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I. Introduction.  For  any t e rnary  quadra t ic  fo rm f ( x ,  y, z ) w i f l l  in tegra l  

coefficients there  are usually congruences  f ~ .  h (rood m) which are not  solvable,  

whence  no n u m b e r  m u  + h is r ep resen ted  by f ,  where n is an integer .  Fo r  in- 

stance, f ~ x  " ~ + y ~ + z  ~ 3  (rood4) implies  t ha t  x , y  and z are odd, whence 

f-----3 (rood 8). I t  follows tha t  f represents  no n u m b e r  8n  + 7 where  n is an 

integer .  Similar ly  f may  be shown to represen t  no n u m b e r  4 k(8 n + 7). I n  this  

case, these are the  only numbers  congruent ia l ly  excluded. For  any fo rm the  

numbers  so excluded consist  of cer ta in  a r i thmet ic  progress ions  of the forms  

2 ~ (8 ~ + a), pS(p n + b), where r and  s r ange  over  some or all non-negat ive  inte- 

gers, a is odd, p is an odd pr ime fac tor  of the d e t e r m i n a n t  of jr, and  b r anges  

over  the quadra t ic  residues or non-residues of p or both. H.  J .  S. Smi th ' s  

definit ion of genus ~ in t e rms  of  the charac te rs  ( f l p )  etc., of the fo rm and its 

reciprocal ,  is equivalent  ~ to the following: two forms  of the  same d e t e r m i n a n t  are 

in the same genus if the progress ions  associated,  as above,  wi th  the fo rms  are the 

same. Two fo rms  are of the same genus,  as proved  by H.  J.  S. Smith ,  if  and  only 

if one can be carr ied into the o ther  by a l inear  t r a n s f o r m a t i o n  of de t e rminan t  I 

and whose coefficients are r a t iona l  numbers  whose denomina to r s  are pr ime to 

twice the d e t e r m i n a n t  of the forms.  I t  is therefore  na tu ra l  in this art icle tha t  

the solut ion of problems in genera  of several  classes 3 is found  by use of such 

1 H. J. S. SSIITH, Collected Papers, vol. I, pp. 455--509; Philosophical Transactions, vol. I57, 
pp. 255--298. 

B. W. JONES, Trans. Amer. Math. Sot., vol. 33 (I931), PP. 92--1IO; also ARNOLD ROSS 
Proe. Nat. Aead. Se., vol, I8 (I932), pp. 600--6o8. 

8 Two forms are of the same class if one may be taken into the other by a linear trans 
formation with integral coefficients and of determinant I; i.e. by a unimodular transformation. 
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rational transformations. A second important property is that, given a genus 

and its associated progressions, every number not in one of the progressions is 

represented by at least one form of the genus. ~ I f  it happens that one form 

represents all the numbers not in the progressions, that  form is called regular." 

I t  follows that  whenever there is but one class in the genus, that  class (and 

hence every form in ~he class) is regular. 

Though, subject  to certain restrictions on the invariants, there is in each 

genus 3 of i~def ini te  ternaries only one class, this is not so generally the case 

for posi t ive  forms. Hence problems concerning the numbers represented by posi- 

tive forms are generally more difficult than is the case for indefinite forms. We 

consider in this paper only positive forms. 

A few positive regular forms were studied previous to their designation as 

such. The f i rs t  complete proof of the fact that  x e + y~ + z 2 represents exclu-" 

sively all positive integers ~ 4 k(8 n + 7) was given by Legendre and was followed 

by simpler proofs by Gauss and Dirichlet. 4 Similar results for x 2 + y~O + az 2 

where a ~ 2, 3 or 5 were obtained by Lebesgue, Dirichlet and Liouville. A 

limited number of allied forms had also been dealt with. Since all these forms 

are in genera of one class, their regularity now follows from the second pro- 

perty of genera mentioned above. In I916 Ramanujan 5 employed a number of 

such results, empirically obtained, in making his list of positive forms a x '~+ 

+ b y  '2 + c z  ~ + d t  ~ which represent MI positive integers. I t  was this and his 

remark that the odd integers not represented by x 2 + y~ + IOZ ~ seemed to follow 

no definite law, that  led to Dickson's definition of regularity and the systematic 

investigation which followed. 

Using Dickson's methods and extensions of them it was found G that  every 

primitive form (a, b, c) not in table I (p. I9 ~ ) was irregular. 7 Ninety-six of 

1 B. W. JO~ES, Trans. Amer. Math. Soc., vol. 33 (I93I), PP. I I1 - -124 .  
L. E. DICKSON, Annals of Math., (2), vol. 28 (I927), pp.  333--34  I. 

3 A. MEYER gave a par t ia l  proof in Jour~tal fir Mathematik, vol. IO8 (I891), pp.  I 25 - - I39 .  
For  a comple te  proof wi th  fu r the r  references see L. E. DICKSON, Studies in the Theory of Num- 
bers, chap. 4. 

4 For  references see DICKSOI% History of the Theory of Numbers, vol. 2. 
S. RA3IANUJAN, -PrOC. Cambridge Phil. Sot., vol. I9 (I9~6), pp.  11 - -2 I ;  also Collected 

_Papers, pp. I 69 - - I78 .  
6 B. W. JONES, ,,The Represen ta t ion  of In tegers  by  Posi t ive  Ternary  Quadrat ic  Forms, , ,  a 

Univers i ty  of Chicago thes is  (I928), unpubl i shed .  
7 In  the  thes is  the  form (t,  5, 2oo) was erroneously  repor ted  to be regular.  I t  fails to 

represen t  44 and hence is i rregular .  The  res t  of the  table  has  been checked and found to be 
correct.  
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these forms were proved regular  in the thesis or previous to i t  - -  some by 

laborious methods. In  this paper we prove certain theorems, which, s tar t ing 

with certain basic forms, may be used to show quickly tha t  eighty-two of these 

forms are each in genera of one class and hence are regular.  These eighty- 

two forms are the only primitive positive ternary quadratic forms wi thout  

cross-products which are in genera of one class. We also sketch the methods 

used in the thesis to prove the regular i ty of several forms in genera of more 

than  one class. By one or other of these methods it may be established tha t  

ninety-three of the IO2 forms of table I are regular. The form (I, I, I6) ~ 

was proved regular by using the ta  funct ion expansions e and later  (I, 2, 32) 

yielded to the same method. The regulari ty of (I, 4, i6), (i, I6, i6) and 

(I, 8, 32) follow directly from these results. However, the regular i ty of the 

remaining forms 

(A) (I, 8, 64) , (I, 3, 36) 

and two derivable from the lat ter  has h i ther to  remained unproved. I t  may be 

noted tha t  the forms (I, I, I6), (i, I6, I6), (I, 3, 36), (I, ! 2, 36), (I, 4, 16) and 

(I, 8, 64) are the only regular forms of the table which are in genera of more 

than  one class and whose reciprocal forms are also regular. 

In this paper we prove by means of the rat ional  automorphs of x e + y ~ + Z z  2 

(2 = I, 2, 3), in the convenient  guise of quaternions,  tha t  the forms (A), (~, I, I6), 

(I, 2, 32) and a few others of special interest  are regular. We  have succeeded 

in proving regular all forms which we have been able to discover as apparent ly 

regular. W i t h  the except ion  of (I, 48, I44) which belongs to a genus of four  

classes, all regular forms (a, b, c) belong to genera of one or two classes. The 

companion class we find, in many eases, is regular  except t ha t  ei ther  it fails to 

represent a finite number  of integers represented by forms of the genus, or it  

fails to represent an infinite number  specified by a finite number  of formulas 

involving square factors: for example, all odd squares whose every prime factor  

is in some cases - - I  (mod 4) and in other cases ~ I (mod 3). These almost 

regular  forms are new and are one of the most significant products of the 

method of proof. We  may call a t tent ion to the f o r m  g = ( 8 ,  I2, 2I --6, o, o), 

1 that is x2+y~+I6Z ~. Similarly ax~+by '2+cz~+2ryz+2sxz+2txy  is denoted by 
(a,b,c,r,s,t). 

~N~AZIMOFF, Applications o.1' the Theory of Elliptic Functions io the Theory of Numbers 
(Russian) translated by Arnold Chaimovitch. The proof for this form was indicated by Nazimoff 
and carried out by Chaimovitch. 
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the  compan ion  of the regula r  fo rm f = ( 5 ,  5, 72 , o, o, - -2) ;  g is r egu la r  wi th  

the  single except ion of the n u m b e r  5. (4, 8, 9, o, - -2 ,  o ) h a s  a s imilar  proper ty .  

I n  table  I I  we list  all regular  pr imi t ive  forms (a, b, c) wi th  more  than  one class 

in a genus,  and the i r  companion  forms;  in addit ion,  two examples  wi th  cross 

products.  

R a m a n u j a n ' s  fo rm (I,  I, IO) w~s observed by him to be regula r  for  even 

numbers  and  he found  tha t  the  fol lowing odds were not  represented :  3, 7, 2I,  

31 , 33, 43, 67, 79, 87, I33, 217, 219, 223, 253, 307, 391 �9 I f  he had  gone f a r the r  

he would have  found  only one more  odd n u m b e r  less than  2000 not  represented,  

viz. 679. Al though  we have no complete  proof,  this  fo rm seems to be regular  

with these seventeen exceptions.  

I n  this  connection,  some results  of Ta r t akowsky  ~ with  r ega rd  to forms  of s 

var iables  for  s > 4 are of interest .  H e  claims to prove t ha t  if s > 5, all fo rms  

in a genus represen t  the  same sufficiently large numbers  and a similar  resul t  

wi th  a res t r ic t ion if  s = 4 .  Our  resul ts  as l is ted in table  I I  would indicate  

t ha t  his theorem would be t rue  for  s = 3  in some cases, e .g .  for  the  genus  of 

(I,  2, 32) and false in some o ther  cases, e .g .  for  the genus of (I, I, I6). 

The  regu la r i ty  of tl~e forms  (A), (,, I, I6) and  (,, 2, 3 2) is connected wi th  

special  cases proved in Theo rem  5 of a phenomenon  in the  represen ta t ion  of 

quadra t ic  residues (rood 8 d) by t e rna ry  quadra t ic  forms  of de t e rminan t  d. Other  

examples  are easily ob ta ined  empirical ly,  and perhaps  can be proved by methods  

like those in section 4. Several  examples  connected with (I, I, I) have  been 

given as consequences of elliptic ident i t ies  by Jacob i  and  Gla isher  s and these were 

recent ly  generalized. "~ One of the mos t  in te res t ing  examples  is the  fol lowing:  

if 2 4 n  + I = 8 ~ (8 > O), t hen  all p roper  solutions of 2 4 n +  I ~ x S + 2 y ~ - - 2 ~ I g + 2 z  ~ 

satisfy x ~ -  + I (rood I2) if  s ~  I or  5 but  x ~  + 5 (rood 12) if s ~ 7  or I I  

(rood I2); bu t  if 24n  + I # s 2, there  are equally m a n y  solut ions of each type. 

This  has  recent ly  been verified by E. Rosenthal l .  

2. ']?hough, to prove a fo rm regular ,  i t  is sufficient, f rom the above discus- 

1 W. A. TARTAKOWSKY, Comptcs Rendus de l'Acaddmie des Sciences, vol. 186 (I928), pp. 
I337--I34o , I4oi--I4o3, r684--r687. Errata in the second paper are corrected in vol. I87, p. 155. 
Complete paper in Bull. Ak. Se. U. R. S. S. (7) (I929), PP. I I 1--22, 165--96. 

~" For references see DICKSO~, History of lhe Theory of Numbers, vol. 2, pp. 26I-- 3 and 
p. 268 respectively. For example Glaisher states the following in Messenger of Malhematics, new 
series vol. 6, (I877), p. Io4: The excess of the number of representations of 8 n+ I in the form 
x"+4y"+4z ~ with y and z even over the number of representations with y and z odd is zero if 
8 • +  I i s  n o t  a s q u a r e  a n d  2~--I)(S--1)/28 i f  8 n +  I ~ 8  ~. 

3 GORDON PALL, Amer. Journ. of Math. (I937), vol. 59, PP. 895~913. 
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sion, to prove tha t  i t  is 'in a genus of one class, such a proof  is usually very 

tedious especially if the form in quest ion lies outside the range of the table of 

reduced forms. 1 W e  hence prove in this section a new theorem which, with its 

modifications not  only proves with considerable celerity tha t  most  of the forms 

in table I are in genera  of one class but  determines the number  of classes in 

the genera  of the remaining forms. W e  shall use the following 

Lemma: Given two primit ive te rnary  quadrat ic  forms f and g of the same 

genus, then  for  every ~7 whose every prime fac tor  is a fac tor  of their  determin- 

ant  there  exists a form ~ equivalent  to f whose coefficients are congruent  to 

the corresponding coefficients of g (mod v). 

This may be proved as follows. By a theorem quoted above, there  is a 

t ransformat ion  (tij/r) takino, f into g where tij a r e  integers  and r is an in teger  

prime to twice the de te rminant  of f .  Then  for any X7 of the lemma we find an 

s such tha t  r s ~ I (mod V). The t rans format ion  (st,j) will take f into a form 

--r (rood V) and the de te rminant  of the t rans format ion  is =" I (mod XT). Then 

by a theorem of Smith ~ we can find a t rans format ion  (u,~) of de te rminant  I such 

tha t  ur ~ s tcj (rood V) for  every i and j .  This t r ans format ion  will tuke f into 

9v ~ g (rood x7). 

fac tor  o f  fli a~ul 71 where a is wi thout  a square fac tor  a~ul i f  f :  ~ cq x ~ + (flj/~) y'-' + 

+ (71/6)z ~ is i~ a ge~us o f  o~w ela.s's, g is  in  a ge ,us  o f  one ehtss provided 

(B) f =  aa~ (rood a ~  ~) impl ies  y =~ z =-- o (mod Qs) 

where t2 is the g. c. d. o f  % f t ,  a, 71, fit 7*" 

To prove this consider a form h in the same genus as g. 

lemma, we may assume tha t  h ~= g (mod ~q~). Now 

Then,  by the 

1 EISENSTEIN, Journal figr ~lathcmatik, vol. 4I  ( i85I) ,  pp.  I 4 I - - I 9  O g ives  a table  for deter- 
m i n a n t s  f rom I to IOO. 

ARNOLD ROSS, in  Studies in the Theory of  Numbers by L. E. D~CKSO~ ~, pp.  I8 I - -X85  h a s  a 

t ab le  for d e t e r m i n a n t s  f rom I to 50. 

E. BoRIs sow,  Reduction of" Positive Ternary Quadratic Forms by Selling's Method, with a 
Table of  Reduced Forms for  all Determinants from z lo 200. St. P e t e r s b u r g  (I89O}, t - - I o 8 ;  t ab les  
I - - I  I6 (Russian) .  

B. W.  Joz*Es, A Table of  Eisenstein reduced Positive Ternary Quadratic Forms of  Deter- 
minant <= 2o0 (I935), Bu l l e t i n  No. 97 of t he  Na t iona l  Research  Council .  

" H. J. S. SMITI~, Collected Papers, vol. 2, p. 635 ; also Mdmoires prdsentds par dicers Sa- 
~:anls ?t l'Acad(mie des Sciences de l'Tnslitut de France (2), vol. 29 (I887) , ~No. I, 72 pp.  

22--38333.  Acta mathematica. 70. Imprim6 le 2 d6cembre 1938. 
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takes g into d f  and will take  h into a form d 9  of the same genus as dr,  since t 

f represents  a number  N if and only if ~ N  is represented by g while ~v 

represents  N if and only if ~ N is represented by h, tha t  is; the progressions 

associated with f and with ~v are the same. Then  there  is a unimodular  

t ransformat ion  R taking f into ~. Hence  K =  U R  U -1  takes g into h and if 

R = (r~:/) we have 

\ral/(~ a ~'~2 r3a/ 

Hence  g and h will be equivalent  if r21----r31 ~ O (rood Qa). But  the coefficient 

of x ~ in h is then a 1 r~, + (fit r~, + yt r~,)/d a which must  be an in teger  ~ a 1 (rood V). 

Thus, if (B) holds, g is equivalent  to h. 

Modif icat ion 1. I f  f has an au tomorph  1', then  r e p l a e i n g f b y  T ' f T  above 

has the effect of replacing R by T / / .  T will have the same effect on rjx, r.2j, ~'31 

as it  will on x, y, z and hence if, for  every r~, r2~, r~  there  exists an au tomorph  

T taking r m r~l, r~t into rl~, r~t, r~l such tha t  r~, ~ ~'~, ~ o (mod Ca) we may 

e o n e h d e  tha t  g and h are equivalent  and hence tha t  g is in a genus of one class. 

Coro l la ry  1. I f  aa~--7~/d and f =  aa~ (rood a ~  ~) implies y ~ o (rood Qa) 

and ei ther  x or z ~ o  (modQa),  g is in a genus of one class. This follows from 

the modification above since 'ral ~ o (rood Q a) would imply rH--= o (rood Q a) and 

the t ransformat ion  x = - - z  t, y =  _ y l ,  z ~ - - - x  L is an au tomorph  and would 

in terchange  rll  and r~l. Similar  results follow if fl/d = aa~ or f J d - =  7jd-= a~l. 

Coro l la ry  2. I f  Q a - -  2: f l /d  = i, 71/6 = 3 and if f ~  a e  t (rood a.Q ~) implies 

y ~ z (mod 2), the theorem still holds, for  

(! o ( i  ~ ~ TI= - - I / 2  - -3 /2  and :12 ~- - - I / 2  3/2 

- -  I / 2  I / 2 ]  I/2 I /2 l  

are a u t o m o r p h s  of  f and  t ake  r21 a nd  rs1 in to  - -  ("21 -~- 3 r31)/2, ( --  r,ll J~ r31)/2 or  

1 B. W. Jo~Es, A New Dqfinition of Genus... see earlier reference. 
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( - -  r21 -I- 3 r,~l)/2, (r~l + ~'~1)/2" I f  re1 and r31 are odd, one of these pairs consists 

of even integers.  

Modif icat ion 2. I f  (B) holds, or the modification above, and f is in a genus 

of more than  one class, the number  of classes in the genus of g is not  more 

than  the number  of classes in the genus of f .  For,  suppose the number  of classes 

in the genus of f i s  s. Then,  if (B) holds for  one form of the genus of g it  

will hold for  u representa t ive  of each class of forms. The t r ans fo rmat ion  U 

will lead to not  more than  s non-equivalent  forms. And any two forms of the  

genus of g which lead to equivalent  forms are themselves equivalent.  

Modif icat ion 3. I f  a =  i and f ~  a~ (mod z~ 4) in the theorem implies tha t  

(B) holds or one of the conditions, C.2, C~, . . . ,  C~ on the variables holds and 

if for  every C~ there  is a t rans format ion  T~ -1 of de te rminan t  Q~ taking f into a 

form of the genus of g; if fu r the r  all the  coefficients in the second and th i rd  

columns of Q T i R  U - 1  are integers and under  condit ion 6~ the coefficients of 

the first column are also; then  the number  of classes in the genus of g does not  

exceed r s where s is the number  of classes in the genus of f .  

This may be seen as follows: if ~ is equivalent  to f and if Ti-1 takes f 

into g~ we have T [ g ~ T i = f .  Hence  e T ~ B  U - 1  takes g~ into h and if the coef- 

ficients of the first column of R satisfy 6~-, g/ is equivalent  to h. Hence  h will 

be equivalent  to one of the gi. If,  on the other  hand,  ~ is no t  equivalent  to f ,  

the reasoning of modification z applies. 

0 0 r o l l a r y  3. I f  Q = 2, r = 2, a -=  I and C~ is one of the following, the number  

of classes in the genus of g is ~ 2 s :  y even and x ~ z  (mod 2); x = - - y ~ z ~ - - I  

(mod 2); x ~ y  ~ - 0  (mod 2). In  the first case take as T~-~: x = 2 x l + z  ~, y = 2 y l ,  

z ~ z I and see tha t  the first column of 2 Ts R U -1  is (rll - -  r31)/2, r~1/2, r3L while 

~ll the other  elements are integers.  6~ implies tha t  all are integers.  In  the 

second case T~ -1 is x = 2 x  ~ + z  1, y = 2 y l + z ~ ,  z - - z  ~ and in the th i rd  case 

x = 2 x  1, y --~ 2 y 1, z = z 1. 

The theorem and the first two modifications suffice to prove tha t  all forms 

in table I which are not  marked  are in genera of one class if one first ascer- 

tains f rom a table of reduced forms tha t  the fol lowing are in genera  of one 

class: (I, I, I), (I, I, 2), (I, I, 3), (I, I, 5), (I, I, 6), (I, I, 2I), (I, 2, ~), (I, 2, S), 
(I, 3, Io). W e  show this ~or ~ few simple cases. 

a) I f  g = ( I ,  r, r ~) where r - - 2 ,  3, 5; then  f of the theorem is r x ~ + y ~ + r z  ~, 
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f ~  r (rood r e) implies y = ry l  and x 2 + ry~ + z 2 ~ I (rood r) which implies tha t  

x or z ~ o (rood r). Corollary I applies with condit ion (B) to prove our result 

since (I, I, r) is in a genus of one class and it is the reciprocal form of f 

b) if g = ( 1 ,  I, r) where r • 4 ,  9, 12 or 24, g will be in a genus of one 

class if and only if i ts reciprocM (I, r, r) is. l~eplace g by its reciprocal and 

f =  a x  2 + y~ + z 2 ~ a (mod r -~ implies y ~ z ~ o (mod qa) or corollary I applies. 

I f  r =  8 we take f to be (I, 2, 2) 

c) I f  g - - ( 4 ,  3, I2), take d-~-3 and have f =  I2X 2 + y ' 2 + 4 2 ' ' ~ . o  (rood3) 

implies tha t  y ~ -z  ~ o (mod 3)- Hence g is in a genus of one class if f is. Then 

repeat the process using corollaries I and 2 on (i, 4, I2). 

Corollary 3 may be used to prove tha t  all the forms of table I [  are in 

genera of two classes except tha t  (i, 48, 144) is in a genus of four classes. 

Again we prove this for a few typical eases. 

a) g = ( I ,  2, 32 ) has a reciprocal g = i I ,  16, 32 ) which we consider in its 

place. Then if we take d = 4, f - -  x 2 + 4 Y~ + 8 z" ~ I (Inod 8) implies y ~ z ~ o 

(rood 2) or x ~ z ~ I (rood 2) with y even and since f is in a genus of one class 

from table I, the corollary applies to prove tha t  g is in a genus of I or 2 classes. 

Table I f  exhibits another  reduced form of the same genus as g. 

b) g - - ( a ,  4b, I2b) where a is odd, b ~ 2 ,  4 or 6 (mod8) and (a, b, 3h) is 

in a genus of one class. Taking d = 4 w e h a v e f ~ - a x  "~+by'~+3bz ' ~ -=a (mod8)  

implies y ~ z (rood 2) and x odd and hence the corollary applies. 

c) g =  (I, 48, 144). Take 6 ~-4  and f =  (I, I2, 36 ) and the  corollary shows 

tha t  the nmnber of classes in the genus of .q is < 2s. I f  now we take ( j=(I ,  I2, 36) 

and take d -- 4 we have f =  (i, 3, 9) and the application of the corollary shows 

tha t  since (1, 3, 9) is in a genus of one class, (1, I2, 36) is in a genus of not  

more t han  two classes and (I, 48, I44) in a genus of not  more than  four classes. 

The table exhibits three other reduced forms of the genus. 

d) g = ( 5 ,  5, 72 , o, o, --I) .  The replacement of x by x - - 3 y  takes g into 

gt==5x"+56y"+72z2--32xy~Sx'-'+ 56y'2+72J (mod32). Hence taking 

d=~4,  f = s x ~ +  I 4 y ~ +  18z'~--16xy~Sx2+ 14y'2 + 1822 (rood I6). Hence 

f ~  5 (rood 16) implies y ~ z  (rood 2), x odd and the corollary shows tha t  the 

number of classes in the genus of g is not  more than  two if f is in a genus 

of one class. That  this is the ease follows from the fact  tha t  X = X l - - 2 y ~ ,  

y = x ~  - y l ,  z = z ~  takes f into 3 x ~ +  2y~-t- I8.e~ which, from table I, is in a 

genus of one class. 
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e) That  the form (I, I, 3, o, - - I /2 ,  o) is in a genus of two classes may be 

verified from the table. 

We prove~ g = ( a ,  4b, 12b) where a is odd and b ~ z ,  4 or 6 (rood 8) is 

regular if and only if f = ( a ,  b, 3b) is. f = a  (roodS) implies y ~ - z ( m o d 2 ) .  ] f  

. f ~  a (rood 8) with y and z odd we may choose the sign of z so tha t  y - ~ z  (mod4) 

and both of y~-~ (y + 3 z)/2 and z ~ ( y - - z ) / 2  will be even. This transforma- 

tion, however, is an automorph of f. Hence, if f represents an odd number  with 

y ~nd z odd, it  represents tha t  same number with y and z even. Hence g repre- 

sents the same odds tha t  f does. The multiples of 4 represented by g are 4 

times the integers represented by f .  This, together  with the above theory, suf- 

fices to prove the regular i ty of all forms of table I I  except (I, 4, 36) and those 

dealt with later in this paper. 

That  f = ( i ,  4, 3 5 ) is regular as to multiples of 3 or 4 is easily shown. 

Using the form (I, I, I) it is no t  hard  to prove tha t  f represents all I2 n + I. 

To prove tha t  it  represents all I2 n + 5 replace y by y + 3 z and have the form 

g--~x e +  2 y ~ +  2 ( 6 z + y ) 2  equivalent t o f .  S i n c e h = x  ~ +  2 y " ~ + 2 Z  '~represents 

all i2 n + 5 we need merely to show tha t  there is a representation with Z ~  y 

(rood 6). We may choose Z prime to 3. We  can show tha t  x S + 2 y ~ = I 2 n + 5 - - 2  Z ~ 

implies the existence of an r and s prime to 3 for which x ~ +  2 y ~ - r  ' ~ + 2 s  s. 

For  if a " +  2b ~:=-/c with a or b prime to 3, ( a + 4 b )  2 + 2 ( 2 a - b )  ~ = 9 k w h e r e ,  

af ter  an interchange of b and - - b  if necessary, a + 4 b  and 2 a - - b  are both 

prime to 3. Repeti t ion of this argument  shows tha t  if x - - 3 ~ ) x ,  y ~ 3Py~ with 

x~ or Yt prime to 3 and x~ + 2y~ (I2 n + 5 - - 2  Z2)/9 p then an r and s o f  the 

desired type exists, i .e.  h represents 12 ~l @ 5 with x, y and Z prime to 3. Then 

y ~ + Z (mod 6) and replacing' Z by -- Z if necessary makes our proof complete. 

3. x" + yS y z + 3 z~ is reguhm The forms of de terminant  II /4,  

f = x  ~ + y e - y z +  3z'-' and g = x ' ~ + y 2 + 4 z  '~ + x Y q -  y z  + zx,  

represent a genus of two classes which represent between them all positive inte- 

gers n ~ A,  where A -~ I 12 h+l (I I ]~ -I- 2, 6, 7, 8 or IO). Similarly, every n ~ _// 

is represented in either f l  or gl where 

f ~ - - x  e +  y ~ §  I I z  ~, g~ x'Z§ 3 y ~ - - 2 Y Z  + 4z  ~ 

represent the two classes of a genus of de terminant  II .  Now 
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n = f ~  yields 4 n ~ - 4  x ~ + ( 2 y )  2 + I I ( 2 z )  2, 

n = g l  yields 4 n = 4 x  ~ + (4z - -Y) '~  + ~Iy'2. 

Hence  for every n r  4 n  is represented in (4, I, II), tha t  is 

4 ~ = 4 x  ~ + ( 2 y - z )  2 +  I I Z  ~, n - - x  ~ 4 - y 2 - y z +  3z", 

whence f is regular. 

I t  is interest ing to note tha t  g and gi represent  the same numbers,  but  tha t  

f represents  numbers  that  f~ does not, e.g.  3. 

The reduced form for  f is x "~ + y~ + 3 z2 - -  xz.  

4. The letters a, b, c, t, . . . ,  z will denote in this section integral  quatern- 

ions of the type 

t = t 0 + i t , + j t ~ + k t ~ ,  t 0 , . . . , t a  rat ional  integers, (i) 

where 

(2) 
i ~ = - I ,  j 2 = _ ) . ,  / ~ = - - Z ,  

i j = - - j i - / d ,  k i = - - i k = j ,  j k = - - k j = ~ i ,  

denoting" a fixed positive integer. For  th i s  section we assume that  

(3)  ). = I ,  2 o r  3- 

Conjugates  are defined as usual (with i replaced by - - i ,  j by - - j ,  k by -- k). 
Then the norm of t is given by 

(4) N t = t l = t t = t g  + t~ + )~t~ + ~t ~ 3" 

The unit-quaternions,  of norm I, to be denoted by 0, are respectively 

(5) + T, + i, + j  and +_k, if ) ~ -  1, 

(6) + I and + i, if ) ~ = 2  or 3. 

W i t h  ~ny quaternion t we link the class of its left-associates 0 t, 0 ranging over 

the a values (5) or (6), (and similarly for  right-associates). I-Iere 

(7) a = 8  if ) . = I ,  a = 4  if ~ = 2  or 3. 

A quaternion is called proper if its coordinates are coprime. 
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We require the fol lowing fundamenta l  result :  

Theorem 2. A proper quaternion x oj norm divisible by a positive odd integer 

m, has exactly a right-divisors (left-divisors) of norm m, these forming a class of 

left-associates (right-associates). 

This was first proved in the case )~ - - I  and m prime by Lipschitz. For  the 

cases s = I and 3, but  m prime, it follows immediate ly  f rom Hilfss~tze 8 and 

Io of L. E. Dickson's  Algebren und ihren Zahlentheorie,  pp. I67 and 17o (it 

being necessary to t r ans form Dickson's integral  quaternions  into ours by suit- 

able uni t  factors). 

Le t  us note first tha t  if the theorem is t rue  for  x of odd norm it follows 

for  N x  even. For  if x = u t  where N t = m ,  then  x +  m = ( u +  t) t; whence x 

and m + x have the same right-divisors of norm n~. 

Second we ex tend  the theorem f rom m prime to m composite. 

I. Existence.  Assume the t ru th  of the theorem for  products  m of r - -  I 

primes. W r i t e  m ~---np, n being a product  of r - -  I primes, p a prime. Then  

x = u t ,  N t - - p ;  and since n]Nu ,  u = v w ,  where N w = n ;  hence x ~ v w t ,  and 

N ( w  t) = s~. 

I [ .  Uniqueness up to a left-unit  factor.  W i t h  the same hypothesis  assume 

if possible tha t  x = u v - - u ' v ' ,  where N v = N v ' = ~ = n p .  W e  can s e t v - ~ w t  

and v ' : w ' t ' ,  N t = p = N t ' .  Since t and t' are right-divisors of norm is of x, 

t ' =  0 t for  a uni t  0, and u w-= u'w'O follows on cancell ing the r ight - fac tor  t. 

Here  the divisor uw of x is p roper  and has both  w and w'O as right-divisors of 

norm n. By the  induct ion-hypothesis  w and w '0  are left-associates and the  same 

follows for  v and v'. 

Th i rd  we extend the theorem f rom )~= I to ~ = 2 .  There  is a (I, I) cor- 

respondence between the quaternions  

(8) X = X o + i x l + j x ~  + kx3, x2- -=xs(mod2) ,  x0 . . . .  ,x3 integers  

in which ~ = I  ( i . e . j ~ = k  ~ - ~ - I ,  j k - ~ i ,  etc.), 

and the quaternions 

(9) Y : Y o  + IY l  + JY.~ + Kya,  Y0, . . . ,Ya integers,  

in which ~ = 2 (i. e. 1 2 =  - I, J ~ =  K ~ =  - - 2 ,  J K =  2 L etc.). 

This  correspondence is set up under  the t ransformat ions  
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I = i ,  J = j - - ] c ,  K = j  + k, 

:co = yo ,  x l = y~,  x ~  = y~ + y2 ,  x3 ~ y3 - -  Y~. 

The norm is preserved under  these t ransformat ions :  

Xo + + + x l  + + z + 2 y]. 

Every relat ion in quaternions  (8) is immediately in terpretable  in quaternions (9) 

and conversely. I f  x~---ut,  x and t being of type (8), the same is t rue  of u if 

N t  is odd; for  a product  of quaternions  of type (8) must be of the same type, 

in view of the correspondence with (9), and u - ~ x ~ / N t .  

Final ly,  consider a quaternion (9) of odd norm divisible by n~. The cor- 

responding quatern ion  (8) has eight  right-divisors 0 t of norm m. Exact ly  four  

of these have the i r  last two coordinates congruent  (rood 2). The corresponding" 

quaternions  of type (9) are the right-divisors sought  in Theorem 2 for 2 = 2. 

The o r e m 3. Let  x = i x ,  + j x  2 + k x 3 be a proper pure quaternion of  norm 

(I i) ). m;-' = x~ + Z x~ + Z x~, 

where m is odd and po.~.itive, and (3) holds. Then x is o f  the Jb,'m 

(I2) x---  i a t ,  

where t is o f  ~wrm m, a,~d a is a pure quaterniou of  norm 2. 

For  by Theorem 2 we can write x = vt ,  N t =  m. F u r th e r  since 2 = b b = - - x ,  

i and its right-associates are the only left-divisors of x of norm m. But  r a i N y .  

Hence  v ~ i a, where a has in teger  coordinates,  and (as is seen on taking  norms) 

N a  = 2. Thus x =  i a l .  Evident ly  a is pure Mono. with t a t .  

By (~ ) ,  Z!x 1. Replacing x 1 by 2.Yl we obtain 

(i3) ,?= 2 y~ + x~ + x~. 

Using merely the fac t  tha t  m 2 ~ I (mod 8) if 2 = I or 2, m -~ ~ I (rood 24) if 

2 - - 3 ,  we obtain for  (I3) the following mutual ly exclusive and exhaust ive pos- 

sibilities A and B: 

if 2=I ,  
if  2 - - 2 ,  

if 2 = 3 ,  3r 

A 
x,2 or X 3 ~ O (mod 4) 

x~ or x 3 ~ o  (rood8) 

x,_, or xs ~ o (rood 6) 

B 
xs or xs --  2 (rood 4) 

x 2 or x 3 - 4  (rood 8) 

x 2 or x a ~ 3  (rood6). 
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Theorem 4. Let  m be positive and prime to 2 2. All  proper sohdions of (~3) 

satisfy A i f  (-- 2[m) = i ,  ~ . t  B i f  ( - -  Z I nz) - -  - -  I. 

By Theorem 3 it  suffices to show tha t  if a is a pure quatern ion  of norm 2 

and N t = m ,  then  x = t a t = i x , + j x ~ + k x ~  satisfies A if ( - - 2 ! m ) = ~ ,  and B 

if ( - - 2  I m ) = - ~ .  Now if a = i a ~  + j a ~ + k a . ~ ,  x is given by 

(i4) 

x , -~ ( t~  + t ~ - - 2 t ~ - - 2 t ~ ) a a  + 2 2 ( t 0 t  ~ + t, te)a.~ + 2 2 ( - - t o t  ~ + t~t~)az, 

x~ = ~ ( -  to t~ + t~ t,~) a~ + (t~ + 2 t~ - t~ - z ti) a~ + ~ (to t~ + 2 t~ t~) o~, 

x~ = 2 (t o t~ + t~ t~) a~ + 2 ( -  to t~ + 2 t,. t~) a.~ + (t~ + 2 t 2~ - t~ - 2 t~) a~. 

Firs t  consider 2 = I. I t  will be seen tha t  x~, x,,, and x3 are obta ined f rom 

each other  by permut ing  subscripts I, 2, 3 cyclically. Hence  by symmetry  we 

can take a ~ i ,  tha t  is a 1 =  I, a ~ = a , ~ = o .  I f  m = l ~ +  t~+ t~+ t ~  I (rood4), 

three  of the tf are even, one odd, and a glance at  (I4) shows tha t  x~ or x~ ~ o 

(mod 4). I f  w ~ 3 (rood 4) three t/ are odd, one even, and (I4) shows tha t  x s 

or x~ = z (mod 4). 

Second let 2 - - 2 .  We  take a,~= I, a ~ = a ~ = o  as a typical  case. Now 

n$ ~ t 2 ~- tl ~ --I- 2 t 22 ~- 2 ~32. I f  ~02 ~--- I or 3 (rood 8), then if t,2 and ts are odd, one 

of t o and t~ is odd, the other  double of an odd, x 3 ~ 2 ( - 2  + 2 ) ~ o  (mod 8); 

if t.o or t 3 is even, then  t o or t, is odd, the other  divisible by 4, whence 

x 3 ~ 2 (o + o ) ~  o (rood 8). I f  m ~ 5 or 7 (rood 8), and t~ and t~ are odd, then  

t o or t, is odd, the other  divisible by 4, x 3 ~ 2 ( o  + 2 ) ~ 4  (roodS); but  if t,z or 

t 3 is even, then  to or t, is odd, the other  

Thi rd  let  2 = 3 .  W e  take a~-=I ,  

+ t ~ + 3 t ~ +  3t  23- If m ~ I  (rood6), to 

double an odd, xz ~ 2 (2 + o) ~ 4 (mod 8). 

a ~ - - a ~ = o  as typical. Now m ~ t ~ +  

or t 1 is divisible by 3, the o ther  prime 

to 3, whence x 3 = 2 (-- t o t I -{- 3 t2 t3) ~ o (mod 3)- Evident ly  x~ is also even. I f  

m ~ 5  (rood6) t o and t 1 are both  prime to 3, and x 2 = t ~ +  3 t ~ - - t ~ - - 3 t ~  is 

divisible by 3; it is also odd. 

These results become more interes t ing in the l ight  of 

Theorem 5. I f 2 =  1 or 2 and n is of  the forn~ 8 f +  I, or i f  2~-  3 and 

n - ~  2 4 f  + I, but n is not a square, then 

( '5 )  ~ : 2y~ + ~ + x] 

possesses equally many solutions satisfying A or B. 

W e  observed before Theorem 4 tha t  all solutions of ( I 5 ) f o r  the given forms 
23--38333.  Acta mathematica. 70. Imprirn~ le 2 d~cembre 1938. 
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of n satisfy A or B but  not  both. We  shall set up a (�89 �89 correspondence 

between the solutions of the two types. 

To do this we fix upon a prime p satisfying both of 

( 1 6 )  ( p ! ~ )  = - i ,  ( - z i p ) =  - 1.  

This is possible since n is not  a square in vir tue of Dirichlet 's  theorem on 

the existence of primes in an ar i thmetical  progression. Since n ~- 1 (mod 4), (I 6) 

implies ( - - ~ n ! p ) - ~  I; hence we can choose an in teger  x0 such tha t  

(I 7) )~ :r20 + /2 ~ o (,nod 2'). 

Since the proper ty  A or B is unaffected by the removal  of a common odd 

factor  f rom Yx, x2, and x3, and since in all solutions x,, or % is prime to s we 

cau restr ict  a t ten t ion  to proper  solutions. Le t  ~ ~ ;t i y i  -~ J x~ q- kx:~ represent  

a proper  solution of (I5). Then  

(~8) ;v~- -  ;.,~, and N(Zxo + ~) = Z(Zx~ + , )  o (modp). 

By Theorem 1, 2 x  o + ~ possesses a rio.ht-divisor t of norm p" 

(19) ),x o q- ~-- ~tt, ~'Yt=p. 

From (I9) we obtain at once 

( : o )  t .  - ). Xo = t ~ i /p .  

Thus (t~i)/p has integral  coordinates,  is pure (along with ~), has its coefficient 

of i divisible by Z (as will be evident  f rom (22)), and is of norm ( N t - N ~ .  N~)/p ~ = 

--N~ = ). n, and hence represents  ano ther  proper  integral  solution of (I 5), proper  

since any common divisor of the coordinates  of 

(2I) 1] = (t~i)/p = ). iw, + j %  + kva 

divides the coordinates of ~ (tvt)/p.  Set t ~ t = i z ~  +jz~  + lcz~; then  

z~ = (to + tl - X t~ - ). t~) ). y ,  + 2 ). ( -  to t3 + tl t~) x~ + 2 Z (to t~ + t, t3) x~, 

(22) z~=2(tot~+tlt .~)s +(t~+ Xt~-- t1- -Xt] )x~+ 2 ( - t o t x  + Xt,,t~)xa, 

z3 = 2 ( - -  to t.2 + tx t3) ). y~ + z (to t~ + )~ t~ t3) x~ + (t~ + Z t~ - tl - -  Z t~) x3. 

I f  t is replaced in (I9) by a left-associate 0t,  then  ~ in (21) is replaced by 

~ 0  which (as is easily verified) is obtained f rom ~ by 
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merely changing the signs of v 2 and v3, if Z =  2 or 3, 
(23) 

merely changing signs of two of wl, v~, v~, if  ~ ~ x. 

I f  the same sequence of operat ions be applied to ~7 instead of ~, with the 

same p, but  with --  x 0 in place of xo, we obtain i for  a right-divisor and are led 

back to ~; for  by (2o), - - 2 x  o + ~ ] = ( - - d ) i .  Also the l a  qnaternions 0~+0 lead 

in (I9) to tO, and hence again to 

s = = ( t o .  o 

Let  us ant icipate the proof  below tha t  if ~ is of type A then  V is of type  

B and vice-versa. Then  to each set of ~a representa t ions  of type A we corre- 

spond the set of type B obta ined by nleans of p and x0; but  for  sets of type 

B we use p with - -x0 .  Two sets of type A cannot  correspond in this way to 

the same set of type B: for  by the above a rgument  the la t te r  set nmst  lead back 

to both of the former,  contrary  to the s ta tement  about  (23). 

Finally we prove tha t  if ~ is of type A, V is of type B. The converse will 

follow by parity. Since p is prime t o - 2 E ,  it suffices to show tha t  t ~  is of 

type B. 

Le t  ~ = I. Then  1) ~- 3 (rood 4), three tj. are odd, one even. W e  can suppose 

by symmetry  tha t  x~ ----- x 3 =-- o (rood 4)- Then  by (22) obviously z., ---= z3 ~ 2. 

Le t  ) ~ = 2 .  Then  p ~ 5  or 7 (mod8) .  By symmetry  we can take x 3 ~ o  

(rood 8), x.z odd. By residues (rood 8) in (I5) y~ must  be even. Since 

to 2 + t~ + 2 t~ + 2 t3 ~ 5 or 7 (nlod 8), 

one of to and t~ is odd, the other  ~--2 or o (rood4) according,  as t.~t 3 is even or 

odd; hence z 3 ------- 2 (t 0t~ + 2 6 t3) = 4 (mod 8). 

Le t  ~ - - 3 .  T h e n p = 5  ( m o d 6 ) , p = t  2 +  t~+ 3 t ~ +  3t~, t o and t~ prime to 3. 

Suppose x3-------o (rood 6). By (I5), x,~ is odd and prime to 3, y ~ i s e v e n , ? h ~ x ~ o  

or 2 (mod 4). Hence  z~ = (t0 ~ + 3 t ~,, -- t~ - -  3 t~) x,~ = o (rood 3) and also ~- to + t.~ + 

+ t, + t3 ~ I (rood 2); tha t  is z2 ~- 3 (Inod 6). 

Apar t  f rom similar cases this completes the proof  of Theorem 5. To take 

an example, 73-=3x~ + x~ + x~ has the solutions (4; 5, o) and (2; 5, 6) of type 

A; and (4; 4, 3) and (o; 8, 3) of type  B. 

Theorem 6. Erery po~itive integer of the form 8 ~ + I is represented in 

(I, I, I6), (I, 4, I6), (I, I6, I6), (I, 2, 32), (I, S, 32), a'nd (I, 8, 64); 
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ancl every positice integer of the form 24 n + I i3 represe~#ed in 

(I, 3, 36), (~, ~2, 36), and (~, 48, I44). 

All the results of Theorem 6 are trivial for the case of a square. For  a 

non-square the required representat ion follows at  once  from Theorem 5 in the 

case  of  
(I,  I, IS), (2, I, 64), (3, ~, 36). 

From 8 n +  I = ( I ,  I, I6) follows x~ or xs--=o (rood4); which takes care of 

(I, 4, I6) and (I, 16, I6). From 8n  + I ~-(2, I, 64) follows x~ even, 8n  + I = 

----(8, I, 64). From 8 ] c +  ~ - - (3 ,  I, 36 ) follows x~ even, 8 / c +  I = ( I 2 ,  ~, 36). 

From 8]c+  I ~ ( I ,  I2, 36 ) follows x s ~ x  ~ (mod2), whence 8 k + I : ( I ,  48, I44) 
2 2 2 unless x,~ and xs are odd; then  8]c + I ~-x l  -~ 48y2  -~- I44Y3 with 

y~ = 1 (x~, _* 3 x,) ,  y~ - -  1 (z~ u x~). 

By Theorem 5 with ) ~ = i ,  8n  + t ~ - x ~ + 4 Y ~ + 4 y ]  with Y2 and Ya odd, if 

8n  + I is not  a square, this being a representat ion of type B. Hence 

s ,~ + ,  = x~ + ~ (,j~ + y~)~ + 2 (,j~ - ~ ) ~ ,  

where by choice of signs, y~ + y~ :~ 2 (rood 4), Y2 -- Y~ ~ o (rood 4). The results 

stated for (I, z, 32) and (r, 8, 32) follow. 

T h a t  all other integers of the genera of these forms can be represented 

thereby can easily be proved and was proved in B. W. Jones'  Chicago Disserta- 

tion. For  example to represent 8 n + 3 in (I, 2, 32) we start  with a representation 

8n  + 3 = Y ~  4-y~+y~,  

wherein the y~ are necessarily odd and we can choose their  signs and order to 

secure Y-a ~ Y3 (rood 8); then 8n  + 3 = Y~ + 2 (�89 + �89 2 + 32((y.a --Y3)/8) ~. 

Corollary.  All the forms listed in Theorem d are regular. 

5. There are also interest ing properties of the companion forms in the 

genera of each of the forms listed in Theorem 6. Consider for example 

f ~  x~+y'2+ I6z  "~ and g = 2x  2 +2y2-4 - 5 zg"- -2yz- -2zx=(x+Y--z)~-b(x- -Y)~+4z~,  

which are the reduced forms of a genus of determinant  I6 (cf. Table I1). To 

every representation of an 8 n + I in f corresponds a solution of 
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(E) 8 n q- I = y~ 0r 4 Y~ q- 4 Y~ 

with y~ and Ya even; and to every representa t ion in g corresponds a solution of 

(E) with Y2 and Ya odd. Hence  Theorem 5 toge ther  with the fac t  t ha t  every 

8 n §  I is a sum of three squares shows tha t  every 8 ~ +  I no t  a square is 

represented equally often in both  f and g. On the other  hand f obviously 

represents  every m ~. But  g represents  properly no m ~ for  which m = I (mod 4) 

(m positive), and hence cannot  represent  (properly or improperly) any m ~ all of 

whose prime factors  are ~ I (rood 4). However  g does represent  properly any 

m e for  which m ~ 3 (rood 4) (Th. 4), and hence g represents  every m ~ for  which 

m has some prime fac tor  ~ 3. This proves the result  s tated in the first line 

of Table II .  The proofs of the other  results of the table, in which m ~ or w ~ 

appears, are similar. 

In  the case of the form f =  (I, ~, 32) the s i tuat ion is somewhat  different.  

The companion form g = ( 2 ,  4, 9, - - z ,  o, o) seems to represent  every 8 n + 3  

except  3, 43, and I63, but  we have not  been able to prove this. However  we 

can prove as follows tha t  g represents  every 8 ~ + I with the single exception I. 

Fo r  if m is odd, m = g  if and only i f m = x  ~ + 2 y ~ + 8 z  ~ = x  ~ + ( y + 2 z )  e + ( y - z z )  ~ 

with z odd, tha t  is 

(F) m = x ~  + x ] + x ~ ,  x ~ = x  a + 4 (rood8). 

We  have seen above tha t  unless 8n-~ I is a square conta ining no prime fac tor  

4 k +  3, (E) is solvable with y~ and y.~ odd: then 2 y . ~ -  + _ 2 y a + 4  (rood8) by 

choice of sign. I t  remains only to prove the solvability of (F) when m = p 2  

w i t h p  a prime 4 k +  I. S e t t i n g p - - l g +  t ~ + l ~ + l ~  we have 

p~ x~ + a~.~ ~ 2 ., = ~+x~ ,  x ~ = t ~ + t ~ - - t ~ - - t ~ ,  x ~ = 2 ( t  0 t~+  t~t~), 

x 3 = 2 ( - t  o4  + t~4). 

I f  p ~ - 5  (rood8) we can take 2 9 = t ~ +  t~, t l = t  a - -o ~  whence x ~ = o  and x~ 

- - 2  tot ~ =--4 (rood 8). I f  p ~ I (rood 8) it  has by the above a representa t ion  

t~ + t~ + t] with t~ = o and t~ ~ t2 ~ 2 (rood 4), to odd; hence x~ = 2 t~ t~ ~ o (mod 8), 
x ~ = - - 2 t  0 t . , ~ 4  (rood8). The resul t  for  (4, 8, 9, o, - -~ ,  o) follows. 

6 a. The classes of forms represented by 

(~) f - - y x ~ - - 2 x y + y y ~ + 7 2 z ~  a n d g = 8 x * ~ + I 2 y ~ - - ~ 2 y z + z ~ z  ~ 

const i tute  a genus and are ra the r  no tewor thy  in tha t  
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Theorem 7. f is regular, and g represe,ts 

except that g does not represent the ~umber 5. 

Both forms are derived from x '~ + y~ + 3 z~: 

(~) 

(3) 

Burton W. Jones and Gordon Pall. 

exactly the same numbers as f 

f = (x + y + 6 ~)~ + (~ + y - -  6 ~)~ + 3 (x - y) ' ,  

g = ( e x  + 3z) ~ + ( 2 x  - 3z)" + 3 (2y  - z )  ~ 

Either of 2 n = f  or 2 ~ z = g  leads to ~ n = z X " +  3 Y ~ +  ~8Z'a; either of 

3 n = f  or 3 n = g  yields ~ - - 4 X  2 - 4 X Y +  7 Y " +  24Z"'. H e n c e f  and g 

represent the same numbers 2 ,  and 3 n; since a genus is always regular, f and 

g are each regular for multiples of 2 and 3. 

The only remaining numbers possibly representable in f or g are those of 

the form 24n + 5. 

To represent 24n + 5 in f it suffices (by (2)) to solve 

(4) 24 n q- 5 = x= + ye + 3 z2 

in integers x, y, z for which the equations 

(5) X +  Y + 6 Z = x ,  X +  Y - - 6 Z = y ,  X - -  Y = z  

yield integer solutions X, Y, Z. The condition for this is 

(6) x ~ y  (mod 12), y ~ z  (mod2), 

which in the particular case of (4), may be replaced by 

x = y  (mod I2), x y z  odd. 

to represent 24n + 5 in g it suffices to solve (4) in 

(7) 

Similarly in view of (3), 

integers x, y, z satisfying 

(s) x ~ y + 6  (mod I2), x y z  odd. 

6 b. Thus Theorem 7 will follow if we prove 

T h e o r e m  8. Every 24 n + 5 is represented in x ~ + y'~ + 3 z" with x, y, z 

odd and x=~y  (mod I2); a~d every 24n + 5 except 5 is represe~ted therein with 

x, y, z odd and x ~ y + 6 (mod 12). 
That (4) is solvable in integers x, y, z is well-known. Either x, y, z are all 

odd; or one of x or y is odd, the others even. In the latter case the even ones 
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are incongruent  (rood 4), 

following automorphic  

x, y, z odd: 
T: 

T': 

U: 

uP: 

and it is evident tha t  the application of one of the 

t ransformat ions  will produce a representat ion having 

(x, y; z) -~ (x, �89 3z); 

( x , )  (y + 3 ~); 

(.'/, ~ (~ -- 3 ~); 

(:'t, ~ (x + 3 z); 

(y + ~)), 

1(~t - ~)), 

l ( x  + z)), 

1 (x  - ~.)), 

The proof of Theorem 8 will involve a finite sequence, of arbi trary length, 

of al ternate  applications of these automorphs,  (which, we may note, correspond 

to t = I • j or I + k with 5~ -~ 3, in ~ 3)- 

6 c. I f  x, y, z are odd, then  in (4) ei ther  

(9) x ~  + y + 6  or x - -  ,_*y ( ,nodIz) .  

Star t ing with a solution of ei ther type (91) or (98) we shall t ry to derive one of 

the other  type. 

I f  x, y, z are determined to modulus 24, the result  of applying T, . . . ,  U'  

is determined to modulus I2. Thus, under  T, (I, 5; I) (rood 24)->(I, I; 3)(rood I2), 

wherein x------y (rood I2); and evidently this resolves the step f rom (91) to (%) 

also for ( +  I, +_5; +--I) and ( + 5 ,  + - I ;  + I )  (mod24),  tha t  is the residues may 

be taken as least absolute residues (mod 24) and the x and y interchanged.  In  

a similar way, applying T, the reader  can immediately complete the step f rom 

(91) to (98)in the following cases (rood 24): (5, i; --3), (5, r; 5), (I, 5; --7), (r, 5; 9), 

(5, I; - - I I ) ,  (I, 7; 3), (I, 7; --5), (I, 7; II); (5, i I ;  - - I ) ,  (5, I I ;  7), (5, I I ; - - 9 ) ,  
(7, I I ;  - - I ) ,  ( I I ,  7; 3), ( I I ,  7; - -5) ,  (7, I I ;  7), (7, ' I ;  - -9) ,  ( II ,  7; II). There  
remain to be t reated only the six cases: 

(I0) (I, 7; I), (I, 7; 7), (I, 7; 9), (5, I I ;  3), (5, 1I; 5), (5, I I ;  II), (mod 24). 

Similarly, s tar t ing with (98) the t ransi t  to (91) is obtained by one application 

of T in the cases (I, I; - -  3), (I, I ; 5), (I, I ; - -  I I), (I, If ; - -  I), (I l, I ; - -  3), 
( I I ,  I; 5), (I, I I ;  7), (I, I I ;  --9), ( II ,  I; - - I I ) ,  ( II ,  I I ;  I), ( I I ,  I I ;  7), ( II ,  I I ;  --9), 

(5, 5; I), (5, 5; --7), (5, 5; 9), (7, 5; i), (5, 7; 3), (5, 7 ; - - 5 ) ,  (7, 5 ; - -7 ) ,  (7, 5; 9), 
(5, 7; II), (7, 7; 3), (7, 7; --5), (7, 7; II). There remain here twelve cases 
(mod 24): 
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(I, I; I), (I, I;. 7), (I, I; 9), (7, 7; ~), (7, 7; 7), (7, 7; 9), 

(5, 5; 3), (5, 5; 5), (5, 5; IX), ( I I :  I I ;  3), ( I I ,  I I ;  5), ( I I ,  I I ;  I I ) ,  

All eases (IO) can be reduced to (~, 7; I). For  example, if 

24 n + 5 X'e + Y~ + 3.~, X = 5, y --= I ~, ,~ ~ 5 (mod 24) , 
then  

2 4 ( 2 5 n +  5 ) + 5 = ( 5 x ) ~ + ( 5 y ) 2 + 3 ( 5 z )  ', 5 x ~ r ,  5 Y - - 7 ,  5z=- - I ;  

and it is obvious tha t  application of automorphs T, . . . ,  U' (which are the only 

t ransformations to be used) cannot  eliminate the divisor 5 of (5 x, 5Y; 5.-7.). 

Similarly (~, 7; 7) reduces to (I, 7; ') through a factor  7; and (5, I I ;  I~) to 

(II ,  5; 5). Next,  (I, 7; 9)(rood 24)-+(I, I 7 ; - - I ) ,  where +__x~-I is still deter- 

mined to modulus 24, the 17 and - - I  to modulus I2; this separates (rood 24) 

into (I, 7; I) and the three trivial eases (I, 7; II), (i, 5; i), (I, 5; ii). Similarly 

for (5, I I ;  3). 

6 d. We require the fact  tha t  if n > o, (4) is solvable with 

(I2) x 2, ~?, and z ~ odd, but not  all equal. 

The only case of doubt is 2 4 n  -t- 5 ~ 5 nI'~, m positive and prime to 6. There 

seems to exist a simple formula for the number  of solutions of 

(I3) 5 m2 = 3 x, ~ 4.- ~ + x~, xl, x,,, x a odd, 

from which we might  see tha t  if m > I there are solutions besides x ~ =  x ~ =  

2 =  ms. However we shall be content  with a brief proof, based on the solv- ~--- X a 
ability of 

( i4 )  t~ + t~ + 3 t ~ 2 +  3 t 3 = ~ a ~ ,  

tha t  if m > I, m prime to 6, (I3) cannot  have all its solutions divisible by m. 

W e  assume tha t  m is a prime > 3; the stated result will then  follow for any 

m on mult iplying (13) by a factor  s "~. We set 

3 i x, + j  x2 + k x~ = (to--i t 1 - j  t e -  k t~)( 3 i + j + k)(to + i t, + j t,, + k ta), 

the quaternions being of the type with ~ =  k 2--  - -3 .  W e  have 

= ~ (to t~ + t~ t~) + 2 ( -  to t~ + t, t~), x~ (tg + t ~ -  3 t ~ -  3 t,) + 2 

. = 2 ~ ( t  o t ,  + 3 . . . .  , x~ 6 ( - - t o t 3 + t ~ t ~ ) + ( t ~ + 3 t ~ - t l - - 3 t ~ ) + 2  t,~t3), x~ 
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which are odd; and, on tak ing  norms,  obtain (I3). I f  xl, x~, xs could be divis- 

ible by ra for all solutions of (I4) they will remain  divisible by m if to and t ,  

or t~ and ts, are in te rchanged  or changed  in sign. Changing  the  signs of t o, t~ 

in xa and adding,  yields 

12 (tg + - 3 - 3 ,, ,  !to + tl a n d  + 

the  la t ter  using (I4). Since t~ + l~ < m, t ~ :  ta-~ o. I n t e r c h a n g i n g  to, t I in x,, 

now gives mlto 2 --t~, whence mlt~ and t~, a contradict ion.  

6 e. Assuming  n > o and (I2), we can reduce all cases (I I) to  

(I5) (I, I; I) wi th  x, y, z no t  all equal, or to (I, I; 7), (mod 24). 

For  example if x ~ y - - - - z ~ - - 5  we mul t ip ly  t h rough  by 5 ~ and use (5x, 5Y; 5z); 

similarly for (7, 7; 7) and  (If ,  I I ;  II).  I n  the  same way (7, 7; I), (5, 5; II),  

and (II ,  I I ;  5) reduce to (I, I; 7); and (7, 7; 9), (5, 5; 3), (IX, I I ;  3) reduce 
to (I, I; 9). Finally (I, I; 9) t ransforms under  T into one o f ( I ,  I I ;  5), (I, I; 5), 

(I, I I; 7), and (I, I; 7) (mode24); the three  first were t rea ted  as trivial  in w 6c .  

6 f. There remain to be t rea ted  solutions of (4) of the three types:  

(i6) E - ~ ( a  + 24h, b + 2 4 k ;  e + 2 4 1 ) ,  

where (a, b; C ) = ( I ,  - -7;  I), (I, I; I), or (I, x; --7). (Cases I, 2, 3). 

We  shall form vir tual ly all sets of odd integers obta ined by applying to 

(16) the  autonlorphs  T, . . . ,  U'. To begin with we have 

(I7) 

where 

E T = ( a + 2 4 h ,  a ' +  I 2 k - - 3 6 1 ;  a " +  i 2 k +  12l), 

E U = ( b + 2 4  k, b ' +  I 2 h - - 3 6 / ;  b " +  i 2 h +  I2/), 

(a, a', a " ) = ( I ,  - -5 ,  --3), (I, - - I ,  I), (I, II ,  --3), resp., 

(b, b', b " ) : ( - - 7 ,  - - I ,  I), (I ,  - - I ,  I), (I ,  I I ,  - -3) ,  resp. 

( i 8 )  

Let  A s tand for  e i ther  E T  or E U, and write  

( U U')" = ( U U') ( U U') . . . to r factor-pairs,  

A ( U V t )  r = (Ur, Vr ; Wr), A ( U U')r V = (Xr, fir ; Zr), ( ~ ' =  O, I, . . .). 

W e  shall prove, for every r>__ o, t ha t  
24--38333. Acta raathematica. 70. Irnprim~ le 2 d~cembre 1938. 
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L e m m a  1 .  If ,  in the respective three cases, 

h - -  l =-- k + .~(4 ~ - - I )  

(I9) h ~ k ~ l, 

l r h = k - - l + ~ ( 4  - - x ) ,  (rood40,  

then both of the sets of solutions of (4) expressed by 

(20) E T ( g  U') ~ V a .d  E U (U U')" U 

are inteqral, and one of them satisfies 

(2I) x - -  • y (mod 12) in case I, X ---~ + y + 6 (mod I2) i~ cases 2 and 3, 

unless (respectively) 
h ~ -  l ~ k + 1 ( 4  ~ + ' - , ) ,  

(22) h ~ k ~ l, 

h ~ k -~ I + ~ (4 "+1 - -  I), (mod 2.4~). 

And ~f (22) holds, then both of the sets of solutions 

(23) E T ( U  [~t )  r + l  a,ld E U ( U  ~ f t ) r + l  

are integral, and one of them satisfies (21) unless (19) holds with r + I in place ofr .  

I t  should  be observed  t h a t  .~ (4 r - -  I) + 4" = ~ (4 ~+~ - -  I). 

Condi t ions  (19 ) ' be ing  vacuous  if r = o ,  T h e o r e m  8 will  fol low. Fo r  no set  

of  values  can  sat isfy (I9) and  (22) fo r  all values  of r, excep t  in case 2 wi th  

h - - - - k = l .  T h e  l a t t e r  case can be exc luded  as in w 6 d  unless  n ~ - o .  

F r o m  (Ur, Vr; U'r)U U ' =  (Ur+l, t',.+l; Wr+l) fol low 

Vr+l=  ~*lr + �89 + ~"'r, 

n' , .+l - -  ~U,.+,I, Vr 1 . - -  - -  _ ~ $ ~ r ~  

and  hence  

[J [J[""] i%1 
1 

Wr W 0 

To eva lua te  K ~ 

fo rm a t ion ,  em p loy ing  

o :] 
2 

we br ing  K to a d i agona l  f o rm  by a co l l inea to ry  t rans-  
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(25) K - -  M D M - X ,  

- -  ~ t ) - - I  - - - I  0 o -  

M =  - - ~  ~ o  ~ , D =  ~o o , 

where w and ~ denote  the roots of the equation 

(26) 4w~--7~o + 4 ~ o .  

Hence K r -- MD" M -~ = 

(2z) 
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I (--  I)~7"+ 2 e (r) --(-- l)"--3e(r)+4e(r+I) 3(--I)r--se(r)+4e(r+I) 1 
~ [ - - ( - - I ) ' +  4 e (r)--4 e(r + I ) ( - -  I)"+ 2 e(r) --3 (-- I)"--2 e(r) + 4 e ( r  + i) 

I_ (--1)"+~e(r)-='le(r+I)-(--I)"+~e(r)--~e(r+i) 3( - - i )~+  e(r) 

[a, b, e ] - - a ( - - I ) r + b e ( r ) + e e ( r  + I), 

f l~ - - -48 (h- -zk+  1), 7 = 9 6 ( k - - l ) ,  

~ = 2 4 ( 2 h + 3 k - - s l ) ,  ~ = 3 2 ( h - -  k), 

a = 2 4 ( h  + k + 3l), 

d =  I 6 ( h +  2 k - -  3/), 

v =  8 ( 5 k -  2 h - -  3/), 

and indicate by a prime the act of in terchanging h and k; e. g./?' - -  48 (k--2 h +  l). 

In  these notations, using (I7), (24), and (27) we obtain formulas for ur . . . . .  z~.. 

(The mode of format ion of ur, . . . ,  zr by applying T, . . . ,  U'  shows tha t  they 

ei ther are integers or have powers of 2 for denominators.)  

Case 1. ET(UU')r-=(u~, v,.; wr), where 

5 u , = [ a - - 3 ,  r 32, 7--32], 5 v,.~-~ [3 - -  a, 7', f l ' - -  I6], 
(3 I) 

5 w ~ = [ a - - 3 ,  d - - 3 2 / 3 ,  I 6 / 3 - - d ' ] ;  

(30) 

where e ( r ) =  (o r + ~r. 

Since w + ~ = 7/4 and ~o ~ = i it i8 evident tha t  f ( r )  -= 4 r e (r) is an integer. 

I t  is easy to verify for every r >  o, tha t  

(28) f(r + 2)-- 7 f('" + I) + I6 f ( r )  = o, 

and since f ( o ) =  2, f ( , ) =  7, a n d  f ( 2 ) =  ~7, tha t  f ( r +  I) is odd, and 

(29) f ( r  + x) + f ( r )  --  o (mod 3), f ( " )  ~ 2 (,nod 5). 

We  shall adopt temporari ly  the following abbreviations: 
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E U(U U')"-- (Ur, V~; Wr), where 5 u,., 5 v~, 5 wr are given by 

(32 ) [ a - - 3 ,  f l ' - -  I6, 7'], [ 3 - - a ,  1 , - -32  , f l +  32], [ a - - 3 ,  d ' - -  16/3, 3 2 / 3 - - d ] .  

For  E T(U U') ~ U and E U(U U')"U we therefore have respectively 

(33) Xr==V, , 5 Y , ' = [ 3 - - ~ ,  32--7,  ~--24], 5Z,'-----[a--3, 32/3+~,  ~--40/3];  

(34) X,. --~ Vr, 5 Y~ = [3--a,  --7', e ' - -  I6], 5 Z, = [a--3,  ~ ' --32/3,  '1' + 16/3]" 

By (29,) and since 3]~, fl, ),, and ~, (31)--(34) satisfy 

(35)  Hr ~ Fr,  X r  ~ -  - -  yr (mod 3), 

I t  is therefore sufficient to show that  if (1%) holds, i .e.  if 

(36) k = h q - . 4 ~ x - - l ( 4 r - - I ) ,  l = - h +  4~;~, 

where x and ;~ axe integers, then Xr, yr, zr in both (33) and (34) are integral, 

and tha t  for  one of them, 

(37) x,. ~ - -  y, (mod 4) 

unless (221) holds; and tha t  if (221) holds with r - -  1 in place of r, i, e, 

k -- h + 2 . 4  r - I  X - -  1 (4  r __ I) ,  1 -~ h + 2 . 4  r - 1  Z, 

holds, the (u,., Vr; W~) in both (3I) and (32) are integral,  and 

(38) 

then unless (191) 

for  one of them, 

(39) Ur " ~  Vr (mod 4). 

Subst i tu t ing from (36 ) into (33) we obtain, to modulus 4, 

(40) xr ~ - -  ( - - I ) r ,  f i r  ~ ' -  ( - -  I )  ~' -b 2 M q- 2 ),, g r  o d d .  

The details for  yr are typieal:  5 yr = (3 - - a ) ( - -  I) r + 

[32 - 96 {4" z --~ (4 r - -  i ) - -4  r 4}] e (r) + 24 [3.4 r •  r -  I)--  5.4 r Z-- I]e ('r+ I). 

Here  we replace 4~e(r) by the integer  f ( r )  and obtain (rood 4) 

- - ( - - I )~- - (96  x--96X + 32) f ( r )+  6 (3 x--  I --  5 ~)f(r  + I) ~ - - ( - -  I)"--o + 2 z + 2 + 2 ;~, 

since f ( r  + 1) is odd. Similarly in (34), 

(4I) x ~ = - - ( - - I )  ~, y r - - - - ( - - i ) " + 2 Z ,  Zr is odd. 
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Hence xr----- --  yr in (4I) unless ~ is even, and then  x,. ~ -- y~ in (40) unless z is 

odd; tha t  is unless (221) holds. 

Subst i tut ing from (38) in (3 I) and (32) we obtain (rood 4) 

(4z) u,. = - ( -  i)", v,. = - - ( -  i)  ~ + e z + z z,  ~v,. o d d ;  

(43) Ur == ( - -  I)", L'r ~ - -  ( - -  I) r q- 2 ~, Wr o d d .  

Hence u~---= r,. in (42) or (43) unless ;~ and x are even, i .e.  (I91) holds. 

Oases 2 and 3. The results for E U . . . are deduced from those for E 2 l ' . . .  

by in terchanging h and k. For  E T . . .  we obtain 

5 u , . = [ 6 +  5, fl, 7], 5 ~ ' r = [ - - 5 - - a ,  7', / ] ,  5~v~=[5 + a ,  d, - -d ' ] ,  

Xr=Vr, 5 Y ~ = [ - - 5 - - 6 ,  --7, ~], 5 Z ~ = [ 6 + 5 ,  ~,V], 

in case 2; and respectively for the same quantit ies in case 3, 

[6 - -19 ,  f l - - I 6 ,  ~'-[- 32], [ I 9 - - 6  , 7 ' - t -32 , f l ' - -  I6], [6 - -19 ,  d-b I6, - - d ' - - I6 ] ,  

x ~ = v r ,  [ I 9 - - a ,  - - 7 - - 3 2  , e + 4 o ] ,  [ a - - I 9 ,  ~, ~]+8] .  

In both eases, u , . ~  --Vr and x,.=--y~ (mod 3). Hence (2I~) will be a t ta ined 

if, first, given 

(44) k = h + 4~z and l =  h + 4 ~ ,  in ease 2, 

(45) k = h + 4"x and 1 = h + 4rZ --  ~(4"--  I), in case 3, 

then (xr, yr; z~) are integral  for both E T  and E U and satisfy (37) for one of 

them, unless x and Z are even in (44), or z is even and Z is odd in (45); and, 

second, a like result  holds in regard to (39) unless z and ~ are even, being given 

(46) k -=  h + 2 .4 ' - l z  and 1 = h + 2 .4 r - lL  in case 2, 

(47) k = t t + 2 . 4  ~-lx and 1 = h + 2 . 4  * ~ - - ~ ( 4  r - I ) ,  in ease 3. 

Tha t  all this goes t h rough  as stated is easily verified. Wi th  a little patience 

we find, by virtue of (44)--(47) in their  proper places, 

z~ and wr are odd integers, x~ ~ - - ( - -  I)r--~ --U~ (rood 4), in all cases; 

Vr~--(--I)r-[- 2~, for EU, Vr~---(--I)r'or-2X"]-2]~ for ET; 

in (44), Y , = - - ( - - I )  rq-2~, for EU, y~-~--(--I)r+2z+2;~ for ET;  

in (45), Y r ~  --(--I)  r-1-2~-1-2 for EU,  y~-= --(--I)rq-2~.2~-}-2 for ET,  
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Table  L 

All primitive regular  forms a x  ~ + b y  ~ + ez~; a <= b ~ c. 

a) Self-reciprocal forms: (I, r, r 2) where r =  1, 2, 3, 41 , 5, 8l 

b) Forms whose reciprocals are regular:  

(I, I, ~') aIId (I, ~', r) where r =  2, 3, 4, 5, 6, 8, 9, 12, 16 l, 21, 24. 

(2, r, 2r) where r = 3  or 5. 

r/2,  r) where r =  6, 8, I o, 16. 

r, 3r) where r = 4  or I o. 

(I, 2, r) and 
(I, 2, ~') and  (I, 

(I, 3, r) and (3, 
(I, 3, ") a n d  (I, 

(I, 4, 6) and (2, 

(1, 5, 8) and (5, 

r/3, r) where " r=  

3, I2); (I, 4, 24) 

8, 40); (I, 5, 40) 

i2, 18, 30, 36~ 

and (I, 6, 24). 

and (I, 8, 40). 

(I, 6, 9) and  (2, 3, I8); (I, 6, I6) and  (3, 8, 48). 

(I, 9, r) and (3, r/3,  3 r) where r =  I2, 21, 24. 

(i, 16, 24) and (2, 3, 48). 
(2, 2, 3) and (2, 3, 3). 
(2, 3, 8) and (3, 8, I2); (2, 3, 9) and (2, 6, 9). 

(2, 5, 6) and (5, 6, 15); (2, 5, '5) and (2, 6, I5). 

(3, 3, r) and (3, r, r) where r = 4 ,  7, 8. 

c) 1 Forms whose reciprocals are not  regular:  

(I, 2, 32); (X, 4, 36); (1, 8, 24); (I, 8, 32); (I, I6, 48); 

(I, 24, 72); (I, 40, 120); (I, 48, I44); (3, 8, 24); (3, I6, 48); 

(3, 40, 120); (5, 8, 24); (8, 9, 24); (8, I5, 24). 

Table  I L  

The primitive regular  forms a x ~" + by~ + c z  ~ in genera of more than one class 

and two regular  forms with cross products. 

In  this t ab le  D is the de terminant  of the form, f the regular  form, g (or 

in the ease of D - ~  5912: gl, g.,, g3) is the other  reduced form in its genus. 

m represents an odd whose every prime factor  is = I (mod 4), w an odd whose 

every prime factor  is --  1 (mod 3). g # nd, for instance, means tha t  g is regular  

except that  it represents no m ~. W h e n  no notat ion occurs af ter  a form g, the 

results are not  known. 

x Forms so marked are in genera of more than one class, 



Regular and Semi-regular Positive Ternary Quadratic Forms. 

D f 
I6 (I, I, 16) (2, 

64 (1, 2, 32) (2, 
64 (1, 4, 16) (4, 

108 (I, 3, 36) (3, 

144 (I, 4, 36) (4, 
192 (I, 8, 24) (4, 
256 (1, 8, 32) (4, 
256 (I, I6, 16) (4, 

432 (1, I2, 36) (4, 
5 I2- (I, 8, 64) (4, 
576 (3, 8, 24) (8, 
768 (I, 16, 48) (4, 
960 (5, 8, 24) (8, 

1728 (I, 24, 72) (4, 
I728 (8, 9, 24) 
2304 (3, 16, 48) 
2880 (8, 15; 24) 
4800 (I, 40, 120) 
6912 (I, 48 , I44 ) 

I4, 400 
I728 

I ~/4 

191 

(3, 40, 12o) 

(5, 5, 72, o, o, --I)  
(1, 1, 3, o, - - I /2 ,  o) 

g 
2, 5, - - I ,  - - I ,  O) ~ m s 

4, 9, --2, o, o ) r  1 and certain 8 n + 3  
4, 5, O, - - 2 ,  0 ) •  m s 

4, 9) ~ wS 

4, 9) 
8, 9, --4, --2, o) 
8 , 9 , 0  , --2, o) 7 1  
9, 9, I, 2, 2) ~4,~, ~ 

9, 12) ~ *v s 

8, I7, o, --2, o ) ~ m  s 

I I ,  I I ,  5, 4, 4) 

I6, 17, --8, --2, o) 

I3, 13, 3, 4, 4) 
24, 25, ~ I 2 ,  --2, o) 

(8, i7, 17, 5, 4, 4) 
(I2, 16, 19, - -8 , - - -6 ,  O) 

(8, 23, 23, I I, 4, 4) 

(4, 40, 4 I, - -20 ,  - -2 ,  O) 

gl : (9, I6 ,  4 8) • ,/)2, 4WS 

gs : (4, 48, 49, --24, --2, o) 
g~:=(16, 25, 25, 7, 8, 8) 
(12, 40, 43, --20, --6, o) 
(8, I2, 2I, --6,  o, o ) ~  5 
(I, I, 4, I/2, 1/2, I /2 )  

A T 


