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w i. Introduction. 

I . I .  We shall deal with the system of differential  equations 

d~,(t) 
d t  --  aj l( t)~l(t)  + "" + al,~(t)~,~(t) + fl~(t) 

d ~ ( t )  a , l ( t ) ~ ( t )  + . . .  + a~,~(t)~,(t) + fl~(t); 
d t  

in which the funct ions a, ,  (t) and fir are real or complex a.p.~ functions of the 

real variable t, and the fit(t) may or may not  be identically zero. We shall 

seek to determine conditions under  which the solutions of (I. II) are of a ra ther  

general type involving a.p.  functions.  Before characterizing this type of solu- 

tion more explicitly, we shall introduce a shorter  vector terminology. 

I . z .  Troughout  this  paper we shall use the letters x, y, z, and b to denote 

n-dimensional vectors (or matrices of n rows and one column) having the compo- 

d t ., nents  ~1 . . . .  , ~,~; V~, . . . ,  Vn; ~,, . . . ,  ~ ;  and i l l , . . . ,  fl~. The vector ~-t~L(), . .  

d 
d--t~(t) will be denoted by D Ix]; the n-by-n matr ix  whose elements are a , ,  will 

be denoted by A, and the matr ix product  of A and x will be denoted by A . x .  

Hence in this terminology (I. I I) becomes 

(I. 2I) D[x(t)] = A ( t ) .  x( t)  + b(t). 

We shall also de~ne a norm for Yectors, namely Ilxll = [ ~ 1 +  " + I x~l. 

I .  I I )  

1 T h i s  p a p e r  w a s  w r i t t e n  w h i l e  t h e  a u t h o r  w a s  a N a t i o n a l  Resea rch  Fe l low.  

2 a . p .  = a l m o s t  pe r iod ic  (in B o h r ' s  sense).  
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I. 3. I f  we consider the known facts in the case where A(t) and b(t) are 

actually periodic with a common period P,  we find that  all of the solutions of 

( I . 2 I )  are of the form 
p 

(I. 3 I) x(t)---- ~_~e~,t'~y(~l(t), 

where p is some positive integer, the 2~ are complex numbers,  the r, are non- 

negative integers, and the yC~l(t) are a .p .  vector  functions.  1 I t  therefore  seems 

very natura l  to ask whether  in the general case (when A (t) and b (t) are a .p.)  

the solutions will all be of the form (I, 3I) with the y(')(t) a.p.  instead of peri- 

odic. Unfor tunate ly  such is not  the case, as can be readily shown by examples. 

However ,  the analogy with the per iodic  case makes (I. 3 I) seem a na tura l  type  

of solution, and we are therefore  going to seek for condit ions under  which the 

solutions will all be of this type. I t  is clear tha t  in the general a .p .  case we 

can wi thout  loss of general i ty  assume the ~ to be real, for if they have an 

imaginary par t  the exponential  breaks up into two factors  of which the one with 

the  imaginary par t  can be absorbed into the a .p .  vector  funct ions yr 

1.4. Definition. A vector  funct ion x(t) will be said to be of the a. p. 

type  if there  exist a positive integer  p, real numbers  ~1, . . . ,  ~v, non-negative 

integers rl, . . . ,  rp, and a .p .  vector  functions y(1)(t), . . . ,  y(")(t) such tha t  (1.3 I) 

holds identically in t. The least common module of y(1)(t), . . . ,  y(n)(t) will be 

called the module of x(t). 
I. 5. I t  is the aim of this paper  to obtain necessary and sufficient condi- 

t ions tha t  all of the  solutions of (i. 2I) be of the  a .p .  type and to obtain suffi- 

cient condit ions tha t  a par t icular  solution be of the a .p .  type. 

i. 6. The Vector b (t) may wi thout  loss of general i ty be taken to be iden- 

tically zero and equat ion (I. 2I) replaced by 

(1.6I)  D [x (t)] ----- A (t). x (t). 

For  consider the system 

1, .D [x (t)] = A (t).  (t) + (t) b (t) 

(i. 62) 
/ d t ~ + l  (t) = o; 

Abstrakte fastperiodisehe Funktionen, Acta mathematiea, vol. 61 (I933), 1 ~. BOCUNER~ 
I49--I84. 
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where ~,~+~(t) is a scalar function;  and let x*(t) be the n + I dimensional vector 

consisting of x(t) and ~n+~(t); SO tha t  its components are ~,(t), ~(t), . . . ,  ~n+i(t). 
I f  x( t ) is  a solution of ( I .2I ) ,  then for every constant  C, x*(t)~-{Cx(t), C} 
is a solution of (I. 52); and every solution x*(t) can be wri t ten in this form for  

some x(t) if .~,~+~(t)~=o. But  (I.62) is homogeneous in the ~,(t) and is 

really in ~the form (I. 6I). Thus an equation of the form (I. 21) can be reduced 

to one of the form (I. 6I), and theorems proved concerning the homogeneous 

equation can readily be re-phrased so as to apply to the non-homogeneous one. 

w 2. Decomposition of a Solution of the a.p. Type. 

2. I. In  our search for necessary and sufficient conditions tha t  all the 

solutions be of the a .p .  type, we shall first s tudy the properties of solutions 

which are of the a .p .  type and thus  obtain necessary conditions. Consequently 

i t  will usually be assumed in sections 2 and 3 not  only tha t  A(t) is a . p .  but 

also tha t  one or more solutions of (I. 6I) is of the a .p .  type. 

In  part icular  we shall be interested in the assymptotic behavior of solutions 

as t--* + ~ or as t - * -  ~ ,  and therefore introduce the following notation.  I f  

there exists a Positive constant  C such tha t  [[x(t)[[ < Cf(t) for all sufficiently 

great  t, we say tha t  
x ( t ) = 0 [ f ( t ) ]  at  + oo; 

and if there exist two positive constants Q and C~ such tha t  Clf( t)< [Ix(t)[[ < 

< C~f(t) for all sufficiently great  t, we say tha t  

x(t)--~ O* If(t)] at  + ~ .  

The meaning to be a t tached to the s ta tement  tha t  x (t) equals 0 [f(t)] or O* [f(t)] 

a t - - ~  or at +__ ~ is obvious. 

I t  is obvious tha t  if a solution x(t) of ( I .6 I )  is of the a .p .  type and is 

expressed in the form (I. 3I) with real ~ ,  a .p .  y(~)(t), and non-negative integers 

r~, then  

(2. II) ~7(t)= O[e~tt r] at + ~ ,  

where ~ is  the greatest  value of Z~ occuring in its expression of the form (I. 3I), 

and r is the greatest  value of r~ for values of ~ such tha t  Z ~ Z .  I f  Z is the 

least of the  ~ instead of the greatest,  (2.1 I) holds at  - - ~ ,  and if  Z, is a con- 

s tant  independent  of *, (2. II) holds at  + ~ .  This suggests the 
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Definition. Le t  A (t) be any continuous matr ix function.  Then a solution 

x(t)  of ( t .6 I )  will be called a primary solution of order 2 and degree r if  

x ( t ) - ~  O[e ~tt ~] at  + ~ .  

In  this section it will be shown tha t  if A (t) is a .p. ,  any solution x(t)  of 

the a .p .  type  can be decomposed into the sum of a finite number  of primary 

solutions. 

2.2. Let  A (t) be an a .p .  matr ix  function,  and let x(t)  be a solution (I. 6I) 

of the a .p .  type. Then x (t) can be wr i t t e n  in the form 

(2 .2 I )  x(t)=--e~t[yl ,  o(t) + tyl ,  l(t) + .." + tr'yl, r~(t)] -t- "" 

+ eap[yp, o ( t )+  typ ,~( t )+  . . .  + t~pyp,~(t)], 

where Zl > Jt~ > .-- > Zp, the y~,, (t) are a .p. ,  and none of the functions y~, ~, (t), 

. . . ,  yp.~p(t) is identically zero. We  shall first show tha t  when x(t)  is wri t ten 

in this way each of the terms in the above expression (i. e., an entire bracketed 

expression with its exponential  multiplier) is itself a solution. To simplify the 

notation,  we shall drop the subscripts from 21 and r 1 and let 

(2. 22) ylz(t) : ( r - - / z ) [  yl, r--,~ (t) (/z ~- O, I, . . . ,  r) 

te 

( 2 . 23 )  x ,  (t) = t" y , - ,  (t) ( ,  = o, : , . . . ,  

(The reason for in t roducing the factorials will appear shortly.) Here xr(t) is 

identical with the first term of (2.21), and we shall let x*(t) denote the sum of 

all the other terms. I t  follows tha t  x(t)-----xr(t)+ x*(t); and tha t  for any s, 

(2.24) lira e -at t'~ x * (t) = o. 
t ~ Q o  

2.3. We shall now try, by using (z. 24), to perform a t ransformat ion  on 

x (t) which will still leave it a solution of (I. 6I) but  will get rid of x* (t). To 

do this, we find a sequence of positive numbers h 1, h~, . . .  whose l imi ts ' i s  in- 

finity and for which lira A (t + h~) = A (t) uniformly in t and lim y ,  (t + h~) = Yt~ (t) 

uniformly in t for each /~ ~ r. Such a sequence exists since for each i we can 

choose hi so as to be greater  than  i and at  the same time a I / i - t ranslat ion number  

for A(t) and every y~(t). Having chosen the sequence, and remembering (z. 23) 

and (z. 24), we have 
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r !  lim [e-~hT~ x(t  + hi)] -~ eXtyo(t)= Xo(t). 
i ~  oo 

25 

But  r!  e-XhihT~x(t + hi) is a solution of 

(2.3I) 1) (t)] = A (t + h , )  (t), 

and therefore  the l imit  x 0 (t) of the sequence is a solution of the l imit ing system 

(I. 6I). Hence  our  method  is part ia l ly  successful, as we have t r ans fo rmed  x(t) 
in such a way tha t  all the  terms of ( 2 . 2 i ) e x c e p t  the first have vanished. How- 

ever, the  first te rm xr(t) has become Xo(t), and we must  therefore  find some way 

of ge t t ing  back to x~(t). 
2.4- I f  our  new solution xo(t )~ e~tyo(t ) had  conta ined an ext ra  fac tor  t ~, 

we would have been able to subtract  out  the last  t e rm of x~(t) and obtain a 

new solution to which we could have applied the  same process. Thus we would 

have obta ined the resul t  tha t  each t e rm of xr (t) was a solution, and hence tha t  

x~(t) was a solution. However ,  since the fac tor  t r is missing, the  last  te rm of 

x~(t) is not  a solution unless r =  o. As a m a t t e r  of  fac t  none of the terms of 

x~(t) is a solution when r >  o, and hence our  process must  be modified; and 

we will find tha t  as we repeat  the modified process we get  successively x~(t), 

x~(t), . . .  and finally x~(t) instead of obtaining monominal  terms from x~(t). 
Before passing to the complete induct ion proof  tha t  all of the  x~(t) are solu- 

tions, we will carry th rough  one more step of the process in order  to see what  

kind of modifications enter.  

2.5- We again deal with x( t  + h~), and again the only significant te rm 

is xr (t + hi), which may be wri t ten  in the expanded form 

�9 t ' - e  hQ/ 

I e~(t+hi) - ~ - I -  hi) t g  o (t -~ hi)] h ~  -1 

+ . . . ( t e r m s  in hr-2i , h ir-~, etc.) 

h r h~. (t + hi) i hi), and x (t + hi) ~ Xo But  the first t e rm of this expression is ~Xo( t+ 

a solution of (2.3 I). Thus 

~:--37534. Aeta mathematica. 69. Iraprim~ lo 1 septembre 1937. 

is 



~6 Robert It. Cameron. 

h~ 
x (t + hi) -- ~ x0 (t + h;) 

x, (t) = e ~' [y, (t) + ty o (t)] = (r - -  I)! l i r a  h i r - -1  i~| e h i 

is a solution of (i. 61). 

2.6. From the way in which the second step was carried out, we see tha t  

the  subtraction of a multiple of the new solution is carried out  af ter  the argu- 

ment  of the solution has been translated,  and tha t  the multiplier to be used is 

a funct ion of the hi. In  succeeding steps a fur ther  complication arises because 

a combination of all the solutions, already obtained has to be subtracted, and 

fur ther  summations have to be used. We  now pass to the generM case. 

Since we shall need to pass f rom the  y~ (t) to the x~(t) as well as f rom the 

xt~(t ) to the yt~(t), we first note t ha t  the r equations (2.23) have a unique solu- 

tion if we regard the n functions y~(t) as unknowns;  and it  can readily be 

verified t ha t  the expressions 

( - - t )"  
(~-. 6~) y~(t) = e -~  - W - ~ . . . ( t )  ( ~ = o ,  . . . ,  ,-) 

~ 0  

satisfy (2.23), and hence tha t  (2.6I) holds. 

2. 7. We now assume tha t  x~(t) is a solution of (I. 6I) for all tt less than  

a certain integer q which does not  exceed r. As before, we consider x,(t + hi) 
and obtain on in terchanging the order of summation in (2.5 I), 

where 

(z. 7I) 

xr (t+ hi)= e~( t +hi)~ h~ ~ t,-e ~ h~ ~cr_e (t; he), 
~=o ~ ~=~ (" - e)! Y"--~ (t + h,) = ~=o 

~(t;  h) -= ~ ( , + ~  V. ~._.(t + h), (~=o,  . . . ,  ,-). 

Subst i tut ing from (2.6I) in (2.7I), we obtain 

~ ( t ;  h) = ~ ~t" ~-'~_~ (--t--h)Ox._.._e(t + h) ~ x.-o(t + h) ~_j t" (--t--h)~ 
�9 ~ 0  Q ~ O  o ' ~ 0  ~ = 0  

a ~ 0  

and it follows tha t  if # < q, ~,( t ,  h~) is a solution of (2.31). Thus 
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r h~. 
x( t ,  h,) --- ~(t + h,) - 2]  ~. *,-e (t; h,) 

~ = r - - q  + 1 " 

~ ' -q  h~. 
~-- x* (t + h~) + e~( t +h i )~  z t"-r 

~o ~! ,= ( , _  r + h;) 

is also a solution of (2.3I),  and 

�9 ~ t'--r+q q)! yr--, (t) lim ( r - -  q)I X ( t ,  h,) = e~ t = xq(t) 
~ ~ e ~  h'[--q (v -- r + 

~,=r--q 

is a solution of ( I .6I) .  W e  now know that  x ,  ( t) satisf ies ( I . 6 ] ) f o r  all t t < q + I ,  

and the induction is complete. 

2.8.  Finally, since x, (t) is a solution, so is x* (t); and the same argument  

can be applied to it. Thus each group of terms in x(t)  having the same expo- 

nential  factors  forms a solution. Moreover  the expansion (2 .2i )  of x(t)  is unique, 

for Xo(t), . . . ,  x,( t )  have been given in terms of x(t)  by a uniquely defined 

process, the yl,0(t), . . . ,  y l  r,(t) are uniquely defined in terms of the x,(t),  and 

the y2,0(t), . . . ,  y2,,~(t), etc. are uniquely defined af terwards  in turn. These 

r e su l t s  will be summed up in (2.9). 

2.9- In  order to s tate the results  of ( 2 . 2 - - 2 . 8 )  more concisely, we first 

introduce by means of the fol lowing definition a terminology for some of the 

concepts  which have arisen. 

Definition. - -  Let  A (t) be any cont inuous square matr ix funct ion and let 

X o ( t ) ~ o ,  x,(t) ,  x~(t), . . . ,  x , ( t )  be solutions of ([. 6[) and ~ a real number  such 

that  for  all tt ~ r, 

(2.9~) y~(t) ~ e - " ~  ( -  t ) "  (t) 
~ = 0  

is bounded for all t. Then y,(t)  will be called a pseudo-solution of (~. 6I) of 

order 2 and degree r. Moreover  f o r t *  ~ r, x~ , ( t )and  y ~ ( t ) w i l l  be called re- 

spectively its genera tor  and its minor  of  degree tt, and xr(t) will be called its 

leader. Finally,  a solution x(t)  of (I. 6I) will be called a sat isfactory solution of 

order X and degree r if it is the  leader of a pseudo-solution y (t) of order ~ and 

degree r, and y (t) will be called its associated pseudo-solution. 

I f  we express the quant i ty  e~t~.j t~ ~.y~__~(t) in terms of X o ( t ) , . . . ,  xt~(t) by 

means of (2.9I),  we obtain x~(t) as a result. Thus we have 
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L e m m a  1. Le t  A (t) be any continuous square mat r ix  funct ion.  Ther/ if  

y~ (t) is a pseudo-solution of order  )~ and degree r and has the minors yo(t),..., y,.(t) 
and generators  x o(t), . . . ,  xr(t), i t  follows t h a t  for  each # ~ r, 

x, (t) - -  Z 
~ 0  

Hence  every sat isfactory solution is a pr imary  solution. 

Definition. Le t  A(t) be any cont inuous square mat r ix  funct ion.  Then  

a solution x(t) which is the sum of a finite number  of sat isfactory solutions 

x(1)(t), . . . ,  x(P)(t) having dist inct  orders ~ 1 , . . . ,  ~p is called a decomposable 

solution. I f  Z is the greates t  of  ~ ,  . . . ,  Zp, x(t) is called a decomposable solu- 

t ion of order  Z. 

5Tow in terms of the above definitions, we sum up the results of (2 .2 - -2 .8 ) .  

T h e o r e m  I. Le t  A (t) be an a .p .  square mat r ix  funct ion  and let  x (t) be a 

solut ion of ( t . 6 I )  of the  a .p .  type. Then  x(t) can be expressed in one and 

only one way in the form 

p ra t ~ 

93) y, 
o ' = 1  ' v = O  

where the Z~ are real  and distinct,  the  y~, ~ (t) are a .p. ,  and none of the  y~, o (t) 

are identical ly zero. ]Yioreover for  each a =< p, ya, ~(t)  is a pseudo-solution of 

(I. 6I)  of order  Z~ and degree r~ having the  minors y~,o(t), . . . ,  y~,~a(t). Finally, 

x (t) is the sum of the leaders of yl, ~, (t) . . . .  , yp, rp (t), and hence x (t) is decomposable.  

w 3. The Necessity of Condition I. 

3. I. I n  this section we shall show th a t  if A(t) is a .p .  and all the solu- 

t ions of (I, 6I) are of the a .p .  type, then  for  each non-tr ivial  solution x(t)there 
exist a real  number  )~ and a non-negat ive in teger  r such tha t  x ( t )=  O* (eZtt r) at 
+ r In  fact,  we shall show tha t  a similar s ta tement  holds for  cer ta in  com- 

binations of solutions, so tha t  the fol lowing condit ion holds. 

00ndi t ion  I. The  system (I. 6I) will be said to satisfy Condit ion I if to 

every finite set of solutions x(~ x(1)(t) . . . .  , x(P)(t) (not all identical ly zero) 

there  correspond a real  number  Z and a non-negative in teger  r such t h a t  
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P 

F,  t x (t) = o* t') 
~ '~  0 

at + ~ .  

Since Theorem I enables us (under the above hypothesis) to express solu- 

tions in terms of pseudo-solutions, we will determine the asymptotic behavior of 

pseudo-solutions as a prel iminary to determining the asymptotic behavior of 

solutions and combinations of solutions. We  therefore develop in this section 

certain properties of pseudo-solutions - -  first some general  properties and later  

asymptotic  properties. 

3.2. We begin with a general  uniqueness lemma. 

L e m m a  2. Let  A ( t )  be any continuous matr ix  funct ion.  Then every 

pseudo-solution y ( t )  of ( t .51) has a unique order and degree and a unique set 

of minors and generators.  

For  suppose tha t  y (t) has the set of generators  xo (t) . . . .  , xr (t) and the 

corresponding order ~ and degree r, and at  the same time y(t) has the set of 

generators  X'o( t  ) . . . .  , x ' r , ( t )  and the corresponding order ~' and  degree r'. Then 

if t o is any constant  value of t, the two solutions 

,, ( _ t o ) , ,  (-- t~ (t) and e - X ' t ~  ~ x ~ , _ , ( t )  e--~t~ E v ! Xr--~ 
'v~O r  

are both equal to y (to) when t = t 0, and hence are equal for all t. Pu t t ing  t =  o 

and varying to, we obtain a l inear relat ion between the funct ions 

e -~t~ e -xt~ to, �9 �9 e -~t~ t~ ; e-Zto, �9 e -~'to t o . . . .  , e -~'t~ t~ 

with constant  vector coefficients not  all of which are zero (since Xo(t  ) and x'  o(t) 

are non-trivial). Thus these functions are not  l inearly independent,  and ~ = )/. 

But  since I, to, t~o . . . .  are l inearly independent  i t  follows thar  r =  r '  and 

x ~ ( t ) - - x ' ~ ( t ) ~ o  for v = o ,  . . . , r .  

Moreover (2.9I) determines the minors in terms of the generators, and hence 

they are also unique. 

3.3. Next  we notice tha t  the property of being a pseudo-solution of a 

given order is invar iant  under  addit ion and under  mult ipl icat ion by a constant.  

This fact  can easily be verified, so no proof will be given. 
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Lemma 3. Let A (t) be a continuous square matrix function, 2 a real num- 

ber, and r a non-negative integer (or the symbol + ~).  Then the set of pseudo- 

solutions of (I. 6I) of order ~. and degree ~ r form with the trivial solution a 

linear manifold. 

Definition. I f  A (t) is a continuous square matrix function, the manifold 

consisting of the trivial solution together with set of pseudo-solutions of (I. 61) 

of order 2 and degree ~ r will be called the pseudo-solution manifold of (I. 6I) 

of order 2 and degree r. I f  r is not specified, it will be understood to be the 

symbol + ~ .  

3.4. Another lemma that  holds under fairly general conditions is the 

following. 

Lemma 4. Let A( t )  be any continuous n-by-n matrix function and let 

yr(t) be a pseudo-solution of (I. 6I) of order ~ and degree r having the genera- 

tors Xo(t), . . . ,  xr(l) and minors yo(t), . . . ,  y~(t). Then if Y0(t) is bounded away 

from zero for sufficiently great positive values of t, we have for tt =< r 

(3.4I) x , ( t ) ~ - O * [ e 2 t t  ~] a t  + oo. 

Moreover for each t the vectors Xo (t), . . . ,  x ,( t )  are linearly independent, so that  

r < n and y~ (t) is different from zero for every value of tt and t. 

For (3.4I) is an obvious consequence of (2.92), and the linear independence 

of the vector functions x , ( t )  follows from (3.4I). But if there is a linear relation 

between the x ,  (t) at a certain point t = to, the same relation holds for all t, 

since a solution which vanishes at one point vanishes identically. Thus the 

linear independence of the vector functions implies the linear independence of 

the vectors obtained by giving t a particular value. 

3.5. Returning now to the case in which A (t) is a.p. we shall show that  

under reasonable conditions the property of being a pseudo-solution is not altered 

by a limiting translation of t. 

Lemma 5. Let A (t) be an a.p.  matrix function, and let y~(t) be a pseudo- 

solution of (I. 6I) of order ~ and degree r whose minors and generators are yo(t), 

. . . .  y~(t) and Xo(t ) . . . .  , xr(t) respectively. Also let hi, he, . . .  be a sequence 

such that  2[ ( t ) ~  lira A (t+h~) exists uniformly in t and lira y ,  (h;) exists for each 

tt and does not vanish when # = o .  Then ~ ( t ) ~ l i m  yr(t+h~) exists for all t 
i ~ o v  

and is a pseudo-solution of order 2 and degree r of 
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D = 

31 

Moreover its minor  of degree tt is 

(3.5 z) ff~(t) = lim y , ( t  + hi) ( / t - = o , . . ,  r) 
i~oo 

and its generator  of degree tt is 

" ( -  hi)" 
(3.53) :~,, (t) = lim e - X h ~  ;[. x , - , ( t + h , )  ( t t = o , . . . , r ) .  

~2~0 

(3.54) 

where 

To obtain this result, we first express the  funct ion y , ( t + h i )  in terms of 

the  x~(t+hi) by means of (2.9I),  and then expand the binomials on the right, 

and interchange the order of summation.  

W e  find tha t  

y~(t + h,) = e -~t ~ (-- t)~ x* (t; hi), 

# 

x;  (t; hi) = e-  iy, Q- (t + 
q~=0 

Since x't, (o; hi) -= y~(h~), lira x ; (o ,  hi) exists for  each it; and as i --* or the 

sequence of systems D Ix (t)] ---- A ( t+  hi)" x (t) approach a l imiting system uniformly 

and its sequence of solutions x~ (t; hi) approaches a limit at  one point, t---= o. 

Thus the sequence of solutions approaches a limit for  all t, and this limit is a 

solution of the l imiting system; or in other  words, for each re, xt~(t) exists for  

all t as defined by (3.53), and is a solution of (3.5I).  Hence  we can take limits 

as i ----> ~ in (3.54), and we find tha t  for  each re, fft~ (t) exists for  all t as defined 
tt 

by (3.52), and 77, (t) ---= e-~t~_j ( -  t)" ~ v ! ~ x , - ~  (t). The lat ter  equat ion taken in con- 
V~0 

junct ion  with t h e  fact  tha t  ~ 0 ( o ) =  lim yo(hi)~ o, shows tha t  ~,(t) is a pseudo- 

solution of order k and degree r of (3.5I),  having the Y:t~(t) as generators  a n d  

the ff~(t) as minors.  

3.6.  We  now show in Lemmas 6 and 7 tha t  if A(t) is a .p .  and all t h e  

solutions of (t. 6I) axe of the a .p .  type, then every pseudo-solut ion of (I. 6I) is 

bounded away from zero. 
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Lemma 6. Le t  Z be a real  number  and A (t) an a .p .  mat r ix  funct ion such 

tha t  every pseudo-solution of (I. 6I) of order  Z and degree zero is bounded away 

f rom zero for  positive t. Then  all of the pseudo-solutions of (I. 6I) of order  Z 

are bounded away f rom zero for  all positive t. 

For  suppose tha t  there  is a pseudo-solution yr(t) of order  Z and some de- 

gree r which comes arbi t rar i ly  close to zero for  positive t. Le t  its minors be 

yo(t), . . . ,  yr(t) and let  hi, h2, . . .  be a sequence of positive numbers  such tha t  

lira yr(hi)= o. Since each of the y~(t) is bounded and because of Bochner ' s  

theorem on normal  funct ions  1 we can choose a subsequence h'~, h'~ . . . . .  of 

hi, h~, . . .  such tha t  l im yt,(h'i) exists for  each tt and such t h a t  A ( t ) ~  lira A(t+h'~) 

exists un i formly  in t. By hypothesis,  lim yo(h'i)~ o, and hence by Lem m a  5, 
i ~ a o  

?Tt~(t)~ lim yt,(t+h'i ) exists for  all tt and t and ff~(t) is a pseudo solut ion of 
i ~  oo 

D [x (t)] = ,4 (t). x(t) of order  Z and degree r having the minors Yo (t), . . . ,  ?7~(t). 

But  y0(t) is obviously bounded away f rom zero, and hence Lemma 4 applies and 

shows tha t  ff~(o)~ o, in spite of our  assumption t h a t  lira y~ (h i )=  o. Thus  our  
i ~ a o  

lemma holds. 

I t  is of course clear tha t  if the hypothesis  had been t h a t  the pseudo- 

solutions of order  Z and degree zero were bounded away from zero for  negat ive 

t (or for  all t) the corresponding conclusion would hold for  negat ive  t (or for  

all t). 

3.7- L e m m a  7. Le t  A(t) be an a .p .  mat r ix  funct ion.  Then  all of the 

a .p .  pseudo-solutions of (I. 6I) of degree zero" are bounded away from zero. 

For  suppose tha t  there  exists an a .p .  pseudo-solution y0(t) of degree zero 

and some order  Z which comes arbi t rar i ly  close to zero. Le t  Xo(t)~ e~tyo(t ) be 

the genera tor  of Yo (t) and h~, h~ . . . .  a sequence such tha t  l im Y0 (h i )=  o. Le t  

h ' ,  h'~, . . . be a subsequenee of hi, h~, . . .  such t h a t  2~ (t) ----- lira A (t + h'i) and 

ff0(t)~-lim yo(t+h'~) exist  uni formly  in t for  all t. Then  if we let e~t~o(t)=--hCo(t ) 

we have 

lim e-m, Xo(t + h'i)~. ~o(t), 
i ~  oD 

x Fastperiodische Funktionen I, Muthematische Annalen, vol. 96, pp. II9--I47 , esp. p. I43. 
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so that  x0(t) is a solution of D [ ~ ( t ) ] = A ( t ) . ~ ( t ) .  But  x ( o ) = ~ 0 ( o ) = o ;  so 

~o(t) -=o  and ~o(t) ~ o; and because of the uniformity of the limits yo(t )  -~  

~- lira tTo (t - -  h'i) -~ o. Thus Xo (t) is identically zero, which is contrary to the 
i ~ o o  

assumption that it is the generator of yo(t) .  

3.8. Having proved all the necessary preliminary lemmas, we state our 

main conclusion for this section. 

Theorem II. Let A ( t )  be an a.p.  matrix function. Then a necessary 

condition that  all the solutions of (I. 6I) be of the a.p.  type is that  the system 

(I. 6I) satisfy Condition I. 

To prove this theorem, let x (~ (t) . . . . .  x (p) (t) be any set of solutions of 

(I. 6I) (not all identically zero), and let 

P 

(3.81) z ( t )  - -  ~ t~ x( ')( t) .  
~ 0  

Clearly by the argument used in Lemma I, z (t) ~ o, for if it were we should 
P 

have ~ to x (') (t)=--o identically in t and t o, and all the x (') (t) would be trivial. 
~ 0  

Moreover by Theorem I, 

(3 .82)  
g~ 

x(') (t) = ~ e',,~t~,, oy,,,(t) ( ' =  ~ . . . .  , I~), 

where the ~,,~ are real, the e,.~ are non.negative integers, and the y~,~(t) are 

pseudo-solutions of (I. 6I) of order ,~,,~. But  from Lemmas 6 and 7, for all 

and a, y , ,~ ( t )=  O*( l )  at + ~ ,  and hence 

(3 .83)  x(') (t) - -  o* (e~,' ~,) at + o~, 

where ~, is the greatest of ~,,x, ~,,2, . . . ,  ~,,g,, and q, is the greatest of the e-.~ 

for which ~,, ~ = ~,. But if we substRue (3.82) in (3.81) we obtain an expression 

of the same form. For when terms having the same exponential and power of 

t are combined, pseudo-solutions having the same orders (though not the same 

degrees) will be combined, and the result will thus still be a pseudo-solution (or 

else zero, in which the term drops out). Thus the same reasoning that was 

used in establishing (3.83) holds for z(t), and it follows that  the system satisfies 

Condition I. 
5--37534. Acta mathematica. 69. Imprim6 le 1 septembre 1937. 
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3.9. I t  is quite clear that  if in the statement of Condition I we replace 

+ ~ by - - ~ ,  Theorem I I  will still hold. Of course, we can not replace + 

by +_ ~ ,  because the 2 and r occurring in our asymptotic equation will not 

usually be the same at + ~ and - - ~ .  We could on the other hand require 

the asymptotic equation to hold both a t - - ~  and at + ~ for separate pairs 

2, r; and Theorem I I  would be somewhat stronger since it would prove the 

necessity of a stronger condition. However in the future Condition I will usually 

appear in the hypothesis of our theorems rather than in the conclusions and 

therefore we will restrict it to be a one-sided condition as stated. Our theorems 

will be much stronger in consequence. 

w 4. Decomposable Solutions. 

4. I. In this section we shall show the connection between Condition I and 

systems of the form (I. 6I) all of whose solutions are decomposable. 

In the first place we note that  the proof of Theorem I I  could be carried 

through just as well if the hypothesis that  all the solutions are of the a.p. 

type were replaced by the hypothesis that  all the solutions are decomposable, 

provided that  we know that  the hypothesis of Lemma 6 is satisfied for every ~. 

Thus we have 

Theorem III.  Let A (t) be an a.p. matrix function. Then if all the solu- 

tions of (I. 6I) are decomposable and all the pseudo-solutions of (I. 6I) of order 

zero are bounded away from zero for positive t, it follows that  Condition I is 

satisfied. 

4.2. We shall show in this section (w 4) that  the converse of Theorem I I I  

is also true. The proof of this fact is rather long, and before carrying it through 

we shall give an outline of it using for convience the following terminology. 

Definition. I f  x( t ) -~ O* (e~tt r) at + ~ ,  where t. is real and r is a non- 

negative integer, let A + (x) denote ~ and Z + (x) denote r. Similarly if x(t)=- 
-~ O*(eZtt ~) at - - ~  or at + ~ ,  let A--(x) and ~ - ( x )  or A(x) and ~(x) denote 

Z and r respectively. 

The converse of Theorem I I I  of course has as its hypothesis the assump- 

tion the A(t) is a.p. and Condition I is satisfied. Since Condition I holds, 

-//+ (x) exists for every non-trivial solution x, and as x ranges over all solutions 

it takes on only a finite number of values, say ~1, . . - ,  ~p, where p does not 
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exceed the order of A (t). These numbers  it, will play a prominent  role in what  

follows, for  our conclusion will be proved by mathemat ica l  induct ion on the it,. 

To carry through the induct ion we shall show the following three things. 

(a). There are no pseudo-solutions of order < iti and degree zero, and every 

pseudo-solution of order ~1 is bounded away from zero for  positive t. 

(b). I f  every pseudo-solution of order ~ it, and degree zero is bounded 

away from zero for positive t, and every solution x(t) such that  ` 4 + ( x ) <  2~ is 

decomposable of order < its, then every solution x* (t) such that  `4+(x*)-= it~ is 

decomposable of order ~ .  

(c). I f  every solution x(t) such tha t  `4+ (x)_--< it, is decomposable of order 

it~ and every pseudo-solution of order ~ ~ and degree zero is bounded away 

from zero for positive t, then every pseudo-solution of order ~ it,+i and degree 

zero is bounded away f rom zero for positive t. 

I t  is obvious that  these three s ta tements  imply tha t  all of the solutiens 

are decomposable and all pseudo-solutions of zero degree and order _--< itp are 

bounded away from zero for positive t. Moreover  the restriction on the order 

of the pseudo-solutions can easi ly be removed, and we have the desired conclu- 

sion. The proof  of  (a) is almost obvious, but  for  the sake of completeness is 

given in Lemma 8. The proofs of (b) and (c) are given in Lemmas II and I e, 

fol lowing the preliminary Lemmas 9 and IO. 

4-3- Lemma 8. Let  A(t) be an a .p .  matr ix funct ion such tha t  ( I . 6 0  

satisfies Condit ion I. Then if it is the least value which ,4 + (x)assumes for  any 

solution x(t) of (I. 60 ,  there is no pseudo-solution of order less than it; and every 

pseudo-solution of order it is bounded away from zero for  all t. 

For  if there were a pseudo-solution of order less than it, say /z, its minor  

yo(t) of degree zero would also be of order ~t, and e~tyo(t) would be a solution 

Xo(t) of (I .6I).  But  Xo(t)= O(e ttt) at -1- oo, so that  _//+(Xo) ~ [ t  contrary to the 

assumption tha t  it is the least  value of `4+(x). Again, if yo(t)is a pseudo- 

solution of order it and degree zero, Xo(t ) = e~tyo(t ) is a solution, and Xo(t)=O(e ~t) 
at  + ~ .  Thus `4+ (Xo) N it; and this implies tha t  `4+ (Xo) = it and ~ +  (x0) = o, so 

tha t  Xo(t)-~O*(e zt) at  +oo and yo(t)-~O*(i) at + ~ .  

4 .4 .  As a preliminary to the proofs of (b) and (c) of (4. z) we give two 

lemmas concerning t ransformat ions  on pseudo-solutions. 

Lemma 9. Let  it be a real number  and A (t) an a .p .  n-by-n matrix func- 

tion such that  (I. 6I) has no pseudo-solution of order 2 and degree zero which 
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comes arbitrari ly close to zero for  positive t. Let  h ,  h~, . . .  be a sequence of 

positive numbers  such tha t  A ( t ) ~  lim A (t + h~) exists uniformly for  all t. Then 
i ~  oo 

there exists a subsequence h'l, h'2, . . .  of hi, h2, . . .  such tha t  for  each pseudo-  

solution y(t) of (I, 6I) of order ~, T[y] (t)~--lim y(t  + h'i) exists for  all tl More- 
t ~ o o  

over if such a subsequence is chosen and y ( t ) a n d  y*(t)are distinct  pseudo- 

solutions of (I. 6I) of order ~, then T[y] ( t )~  T[y*] (t). 

For  in the first place the set of pseudo-solutions of order ). forms with the 

trivial solution a l inear manifold,  and this manifold must  be of finite dimension- 

ality since by Lemma 4 no pseudo-solution of order ~ is of degree ~ n. Le t  

y(1)(t) . . . .  , y(P)(t) be a basis for  it, and let  h'l, h'u, . . .  be a subsequence of 

hi, h~ . . . .  such tha t  lim y(')(h'~) exists, ( v =  I, . . . ,  p). Then if y( t )  is any 

pseudo-solution of (I. 5I) of order ~, lim y(h'i) exists, and the same applies to 

the  minors of y(t) which are also pseudo solutions. Moreover  the corresponding 

limit is not  zero for  the minor  of zero order. Thus by Lemma 5, T[y](t)exists 
for  all t. 

Now suppose y(t) and y*(t) are two distinct pseudo-solutions of ( I . 6 I )  of 

order ~. Then y(t)--y* (t) is also a pseudo-solution of order ~, and by Lemma 5, 

T[y--y*](t) = T[y] (t) -- T[y*] (t) is a pseudo-solution of D[x(t)] = A ( t ) - x ( t )  of 

order ~ and hence is not  identically zero. 

Lemma 10. Le t  ~ be a real number  and A (t) an a .p .  n-by-n matr ix  func- 

t ion such tha t  (I. 6I) has no pseudoso lu t ion  of order )~ and degree zero which 

comes arbitrari ly close to zero for positive t. Then every pseudo-solution of 

( I . 6 i )  of order ~ is bounded away from zero for  all t. Moreover if hll h~ . . . .  

is a sequence such tha t  T [y] (t) --~ lim y ( t+  hi) exists for  each pseudo-solution y(t) 

of ( I . 6 i )  of order )~ and such tha t  uniformly in t, lim A ( t + h i ) = A ( t ) ,  then the 

t ransformat ion T has a single-valued inverse T -~  defined over the entire pseudo- 

solut ion manifold S of (I. 6I) of order ~. 

The second s ta tement  follows from the fac t  tha t  according to Lemma 5, 

T takes S into a sub-manifold S '  of itself, which is of the same dimensionali ty 

as S since T takes a non-trivial element into a non-trivial element. Thus S ' - ~  S, 

and T -1  is defined and single valued over the  whole of S. 

The first s ta tement  follows from the second s ta tement  and Lemmas 4 and 9. 

For  t h e r e  exists a sequence h't, h'~, . . .  which approaches + r and for wh ich  
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lim A (t+h'~)= A (t) uniformly in t; and this sequence has a subsequence h'~', h~', . . .  
~ Q o  

h t t \  such tha t  lim y( t§  l) exists for  all t and each pseudo-solution y(t) of order it. 

Then by what  we have just  proved, to every pseudo-solution 9(t) of order it 

there corresponds a pseudo-solution of order it such tha t  lira y (t+ h~')~-?7(t) for 
i ~ c  

all t. Bu t  y (t) is bounded away from zero  for  positive t, and ~ (t) is bounded 

away f rom zero for  all t. 

4. 5. We  now proceed to the proof  of proposit ion ( b ) o f  (4. 2), whose 

conclusion is tha t  each solution x(t) for which 1/+ (x)----it is decomposable of 

order it. To obtain  this result  we shall have to actual ly carry out  the decompo: 

sit ion of x(t); and this process will be similar to but  more involved than the 

decomposi t ion of a solution of the a .p .  type  given in (2 .2 - -2 .8 ) .  As in the 

simpler case, we decompose x(t) step by step by mathemat ical  induction. But  

now each step will involve defining and showing the existence of the new quan:  

ti t ies involved, as well as showing tha t  they are solutions or pseudo-solutions of 

(I. 6I). Moreover  each step will involve two new solutions and two new pseudo- 

solutions, the pseudo-solutions being related by a t raas format ion  of the type  

defined in Lemma Io. Finally,  each step will depend on a formula obtained in 

the preceding step, and we shall therefore give these formulas in the  s ta tement  

of our lemma in order to carry on an induct ion proof based on them. 

Lemma 11. Let  A(t) be an a .p .  n:by-n matr ix funct ion such that  (I. 6I) 

satisfies Condition I. Let  it be a number  such tha t  every solution x'(t)Of (I. 6I) 

for which .//+ (x') < it is decomposable of order < it and such tha t  every pseudo: 

solut ion of order it and degree zero is bounded away from zero for positive t. 

Le t  x(t) be a solution of (I. 6I) for which _//+ (x) : it, and let ~ +  (x)--~ r. Under  

these conditions, x (t) is decomposable  of order it. 

Moreover  corresponding to each non-negative integer  s ~ r there  exist a 

sequence h~, h~, . . .  ---> + ~o and a pseudo-solution ys(t) of (I. 6I) having the 

fol lowing propert ies : 

(1) lira A(t§ for all t. 
l ~  ao 

(2) For  every pseudo-solution y(t) of order it, lim y(t§ exists for  all t. 
i ~ o o  

(3) I f  Yo(t), . . . ,  ys(t) are the minors of ys(t), then for  all t and each non- 

negative /~ ~ s, 



38 Robert It. Cameron. 

x(t+h,)e_a(t+h,) - ~ (t+h,)e # ! yr--Q (t + h~) 

(4- 5 I) l im e=~--t' i~  .o (t + h~-)'-t' = o. 

To begin the induct ion proof of the lemma, we show tha t  the second state- 

ment  holds if s =  o. I t  is obvious tha t  a sequence h'[, h~', . . .  can be found 

which approaches + ~ and has property (]). Moreover it  follows from Lemma 9 

tha t  this sequence has a subsequence h'~, h'2, . . .  which satisfies (2). But  since 

x (t) -~ O* (e ~t t"), x (t) e -~t t -~  is bounded and bounded away from zero for positive t. 

Thus h'~, h'~, . . .  has a subsequence h~, h~ . . . .  such tha t  l im x(hi)e--~th~ -" exists. 
i ~ a a  

Hence ~ o ( t ) -  r! lim x(tH-h~)e-~h~h-~ -r exists for each t and is a non-trivial solu- 

t ion of (I. 6]). Moreover if go(t)----e-~t~o(t), 

(4. 52) go(t) = r! lira x ( t  + h,)e--~(t+hi)(t + hi)-" 

for  all t; and since x ( t ) e - X t t - " =  O*(I) at  + ~ ,  go(t) is bounded for all t. Thus 

go(t) is a pseudo-solution of (I. 6I) of order X and degree zero and has the gene- 

ra tor  Ec0(t ). By Lemma Io, there is a unique pseudo-solution yo(t) of order ;~ 

and degree zero such tha t  lim yo(t + h~)~Yo(t).  Moreover if we substi tute 

l im yo(t+hi)  for g0( t ) in  (4. 52) we find tha t  (4. 5I) is satisfied for s = o .  I tence 
t ~  Qo 

h,, h . ~ , . . . a n d  yo(t) satisfy (I), (2), (3); and our s ta tement  holds when s = o .  

Cont inuing the induction, we assume tha t  the second s tatement  of the 

lemma is true when s = p -  I < r. Let  us designate the corresponding sequence 

by h'l, h'~ . . . .  , the corresponding pseudo-solution by yp--1 (t); and the minors and 

generators of y~--x (t) by Yo (t), . . . ,  yv--1 (t) and Xo (t), . . . ,  xp-~ (t) respectively. 

Then (4. 5I) holds for the sequence h'~, h'~ . . . .  wi th  tt = s = p - - I ,  and  if 

r 

(4. S3) z ( t ) -  x ( t ) -  e"  
Q=r.'--p + 1 

i t  follows tha t  

(4. 54) l i ra i n f  II (t) t -c , - ,+ , ) I I  = o. 

Bu{  

" , - e ( _  t)" x ( t ) -  "y, "?. 
p ~ r ' - - p +  1 ~=0 
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and  hence  by Condi t ion  I e i ther  z ( t ) ~ o  or A+(z )  and  ~ + ( z ) b o t h  exist.  More- 

over i t  fol lows f r o m  (4. 54) t h a t  e i ther  z (t)=- o, or  _//+ (z) < ~, or  A + (z) - -  ~ and  

~ + ( t ) < r - - p  + I; so in any  case z ( t ) =  O(e~tV -p) at + ~ .  Hence  there  exists 

a subsequence  h ,  h~, . . .  of h'~, h'2, . . .  such t h a t  limz(hi)e-~h~h~ -(~--v) exists.  
i ~  co 

A n d  since h ' ,  h'~, . . .  has  proper ty  (2), T[y](t)=limy(t+h~) exists  for  an  r a n d  
i ~ Q o  

each pseudo-solut ion y(t) of order  ~. Thus  if T[y~--~] (t)has the  minors  Yo (t) . . . .  , 

~-- l ( t )  and  genera to rs  ~o(t) . . . .  , ~v--~(t), i t  fol lows f rom L e m m a  5 t h a t  for  

tt < p --  I, T [Yt~] (t) ---= !7~ (t). 

L e t  
r h r - - ~  

- -  x~_e---~ (t + h);  
+1 

so t h a t  for  each h, X(t, h) is a so lu t ion  of  D Ix(t)]-= A (t + h). x(t) and  X(o ,  h)---- 

= z(h). Then  l im X(o ,  h~)e-~h~h~('-v) exists, and  

~cp (t) ------ (r - -  p)! l i m  X (t, h~.) e-~h~ ' hT(~-P) 

exists for  ull t and  is a so lu t ion  of  (I. 6I). Moreover  

[z(t + h ) -  X(t, h)] e -~(t+~ 

Q h . t,0-o 
= -  y._~ (t+h) y,  ~! (~-~)!  

(~r---p + 1 a~0 

+ 

he r-e(__ h)" "--~" (t + h) ~ 
+ ~' ~ Z ~ a! y.--Q--~--.(t+h) 

~=r--p + 1 ~,=0 a=0 

r-p h.  tQ_ ~ 
= -  y~-~(t+ h) F, ~! (~ -~) ! '  

Q=r---p4 1 a=O 

so t h a t  for  all t 

( r - -p)!  lira [z (t + hi)-- X (t, h~)] e-X( t+ hi) h-[-(~p) 
i o a o  

Thus  

(4. 55) 

0=r---p + 1 

~- - r+p ~ P  tO 
T [Y~-e] (t) (t). 

!Tp (t)----(r--/o)! l im z(t + h~)e-~(t+h~)(t + h~)-('-v) 
i---~ oo 
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exists for  all t, and 

v te v--~ - - ( t )  " P ~ ( t ) = - ~  ~ e - ~  ~ ~ , .  ~__~o(t) + ~ - ~ , ~ , ( t ) = ~ - ~  ~.t" x~" (t). 
0 ~ 1  t r=0 ~ 0  

Since z ( t ) =  O ( d t t  ~p) at + 0r it follows from (4. 55) tha t  ~p( t ) i s  bounded for  

all t, and hence is a pseudo-solution of (I. 6I) of order 4 and degree p having 

go( t )  . . . .  , h ( t )  as minors and X o ( t ) , . . . ,  ~Cp(t) as generators.  

Let  yv(t)=--T-l[~jv](t), and let  y:(t), . . . ,  y~-~(t), yp(t) be its minors. By 

Lemma 5, the minors of ~p (t) = T [yp] (t) are I '  [y:] (t), . . . ,  T [y~--~] (t), I '  [yv] (t), 

and hence by Lemma 2, T[y$](t)----~j,(t)= T[yg](t) for tt < p - - I .  Thus by 

Lemma Io, y~,(t)~--yt,(t ) for /~ < p -  I, and yp(t) has the minors g o ( t ) , . . . ,  yv(t). 

Moreover  we have from (4. 55) and (4. 53) 

lim yp (t + h;) ( r - - p ) !  lim x ( t  + hi) e-i(t+hi) - -  

_ E (t + h~)~yr_~( t + h~) (t + h~)--r 
e=r_~p +i Q! 

so that  (4. 5I) holds for the pseudo-solution yp(t) and the sequence hi, h2, . . .  

Thus the induction is complete, and the second s ta tement  of this lemma holds 

for a l i ' s  < r. 

Finally,  let s ~ r, and let x~(t) be the leader of the pseudo-solution y~(t). 

Then by (4. 51), 

lim [x (t + h,) --  x, (t + h,)] e - l (  t + h,) _= o, 

so that  if x* (t) ~ x (t) --  xr (t), lim inf II x ~ (t)II e - ~ t  = o .  Hence either x* (t) ---= o 

or .4 + [x*] < X; and in ei ther  case x(t)  is decomposable of order i. 

4-6.  Proposi t ion (c) of (4. 2) is established in the following 1emma. 

Lemma 12. Let  A(t) be an a .p .  square matrix funct ion such tha t  (I. 6I) 

satisfies Condit ion I. Let  ), be a number  such tha t  every solution x ( t ) o f  (I. 61) 

for  which .4 + (x)=< ~ is decomposible of order < ~, and sueh tha t  every pseudo- 

solution of order < 4 and degree zero is bounded away from zero for positive t. 

Let  4' be the b a s t  number  greater  than i such tha t  there exists a solution x'(t) 

for  which .4+ (x') = i'. Then every pseudo-solution of order < F and degree zero 

is bounded away from zero for  positive t. 
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For  suppose tha t  there exists a pseudo-solution Y0 (t) of order ~,"<= ); and 

degree zero which comes arbitrarily close to zero for positive t and let Xo ( t ) =  

e~"tyo(t) be its generator. Then ~ " >  4; and _//+ (xo) is less than  X' and hence 

less than  or equal to 2. I t  follows tha t  x 0 (t) is decomposable of order < ,~, 

so tha t  

~ t ~ Xo(t)~-- e;'at Z v!ya, ra--~(t), 
c i ~ l  ~ = 0  

where ~ ~ Z 1 > X~ > .-. > Zp and the y~,~(t) are pseudo-solutions of order 4o. But  

by Lemma I o, every y~.~(t) is bounded away from zero for all t, and hence 

Xo(t)--O*(eZptt~p) at  - - : r  Thus yo(t)= O*(dzp-z')tt~) at --or which is impos- 

sible since Yo (t) is bounded. I t  follows tha t  all pseudo-solutions of order ~ Z' 

and degree zero are bounded away from zero for positive t. 

4. 7. We now state the main theorem of this section, which includes the 

converse of Theorem I I I .  

Theorem IV. Let  A(t) be an a .p .  square matr ix  funct ion such tha t  (I. 61) 

satisfies Condition I. Then every solution of (I. 6I) can be expressed in one and 

only one way as a sum of satisfactory solutions having dist inct  orders. Moreover 

every pseudo-solution of (I. 6I) is bounded away from zero for all t. 

Almost  all of the proof of this theorem has already been given, since the 

three proposition (a), (b), (c), have been proved in Lemmas 8, I I ,  I2. Thus the 

induct ion outlined in (4. 2) is complete; and it  follows tha t  all solutions of (I. 6I) 

are decomposable and all pseudo-solutions of order not  greater  than  the Zp of 

(4. 2) and degree zero are bounded away from zero for positive t. But  there 

are no solutions of order greater than  ~ and degree zero, for if there were a 

pseudo-solution yo(t) of order 4 ' >  Zp and degree zero, xo(t)~-eZ'tyo(t) would be 

decomposable, _//-(x0) would exist and be less than or equal to ~p, and yo(t) 
would be unbounded for negative t. Thus i t  follows from Lemma IO tha t  all 

pseudo-solutions are bounded away from zero for all t. 

Moreover a solution can be decomposed in only one way, for otherwise 

the trivial solution would be decomposable and ~/+ (o) would exist. 

Corol lary  1. I f  A(t) is an a .p.  square matr ix  funct ion such tha t  (I. 6I) 

satisfies Condit ion I, it  follows tha t  (I. 6I) satisfies the condition obtained by 

replacing + cr by - - ~  in the s ta tement  of Conditiou I. 

6--37534. A c t a  ma themat i ca .  69. Imprim6 le 2 septembre 1937. 
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I t  is of course also clear from symmetry tha t  this negative reflection of 

Condition I implies Condit ion I. 

Corol la ry  2. I f  A(t)  is an a .p .  square matr ix  funct ion such tha t  (L 6:) 

satisfies Condition I, i t  follows tha t  every primary solution of (I. 6I) of order X 

and degree r is a satisfactory solution of order X and degree ~ r. 

For  every solution x(t) is the sum of satisfactory solutions of dist inct  

orders, and it is clear tha t  if two or more are present and x (t) ~ 0 (e ~, t ~') at  + 

and x ( t ) ~ 0 ( e  z~t *~) at  - - ~ ,  then  X,>X.~ and the solution in question is not  

primary. 

w 5. The Invariance of Condition I. 

We will now show tha t  Condit ion I is invariant  under  l imit ing translations.  

Theorem V. Let  A (t) be an a .p .  n-by-n matr ix  funct ion such (I. 6I )sa t i s -  

fies Condition I. Then if hi, h2, . . .  is a sequence of real numbers such tha t  

(t) -- lira A (t + h~) 

exists uniformly in t, i t  follows tha t  the t ransformed system 

(5. I) D [x (t)] = A (t). x (t) 

also satisfies Condit ion I. 

To establish this theorem, let X 1 < X 2 < .-- < Xp be the set of values 1/* (x) 

can take on as x(t) ranges over all solutions of (I. 5I), and for each v ~ p  let 

L ,  be the l inear manifold consisting of all satisfactory solutions of order - ~ 

together  with the trivial solution. Since every solution is decomposable into a 

sum of satisfactory solutions, the sum of the dimensionalit ies nl, . . . ,  ~p of 

L:, . . . ,  Lp is n. Moreover for each v ~ p  the pseudo-solution manifold L'~ of 

( I .6 : )  of order X, has n, dimensions, for each non-trivial element of L ,  is a 

leader  of an element of L'~ and the correspondence is l - - I  since by Lemma 4 

and Theorem IV no pseudo-solution has the trivial solution as a leader. 

:Now let h'~, h'~, . . .  be a subsequence of h:, h~, , , .  such tha t  for  each 

~ p and each element y (t) of L' , ,  T [y] (t) - -  lira y (t + h~) exists for  all t. Tha t  

such a subsequence can be chosen follows from Lemma 9 and Theorem IV, as 

does also the fact  tha t  T sets up a : - - I  correspondence between Z ' ,  and the 
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manifold L:* into which it takes L' , .  Thus L:* has n, dimensions, and by Lemma 5 

its non4rivial  elements are pseudo-solutions of (5. I) of order it. Since the non- 

trivial  elements of L ' ,  are bounded away from zero, so are the non-trivial elements 

of L',*. 
For  each ~ ~ p ,  let L~* be the linear manifold consisting of the trivial 

solution together  with the leaders of the non-trivial elements of L~*. Then it 

follows from Lemmas 2 and 4 tha t  the correspondence between L:* and L* is 

I -  I, so tha t  L~ has n, dimensions. Moreover it  follows from Lemma 4 tha t  

if ~(t) is a non-trivial element of L*, _4 + ( ~ ) ~ , ;  and hence the manifolds L~ 

and L* have only the trivial  element in common if /, ~ v. Thus the manifold 

L* + -.. + L~ has n dimensions and is therefore the entire manifold of solutions 

of (5-I); and every solution of (5. I) is decomposable. 

Finally,  let fro(t) be any pseudo-solution of (5. I) of degree zero, and let it 

be its order. Then e~t~o(t) is a non-trivial solution of (5, I) and is decomposable 

into the sum x(*,)(t) + .. .  + x('g)(t); where each x(~e)(t) is the leader of a non- 

'*" and vl < "'" <*g.  By Lemma 4, trivial element y(*e)(t) of the manifold L~Q, 

_//(x('e))=it, for each # ~ g ,  and hence -//+(ffo)-~it~g--it and _ d - ( f f o ) - - i t ~ - - L  

But  since if0 (t) is bounded, it,, = it,# = it, g ~- I, and if0 (t)--= y(*,)(t). Thus every 

pseudo-solution of (5. I) of order zero is bounded away from zero. Thus it follows 

from Theorem I I I  tha t  (5. I) satisfies Condition I. 

w 6. Stationary Pseudo-solutions. 

In  this section we shall obtain sufficient conditions tha t  a pseudo-solution 

of (I. 6I) be a .p .  We shall assume at  the outset  t ha t  A (t) is a. p. with a module 

contained in M and tha t  (I. 6I) satisfies Condition I;  and we shall show tha t  a 

pseudo-solution y (t) is a .p.  with a "module contained in M if '  and only if y (t)is 

what  we shall call a positive s ta t ionary funct ion with respect to M. 

Definition. A vector funct ion f(t) will be called (positive) s ta t ionary with 

respect to a module M if for each real t 

(6. 1 I) lim f ( t +  hi) = f ( t )  

whenever hi, h~ . . . .  is a sequence of (positive) real numbers such .that for each 

element q) of M, 
lim �9 h~ - o (mod 2 z~). 
i ~ o o  
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We call part icular  a t tent ion to the fact  tha t  no uni formi ty  is postulated 

in connection with (6. II). As a mat ter  of fact, if (6. II) were assumed to hold 

uniformly for all t, a funct ion which is s ta t ionary with respect to a module M 

would be a .p .  with the module M. However, as the definition stands, a sta- 

t ionary funct ion need not  be a .p .  at  all, nor even uniformly continuous.  Thus 

the theorem quoted above as the subject of this section is by no means a mere 

triviali ty;  and as a mat te r  of fact  i t  forms the basis for all our later theorems. 

The theorem of this section will be proved by the method of Favard,  which 

is based on Bochner 's definition of a normal function.  As this process involves 

certain i terated limits, we shall first prove in Lemma I3, t ha t  a funct ion which 

is s tat ionary with  respect to a module M has a similar property involving 

i terated limits. As another  primilary to the main theorem, we shall show in 

Lemma I4 tha t  a part  of the hypothesis  of Lemma 5 may be  replaced by the 

hypothesis  tha t  (I. 61) satisfies Condit ion I. 

6 .2.  Lernma 13. Let  f ( t )  be positive s ta t ionary with respect to a module 

M, and let hi, h,, . . .  and k~, k 2 . . . .  be sequences of positive numbers such 

tha t  for each element ~ of M 

lim q) (hi + kj) = o (mod 2 re). 
i , j ~  

Then if  t o is a real number  such tha t  g ~- lim lim f ( t  o + h~ + kj) exists, i t  follows 

tha t  g = f ( to ) .  

For  corresponding to each positive integer  n there exists an index j,~ > n 

such tha t  [g --  l imf ( to  + hi + kj~)[ <= ~ and there exists an index iN > n such tha t  

If(to + hi m q-  kjn ) - -  lim f ( t  o + hi + kj~)l  <= I . 

Then lim f ( t  o + hi,, + kj,) = g, and for each element �9 of M lim �9 (h~.~ + kj~) = o 

(rood 2 z). I t  follows from the definition of a positive s ta t ionary funct ion tha t  

lim f ( t  o + bin + k j~)=f ( to ) ,  so tha t  the lemma is proved. 

6. 3. Lemma 14. Le t  A( t )  be an a .p .  matr ix  function such tha t  ( I .6 I )  

satisfies Condition I, let y(t) be any pseudo-solution of (I. 6I), and let r and 

be the degree and order of y(t). Then if hi, h~, . . .  is a sequence such tha t  
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lira y(hl) exists and A (t) ----lira A( t  + hi) exists uniformly in t, it  follows tha t  

(t) = lira y (t + hi) exists for all t and is a pseudo-solution of order ~ and degree 
i ~  oo 

r of D [~ (t)] = .~ (t). ~ (t). Moreover if Yt, (t) is the minor  of y (t) of degree re, 

~ (t) ---- lira yu(t + hi) is the minor of ~(t) of degree ft. 
i ~  oo 

For  suppose tha t  there exists a minor  yp(t) of y(t) such tha t  lim yp(hi) 
i ~ o o  

does not  exist. Then since y~(t) is bounded for ft ~ r, there exist two sub- 
�9 t t  t~ ! 

sequences h'l, h~, . . . .  . and h~, h~, . .  of hi, h2, . .  such tha t  yu=* limy~(hi)  

and y~* = lira y~ (h~') exist for each ft _--< r and y~ ~ y~*. I t  follows from Theo- 
i ~ a o  

rem IV tha t  y~ ~ o and Y*o* ~ o, and from Lemma 5 tha t  y* (t) = lim y (t + h~) and 
i ~ a o  

y**( l )= l imy( t+h; ' )  are pseudo-solutions of D [ x ( t ) ] - - . 4 ( t ) . ~ r ( t ) o f  order ~ and 
l ~ o o  

degree r. But  y* (o) = y** (o); so by Lemma 4, Y* (t) ----- y** (t), and by Lemma 2 

the minors of degree p, lim y~ (t § h~.) and lira yp (t + h~') are identical. Thus 

yp = y p  , and this contradict ion shows tha t  lira y ,  (hi) must  exist for each ft. 

Hence the lemma follows from Lemma 5- 

6.4.  We  can now prove 

Theorem VI. Le t  A(t)  be a .p .  with a module contained in a certain 

module M, and let (I. 6I) satisfy Condition I. Then a pseudo-solution y(t) of 

( I .6I )  is a .p .  wi th  a module contained in M if and only if y ( t ) i s  positive 

s ta t ionary with respect to M. 

I t  is obvious t ha t  if y (t) is a .p .  with a module contained in ] I ,  it  must  be 

positive s ta t ionary with respect to /I/. We therefore assume tha t  it  is positive 

s ta t ionary with respect to M and seek to show tha t  i t  must  be a .p .  with a 

module contained in M. 

Procceeding along the general  lines of Favard 's  method of proof, we assume 

tha t  there exists a sequence of positive numbers hi, h~, . . .  such tha t  for each 

(P in M, lira (~ h,. ~- o (rood 2 z), and such tha t  l im y (t + hi) does not  converge 

to y(t) uniformly in t for  all positive t. Then there exist a number  e > o, a 

subsequence h'l, h'~, . . . of hi, hl, . . .  and a sequence of positive numbers tl, t~ , . . .  

such tha t  for each index i, 

(6.4I) IlY (ti + h~) -- y (ti)II > ~. 
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Le t  n~, n2, �9 �9 �9 be a sequence of indices such tha t  lim y (t~, + h;,) and lira y (t.i) 

exist and for each element �9 of M, lira {Dtn i converges (mod. 2 z). Then 
~ c ~  

A* (t) -- lira A (t + tn,.) exists uniformly in t and lim A (t + t~ + h;~) -~-- A* (t) uni- 

formly in t. Moreover by Lemma I4, y*( t ) -~  lim y ( t +  tni ) and y**(t)=-- 
i ~  Qo 

lim y ( t  + t.~ + h'~) exist for all t and are pseudo-solutions of JO[x*(t)] = 

= A*  (t).  ** (t). 

Let  k,, ks, . . .  be a sequence of positive numbers such tha t  l im y* (ks) and 

lim y**(ki) exist and for each element �9 of M, . l im O(t ,  i + k j ) =  o (mod 2z).  
i ~  ~ $,3 ~ 

(It  can easily be seen tha t  such a sequence exists.) Then for each element 

of 21/, lim @ (t~; + hn i + ka" ) = o (mod 2 z) and by Lemma 13, lim y* (k;) = y (o) and 

lim y** (ki) = y (o). Moreover lim A* (t + k;) = A (t) uniformly in t. 

Now it follows from Theorem V tha t  D [x* (t)] = A* (t). x* (t) satisfies Con- 

dition I, and from Theorem IV tha t  y* ( t ) -  y** (t) is ei ther identically zero or 

bounded away from zero. Since lira {y* ( k i ) -  y** (k;)} = o, the lat ter  alternative 

is impossible, and y* (t) -= y** (t). Thus we deduce the s ta tement  lim {y (t,~s) -- 

- -y( t ,~  + h ~ ) } - - o  which contradicts (6.4I). Hence we may conclude tha t  for 

every sequence of positive numbers hi, h~, . . .  such tha t  for each @ in M, 

lim O hi = o (rood M), lira y (t + h i )=  y(t) uniformly for all positive t. Since y(t) 

is positive stat ionary,  lira y( t  + h ! ) = y ( t  ) for each negative t also. W e  shall 

now show tha t  this l imit  is uniform for all t, positive and negative. 

In  the first place, suppose tha t  h~, h~, . . .  --+ + ~ .  Le t  s > o; let N be 

so great  tha t  when i > N, I ly( t  + hi) --  y(t)ll  <= e for all positive t; and let t o be 

any value of t. Then for i > N ,  

Ily(to + h i ) - y ( t o ) l l  = l i r a  Ily(to + hi + hj ) - -y( to  + hj)l] ~ e. 

Thus lira y (t + hi) = y (t) uniformly in t for all t. I f  we remove the restriction 

tha t  hi, h~, . . .  ~ + ~ ,  we can still find a sequence ll, l~, . .  ~ + ~ such 

tha t  h 1+11, hE+l~,  . . .  ~ 4 - ~  and such tha t  for each element q) in M, 

lira �9 h =  o (rood 2 z). Then uniformly for all t, lira y ( t+hi  + h)-~ lira y ( t+  l i )=  y(t); 
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so tha t  uniformly for all t, lim y(t+hi)-~y(t). Finally,  assume merely tha t  
/ ~  oo 

h~, h~, . . .  is a sequence such tha t  for each �9 of M, l i m O h i  exists (mod2~) .  

Then lira O(h~--hj)~-o (rood 2 re) and uniformly in t, lira Ily(t+h~--hj)--y(t)]l=o. 
i , j ~  az i ~  ~ 

Thus lim y (t ~- hi) exists uniformly in t, and y (t) is a .p .  with a module con- 

rained in M. 

w 7. Almost Periodic Pseudo-solutions. 

7. I. In  this section we shall use Theorem VI of Section 6 to prove severa l  

theorems concerning a .p .  pseudo-solutions. In  order to prove such theorems we 

shall have t o  show tha t  the pseudo-solutions in question are stat ionary.  We 

therefore prove L e m m a  I5, which shows how pseudo-solutions behave under  

t ransformat ions  which leave A (t) invariant .  

7.2. The lemma of this section deals with what  we shall call the range 

of a function,  and which is defined as follows. 

Definition. I f  f(t) is a vector function,  the closure of the set of values in 

n-dimensional space which f(t) assumes as t takes on all real values is called the 

range of f(t) and is denoted by R (t). I f  t is restricted to take on only positive 

vales, the closure of the set of values f(t) is called the positive range of f(t) 
and is denoted by R + (t). 

Lemma 15. Le t  A(t) be an a .p .  square matrix funct ion whose module is 

contained in a certain 

pseudo-solution manifold 

one non-trivial element. 

ment  y(t) of S, 

(7.2i) 

module M, let (I. 6I) satisfy Condit ion I, and let the 

S of (I. 6I) of order ~ and degree r contain at  least 

Le t  hi, h2, . . .  be a sequence such tha t  for each ele- 

T[y] (t)~-lim y(t + hi) exists for all t, 

and such tha t  uniformly in t, lim A(t + hi)-~ A(t). Then T is a 1- - I  l inear 
r  

t ransformat ion  which does not  alter the positive range or the range of any 

element of S. Moreover if S is understood to include all possible complex ele- 

ments even though A (t) is real, there exists a basis y(1)(t), . . . ,  y(L)(t) of S such 

tha t  for all t 
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(7.22) T [y(*)] (t) : O, y(')(t) (~ : I, . . . ,  L); 

where the  0, are constants  having the absolute value unity. 

The fac~ tha t  T is l inear is obvious from (7.2I),  as is also the fac~ tha t  

(7.23) ~(+)  [.~ (t)] > R ( + ) { T  [y] (t)} 

for each element of S. I t  is also clear from Lemma I4 tha t  T[y] (t) is an ele- 

ment  of S whenever  y (t) is an element of S. Hence  (if S is taken in the wider 

complex sense) the matr ix  which r e p r e s e n t s  T can be reduced to the  classic 

canonical form. Thus there exists a set of indices I = p ~ < p ~ . . . ~ . p g ~ p g + l  ~ -  

" - - L  + I, a set of constant  multipliers 01, . . . ,  0g, and a set of linearly inde- 

pendent  elements y(1)(t), . . . ,  yIL)(t) of S such tha~ 

( 7 . 2 a  a) T [y('e)] (t) ---- e e y('~)(t) (e = ~, . . . ,  g) 

(7.24 b) r [y(o)] (t) ~-  e e y(o)(t) + ~("-~)(0 

(Q-- I, . . . ,  g; a : p e +  I, p e + 2 ,  . . . ,  pe+~-- I). 

Now by Theorem IV, for  each ~ G L ,  Ily(')(t)ll has a positive greates~ 

lower bound as well as a finite least upper bound. Thus it follows from (7 23) 

and (7 .24a)  tha t  10el----- I, r  I, . . . ,  g. Moreover  for each 0, pr  + I. 

For  if Po+I > P c  + I, we have by i terat ion of (7- 24) tha t  

r -  [y(p~ + i)] (t) = 0y ~ , ~  + 1) (0 + ~ 0;~-1 y(,~) (t). 

But  this is impossible since for all positive integers m the set R {T~[y(Pe+~)](t)} 

is contained in the bounded set R[y(Pe+~)(t)]. Hence  the matr ix  represent ing T 

is in the diagonal  form and (7-22) holds. 

Finally,  let rod ms, . . .  be a sequence of positive integers such that  for  all 

~ L, lim 0~j = I. Then for each ,,, lira TraJ [y(')] (t) ~ y(')(t); and since TmJ is 
j ~  j ~  

linear, it fonows that  for  each element y (t) of S, lim T'~J [y] ( t ) ~  y (t). But  for 
j~| 

each (positive) t and each j ,  T"J [y] (t) is an element of the closed set/~(+) {T[y] (t)}. 

Hence  the limit point  y (t) = lim TmJ [y] (t) also belongs to it, and R (+) [y (t)] < 

< 1t (+){T[y](t)}. I t  follows tha t  T does not  al ter  the range or the positive 
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range of any element of S, (S being taken either in the wide complex or the 

narrow real sense), and the lemma holds. 

7.3. Lemma 15 can be used to to prove the following theorem. 

Theorem VII. Let  A (t) be a .p .  with a module contained in a certain 

module M, and let ( I .6 I )  satisfy Condit ion I. Then a pseudo-solution y(t) of 

(I. 6I) must  be a .p .  with a module contained in M if every pseudo-solution of 

(I. 6I) which is dis t inct  from y(t) b u t  has the same order, degree, and (positive) 

range as y (t) is a .p .  with a module contained in M. 

In  order to establish this theorem it  is of course only necessary in view 

of Theorem VI to show tha t  y (t) is positive s ta t ionary with respect to M. W i t h  

this end in view let h D h~, . . . be a sequence of positive numbers such tha t  for 

each element ~ of M, lim ~hi----o  (mod2~) ,  and assume tha t  i t  is not  true 
i ~  ao 

t ha t  lim y(t § hi)~ y(t) for all t. Then there exists a subsequence h'l, h'~, . . .  

of h~, h~ . . . .  such tha t  lira y (~) exists and is not  equal to y (o); for otherwise 

y(t)--lira y ( t +  hi) would be a pseudo-solution of ( I .6 I )  which would vanish for 

t = o .  By Lemma I4, ~ ( t ) ~ l i m y ( t + h ~ )  exists for all t and is a pseudo solu- 

t ion of the same degree r and order ~ as y (t). Moreover it  follows from Lemma 9 
Fr p p 

tha t  we can choose a subsequence h'[, h~, . . .  of h ~, h ~ , . . .  such tha t  T[z] ( t ) -  

- -  lim z (t + h:'~ j exists for each pseudo-solution z (t) of order ~ and for all t. Then 
~ ao 

by Lemma I5, R(+) [y(t)] = R (+) {T[y] (t)} ~ R (+) [~(t)], and by hypothesis  ~(t) is 

a .p .  wi th  a module contained in M. Since an a .p .  funct ion is s tat ionary with 

respect to its module, T[~]  (t) - -  ~( t )  ~ T[y] (t); a n d  it  follows from Lemma 9 tha t  

~(t)-~y(t). But  this is impossible in view of our choice of h'~, h'~ . . . .  ; and 

therefore lira y( t  + h i ) = y ( t )  for all t, and y(t) is positive stat ionary.  
i ~  oo 

7.4. In  the preceding theorem we used a part  of the conclusion of Lemma 

15; namely, the s ta tement  concerning ranges. In the following theorem we shall 

use the other part  of the conclusion of Lemma 15 which deals with a canonical 

form of the t ransformat ion  T. We  first make the following definition. 

Definition. A vector funct ion f(t) will be called (positive) twistable with 

respect to a module M if there exists a sequence of (positive) numbers hi, h~ . . . .  

such tha t  for each element q) of M, lira q)hi----o (rood ~ z) and such tha t  for 

7 - - 3 7 5 3 4 .  Acta mathematica. 69. I m p r i m ~  l e  2 s e p t e m b r e  1937.  
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all t lim f ( t  + h~)~ Of(t), where 0 is a constant  whose absolute value is uni ty  

but  which is not  equal to unity.  

Theorem VIII .  Le t  A (t) be a .p .  with a module contained in a certain 

module M, and let (I. 6i) satisfy Condit ion I. Then if for a certain ~ there are 

no pseudo-solutions of (i. 6I) (neither real nor  complex o n e s ) o f  order it and 

degree zero which are positive twistable with respect to M, it follows tha t  all 

of the pseudo-solutions of (i. 6I) of order it and degree zero are a .p .  with a 

module contained in M. 

As in Theorem V I I  i t  is only necessary to show tha t  the pseudo-solutions 

are positive s ta t ionary with respect to M. Thus we let hi, h~, . . .  be a sequence 

of positive numbers such tha t  for each element �9 of M, lira ~ h~ ~-- 0 (rood 2 z), 

and assume tha t  there exists a pseudo-solution y (t) of order )~ and degree zero 

for which it is not  t rue tha t  lira y( t  + hi)-- y(t) for all t. As before, there 
r  

exists a subsequence h'l, h'~, . . .  of h 1, h~, . . .  such tha t  lira y(h~) exists and 
i ~ o v  

tr ! p 
does not  equal y (o). ~Ioreover there exists a subsequence h'[, h~, . . .  of h 1, h ~ . . . .  

such tha t  T[z] (t)=--lim z (t + h~') exists for each pseudo-solution z (t) of order 
i ~ a c  

and for all t. 

By Lemma I5, the set of pseudo-solutions of (I. 6I) of degree zero has a 

basis y(1)(t), . . . ,  y(L) (t) such tha t  T [y(')] (t) = 0~ y(')(t) for all t and all v < L, 

where 01, . . . ,  OL are constants whose absolute value is unity.  By hypothesis,  

0L----02 . . . . .  0L----I; and hence T is the ident i ty  t ransformat ion  so far  as 

pseudo-solution o f  order it and degree zero are concerned. I t  follows tha t  

lira y(h'/)-~y(o) contrary to the definition of h' 1, h'~, . . .  Hence all of the 
i ~  o0 

pseudo-solutions of order )~ and degree zero are s ta t ionary with respect to _71//. 

7-5. The following theorem shows tha t  pseudo-solution and its minors 

have similar a .p .  properties. 

Theorem IX. Le t  A(t) be a.p.  with a module contained in a certain 

module M, and  let (I. 6i) satisfy Condit ion I. Then if a pseudo-solution of (I. 6I) 

is a .p .  with a module contained in M, so are all of its minors. On the other 

hand,  if all of the pseudo-solutions of (I. 6I) of a certain order ~ and degree 

zero are a .p .  with a module contained in M, the same is true of all pseudo- 

solutions of (I. 6I) of order )~ irrespective of their  degrees. 
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The t ru th  of the first s ta tement  follows immediately f rom the fact  tha t  

an a .p .  pseudo-solution is s ta t ionary  and from Lemma I4 which shows tha t  the 

minors of a pseudo-solution have similar convergence properties to the  pseudo- 

solution itself. 

In  order to prove the second statement ,  assume tha t  there is a pseudo- 

solution of order )~ which is no t  a .p .  with a module contained in M, let p be 

the least degree which any such pseudo-solution has, and let yp(t)be such a 

pseudo-solution of order ~ and degree p. By hypothesis, r > o; and because of 

the choice of p all of the minors go (t), . . . ,  y~-i (t) of yp (l) except yp (t) itself 

are a .p .  with modules contained in M .  As in the two preceding theorems, let 

hi, h~ . . . .  be a sequence of positive numbers such tha t  for each element (1) of 

M, lira q ) b ~  o (rood 2~), and as before let h'l, h'~ . . . .  be subsequence of 

hi, h~ . . . .  such tha t  lira yp (h;.) exists and is not  equal to y (o). I t  follows f rom 

Lemma 14 tha t  T[yp](t) exists for all t, where r [z ] ( t )= l im z(t + h~). 

Since Y0 (t) . . . .  , y~-i (t) are a .p .  with modules contained in M, T [y~] (t)-~ 

yg(t) for /~ < p. Thus yp(t) and T [yp] (t) have the  same minors of degree less 

than  p, so tha t  y* ( t )~  yp ( t ) -  T [yp] (t) is a pseudo-solution of order s and degree 

zero. I t  follows tha t  y* (t) is a .p .  with a module contained in M and tha t  for 

all non-negative integers m, 

(7. S I) y* (t) -- T ~ [y*] (t) =-- r ~ [y~] (t) --  r "~+1 [~] (t). 

Pu t t ing  m - ~ o ,  I, . . . ,  r - - I  and adding, we obtain r y * ( t ) ~ y p ( t ) - - T  ~[y~](t). 

But  this is impossible since the r ight  member is bounded for all t and y*(t) ~ o. 
Thus our assumption was incorrect and all of the pseudo-solutions of order 

are a .p .  with modules contained in M. 

7.6. In concluding this section, we shall prove a theorem which a l though 

s ta ted for  the homogeneous ra ther  than  the non-homogeneous equation is based 

directly on a theorem of Favard.  ~ I ts  proof depends u p o n  a specific device of 

Favard,  and not  merely upon his general method as Theorem VI does. This 

device will be given in Lemma I6. 

Defiaitioa. The norm of a point set S in n-dimensional space is the least 

upper bound of the norms of the elements of 8. I t  will be denoted by HSH. 

' Sur les dqnations differentielles lin~aires ~ coefficients presque-periodiques, Acta mathe- 
matica, vol. 5i, pp. 31--8i, esp. p. 59. 
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L e m m a  16. Let  A ( t ) b e  a cont inuous  n-by-n matrix funct ion such that  

(I. 6I) satisfies Condition I, and let  91 be the pseudo-soht ion  manifold of (~. 6I) 

of order it and degree r. Le t  S be a closed convex point  set in n-dimensional 

space which contains the range of at least one element of 9/, and let s be the  

greatest  lower bound of [[R[y(t)][[  for  all elements y(t) of 9/ whose ranges 

lie in S. Then there exists one and only one element y*(t)of 9/ such tha t  

I I R [y* (t)] I I = s. 
For  if y(l/(t), y(21 (t) . . . .  is a sequence of elements of 9/ whose ranges lie 

in S such tha t  lim II R [r II = 8, there must  exist a sequence of indices e~, e~, ... 

such that  lira y(e~)(o) exists; and hence y*(t)=lim y(e~)(t) must  exist for all t and 

be an element of 9/ whose range is contained in S. (The convergence property of 

the pseudo-solutions of order it follows from the fact  tha t  they form a finite 

l inear manifold and t;hat; y ( o ) ~  o for  any pseudo-solution.) I t  is also clear tha t  

IIR [y* (t)] I1 = 8, so tha t  y* (t) has the property described in the lemma. 

To show that  y*(t) is 

y** (t) of 9/ having its range 

= ~y*(t) + }y**(t) is also an 

since s is a minimum and [[ 
I I  

that IIR[ (t)]ll=8. r,et hi, 

Then since 

unique, assume tha t  there exists another  element 

in S and satisfying II R [y** (t)] II = 8. Then ~(t) = 

element of 9/ whose range is contained in S; and 

I(a "-]- b)[ I < if I1"11 < and Ilbll < 0, it follows ~ ~ 

h2, . . .  be a sequence such tha t  lim I lY(h')l l  = s. 

- -  = - s +  - s - - s .  
2 2 

But  this is impossible since no pseudo-solution comes arbi trari ly close to zero; 

and it follows tha t  y*(t) is unique. 

7.7. Theorem X. Let  A (t) be an a .p .  square matr ix funct ion having the 

module M such tha t  (I. 6I) satisfies Condit ion I, and let  S be a closed convex" 

point  set in n-dimensional space which contains the range of a certain pseudo- 

solution of ( I .6 I )  of order it and degree r. -Then if S does not  contain the  

origin, there exists an a .p .  pseudo-solution y*(t) of (I. 6I) of order it and degree 

r having its range contained in S and its module contained in M. 
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F o r  by Lemma I6, I lR[y(t)] l l  has a proper minimum for elements of the 

pseudo-solution manifold of (1.5I) of order ~ and degree r which have their  ranges 

in S. Since S does not  contain the origin, the element y* (t) which has this 

minimum range norm is not  identically zero but  is actually a pseudo-solution. 

But  by Lemma I5, ranges and hence range norms are unal tered by the trans- 

formations there considered, and hence the t ransform of y+ (t) has a min imum 

range norm and must  be y*(t) itself. I t  readily follows tha t  if ht, h~, . . .  is 

such tha t  lira q)h~ = o (rood 2 ~r) for each element ~ of M, then  lira y* (t + h~) 

exists for all t, and of course equals y* (t). Thus y* (t) is s tat ionary and hence 

a .p .  wi th  a module contained in M. 

w 8. Solutions of  the Almost Periodic Type. - -  The Homogeneous Case. 

8. I. The theorems of the last section enable us to prove theorems con- 

cerning solutions of the a .p .  type. Thus Theorem VII ,  the first par t  of Theo- 

rem I X  and Lemma I yield immediately 

Theorem XI. Let  A (t) be an a .p .  square matr ix  funct ion which has its 

module contained in a certain module M, and let (i. 5i) satisfy Condit ion L 

Let  x(t) be a primary solution of (L 5I) having y(t) as its associated p seudo-  

solution. Then if every other pseudo-solution which has the same order, degree, 

and range as y (t) is a .p .  with a module contained in M, i t  follows tha t  x (t) is 

of the a .p .  type with a module contained in M. 

In  the following corollaries, A (t) is understood to be a .p .  with its module 

contained in M, and (I. 5I) is understood to satisfy Condit ion I. 

Corol lary  1. Le t  x(t) be a bounded solution of (I .SI) .  Then if every 

other solution which has the same range as x(t) is a. p. with a module contained 

in M, so is x(t). 

Corol lary  2. Le t  x(t) be a bounded solution of (I. 5I). Then if  no other 

solution has the same range us x(t), x(t) is a .p.  with a module contained in M. 

Corol lary  3. Le t  x(t) be a primary solution of (I. 5I) having y(t) as its 

associated pseudo-solution. Then if no other  pseudo-solution has the same order, 

degree and range as y (t), x (t) is of the a .p .  type with a module contained in M. 

8.2. The above theorem leads immediately to a theorem giving necessary 
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and sufficient conditions that  all the solutions be of the a.p. type. The fact 

that  Condition I is a necessary condition was shown in Theorem I. 

Theorem XII. Let A (t) be an a.p. n-by-n matrix function which has  its 

module contained in a certain module M. Then all of the solutions of (I. 6I) 

will be of the a.p.  type with a module contained in M . i f  and only if (I. 6I) 

satisfies Condition I and there exist n pseudo-solutions y(ll (t), . . . ,  y(n/(t) of (I. 6I) 

whose leaders are linearly independent and for each of which the following 

statement holds. With  the exception of a.p.  ones whose modules are contained 

in M, there exists no pseudo-solution of (I. 5I) which is distinct from but has 

the same order, degree, and range as y(')(t). 

8.3. Another set of necessary and sufficient conditions can be obtained 

from Theorem VII I  and the second part of Theorem IX. 

Theorem XIII.  Let A (t) be an a.p.  square matrix function whose module 

is contained in a certain module M. Then all of the solutions of (I. 6I) will 

be of the a.p. type with modules contained in M if and only if (I. 6I) satisfies 

Condition I and there exists no solution x(t) of (I. 61) (neither a real nor a 

complex one) having an exponential multiplier e -~t such that  e-'-~tx(t)is bounded 

and positive twistable with respect to M. 

8.4. A some what nearer but less incisive theorem can be obtained from 

Theorem X I I I  by use of the following definition and lemma. 

Definition. A vector function f(t) win be called symmetric if R [f(t)]---- 

R [ef(t)] for some constant scalar multiplier c which is not equal to unity 

but has unity as its absolute value. 

Lemma 17. If  there exists a module with respect to which a scalar func- 

tion f(t) is twistable, it follows that  f(t) is symmetric. 

For there exists a sequence hi, h~ . . . .  such that  for all t lim f ( t + h ~ ) :  cf(t) 

for some constant c which is not equal to but has the absolute value unity. 

Thus R [cf(t)] < R If(t)]; and by repetition it follows that  for all positive inte- 

gers m and all t, c~f(t) is an element of R[ef(t)]. But the set c, c ~, c a , . . ,  has 

unity either as an element or as a limit point, and hence for each t, f(t)  is an 

element of R [ef(t)]. Hence R [cf(t)] R [f(t)] and f(t) is symmetric. 

Theorem XIV. Let A (t) be an a.p.  square matrix function whose module 

is contained in a certain module M. Then all of the solutions of (I. 6I) will 
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be of the a.p.  type with modules contained in M if and only if (I. 6I) satisfies 

Condition I and every bounded and symmetric product e-~tx (t) of an exponential 

and a (real or complex) solution x(t) of (I. 6I) is a.p. with a module contained 

in M. 

For e-Ztx(t) cannot be bounded and twistable with respect to M, since if 

it were it would be symmetric and hence a.p. with a module contained in M. 

8.5. Finally, another theorem concerning a particular solution can be 

obtained from Theorem X and the first part of Theorem IX. 

Theorem XV. Let A (t) be an a.p.  square matrix function having the 

module M, let (i. 6i) satisfy Condition I, and let S be closed convex point set 

in the n-dimensional space which contains the range of a certain pseudo-solution 

of order it and degree r. Then if S does not contain the origin, there exists a 

satisfactory solution x(t) of (I. 6I) of order it and degree ~ r which is of the 

a.p. type with its module contained in M and the range of its associated pseudo- 

solution contained in S. 

w 9. Solutions of the Almost Periodic Type. - -  The Non-Homogeneous Case. 

9. I. The non-homogeneous case will not be considered at length as the 

homogeneous case was, since it has been pointed out in (I. 6 )how theorems 

dealing with the homogeneous equation may be restated to fit the non-homoge- 

neous equation. We shall however apply Theorem XV in order to show that  

in the non-homogeneous case the condition analogous to Condition I alone implies 

the existence of a solution of the a. p.  type. The condition mentioned is 

Condition II. The system (I. 21) will be said to satisfy Condition I I  if to 
P 

every non-trivial vector function z(t) of the form ~ [c,x(t)+ x(')(t)] I v where 
~ 0  

x(t) is a solution of (I.2I), the x(')(t) are solutions of (I.6I), and the c~ are 

constants, there correspond a real number it and a non-negative integer r such 

that  z ( t ) : 0 * ( e  Art r) at + ~ .  

9.2. We can now state 

Theorem XVI. Let A (t) be an a.p. n-by-n matrix function and b (t) an a. p. 

n-dimensional vector function, let M be the least common module of A (t) and 

b(t), and let (I. 2I) satisfy Condition II .  Then (I. 21) has at least one solution 

of the form 
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x* (t) = yo(t ) q- t y l  (t ) -t- .... -t- tnyn(t), 

where yo(t), . .  , yn(t) are a .p .  vectors having their  modules  condit ioned in M. 

In  aeeordanee with the method given in (I. 6), we consider the system 

D [x (t)] = A (t). x (t) + b (t)~(t) 

62) d 
= o;  

where ~ (t) is a scalar funet ion and the (n ~- 1)-dimensional vector Ix(t), ~(t)] is 

the  unknown.  Since (I. 2I) satisfies Condit ion I I ,  it  is clear tha t  (I. 62)sat isf ies  

Condit ion I;  and every solution of (I .62)  is decomposable.  But  if x ( t ) i s  a 

solution of (I. 2I), [x(t), I] is a solution of (I .62);  and at least one of the satis- 

factory solutions into which it is decomposable is of the form [exr(t); c], where 

x~(t) is a solution of ( I .2 I )  and c is a non-zero constant.  Let  [y(t);•(t)] be 

the associated pseudo-solution of [x~(t); I]; let  2 and r be its order and degree, 

and let [Xo(t); Co], . . . ,  [x~(t); c~] be the minors. Then the bounded funct ion 

~ (t) --- e -~t ~ e,.--r, where e~ = I ; so Z = c0 . . . . .  e,.--1 = o. Thus if S is t;he 
' ~ 0  

set; of points  in (n + I)-dimensionM spaee whose last eoordinates are equal to 

unity,  it follows that  (I. 62) has a pseudo-solution of order zero whose range is 

eontained in S. Since S does not  contain the origin we earl apply Theorem XV, 

and it follows tha t  (i. 62) has a sat isfactory solution of order zero of the a .p .  

type  with a module contained in 21l whose associated pseudo-solution [y* (t), I.] 

has its range e0ntained in S. But  a pseudo-solution and its leader are equal 

when t =  o, and henee the solut ion of (I. 62) in question is of the form [x*(t), I]; 

and x*(t) is a solution of (~. 2I) having the property demanded by the theorem. 

9. 3. In  conelusi0n, we note that  Theorem X V I  ean be combined with 

Theorem XI I ,  Theorem X I I I ,  or Theorem X I V  to give necessary and sufficient 

condit ions t;hat all of the solutions of (I. 2I) be of the a .p .  type. 

Pr ince ton  Universi ty  and the Ins t i tu te  for  Advanced Study.  
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