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The purpose  of the present  pape r  is the solut ion of the  boundary  value 

problems for  min ima l  surfaces  when the  boundar ies  are not,  or not  entirely- 

fixed J o r d a n  curves but  are free to move on prescr ibed manifolds .  A t  the same 

t ime  I shall  p resen t  modif ica t ions  and  simplifications of my  previous  solut ion of 

the  P la t eau '  and  Douglas '  p rob lem for  fixed bounda ry  curves and prescr ibed 

topologica l  s t ruc tu re  and  incidental ly  discuss cer ta in  fea tu res  of the prob lem in 

order  to clarify its re la t ion  to the  theory  of con fo rma l  mapp ing .  T h o u g h  based 

on previous publ ica t ions  ~, the p a p e r  may,  except  for  some references,  be read  

independent ly .  

Introduction. 

A min ima l  surface  S in the  m-dimensional  Eucl idean  spa  ce With the  rec 

t angu la r  coordinates  x l , . . . ,  xm - -  combined  as a vector  ~ -  is defined by 

means  of two p a r a m e t e r s  u, v as follows: I n  a domain  B of the  u, v-plane, 

~ - - ~ ( u ,  v) is ha rmon ic  in the pa r ame te r s  u, v; which means  t h a t  for  ~ or all 

i ts componen t s  the  Lap lace  equa t ion  

(i) 

1 ~OS. [9], [IO], [II], [I2], [I3]  , [I4]  of the bibliography at the end of the paper. References 
to this lis8 are made in square brackets throughout ~his pape r. 
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o r  

A x , = o  

holds; moreover ~ satisfies the two non-linear additionM conditions 

2 X 2 

(2) - F =  ~ = Z x ~  X,v  = O 

(4) 

in B. 

which characterize u, v as isometric parameters on S and the mapping of B on 

S as conformal. 

I f  as usual ~ means >>real parb> and ~ ~>imaginary parb) we have 

(3) x ,  = 

where f~ (w) is an analytic function of the complex variable 

W ~ U  + i v  

Then, by introducing the analytic function 

9 (w) = Y . f ; ,  (w) ~ =- 2 (x,,~ - -  i X,v)" - -  ( E  - -  G) - -  2 i F 

the condition (2) reduces to 

(2 a) (w) = o ,  

which, incidentally, makes it evident that  the conditions (2) do not overdetermine 

the problem but essentially amount to only one boundary condition for the linear 

system (I) of differential equations. 1 

The classical ~>Problem o f  P l a t e a u , )  is to determine a simply connected min- 

imal surface bounded by a given Jordan curve F. To solve it, one may suppose 

that  the parameters u, v range over the unit circle B in the w-plane, with the 

boundary C; then one has to find the vector ~, harmonic in B and continuous 

in B + C, so that  C is mapped in a continuous and monotonic way ~ on F and 

that  (2 a) is satisfied. 

I t  is in this formulation that  the Plateau problem was first solved com- 

pletely (193o) with independent methods by T. Rad6 and ft. Douglas ~, both 

i See also Courant-Hilbert ,  Meth. der math .  Phys.  Vo]. I I ,  p. 130 ft. for a more  general  

analys is  of th i s  fact. 

2 I t  is remarkable  tha t  the  one-to-one correspondence be tween C and P follows as a conse- 

quence. Moreover, as I shall  show elsewhere,  the  solut ion remains  unchanged  if we modify the  

problem by d ropp ing  even the r equ i remen t  of monotonic i ty .  

a See [IJ, [2~, and the  papers  quoted there, 
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methods  be ing based on var ia t iona l  problems.  Rad6  makes  use of the  theory  of 

conformal  mapping ,  while Douglas  avoids this theory  as m u c h  as possible and  

r a t h e r  includes R iemann ' s  m a p p i n g  theorem for  s imply connec ted  J o r d a n  domains  

as a by-produc t  for  the  case of a plane curve F. Douglas ,  as ear ly as I93 I ,  

f o rmu la t ed  a much  more  genera l  p roblem:  To find a min ima l  surface  S of 

prescr ibed  topological  s t r u c t u r e -  i .e .  prescr ibed genus, or, in case of non- 

or ientabi l i ty ,  character is t ic  n u m b e r  - -  with a prescr ibed bounda ry  F consis t ing 

of k sepa ra ted  J o r d a n  curves Fa, . . . ,  Fk (oriented if S is to be orientable).  This  

>>Douglas' problem>> presents  essential ly g rea te r  difficulties and  new in te res t ing  

aspects.  Douglas  has  t r ea t ed  first the cases of min imal  surfaces  topologica l ly  

equiva len t  to an annu l a r  r ing  and  to a M5bius s t r ip  respect ively.  In  I936 he 

communica t ed  a genera l  resul t  and  gave  detai ls  and  proofs  to supp lemen t  

his previous  reasonings  so as to make  them cover  the  genera l  problem.  I n  I938 

he amplif ied these communications and announced  more  deta i led  publ ica t ions  

one of which, [8], appea red  in 1939 .1 

I n  a note  (June I936) ~ I publ ished ano the r  me thod  fo r  the solut ion of 

P l a t eau ' s  and  Douglas '  p rob lem wi th  two al ternat ives ,  one us ing  the  o the r  

avoiding the  theory  of conformal  mapping .  This  m e t h o d  also permits ,  for  the  

first t ime,  the solution of the  cor responding  3oroblems with ~>fi'ee bou, daries,~, when  

par t s  o f . t h e  boundary  or the  whole bounda ry  are free on prescr ibed  cont inuous  

manifolds.  I t  seems tha t  these ,~free~, problems - -  as previously envisaged  in 

special  cases by Gergonne ,  Riemann ,  Schwarz  - -  are no t  accessible to the  o ther  

me thods  ment ioned  a b o v e /  Moreover ,  as was first observed by M. Shift- 

m a n  *, my  method  also permi t s  the  proof  of the  existence of min ima l  surfaces  

wi th  prescr ibed boundar ies  which do not  give an absolute  bu t  only a re la t ive  

m i n i m u m  for  the var ia t iona l  problem.  The  me thod  was presen ted  in detai l  for  

the  case of genus zero and k boundary  curves  in a pape r  which also e laborates  

sufficiently the necessary  addi t iona l  s teps for  a rb i t r a ry  topological  s t ructure .  5 

I See [31, [4], ISl, [71, Isl, in particular the detailed last paper. In [IO] I referred to [3], [41 
as preliminary announcements. Prof. Douglas called my attention to the fact that these papers 
were intended to give his proof in sufficient detM1. 

See [91. 
8 See II31; the ease when the free boundaries are planes is treated in a paper by J. Ritter 

[231 , not yet published. 
See II7]. 

5 [~ol" See also Shiffman Ir6], where the ease of a relative minimum under a certain condition 
is treated for higher topological structure. 
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In  [I2] and [I3] modifications and extensions are indicated which form the 

basis of parts of the present paper. 

For the Plateau problem our point of departure is the following variational 

problem involving the Dir i ch l e t  i~ tegra l  

iff (6) 9(~) = ~ (~:~ + ~ ) d .  ~ :  

B 

We consider this integral for vectors ~(u, v) in a domain B with the boundary 

C. These vectors are supposed to be continuous in B + C and to have piece- 

wise continuous ~ first derivatives in B. B m~y be the unit circle and ~ is 

supposed to map C in a continuous and monotonic way on the prescribed Jor- 

dan curve F. Then we seek among all these admissible vectors one, ~, which 

minimizes the Dirichlet integral D (~). 

We expressly suppose that  D(~) admits of vectors ~ with finite D(~). This 

is certainly true if F is rectifiable '2, an assumption which we shall henceforth 

make for all boundary curves. 

In the cases of the Douglas problem we have to consider a similar varia- 

tional problem for domains B of the prescribed topological character. These 

domains B however cannot be fixed in advance but must be free within a class 

of domains depending on a certain number of arbitrary parameters which together 

with ~ have to be determined by the variational problem. 

A funct ion is called piecewise cont inuous  in a domain  if in every closed subdomain  the  

con t inu i ty  is in te r rup ted  only in ~ tiufte n u m b e r  of po in ts  and smoo th  arcs, i .e . ,  a.rcs wi th  a con- 

t i nuous ly  tu rn ing  tangent .  

For,  / '  pe rmi t s  wi th  the arc length  s as parameter ,  the  total  length  of /1 being 27r the  

represen ta t ion  
a~ 

x ,  = - -  + cos ~ sin ms), 
2 

and corresponding harmonic  vectors ~ wi th  these  boundary  values have, for a concentric circle 

wi th  radius r < I the  Dirichlet  in tegral  

D,.(~) = ~ ~ r 2 ~ ( a ~  2 + b~2)m. 

Since the  existence of the arc length  implies  the  convergence of 

~(a~d + b'J)m ', 

the  existence of D (~ )=  lira Dr(E) is obvious.  
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The Euler equation of these problems is (I), and it will be seen tha t  the 

degree of freedom in the boundary representation, together with the degree of 

freedom in the choice of the domain B, leads to the relations (2 a) as )>natural 

boundary conditions~. 

Douglas, starting from the same Dirichlet integral, restricts the admissible 

vectors to harmonic vectors and then considers D(5) explicitly as a functional 

of the boundary values which depends on functions of only one variable, whereas 

the systematic exploitation of the greater degree of freedom in the two dimen- 

sional integral (6) is essential for our method. This accounts for the possibility 

of an extension of our method to the problems with free boundaries for which 

such a boundary representation would not be feasible. The viewpoint of the 

two-dimensional problem also permits an intrinsic consideration without explicit 

calculations. 

The interconneetion between the theory of con formal mapping and that  of 

the Plateau-Douglas problem may be illuminated by the following remarks: Origin- 

ally the conditions (I) and (2) characterizing a minimal surface are local conditions, 

invariant under conformal mapping. I t  is, accordingly, not required that  the whole 

minimal surface be represented in a continuous way by the same uniform para- 

meter w = u + iv; instead any abstract Riemann domain B of suitable connectivity 

with different local variables w might be chosen, tIowever, for solving the Pla- 

teau-Douglas problem by convergent processes involving sequences of domains B, 

we shall have to restrict the admissible domains B to certain compact classes in 

which such passages to a limit can be performed. Therefore our solution ap- 

pears dependent on the underlying choice of domains B. To free our results 

from the reference to the class of parameter domains B, we have to know that  

more general Riemann domains can be ~>u~ifor~nized,>, that  is conformally 

represented by >>normal domains>> B of the type under consideration. A cer- 

tain knowledge of this kind is likewise necessary to establish the equivalence of 

our problem with that  of the surfaces of least area. 1 

In the case of genus zero it is possible to obtain satisfactory results without 

preliminary use of mapping theorems because sufficiently general mapping theo- 

rems can be obtained as a consequence of the solution of the general Douglas 

problem by verifying that  certain sufficient conditions for the solvability are 

See e.g. [Io] p. 7I 7 ~. 



56 R. Courant. 

satisfied 1. For higher topological structure, however, the results obtainable with- 

out use of mapping theorems are decidedly less complete as a critical examination 

will show. The mapping theory seems therefore preferable as a basis in these 

higher cases, all the more as thereby also the variational part of the investiga- 

tion is greatly simplified. 

In  the first part of the following paper first, assuming our variational 

problem solved, we shall prove that  the solution is a minimal surface. Secondly 

we shall establish the existence of the solution under suitable sufficient condi- 

tions. To make these conditions more easily verifiable we shall transform them 

into another form. I t  is at this point where in case of higher topological struc- 

ture the theory of conformal mapping becomes indispensable. - -  In the second 

part, we shall discuss the case of free boundaries. 

Part I. The Plateau-Douglas problem. 

w i. Proof  by Conformal Mapping tha t  the Solution is a Minimal Surface. 

We first show how simply the proof in the most general case can be given 

(provided the existence of a solution of the variational problem is assumed), if 

the theory of conformal mapping of Riemann domains is used. Suppose the 

variational problem be solved by an admissible vector 5 and a domain B of our 

class, so that  
D (5) = d 

is the minimum value. The vector 5, according to the Dirichlet Principle, must 

then be a harmonic vector. ~ In regard to the class of admissible domains B we 

assume the following mapping theorem to the true: Every Riemann domain of 

the prescribed topological structure with # piecewise smooth boundary lines can 

be mapped conformally onto a domain B of the class. 

The type of such >>normal domains>> for which the proof of this mapping 

theorem can be given most easily is that  of the >>parallel slit domains>>. These 

domains consist of the whole w-plane or the upper half w-plane except for a 

1 See e.g. [IO] p. 7o 7 ft. or [12]. 
2 The Dirichlet principle states that,  with given continuous boundary v'dues, the minimum 

of the Dirichlet integral over B of a function wi th  piecewise continuous first derivatives is given 
by the harmonic function and only by it. This principle, which here is nceded only for o u r  

special class of domains B, is equivalent to the boundary value problem of the Laplace equation. 
F o r  its proof see e.g. Courant-ttilbert,  Meth. der math. Phys. vo]. II, (I937). Chap. VII. 
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finite nmnber  of slits parallel to the u-axis. In  case of domains of genus zero 

the parallel  boundary  slits are of finite length.  In  case of domains not  of genus 

zero and of character is t ic  number  z there  are z pairs of uni lateral ly infinite slits 

whoses edges are coordina ted  in a simple mannerL  - -  To fix the ideas we may 

suppose tha t  B is a slit domain. 

To prove tha t  our  solut ion ~, B represents  a minimal  surface we first show 

tha t  ~ furnishes  a minimum of the Dir ichle t  in tegra l  also in comparison with cer- 

tain discont inuous vectors ~.~ We  consider  in B a small s t ra igh t  segment  L 

with the end points A1A~ t h rough  an a rb i t ra ry  point  P, e. g. the segment  [u[Ga, 
v = o t h rough  the origin, and in L the func t ion  ;t(u)-~ (u ~ -  a~); e may  be a 

small pa ramete r  and Q a rectangle  in B ad jacent  to L, e .g .  [u[ < a and 

o < _ v ~ b .  
The domain  B is now cut  along" the segment  L and the minimizing har- 

monic vector  ~(u,v) is replaced by a vector  ~(u,v) which is ident ical  with 

outside of Q and which, in Q, is defined by 

+ 

with 

b - v  (u 

b - -  ;, 

The varied vector 3, therefore ,  is d iscont inuous along the cut  L, but  analyt ic  

along the in ter ior  of e i ther  edge of L. Our s ta tement  now is 

or, which is equivalent  

(7) 1)<~ (~) ~ D<~ (~). 

In o ther  words: Tile vector  ~ gives a min imum of the Dir ichle t  in tegra l  with 

respect  to tile vector  ] for  the rectangle Q. 

To prove this we consider the Riemann domain G which we obtain by 

cu t t ing  the domain B along L and by coordina t ing  the lower and upper  edge 

of the cut in such a way tha t  to a point  wi th  the coordinate  u on the lower 

edge the point  with the coordinate  u 4-~2(u)  corresponds on the upper  edge. 

:By assuming [ e z a [  < I we ensure tha t  u + ~ ,  is monotonic  in u and tha t  there- 

See e . g .  Hurwi tz-Courant ,  Funk t ionen theor ie ,  3 d edi t ion p. 472 ft. 
Conrant ,  Math.  Zei tsehr i f t  vol. 3. (I919) 10. I ft., and [Iol, pp.  72I ft. and [I5]. 

See [9; [~ol. 
8--39615. Acta mathematlca.  72. lmprlrn6 ]e 22 .janvler 1940. 

For h igher  genus,  
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fore we h~ve a one-one corresPOndence. The boundary  of G consists of the 

boundary  b of B plus the end points A~ and A2 of L.  Hence  according to the 

mapping  theorem ~ssumed above, we can map G conformal ly  on a domain G' 

of the  type  B (e. g. slit domain), so tha t  the boundary  slits b of B are trans- 

formed in a one-one way into new boundary  slits b' ~nd the points A1, A,~ into 

points (or slits) A'~, A'2. 

Corresponding  in ter ior  points  of the different  edges of the cut  L, fo rming  

toge the r  un in ter ior  point  of the Riemann  domain G, will be t r ans formed  into un 

in ter ior  point  of G'  and thus the vector  ~ will be ~ransformed into a vector  3', 

in G', which is cont inuous  no t  only in G' but  also in the  domain  B ' =  G'  + 

+ A'I + A'.~. The domain B '  is an admissible domain  in our  var ia t ional  problem 

and 8' is there  an "admissible vector since there  is a cont inuous  and one-one cor- 

respondence between the boundar ies  b and b'. Therefore ,  because B and ~ were 

supposed to solve the min imum problem, we have 

DB, --> D .  = d. 

On the o ther  hand,  because of the invar iance of the Dir ichle t  in tegra l  under  our  

conformal  mapping,  we have 

D,~, (3') = DB (8) - -  D+~ (~ (,t + ~ Q, v)), 

and because of Q = o, except  in the rec tangle  Q, we finally obtain 

(8) = (u + e, v)) >-- 
as stated.  

To show tha t  the solut ion is a minimal  surface becomes now a ma t t e r  

of the classical formalism of the var ia t iona l  calculus, since ~ and the re fore  ~ is 

analyt ical  in u ,v  and e in the rec tangle  Q and on its boundary .  The  Dir ichle t  

in tegral  of $ over Q must  have a min imum for  e = o, which by different ia t ion 

under  the in tegra l  sign can by expressed by 

f ;(~u~ + ~ )dudv=o ,  for  ~ = o .  (8) 
L /  1 3  Q 

By t rans fo rming  the lef t  side by Green 's  formula,  and observing tha t  Q(u, v ) a n d  

hence ~ vanish on. the boundary  of Q, except  on L, t ha t  ~. is harmonic ,  and 

tha t  for  e - ~ o  we have on L 

we conclude 
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f z ~u~du  = o. 
L 

59 

Since ~ is positive in L and since a can be chosen arbi t rar i ly  small i t  follows 

by the classical reasoning t ha t  in the point  P 

F = ~u ~v ~ o. 

In  the same 

obtain 

way, by choosing as our  cut a segment  u ~  v =  coast. ,  we 

E - = - + = o .  

There fore  the equat ions (2) character iz ing S as a minimal  surface are proved for  

every point  P in B. 

I t  should be ment ioned  t ha t  the same mapping  theorem which permits  the  

>>sewing together>> different  analyt ical ly coordina ted  edges of a cut, Mso serves to 

furnish  the proof  for  the min imum area proper ty  of the minimal  surface, as 

shown in [Io]. 

w 2 P r o o f  w i t h o u t  Use o f  Confo rma l  Mapping.  

In  this section, again assuming tha t  the domain B and the harmonic  vector  

~. solve the var ia t ional  problem, we shall prove the re la t ion ~ ( w ) = o  wi thout  

using any theorems on conformM mapping. W e  shall do this no t  only for  the case 

of surfaces of genus zero bu t  also for  the case of h igher  topological  s t ructure .  

By per forming suitable variat ions,  we first establish var ia t ional  condit ions 

in a r a the r  general  form from which then  we shall obta in  the condi t ion ~ (w)-- o 

for  different  types of normal  domains B. 

i. General  V a r i a t i o n a l  F o r m u l a .  

To express analyt ical ly the fac t  t ha t  ~ and B furnish  a min immn with respect  

to variat ions of the boundary  values of ~ and of the domain  B we can proceed 

as follows: x W e  t rans form the  domain B of the variables u, v or the complex 

variable w = u + iv into ano the r  admissible domain  B '  of the complex variable 

w ' =  u ' +  iv '  by a one-one t r ans fo rmat ion  of the fo rm 

See also Shiffman It61. 
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u - -  u '  + e A 

v =  v'  + e )]/l 

w = w '+  ~(A  + iM) ,  

where e is a small  p a r a m e t e r  and  the  quant i t ies  A and M are cont inuous  func- 

t ions of u,  v, ~ or u', v', e in B or B '  wi th  pieeewise cont inuous  first der ivat ives  ~. 

The  der ivat ives  wi th  respect  to all th ree  var iables  are supposed to be absolute ly  

bounded in the  domain  B. 

We  shall  use the  symbol  

if  in the whole domain  concerned we have  

[ A I <  a f ' ,  

where a is a cons tan t  in this domain.  Then  we huve, if for  e = o the  no ta t ion  

( I I )  

is in t roduced,  

( ~ )  

(13) 

M (.,  v, o) = F~ (~, ,~), 

eA~ --=- e / / , '  ---- ~ ,  ----- e~, ' ,  etc.; 

~l (u', ,t/) 

0' (.,, v/ _ 

Now we in t roduce a va r ia t ion  of the  vector  ~, rep lac ing  ~ in B by a vector  

~(u', v') in B ' ,  by the definit ion 

3 (,.', ~') =- ~ (- ,  ~,). 

The func t ions  A, M are chosen so tha t  B '  aga in  is an admissible  domMn;  there- 

fore we cer ta in ly  have, because of the  m i n i m u m  proper ty  of ~ and  B,  

D1~, (5) --> D1~ (~). 

1 If  B is a Riemann  surface then  our func t ions  are supposed  to be u n i v a h e d  there ,  b u t  no t  

necessar i ly  in t he  s imple  plane.  
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This gives: 

[ f f { [ ~ , , ( ~  2 ~  
B 

q- 6-/ /#)  q- ~vt]V/a'J 2 q- [~,,6//v'  -1- ~..(I q- E]V/v')] 2} O(t,t",~;') 

>-- I)~ (~) 

- - - -  d u d  v 

Taking into account the fact that  the Dirichlet integral D(~) and hence also 

B 

is finite, we obtain, because of (I I), (I2), and (I3) 

r/f 
J; 

where 

[p (z,, - ,~) - ~ (~.~ + ,,,,)] d .  d~, 

(~5) 

Hence the minimum property is expressed by the equation 

B 

This fundamental equation can be moctified as follows: We make the as- 

smnption that B is divided into two parts B =  Bt + B 2, having the common 

pieeewise smooth boundary line L in the interior of B,  and we suppose that  

A + i M  and X + i,u are anMytic functions of w in B, .  Then by (IO)the 

domain B~ is mapped eonformally onto a domain B.~; therefore the corresponding 

parg of the Dirichleg integral remains invariant, and we may apply our whole 

reasoning only to Bt. IIenee under the assumption of the boundedness of the 

derivatives of ~, tt for B1, not necessarily for B2, we have instead of (I6) the 

relation 

(,6a) f f {p(;~,,-,,,,.) -q(z~, + ,,,)} ~,dv = o. 

Under the further assumption that Z and tt vanish in a neighborhood of the 

boundary lines of Be, except L, the condition (I6 a) is, by integration by parts 

equivalent with 
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(x7) f Z(pd, + qdu) + t t ( p d u - -  qdv) -- o. 
L t  

For, the expressions p and q satisfy the Cauchy-Riemann equations, so that  the 

resulting domain integral over B~ vanishes and only the contour integral remains. 

I f  .~ denotes the imaginary part of ~ complex quantity, we may write the 

variational condition (I7) in the convenient form 

(I8)  f(z § = o. 
L 

Our general conditions (I6) and (IS) will now be applied to definite types 

of domains B, which requires a suitable choice of the functions A, M. 

2. Variation of the Boundary Representation. 

We suppose that  B is bounded by circles, one of which e, g. C:, may be 

the unit circle with corresponding polar coordinates r, O. Keeping ~ fixed, 

we establish the variational condition referring to the representation of F1 on 

the corresponding boundary curve C~. For this purpose we choose .// + i9/i = o 

except in a small annular ring /Tro adjacent to C~. With  R~ we denote such 

an annular ring between the circles with the radii r and I, with Br the domain 

B - - R r ,  with (Jr the circle with the radius r. 

existence of the DMchlet integral D(~) implies 

f f (~,~ + ~) du dv for O, 

R r 

and therefore for r-> I 

that  

(I9) 

for r -~ I. 

adjacent to 

From (I6) we infer, since the 

f f ( I p l  + I ~ 1 ) d .  ,l~ ~ o, 

Rr 

f f Ip (~u - ~,) - q (zo + ~u)} d u  d v  -~ o, 

]?r 

Since ~ + ire was assumed equal to zero except in a small ring Rro 

C 1 and since p and q satisfy the Cauchy-Riemann equations we 

obtain by integration by parts 
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~ ; ( Z  + i t t ) ~ ( w ) d w - * o ,  for  r - ~ o .  
c,t  

63 

Now, with an a rb i t ra ry  real funct ion a(r ,  0) having cont inuous  first derivatives,  

we choose in the ne ighborhood  of C~ the var ia t ion 

_/1 + i M = --  w 
e i e a ( r ' O )  - -  I 

Our t ransformat ion  (IO) then  becomes w ' =  w e  ' ~  and t rans fo rms  the circle Ci 

into itself in a one-one way if ~ is sufficiently small. Since near  C l 

our  condi t ion (20) becomes 

where ~1t means >~real part>>. 

Z + ire = i w a ( r , O ) ,  

F 
9t 

I t /  

Cr 

By d w  ~ - i w d O ,  this is equivalent  to 

(22) 
P 

. ]  
Cr 

Since a is arbi t rary,  we can, for  any boundary  cirle C, easily deduce f rom this  

fo rmula  1. 

The analytic function." 

(23) (w) = w (w) 

has real boundary values on the boundary circle C. This incidenta l ly  implies tha t  

the func t ion  ~p(w) and hence ~o(w) is regular  on the boundary .  

In the simplest case of the P la t eau  problem we conclude immedia te ly  tha t  

in the uni t  circle ~p (w) - -o  is a real constant ,  which must  be zero since 9(w) 

is regular  for  w = o. Thus,  in this  case, the  solut ion is recognized as a minimal  

surface. 

1 See [Io] p. 712 or [I2]. 
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3. Variation of Circular Boundaries. 

We now consider variations of the domain B. In particular, again sup- 

posing B to be bounded by circles, we vary 1/ with respect to a boundary circle 

C, by displacing" it, or by expanding or contracting it around its center. 

A translation of the circle in direction of the u-axis is effected by putting" 

J/ + i2g/=)~-,~ ift  = T, 

in a neighborhood of 6~, bounded by a line 13 which can, in B, be deformed 

into C,, and A + iF I  = o in the neighborhood of all the other boundary com- 

ponents. Since in the ring B2 between L and C~ the expression ;~ + i#  is con- 

stant, hence analytic in w, we can apply (18) and obtain immediately 

L 

In the same way we obtain, by choosing ~ + i t t  = i in B,,, the equation 

which combined gives 

(24) 

.L 

f ~ (w) 4,v -- o, 
/, 

A dilatation of the unit  circle C1 can be represented by putting in B,, 

~/)' = ( I  -{- ~)gt) 

which gives 

and therefore, as above 

(2s) 

o1" Z-~ i # = = i w ,  

f w ~ (w) dw = o, 
s 

as an expression of the variability of the radius. 

Because of the regularity of ~(w) on the boundary (24) and (25) are equi- 

valent to 
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a) f (,,o, d w = o, 
c 

c 
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for  each boundary  circle which may be arbi t rar i ly  varied wi thin  the class of 

admissible domains.  

The re la t ion ~ ( w ) =  o is a consequence of the condit ions (23) , (24), (25), if  

the  domains B are plane domains bounded by k circles, which correspond to the 

case of genus zero and ]c contours.  For  the proof  we refer  to [IO 1. 

As pointed out  there  (p. 72I f.) the  same reasoning yields ~ ( w ) =  o also in 

case of h igher  topological  s t ructure,  if e .g .  the class B consists of fundamen ta l  

domains of Schot tky-groups  f rom which k circular  discs are removed.  ' 

I n  this paper  I want to carry  out  the var ia t ional  analysis for  an o th e r  class 

of represent ing  domains  B namely Riemann surfaces,  all of whose boundary  lines 

are uni t  circles. '~ For  the  analysis of such domains we must  s tudy the effect .  

of a variat ion of branch points which here is the only admissible form of a varia- 

t ion of the domain.  

4. Variation of Branch Points. 

W e  now suppose tha t  the domain /7 is a Riemann domain  over the w-plane 

conta in ing  a branch  point  P, e. g. the  point  w - - o ,  which is not  fixed for  the 

class of admissible domains. Then  we per form variat ions of the  domain  B 

by only deforming a ne ighborhood N of the b ranch  point  enclosing a smaller 

ne ighborhood B~ which is bounded  by a closed curve L on the R iemann  domain 

B. W e  again choose ~ and # as zero outside of the larger  ne ighborhood  N, 

and ;t + ire as an analyt ic  funct ion  of w in B~; then  our  fo rmula  (I8) is applic- 

able. If,  in part icular ,  we choose ~ + i t t =  I or ~ + i # = i  in B~, we obtain 

immedia te ly  as before the var ia t ional  condi t ion  

. ]  
L 

1 I n  [Io] i t  was  supposed tha t  such fund,~mental domains  are bounded by circles. However,  th i s  
restr ict ion is n o t  essential  and should  be dropped. 

These donmins were introduced in [I43. See also [12]. 

9--39615. Acta mathematica.  72. Imprim6 lo 22 janvier 1940. 
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where L is any closed curve on the Riemann  domain enclosing the branch point  

P and only this branch point,  where !P, as we shall see, may have a s ingular i ty .  

In  the case of a simple b ranch  point  this is the only var ia t ional  condit ion.  

However ,  if P is a branch point  of h igher  order,  say of order  r, we have to 

supplement  the  condi t ion by others  corresponding to a resolut ion of P into 

branch points  of lower order.  This resolut ion is effected in a simply connec ted  

ne ighborhood B2 of P,  bounded by L, by an analyt ic  t r ans fo rma t ion  of the fo rm 
4' 

(27) Zt It - -  ~U --- 8:tO r +1 

( 2 s )  w '  - w = i ~  w r +~ 

where v may range  f rom o to r - - I .  L Accordingly  we choose w ' - - w = ( Z + i # ) ~  

in B.2 and Z + i # - - o  outside of a wider simply connec ted  ne ighborhood  N 

around P. 

Then  our  condit ions (18) immediate ly  yield as before  

~ w ~ ( , , . ) ~ w - - o ,  S ~.;:;~(~,)~w = o, 

L L 
o r  

(~9) ~ . ~ 1  ~ (w/~ ~. = o, 
J 

L 

for  v = o, I ,  . . . ,  Y-- I. 

Fo r  these condit ions the fol lowing in te rpre ta t ion  can be given: An analyt ic  

funct ion of the form 

(~") - Z A (~v)'~ 

has in general  at  the b ranch  point  P a polar  s ingular i ty  of the order  2 r. 

indeed,  by 
I 

( y =  ~1) r + l  

the  ne ighborhood  of the b ranch  point  w --  o is t r ans fo rmed  into the simple neigh- 

borhood of a = o ;  since for  a-+ o, the funct ions  f :~ (w )h av e  the i r  real  par ts  

bounded, they must  be regular  in a; hence 

Z ( O . ) = ~ 9 ( W )  = / d G l  2 ( d . f ~  " ~  I I A(o ' )  
\ d : t u /  ~ \ d ~ /  (r ~- I) 2 G 2r 

* As eas i ly  seen  by  first  m a p p i n g  t h e  v ic in i ty  of P on t h e  s imp le  n e i g h b o r h o o d  of v = o 

by  w = a r + l ,  (27) and  (s8) p roduce  for B '  one (v - -  I)-fold and  r + I --  v s imp le  b r a n c h  po in t s .  
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where A (a) is regular  for  a - - o ,  which exhibits  the  charac te r  of the s ingular i ty  

at q - ~ - O .  

Now the condit ions (29) can be wri t ten  as condit ions in the  a-plane: 

~o~+rcfda = (a*+rz(a) d a - o  ( v = O ,  ! . . . . .  r - - I )  

L '  L '  

where L '  is a simple closed curve a round the pole a = o. 

Therefore ,  in the expansion of Z(a) in powers of o 

(w) - z  (a) . . . .  + "' + - . -  + 7,, . . .  

all the coefficients b~ must  vanish and we have as a final expression of the varia- 

t ional  condit ions for  a branch point :  The fitnction ~ (w) has at a branch point of 

order r a pole of an order at nwst r. 

5. Evaluation of the Variational Condition for Riemann Domains B Bounded 

by Unit Circles. 

On the basis of the previous results, the proof  of the character is t ic  re la t ion 

cf ( w ) =  o for  the solution of the var ia t ional  problem becomes very simple, if the 

under ly ing  class of domains B is chosen not  as a domain  in the plane but  as 

a Riemann surface all of whose boundary  lines are uni t  c i rc les)  This class 

is defined as follows: 

W e  consider for  the case of genus zero a k-fold connected domain  B formed 

by the discs of k uni t  circles which are connected in branch points of the 

total  mult ipl ici ty  z k - -  2. Fo r  h igher  genus p, we obta in  domains B by affixing 

to ~he It-fold circular  disc p full  planes each in 4 branch points ~. Branch points 

connect ing two circular  discs are supposed to be in ter ior  points,  while branch  

points connec t ing  full  planes with circular  discs may  lie on boundary  circles. 

W e  make the a s s u m p t i o n -  for  the proof  under  suitable condit ions see w 4 

- -  tha t  our var ia t ional  problem is solved by a vector  ~ in a domain  B of this 

class. 

By reflecting our  domains on all boundary  circles, we could consider instead 

a closed symmetr ic  R iemann  surface wi th  all these boundary  circles as symmetry  

1 See also [I2] and  EI41. 
Each  such  ful l  p l ane  r e p r e s e n t s  a , ,handle,,  and  inc reases  t he  g e n u s  by  I. 
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lines and t he n  require tha t  the funct ions  ~ have the same values on the Rie- 

mann  surface at  points corresponding by this symmetry.  Such closed symmetr ic  

surfaces which remain connected  a f t e r  being cut  along the uni t  circles, also take 

care of non-orientable minimal  sur facesJ  

Since under  u l inear  t rans format ion  of the uni t  circle into i tself  the Dir ichle t  

in tegra l  is invariant ,  we may convenient ly  assume for  the solut ion ~, B t h a t  

w ~ o is no branch point.  

I n  consider ing first the  case of genus  zero, we count  the zeros and poles of 

(w) = w~ ~ (~v) 

in B. I f  ~N is the total  mult ipl ici ty  of the former ,  P tha t  of the  lat ter ,  and 

if we assume tha t  g)(w) is not  ident ical ly zero, we have 

(3 o) N -  P -  

the integrals  being extended in 

I f 2 7c i ~ '  d log ~p (w), 

the positive sense along C~, where C~: is the 

uni t  circle C~ except  for  small halfcircles c i rcumvent ing,  in the negat ive  sense, 

zeros of ~p (w) which may lie on Q~. 

Since ~p(w), according" to the var ia t ional  condi t ion established in No. 2, is 

real  on C-, the arcs of 6~ do not  cont r ibute  to the imaginary  par ts  of the inte- 

grals; while each c i rcumvent ing  hMfcircle contr ibutes  - - ~ c i  for  a simple zero, 

and - - s z i  for  a zero of order  s. Hence,  

N--P<_o, 
or 

N < _ p .  

From the  resul t  of No. 4 we know th a t  P--< 2 l ~ - - 2 ;  on the o the r  hand  the  

f~ctor w s in ~p(w) provides ~ double zero at  e~ch of the lc origins of the  discs 

fo rming  B and hence ensures N>_ 2k. Thus  

would result .  This  being absurd, ~p (w) - -o ,  hence,  ~ ( w ) =  o is p r o v e d ?  

For  h igher  topological  s t ruc ture  the same reasoning holds. The equality 

(30) ~gain leads to a contradict ion.  Fo r  i~l addi t ion to the  2 k zeros a~ the  

1 See p. 78. Closed, symmet r i c  Riemann  surfaces as domains  of r ep resen ta t ion  are used in a 
�9 genera l  way  by Douglas.  Cf. [8J. 

2 The  fol lowing var ian t  of t he  reasoning,  due to 2~I. Shiffman, may  be ind ica ted :  We can 
replace the  var ia t ional  condi t ion  (29 ) by  the  equ iva len t :  The  func t ion  
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k o r ig ins  of the  u n i t  circles, we have  2 p  more  zeros a t  t he  o r i g i n s  of t h e p  fu l l  

p l anes  a n d  2 p  more  a t  t h e i r  p o i n t s  of in f in i ty .  The  l a t t e r  fo l lows because  

f~(w) is b o u n d e d ,  hence  r e g u l a r  t h e r e ;  t he r e f o r e  f~(w) has  a zero the re  of 

o rde r  a t  leas t  2 a n d  l ikewise  w ~ f ~ ( w )  2 has  a zero of a t  l eas t  t he  o rder  z. 

T h u s  N ~  2]c + 4P ,  whi le  P ~  2 k - - 2  + 419, so that a c o n t r a d i c t i o n  _N_< P 

a g a i n  r e su l t s  if  the  r i g h t  h a n d  side in  (3o) is n o n  pos i t ive  w h i c h  was p r o v e d  

if  a l l  t he  b r a n c h  p o i n t s  are  i n t e r i o r  po in ts .  

However ,  i n  the  case of h i g h e r  t opo log i ca l  s t r uc tu r e ,  i f  b r a n c h  po in t s  lie on  

the  b o u n d a r y  t, t he  f o l l owing  s u p p l e m e n t a r y  a r g u m e n t  is necessa ry ,  because  such  

b r a n c h  p o i n t s  m a k e  a pos i t ive  c o n t r i b u t i o n  to the  r i g h t  h a n d  side of (3o). As  

appea r s  i m m e d i a t e l y  f rom c o n s i d e r i n g  the  c o r r e s p o n d i n g  s y m m e t r i c  sur face  B*,  

such  a b r a n c h  p o i n t  c o n n e c t i n g  r + I shee ts  i n  B is a 2 r - f o l d  b r a n c h  p o i n t  on  

t he  s y m m e t r i c  sur face  B*.  H e n c e  ~ (w) m a y  h a v e  a t  th i s  p o i n t  R of C,  a pole 

of o rde r  n o t  h i g h e r  t h a n  2 r .  ~ O n  the  o t he r  h a n d  ~ p ( w ) =  w ~ ~(w)  is rea l  on  

C,  as before.  By the  same r e a s o n i n g  as above,  c i r c u m v e n t i n g  /? by a sma l l  

c i r cu la r  arc,  we find now as c o n t r i b u t i o n  to the  r i g h t  h a n d  side of (30) a t  m o s t  
I 

t he  pos i t ive  va lue  - 2  r == r, whi le  our  b r a n c h  p o i n t  on  the  b o u n d a r y  r educes  the  
2 

t o t a l  m u l t i p l i c i t y  of i n t e r i o r  b r a n c h  po in t s ,  a n d  t he r e f o r e  the  n u m b e r  P,  by r. 

T h u s  the  c o n c l u s i o n  above,  l e a d i n g  to a c o n t r a d i c t o r y  i n e q u a l i t y ,  subs is t s .  

I n  ~ s i m i l a r  way  the  r e a s o n i n g  fo r  n o n - o r i e n t a b l e  su r faces  c a n  be ca r r i ed  out .  

VJ 

/ w  ~ ( w ) _  dw = Z(w) = 0 io 

is regular and univalued in B. (See also [Iol). 
Now the condition (23) shows that 6 =  coast. = %  on each boundary C~. Hence not only a 

but also 0 can be extended beyond C~ and has equal values in points near C~ and symmetric to 

C~. But 0 must attain its maximum in B-~-C in a point R oil a circle C v. This maximum 

would thus be a maximum of 0 in a whole neighborhood of R, which is impossible for a regular 
not constant harmonic function. 

This occurence can, as the construction of the solution in w 4 shows, not be excluded, 
unless the genus is zero. 

This follows by the method of Nr. 4. We first transform B by a linear transformation 
so that the unit circle, i.e. the symmutryline, becomes the real axis and that the branch point 

falls into the origin. Then we apply in the vicinity of the origin the variation w'--w~ ~w 2r+1 ( ,  ,1) 
for odd v and for r = o ,  and the variation w ' - - w = e  w2r4-1+w 2r+i for even positive v. 
Thereby the symmetry of the image of B* and the one-one correspondence of the boundaries of 
B and B' is preserved so that the reasoning of Nr. 4 renmins applic~ble. Because of the sym- 
metry of ~o (w) the condition (29) is again a consequence, L now being a "closed curve on B*. 
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w 3. Solut ion of  the Variational Problem in the Simplest  Case. 

W h a t  remains to be shown is the existence of the solution of the variat ional  

problem. The discussion of this cardinal point  is based on a simple Lemma. 

i. Fundamental  Lemma: 

I n  a domain G = Gn of  the u, v IJlaT"~e, which may vary with the index  n, we 

cow, sider a class of  conti~,uous vectors ~ =  ~, with piecewise co~tinuous f irst  derivatives, 

so that their DiricMet  il'~tegrals are equallv bou,Med by a constant M." 

Da, (~.,,) -<- M. 

Around a f ixed arbitrary point  Q, we draw circles of  the radius r;  C,. may denote 

an arc or a set of  arcs of  such a circle eo~tai~,ed in G a~d s may be the arc length 

on C~. Then there exists for  each 2)ositive 6 < I a value e wi th  

so that 

(31) 

with 

(32) 

6 <- e < -Va ,  

f ~  d--< e (~) 8 
Q 

(:o 

(~) 2 M 
- -  - . . . . .  - +  0 

I 
log. O' 

for  6 ~ o .  

Consequently for the length L e of the image C~ of C~ ill tile ~-spaee, we have 

(33) L,, '~, -< 2 rce (6). 

The proof of (3 I) follows immediately by in t roducing in D(~) polar  coordinates  

r, .9 around Q and reducing D(~) to a double integralX; then (33) follows by 

Schwarz'  inequali ty because of 

ff  # . ,  L~, --  ! ~; d s. 

cp 

1 See [Io] p. 588 f. The fact that G is an open domain presents no difficulty since the 
integrand is positive in G. 
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2. Minimizing Sequences. Equicontinuity. 

W e  consider our  var ia t ional  problem for  the simple P la t eau  problem, B being 

the uni t  circle with the c i rcumference C mapped by the admissible vectors 

monotonical ly  on the (rectifiable) Jo rdan  curve F. A sequence ~,, of  admissible 

vectors for  which 

is called a minimizing sequence if, as before, d denotes  the lower l imit  of D(~). 

Since a l inear  t r ans format ion  of the uni t  circle B into i tself  leaves the Dir ichle t  

in tegral  unchanged,  we may in advance assume tha t  by such a t ransformat ion  

the vectors ~ coordinate  th ree  given points /)1, P'~, P~ on C to th ree  fixed points  

P~, P~, P~ on F (three point  condition),  so tha t  the mutua l  dis tance between the 

la t ter  points  is grea ter  t han  a positive quan t i ty  a. 

We state:  The boundary  values of a set of admissible vectors ~, are equi- 

cont inuous if the ~ sat isfy the three point  condi t ion ~nd if  D(~n)---< 31 with a 

fixed M. 

Proof :  Any J o r d a n  curve F has the fol lowing proper ty .  There  exists for  

> o  a a(4) with a ( , ) - + o  for  ~ - ~ o ,  so tha t  for  any pair  of two points A ' , B '  

on F whose distance is not  grea ter  than  , ,  one of the two arcs A ' /~ '  on F has 

a d iameter  not  exceeding a(,). Now let Q be any point  on C. We choose for  

a given small e the quant i ty  ~ according to (32). Then,  by our  fundamenta l  Lemma,  

there  exists a Q with ~ ~ ~ --< ]/~,  so tha t  the inner  arc A B  of the circle with 

the radius q around Q, i. 

is mapped  on a curve with 

The endpoints  A, B of 

A', B' on F whose distance 

e. the closed in tersec t ion  of this circle with B + C, 

the length  not  exceeding �9 ---- V 2 ~ s. 

this are, which are on C, are mapped  on two points  

does not  exceed ~; and hence, one of the arcs A'B" 

of F has a d iameter  not  exceeding a(,).  Fo r  sufficiently small e, or d, or ~, 

this are must  correspond to the small arc A QB of C, because the la rger  of the two 

arcs on / " m u s t  contain at  least two of the three  fixed points P'I, P~, P~ and because 

the three  point  condi t ion prevents  the small are A Q B, for  sufficiently small d, 

f rom conta in ing  two of the fixed points P i ,  P2, P3 on C. Hence  it  is proved 

t h a t  the oscillation of 5,, on any arc of C with a chord  not  exceeding d does not  

exceed a, with a-+ o for  3-+ o. Since all these quanti t ies  depend on M only, 

the s t a tement  concerning equicont inui ty  is proved. The vectors  $,~ need no t  be 

harmonic.  Bu t  in this case, by replacing ~ by a harmonic  vector  with the same 

boundary  values, we obtain a vector  with a smaller Dir ichle t  in tegra l  according 
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to the classical Dir ichle t  Principle.  ~ Therefore ,  we may assume th a t  the Ininimizing 

sequence under  considerat ion consists of harmonic  vectors. 

To solve our  var ia t ional  problem, we now choose among the uni formly  

hounded and equicont inuous boundary  value funct ions  of the vectors 5~, a uni- 

formly  converg ing  subsequence.  The  corresponding harnionic vectors  5,~ t h en  

converge uni formly  also in B and 

is an admissible harmonic  vector.  Since for each closed s u b d o m a i n / )  the deriv- 

atives of the harmonic  vectors converge uni formly  also, we have 

D5 (5) = lira D~ (Sn) --< lira D (5~) ----- d. 
Hence  

(5) -< 

and therefore ,  since d was the lower bound, 

= d.  

Thus 5 represents  a solut ion of the var ia t ional  problem and therefore,  because 

of w 2 and w 3, of the P la teau  problem. 

3. R e m a r k s -  Semicontinuity. 

The preceding reasoning holds if  ~,~ does not  map C exact ly on 1' bu t  on a 

cont inuous  (rectifiable) curve r (n) which tends to F in the s t rong sense, 2 i. e. so 

tha t  toge ther  with two points /xn), Q(< on I'(") t end ing  to P,  Q on F the whole arc 

p,+Qn on I +(< tends  to the arc P Q on I +. W e  need not  suppose thai  F(') is a 

Jo rdan  curve, bu t  we permi t  F(") to have mult iple  points and corresponding 

small loops which disappear  in the limit. I f  5~ satisfies a three  point  condit ion,  

by mapping  three fixed points  P1, P2, Pa of C on the points  P'I (n), p~n), p~n) 
which tend  to three  points  P~, P~, P~ on F, t h en  equicont inu i ty  of the  boundary  

values of 5,, is proved exactly as above. Hence,  the  concept  of a minimizing 

sequence may be general ized by permi t t ing  for  5~ a mapping  on F (n), wi thou t  

changing  our  reasoning.  At  the same t ime we draw the conclusion: 

I f  d (~) is t h e  lower limit of D(5) under  the condi t ion tha t  5 maps the 

boundary  C on F ('), t hen  

d -<- l im inf d ('). 

See j i l l .  
Or in  t h e  , ,Frechet  s e n s e ,  
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In  o ther  words: The lower limit depends on the boundarl! in a semi-eonti~u- 

OU3 w a y .  

A second r emark  is: The solut ion ~. furnishes eo ipso a one-one correspondence 

between the boundaries  C and F. For  the simple proof  we re fe r  to [Io 1. 

Thi rd ly :  The three  point  condi t ion  serves to ensure the equicont inui ty  of the 

boundary  values. I t  is possible to a t ta in  the same object ive in o ther  ways. 

For  example,  we consider in the ~-space a Jo rd an  curve H which inter locks with 

F. Then  each surface ~ bounded by F must  have a point  in common with H.  

Hence,  if a is a lower bound for  the distances between points of H and points 

of F, there  must  be a point  A in B, so tha t  the corresponding ~ has a dis tance 

grea ter  than  a f rom F. By a l inear  t r ans fo rma t ion  of B into i tself  we may  

th row the point  A into the origin. W e  assume tha t  the vectors ~ of a minimal  

sequence be subject  to this t r ans fo rmat ion  which, because of the invariance of 

the  Dir iehlet  in tegral  under  eonformal  mapping,  does not  change the charac te r  of 

a minimizing sequence. Then  we can prove equicont inui ty  of this new sequence 

by sl ightly modify ing  an a rgumen t  f rom No. z: I f  not  the  arc c : A  QB, but  the 

complementary  arc c* were mapped  on an are 7 of F with a d iameter  less than  

a, t hen  we consider the subdomain B'  of B bounded by c* and the  circular  arc 

c o with the radius Q. On the boundary  of B',  the  oscillation of ~n is less t han  

a + 1F z z e .  Hence  g at the origin, according to the max imum and min imum 

principle of potent ia l  theory,  cannot  differ by more than  a + ] / z z e  f rom a 

boundary  value for  B' ,  e .g .  f rom the  value in A, which is on F. I f  e is suf- 

ficiently small, we have a + l / z z e  < a and this would cont rad ic t  our  assmnp- 

tion. Hence,  again the equicont inui ty  is established. 

Thus  we may impose the fol lowing condi t ion in our  var ia t ional  problem, 

instead of the three  point  condi t ion:  The origin of B shall have a~ image 

at a distance not less than a f rom F. 

Four th :  As was first emphasized by Douglas,  the solut ion of the P la t eau  

problem contains - -  for  the special case of a plane curve F - -  a proof  of the 

Riemann  mapping  theorem s ta t ing  t ha t  the unit  circle can be mapped conformal ly  

on the in ter ior  of a plane curve kw. In  addi t ion the one-one correspondence of 

the boundar ies  follows. 

4. Critical Analysis of the Method. 

The  method  requires no more  knowledge of potent ia l  theory  than  the Pois- 

son solution of the Dir ichle t  problem for  the circle and its min imum proper ty .  

10--39615. Acta mathematlcct. 72. Imprim~ le 22 janvier 1940. 
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The conformal  equivalence of the uni t  circle B with o ther  plane domains  bounded 

by a J o r d a n  curve being a consequence,  we migh t  have chosen for  B, instead of 

a circle, such a more genera l  domain.  This  remark  apparent ly  removes the ob- 

jec t ion tha t  the me thod  refers  to a special type  of pa ramete r  domains B. How- 

ever, we could have chosen as pa ramete r  domain  quite different  simply connected  

Riemann domains B for  which the previous method does no t  establish the con- 

formal  equivalence to a circle. For  example,  B may be a parallel  s tr ip o--< u ~ I; 

- -  oo < v < ~ except  the circle u ~ + v 2 < - I .  Simple connect ivi ty  is established 
4 

by coord ina t ing  and >>identifying>> the boundary  points of the strip on u = o 

which those on u ~  I. E . g . ,  we may  ident i fy  the point  u - - o ,  v ~ a  with the 

point  u ~ I ,  v =  t a  with fixed t. I n  such corresponding points  the values of 

shall be required to be equal. Or we might  choose for  B any simply con- 

nec ted  Riemann  surface bounded by a J o r d a n  curve. A priori  it  is conceivable 

tha t  such domains would provide a different  lower l imit  d and hence different  

solutions. This  is not  the case because Riemann ' s  mapping  theorem can be 

generalized to any such simply connected  domain.  However ,  the proof  of this 

fac t  is not  obta ined  by our me thod  and  there fore  an a priori  knowledge of some 

of the theory  of conformal  mapping  of R iemann  domains 1 seems unavoidable,  

if one wants  to free our  solut ion f rom reference to special classes of domains B. 

I t  is also on the basis of such mapping  theorems t h a t  the equivalence of 

our  solution with tha t  of the least  area problem follows: d is the lower l imit  

of the  areas of all surfaces, images of B,  which are bounded  by F. ~ 

w 4. So lu t ion  o f  t he  Var ia t iona l  P r o b l e m  in t h e  G en e ra l  Case. 

~. Condition of  Cohesion. 

I n  the general  problem of Douglas  the boundary  F consists of k separa ted  ~ 

J o r d a n  curves F 1 . . . .  , Ilk, and the minimal  surface under  cons idera t ion  may  

1 Or, w h a t  for s imp ly -connec t ed  d o m a i n s  - -  and  on ly  for these  - -  is  e q u i v a l e n t ,  of Green ' s  

func t ion .  

2 See [Io] p. 72I.  

8 I t  m a y  be po in t e d  ou t  t h a t  curves  / ' ,  m a y  even  be p e r m i t t e d  to h a v e  p o i n t s  in  common.  

Our m e t h o d s  can t h e n  ea s i l y  be app l ied ,  and  t he  r e s u l t  con ta in s  an a l t e rna t i ve .  E . g . ,  for t w o  

J o r d a n  curves  w i t h  a p o i n t  P in  common,  we  ob ta in  e i t he r  a r e g u l a r  m i n i m a l  sur face  or t wo  dif- 

fe ren t  surfaces  bounde d  by  /'1 and I'2 r e s p e c t i v e l y  and  h a v i n g  ]~ in  c o m m o n ;  of t h e s e  cases t he  

one occurs in  w h i c h  t he  l ower  l i m i t  of t he  D i r i e h l e t  i n t e g r a l  - -  or the  a rea  - -  is  sma l l e r .  I t  is  

easy  to ve r i fy  t h i s  resu] t  on t he  bas i s  of the  s u b s e q u e n t  reasonings .  
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have the genus zero or any prescribed genus p or, if non-orientable, characteristic 

number z. Accordingly the domains B of representation must have the same 

topological structure. 

As simple examples show, it may be that  the general problem has no proper 

solution. For example, there is no doubly connected minimal surface of revolu- 

tion to be spanned between two parallel circles, if these circles are far apart. 

Or for a single plane boundary curve there certainly does not exist a minimal 

surface of genus one. Therefore we have to specify the problem by additional 

conditions, sufficient for the solvability. In  this section the existence of the 

solution will be shown under the condition that for minimizing sequences a 

certain tendency to degeneration is excluded a priori. In the next  section this 

condition will be replaced by another in the form of an inequality, first in- 

troduced by Douglas which is more easily verified in concrete cases. I t  is in con- 

nection with this form of sufficient conditions that recourse to the mapping 

theory for higher topological structure seems inevitable. 

We define: A sequence of surfaces ~ in the S-space satisfies the condition of 

cohesion or condition q, if there is a positive a so that  every simple closed curve 

on $~ of diameter less than a can, on the surface, be continuously contracted 

to a point (or is homotopic to zero). 2 Otherwise the sequence is said to tend to 

degeneration, which means essentially that  the surfaces tend to degenerate either 

into separated surfaces connected only in single points, or for higher topological 

structure, e.g. genus p, possibly to degenerate into a sm'face of lower structure, 

e.g. of lower p. 

I f  for our variational problem, formulated for a certain class of domains 

B of representation, there exists a minimizing sequence satisfying the condition 

of cohesion, then also the problem is said to satisfy the condition ~. 

I t  may be emphasized that  in important  cases the condition can be verified. 3 

z. Solution of the Variational Problem for Genus Zero and Plane Circular 

Domains B. 

Now the main theorem is: If  the condition ~ is satisfied, the variational 

problem can be solved. Then, either by w ~ or by w z, the solution of the Douglas- 

Plateau problem is established. 

:By th is  is mean t  a curve corresponding to a closed Jordan  curve in the  pa rame te r  domain B.  

The process of deformat ion is a lways  defined wi th  respect  to the pa ramete r  domain. 

See e .g.  for the case of p lane  boundar ies  [I2], where  m a p p i n g  theorems appear  as a con- 

sequence. 
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The proof is essentially the same for the different types of normal domains 

B considered in w 2. 

To construct the 

satisfied, we consider 

such that  

solution under the assumption that  the condition ~ is 

the minimizing sequence ~,~ in corresponding domains B~ 

We have to show that  we can select a subsequence of the domMns B~ tending 

to a limiting domain B of the prescribed topological type and that  on the 

boundaries of B the vectors ~n are equicontinuous functions; whereafter, the 

reasoning proceeds exactly as in w 3. 

We carry out the proof for the case of genus zero, assuming the domains 

B to be plane regions bounded by k circles. (The reasoning is typical of that  for 

other suitable classes B). By a linear transformation we may transform such a 

domain into the whole plane exterior to k circles, or into a domain bounded by 

two concentric circles, C,, C~, one being the unit circle, and k -  2 circles lying 

in the ring between C1 and C._,. This lat ter  n o r m a l i z a t i o n -  which replaces 

the three point condition of w 2 - -  shall now be assumed for every Bn. 

We prove that  the B~ define a limiting" k-fold connected domain B. 

This is evident, if B~ cannot degenerate in one of the following ways: 

I) Two circles, e.g. C1 and Ca, come arbitrarily near at a point P, while 

their radii remain above a positive bound a. 

2) The same happens, but the radius of one of them, say Q~, shrinks to zero. 

3) One or more circles, e.g.  C2, C.~, shrink to the same point P while P 

remains bounded away from the non-shrinking circles. 

The first type of degeneration is excluded as follows: By our Lemma, w 3, 

there is for a fixed arbitrarily small d' a circle around P with radius Q between d 

and l /d so that  the image of any arc of this circle by ~,~ has a length L,~ with 

2 M  
L~_< 2zoo(d) where e(d)--  and M is a bound for D(~).  But an arc of this 

I 
log ~- 

circle joins, for sufficiently small d and sufficiently large n, a point of C, with 

one of Ca; the image therefore joins a point ou F 1 with one on F~. The 

distance between points on these curves is bounded away from zero. Since d 

and hence ~ and thus L.~ c~n be made arbitrarily small, we therefore h~ve 

contradiction. 
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The th i rd  type of degenera t ion  is impossible, because here  we can, wi th  

fixed sufficiently large ~, include the circles shr inking to P in a circle K e with 

a radius e a round P,  so tha t  the image of K~ by ~,~ has a length  L e no t  exceeding 

~ 2  ~re(d). But  this shows tha t  ~,~ tends to degenera t ion  in contradic t ion to 

Our assumption ~. 

To exclude the second t.ype of degenerat ion,  we consider the typical  case 

tha t  a circle C~ shrinks to a point  P on C1, while C2, concentr ic  with C1, stays 

away f rom C1. Again,  by our  lemma we can, for  sui tably small fixed 8 

and ~ sufficiently large, draw a c i rcular  arc c ~ c n  around P jo in ing  two 

points A und B on C~, so tha t  the length  L~ of the image 7 = 7 ~  of c by 

r.,~ is less than  ~ e ( ~ ) : V ( 8  ). The  arc A P B  and the complementary  arc c* 

of CL are mapped on two complementary  arcs of F, whose endpoints,  the images 

of A und  B, have a dis tance less than  ~ (8) so tha t  one of t hem has a d iamete r  

a rb i t ra ry  small for  sufficiently small 8. This  arc t oge the r  wi th  the arc 7,~ then  

defines on the surface ~,~ a closed curve with a to ta l  d iameter  arb i t rar i ly  small 

if 8 is chosen suitably small. This  curve is, on Bn, not  homotopic  to a point.  

Fo r  it  separates on the surface F~ f rom I~,  because in B~ the  corresponding 

curve separates C~ f rom C s. But  this expresses the  fac t  t ha t  ~,~ tends  to separa- 

t ion, in cont rad ic t ion  to our  assumption.  

Hence  degenera t ion  of B .  is excluded, and we may assume tha t  the sequence 

B .  or a subsequence tends  to a domain B of the same type. 

Now equicont inui ty  of ~ on each boundary,  e .g .  C~, is proved as follows: 

As above, there  exists an inner  circular  arc c = c~ with radius Q-~ Q,~ a round  P 

on C~ jo in ing two points  A, B of C~ with 8---< e -< 1/~, so t h a t  for  the  l eng th  

L~ of the image 7~ of cn we have L~ <- -2z~(8)=V(~)~ .  Equieon t inu i ty  of ~ 

on C~ means tha t  the  oscil lation of ~ on the arc A P B  remains  a rb i t ra r i ly  

small with 8. I f  this is no t  so, then  c~ toge ther  with the arc C*n of C 1 com- 

p lementary  to  the  arc A P B  has as hnage a closed curve t .  on ~n whose d iamete r  

can be made arbi t rar i ly  small wi th  ~ and which cannot  be cont rac ted  to a point  

because i t  is homotopic  to the curve /11. In  o ther  words, non  equicont inu i ty  

would mean tendency  to separat ion in cont rad ic t ion  to our  assumption.  Hence  

the equicont inui ty  is proved. 

The existence proof  then  is completed exactly as in w 3 af ter  we replace 

the ~ by harmonic  vectors with the same equicont inuous  boundary  values, so 

tha t  a suitable subsequence of them converges to an admissible harmonic  vector  

in B for  which D (~ ) - -d .  
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3- Solution for Other Cases and Other Normal Domains. 

If  B, instead of being a circular domain, is of another ~ype, e.g. a parallel 

slit domain (see w 2), the reasoning remains the same. However, if we pre- 

scribe a higher topological structure for the minimal surface bounded by F, 

then B cannot any longer be chosen as a simple plane domain. We have the 

choice between plane domains B with >>inner edges>> coordinated by analytic 

correspondences, as slit domains, or fundamental domains of groups of linear 

transformations (see [IO]), or between Riemann surfaces B with several sheets 

and branch points. In  either case the proof is very similar to that  above. For 

parallel slit domains B we refer to [IO] and [I6]. For the Riemann surface 

type, we consider as particularly simple the surfaces introduced in w 2, bounded 

by k unit circles and, in the case of genus 29, having k + p  sheets. By a linear 

transformation, they always can be normalized so that  one branch point has a 

I 
fixed position, e.g. at  w-~-o or at w ~ 2' bounded away from the boundary 

circles. 

The slight modification necessary may be explained for two-fold connected 

domains B, consisting of two unit circles with two connecting branch points 

I 
one of which, Q, may be fixed, e.g. at w = - .  The only possible variability of 

2 

B is the position of the free branch point t ), and we have to show that  this 

branch point _P in B~ tends neither to Q nor to the boundary. The first degen- 

eration is excluded as above by our Lemmal; the second as follows: I f / ) t e n d s  

to a boundary point R on the unit circle C1, then we draw around R for suf- 

ficiently small ~ a circle C e with radius () between 3 and 1/~ as in our lemma. 

B will, for large n, be separated from Q by C~, and thus C e will join a point 

A on C1 with a point B on C~. Since on C e the oscillation of ~ becomes 

arbitrarily small with ~, while the images of A and B must have a distance at 

least equal to the minimum distance between the curves F1 and Fe, this type 

of degeneration is excluded. 

Higher topological structure does not affect our previous reasoning to ex- 

clude degeneration of B,~. - -  In the case of ~wn-o~'icntable surfaces it is preferable 

to use the closed Riemann surfaces symmetric by reflection on k unit  circles. 

(See w 2). For example, for the type of the Moeblus strip we may use a 

1 I t  is obvious tha t  the Lemma  is valid also for Riemann surfaces B. 
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surface consisting of 3 sheets, symmetric with respect to the unit circle in one 

sheet, this sheet being connected by two branch points to each of the other two 

and those latter by two branch points connected together. 

w 5' F u r t h e r  D i s c u s s i o n  o f  t h e  S o l u t i o n .  

i. L e m m a s .  - -  T h e o r e m s .  

The suf~cient condition @ of ~ 4 can be replaced by another which appears 

more explicit. A surface ~ having the boundary F is, with respect to the re- 

quired topological structure, said to be degenerate, if it consists of two separate 

surfaces (possibly meeting each other in points) having together as boundary F 

and a total characteristic number not exceeding the prescribed x; or if, without 

being decomposed, it has a lower genus or characteristic number than prescribed. 

The lower limit for such a type of degenerate surfaces with the boundary F may 

be called d*. I f  ~ is decomposed into two surfaces g', ~" with F '  and F "  as 

boundaries respectively and with prescribed characteristic numbers x', x" as 

well as prescribed character of orientability, then we define the Ditichlet inte- 

grals D' (~'), D" (~") and the lower limits d' and cl" correspondingly and, for this 

type of degeneration 
d*-~ d' + d". 

We shall show that  for every type of degeneration 

d G d *  

and, in the next section, we shall prove the main theorem: 

The variational problem and with it the Douglas-Plateau problem has a solution, 

i f  the strict inequality condition 

d < d *  

is satisfied for every possible degeneration. 1 

To prove these statements without making use of the fact that  the lower 

limits d, d*, d', d" are really lower limits of the ~rea, we shall formulate ~wo 

properties of the Dirichlet integral in two Lemmas and then prove the lower 

semicontinuous character of the lower limit d in its dependence on F. 

Lemma 9.. I f  ~ (u, v) is an arbitrary continuous vector with piecewise continuous 

first derivatives in B with finite D(3) and with ]~] < M, then to every point P 

1 An equivalent statement was first formulated by Douglas [3]. 
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of B, e.g. the origin, and to any prescribed a there exists an arbitrarily small 7 

and a vector t) (u, v) such that ~ is equal to ~ outside the neighborhood u s + v ~ < 7 2 

of P and has a prescribed fixed value, e.g. t ) - - o  in the smaller neighborhood 

u ~ + v  2 < 7  ~ and that 

(34) D (~) < D ($) + a. 

In  other words, wi thout  essentially increasing the Diriehlet  integral,  we can 

locally pull out a spine from the surface ~ reaching' to a given point. For  

the proof 1 we define with r ~ = u e +  v 'z and with given 7 < I the funct ion 

p (r) = p (u, v) by 

p = I for r > 7, P ~ o for r < ~]o, P = I + ~ log ~ for 7 ~" --< r --< 7, 
log v, 

and t) by 
(35) t) v) = p (u, (u, 

(; i 
We find D (p)=2!  ~.--(P~ + p [ , ) d u d v = - - J ~ l o g  7 -- e and, using Ipl I I<M 

and Schwarz' inequali ty 

2 M V - ~ D  (3) 

o r  

(36) D (~) < (VD(~) + M V d  ~. 

Since we can satisfy (34) by making' 7 and hence e sufficiently small, our Lemma 

is proved. 

An immediate  consequence of L e m m a  2 is the theorem: There is always 

(37) d < d* 

in particular 

(38) d -<- d' + d" 

for every type of degeneration of the surfaces under considerations. 2 We prove this, 

e .g.  for Riemann domains bounded by uni t  circles, assmning the degenerate 

surfaces to have k' and ]c" boundary curves forming the boundaries F '  and F " ,  

respectively. Then we consider two such corresponding domains B '  and B "  with 

vectors ~', ~" for which, with fixed arbi t rar i ly  small e, 

i See [Io] p. 685 f. 
See [IO] p. 699 , where  t he  proof  is given in detai l  for p lane  circular  domains .  
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292, (~') < d' + ~, 2)2" (~") < d" + ~. 

In  two congruent  sufficiently small circles K ' ,  K "  in B' and B "  respectively, 

we replace according to Lemma 2 these vectors by vectors t)' and t)" respectively, 

which vanish identically in these circles and for which 

9 2 ,  < d' + < d" + 2 

Final ly  we join B '  and B "  by two branch points s i tuated within K '  and K " .  

Thus we obtain a domain B in which t)' and I)" together  define u vector t) 

admissible in the problem for 1" and with the Dirichlet  integral  

DB (t)) = DE' (t)') + D~,I (t)") < d' + d" + 4 e. 

Hence,  whatever e may be, we have 

d ~ D E ( ~ ) <  d' + d"  + 4 e ,  

which proves our theorem. 

The semicontinuity of d and the main  theorem will appear as a consequence 

of a fu r ther  lemm~, by means of which the t r ea tment  given in previous papers 

is essentially simplified: 

L e m m a  3: I f  the sequence ~,~ of admissible vectors with D (~n) <--M te~?ds to 

degeneratio~ as described in w 4, I, we can replace ~ by a vector t),, in B,~ so that 

t),~ is actually dege~2erated and so that 

(39) D (~,~) --< D (~,,) + ~ 

with a~ ~ o and with the boundary F(n) of I)~ tending to F in the strong sense. 

In  other words, wi thout  noticeably interfer ing with the Dirichlet  integral  

or the boundaries one can sl ightly deform a sequence of surfaces tending to 

degenerat ion into another  sequence whose members are actually degenerated,  the 

different parts touching in a single point. 

Proof:  We may suppose tha t  our sequence degenerates around the origin 

~ o, i .e .  tha t  there is on ~,~ a curve , , ,  on 3,~ not  homotopic to zero, whose 

largest distance 6n f rom the origin tends to zero with increasing q~. Then we 

subject the whole m-dimensional z-space to ~ deformat ion which contracts  the 

inter ior  of a small sphere around the origin into the origin and leaves all the 

points of the space outside a larger,  but  still small, sphere unchanged:  The 

point  z is taken into the point  y by 
11--39615.  Acta mathematica.  72. Imprlm5 lo 23 janvier 1940, 
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where p(r) is the fol lowing:  funct ion of the distance r =  lfz~ q . . . .  +z~,, and a 

parameter  ~ : 

p ~  : for r > ~ ;  p = o  for r < ~ ;  p =  I + l o ~ l o g - r  for ~ < r - - < ~ .  

Row we subst i tute  for z~ the values given by the vector 8(u,v) and for ~ the 

value 17~.  Then the vector 

(40) tb, = p (r) 8,~ 

represents a degenerated surface as described in the Lemma. We have to 

establish the inequali ty (39). 

Omit t ing in the following the index n we consider in B the open point  

set B* where V 2 < 1 3 1 - ~ r < . 2 .  We  have 

(4 I) 
23 

where because of p --< I 

a , , + P .  3)" + (P 3,, + P~ 8) ~ } d u d v = a +  b+e ,  

iff (42) a = - p-a (8~ + 8~) du dv <-- D (8), 
2 

B 

B I3" 

fur thermore  

(43) 

(44) c = f f ( . ~ , + . o ~ ) . u . v = f f ( ~ . . ~ , , + . o ~ v , . u . v  
B B* 

Now we have in B*, with 
I 

8 - -  
I log- 

9" r ' 

Hence, because of I ~ [ = r, 

]PP,,,$Svl < " - -  8Ov.  

* T h i s  f u n c t i o n  i s  e s s e n t i M l y  d i f f e r e n t  f r o m  t h a t  u s e d  fo r  L e m m ~  2, b e c a u s e  i t  r e f e r s  t o  t h e  

v e c t o r  s p a c e ,  n o t  t o  t h e  p a r a m e t e r  d o m a i n  B .  
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There fore  
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b --< _< D . ,  

c --< z _< 2 

which proves the lemma since ~ tends to zero with V. 

2. Semicont inui ty  o f  the L o w e r  Limit  d. - -  Sufficient Condition.  

W e  want  to establish the fol lowing theorem:  I f  F (~) is a system of  ]c con- 

tinuous contours - -  not necessarily without multiple points - -  which converge to 1-" 

in the strong sense, and i f  ~n in the domain B~ of  the prescribed structure is a vector 

of  the admissible type mapping the boundary of  B~ monotonically on F("), then toe 

have the re la t ion  

(45) d ~ lim inf D z  n (~n), 

which expresses the semicontinuous dependence of  d on I'. For  the  proof  we may  

use induct ion assuming the theorem to be t rue  for  lower values of k or for  

lower topological  s t ructure.  

There  are two possibilities: Firs t :  the ~ satisfy the condi t ion ~ of cohesion. 

Then  our  reasoning of w 4 subsists l i terally;  the domains B ,  form a compact  

set and define a l imit ing domain  B;  we have equicont inui ty  of the  ~ on the  

boundaries,  and the corresponding harmonic  vectors yield a l imit ing vector  ~ with 

D (5) -< lim inf  D (~.,) 

which maps the boundary  of B on F and has the prescribed topological  properties.  

All the more (45) holds. 

Second: the ~ tend  to degenerat ion.  Then  we may assume - -  if necessary af te r  

choosing a suitable s u b s e q u e n c e -  tha t  there  is on the surface ~ a closed curve 

v,, not  homotopic  to a point ,  so tha t  on ~ we have I~1 < ~ - - ~ - + ~  To the 

curve ~ there  belongs in B,~ a closed simple curve t~ which in case of genus 

zero separates  B,, into the domains  B~, B~ bounded by t~ and by the  systems 

C' and C" respectively, consist ing of ] / >  o and k " > o  boundary  curves of B~ 

with / / +  k " =  k, and which in case of h igher  topological  s t ruc ture  may  dissect 

B~ into a domain  of lower topological  s t ruc ture  ~. 

Or separates into different surfaces. 
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discuss the case of genus zero ~ supposing tha t  the  represen t ing  

plane domains,  e .g .  domains bounded by k circles, two of them 

According to Lemma 3, we replace the surface ~n defined in B,~ by an actual ly  

degenera ted  surface t?~ so tha t  DB~ (t),~) < Dj~ n (~,) -4- a,~ with on --" o, and so tha t  t},~ 

takes the boundary  C of B into a system F *(~) of curves which tends to F as 

well as F (n) does. - -  As a ma t t e r  of fact,  F *(n) is ident ical  with I "('~) unless the 

origin is on F. 

Certainly we have 

(4.6) lim inf/)B.,~ (t)n) ~ lim inf DB n (~n). 

We may assume tha t  the curve tn in B~, on which t) vanishes, contains B'~ in 

its in te r io r  and B,~ in its exterior .  Then  we define B~* = B ~  plus the whole 

exter ior  of tn, and B ~ * : B ; ~  plus the whole in ter ior  of t~; and define t?* ~ tln in 

B;~ and t)~ = o outside of t~, 13"*= t)~ in B;~ and t}~*= o inside of t~. 

Then  we have 

(47) DB* (tl*) + D~,~* (t)**) = D~ n (t)), 

and t)n*, t),** are cont inuous and have piecewise cont inuous first derivat ives in 

B~*, B** respectively.  They fu r the rmore  take  the boundaries  into F *(n) and F **(n) 

where F*(n)-+ F',  F **(n) ~ F" .  Thus  they correspond . to  var ia t ional  problems 

re la t ing  to lower numbers  k' and k"  of boundary  curves. For  such lower numbers  

the semicont inui ty  may be assumed already proved. Then  we have 

lira inf  DB* (t)*) >~ d' 

lira inf  D-** (t)**) > d"  

where d' and d" refer  to the  par t i t ion  of the boundary  F into F '  and F " .  

Consequent ly  by (46) and (47) we have 

(48) 

Since by (38 ) 

d' + d"  --< lira inf  DB,~ (~). 

d --< d' + d", 

our  theorem is proved; for  i t  was proved for  k = I so tha t  induct ion is possible. 

See [to] p. 683, 
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Iacidentally, if a degenerating minimizing sequence ~,~ exists, 

hand side of (45) becomes d, and our reasoning yields the equality 

d ~ d' 4- d". 

the right 

A consequence of the preceding analysis is our main theorem of No. I, 

which for genus zero states: 

A sufficient condition in the case of genus zero for the solvability of the 

variational problem is the inequality 

d < d' + d" 

for all partitions of the boundary F into F '  and F" .  

For this condition, according to the reasoning above, excludes tendency to 

degeneration. 

Our proof can without difficulty be modified to cover types of domains B 

which are Riemann surfaces of the kind considered in w 3. I t  made no use 

of conformal mapping. However, if the genus of the domain is not zero, the 

proof requires a modification using mapping theorems. The domains of lower 

topological structure which we obtain in this case by u construction as above 

using the curve t~ are in general not of the same type as our domains B. 

Hence to complete the proof we must know that  such domains, or rather all 

domains, can be mapped conformally to domains of the type B. (See the 

detailed discussion in No. 3.) 

The sufficient condition stated by the mMn theorem is in a general way 

expressed by 

d < d *  

where d* refers to any type of degenerated surfaces with the same total 

boundary, degeneration including the possibility of a topological structure lower 

than the prescribed 1. 

The sufficient co~ditions of this section arc easily verified in every case in 

which the dege~erate solutions or such of lower topological type are self intersecting. 

Then the inequality condition for the higher type becomes evident if we identify 

the lower limit of the Dirichlet integral with that  of the area. For along the 

lines of self-intersection we can pull the different parts of the surface of lower 

1 T h a t  t he  cond i t ion  is  no t  neces sa ry  is  a p p a r e n t  if  we rea l ize  t h a t  i t  is  v io l a t ed  e .g . ,  for a 

m i n i m a l  surface  of r evo lu t ion ,  i f  t he  area  or the  D i r i ch l e t  i n t e g r a l  is  e x a c t l y  equa l  to t he  s u m  of 

t he  a reas  of t he  two  b o u n d a r y  circles.  
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type  apar t  in such a way t ha t  the self- intersection disappears  and the area 

decreases. Thereby  surfaces of h igher  type or ig inate  or degenerat ions  disappear.  

For  example, for  p ~ o  and k =  2, if Ill and F~ are inter locking,  it  is 

seen immedia te ly  tha t  for  the degenera te  surface consist ing of the two simply 

connected  minimal  surfaces t h rough  F 1 and Fs the area is la rger  t han  tha t  of 

o ther  doubly connected  surfaces which we obtain f rom an in tersec t ing  pair  of 

surfaces by a deformat ion  e l iminat ing the self-intersection. 

Similarly we can see tha t  through a k~wtted curve F we always have besides 

the self-intersecting simply connected minimal su~face one of higher sb'ucture3 

3. Remarks. Critical Analysis of the Method. ~ 

As already men t ioned  our  sufficient condi t ions can be verified direct ly for 

the  genus zero if the boundary  curves Fk are in a plane. (See [lO] and [12].) 

The n  mapping  theorems resul t  as a consequence by means of a general  con- 

t inu i ty  theorem.  By this la t te r  i t  can be shown tha t  the sufficient condit ions,  

if  satisfied for  a system F of contours,  remain  satisfied if /1 is deformed in a 

suitable neighborhood.  Consequent ly  the solvabili ty of the problem is assured 

for  boundaries  F sufficiently near  to a plane and sufficiently smooth.  

The  inclusion of mapping  theorems in our  theory  removes the  object ion 

to the specific reference  to cer ta in  classes of domains B of representa t ion.  

But  it  must  be s ta ted tha t  there  exist R iemann  domains B of connect iv i ty  k for  

which our  theory  does not  immediate ly  yield the conformal  equivalence to 

domains of our  type B, so t ha t  they  migh t  possibly yield a smaller  value of d. 

The  difficulty is enhanced for  h igher  topological  s t ruc ture  and may be 

explained in the sufficiently general  case of one contour  and genus one: k : I 

and p = I. Then  we choose for  B the uni t  circle plus ano the r  ful l  plane con- 

nec ted  to the uni t  circle by 4 branch points.  I f  a minimizing sequence B,~ 

degenera tes  in such a way t ha t  two branch points tend  to the  same point,  can- 

celling each other,  so tha t  in the l imit  only two branch points  remain,  we would 

have degenera t ion  into a simply connected  domain  with p ~ o. But  this  domain,  

consist ing of a uni t  circle with a ful l  plane affixed in two branch  points,  is of 

a different  type f rom the domains B used original ly for  defining the lower l imit  

d for  simply connected domains of genus zero. Conformal  mapping  must  be 

The result that two interlocking curves always define a doubly connected minimal surface, 
was first obtained by Dol:glas. 

2 See also w 3, 3. 
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applied to establish the equivalence of such domains obta ined by processes of 

degenera t ion  with domains of the  originally admit ted  type  B.  

The  same s i tuat ion arises with o ther  types of domains  B, e .g .  for  plane 

domains defined by fundamenta l  domains  of Sehot tky  groups of l inear  substitu- 

t ions with p genera t ing  t ransformat ions .  Since the group and the boundary  

circles depend on only a finite number  of parameters ,  the reasoning concern ing  

the solution of the var ia t ional  problem proceeds exact ly as t ha t  in 8w 3, 4. 

Also the var ia t ional  par t  of the theory,  the  proof  of ~ (w) = o, is similar to t h a t  

given above. But  again a degenera t ion  of Bn may occur so tha t  in the l imit  B 

becomes of lower genus but  still is defined by a g r o u p  with p genera t ing  trans- 

format ions ;  namely,  if two corresponding boundar ies  of the fundamen ta l  domains 

touch each o ther  in corresponding points or, as one says, if the fundamen ta l  

domain  of the l imit ing group has a >>parabolic vertex>>. Then  the genus of the  

l imit ing domain  will be lowered and there fore  this domain  will no longer  belong 

to the  admi t ted  type for  the lower genus, so tha t  such an equivalence mus t  

be established by some mapping  t h e o r e m s . -  For  slit domains corresponding 

considerat ions hold. 1 

Part II. Free Boundaries. 

~. P r e l i m i n a r i e s .  

i .  Pos i t ion  o f  the  Problem.  

I n  the second par t  of this paper  we give the solution to the P la t eau  problem 

with free boundaries.  This means, we prove the existence of minimal  surfaces 

of least  area d or least Dir ichle t  in tegra l  ~ whose boundaries,  or parts  of whose 

boundaries,  are free to move on prescr ibed cont inuous manifolds  of less t han  ~, 

dimensions. These >>free problems>> present  a much grea te r  var ie ty  than  those 

wi th  fixed J o r d a n  curves as boundaries.  For,  no t  only may the  topological  

s t ruc ture  of the  minimal  surface be prescribed in the problem, but  so also may 

topological  proper t ies  relat ive to the given manifolds.  All such questions,  in 

par t icular  the  proof  of sufficient condit ions in topological ly  h igher  cases, can 

1 The preceding remarks, which indicate that the theory of conformal mapping is the preferable 
basis for the treatment of Douglas' problem for higher topological structure, seem to apply also 
to the presentation of Douglas' theory in [8]. 

2 In our proof we shall not make use of their equivalence but refer to it for convenience. 
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be t r ea t ed  in a m a n n e r  s imi lar  to the  cor responding  t heo ry  of pa r t  I .  I shall  

leave an  analysis  of the  genera l  possibil i t ies for  ano the r  occasion, and  t r ea t  in 

deta i l  solely the  typica l  case of a doubly-eom~eeted minimal sub:face, one of whose 

boundaries is fi'ee on a closed manifold M,  i while the other is' a Jordan curve F 

monotonically described. 

The free boundar ies ,  under  the  very genera l  a s sumpt ions  concern ing  iV/, are 

not  necessar i ly  cont inuous  curves. The  me thods  of par t  I ,  therefore ,  i na smuch  

as cons idera t ion  of vectors  ~ as func t ions  on tile boundary  of the  domain  B 

of r ep re sen t a t i on  is concerned,  mus t  be replaced by a r eason ing  r e fe r r ing  to 

the  in te r io r  of the  domain  B. Correspondingly ,  the behav io r  of the  solut ion is 

analyzed by means  of a t heo rem  on ha rmon ic  - -  or more  general ly ,  mono ton ic  

- -  vectors,  g iven in No. 2. 

To fo rmula t e  our  problem precisely we suppose the  surfaces  unde r  considera-  

t ion to be represen ted  by cont inuous  vectors  ~(u ,v )wi th  piecewise-cont inuous  

first der iva t ives  in a concentr ic  annu la r  r ing  B of the  u, v-plane be tween  the  

un i t  circle C i and  a concentr ic  circle C,, of  radius  a, so t h a t  ~ has cont inuous  

bounda ry  values on C,,, m a p p i n g  C~ monoton ica l ly  on F; and  t h a t  the  bounda ry  

of ~ co r respond ing  to C1 is on M. This  l a t t e r  p rope r ty  is defined as follows: 

Deno te  by g(g) the dis tance of the  poin t  g f r o m  M. I f  ~ = ~ ( u , v )  is a surface  

defined in B,  g(g) becomes a func t ion  g(u,v) of u,v  in B;  if g(u,v) tends  to 

zero as the  poin t  u,v  in B tends  to C], then  we say t h a t  the  boundary  

of ~ (u, v) co r respond ing  to 6] is on M. I t  is immedia te ly  clear  tha t ,  in polar  

coordina tes  r, #,  the dis tance g(u, v ) ~ g  (r, ~) tends  to zero un i fo rmly  in & a s  r 

tends  to one. - -  No te  t h a t  our  defini t ion does not  imply  exis tence of con t inuous  

bounda ry  values of ~ on C~. 

Our  p rob lem now is to find a doubly-connected  min ima l  surface  of leas t  a rea  d 

bounded  by F and  M. We shall prove in w z that such a minimal surface exists, 

~rovided that the lower limit d is smaller than the lower limit d* belonging to the 

Plateau problem for F as the sole bom~dary. The solut ion is ob ta ined  as solut ion 

of the  va r ia t iona l  problem:  To find a domain  B and an admissible  vector  ~ as 

above,  fo r  which  D ( ~ ) =  d is a min imum.  

1 In [I3] I have discussed the case when one part of the boundary is a prescribed Jordan 
arc, another free on a manifold M. - -  In [23] Mr. Ritter has treated the case of a ,)Schwarz Chain,), 
where the boundary consists of k fixed Jordan arcs alternating with k parts free on manifolds Mi 
which in his paper are planes, but with the methods of the present paper or [I3] could be chosen 
as general continuous manifolds. 
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2. Theorem on Boundary Values. 

The proof  will be based on a theorem which, for  convenience,  we first s ta te  

for  a half-plane B:  v > o. Let  ~ ~ ~r(u,v) be a sequence of  harmonic vectors in 

B: v > o, having the boundar?] on a closed ~+a,mfold 211,, for which 

D(~) = 2  ~'~ + ~,~)d~dv <-- A"- 
B 

is bounded by a constant A ' .  h~ each closed subdomain of  the halfplane B the ~ 

map co,verge uniformly to a harmonic vector ~. JFm:thermore, we assume that the 

ma~lJbhls _~I~ tepid to a eoldiuuous manifold M so that the longest distance of  pal,his 

of Mr fi'om M tends to zero. Then the boundary of  the ceetor ~ i+" on M . -  

:Note t ha t  no assumptions are made concern ing  the dimensions of Mr and M. 

In  our  appl icat ion ~1I~ will be a curve, M a surface. 

Proof :  W e  observe t ha t  the uni form convergence of the ~ implies tha t  of 

the derivatives in closed subdomains of /3, and hence the inequal i ty  

/ )  (~) -< A ~. 

By the existence of D(~) we have for  the small str ip 1]/,: o < v < z h 

= + o f o r  o .  

*1 . ]  

Bh 

We  now appraise the oscillation of ~ on the line v - - h ,  in par t icular  on a seg- 

ment  L - -  Lh : 
I 

[ u - - % I <  th,  v - - h ,  with t----~(h) 

whose length relat ive to h tends to cr as h-+ o. Along L = = L h  we have, by 

the mean value theorem of potent ia l  theory,  

. . . . . .  I f ;  
Kh . 

where the inteo'ral is ex tended over a circle of radius h a round the point  u, h 

of L;  hence by Sehwarz'  inequal i ty  and (49) 

(50)  ~:, < -  I I (//.)4" 
~r h. ~ e (h) ~ < h~ 

12--39615. A c t a  ma themat i ca .  72. lmprim6 le 23 janvler 1940. 
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~ - ~ r o m  

(u, h) - -  ~ (%, h) --- ; ~,, (u, h) d u 
, ]  

~ta 

we obtain immediately by (50) along L 

I ~(hYlu -%1 < ~(h) (si) I~(-, h ) -  ~(Uo, h)[ < ~  

which shows that  the oscillation of ~ on La is small with h, uniformly in Uo. 

To link the boundary of ~ with that of ~v we choose v sufficiently large 

so that  on Lh, because of the convergence of ~ to ~, 

I~(u, h ) - -  ~(u, h) l <~(h) ;  

then by (5I) we have on Lh 

I ~,,(u, h) - -  ~(uo,  h)l -< 2 ~(h). 

For every positive 6 with 6 < h we have now, with u, h in L, 

(5 :) It(u0, h ) - - ~ ( , , ,  ;)l  -< 2~(h) + lt~(u, h ) - - ~ ( u ,  ;)1 -< 

h 

_<2~(h )+  I ~ dv .  
d' 

The distance of the poin~ ~(u,  d) from M~ is, for sufficiently small ~, less 

than a quantity ~(d) tending to zero, if d and v are fixed. Since the distance 

to M~ satisfies the tr iangular inequality, we have, from (52), for the distance 

g, [~ (Uo, h)]-~ g~ (%, h) of the point ~ (Uo, h) from M~ 

h 

0' 

for, the distance g, is not gre~ter ~h~n the distance from ~(uo, h) to ~(u,  d) 

plus the distance ~, (u, d) from M~. 

By integration with respect to u over the interval 

we find 

]U--Uol < t h =  he(h) -1 

ff[ ] t h [y~ (%, h) - -  ,~ (~)] --< 2 h + d u d v, 
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where the in tegral  on the r ight  hand  side is ex tended over the  rec tangle  lU--Uol <-- th, 
d < v - - < h .  Hence  we have by ~(d) -*o  for  d - + o  and by Schwarz'  inequal i ty  

h t lim inf  g~ (u0, h) --< 2 h + A V - h ~  --~ h (2 + AVt), 

and, since for the distance g f rom M by the t r iangular  inequal i ty  g(Uo, h)<- 
lira inf  9,(u0, h) holds, we obtain finally 

g (%, h) --< 2 It + AIVt .  

For  h -> o we have t -~ ~ un i formly  in %; hence we have for  the distance g(uo, h) 
the  re la t ion g-+ o for  h .-~ o, which expresses our t h e o r e m )  

I t  is obvious tha t  the theorem subsists if f rom the half-plane one or more 

domains  are cut out, so t ha t  B becomes a mul t ip ly-connected domain.  Fur ther -  

more,  by conformal  mapping', the  theorem is extended l i teral ly to the  in ter ior  B 

of a circle or to an annu la r  r ing B. 

w 2. Solution of  the Problem. 

i. Construction of the Solution. 

W e  suppose 
d < d*, 

where d* is the min imum for  the  P la t eau  problem re fe r r ing  to the single con- 

tour  I', and we consider a minimizing sequence of r ing domains B~ toge the r  

wi th  admissible vectors ~, in B,~ with /)B,~(~n)-~ d. 

F i r s t  we show, in a manne r  similar to w 3 and w 4 of par t  I,  t h a t  B~ cannot  

tend  to degenerat ion.  I f  the  radius a-----a~ of the inner  circle C 2 of B~ were to 

come arbi t rar i ly  near  to I, we would have exactly the same cont rad ic t ion  as in 

w 4 of par t  I, because M and F have a positive distance a. I f  a = a,~ should 

t end  to zero for  a subsequence Bn, then,  according to tile fundamen ta l  L e m m a  

in par t  I, we would have,  for  an arbi t rar i ly  small d and sufficiently large n, 

a concentr ic  circle C of radius ~ = Q. such tha t  

and t ha t  on C the oscillation of ~ is less t han  the square root  of 

1 I n  [I31 i t  is po in t ed  ou t  t h a t  t he  t h e o r e m  can  i m m e d i a t l y  be  gene ra l i zed  in  different  ways ,  

o n e  gene ra l i za t ion  - -  u se fu l  in  connec t ion  w i t h  t he  c lass ical  p rob l em of R i e m a n n  - -  p e r m i t t i n g  

t h e  m a n i f o l d s  to d e p e n d  c o n t i n u o u s l y  on t he  b o u n d a r y  p o i n t  of  B .  
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2 A 2 z  
2 Tt; 8 - -  

! 
log ~ 

where A is a common upper  bound for Dl~,,(r.,~). 

Then,  for  sufficiently large n the circle C~ is inside (/ and defines with C 

an annular  r ing  B~,. W e  may suppose tha t  with increasing n the quant i ty  

and hence e tends to zero, while always an < 6. We cer ta inly have 

According to Lemma  3 of par t  I, w 5, we replace r,, by a vector  t)n which has 

constant  value on C, say zero, for  which 

< D+,;: + (d, 

with a ( e ) ~  o for  e-~ o, and which maps 6~ on a cont inuous  curve /';~) t end ing  

in the s t rong sense to F for  e -+ o. I f  we extend t},~ as identically zero into the 

whole plane outside C, we have for  the domain B* outside of (~, for  sufficiently 

large n, 

-< -,- -< I ) , , ,  + ,, 

On the o ther  hand we have d] < Dn,(~.),  where d~ is the lower limit of the 

Dlr ichle t  in tegral  in the Pla teau problem for  the single con tour  I "(~!. 

I f  we now let n t end  to infinity and 6, e at  the same t ime to zero, we have, 

because of the semi-continuity of the lower l imit  of D ( ~ ) i n  the P la t eau  problem 

and because of a(e)-~ o, 

d* -<- lim inf d,~ < lira DB,,(;,) + a(~) = el, 

which contradic ts  our  assumption el < d*. Hence  there  is no degenera t ion  of B ,  

possible, and we can choose  a subsequence of the domains B,, which tend  to an 

annu la r  r ing B with radii  I and a, where o < a < I. 

In  the same way as in par t  I, w 4 we see tha t  the boundary  values of 

on C 2 are equicontinuous,  so that ,  at  least for  a suitable subsequence,  they con- 

verge uni formly  to a monotonic ,  cont inuous  representa t ion  of F. Next ,  the  vec- 

tors ~,, are replaced by harmonic  vectors t~ in B having on the inner  circle the 

boundary  values ~,,(a,, ~) and on the unit  circle the boundary  values ~n(r,, ,a),. 
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where  r,, i s  U sequence  t end ing  to I. These  values ~,~(r,, ~) represen t  a con- 

t inuous  curve 21f,,, and we suppose r~ so near  to C1 tha t  ]II, tends  to ~1/.' 

For  the  ha rmonic  vectors  t),~ we cer ta in ly  have  

l im inf  DI~ (13,,) --< lira D,~,~ (~) = d, 

as easily seen by the Di r icb le t  principle.  

By a well-known theo rem of potent ia l  theory  ~, the  ha rmon ic  vectors  t},, h av ing  

au equally bounded Dir ich le t  in tegra l  are equicont iuuous  in ever)" closed sub- 

domain  of B and the re fore  pe rmi t  a subsequence converg ing  to a l imi t ing  har- 

monic  vector  ~. Because of the  equi-cont inui ty  of  t3, on (�89 we ,nay suppose t ha t  

t3,, tends  to ~ also on the  boundary  C~, so t ha t  ~ maps  C�89 monoton ica l ly  on 1". 

Our  theorem of w I, 2 and  the  concluding r e m a r k  there  implies  tha t  the  

vector  ~ has  its boundary  cor responding  to C, on ~]L Hence  ~ is admissible,  

and  D(~)>---d. Bu t  as in pa r t  I we h~ve 

29 (~) ~ lira /)(~,)  == d. 

There fore  we have  D(~)--= d and  consequent ly  ~ is a solut ion of the  var ia t iona l  

problem.  

T h k t  ~ is ~ min imal  surface  is seen exactly as in pa r t  I .  

A genera l  case in which our  sufficient condit ion is satisfied is t h a t  in 

which the s imply-connected  min imal  surface t h r o u g h  1" meets  the  surface  M. 

2. The Transversality Condition. 

W e  prove  for  the free bounda ry  on M a re la t ion  which  expresses  in a weak 

sense the  o r thogona l i ty  be tween M and the  min ima l  surface.  For  this,  we sup- 

pose ~ [  to have a cont inuous  t angen t  plane. W e  fu r t he r  suppose t h a t  we can 

t r a n s f o r m  the x-space in the  ne ighborhood  of M by t r a n s f o r m a t i o n s  

x i  - + . . . .  x , , ;  

depending  on a small  p a r a m e t e r  ~ and  hav ing  piecewise-cont inuous der iva t ives  

with respect  to the coordina tes  x ,  and  ~; so t h a t  M is t r a n s f o r m e d  into itself, 

while exerywhere  else, in pa r t i cu la r  near  F, tlm func t ions  ~ are zero. W e  

write ~ i ( x i , . . .  x~; o ) - - ~  ~nd combine the  x; as a vector  l), the  ~i as a vec tor  ~. 

There need not be continuous boundary values of ~n defined on the unit circle (.,Y~. 
Sec c.g. Hurwitz-Courant,, Ftmktionentheorle, ,3 d ed., p. 46z. 
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By the subs t i tu t ion  of the components  x~=-x,(u, v) of the minimizing vector  

these vectors t) become admissible vectors  in B. Now, since cer ta inly 

D (t)) --> D (5), 

we obtain in the usual  way 

I f f (~**~,~ + ~,,~) cludv ~ o, 
2, 

or, if L~ is a piecewise-smooth curve in B tend ing  to C1 for  e -+ o and including 

a domain B~ with C~, 

ff( .,, u+ v v)dudv o for  ~ - ~ o .  

By Green 's  formula  and A ~-= o we have 

f ~ ds -" o, 

Zs 

0 
where ~ means di f ferent ia t ion along the no lmal  to L~ and s the arc length  on 

L, .  I f  S is our  minimal  surface, L'~ the image of L~ on S, then  this  fo rmula  

becomes, if now in te rpre ted  on L',, 

f ~ - d s ~ o ,  

• 
0 

where again  d~ means  d i f fe rent ia t ion  in S normal  to L~ and s the  arc l eng th  

on L ' .  For,  our  in tegra l  is invar ian t  under  conformal  mapping  and ~ maps B 

conformal ly  on S. 

d r  
Since ~ on S is a uni t  vector,  t angen t  to S, and ~ an a rb i t ra ry  t angen t ia l  

vector  field near  M, this equat ion expresses what  may be called a weak condi- 

t ion of or thogonal i ty  between M and S. The  curves L :  here  may be chosen as 

any sequence of piecewise-smooth curves on S, so t h a t  the  area on S between 

L :  and M tends to zero with ~.1 

1 The method  of th i s  section can be applied to the  discussion of the  t ransversa l i ty  condition 

in other  twodimens iona l  var iat ional  problems.  
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w 3. R e m a r k s .  

i. Critical Analysis of the Result. 

I t  should be observed that ,  to the general i ty  of our  method,  a lack of 

desirable deta i led in format ion  corresponds.  E .g . ,  we learn  no th ing  concerning 

the  question, under  what  condit ions the free  boundary  of S is a cont inuous  

curve, or an analyt ic  curve, or under  what  condit ions S may be analyt ical ly  

ex tended beyond the boundary.  Answers  to such questions, even in the case 

of analyt ic  boundaries  F or J i ,  have no t  yet  been given. N o r  do we know 

how to replace our  s ta tement  of weak or thogona l i ty  by one of actual  ~ 1 7 6 1 7 6  

ali ty fo r  sufficiently smooth surfaces M. In these directions our  ins ight  into 

the problems is far  f rom being sat isfactory,  except  for  s t ra ight  or plane bound- 

aries. 

The  fol lowing remarks  i l lustrate  the  fac t  t ha t  our  assumpt ion  of mere  

cont inu i ty  of M is no t  sufficient to ensure smooth behavior  of g on the  free 

boundary :  Suppose, first, M to be not  bounded.  I t  may  then  be tha t  the solu- 

t ions are of necessity not  bounded.  To exemplify  this, we consider  the  problem 

of a s imply-connected minimal  surface whose boundary  is par t ly  a J o r d a n  arc, 

and par t ly  f ree  on a surface 3/.  F o r  M we choose a plane, z = o, s l ightly de- 

fo rmed  along a groove as follows: We remove from the  plane a round  the  x-axis 

a strip bounded by the  curves y ~ - + _  e - x '  and replace this par t  by a surface 

whose cross-section for  x = a is given by two s t ra ight  segments  

- - y + b  y + b  
z ~ -  for  y- ->o;  z for  y < o ,  

c c 

where b = e -a~ and c - -  
V I + a '2 e_a2. 

i6 The  area of this cross-section is 

16  e -a~  

V i + a  "~ 

while the area of the removed par t  of the plane f rom x = a to x - ~  + ~ is for  

a > o  

2 / e _  .~dx < I _ e- -a  ~. 
a 

a 
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For  every positive a the la t ter  area is less t han  the  former.  

take as the given Jo rdan  arc simply the s t ra ight  segment  

z = o ,  x = a ,  ]y l -<e  -"~, 

If ,  therefore ,  we 

then the corresponding minimal  surface is the infinite plane spike consist ing of 

the removed par t  of the  plane with x,'> a. The  example can be general ized 

to show tha t  there  are cases where infinitely many such infinite spikes occur  

in the solution. Such phenomena  are not  res t r ic ted  to mani fo lds  2~1 which 

extend to infinity. I t  is easily seen tha t  one can carve out  similar grooves f rom 

any closed, smooth  surface winding asymptot ica l ly  a round asymptot ic  curves. 

The surfaces 21I thus obtained lead to minimal  surfaces with boundar ies  on M 

which are not  cont inuous  curves. 

2. Other Types of Problems. 

The most  in te res t ing  among o ther  problems with free boundar ies  are those 

in which the ent ire  boundary  is free on a given closed surface not  of genus zero, 

e.g.  oll a torus.  Then,  apar t  f rom the topological  charac te r  of the minimal  sur- 

face, e . g .  simple-connectivity,  also topo]ogical data. relat ive to M must  be pre- 

scribed, such as l inking numbers  between curves in ter locking with M or wi th  

curves M,, on the minimal  surface S which are near  to the boundary.  The resul t  

to be expected is tha t  minimal  surfaces of a prescribed type exist  if, with the  same 

boundary  condit ions,  the  lower l imit  d for  this topological  type is actual ly less 

than  tha t  for  any lower or degenera te  type, provided lower topological  type is 

properly defined. 
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