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Introduction. T h e  p r i m a r y  o b j e c t  of  t h i s  p a p e r  is  to  o b t a i n  e x i s t e n c e  

t h e o r e m s  fo r  t h e  a b s t r a c t  c o m p l e t e l y  i n t e g r a b i e  ~ d i f f e r e n t i a l  e q u a t i o u  

d~f(x) : F(x, f(x), ~), 

w h e r e  t h e  l e f t  m e m b e r  is t h e  F r 6 c h e t  d i f f e r e n t i a l  s of  f ( x ) w i t h  i n c r e m e n t  ~, 

a n d  t h e  r a n g e s  a n d  d o m a i n s  of  t h e  f u n c t i o n s  i n v o l v e d  a re  in  B a n a c h  spaces .  4 

By a g e n e r a l i z a t i o n  of  t h e  w e l l - k n o w n  m e t h o d  of  success ive  a p p r o x i m a t i o n s  a n d  

t h e  use  o f  m o s t  of  t h e  k n o w n  a n d  s eve ra l  n e w  p r o p e r t i e s  of  a b s t r a c t  d i f f e r e n t i a l s  

a n d  i n t e g r a l s ,  we p rove  two  m a i n  t h e o r e m s ,  one  loca l  in  c h a r a c t e r  a n d  t h e  o t h e r  

' i n  t h e  l a r g e ' ,  by  m e a n s  of  w h i c h  we o b t a i n  n e w  e x i s t e n c e  t h e o r e m s  f o r  P f a f f i a n  

d i f f e r e n t i a l  e q u a t i o n s  in  H i l b e r t  space  a n d  t h e  w e l l - know n  space  of  c o n t i n u o u s  

f u n c t i o n s ,  a n d  a l so  a n e w  e x i s t e n c e  t h e o r e m  fo r  a b s t r a c t  i m p l i c i t  f u n c t i o n s .  

K e r n e r ' s  r e c e n t  t h e o r e m  5, in  w h i c h  F(x, f(x), ~)is i n d e p e n d e n t  of  f(x), is a n  

i m m e d i a t e  c o r o l l a r y  of  t h e  f i rs t  m a i n  t h e o r e m .  By s p e c i a l i z i n g  t h e  B a n a c h  spaces ,  

we o b t a i n  s e v e r a l  of  t h e  r e c e n t  i m p r o v e m e n t s  in  t h e  t h e o r y  of  t h e  c l a s s i ca l  

i Presented to the Amer. Math. Soc. 0934)- Cf. Bull. Amer. Math. Soe., 4 o, 53 ~ (I934). 
2 The condition of complete integrability (the premise in (ii) of Theorem I) is suggested by 

a theorem of Kerner on the symmetry in the increments of a repeated Fr6chct differential; it is 
definitely a necessary condition for the existence of the solution in Theorem II. 

s M. FRI~;CrtET, Annales So. Ec. Norm. Sup., t. 42, 293--323 (I925). See also T. H. ]Ill, DE- 
BRANT and L. M. GRAVES, Trans. Amer. Math. Soe., 29 (I927). 

4 S. BANACH, Fund. Math., 3, I33--I8I  (t922). See also his book, Th6orie des op6rations 
lin6aires, 0932). A Banaeh space is briefly a complete normed vector space closed under multi- 
plieation by real numbers. 

M. KEENER, Annals of Math. (1933). 
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Pfaffian systems due to Nikliborc, Nikodym, and others, as well as the theorem 

of Kerner for abstractly valued functions of a real variable. Finally, an aplica- 

tion of the main theorems to differential equations of the second order is outlined, 

and a few indications are given of related outstanding problems in abstract 

analysis. 

Most of the necessary notations and known results in the abstract dif- 

ferential and integral calculus are collected in section I. The first main theorem 

is proved in section 2, and its special cases are contained in section 3. Section 

4 contains the second main theorem. The existence theorems for Pfaffian dif- 

ferential equations in Hilbert space, function space, and certain normed rings, 

including a Volterra ring of permutable functions, are given in section 5- In 

section 6 the theorem on abstract implicit functions is proved by means of the 

first main theorem and a lemma on the differentiability with respect to a para- 

meter of the inverse of a solvable linear function. 

Let R 

in which e, 

n 

and i 

Let E~ 

Xi, ~i 

and let I] x~lI 

In  each 

the values of 

i. Definitions and Known Results .  

be the real number system, 

are positive numbers, 

is a non-negative integer, 

is any non-negative integer ~ n. 

be a Banach space, that  is, a complete normed linear space closed 

under multiplication by elements in R; let 

be elements in Ei, 

be the norm of x~.. 

of the immediately following definitions, F ( X I  . . .  Xn) iS in E o for 

the arguments considered. 

Def. 1.1 J~i"" ~'~ F(xI x~) is F(x, + ~, x, + ~) -- F(x~ Xn). 

Def. 1.2 F(x ,  . . .  x~) is additive in X l . . .  Xn if and only if for any xi, ~i 

P ( x , . . .  xn) - -  

Def. 1.3 F ( x l . . .  x~) is continuous in x l . . .  xn if and only if for any e 

some c? exists such that for any ~i 

max ![~,]! < r implies II ~ . . . .  ~ . . -  ' 
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Def. 1 . 4  F ( x ~ . . .  x,) is linear in x ~ . . .  x,, if and only if it is addit ive in 

x ~ . . .  x~, and continuous in x , . . .  x~ for x i =  o. Here, as in all the following, 

o i s ' t he  zero of R or Ei  according to the context.  

Def. 1 .5  d~ ~ . . . .  . . . .  ~ F(x~ . . . . . . . . .  x,,), the differential of  F(x~ x,,) in x~ x~ with 

increments ~ t . . .  ~ ,  is in E o for any ~,  l inear in ~ t . - -~ , , ,  and for any 8 some 

exists such tha t  for any ~i, max i[ ~[I < d implies 

" ~ ~ :  ~" F(x ,  x,,) - -  d ~. . . . .  ~" F (x ,  . x,,)': < 8 m ax  ,' ~1'. 

I t  is easily shown tha t  the  differential is unique if it exists. 

Def. 1.6 F(x ,  . . .  x,~) is d{~erentiable in x t . . .  x,, if and only if d~ .... ~:" F(x ,  . . .  X,,) 

exists. 

Definitions of cont inui ty  and differentiabili ty equivalent to those given 

above are obtained when max 1~11 is replaced by any function O(~) on E t . . .  E= 

to non-negative R, with the property that  for some positive a, b, c in R 

a max Ii~]1 -< 0(~) < b max !l~,ll 

for  any g, such that  max 1,~,1< c. This will be evident f rom the two simple 

proposit ions which follow, in which a ( g l . . .  ~)  and *(8) are funct ions to non- 

negat ive R, on E l . . .  E~ and on positive R respectively. 

A. 

and 

B. 

and 

Evidently 

positive t in R 

, ( ~  . . .  ~,,) 

, ( f~ , . .  ~,,) 

, ( . ~ . . .  ~=) 

, ( f ,  . .  f~) 

, (~,  . .  ~ )  

~(~, . .  ~ )  

o(~, . .  ~ )  

o (~  . .  ~ )  

max l ~i I is an 

1 0 ~  36808. A e g a  m a t h e m a t i , r  68. 

< 8  

< 8  

< 8  

< 8  

< 8 m a x  ~ ' ,  

< ~ r 

< ~o(~) 

< 8 max :l ~i i! 

instance of O(gi), 

o,(~,) Y,!!~,!!  z 
i m l  " ) 

Imprim6 le 15 mars 1937. 

i f  max i! ~d! < z(e) implies 

i f  Q(~) < a~,(~), 
i f  r < ~(~) implies 

~(~). i f  m a x  I1~,!1 < b 

i f  max ~ I, < ~(r) implies 

i f  e(~i) < a ~ ( s  

i f  O(~,) < ,(e) implies 

I ,(b *). i f  max l!~il, < ~- 

with a <  I --<b, and for any 
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1 

is an instance of (~(~i), with a --< I and n ~ g b. More complicated instances are 

easily constructed. QI(~) and e~(~i) have sometimes been used in defining con- 

t inui ty  and differentiability, but, since the results do not  depend on the choice 

of Q(~), we have preferred the simpler funct ion max !!~i 

The derivative and Riemann integral  of a funct ion on R to E o are famil iar  

notions, but for completeness we give their  definitions here. t, ~, tk, ~k are in R. 

d ,t ~, Def. 1 . 7  For  some ~, le tp(~)  be in E o for I ~ - - t  1 < 3 .  Then ~ p ( )  the 

derivative o f  p (t) w i th  respect to t, is in E0, and for any e some ~ exists such 

tha t  for  any 
d 

I~] < ~ implies i'l Jt~p(t) - -  T ~ p ( t )  

{ d p ( t ) ~  a being a mere mark, a We shall write 7,p(a) for d t  ]t=o' the like the 

in Def. 1.8. Comparing definitions I. 7 and I. 5, we see tha t  if ei ther one of 

the differential of p(t) and the derivative of p(t) exists, so does the other, and 

d 
d~p(t) -~ �9 -d~P(t ) . 

Def. 1 .8  Let  a, b be in R. I f  a < b ,  let tk, ~k satisfy 

a = tl < t~ < ...  < tm = b and tk <-- ~k <-- tk+~ for k - - I , 2 , . . . , m - - I ,  

where m is a positive integer, evidently uniquely determined by the funct ion tk. 

Let  p(t) be in E o for a--<t--~b or a = t = b  or a > t > b ,  according as a < b ,  

a = b ,  a > b .  Then 
b 

f p( ) 

a 

the R i emann  integi'al o f  p(a) in  a f rom a to b, is in E o and satisfies 

I) if a < b, then  for any , some ~ exists such tha t  for any tk, *k 

max (tk+l - -  t k )  < ~ implies 
l~k<--m--1 

i I m-1 !i 

k = l  
~t 
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2) if a - ~  b, t hen  

5) if a > b, ~hen 

b 

/ p ( a ) d a - ~  o; 

a 

b a 

75 

a b 

I t  is easily shown tha t  the in tegral  is unique if it  exists. 

W e  shall f requent ly  require  the fol lowing theorems,  proofs  of which will 

be found  in the papers indicated.  I n  each theorem involving F ( x l . . .  xn) the  

funct ion  is i n  E o for  the values of the a rguments  considered. 

The o re m 1 .1  I f  F ( x  I . . .  x~) is dif ferentiable in xl  . . .  x~, then f o r  any  ~i 

7~F(x l  ~- a~l . . .  x,~ + at , )  exists equal to 1 

d ; :  : i i F . . . x n ) .  

The o re m 1 . 2  L e t  ~ . . .  ~ be any  permuta t ion  o f  x~ . . . x~, and  v~ . . . v~ the 

same permutat ion  o f  ~1. . . ~n, so that  ~i ~- xk i and v i -~  ~ki. L e t  ~i be the zero in  

E ~ .  I f  F ( x ~ . . .  x , )  is d(fferentiable in  x i . . .  x~, then i t  .is dif ferentiable in  

~1 . . .  ~i and 1 

~ l " " ~ i F ( x l .  X n ) ~  ~ . . . .  ~ i + l " " ~ n F ( ' ~  Xn) dv~'"vi  "" dv~ .'vi~i+~ " '~n ~ . . . .  

The o re m 1 .3  L e t  G~-~ G ~ ( x ~ . . .  x , )  be on E ~ . . .  E~ to ~ .  I f  F ( G ~ . . .  G~) 

is differentiable in  G~ . . .  G~, and  f o r  any  i Gi(x~ . . .  x , )  is dif ferentiable in  x~ . . .  x~, 

then F(G1  (x~ . . . xn) . . . V,(x~ . . . x,~)) is dif ferentiable in x ,  . . . Xn, and  

dX~: ~ :  F ( G I ( X l  . . . Xn )  . . . (~ '~(Xl. . .  Xn) )=  d H t  . G :  F ( G I  . . " G n ) ,  

where  1 

H i  = d ~ . . . .  ~n ~ ( X l  xn) ~1 ... ~n . . . .  

T h e o r e m  1 . 4  L e t  ~ be in  E~. I f  f o r  some ~ and any  ~ ,  ~i such that  

m a x  i t~j--  xjli < ~, F ( ~ I  . . .  ~ )  is differenliable in  ~1 . . .  ~ ,  l inear in  Vi+~ . . .  Vn, 
1.<j~i  

and 

1 M. FRECHET, Ann. Se. Ec. Normale, loc. cir. 



76 A. D. Michal and V. Elconin. 

d~ . . . .  " ~ F ( w  �9 �9 �9 V,,) 

is continuous in ~1 . . .  ~]i, ~hen F ( x  I . . .  x,)  is differentiable 1 in  xj . . .  x , .  

N o w  le~ a, b, r, s, t be in R, a nd  suppose  a < b. 

T h e o r e m  1 . 5  Let  p(t) be in ~o for a <_ t <: b. I f  p(t) is continuous in t for  

a <-- t g b, then 
5 

f p(o) do 
a 

exists. 2 

T h e o r e m  1 . 6  For some ~, let p(r, t) be in .E o for  [r -- s[ < 6 and a <-- t <-- b. 

I f  p(s, t) is continuous in s, t for a <-- t <-- b, then 

is continuous in s s. 

b 

f p(s, a) da 
a 

d 
T h e o r e m  1 . 7  Let  p(t) be in E o for a <-- t <-- b. I f  -~p(t)  exists continuous in 

t for  a<--t~--b, then ~ 
b 

p(b)-- p(a)= f dp(~)da. 
(z 

d t) exists T h e o r e m  1 . 8  Suppose that for  some 6, p(r ,  t) is in Ii o and ~ r P ( r  , 

continuous in r, t for [ r - s I <  ~ and a <--t <--b. Then the integrals 

b b 

d 18 ~ 

exist, are continuous in s, and are equal, s 

i A. D. ]~/[ICHAL, Annal i  di Matemat iea  (I936). 
V. ELCONIN, Thesis  (Calif. Inst .  of Teeh.,  1937). 
L. M. GRAVES, Trans.  of Amer.  Math.  Sot.,  vol. 29 (1927) , pp.  163-- I77.  Cf. also M. K~.I~- 

Ir Praee Matematyczno-Fizyczne,  vol. X L  (I932) , pp.  47--67.  
s V. ELCONIN~ loe. cit. 
4 M. K~I~I~R, Place  Mat.-Fiz., loc. cir. See also GR.r loe. cir. 
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In this section no use has been made of the completeness Of El ,  E~, . . . , / ! :n ,  

and that  of E 0 is needed only in the proofs of theorems I. 5, I. 6, 1.7 and I. 8. 

Special definitions and notations will be given when necessary, but if the 

contrary is not explicitly indicated, the symbolism of this section will apply 

throughout the paper. 

2. The Differential Equation ~f(x)=  1,'@, f, ~). 

In this section E, -~ are Banach spaces, 

x, u, ~, z, ~ are in E, 

y, v, ~ are in ~, 

a, b, c, g are positive in R, 

m is a non-negutive integer in R 

and q)(x) is any function on E to 2~. The main results of the section are as- 

sembled in 

Theorem I. For any x, y, z, ~, ~ such that ! l x - - u l l < a  and !lY--Vl! ~ b, 

let F(X, y, z) be in 2~, linear in z, and such that 

G(x, y, z, ~, 7 ) =  z~Y V(x, y, z) 

exists, continuous in x, y; and for  I x "  u]l < a and any m, let 

fo(x) be v 
1 

and let fm+~(X) be v +  I F ( u  + a ( x -  u), fm(u + a ( x -  u)), x -  u)da. Then 
i ]  
0 

I) For some c -<- a and any x such that i! x - -  u ii < c, 

f~(~) exists and H A ( ~ )  - ~ i~ < b. 

2) _For any such c: i f  

i lG(~, v, ~, o, ,~)il_<gllzlili,~il 

for  some g and any x, y, z, ~2 such that ii x - u i < c and il x - -  v I', <- b, then 

(i) f ( x )  =-- limf,~(x) exists for  iix - -  u:l < e; 

(ii) G(x, y, z, ~, F(x ,  y, ~) )= G(x, y, ~, z, F(x ,  y, z)) 
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for  any x, y, z, ~ such that !~ x --  u ii < c and i! Y --  v ,i <-- b implies I 

f ( u )  = v 

ilf(x) - -  v Ii ~ b 

d~f(x) = F ( x ,  f ,  ~) 

d~ d i f ( x ) =  G(x, f ,  ~, z, F (x ,  f ,  z)) 

for  any x, ~, z such that ! i x - - u  < c; 

(iii) if O(u)= v, 

O ( x ) -  vii-< b, 

d~ �9 (~) = ~'(x,  ~ ,  ~), 

for a,v ~, ~ such that il~--ull<c, the, for I ! x - - u i i <  c 

q)(x) = f ( x ) .  

Proof  To simplify the  nota t ions  we assume u = o, v = o, but  the argu- 

ment  will be valid for  any u, v; or i t  may be shown tha t  the  theorem is t rue  

if t rue  for  u = o ,  v = o .  

I t  is well known tha t  a funct ion  is cont inuous if it  is differentiable. Hence  

for IIxll < a and Hvli < b, F ( x ,  v, ~) is continuous in x, V for any ~; and since 

i t  is l inear  in z by hypothesis ,  we conclude, by theorems due to  Kerne r  ~, t ha t  

(2. I) F(x ,  y, z) is cont inuous  in x, y, z if Ilxll < a and IlYii ~ b, 

and for  some positive p, q, r in R such t h a t  i0 -< a and q --< b 

(2.2) HF( x, V, z) i [<r][z i !  if [[xt i<p and I[y[[<--q. 

n o t a t e .  

implies: if fm(sx) exists cont inuous  in s and 

i!f,~(sxli < b for o --< s --< i, 

then  by (2. i) and the cont inui ty  of a composite funct ion  formed of cont inuous 

funct ions,  F(sax ,  fm(sax), sx) is cont inuous in s, a for  o < s, a --< I; 

1 The preceding ident i ty  is the condition of complete integrabi l i ty  for the  differential equation 

a~f(x) = F(x, f ,  ~). 
2 M. KERNER, Studia Mathematica,  vol. I I I  (193I) pp. I56- - I62 ;  Annals  of Math., loc. cit. 
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1 

A+I(SX) =  x)do 
0 

exists continuous in s, by theorems I. 5, I. 6; and 

, , ~xl]  < s q  < b .  li fm+x(sx)  i! < sril ,, 
But  

fo (x ) -~o  if !x!  < e g a .  

Hence by induct ion the first conclusion of the 

Now let c have any value ~< a for which 

satisfy o --< s, t -< i, and suppose x, ~ such tha t  ilsx + t~ll < c for  any s, t. 

an induct ion similar to the one jus t  completed, it  follows tha t  for  any m 

(2.3) f m ( s x  + t~) is continuous in s, t, and !]fm(sx + t~)[! < b. 

conclusion I) holds; let s, t 

By 

f.,+l(,) 
1 1 

= ff ( I -  T) fm- - l (~V)+  Tfm(O.Y), V, O, fm(qV) - - fm- l (o . y ) )do .dT ,  
o o 

and, by the premise in conclusion 2), 

1 

( 2 . 4 )  li fm+l (Y)  - -  fro(Y)!i I ~ g i i "P H f H A ( . ~ )  - f l a - 1  (o'y)I[ do'. 

o 

But  by (2. I) the funct ion []F(o.v, o, v)! I is continuous in s, t, o. for o < o . ~ <  I. 

Hence for some positive p in R 

:F(o.v,  o, v)! I < p  for o ~< s, t, o. --< I, 
and 

1 

f I l f~(v)-- fo(v)~=]lf1( ,)]]  < - []F(av, o, v)![do. < p .  

o 

By induct ion we obtain for any m 

 "Jh ll 
(2.5)  i l f~+, (v ) - -  f~(v)  : < p ~ < cp m! < P ~ i - '  

79 

theorem is established, with 

Hence wri t ing v = s x  + t~ and using theorems I. I, I. 2, I. 7, 
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from which 

(2.6) 

a n d  

(2.7) 

(2.3), 
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f(v) = limf,~(v) exists, 

.fm(sx + t~) converges to f (sx + t~) uniformly in s, t. 

(2.7), and the continui ty of the limit of a uniformly convergent  

sequence of cont inuous functions,  

f ( s x  + t~) is continuous in s, t, (2. s) 
a n d  

(2.9) 

f ( s x  + t~!l <- b. 

Therefore  by theorem i. 5 

1 

f F(av, f(av), ,)da exists. 

o 

The argument  leading to (2.4) shows tha t  

i' F(v, f,~(v), z) --  F(v, f(v), z)l! <-- g I~11~fm(~) -- f(v)!i, 
and by (2.7) 

(2. Io) F(v, f,~(v), v) converges to F(v,  .f(v), v) uniformly in s, t. 

In part icular  lr f,~(av), ~) converges to F(av, f(av), v) uniformly in a for  

o < a < I; f rom which, by (2.9) and a well known theorem on the integral  of 

a uniformly convergent  sequence of integrable func t i on#  

1 1 

o o 

This with (2.6) gives 

2. I I)  

f(av), v) da. 

1 

f (x) -~ f ~(ox, f(ax), x)da 
0 

for any x such tha t  ]]x!i < c. 

Let O(x) be any solution of this integral  equation such tha t  li O(x)l! <--b 
for  !Ix] < c. Then by an easy induct ion 

M. KERNER, Prace  Mat.-Fiz. ,  loc. cit. 
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m !  - -  m !  

81 

0(2) = f ( x )  for Irxl! < 

From (2.6) conclusion (i) of the  theorem follows immediately.  

From (2.8) and (2. II), 

(2. I3) f (o )  ----- o and I]f(x)]] <-- b for  Hxl] < c, 

which contains the first two parts of conclusion (ii), the  remainder  of which is 

obtained as follows. Suppose tha t  ]lx]] < a and tlYH -< b. Then V(x, y, z, o, 7) 
is l inear in z, since it is evidently addit ive in z, and it is cont inuous in z at 

z = o  by 
IIG(x, y, o, v)ll_< gli qIHv!l. 

Moreover  G(x: y, z, ~, o) is l inear in z, since by the  premise in conclusion (ii), 

it  is equal to 

(;(x, Y, ~, z, o)+ V(x, y, ~, o, F(x, Y, ~))-- G(x, Y, z, o, F(x, Y, ~)), 

each term of which is l inear in z. Hence  

(2.14) G(x, y, z, ~, 7) is l inear in z; 

and since it is by definition l inear in ~, 7, a double application of one of Ker- 

ner 's theorems 1 gives 

(2. I5) G(x, y, z, ~, 7) is cont inuous in x, y, z, ~, 7. 

Also f rom (2. I4) , and theorems I. 2, 1.4 F(x, y, z) is differentiable in x, 

y, z, a n d  

(2. I6) "~:Y" d ~ F ( x ,  y, z ) =  F(x,  y, ~) + G(x, Y, z, E_, ,1). 

Now suppose x, ~ such tha t  Ilsx+ t~!]<c for o--<s, t ~  I, and write 

v = sx  + t~. I f  for  0 --< s, t ~ I, d f ,  n(v) exists continuous in s, t, then, by (2.15), 

(2. I6), and theorems 1.1, 1.2, 1.3, o ~ s ,  t, a--< I implies 

.) 
dt 

exists cont inuous in s, t, a, and equal to 

t M. KERNER, Annals  of Math., loc. cit. 

11--36808. Acta mathematica. 68. Imprira6 ]e 15 mars 1937. 
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( ) F(av ,  f=(av), ~) + G a v ,  f~(av),  v, a~, ~ f~ (av) ; 

and by theorem I. 8 

d f~+l (v) equal e x i s t s  to 

But  o --< s, t <-- i implies 

1 

0 

f ~ ( ~ ) ,  ,) da. 

d fo (v) = o. Hence by induction 

(2.17) 

for any m, o ~ s ,  t--~ I implies 

d 
fm+l (v) exists, continuous in s, t, and equal to 

1 1 

f f (  ) F(av, fmCav), ~)da+ G av, f,,(ov), v, a~ ,~ t fm(av  ) do. 
o 0 

Now suppose !lxll < c. By (2. I7) 

1 

~afm+l (X -~ {$~) = f .~(SX,, fm (SX), ~) d8 

o 
t 

0 

The last integral  equals 
1 1 

s F(sx ,  fm(sx), ~)ds + 

0 0 

- F ( s x  + ax,  f ~  ( ,x + ax), ~)} ds. 

In tegra t ing  the first of these by parts: 

7,fm+l(x + ag)---- F(x , f , , ( x ) ,  ~) 
1 

/ �9 + ST~ {F(sx + a~, fm (sx + a~), x) -- F ( sx  + ax, f,~ (s x + ax), ~)} ds. 

0 
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Hence  

rof~+, (x + ~ )  = F(x ,  f~  (x), x), 

and 

~,,f,,,+~(x + a ~ ) =  F ( x ,  f~(x ) ,  ~) + 

since 

1 

f .  {(~(.x, f . , ( .x) ,  ~, ~, rof , . ( .x  + ~)) 
0 

- -  G(sx ,  f,,,(sx), ~, x ,  7~f~(sx + ax))} ds = F ( x ,  f ~  (x), ~) 
a 

0 

- -  G (sx, f ~  (sx), ~, o, F ( s x ,  f~_~ (sx), x ) -  F ( s x ,  f,~ (sx), x))} ds, 

G(**, f . , ( .x) ,  . ,  g, _U(.x, f , . ( .x) ,  g)) 

- G ( . x ,  f.,(**), ~, . ,  F ( . x ,  f,.(**), ~)) = o. 

For  m > o ,  let  

and 

Then 

Am(x,  ~) = 7~f~(x  + a~) - -  F ( x ,  f~ (x ) ,  ~), 

Bm (x, ~) --- F (x, f,n-a (x), ~) --  .F (x, fm (x), ~). 

1 

Am+l(X, ~)= Bm+l(X, ~) -}- f {g (sx ,  fm(sx), x,  o, Am(sX, 8~)) 
o 

--  G(sx ,  fm(sx) ,  ~, o, Bn~(sx, sx))} ds. 

Let  ~ be such tha t  I[x + t~[ I < c for  o --< t --< I, and write v ~-- x + tg. The argu- 

men t  leading to (2.4) shows tha t  for  o ~ t ~  I: 

ItBm (•, ~)tl ~ g tl~ll IIf,~ (~) - -  fro--1 (~)1], 

and as in (2: 5), for  some positive p in R, 

If,? '-~ gll < q (g,)'~-' 
liBra (~', ~)N < cp g (m -:-- i)! (m -- I)!' 

where g = cpq and r = c + [I~I[; and 
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1 

(g~)m f *g)lP + liB., (8,,, 8~,)lj} d ,  liAm+a b', ~)rl < q ~ + gr 

0 

1 

2q (gr)~ f < mt + gr ijAm(s,,s~)]ids, 

0 

By (2. I), for  some positive h in R, o ----- t < I implies 

1 

!iAx(v, ~)1! < 2q + g," f ![le(sv, o, s~)l]ds < 2q + hgr; 
0 

and by induction:  o < t < I implies 

(2 a,')m-1 (g r)m 
ilAm( v, ~)ii < 2q (m - I)! + h m - F  for  m > o; 

hence Am(v, ~) converges to zero uniformly in t; and by (2. IO) 

(2.18) 
d f ~ ( x  + t~) converges F(x + t~, f (x  + t~), ~) to 

uniformly in t for o--< t g I. 

From (2. I7) and theorem I. 7 

1 

fm(x § ~)--fro(x)= -d-tf,~(x + t~)dt; 
0 

and 
1 1 

f ( x+~) - - f ( x )=~_m ~t f , , (x  + t~)dt= F(x 
0 0 

+ t~, f ( x  + t~), ~)dt 

f rom (2. I8) and the theorem on integrals of uniformly convergent  sequences 

used to prove (2. 1 I). Hence  

~ f(x) - P (x, / ,  g) 
1 0"  

0 0 
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and by one of Kerner's theorems 1, it can be shown that  the norm of the inte- 

grand in the right member is less than sore multiple of I1~1t ~ for all sufficiently 

small If~ll. Since F (x ,  f ,  ~) is linear in ~, it follows that  

(2. I9) d~f(x) ~- F(x ,  f ,  ~), 

and, differentiating, 

d~ d~ f ( x ) =  G (x, f ,  ~, z, F ( x ,  f ,  z)) 

for flxll < c. This establishes conclusion (ii). 

I f  the premise of conclusion (iii) is satisfied, then 

lIO (x)ll--< b 

and by theorem I. 7, 

f o r  I1xll < c. 

complete. 

= 

1 

/ 
0 

F(ax,  O(ax), x) da 

By (2. I2) conclusion (iii) follows, and the proof of the theorem is 

3. Special Cases of Theorem I. 

The definitions in section 2 preceding Theorem I are retained in this 

section. 

I f  F(x ,  y, z) satisfies the premise of Theorem I for any y ( b ~ o r  then 

we can strengthen the conclusion of the theorem and obtain 

Theorem 3.1. For any x,  y, z, ~, ~ such that IIx - ull < a, let 

F(x ,  y, z) be in 5, linear in z, and such that 

dz~F(x, y, z)-~ G(x, y, z, ~, 7) exists, continuous in x, y" 

and for i i x -  uii < a and any m, let 

fo(X) be v 

1 

and let fm+:(x) be v + I F ( u  + a ( x - - u ) ,  f~(u  + a(x + u)), x - - u ) d a .  
. 2  
0 

1 ~r KERNER, Annals of Math., loc, cir. 
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1) _For any x such that i [ x -  uli < a, f ~  (x) exists. 

2) zf  
il V (x, y ,  z ,  o ,  rl)li ~ g i;:zii 117!! 

for  some g and any x,  y,  z,  V such that iix--ui] < a, then 

(i) f ( x )  = lira fi~(x) exists for  ilx - -  u[i < a; 
m ~  Oo 

(ii) G(x, y, z, ~, F ( x ,  y,  ~))= G(x ,  y, ~, z, F ( x ,  y, z)) 

for  any x ,  y ,  z,  ~ such that ]Ix - -  u!l < a implies 

f (u)  = v, d~f(x) = F (x, f ,  ~), 

d~d~f(x) = G (x, f ,  ~, z,  F ( x ,  y, z)) 

for  any x ,  ~, z such that I I x -  u!l < a; 

(iii) i f  q)(u) = v and 

d~ q)(x) = F (x ,  ~ ,  ~) r 

for  any x, ~ such that Iix --  ull < a, then for !Ix - -  ul] < a 

�9 (x) =f(x) .  

Proof. The proof of Theorem I applies here, with the following simplifica- 

tions: replace e--< a by c = a; omit the proof that  

Ilfm (x)ll < b, llf(x)ll < b; 

and in the statement preceding (2. I2), omit the phrase ,>such that  [] O(x)l] --< b 

for  IIx!I < c,, and  the  inequality 

llo(x)l( l <_ b 
m! 

I f  moreover F ( x ,  y,  z) is constant in y, the first condition in conclusion 

2) above becomes redundant. Removing it, we obtain the following theorem, 

which has been proved in a different way by Kerner. ~ 

A n n a l s  of Math . ,  loc. cir. 
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(i) 
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I f  for  any x, ~, z such that I]x - -  ull < a 

F ( x ,  z) is in ~,  linear in z, 

d~ F(x ,  z) exists, continuous in x, then 

1 

f(~) = v + ] ~ ( u  + ~ ( x -  u), x - u ) d o  
i] 

o 

exists f o r  Iix - -  uli < a; 

(ii) i f  
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Now suppose E is R. 

then evidently 

and 

I f  F ( x ,  y, z) satisfied the condit ions of Theorem I, 

F ( x ,  y,  z ) = z F ( x ,  y,  ~) 

G (x, y, z, ~, F(x,  y, z ) ) =  z~ e (x, y, ~, ~, F(~, y, ~)). 

for any x, ~, z such that I[x--u]i < a, then 

f (u)  : v, d~f(x)  : l~(x, ~), d~ d~f(x) : d~ F(x ,  ~) 

for  any x, ~, z such that  ! i x - - u  I < a; 

(iii) i f  q)(u)-~ v and 

d~ �9 (x) = F ( ~ ,  ~) 

for any x, ~ such that ]!x - -  u H < a, then for  I!x -- ui! < a 

�9 (x) = f ( ~ ) .  

Proof. Regard ing  /~'(x, z) as a funct ion of x,  y, z constant  in y, we have 

by theorem I. 2, 

doYF(x,~ z) = d~F(~,  ~) = o, 

and by hypothesis  

d~ F(x ,  z) -- d~ F (x, ~) -~ d ~. Y F (x, z) --  d~ ~ F (x, ~) = o 

identically in ~. The conditions of conclusion 2) in Theorem 3. I are therefore  

satisfied, and it is easy to verify that  the others are also. The present  theorem 

then follows f rom Theorem 3. I. Note  tha t  here f l ( x ) = f ~ ( x ) - ~ f ( x ) .  
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Hence  the  symmet ry  condi t ion  in conclusion 2) 

Removing  it, we obtain 

T h e o r e m  3.3 .  Suppose that f o r  

II.v - vii <- b 

of Theorem I is redundant .  

any x ,  y, ~, ~ such that ] ! x - -u l t<  a and 

F ( x ,  y) is in 2~, 

~ V F ( x ,  y ) ~ - G ( x ,  y,  ~, 7) exists, continuous in x ,  y; 

and for  t lx--u!! < a and any m, let fo(x)  be v and 

f~+l(X) be ~ + [ F ( ~ ,  f~  (~)) d , .  
~d 

Then 

I) For some e <--a and any x such that !!x - -  u!! < C 

f~  (x) exis~ a , d  IIf~ (x) - vJ! < b. 

2) For any such c : i f  

!lG(x, v ,  o, 7)11 <-gll~ll 

f o r  some g and any x ,  y ,  ~ such that Hx - -  ull < c and IlY - -  v!l <-- b, then 

(i) f ( x )  = l imf,~(x) exists for  !!x--u)] < c; 
~ t ~  Oo 

(ii) for  any x such that ] I x -  u]l< c 

d 
f(u)  = ~, jlf(x) - vl! <- ~, ~ f (x)  = E(x ,  f ) ,  

d~f(x)  = G(x ,  f ,  I, I, F ( x ,  f));  
d x  ~ 

(iii) i f  

d O ( x ) _  F ( x ,  O) 
O ( u ) =  v, I~O(x)-- vll <- b, d x  

for any x such that l!x --  ull < c, then for  IIx -- ull < c 

O(x) =f(x). 



(3. i) 

C o m p l e t e l y  I n t e g r a b l e  D i f f e r en t i a l  F ~ u a t i o n s  in  A b s t r a c t  Spaces .  

Proofi The theorem follows from Theorem I and the integral identity 

1 i f F ( u  + a ( x - -  u), $ ( u  + a ( x - -  u)))(x-- u ) d a =  F(a ,  q)(a))da. 

0 "a 
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Moreover, using this identity we can replace the 'differentiation under the in- 

tegrul sign' in the proof of Theorem I by differentiation with respect to the 

upper limit, and so prove the following theorem due to Kerner z, in which the 

hypotheses are much weaker than those of Theorem 3.3 - -  from these we can 

d d ~ 
still conclude t h e  existence of ~ x f ( X ) ,  but not that  of Txx~ f ( x ) .  

Theorem 3.4.  

:I! / -  vl -< b 
Suppose that for  any x ,  y, ~ such that I x - - u !  < a and 

F(x, y) is in ~ continuous in x, y 

d:,I F ( x ,  y) exists, continuous in x .  y; 

and for  :x - -u l j  < a and a~y m, let fo(x) be v a ml 

X 

f,~+z(x) be v + I F ( a ,  f~ (a ) )da .  

?L 

Then 

x) For some c <--a and a.~y x such that l x - - u '  < c 

f . , ( x )  exists and ,i f . , ( x ) -  v! < b; 

2) For any such c : ~f 

F(x ,  u): -< g i,7 

for  some g and any x, y, • such that ]x - -  ul < c and :y - -  v l: <-- b, then 

(i) f ( x )  = lim f,~(x) exists for  Ix - -  u! '< c; 

(ii) for  any x such that i ' x -  u I <  c 

:I_ d 
f ( u )  ---- v, f ( x )  - -  v, < b, i i x f ( X )  = F ( x ,  f ) ;  

1 Praee Mat.-Fiz., loc. tit. 

12--36808. Ae, t.a ma~hemat ica.  68. Imprim~ 1o 15 mars 1937. 
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(iii) i f  
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q}(u) -~ v, li~(x) -- v! < b, d~(x)  _ F ( x ,  @) 
' - -  d x  

f o r  a n y  x such that IIx - ul l  < c, then = f ( x )  f o r  ;]x - -  ul[ < c, 

4. A Theorem Related to Theorem I. 

Def. 4. 1. A set L of elements in a Banach  space E form a >~domain>~ if  

and only if for  any x in L,  some ~ exists such tha t  I!x -- ~i! <- 6 implies ~ is in 

L for  any ~ in E.  

Def. 4. 2. A set L of elements in a Banach  space E is convex if and only 

if o g t - - <  I implies t x - e ( I - - t ) ~  is in L for  any x, ~ in L. 

In  this section we shall unders tand  tha t  E,  :~ are Banach spaces; x,  u, 

~, z, ~ are in E ;  y, v, V are in ~; L, 1/ are domains in E l  :~; ~ is a domain 

in ~ whose closure lies in .,4; g is positlve in R;  m is a non-negat ive in teger  

in R;  and ~ ( x ,  v, u) is any funct ion  on L ,  .4 ,  L to .4. 

Le t  ~r be a domain  in )~ such tha t  for  some 6, iY--Vl  ' > ~  for  any y, 

in J ,  : ~ - - Z ;  and let  /~ be any such ~. Le t  D be a convex domain in L such 

tha t  for  some ~, i!x::< ~ for  any x in D. And, for  a considerable gain in 

brevity,  let  x, y be restr ic ted to L, .4 in the remainder  of this section. W i th  

these nota t ions  we can state  the following extension of Theorem I:  

T h e o r e m  II .  S~ppose that for any x, y, z, ~, 

F ( x ,  y, z ) i s  in ~, linear in z, 

d ~ F ( x ,  y, z ) =  e ( x ,  y, z, ~, 7) exists, co,~tinuous in x, y; 

and for any m, x,  v, u, let fo(X, v, u) be v and fm+l(X, V, U) b e  

1 

v + [ -F(u  A- a ( x - - u ) ,  fm(u + a ( x - - u ) ,  v, ~,), x - - u ) d a .  
L ]  
0 

The~z for any J :  

~) Some D exists such that f,~(x, v, u) exists a,~d fm(x,  v, u) is in ~ when- 

ever x,  v, u are in D, zl, D. 
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2. For any such D." I f  g exists such that 

whenever x, y are in D, 11, the., 

(i) f ( x ,  v, u )= limf,~(x, v, u) 

exists for x, v, u in D, z/, D; 

(ii) / f  

e (x, V, z, ~, F (x ,  V, .@ = e (x, v, ~, z, F(x,  v, 4) 

whenever x is in D, then 

f(u, v, u ) = v ,  f ( x ,  v, u) i s  in A,  

d~f(x, v, u )=  F(x ,  f ,  ~), 

d~z d~f(x, v, u )=  G(x, f ,  ~, z, If(x, f ,  z)), 

for x, v, u in D, J ,  D; 

(iii) i f  ~0 (u, v ,  u )=  v, @(x, v, u) is in A ,  

d~ �9 (x, ~, u)=-F(x, o,  ~) 

whenever x, v, u are in D, J ,  D, then 

q~(x, v, u ) = f ( x ,  v, u) 

for x, v, u in D, J ,  D. 

Proof As in the proof of Theorem I, we can show that  

(4. I) F(x, y, z) is contsinuous in x, y, z. 

Now suppose that  

(4.2) 

whenever x, y are in D, J .  

of Kernerl;  and, as in the proof of Theorem I, we find by induction that  

1 

I If~(x, v, u) - vii-< t - i [F ( . . . ) i ida  < ~lix - -  ull < g 
! /  
0 
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iV(x, v, ~)4< ~il~ii 

This will  be true for some D, , / ,  ~, by a theorem 

Annals of Math., loc. cit. 
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for any x, v, u in d, d ,  d, where d is a domain in D such tha t  

i',x - all < 

whenever x, u are in d. But  i t  is evident tha t  

]i fro (x, v, u) --  vii < 

implies f ~  (x, v, u) is in ~ whenever x, v, u are in L, J ,  L.  Hence conclusion 

I) of the theorem follows, with D ~ d. The remainder  o f  the proof is a direct 

extension of tha t  given for Theorem I. 

The theorems of section 3 can evidently be modified to give special cases 

of Theorem II .  For  example, we have 

Theorem 4. 1. Assume the hypothesis of  Theorem I I ,  and suppose that the 

domain ~, and hence A ,  is the Banach space ~. Then fi,~ (x, v, u) exists i f  x, v, u 

are in D, ~, D, and the remaining conclusions of  Theorem H hold, with z/ re- 

placed by ~. 

5. Applications of  the Preceding Theorems.  

Several known results may be obtained as instances of the preceding 

theorems. 1 Moreover, the abstract  theory i s  useful in the proof of new results. 

For example, if  E '  and ~ are each the classical real Hilber t  space ~ H ,  Theorem 

I may be used to prove 

Theorem 5.1 .  Let a, b; g be positive real numbers; let u - - ( u  1, u ~ . . . .  ), 

v = ( v  1, v ~, . . . )  be in H, and suppose that for  any x = ( x  1, x ~, . . . )  and y-=-(y~, y~, . . .) 

in H such that ]ix - -  all < a and flY - -  v!l ~ b 

i NIKHBORC, W., Stadia  Math., ! (I929) , pp. 41--49;  
THOMAS, T. Y., Annals  of Math., 35 (I934), P. 734; 
KERNER, M., Prace Matematyczno-Fizyczne, 4o (1932), pp: 4 7 - - 6 7 .  

Also see our note, Proc. of Nat. Acad. of Sciences, 21 (I935) , pp. 534--536, in which some of our 
results  are summarized. 

STONE, Linear  Transformations in Hi lber t  Space (I932). 
HILBERT, Grundziige einer allgemeinen Theorie der l inearen Integralgleichungen. The n o r m  

Z (x0~ of an element x = (x ' ,  x '  . . . .  ) in g will be denoted by Ilxl[; x~: is the  i th  coordinate of x. 

i ~ l  
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(~) * j ( x  ~, x ~ . . . .  ;y*, : , . . )  

is in  R ; 

(~) ~ (.y exists; 
i , j  

ooj o0~ 
(3) Ox~ ' ~ v  ~' 

(4) i , ~ j , k ( ~ )  ~ exists. 

Then 

(i) 2; o .~ 
, o.v ~ a G  

Moreover, i f  

(5) i , ~ j , k ( ~ )  ~ exists; 

(6) ~,S, k xOyk]  <~ g~; 

i , j ,  k : I ,  2 , . . .  exis t;  

i, j ,  k =  I, 2 , . . .  exist. 

(z) f o r  any e > o some ~ > o exists such that  

I Ax lx  ~ , y tye  

i , j ,  k 

i f  il~ll, II,~!i < ~; 

~" /0~ ~ ~.j ( 1: . : : . . .  Oq)~l~ / 

j ~ O_ ~_ 

+ Z  q '~=  =Z~-Vv~ ; (8) o ~  ~ ~ 
/ 1 

then 

(ii) f o r  some posi t ive number e <-- a, the system of  dif ferential  equations 1 

(5-i) 

and the conditions 

d f ' =  ~ O j ( x ,  x ' , . . . ;  f t ,  f f  . . . .  )dxJ,  i =  I, 2 . . . . .  
J 

(5.2) 
l / f -  vii ~ b, where f =  (f', i f , . . . ) ,  

J~(u 1, u 2 , . . . ) =  v i ,  i = | ,  2 , . .  , ,  

have a unique solution JU(xl, x ~ , . . . ) ,  i = I ,  2 . . . .  , f o r  Ilx - ull < e, 

1 d f i ( x  x, x ~ . . . .  ) ~ d ~ i ( x ) ,  i =  I, 2 . . . .  ; where x = ( x  I, x ~ . . . .  ) and oJ=(dx 1, dx ~ . . . .  ) 
are in t t ,  and ~Fi (x)= f i  (x l, x ~ . . . .  ), i = I, 2 . . . . .  
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Proof. 

i[x - uli < ~, 
G ( x ,  y,  z,  ~, 7) 

Z ,I//;zJ and 
J 

(5.3) 

respectively. 

inequality. 

(i) follows from (')--(4) and the Schwarzian inequality. For 

IlY--VJ!< b, and any elements z, ~, 7. in H,  let F ( x ,  y, z), 
be functions with values in H whose ith coordinates are 

l o ~ .  o ~ .  \ 

The existence of (5.3) follows from ( ' ) - - (5 ) and  the Schwarzian 

F(x ,  y, z) is evidently linear in z. The continuity of G(x, y, z, ~, 7) 
in x, y now follows from (7) and repeated use of the Schwarzian inequality. 

Moreover, by 

I Atxy /p(X: 

< 

the triangular inequality, 

z ) - - G ( x ,  y, z, ~, 7)( 

(~ /  {j,~k ( '  "~xk ~xk-Flx~A-2"''(~)'I--O(I);~ 

+ zJ 7 k 

where E ~k+l x~+2"''~k+l ~+2 q)~ denotes O~(x 1 , ~  x 2, . . . . . .  , xk~, xk-]-12i_ ~k+l, . .; y l +  71, . .) 

Hence, using the Schwarzian inequality and the mean-value theorem for real 

functions of a real variable, we have for some real numbers ~---- 0 k ~k, ~t~_ Qk 7k, 

where O k, Qk are positive numbers --< I: 

z/~yF(x, y, z ) -  G(x, y, z, ~, 7) ~ 

_< (~:~ ~+i . 

+ ( ~ ; ~ + i .  
3 3, 

< 

+ 

- ,) b~x~ zJ ~ ~ 

: xk+l., i \ jl |2 u u 

(Eft ~ + 1  

ilz[I m a x  (i1~11, ilT!i) if max @1, 117;t) < 
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for some c?, by (7).  Therefore 

d~ F ( . ,  V, * ) =  G (., V, ~, ~, ,~). 

From (8), the condition of complete integrability in (ii) of Theorem I is clearly 

satisfied. Since also, by (6) and Schwarz's inequality, 

I!a(*, y, ~, o, v)i~-< ii~!!i,:~!-<gi:~:!, 
k 

the present theorem follows by an application of Theorem I. In fact, the above 

proof establishes the stronger result, that  the differential equation 

d ~ f ( x )  = F ( x ,  f ,  ~) 

and the conditions 

I f - -  vii -< b, f ( u )  = v 

have a unique solution f ( x )  for H x -  u!i < c where 

f ( , ) _  (~l, ~ , . . . )  and ~ ' ( x ) _ f ( ~ l ,  x ~ , . . . ) ,  i = ~, 2, . . . .  

The existence of d ~ f ( x )  implies that  of d . f i ( x  1, x 2 , . . . ) ,  which in turn implies 

the existence of O f f .  so that under the hypothesis of theorem 5. I the system 

of partial differential equations 

O f f  q){ (x , ,  x ~, " f ~ ,  j ~ ,  .), i ,  i =  I 2, 
O x J  a " " "' " " ' " " "' 

and the conditions (5.2) have a unique solution for x - -  u!! < c. 

In the same way, Theorem I I  can be used to show the existence under 

hypotheses similar to those of Theorem 5. I, of a unique solution f f (x  1, .~, . . . ;  

u 1, u S . . . .  ; v 1, v'~,...) of the equation (5. I) and the conditions ( 5 . 2 ) f o r  all 

x, u, v in certain domains of H. 

Theorems I and I I  can also be used to prove existence theorems for func- 

tional Pfaffian equations. For example, let E and ~ be the Banach spaces of 

real continuous functions x 8, yt, with norms Hx<] and !''tt' ',~ i, on the real intervals 

d - - < s ~ e  and d ' - - < t ~ e '  respectively; where d--<d', e'--<e. Then with the aid 

of Theorem I we can prove 



96 A. D. Michal and V. Elconin. 

Theorem 5. 2. Suppose a, b, g~, g~ are positive real numbers; a, ~ are in 

the intervals (d', e'), (d, e); and u s, v t are in E,  2~ respectively. Suppose fur ther  

that for  llx ~ --  #1t < a and liy t - -  v*ll' <<- b: 

(i) For each co, ~ q~(x' ,  YO, q)~( x~, YO are on E, 2~ to R, continuous in 

and in a, ~ respeetively~; 

(2) qJ~ (x ~, yt) and q)} (x', y') are d(fferentiable in x ~, yt umforrnly wi th  respect 

to a and fl; 

(3) d'~u q~(x  s, yt) and d~ ~ v q)~ (x*, yt) are continuous in a and in a, fl respectively; 

and are continuous in x*, yt umformly  with respect to a and to a, ~ respectively: 

(4) !!d~ q): (x ", yt)] I --< gl ][~H' 

and 

itd,  (x 'J)!l --< I1,i '. 

Then, the complete integrability of  the functional  Pfaf f ian equation 

(5, 4) 

where the repetition o f  the index fl indicates integration over the interval (d, e), 

implies that for  some c <~ a equation (5.4) and the conditions f~(u  ~) = v ~, IIf ~ --  v~[['-- < b 

have a unique solution f ~  (x') for  l!x* --  u'l] < e. 

I f  in theorem 5.2,  

to a, then we obtain as 

Pfaff ian equat ion 

~ (x ~, yt)=_ o and @~(x s, yt) is constant  with respect  

a corollary an existence theorem for the funct ional  

d~f (x  ~) = @~ (x ~, f )  z~, 

where a)~(x s, y) is on E, R to R for  each /~. 

I f  to the  postula ted addi t ion and scalar mult ipl icat ion in Banach space 

new funct ions are postulated,  then instances of the r ight  member  of the com- 

pletely integrable  differential  equat ion 

d~f(x) ~- F ( x ,  f ,  z) 

can be wri t ten  explicitly, and the equat ion defines funct ions f ( x )  whose existence 

( I t  i Clearly ~a(xs, yt) and ~fl(x s, yt), for each fl, can be regarded as elements of 27. 
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and structure in terms of only the postulated functions are demonstrated by 

Theorems I or II. For example, if E is 2~ and there is a bilinear function 

x . y ,  in E for all x, y in E, then the simplest non-trivial instance of F(x,-y, z) 

is y . z ;  if moreover 

( 5 . 5 )  ( x .  = 

for all x, y, z in E, then the equation 

(5.6) d~f(x) = f . z 

is completely integrable, and its solution is 

(x  - .)" 
f ( x ) = v +  Z v. .! 

~ / ~ 1  

where f (u )  = v  and x *~ is defined by x 1 = x, x ' *=  x "-1 �9 x for n = 2 ,  3, �9 �9 .- 

Examples of spaces E and functions x . y  for which equation (5 .5 ) i s  

satisfied will be given below. That the equation is not always satisfied may be 

shown by taking for E the set of real quaternions i and for x .y the quaternion 

product; in fact (5.5) cannot be satisfied if E has a unit element and x . y  is 

not commutative. 

3 

Example I. Let E be the set of elements x ~  ~ x ~ e i  of real normed 
i = 1  

algebra, and let x . y =  ~,  x~yje~e~, where the e~ej are given by 
i , j  

e~e./. + 

e~ 

e2 + o 

e a - -  S 

e2 e 3 

- - S  

- - S  

0 

S = e j  + e ~ + e a .  

n 

i A rea l  l i nea r  a lgeb ra  of e l e m e n t s  x = Z x i e i  can be no rmed  in  m a n y  ways  to  form a 

i = 1  

~ 2 
Banaeh  space.  For  example ,  nx[I m a y  be defined to  be x l �9 

13--36808. A a a m a t h e m a t i e a .  68. Imprim6 le 15 mars 1937. 
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T h e n  (5.5) is satisfied, E has  no  uni t ,  x . y  is n o t  associa t ive  and  n o t  com- 

mu ta t i ve ,  and  x n ~ o if  n > 2. 

Example  H .  I f  the  mul t ip l i ca t ion  table  in  E x a m p l e  I is r ep laced  by 

ei e i el 

e~ L S 
2 

e 2 - -  S 

I 
e3 - S 

2 

e2 e 3 

LS - S  
2 

~s Ls 
2 2 

i 

- s ,  ~-s 
2 

t h e n  E and  x . y  have  the  p roper t i es  s t a t ed  in E x a m p l e  I ,  excep t  t h a t  x . y  is 

associat ive.  

Example  I l L  

a lgebra ;  le t  

L e t  E be t he  set  of  e lements  x z ~ xi e~ of  a rea l  n o r m e d  
i = l  

x y ~ Z xi yj ei ei ~ Z xi .Y.i Y~i J ek ' 
i , j  i , j , k  

where  7~j = ai aj  (1) e + tIz~j, t~kj = __ t~3ki ' ~ ai LlYi 7 g O, and  no t  all t he  W~j = o. 
i = 1  

I 
I f  x .  y = ~ (xy  + yx) ,  t h e n  (5. 5) is satisfied, x �9 y is associa t ive  a n d  c o m m u t a t i v e ,  

x n ~ o  f o r  all n; bu t  x y  is ne i the r  s y m m e t r i c  n o r  skew-symmet r i c  - -  so t h a t  

x . y ~ x y  and  x . y ~ o .  

Example  I V .  A special  case, in  wh ich  x y  is associa t ive ,  of  E x a m p l e  I I I  

is o b t a i n e d  if  n ---- 4;  al = at = o,  ae = a a ---- I ; �9 1 - - -  0 4 = O ,  O ~ = 0 3 = I ; 
k - -  1r W~j- -  o if i, j is no t  a p e r m u t a t i o n  of  I, 4, T I ~ - - - - T a l  = Wk, where  W l = W 4 = o ,  

W e =  - - T  ~ =  I. T he  table  fo r  the  eiej is t h e n  
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ei e j  e 1 

e I o 

e 2 0 

e~ 

o 

ea e~ 

o $2 

S~ S~ o 
S~ ---= e, + ea 

2 e 2 -  e 3 

e 3 o $1 $1 o 

e 4 - -  S 2 0 i 0 0 

There exists no unit-element. 

More generally, if E is any Banach space in which a symmetric bilinear 

function x . y  is defined, the condition (5.5) for the complete integrability of 

the equation (5.6) is satisfied if and only if x . y  is associative, so that  E is a 

commutative abstract ring. Suppose x . y  is associative, and ~0i(~', ~)= YZain~'~' 
co 

~(v,  x ) = v ' ~ . j  ai,~x ~, x ~ = x " - l . x  for n = 2 ,  3, . - . ,  x ~  where u, ~ and the 
n ~ 0  

ai,, are real numbers, v, x are elements in E ,  and the mark I ,  introduced 

to simplify the notation for abstract series, has the properties x .  I = I . x ,  

( x . I ) . y = x . ( I . y ) ,  for any x, y in E;  x + I is not defined. Then to the 

identity F ( ~ j ,  q)~, . . . ,  q)n) = o in ~, ~ corresponds the identity F ( f l ,  f ~ , . . . , f , ) = o  

in v, x, where F(q)l ,  . . . ,  q)n) is a power series in q ) j , . . . ,  qo~. This is simply 

because the two corresponding identities are reducible to the same infinite set 

of simultaneous equat ions  in the a~n. Thus to the identity ~ef~e~=v(~e i+~) 

corresponds 

e(v, x ) . e (v ,  y ) = e ( v ,  x + y ) ,  

where e (v, x) - -  v .  ~ ~ .  ; and to (~ sin ~)e + (v cos ~)* ~-- v * corresponds 
~ 0  

(s in (v, x)) 2 + (cos (v, x)) = v 

- -  ) x :"+1 and cos(v, x ) = v  Z ~  . Term- where sin (v, x ) =  v .  ( n ! 
n ~ 0  

by-term differentiation of these abstract series (justified below) gives the identities 
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d~ e (v, x) = e (v, x). ~, 

d~ sin (v, x) = cos (v, x)" z ,  

d~ cos (v, x ) - -  -- sin (v, x ) . z ,  

where the functions differentiated in the left members are respectively equal to 
v, o, v when x-~ o. These equations are completely integrable. The are, in 
fact, rather simple instances of the equation considered in the following theorem. 

Theorem 5.3. Let am~ be in the abstract ring E for m, n ~ o, I, 2 , . .  , ,  

and such that for some positive numbers Q, a, 

]iamnil < Qa--m~ --n 

for all sufficiently large m, n. Let i~ be the modulus of the bilinear commutative 

ring product x . y and let ~ --= min ( I , ~ ) �9 Then 

a ~ ,: T 
') • I[x]i > /~ ]lYil < - '  the double series D : Z amn " X'" yn converges ab- 

solutely and uniformly; 

:) i f  [!xJ[ < x . ,  IlyJI < ~ ,  the double series D is term-by-term F~chet dif- 

ferentiable in x, y, the derived series converges absolutely and uniformly, and the 

equation 

d~f(x) = D " z 

is completely integrable. 

Proof. 

]]a,~,,.x'~.y,~ii <_ ~'~+nHam,,iiix[,~[Lyli,~ < Q[]i-!i]l'~ {i~l" 

ttenee if i[xil < ;  iiYil <-'/~ the double series for 0 I 

ultimately dominates D, and i) follows. Moreover, if IIx]i < a, ilYI[ < ~, the double 

series for Q ( I -  ]lxl~) -1 ( I -  IlY'--~) -1 ultimately dominates ~ Ilam~[I]lx[ m Ilyl[n; hence 

for sufficiently small Jlfli, Fiwi 

for all sufficiently large m, n. 
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Z il~,ll/tlxii + II~lll ~ i11~11 + Ii,II} ~'= Z II~.ll .~ 

j 7 Y / j  n 

by a known re-arrangement  theorem for series of non-negative numbers.  Hence  

if llxll < t a ,  IlYll < 1~, and sufficiently small 11~11, 117!1, the  series 

n a r + m ,  s + n  " " y ~ ,  

rj 8 

~ ft 

eonnerge absolutely and uniformly,  

y~amn" (x + ~)~.(y + ~)~= ~ n ~ .  ~ ' , 7  ~, 

m ,  n 

so thag d ~ Y D = D I 0 . ~ + D 0 ~ . 7 ,  

and the condit ion for complete  integrabilit~y becomes 

(D~o + 1 ) .  Do , ) -  (~ .  z - -  z .  g) = o ,  

an evident identi~y. This eomple~es the proof. 

By an argument~ similar to t;hat~ used above for  double series, t~erm-by4erm 

differen~iagion of the single series ~ a~.  x ~ is valid for  llxll < X  a, if Ila~ll < ea  --n 

for some Q, a and all sufficiently large m. Since lim ~ .  = o for  any number  a, 

~ < 0o - '~ for  any Q, a and all sufficiently large m. i t enee  t~he te rm-by4erm 
�9 o 

differentiation of e (v, x), sin (v, x), cos (v, x) is valid for  any x. 

I f  E is t~he se~ of real  funct ions x (a, /~), cont inuous in a, ~I for  a <-- a <_ b, 

~ ~< ~ --< b, and x .  y ~  f x ( a ,  a)y(~,  fl) d~, ~hen E is ~he r ing with respeet~ t~o x �9 y 

a 
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s~udied by Volterra 1. I f  moreover ix::! -~ max ]x (a, ~)1, then  x y is bilinear 
a<--a,[J~b 

and E is a normed vector ring. If,  with Volterra, we suppose tha t  a funct ion 

~(a, fl) exists such tha t  ~(a, a ) # o  for a< - - a~<b  and x . ~ - - ~ . x  for any x in 

1~, then, as Volterra I and others have shown, x . y  is commutat ive in E, and 

theorem 5.3 expresses new properties of Volterra 's  'permutable '  functions.  The 

ring E contains null-factors, since non-zero elements x, y exist in E ,  such tha t  

x ( ~ , f l ) = o  if  cc<--fl<_b, 

y(a ,  f l ) = o  if fl<--a<~b, 

/ and hence x �9 y = x (a, a) y (~, fl) da = o. 

Altho E contains no unit-element,  a normed ring S with a uni t  element exists in 

w h i c h  E is an ideal s . For  if S is defined to be the set of all ordered pairs 

(x,)~) where x is in E and k is a real number,  and if for any X = ( x ,  It), 

Y----(y, l ) i n  S, 

x r =  + ky  + kt) ,  i lx!  = iixii + Ikl, 

then  S is a normed ring, (o, I) is a unit-element in S, the set T of elements 

(x, o) in S is isomorphic and isometric to E, and for any X, Y in T and Z in 

S, the elements X . Z ,  Z .  I7, X - -  Y are in T. Hence if in S and the defini- 

t ions of addit ion and multiplication, T is replaced by 1~, S becomes a r ing S ~ 

which contains E as an ideal. In  fact,  E is a prime ideal, since its residue 
S t 

class ring ~ contains no null-factors. 

6. Existence Theorems for the Equation K(x, f(x))=-o. 

The notat ions used for differences and differentials in the preceding sec- 

tions are occasionally ambiguous.  For  example, the value of d~f(y, x) when 

y = x is not  always d~f(x, x), and similarly for the differences ~ f ( y ,  x) and 

J~f(x, x); tha t  is, the notat ions are not  completely substitutive. Whenever  

completely substitutive notations are necessary, we shall write s 

1 T h e o r y  of Func t iona I s ,  London ,  193 o. 
B. L. V a n  Der Waerden ,  Moderne  Algebra ,  Vol. I, Berl in,  I93 o. 

* V. Elconin ,  loe. cir. 
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and 

dq, . . -~nF(a~ . . .  a,) for  z f  . . . .  ~"F(x~ x,) ,  
~ . . .  ~ ~ . . .  ~n  " " " 

X . . . .  9: .  F ( X  1 X . ) .  d~ . . . .  ~, F(a~ . . .  an) for  d~, % . . .  

9~ X 

With  these new forms, d~f(y,  x) = d~ f (a ,  x ) i f  y =  x, whereas d~ f ( x ,  x ) =  
~3 

= d~f (a ,  a). 

Before proceeding to the  theorem of this section, we shall prove an im- 

por tan t  lemma. Le t  n be a posi t ive in teger ;  b, a~, a~ . . . .  , a~ be positive real 

numbers ;  a, fl be in Banach  E,  ~ respectively;  and ui, xi, ~i be in a Banach  

space E~, for  i =  I, 2, . . . ,  n. 

Lemma.  I f  for  any x t . . .  Xn, ~ t " "  ~n, (%, ~ 8,uch that ] l x i -  ui][ < a i ,  

H ( x l . . .  Xn, fl), P ( x l . . .  x, ,  a) are in E,  • respectively, 

H ( x l  . . . x , ,  P ( x l  . . . x ~ ,  ~ ) )  = ~ ,  P ( x l  . . . x , ,  g ( x l  . . . x ~ ,  ~ ) )  = ~, 

H ( ~  ~., ~) is Zi~ear i .  ~, a .d  ~ : .  ~"H(x~ . . ,  ~) i~ co.ti.~,ou~ i .  ~ x.. �9 �9 �9 . ~ .  . . . . . .  

Then for  any Xl . . . Xn, ~1" " " ~n, ~ such that !i x~ - -  u,[] < a,, P(x~ . . .  x , ,  a) is linear 

in a, and 

e ~ : ~ : P ( ~ , . . . ~ , ,  , ) +  p x i . . . ~n ,  d~, % H ( ~ . . . ~ , ,  P ( x ~ . . . ~ , ,  ~ =o .  

Proof  Assume ~he premise for  n = I; the  a rgument  will be valid for  any 

n. Le t  a = a ~ ,  u = u l ,  x = x ~ ,  ~ = ~ l ,  and suppose [ ' x ~ u ! [ < a .  By a t h e o r e m o f  

Schauder-Banach 1, P(x,  a) is l inear in a; hence for  some positive number  A, 

depending on x, 

i P(x,  ~)!: < A !i a :, 
so tha t  

liP(x, H ( x ,  fl))![ = I!flH < A '~[H(x, fl)!], 

and, by a theorem of Kerner ,  for  some B, b 

1 

0 

1 S t u d i a  M a t h e m a t i c a ,  I 9 2 9 ,  I 9 3 O .  
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i f  II~ll < b, 

Banaeh. 1 

(6. I) 

(6. 2) 

(6. 3) 

A. D. Michal and V. Elconin. 

since d~H(x, ~) is easily shown to be linear in fl by a theorem of 

Hence for some A, b and any g such that  !lg[I < b 

IlH(x + ~, ~)ll > AII;~I!, 

A~H(~, V(~, ~))= ~H(~, V(. + ~, ~))+ H(., d~P(x, ~))= o, 

zt~H(x, P(x, a))= zl~H(a, P(x, a)) + H(x + ~, zl~P(x, a ) ) = o ;  
g 

using (6. I), (6. 3): 

A H ~ e ( x ,  ~)II < II H(x + ~, ~ e ( x ,  ~))rl = I] ~i H(~, P(x, ~))!1, 

and since H(x, fl) is continuous in x 

(6.4) P(x, a) is continuous in x. 

Using (6. 2) and (6.4): for some A, B, b and any ~ sueh that  I!~!l< b 

) .r P( . ,  ,~) + P , ~,~ H(o, P(x + ~, ,~)) 

~,~P(x, o)+ v(x, aiH(~, l~(x, 

< A H(a, P(x, a))[ + 

and by (6.4) again and the definition of differentiM 

P(x, + d~ P(x, (6. 5) d~ a) P(x, H(a, a))) = O. 

This completes t he  proof. 

Now let n be a non-negative integer; a, b, e, e, g, h, A be positive numbers; 

E, ,  E~, E 8 be Banaeh spaces; u, x, a, 7 be in El; v, y, fl, d be in E~; z be in E3; 

and let @(x) be any function on E 1 to E~. 

~ 0 ,  

~))) 

1 

f z+s. ~ / 
0 

* Fundamenta Math., loc. cit. 
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Theorem 5.1. For any x, y, z, ct, fl, 7, ~ such that !i x u ~ < a, :! y - - v  i!~ < b, 

suppose that P(x,  y, z) is in E~  V(x,  y), G(x, y, a) H(x, Y, fl) are in E3; 

F(u, v)----o; d~F(x ,  y) exists equal to G(x, y, c~) + H(x, y, fl); d~,c l~F(x ,  y) 

- - K ( x ,  y; a, fl; 7, ~) exists, continuous in x, y; 

H(x, v, P(x,  ,v, z ) ) =  z, t'(~, v, H(x, V, ~ ) ) = ~ ;  

let Q(x, y, e ~ ) ~ -  P(x, y, G(x, y, a)); let fo(X)-~ v; and for any n, let f~+,(x) be 

1 

,: + . ]  Q(u + ,~(x - u), f,,. (.. + ,,(x -? , ) ) ,  x -.,,)~l,,. 
t /  

0 

Then 
(a) for some A, g <-- a, h <- b 

: P(x, y, K(x, y; a, Q(x, y, .); o, fl))~< A a i fl 

i f  x - u ~ <  e: 

(i) 

for ilx - - u <  e, i f  and only i f  q ) ( x )= f (x )  for :x -- u 

(ii) d2f (x )  = q(x, f(x), .), 
and 

i f  x - u r  < q ,  ly - ~,'~F < h; 
(2) for any such A, g, h and any c < h, some e <--g exists such that 

f (x)  =-- limfi,(x) exists, ::f~(x) -- v < e, 
ffI " - - *  r  

and for any such e: 

O(u) = v, F(x, O(x)) -~ o, O(x) - ~ < 

< e ;  

d~i d ~ f ( x ) =  - .  P(x, f(x), K(x, f ( x ) ; . ,  Q(x, f (x ) ,  •); 7, Q(x, f ( x ) ,  7)))- 

Proof. Assume the premise. The proof will be reduced to an application 

of Theorem I by taking for the functions F, G of that  theorem the functions 

Q(x, y, a), - P ( x ,  y, K(x, y; a, Q(x, y, a); 7, d)) respectively, and showing that  

condition (iii) of Theorem I is then equivalent to condition (ii) of the present 
theorem. 

If  : x -  u:! < a, j ! y -  v:] < b, then G(x, y, a), H(x, y, fl), evidently linear in 

a and in fl respectively, are continuous in x, y since they each have a differential 

in x, y; these differentials are themselves continuous, hence P(x, y, z) is con- 

tinuous in x, y, linear iu z, by the preceding lemmu; 
14- -36808 .  Aeta mathematica. 68. Impr lm6 le 9 avri l  19.q7. 



106 A.D.  Miehal and V. Eleonin. 

(6.6) Q(x, y, a) is continuous in x, y, linear in c~; and P(x, y, K(x, y; a, 

Q(x, y, a); o, ~)) is continuous in x, y, linear in c.,, linear in fl, which implies 

that for some A, g ---< a, h--< b 

(6.7) P(x, Y, K(x, :,~; ~, Q(x, y, ~0; o, ~))!i < J ! i ~ :  i~I 

if :ix -- u:! < g, ] y - - v :  < h .  Let .4, g, h be any such numbers. Then i i x - - u !  < g ,  

i]Y--V:i < h implies 
X y 

d~Q(x,, y, a)+ P(x, y, dx:'(G(x,.,,,, !I, co))+ d:i~ P(a, ., e(x, y, a)) = o ,  

and by the preceding lemma 

d~.;~(~, ~, a(~, v, all = ~ x, v, e~,~r(~, ~, O(x, y, ~)1, 
so that  

(6.8) 

and 

(6.9) 

d~,, Q(~, v, ~ ) =  V(x, v, K(x, y . ,  Q(~, y, ~); r, ~)); 

P(x, y, K(x ,  y; a, Q(x, y, n); 7, Q(x, y, 7)) 

is symmetric in c,, 7, sinee 

K(x,  y; a, fl; 7, ~)----K(x, y; 7, ~; ~, fi). 

Moreover, for any e--<g, if x - - u  < e  implies 

q)(u) = v, F(x, q)(x))== o, : q ) ( x ) -  v:i < h, and d~q)(x) exists, 

then i !x - -u  < e  implies 

e ( . )  = v, ~(x)  - v: < h, and d~(~(x)) = Q(x, a,(x), ~), 
since 

d~ F(x, ,v(.))= a(x, ,v(.), .~) + Y(x,  ,*,(x), d~a,(x))= o; 

and the converse is true. In view of this and the results in (6. 6), (6. 7), (6. 8), 

(6.9), Theorem I cali be applied to complete the proof. 

Concluding Remarks. 

Attho we have restricted ourselves in this paper to first order differential 

equations, the method of successive approximations may be applied to obtain 

existence theorems for certain differential equations of higher order, and for 

certain systems of differential equations. I t  is sometimes possible to reduce the 
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proof of such existence theorems to an application of Theorems I or II.  

example, the second order differential equation 

may be replaced by the equivalent system 

d::i a(x) - l (x, 7) 

d t'(z, 7 )=  H(x, 9(x), l (x, 7!, 7) 

of first order 

single equation 
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equations, which in the product space ~ ~'~ is equivalent to the 

d~f(x, 7)= F(x, f(x,  7), ~, 7), 

where 
f =  {g(x), P(x, 7)}, 1 , '=  {P(x, 7), H(x, g(x), P(x, 7), ~, 7)}. 

Hence if the initial conditions of the second order equation are on g(x) and 

d~g(x), the existence of f (x ,  7) now follows from Theorem I, if the premise of 

the latter is satisfied. In general, however, such a reduction is not possible; if 

in the preceding example the one-point initial condition is replaced by a two- 

point boundary condition, Theorem I cannot be applied. We have already begun 

the study of higher order equations with many-point boundary conditions. We 

also intend to study the most general first-order differential equation 

d~ f (a) ~-'1"~ ! f (a), 
g 

which cannot always be reduced to the form considered in this paper, as is 

evident from the example 

d,~ f(a) = f(g(x, ~)), 

where g(x, ~) is a given function. 

Since our analysis of the dependence on the parameters v, u of the solution 

f ( x ,  v, u) in Theorem I I  is still incomplete, we have preferred to reserve it for 

a future paper rather than delay unduly the present publication. 

1 X~ is the Banach space of ordered pairs {x, y} of elements x, y in ~, with i'~ {x, y} [i : 
max {:[x:], [[y[!}. However, many other definitions of equivalent norms are possible. See sec- 
tion L 


