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Introduction. The primary object of this paper is to obtain existence
theorems for the abstract completely integrable® differential equation

d:f (@) = F(x, flx), §),

where the left member is the Fréchet differential® of f(z) with increment £,
and the ranges and domains of the functions involved are in Banach spaces.*
By a generalization of the well known method of successive approximations and
the use of most of the known and several new properties of abstract differentials
and integrals, we prove two main theorems, one local in character and the other
‘in the large’, by means of which we obtain new existence theorems for Pfaffian
differential equations in Hilbert space and the well-known space of continuous
functions, and also a new existence theorem for abstract implicit functions.
Kerner's recent theorem®, in which F(x, f(x), £) is independent of f(x), is an
immediate corollary of the first main theorem. By specializing the Banach spaces,
we obtain several of the recent improvements in the theory of the classical

! Presented to the Amer. Math. Soc. (1934). Cf. Bull. Amer. Math. Soc., 40, 530 (1934).

? The condition of complete integrability (the premise in (ii) of Theorem I) is suggested by
a theorem of Kerner on the symmetry in the increments of a repeated Fréchet differential; it is
definitely a necessary condition for the existence of the solution in Theorem II.

3 M. FRECHET, Annales Sc. Ec. Norm. Sup., t. 42, 293—323 (1925). Sce also T. H. HiLDE-
BRANT and I. M. GRAVES, Trans. Amer. Math. Soec., 29 (1927).

* 8. BANACH, Fund. Math.,, 3, 133—181 (1922). See also his book, Théorie des opérations
linéaires, (1932). A Banach space is briefly a complete normed vector space closed under multi-
plication by real numbers.

® M. KERNER, Annals of Math, (1933).
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Pfaffian systems due to Niklibore, Nikodym, and others, as well as the theorem
of Kerner for abstractly valued functions of a real variable. Finally, an aplica-
tion of the main theorems to differential equations of the second order is outlined,
and a few indications are given of related outstanding problems in abstract
analysis.

Most of the necessary notations and known results in the abstract dif-
ferential and integral calculus are collected in section 1. The first main theorem
is proved in section 2, and its special cases are contained in section 3. Section
4 contains the second main theorem. The existence theorems for Pfaffian dif-
ferential equations in Hilbert space, function space, and certain normed rings,
including a Volterra ring of permutable functions, are given in section 5. In
section 6 the theorem on abstract implicit functions is proved by means of the
first main theorem and a lemma on the differentiability with respect to a para-
meter of the inverse of a solvable linear function.

1. Definitions and Known Results.

Let R be the real number system,
in which & d are positive numbers,
n is a non-megative integer,
and ¢ is any non-negative integer =< #.
Let E; be a Banach space, that is, a complete normed linear space closed
under multiplication by elements in R; let
i, & be elements in F;,
and let |{z;| be the norm of x;.
In each of the immediately following definitions, F(x, ... x) is in E, for
the values of the arguments considered.

Def 1.1 JE:EZF(xlxn) is Floy, + & ... 2n+ &) — Flz, ... x).

Def. 1.2 Flz, ... x,) is additive in x, ... x, if and only if for any w;, &

St

flz:F(xl coox)=FE ... &)
Def. 1.3 F(z, ... x) is continuous tn =z, ...z, if and only if for any &
some ¢ exists such that for any &

max [&] < ¢ implies |4 P Flx, ... z)l <e.

n
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Def. 1.4 F(x, ... x,) is linear in x, ...z, if and only if it is additive in
Zy ...%n, and continuous in x, ... x, for x;=o0. Here, as in all the following,
o is the zero of R or E; according to the context.

Def. 1.6 d;‘f: F(x, ...z, the differential of F(x; ... @) tn z, ... 20 with
inerements & ... &, is in E, for any &;, linear in &, ... £, and for any ¢ some
d exists such that for any &, wax & < J implies

AP ) —dy P Flwy @) < e max (&

It is easily shown that the differential is unique if it exists.

Def. 1.6 Flz, ... ) is diflerentiable in a, ...y if and only if d% ¥ Fla, ... )
exists. ' '

Definitions of continuity and differentiability equivalent to those given
above are obtained when max || is replaced by any function ¢(§) on E; ... E,
to non-negative R, with the property that for some positive «, b, ¢ in R

a max | &] < (&) < b max | &

for any & such that max|&|< e This will be evident from the two simple
propositions which follow, in which (& ...£) and z(¢) are functions to non-
negative R, on F, ... E, and on positive R respectively.

A, o5 ... 5)<e if max 1&i < z(e) implies
o ... G <e if o(&:) < aw(s),
and  off ... E) < if o(&) < ={e) implies
o, .- &) < if max 5] < , (o).
B. o, ... &) < e max | & of max &l < z(e) implies
ot B)<eelt) i els) <ar(?),
and ol ... &) < eolt) if o(&) < zle) implies

o(& ... &) < e max |&l of max & < %z(b €).

Evidently max|& - is an instance of ¢(%), with a <1 <5, and for any
positive ¢ in R

. I n 1
— e e Lt
erlE) =1 D&M
li-l '
10—38808. Acta mathematica. 68. Imprimé le 15 mars 1937,
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1
is an instance of ¢(&), with @ <1 and n* <b. More complicated instances are

easily constructed. ¢,(§) and ¢,(£;) have sometimes been used in defining .con-
tinuity and differentiability, but, since the results do not depend on the choice
of ¢(&), we have preferred the simpler function max |&;".

The derivative and Riemann integral of a function on R to F, are familiar

notions, but for completeness we give their definitions here. ¢, 7, #, % are in R.

Def. 1.7 For some d, let p(z) be in E, for |z —t| < 6. Then %p(t), the

derivative of p(t) with respect to t, is in E,, and for any ¢ some d exists such
that for any =
|z] < d implies “ A p(t) — r%p({)u <e|7].

{dp(?)
| dt
in Def. 1.8. Comparing definitions 1.7 and 1.5, we see that if either one of

We shall write y,p(0) for } , the ¢ being a mere mark, like the ¢
t=0

the differential of p(f) and the derivative of p(f) exists, so does the other, and

d.p(t) =’t—(%p(t).

Def. 1.8 Let @, b be in R. If a < b, let 4, = satisfy
a=t1<t2< oL tp=0"bband G <1 =ty for k=1,2,...,m — 1,

where m is a positive integer, evidently uniquely determined by the function ?.
Let p(f) be in Ey fora<t<bora=t=>b or a=1¢=b, according as a < b,

a=b, a >b. Then
b

fp(v) da,

a

the Riemann integral of plo) wn ¢ from a to b, is in E, and satisfies
1) if a < b, then for any ¢ some § exists such that for any #;, =
max (fe+1 — &) < ¢ implies
1sk=m—1
4

! m—1
(s — thple) = [ 0o <

k=1

. a
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2) if a=b, then
b

f plo)ds = o;

a

j?@dﬂ: —-fﬂp(a)do.

It is easily shown that the integral is unique if it exists.

3) if @ > b, then

We shall frequently require the following theorems, proofs of which will
be found in the papers indicated. In each theorem involving F(z, ... x,) the
function is in E, for the values of the arguments considered.

Theorem 1.1 If F(x,...x,) s differentiable ©n x, ... za, then for any &
voF(x, + 6k ... xn + 0&) exists equal to*

& B F (... m).

R

Theorem 1.2 Let 7, ... 7. be any permutation of x, ... %, and v, ... vy the
same permutation of & ... &, so that 9, = xr, and v;=&,. Let [; be the zero m

Ey. If Flx,...xn) s differentiable in z, ... x., then it is differentiable in
7 ... M and’

LR — MMM
dvl...v,-F(xl"'x‘n)"dvl...vicﬁl...;nF(”x“'x")'

Theorem 1.3 Let Gi= Gi(x, ... xs) be on E, ... E, to E;. If F(G, ... Gy)
is differentiable in G, ... Gy, and for any © Gi(x, . .. ) ts differentiable in x, . . . Zn,
then F(Gy (xy ... 2n) ... Gulz, ... ) 25 differentiable in x, . . . xn, and

A PF(Gylwy @) Gulwy . m))=dg P F(G .. Ga),

where!
Hy=dg " Gilay . .. o).

Theorem 1.4 Let 1 be en E;. If for some J and any n;, E such that

max {9 — x|l <0, Fly, ...um) s differentiable in v, ... 7, lnear tn nis1 ... 7,
1=j=i

and

! M. FRECHET, Ann. Se. Ec. Normale, loe. cit.
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d’-h - 'é;'F(/,}l “ee 1]71)

S1..

is continuous in 1, ... 7;, then F(x, ... xn) is differentiable’ in z, ... n.

Now let a, b, 7, s, t be in R, and suppose a < b.

Theorem 1.5 Let p(f) be in E, for a<t<b. If p(t) is continuous in t for

a<t=<ph, then
f plo)do

a
exists.®

Theorem 1.6 For some 6, let p(r, t) be in E, for |r —s|<d anda <t =<b.
If pls, §) s continwous in s, t for a <t <10, then

b

fp(s, o)do

a

28 continuous n’ s.

Theorem 1.7 Let p(t) be in E, for a<t=<b. If g—zp(t) exists continuous in

t for a<t=<b, then*
b

20) = ple) = [ Zoploldo

. d .
Theorem 1.8 Suppose that for some 6, p(r, t) s in E, and ar plr, t) exists
continuous in r, t for |r —s|< 6 and a <t =<"b. Then the integrals

b

b
d d
d—sfp(s, o)da, fd—sp(s, o)do

a

exist, are continuous in s, and are equal.’

! A. D. MicHAL, Annali di Matematica (1936).
V. ELcONIN, Thesis (Calif. Inst. of Tech., 1937).
® L. M. GRAVES, Trans. of Amer. Math. Soc., vol. 29 (1927), pp. 163—177. Cf. also M. KER-
NER, Prace Matematyezno-Fizyczne, vol. XL (1932), pp. 47—67.
? V. ELCONIN, loc. cit.
* M. KERNER, Prace Mat.-Fiz., loc. cit. See also GRAVES, loc. cit.
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In this section no use has been made of the completeness of E,, £, ..., L,
and that of E; is needed only in the proofs of theorems 1.5, 1.6, 1.7 and 1. 8.

Special definitions and notations will be given when necessary, but if the
contrary is not explicitly indicated, the symbolism of this section will apply
throughout the paper.

2. The Differential Equation dff(x) = F(x, f, &).

In this section E, I are Banach spaces,

x, u, § 2, { are in E,
Y, v, 7 are in 3,
a, b, ¢, g are positive in R,

m is a non-negative integer in R

and @(x) is any function on E to 3. The main results of the section are as-
sembled in '

Theorem 1. For any 2, y, 2, § n such that |z —u| < a and ly —v|l < b,
let F(x, y, 2) be tn 3, linear in 2, and such that

Gz, y, 2, § N=d5 (v, 2)
exists, continuous tn z, y; and for |x —u| <a and any m, let

Jfolx) be v

and let fmi1(x) be v + fF(u + o(x — ), fulu + olx — u)), € — u)do. Then

1) For some ¢ < a and any x such that jx — uj < ¢,
JSulx) exists and | fu(x) —v| < b.
2) For any such c: if
1G(, y, 2, o, nil =gzl
Sor some g and dny x, Y, 2, 1. such that jx —u| <c and |jx — v||< b, then

(i) Sfle) = lim fn(x) exists for jz —u|<c;

M= D

(11) G(x, Y, &, §) F(xa Y, E))—; G(.'Z, Y, ga z, 111(1"’ Y, Z))
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Jor any x, y, 2, § such that iz —ui <c and |y — vi<0b implies'
Sflu)=v
If@) —vi=<b
dif(@)=F(z, f, §
& dif(x)= G, f, & 2, F(z, f, 2)

Jor any x, £ z such that ix —uy < c;
(i) it Ou)=uv,

|Ox)—v|=<?,

d; 0 (x)=F(x, @, §),

Jor any x, § such that |x — u| < ¢, then for |z —u|<ec

Progf. To simplify the notations we assume % = o0, v =0, but the argu-

ment will be valid for any w, v; or it may be shown that the theorem is true
if true for u=o0, v=o.

Tt is well known that a function is continuous if it is differentiable. Hence
for |z <a and |y|<b, F(x, y, 2) is continuous in z, y for any z; and since
it is linear in z by hypothesis, we conclude, by theorems due to Kerner?, that

(2. 1) F(z, y, 2) is continuous in z, y, 2z if |z <a and ||y <},
and for some positive p, ¢, » in R such that p <a and ¢<1b
(2.2) | F(x, g, 2| <rle) it |z <p and [y|=q.
Let p, ¢, r be any such numbers, and suppose ¢ = min. (p, %) Then |z| <e¢
implies: if fn(sz) exists continuous in s and
fmlszl<b for o=<s=<1,

then by (2. 1) and the continuity of a composite function formed of continuous
functions, F'(sox, fn(sox), sx) is continuous in s, ¢ for 0 <s, 0 < 1;

! The preceding identity is the condition of complete integrability for the differential equation
&f@=F, f, &
? M. KERNER, Studia Mathematica, vol. I1II (1931) pp. 156—162; Annals of Math., loc. cit.
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fm+1(sx)=fF(sax, Julsox), sx)do

exists continuous in s, by theorems 1.5, 1.6; and

o) < orlel < aq <.
But
 film)=o it 'zl<c=<a.

Hence by induction the first conclusion of the theorem is established, with

c=min( , g)-
r

Now let ¢ have any value =<ga for which conclusion 1) holds; let s, ¢
satisfy 0 <s, t <1, and suppose z, £ such that |sx + t§| <¢ for any s, £. By
an induction similar to the one just completed, it follows that for any m

(2.3) Sulsz + t&) is continuous in s, ¢, and | fu(sz + t&)| < b.

Hence writing » = sx + t§ and using theorems 1.1, 1.2, 1.7,
L s fm+1(”) _fM(”)
- f f @09, (1 — 1) fuus(09) + 7 fal0s), 7, 0, fonlo¥) — fns(o®)dadr,
[L ]

and, by the premise in conclusion 2),

(2. 4) | fual) = )| < g9 f | (@) = famalo¥) | do.

But by (2.1) the function | F(o», o, »)| is continuous in s, ¢, ¢ for 0 <o =< 1.
Hence for some positive p in R

"Flov, 0, v)|<p foro<s, t 6 <1,
and

) =)= it f| (v, 0, »)lds < p.
By induction we obtain for any m

.3 feal) = ful) | < p 92" < p IVl




80 A. D. Michal and V. Elconin.

from which

(2.6) S )= lim f(») exists,
and
(2. 7) Smlsz + t§) converges to f(sz + {§) uniformly in s, ¢

By (2.3), (2.7), and the continuity of the limit of a uniformly convergent

sequence of continuous functions,
(2.8) F(sx + t&) is continuous in s, ¢,

and
Sflsx + tEI<b.

Therefore by theorem 1. 3

1

(2. 0) f Flov, flo»), )do exists,

0
The argument leading to (2. 4) shows that
Fly, ful), 2) — Fly, f0), 2l < glzl| fal) — f0)1,
and by (2.7)
(2. 10) F (v, fu(¥), ¥) converges to F(», f(»), ») uniformly in s, ¢

In particular F(ov, fn(ov), ») converges to F(av, f(ov), ») uniformly in ¢ for
0=¢=1; from which, by (2.9) and a well known theorem on the integral of
a uniformly convergent sequence of integrable functions’

"}_I;II:D /.F(av, JSmlav), v)da=fF(m', flav), 1/)_ dao.
This with (2:6) gives
(2. 11) flz)= f Flox, flo2), @)do

for any z such that |zl < e.
Let Oz) be any solution of this integral equation such that | O(z)| < b
for |z| <e¢. Then by an easy induction

! M. KERNER, Prace Mat.-Fiz., loc. cit.
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1616) — fule)! < | 0| L0 < p 0,
and

(2. 12) O(z) = f(x) for |z| < ec.

From (2. 6) conclusion (i) of the theorem follows immediately.
From (2. 8) and (2. 11),

(2. 13) flo)=o0 and | @) <b for || <,

which contains the first two parts of conclusion (ii), the remainder of which is
obtained as follows. Suppose that x| < a and |y||<b. Then G(x, ¥, 2, 0, 7)
is linear in 2, since it is evidently additive in 2, and it is continuous in 2z at
z=0 by

|G (=, 9, 2, o, )| < glz||x].

Moreover G(z, ¥, 2, §, 0) is linear in 2, since by the premise in conclusion (ii),
it is equal to

Gz, 9, § 2, 0) + G(x, 9, & o, Flz, y, 2)) — Gz, y, 2, o, Flz, y, §),
each term of which is linear in 2. Hence
(2. 14) Gz, y, 2, & %) is linear in z;

and since it is by definition linear in §, 7, a double application of one of Ker-
ner’s theorems' gives

(2. 18) Gz, y, 2, § 7) is continuous in =z, ¥, 2, § 7.

Also from (2.14), and theorems 1.2, 1.4 Flx, y, 2) is differentiable in =,
Y, &, and

(2. 16) dentFlw, y, 2) =F(x, y, ) + Gz, y, 2, & n).
Now suppose z, £ such that |sz + t§|<e¢ for 0<s t<1, and write
v=sx+t5 If for o<s t<1, %fm(v) exists continuous in s, ¢, then, by (2. 13),

(2. 16), and theorems 1.1, 1.2, 1.3, 0<s, f, 6 < I implies

%F(av, Fulov), »)

exists continuous in s, ¢, ¢, and equal to

! M. KERNER, Annals of Math., loc. cit.
11—36808. Acta mathemats 68. Imprimé Je 15 mars 1937,
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Flov, fuley), & + G (o‘v, Julov), v, ag,%fm (Gv));
and by theorem 1.8

ditfm-i—l(i’) exists equal to

1
d
ZS—tF(m,’ fmlov), ») do.

0

But 0 <s, {1 implies dilt Jo@)=o0. Hence by induction
for any m, 0 <s, t=1 implies

d . . .
T Jm+1(») exists, continuous in s, ¢, and equal to

(2.17)

1 1

[F(av, fu (o), E)do +fG(av, Sulov), v, d§, %fm(w))da.

».
0 0

Now suppose |z <e¢. By (2.17)

Yo fass( + 0F) = f Flsw, fulsa), Hds

1

+fsyaF(sac+0§, S lsz + &), x)ds.

0

The last integral equals

1

fs—d%F(sx, Fulsa), Bds + fsya{F(sx + 0F, falsz + of), @

— F(sz + ox, fulsz + ox), E)}ds.

Integrating the first of these by parts:
vofmi1(x + 68) = F(z, fu(x), &

+ fsy.,{F(.s-x + 6§, fu(sz + 08), ) — F(sx + ox, Fulsz + ox), B} ds.

(]



Completely Integrable Differential Equations in Abstract Spaces. 83

Hence

%’f’”b‘i‘l(x + G$)=F($, fm(x), x);
and

Qlﬂfm+1 (x + 0'5) = F(:L’, fm(x), §) + fs{G(sx, fm(SQS), Z, ga }’o'fm(sx + O-g))

0

— G sz, fulsz), § =, yofulsz + oz))} ds = F(z, fu(2), §)

1

+ fs{G(sx, Sulsz), z, 0, Yo fm (s + 68) — Flsx, fulsx), §)

0

— G (sz, fulsz), &, 0, Flsz, fu—i(sx), x) — Flsz, fulsx), x)} ds,
since

G(sx, fm(sx)’ €, §1 P'(Sx7 fm(sx), g))
_G(Sx7 fM(Sx)a g: X, F(.S‘.’I,', fm(sx), x)) =0.
For m > o, let

Am(.CU, §)=76fm(33 + 05)'—'F(x1 fm(x), §)1
Bm(x:’ §)=F(9§', fm—l(x)’ §) - F(x> fm(x)a g)

and

Then

1

Apti(x, § = Bpiilz, &) + f{G(sx, Jm(sx), 2, 0, An(sz, &)

— G(sx, fulsz), &, 0, Bn(sz, sx))} ds.

Let & be such that |z + t&| <c¢ for o <{ =<1, and write v=2x + t{. The argu-
ment leading to (2.4) shows that for o < ¢< 1:

1Bu (v, ) < g6} 1.fm (o) — Sma O],

and as in (2. 5), for some positive » in R,

Bl o

|Bu (v, §)| < op?. = <=

where g =cpq and r=c + |&]; and
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1

[Anir v, 81 < 797 + g7 f U dn(sv, s8] + | Bu(sv, s2)l} ds

m!
0
1

< zq(g—":)!vf + g"fi;Am(S”’ s)lds.
0

By (2. 1), for some positive h in B, o <¢ <1 implies

1
A, Bl <24+ gr f |F(sv, 0, sE)|ds < 2q + hgr;

0
and by induction: o <t =1 implies

(2gr™ _, (gn)"
(m — 1)! +h m!

1An(y, 8l < 2q for m > o;

hence An (v, &) converges to zero uniformly in ¢; and by (2. 10)

(5.18) ditf,,,,(sc + t£) converges to F(zx + t&, f(x + t&), &
2.18

uniformly in ¢ for o <t =< 1.

From (2. 17) and theorem 1.7
1

Sale + 9= fuld) = [ L fule + @) as;

0

and
1 1

Sz + &) — flx) = lim o%fm(x + t§)dt=fF(x + tE, flx + t), E)dt

M0

from (2.18) and the theorem on integrals of uniformly convergent sequences
used to prove (2. 11). Hence

- f f G o+ &, flo + ), & & Flo+ & flo+ ), §) dods,
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and by one of Kerner's theorems’, it can be shown that the norm of the inte-
grand in the right member is less than som multiple of |£||® for all sufficiently
small [|§|. Since F(x, f, &) is linear in &, it follows that

(2. 19) a2 f(x) = Flz, f, §),

and, differentiating,

d;’d’gf(x)r—G(xaf; §, z, F(xr f7 Z))

for ||z| < e. This establishes conclusion (ii).
If the premise of conclusion (iii) is satisfied, then

o (x)i=0
and by theorem 1.7,

D) = f Flox, ®(oz), 2)do

for x| <e. By (2. 12) conclusion (iii) follows, and the proof of the theorem is
complete.

3. Special Cases of Theorem I.

The definitions in section 2 preceding Theorem I are retained in this
section.

If F(x, y, z) satisfies the premise of Theorem I for any y(b = ), then
we can strengthen the conclusion of the theorem and obtain

Theorem 3.1. For any x, v, 2, £, v such that |x — u| < a, let

F(x, y, 2) be in 3, linear in 2, and such that

dg;”]F(x, y, &)= G(x, v, z, §, 1) exists, continuous in x, y;

and for |z — ul| < a and any m, let

Jolx) be v

and let fni1(x) be v + fF(u +olx—u), fulu+ olx+ ), —u)do.

0

! M. KERNER, Annals of Math., loc. cit.



86 A. D. Michal and V. Elconin.

Then

1) For any x such that |[x — u|| < a, fun(x) exists.
2) If
WGz, 9, 2,0, 9)[=glellnl

Jor some g and any x, y, z,  such that |x —ul| < a, then

(i) fl@)=Ulm f.(x) exists for |x— u|< a;

(i) G,y 2§ Fle,y, ) =G v, § 2, Flz, y, 2))
for any @, y, 2, £ such that |z — ul < a implies
f) =1, &flx)=F, f ¥,
Edf@)= G, £, £ 2, Fla, v, o)
for any =, E, z such that |& — u] < a;
(ii) if Ow)=v and
| & D (@)= Flz, @, §)

Jor any x, § such that |x — u| < a, then for |x —ul| < a

Progf. The proof of Theorem I applies here, with the following simplifica-
tions: replace ¢ < a by ¢=a; omit the proof that

I fon @) < B, |f)l = 8;

and in the statement preceding (2. 12), omit the phrase »such that [|@(z)| <b
for |x| < c» and the inequality

o)L < 5 2.

m! m!

If moreover F(x, y, 2) is constant in y, the first condition in conclusion
2) above becomes redundant. Removing it, we obtain the following theorem,
which has been proved in a different way by Kerner.!

! Annals of Math., loc. cit.
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Theorem 3.2. If for any z, & 2z such that [x —u| < a
Flx, 2) is in =, linear in &,

d¢ F(x, 2) exists, continuous in x, then

(i) f(x)=v+fF(u+a(9c-—u), x— u)do

exists for o — u] < a;
(i) of
diF (z, 2) = a2 F (z, &)
Jor any x, £, z such that |x — u| < a, then
fl)=v, dif(x)=F(», §), dz dif(x) =d: F(z, §)
Jor any x, &, z such that |x — u| < a;
(iii) if ®lu)=v and
di @ (x) = F(x, §)

for any x, & such that |x — ul| < a, then Jor lx —uj <a

Proof. Regarding F'(x, z) as a function of z, y, z constant in y, we have
by theorem 1. 2,
B F(z, 2) = @ Flx, z)=o,
and by hypothesis

d Fle, z) — d* F(x, §)=d§3§F(x, z)—-df%F(x, f=o0

identically in 7. The conditions of conclusion 2) in Theorem 3.1 are therefore
satisfied, and it is easy to verify that the others are also. The present theorem
then follows from Theorem 3.1. Note that here f;(x) = fu(z) =f().

Now suppose E is R. If F(x, y, 2) satisfied the conditions of Theorem I,
then evidently

Flw,y, y=2F(x, y, 1)

and

Glx,y, 2,8 Fle,y,2) =28 Glx, y, 1, 1,F(z, vy, 1).
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Hence the symmetry condition in conclusion 2) of Theorem I is redundant.
Removing it, we obtain

Theorem 3.3. Suppose that for any x, y, &,  such that |x — u| < a and
ly—vi=<b

Flx, y) s wn 3,
d’;gF(x, ¥)= Gz, y, &, n) exists, continuous in z, y;

and for |z —ull < a and any m, let f,(x) be v and

Jma1(x) be v+ fF(or, Jm{o))da.

Then

1) For some ¢ <a and any x such that |x —u' <e
S () exists and ||f(x) — vl < b.
2) For any such c:1if
1G(x, y, o, 9| = glnl

Jor some g and any x, y, 7 such that |x — u| < ¢ and |y — v| < b, then

(1) Slx) =1lim fn (2) exists for |z — u| < ¢;
(ii) Jor any x such that |lx —ull <e¢

Fe =0, Ifle) =l b, L flo)= Flz, 1),

O _ 6w, £ 1, 1, Pla, 1)
(i) of
o) =1, |0@)— | <d, "2V p(z, o)

Jor any x such that |x —ul| <c, then for |x —u| <e
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Proof. The theorem follows from Theorem I and the integral identity

(3. 1) fF(u +o(x—u), ®u + a(x—u)))(x—u)do=fF(a, @ (d))do.

k3

Moreover, using this identity we can replace the 'differentiation under the in-
tegral sign’ in the proof of Theorem I by differentiation with respect to the
upper limit, and so prove the following theorem due to Kerner', in which the
hypotheses are much weaker than those of Theorem 3.3 — from these we can

2
still conclude the existence of % f(z), but not that of dix-é Sflz).

Theorem 3.4. Suppose that for any x, y, n such that ‘v —u'<a and
ly—ovl<b
F(x, y) is in 3 continuous in x, y

tl}? Flx, y) exists, continuous in x, y;

and for ‘x —ul| < a and any m, let f,(x) be v and

x

Suns1(x) be v + fF(a,fm(a))da.

Then
1) For some ¢ <a and any x such that 'z —u <e¢
Jn(x) exists and i fy (@) —vi < b;
2) For any such c:if
A F(x,yr <gln

SJor some g and any x, y, n such that \x —ul <c and y—v! =<0, then

(i) S(@) =lim fn(x) exists for |z —u' <¢;
(i) SJor any x such that jx —ul <e¢
d

fy=v, fla)—vi<b, - flz)=Flz, f);

dz

! Prace Mat.-Fiz., loc. cit.

12—36808. Acta mathematica. 68. Imprimé le 15 mars 1937.
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(iii) 2f
dd(x)

D) =v, [@) —v|<b,

= F{x, @)

Jor any x such that |x — u| < ¢, then @(x)=f(x) for ‘x —u| <e.

4. A Theorem Related to Theorem 1.

Def. 4.1. A set L of elements in a Banach space E form a »>domain> if
and only if for any z in L, some J exists such that [x — & < d implies & is in
L for any & in E.

Def. 4.2. A set L of elements in a Banach space K is convex if and only
if o< ¢=<1 implies ¢tz -+ (1 — #)§ is in L for any =, § in L.

In this section we shall understand that F, I are Banach spaces; =z, u,
£, 2,0 arein E; y, v,  are in 3; L, 4 are domains in F, I; 1 is a domain
in 3 whose closure lies in Z; ¢ is positlve in R; m is a non-negative integer
in R; and @(x, v, u) is any function on L, 4, L to 4.

Let 4 be a domain in i such that for some 6, .y — 75| > d for any ¥, g
in 4, £ —1; and let u be any such d. Let D be a convex domain in L such
that for some d, (x.<d for any x in D. And, for a considerable gain in
brevity, let x, y be restricted to L, 4 in the remainder of this section. With
these notations we can state the following extension of Theorem I:

Theorem II. Suppose that for any x, y, 2z, &, 7
Fx, y, 2) is in 3, linear in 2,

diﬁ%F(w, ¥, 2)=G(x, y, 2, §, n) exists, continuous in x, y;

and for any m, x, v, u, let fy(x, v, u) be v and fuii(x, v, u) be’
1
v+ fF(u +o(@x—u), fulu+olx—u), v, v, x—u)do.
0

Then for any A:

1) Some D exists such that fy(x, v, u) exists and fu(zx, v, u) is in A when-

ever x, v, 4 are tn D, 4, D,
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2. For any such D: If g exists such that
G, y, 2, o, n)i < glen|
whenever x, y are in D, A, then

(1) f(x7 v, u)=limfm(x, v, ‘N)

M0

exists for =, v, w in D, 4, D;
(i) of ,
G(x7 :’/7 e’ §7 F(x7 y’\.E))= G(x) y) §1‘ Z’ F(xJ y7 Z))
whenever x s in D, then
flu, v, wy=w, flx, v, u) s in A,
&flx, v, w)= Flx, f, §),
d: d'gf(.’L', v, “): G("Ev fv g) z, I(V(x7 f; Z)))
Jor x, v, w e D, 4, D;
(i) if @lu, v, wy=v, Olz, v, u) is in A,
20z, v, u)=Flz, @)
whenever z, v, w are in D, 4, D, then
(2, v, w)=f(x, v, u)
Jor x, v, w in D, 4, D.
Proof. As in the proof of Theorem I, we can show that

(4. 1) F(x, y, 2) is continuous in x, y, 2.

Now suppose that

01

whenever z, y are in D, 4. This will be true for some D, , d, by a theorem

of Kerner!; and, as in the proof of Theorem I, we find by induction that

fonls v, ) — o] < f \P(.. do < 8z — ul < u

! Annals of Math., loc. cit.
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for any z, v, w in d, 4, d, where d is a domain in D such that

Hx—uit<5

whenever xz, u are in d. But it is evident that
[fu 2, v, w) —vi<u

implies fm(z, v, u) is in 4 whenever x, v, # are in L, 4, L. Hence conclusion
1) of the theorem follows, with D =d. The remainder of the proof is a direct
extension of that given for Theorem I.

The theorems of section 3 can evidently be modified to give special cases
of Theorem II. For example, we have

Theorem 4.1. Assume the hypothesis of Theorem II, and suppose that the
domain A, and hence A, is the Banach space 3. Then fy(x, v, u) exists if x, v, u
are in D, 3, D, and the remaining conclusions of Theorem II hold, with 4 re-
placed by 3.

5. Applications of the Preceding Theorems.

Several known results may be obtained as instances of the preceding
theorems.® Moreover, the abstract theory is useful in the proof of new results.
For example, if & and 3 are each the classical real Hilbert space’ H, Theorem
I may be used to prove

Theorem 5.1. Let a, b, g be positive real numbers; let w==(u', u?, ...},
v=_(v', v ...) be in H, and suppose that for any x=(x', 2%, ...) and y=(y', %%, ...)
tn H such that |lx —u| < a and |y —v||<b

! NIKLIBORC, W., Studia Math., 1 (1929), pp. 41—49;
THOMAS, T. Y., Annals of Math., 35 (1934), P. 734;
KERNER, M., Prace Matematyczno-Fizyczne, 40 (1932), pp. 47—67.
Also see our note, Proc. of Nat. Acad. of Sciences, 21 (1935), pp. 534—536, in which some of our
results are summarized.
? 8TONE, Linear Transformations in Hilbert Space (1932).
HILBERT, Grundziige einer allgemeinen Theorie der linearen Integralgleichungen. The norm
1

.
2
2, (@)? % . of an element x=(x!, 2% ...) in H will be denoted by |x|[; ¢ is the ith coordinate of x.

=1
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{ 1 2 . 1
(1) @;(m,x,...,y,yg,,..)
ts wn R,
(2) (@ exists;
7,7
op: o
J __‘7, . . — . .
(3) 0 oy i, 5, k=1, 2,... exist;
J O\*
(4) 2 ( ’) exists.
04k oy
Then
o
(i) 2—{@;, 6, j,k=1,2,... exist.
T Oy
Moreover, if
@
(5) 2 (—) exists;
) dx*
O(D’ 2
(6) ( ) < ¢
(7) Jor any ¢ >0 some 0 > 0 exists such that
2 . 0(1)1 2 1,2 1.2 (9(1): 2
D (f‘a 'z ) <eand (4“: SRR S ,g) <e
i,k : Gk Yy
o &l Inl < 6;
0117 o 0(D‘ 0 @i
7 1 — . k l.
(8) £ Z ay O = ; oy Ui’
then v
' (if) for some positive number ¢ < a, the system of differential equations®
(5. 1) dfi= ; i, 2L fL S Y =1, 2, L,
and the conditions :
Hf_ ’UH =b, where f=(f1v f'z’ = ')’
(5. 2) ‘ .
filu, ?, .. )=v, i=1, 2,...,
have a unique solution fi(x', % ...)), i=1,2,..., for ||z —ul <ec.
Yafi(at, ot ) =di i), i=1,2,...; where x= (" x%...) and o =(dx!, da?, ...)

are in H, and ¥i(x)=fi(x', a2 ..), i=1, 2,....
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Progf. (i) follows from (1)—(4) and the Schwarzian inequality. For
lx —u|<a, |y —vl<>b, and any elements z, &, n. in H, let F(x, y, 2),
Gz, y, 2z, £, n) be functions with values in H whose 7th coordinates are

Z @7 and
J

o O o0
(53) 3 (aes+ 5ot

gk

respectively. The existence of (5.3) follows from (1)—(5) and the Schwarzian
inequality. F(x, y, 2) is evidently linear in z. The continuity of G{z, v, 2, § 1)
in x, ¥y now follows from (7) and repeated use of the Schwarzian inequality.

Moreover, by the triangular inequality,

|42 F (2, y, &) — Gz, y, 2, & 1)

1
i X114 1%\
k+1 k42 ) . 3
4 Exk+1 shre @ — ,Z) & & ) )
( {, ( 17 o J

-~ 1
EH1ghte AN R Ty
(22 [ o= 57 o)

L gh2 ) . '
where Eck+1 gtz @F denotes @ (@', ®, ..., b, b+l 4+ oyt ot ).

Hence, using the Schwarzian inequality and the mean-value theorem for real
functions of a real variable, we have for some real numbers 1*= @* & ut=o* %
where @, ¢* are positive numbers < 1:

|V Pz, y, 2) — Gz, v, 2, & )

o\
= Z{Z(E’gigiii;;;— I)va—xk]zjgk})

ik

) —
‘ | ( M"nk"'l...—l)oykz’?

- 0 ®)*\a
= Z.{(Eii S — I)axk}) 2llgl

(2 fems 0 22 e

< ¢lzll max (|g], |gl) if max ([&], |9) <
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for some d, by (7). Therefore

v Flx, y, &)= G, v, 2 § 7).

From (8), the condition of complete integrability in (ii) of Theorem I is clearly
satisfied. Since also, by (6) and Schwarz's inequality,

1
, ) IO\ o
6, v, 20 = {3 () T etin =0t

L4k

the present theorem follows by an application of Theorem I. In fact, the above
proof establishes the stronger result, that the differential equation

azf(w) = Flz, f, §

and the conditions

=l =b, fl)=v
have a unique solution f(x) for |z — ulj << ¢ where

fle)y=(*, ¥?, ..) and Pilx)=fi(z", 2%, ...), i=1, 2,....

The existence of d%f(x) implies that of df*(x', ° ...), which in turn implies

the existence of zg: ;7 so that under the hypothesis of theorem 5.1 the system
of partial differential equations
of _

0x].-tDj’.'(x1, x5 afN ), 4 =12, ...,

and the conditions (5.2) have a unique solution for z — uli < e.

In the same way, Theorem Il can be used to show the existence under
hypotheses similar to those of Theorem 5.1, of a unique solution f?(x*, %%, ...;
u', u?, ...; v, v%,..) of the equation (5.1) and the conditions (5.2) for all
xz, %, v in certain domains of H.

Theorems I and II can also be used to prove existence theorems for func-
tional Pfaffian equations. For example, let E and 3 be the Banach spaces of
real continuous functions z°, ', with norms fiz®| and |y'/", on the real intervals
d<s<e and d <t=¢ respectively; where d < d’, ¢ <e. Then with the aid

of Theorem I we can prove
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Theorem 5.2. Suppose a, b, g,, g are positive real numbers; &, § are in
the intervals (d', &), (d, €); and u*, v are @n E, 3 respectively. Suppose further
that for |2* —w|<a and |yt — ot <b:

(1) For each e, 8 @*(z°, o), oz (x*, ¥) are on E, = to R, continuous in «
and in e, § respectively’;

(2} @*(2°, o) and o; (x*, ¥') are differentiable in 2%, 4 uniformly with respect
to a and 8;

(3) di Y@ (af, ) and dgY @3 (a*, 4') are continuous wn ¢ and in a, 8 respectively;
and are continuous in x°, yt uniformly with respect to o« and to e, 8 respectively;

(4) lay @ (o, )| < g;|n/
and ’
ldy @5 (==, y)ii < g3lni".

Then, the complete integrability of the functional Pfaffian equation

(5. & fele) = 00, f)e + @3lat, ),
where the repetition of the index B indicates integration over the interval (d, e),
implies that for some ¢ < a equation (5. 4) and the conditions f=(uf) = v, |f*—v*[<b
liave a unique solution f*(x®) for 'az* — u¥| < c.

If in theorem 5.2, @*(x*, y)=o0 and lD[‘;(ocs, y") is constant with respect
to @, then we obtain as a corollary an existence theorem for the functional
Pfaffian equation

d: f (@) = @ (2", f) 2P,

where @g(a?, y) is on E, R to R for each .
If to the postulated addition and scalar multiplication in Banach space
new functions are postulated, then instances of the right member of the com-

pletely integrable differential equation
& flw)=Flx, f, 2)

can be written explicitly, and the equation defines functions f(x) whose existence

! Clearly &e(xs, yt) and 417‘{; (x#, yt), for each B, can be regarded as elements of ZX.
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and structure in terms of only the postulated functions are demonstrated by
Theorems I or II. For example, if E is 3 and there is a bilinear function
x-y, in E for all 2, y in E, then the simplest non-trivial instance of F(x,y, 2)
is y - 2; if moreover

(5. 5) (@-y)-e=(x-2)y

for all x, y, 2 in E, then the equation

(5.6) flx)=/f-z

is completely integrable, and its solution is

-]

fle)=v+ v.(x;—!u)”

where f(u) =1v and 2" is defined by ' =2, 2*=2a"1 -2z for n=2,3,....

Examples of spaces E and functions x-y for which equation (5. 5) is
satisfied will be given below. That the equation is not always satisfied may be
shown by taking for E the set of real quaternions® and for x -y the quaternion
product; in fact (5.5) cannot be satisfied if E has a unit element and x -y is
not commutative. ’

3
FExample I. Let E be the set of elements x=2xiel— of real normed
i=1
algebra, and let .-y = Z x;yje;e;, where the e;e; are given by

%,

ee | e € eg

€ o S -8

62 S o ‘—S

e S —Si o]

! A real linear algebra of elements x = in ¢; can be normed in many ways to form a

i=1

o 1

2

Banach space. For example, |x|| may be defined to be {Z wf} .
i=1

13—36808. Acta mathematica. 68. Imprimé le 15 mars 1937.
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Then (5.5) is satisfied, £ has no unit, « -y is not associative and not com-
mutative, and 2" =0 if » > 2.

Example II. If the multiplication table in Example I is replaced by

€ € € € 1 €3
I
e ;S ES — 8
1
€5 — 8 -8 S
2 2
I
€, -8 -8 -8
2 2

then F and « -y have the properties stated in Example I, except that = -y is
associative.

Example III. Let E be the set of elements z= Zx, e; of a real normed
=1
algebra; let
wy = Daiyjeie;= D\ w1y ;er,

¥ hak

where y}; = a;a; @ + ¥},

n
k= —¥%,, > aP 50, and not all the ¥}, = o.
=1

If x-y= %(xy + yx), then (5. 5) is satisfied, x - y is associative and commutative,

z"=o0 for all »; but xy is neither symmetric nor skew-symmetric — so that
r-y=xy and z-y=o.

Example IV. A special case, in which xy is associative, of Example ITI
is obtained if n=4; @, =a,=0,a,=a;,=1; O'=@Q'=0, O*=P*=1;
¥} =o if 4, j is not a permutation of 1, 4, ¥}, =—F% = P¥ where ¥'=¥*=o0,

P2 = — P3— . The table for the e;¢ is then
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€; €5 € €y €3 €y
e o} o} o} S,

S = e+ ¢
€y o) S, S o

Sy = e— €3

There exists no unit-element.

More generally, if E is any Banach space in which a symmetric bilinear
function x -y is defined, the condition (5.5) for the complete integrability of
the equation (5.6) is satisfied if and only if x -y is associative, so that E is a

commutative abstract ring. Suppose x -y is associative, and @;(r, —vz ain ",
n=0
-]
filv, z)=v- D) ama", a"=a"" - x for n=2,3, ..., 2°=1, where », { and the
n=0

@in are real numbers, v, x are elements in E, and the mark I, introduced
to simplify the notation for abstract series, has the properties x-I=1-x,
(@-I)cy=x-(I-y), for any z, ¥ in E; x+ I is not defined. Then to the
identity F(®,, @,, ..., ®x) =0 in », £ corresponds the identity F(f;, fa, ..., fo)=0
in v, x, where F(®@,, ..., ®@,) is a power series in @,, ..., @,. This is simply
because the two corresponding identities are reducible to the same infinite set
of simultaneous equations in the a@;,. Thus to the identity vefvet = »(ves*)
corresponds

elv, x)-e(v, yy=celv, z +9),

where e(v, ) Zw: %; and to (v sin §)® + (v cos &§)® =2 corresponds
" {sin (v, ac))2 + (cos (v, x))* =?,

o (=1

where sin (v, %) =v - D\
’ |
=0(2n+ 1)!

® 1\
2*"*1 and cos (v, x)=v" Z( ) x?", Term-

by-term differentiation of these abstract series (justified below) gives the identities
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dZe(v, x) = e(v, @) - 2,
d*sin (v, z) = cos (v, 2) - 2,
d®cos (v, ) = — sin (v, z) - ¢,
where the functions differentiated in the left members are respectively equal to

v, 0, v when x=o0. These equations are completely integrable. The are, in
fact, rather simple instances of the equation considered in the following theorem.

Theorem 5.3. Let am. be in the abstract ring E for m, n=o, 1, 2, ..,
and such that for some positive numbers o, 06, T

lamal < @o~ ™2™

Jor all sufficiently large m,n. Let u be the modulus of the bilinear commutative

ring product x -y and let A= min ( I, i) Then

. 0 T
1) if x>~ | < —> the double series D = Amn " X™ y* converges ab-
flel=> 50 i< % y g
solutely and wniformly;
2) of lx| < Ao, |ly| < Az, the double series D is term-by-term Fréchet dif-
JSerentiable in x, y, the derived series converges absolutely and uniformly, and the

equation
df@)=D-2
zs completely integrable.
Proof.
lamn - 2™ - y™| < u™ " apma | 2™ y" < 0] o 7 ¢ for all sufficiently large m, n.
ul (o
v . L - _
Hence if [zf| < 51 | < i, the double series for ¢ [1— il 1— @‘
n ﬁ
ultimately dominates D, and 1) follows. Moreover, if |z < g, [ly| < 7, the double
—1 —1
series for Q(I —~H%H) (I — '@) ultimately dominates ZHamnHHxI"‘HyH", hence

m,n

for sufﬁcientl-y small |&], [
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3 fomal i+ s + = 3 el 3 3 (7) (3t

7=08=0

= 3| Slameewnsl (" F) (7 )i i e

rs - mn

by a known re-arrangement theorem for series of non-negative numbers. Hence
if |zl < Ao, |ly|l < Az, and sufficiently small [&], %], the series

r+m\ [st+n
DngZ( m )( " )dr+m,s+n'.7,‘r'ys, !

r, 8

2 Dun- £

m, n

connerge absolutely and uniformly,

Damn (@ + &y + )= X Dnn- 5 o,

m,n

JMJD Do §— Dy - ’7”<HH§HH77“”ZDm+1 nt1-

so that dggD= Dy §+ Dy - 1,

and the condition for complete integrability becomes

(D10+D'D01)'(§'3_3‘§)=0:

an evident identity. This completes the proof.
By an argument similar to that used above for double series, term-by-term

differentiation of the single series Y am- 2™ is valid for [[z| <A, if [lan| < @o™

"

m
for some ¢, ¢ and all sufﬁ(nently large m. Since lim %1_' = o0 for any number o,
M= D :
I

differentiation of e(v, ), sin (v, ), cos (v, ) is valid for any z.
If E is the set of real functions z (e, §), continuous in ¢, 8 for ¢ < a < b,

< g0 ™ for any ¢, ¢ and all sufficiently large m. Hence the term-by-term

<=9, and x - y*f o, 0)y (o, B)do, then E is the ring with respect to = -
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studied by Volterra'. If moreover jx;= max |z(e, §)|, then « -y is bilinear
a=e, B=<b

and E is a normed vector ring. If, with Volterra, we suppose that a function

E(a, ) exists such that £(e, )20 for a<a<b and - £=§&- z for any x in

E, then, as Volterra® and others have shown, z -y is commutative in F, and

theorem ¢.3 expresses new properties of Volterra’'s 'permutable’ functions. The

ring E contains null-factors, since non-zero elements x, y exist in ¥, such that
(e, fl=o0 if a<p=<b,

yla, fl=o0 if f=a=<0b,
. .
and hence x -yzj z(a, 0)y(o, B)da=o0.

Altho E contains no unit-element, a normed ring § with a unit element exists in
which - E is an ideal®’. For if S is defined to be the set of all ordered pairs
(¥, k) where « is in K and % is a real number, and if for any X = (x, &),
Y={(y, 0 in S,

X Y=(x y+ky+lx, k), | X =zl + |&],

then S is a normed ring, (o, 1} is a unit-element in S, the set 7' of elements
(z, o) in 8 is isomorphic and isometric to F, and for any X, ¥ in 7T and Z in
S, the elements X -Z, Z-Y, X— Y are in 7. Hence if in S and the defini-
tions of addition and multiplication, T' is replaced by E, S becomes a ring S'

which contains £ as an ideal. In fact, F is a prime ideal, since its residue
Sl
class ring — contains no null-factors.

E

6. Existence Theorems for the Equation K (z, f(z)) = o.

The notations used for differences and differentials in the preceding sec-
tions are occasionally ambiguous. For example, the value of dif(y, x) when
y=ux is not always dZf(», x), and similarly for the differences #f(y, z) and -
af (z, x); that is, the notations are not completely substituti\?e. Whenever

completely substitutive notations are necessary, we shall write®

! Theory of Functionals, London, 1930.
? B. L. Van Der Waerden, Moderne Algebra, Vol. 1, Berlin, 1930.
3 V. Elconin, loc. eit.
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Ty ...k

n 9 .

Ao Flay ... 00) for 42 * Fla, ... 1),

£ . gy e dn
and

Ty ...y . .

oo Floy ... 0a) for d " Flx, ... x).
P e S8y
E1 -4 S

With these new forms, d%f(y, x)zdg flo, ) if y =2, whereas d: flx, ) =
= dz f(o, o)

Before proceeding to the theorem of this section, we shall prove an im-
portant lemma. Let » be a positive integer; b, a,, a,. ..., ay be positive real

numbers; a, 8 be in Banach FE, I respectively; and w; x; & be in a Banach
space E;, for 1=1, 2, ..., n

Lemma. If for any =, ... %n, & ... &, @, B such that |x;— w| < a;,
H(x, ... 2, ), Plx,... 2 @) are in E, X respectively,

Hx,...xp, Play... 20, &)=« Plx,...z0 H(x, ... 20 8)=245

H(z, ... %, B) is linear in B, and d: E: Hx, ... xn, B) s continuous in x, . .. Zn.
Then for any x, ... xn, & ... &, a such that x;i— wu;!| < ai, P, . .. n, @) is linear
m o, and
d;"_z:EZP(xl ey, @) F P(az1 . T, dz;:::::gZH(al ce. Ony Plzy ... 20, a))) =o.
sy

Progf. Assume the premise for » = 1; the argument will be valid for any
n. Let a =a,, u=wu,, x =12, §=2¢, and suppose |z — ul| < a. By a theorem of
Schauder-Banach!, Pz, o) is linear in «; hence for some positive number 4,
depending on z,
Pz, o) < Ala,
so that
\Pla, Hx, §)=[g]<AlH(z B,

and, by a theorem of Kerner, for some B, b

Hiz, Ol <[ 42H(z, §)] = f |dzH(z + o, §)lda < Big|]E|

0

|
Iﬂg‘

! Studia Mathematica, 1929, 1930.
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if |§] <, since diH(z, §) is easily shown to be linear in § by a theorem of

Banach.! Hence for some A, b and any & such that |&| <
(6. 1) |H(z + & 8)]> 4[],

(6.2) 4iH(x, Plz, a))=4“§ﬂ(o, P(x + &, o) + Hw, 41P(x, o) =0,
(6.3) #:H(w, Pla, o)) = 4 Hlo, Plz, o) + Hlz + § 4Pz, o) =0;
using (6. 1), (6. 3):

A\ %Pz, )| <|H(x + § 4Pz, o)i=]| JEH(G, P(z, o)),
and since H(x, ) is continuous in z
(6. 4) P(x, «) is continuous in .
Using (6. 2) and (6. 4): for some A, B, b and any £ such that [£] < b

4iPz, o) + P(x, JEH(O, P(x + &, a))) =0,

Hd’é’P(x, o) + P(x, d«;iH(o, P(x, a))) H

X

<4 H(Jg—da)ﬂ(a P, a 1I+B||§H“4«r 7, )

3

and by (6. 4) again and the definition of differential
6. 3) & Plx, o) + P(x, dz Hlo, P, a))) —o.

This completes the proof.

Now let » be a non-negative integer; a, b, ¢, ¢, g, h, A be positive numbers;
E,, E,, Il; be Banach spaces; u, z, «, y be in E;; v, 9, 8, 0 be in E;; 2 be in Ej;
and let @(x) be any function on E, to E,.

! Fundamenta Math., loec. cit.
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Theorem 5.1. For any x, v, 2z, «, 8,7, 8 such that 'x — 4 < a, iy —v! <b,
suppose that P(x, y, 2) is in E,; Flx, y), Glx, y, o), Hix, y, B) are in Ey;
Flu, v)=o; a4 r (x, y) exists equal to Gz, y, «) + H(x, 4, 8); d?ji,’.dﬁgF(m, )
= Klx, y; e, 8; y, d) exists, continuous in x, y;

H(, y, Plx, y, 2)) =2 Pl y, Hx, y, 8)=25;

let Qx, y, @)= — Plx, v, Gz, y, «)); let fylx)=1v; and for any n, let foi1(x) be

- f QUu + ole —u), fulu + ole —w)), z — u)do.

Then
(1) for some A, g<a, h<b

Pla, y, Klx, y; o, Q, y, @); 0, f) <4 « 8

of x—ul <g, ly—vi<h;
(2) for any such A, g, h and any ¢ < h, some e < g exists such that

S(@) = Um f,(x) exists, ' fulx) —v <e,

o x—u'<e; and for any such e:

(i) W)= v, Flo, ®z) =0, GO —v <b
Jor lw—u <e if and only if @(x)=f(x) for x— M <e;
(i) & f@) = Qlx, f(x), o),

and

G dif(@)=— P, flx), Klz, [(z); «, Qz, [(2), «); 7, @, f(2), 7).

Progf. Assume the premise. The proof will be reduced to an application
of Theorem I by taking for the functious F, G of that theorem the functions
Qx, y, o), — Plx, y, K(z, y; o, Qx, y, a); 7, 0)) respectively, and showing that
condition (iii) of Theorem I is then equivalent to condition (ii) of the present
theorem.

If ‘2 —wu'<a, 'y—wvl<b, then G(x, y, ), H(x, y, §), evidently linear in
« and in @B respectively, are continnous in 2, y since they each have a differential
in z, y; these differentials are themselves continuous, hence P(x, y, 2) is con-
tinuous in x, ¢, linear in 2, by the preceding lemma;

14—36808.  Acta mathematica. 68, TImprimé le 9 avril 1937,
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(6.6) Q(x, y, @) is continuous in z, y, linear in «; and Pz, y, Kz, y; e,
Q(x, 9, @); 0, B)) is continuous in =z, y, linear in ¢, linear in @, which implies
that for some A, g<a, h <D

6.7) Pz, y, K(z, y; a, Qla, y, @); 0, g <4 « g

if lx—u'<g, [y—v <h LetA,g,hbeany sach numbers. Then |z -—u' <y,
9y — v < h implies

&4 Q(w, y, @) + Pla, y, &3(G(x, y, @) + drzPlo, 7, Gz, 9, ) =o,
and by the preceding lemma

cZ%P(G, 7, Gz, ¥, a))zP(x, Y, d%H(a, 7, Qx, v, a))),

so that

(6. 8) a4 Qw, y, )= — Pz, y, K(z, y; o, Qx, v, a); 1, 9);
and

(6.9) Pz, y, K(x, y; o, Q(z, y, a); 7, Q, ¥, 7))

is symmetrie in «, y, since
K(x, y; @, 8, 7, )=K(», y; 7, 6 o, 8).
Moreover, f(f)r any e<g, if x —u < e implies
O(u)=v, Flx, Ox))==0, @) —v <h, and &@(x) exists,
then x —u < e implies

Ou)=v, @) —v <h, and &(@x)= Qx, O), a),
since
& F(z, )= Gz, O), «)+ H(x, @), ZO(x))=o;

and the converse is true. In view of this and the results in (6. 6), (6. 7), (6.8),
(6.9), Theorem T cari be applied to complete the proof.

Concluding Remarks.

Altho we have restricted ourselves in this paper to first order differential
equations, the method of successive approximations may be applied to obtain
existence theorems for certain differential equations of higher order, and for
certain systems of differential equations. It is sometimes possible to reduce the
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proof of such existence theorems to an application of Theorems 1 or II. For
example, the second order differential equation

didyg(x) = Hw, g(x), dig(z), & n)
may be replaced by the equivalent system
& g(e) = Pla, 1)
@ P(x, ) = Hl, glz), Pla, o), £ n)

of first order equations, which in the product space' =* is equivalent to the
single equation

difle, n)=Fx, f(=, 1), § ),
where :
S =Ag9W), Plx, )}, F'={P(x, n), H, g(z), Plx, 1), & 7)}.

Hence if the initial conditions of the second order equation are on g(x) and
d2g(x), the existence of f(z, 7) now follows from Theorem I, if the premise of
the latter is satisfied. In general, however, such a reduction is not possible; if
in the preceding example the one-point initial condition is replaced by a two-
point boundary condition, Theorem I cannot be applied. We have already begun
the study of higher order equations with many-point boundary conditions. We
also intend to study the most general first-order differential equation

ds /() =12 f (o),

which cannot always be reduced to the form considered in this paper, as is
evident from the example

@f@sfmmax

where g(x, &) is a given function.

Since our analysis of the dependence on the parameters v, « of the solution
S {x, v, w) in Theorem IT is still incomplete, we have preferred to reserve it for
a future paper rather than delay unduly the present publication.

! X? is the Banach space of ordered pairs {i, y} of elements @, ¥ in 3, with | {x, y}|, =
max {|x, [{y|}. However, many other definitions of equivalent norms are possible. See sec-
tion I.



