operators to the relevant 

terms of the homogeneous cubic in 0, 9, and ~p, which appears in the aberration- 

function. These terms are 

... + bgO~p + b409 ~ + b509~p + bsOg' ~ + b793 + bsg*~p + ... 

and the opera$or is 

leading to 

2 _0__ 0 ~ 0 ~ 

2 - -  b,) + 2 (b, - 6 @ + 2 ( b , - -  

The first and last brackets involve aberrations of the S-type and the second 

bracket an aberration of the C-type. 

The resulting displacements upon the paraxial image plane is given by 1 

d b J Y = 4 Q s Y ~ ( z b  scos ~91+  2 b s + b 6 )  cosg,-4-2Q~Y~{b~(2cos ~ 9 1 +  I ) +  

+ 12 bTcos~gz} + 2e  Y~ (ba + 4b,)cos91,  

d 6 J Z = 4 Q8 Y~I (2 bs cos ~ 991 + b,;) sin 9~ + 4 0 ~ Y~ b5 cos 9t sin 91 + 2 q Y~ b s sin 91. 

.For a given annulus of the exit-pupil a point image is obtained only if 

ba = b5 = b7 = b s -  o. And then this image is at distance x from the paraxial 

image plane, given by 

x d' = 2 (b8 Y~I + 2 b~ d)  Y~, 

that  is to say, we have  for varying annuli of the exiVpupil, a point image 

moving along the central-line. If  now we apply our condition, which is 

or, 
b s -4- b 6 ~ o, 

~ J z  (v~--I) j OJ~,~ ~--2J.~J~+ln t ==0, 

the average range of the loci is 

1 Trans. Camb. Phil. Soc. XXIII. :No IX. w167 7, 8, 9. 
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P 

' f  
0 

+ 2 b~ r Y~ 2 ~ r d Q = 2 (b~ Y~ + b~ e ~) Y'~ = 2 b~ ( Y~ - -  e ~) r l  ; 

and this appears to be the best that  can be done with this aberration, as regards 

flatness of field. 

7. On the semi-invariant relations. The semi-invariant aberration groups 

0 
arise from applications of the operators / /  and s together with either ~-~, or 

0 
c9~p' of which, as usual, the: operator / /  must be applied at least once. The 

m-invariants, independent of the positions of the object-image planes, arise from 

0 
I t  is evident therefore tha t  there is here a wide field for  investigation; we 

00" 

deal here however only with a few simple cases. 

As perhaps the simplest and most immediately interesting example we 

apply the operator 

to the general aberration-function for aberrations of order n; namely, to terms 

such as 
Ap qr 8P ~o q ~)r, 

where, as is clear, we must suppose that  p + q + r =  n + I.  

I f  n ~ I we are led to the invariant relation of the first order, the usual 

'Petzval-sum', concerned therefore with field curvature, in the absence of astig- 

matism. In the general case, in which n > I, we have a semi-invariant relation, 

the geometrical implications of which, however, are similar to those of the 

simpler case. 

In  general, the displacement upon the Gaussian image plane is given by 1 

d ~n+l d Z = 2 • ~f21n (An, 0,1 -~ 4 A n - l ,  ~, o) cos  991, 

d ~'+1 ,d Z ~- 2 Q y~n An, o, 1 sin 901. 

I t  is evident then that  we are dealing with something precisely similar to the 

curvature of the field and astigmatism of the first order, - -  as in paragraph 5, 

1 Trans. Camb. Phil. Soc. XXIII. No IX. w 27. 
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depending however upon Y~'~ instead of upon Y~',. If  An-l, 2 , 0  = 0 all rays, from 

all annul i  of the exit-pupil, pass through a point upon the 'central-line', and we 

have then, for the aggregate of all such points, a curved field, depending upon 

the coefficient A~,0, ~, which becomes flat if A,,0,1-----o. All this is exactly simi- 

lar to the well-known first order case. I f  n =  I, and in the absence of astig- 

matism, A~, 0, ~ is the usual 'Petzval-sum', ~ ;  while, if n > t, this coefficient depends 

upon the positions of the pupil planes alone, and not upon the positions Qf the 

object-image planes. The aberrations of higher orders, then, which resemble 

exactly the curvature of the field of the first order, differ from this latter in that  

they depend, as regards their vanishing, upon the position of the pupil planes. 

I f  ~ = 2, we are dealing with pure curvature of the field of the second 
order, and ~he condition for the absence of this, in the absence of astigmatism, 

th'e condition, that  is to say, that  in the absence of pure astigmatism of the 

second order a flat field should be reproduced as flat, as far as these second 

order terms are considered, is the condition of paragraph 9, Part  I I :  namely, 

the vanishing of the expression 

~.-~ +sJ~.,,,)~ + (dl,~ + sJa+a,.)~}], 

where v~ = tt~ tt;.-1/(tt~ -- ff~-l) ~. 

But a particular case of some importance arises. Let us write s : I, that  

is, let us assume the pupil planes of the system to have associated with them 

the magnification + I: further, let us assume the optical system to be thin. 
Then, as shewn in paragraph 9, Par t  II,  all the semi-invariant conditions, for 

aberrations of all orders, reduce to the usual 'Petzval-condition' ~1 ~ ~x/t t t  t' =- o. 

8. Conclusion. Each geometrical aberration of the symmetrical optical 

system, of whatever 'order', is found to fall into one or other of three categories, 

and the classification here is altogether differen~ from that  commonly adopted, 

depending, as this latter does, upon the idea of small quantities of successive 

orders. There is first the 'invariant' category. The conditions for the vanishing 

of the aberrations belonging to this category are entirely independent of the 

positions of the object-image planes, and of the pupil-planes chosen; and, for 

the first sub-class of the category( independent also of the separations of the 

optical surfaces composing the system. This subclass resembles exactly the well- 

known 'Petzval-sum'. The second sub-class forms a new type of condition: The 
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second category is that  of the 'semi-invariant' aberrations. Here the conditions 

for the freedom from the aberrations involve either the positions of the object- 

image planes, or the positions of the pupil-planes of the system; but not both 

of these quantities. And finally, there is the third category, to which belong 

entirely unrestricted aberrations - -  the vanishing of which depends upon all the 

quantities mentioned above. 

The number of the aberrations, of each order, falling in each of these 

categories is found; and the precise conditions associated with each, for any 

given general symmetrical optical system, are investigated. Thus, the general 

condition for freedom from aberrations of the first sub-class of the 'invariant' 

category is 
n 

~ 2  *'--1 = Z (~/~ ~[ff)2,--1 nV (V) = O, 
).=1 

where z is the power of the optical surface separating media of indices /x and 

~', and v ~- t~ t~'/(g' --  t~) ~: the summation is taken throughout the system. ~ ,  (v) 

is a function the general form of which is found. In particular, the first few 

values are given by 

= z d ) ,  = z (z  - v ) ,  

= - v + 

Thus ~1 is the usual form of the 'Petzval-condition'. And, in the aggre- 

gate, these conditions form a complete generalisation of the 'Petzval-condition'. 

I t  will be seen that there is just one condition associated with every set of 

aberrations of odd order. 

The precise forms of the conditions associated wi th  the second sub-class of 

the 'invariant' category are found, and also those associated with the 'semi- 

invariant' category; and this for the general symmetrical optical system. 

The satisfaction of the well-known 'Petzval-condition' is associated with a 

certain geometrical simplicity; for there is thereby ensured that, in the absence 

of astigmatism, the optical system shall reproduce a flat field. But this applies 

only to aberrat ions of the first 'order', as commonly presented. In this paper, 

the satisfaction of the conditions associated with the first sub-class of the 

'invariant' category is shewn to have a similar implication with regard to the 

aberrations of higher 'orders'; for the satisfaction of each of these implies 
3~--36122. Acta mathematica. 67. Irnprim4 le 27 novembre 1936 
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flatness of field, in the absence of (generalised) astigmatism, for the particular 

'order' contemplated. This sub-class of the 'invariant' relations is, then, a 

complete generalisation of the 'Petzval-condition', alike with regard to the form 

of the condition, and with regard to the geometrical implications of the 

condition. 

The geometrical meanings associated with the second sub-class of the 

'invariant' category, and with the 'semi-invariant' category, are also investigated. 

And, in particular, it appears that for thin systems, the pupil-planes of which 

are at magnification + I, the usual form of the 'Petzval-condition' emerges. 


