THE EXISTENCE OF MINIMAL SURFACES OF GIVEN TOPO-
LOGICAL STRUCTURE UNDER PRESCRIBED BOUNDARY
CONDITIONS.
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The purpose of the present paper is the solution of the boundary value
problems for minimal surfaces when the boundaries are not, or not entirely-
fixed Jordan curves but are free to move on prescribed manifolds. At the same
time I shall present modifications and simplifications of my previous solution of
the Plateau’ and Douglas’ problem for fixed boundary curves and prescribed
topological structure and incidentally discuss certain features of the problem in
order to clarify its relation to the theory of conformal mapping. Though based
on previous publications®, the paper may, except for some references, be read
independently.

Introduction.

A minimal surface § in the m-dimensional Euclidean spa ce with the rec
tangular coordinates x;, ..., m — combined as a vector r — is defined by
means of two parameters u, v as follows: In a domain B of the u, v-plane,

=1 (4, v) is harmonic in the parameters u, v; which means that for ¢ or all

its components the Laplace equation

(I) AL =2uu + Low=0

! Nos. [g], [10], [11], [12], [13], [14] of the Dbibliography at the end of the paper. References
to this list are made in square brackets throughout this paper.
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or
Axy=o0

holds; moreover t satisfies the two non-linear additional conditions

E—-G=tm—y5n=Z3x,—3x, =0,

(2)

F=g,1y =2y, 2y, =0

which characterize #, v as isometric parameters on S and the mapping of B on
S as conformal.

If as vsual N means »real part> and J »imaginary part> we have
(3) 2y = RN fu(w),
where f,(w) is an analytic function of the complex variable
(4) w=u -+ v
in B. Then, by introducing the analytic function
(5) @ (w) = Zfu(w) = 5@y, —tou) = (E— G)—2i I

the condition (2) reduces to
(2 a) @ (w) = o,

which, incidentally, makes it evident that the conditions (2) do not overdetermine
the problem but essentially amount to only one boundary condition for the linear
system (1) of differential equations.

The classical »Problem of Plateau» is to determine a simply connected min-
imal surface bounded by a given Jordan curve I. To solve it, one may suppose
that the parameters «, v range over the unit circle B in the w-plane, with the
boundary C; then one has to find the vector r, harmonic in B and continuous
in B+ C, so that C is mapped in a continuous and monotonic way? on I' and
that (2 a) is satisfied.

It is in this formulation that the Plateau problem was first solved com-
pletely (1930) with independent methods by T. Radé and J. Douglas® both

! See also Courant-Hilbert, Meth. der math. Phys. Vol. II, p. 130 ff. for a more general
analysis of this fact.

? It is remarkable that the one-to-one correspondence hetween (' and I' follows as a conse-
quence. Moreover, as I shall show elsewhere, the solution remains unchanged if we modify the
problem by dropping even the requirement of monotonicity.

% See [1], [2], and the papers quoted there,
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methods being based on variational problems. Radé makes use of the theory of
conformal mapping, while Douglas avoids this theory as much as possible and
rather includes Riemann’s mapping theorem for simply connected Jordan domains
as a by-product for the case of a plane curve I Douglas, as early as 1931,
formulated a much more general problem: To find a minimal surface S of

prescribed topological structure — i.e. prescribed genus, or, in case of non-
orientability, characteristic number — with a prescribed boundary I' consisting
of & separated Jordan curves I'y, ..., I'; (oriented if S is to be orientable). This

» Douglas’ problem» presents essentially greater difficulties and new interesting
aspects. Douglas has treated first the cases of minimal surfaces topologically
equivalent to an annular ring and to a Mobius strip respectively. In 1936 he
communicated a general result and gave details and proofs to supplement
his previous reasonings so as to make them cover the general problem. In 1938
he amplified these communications and announced more detailed publications
one of which, [8], appeared in 1939.

In a note (June 1936)7 I published another method for the solution of
Plateau’s and Douglas’ problem with two alternatives, one using the other
avoiding the theory of conformal mapping. This method also permits, for the
first time, the solution of the corresponding problems with »free boundaries», when
parts of .the boundary or the whole boundary are free on prescribed continuous
manifolds. It seems that these »free» problems — as previously envisaged in
special cases by Gergonne, Riemann, Schwarz — are not accessible to the other
methods mentioned above.®! Moreover, as was first observed by M. Shiff-
man®, my method also permits the proof of the existence of minimal surfaces
with prescribed boundaries which do not give an absolute but only a relative
minimum for the variational problem. The method was presented in detail for
the case of genus zero and % boundary curves in a paper which also elaborates

sufficiently the necessary additional steps for arbitrary topological structure.’

t See [3], (4], [5], [7], 8], in particular the detailed last paper. In {10] I referred to [3], (4]
a8 preliminary announcements. Prof. Douglas called my attention to the fact that these papers
were intended to give his proof in sufficient detail.

? See [9].

3 See [13); the case when the free boundaries are planes is treated in a paper by J. Ritter
[23], not yet published.

* See [17]

® [10). See also Shiffman [16], where the case of a relative minimum under a certain condition
is treated for higher topological structure.
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In [12] and [13] modifications and extensions are indicated which form the
basis of parts of the present paper.
For the Plateau problem our point of departure is the following variational

problem involving the Dirichlet integral
(6) D)= ;ff (re + o) dudv:
B

We consider this integral for vectors g(u, v) in a domain B with the boundary
C. These vectors are supposed to be continuous in B + C and to have piece-
wise continuous® first derivatives in B. B may be the unit circle and ¢ is
supposed to map C in a continuous and monotonic way on the prescribed Jor-
dan curve I. Then we seek among all these admissible vectors one, g, which
minimizes the Dirichlet integral D (x).

We expressly suppose that D(r) admits of vectors ¢ with finite D(z). This
is certainly true if I" is rectifiable®, an assumption which we shall henceforth
make for all boundary curves.

In the cases of the Douglas problem we have to consider a similar varia-
tional problem for domains B of the prescribed topological character. These
domains B however cannot be fixed in advance but must be free within a class
of domains depending on a certain number of arbitrary parameters which together
with ¢ have to be determined by the variational problem.

! A function is called piecewise continuous in a domain if in every closed subdomain the
continuity is interrupted only in a finite number of points and smooth ares, i.e., ares with a con-
tinuously turning tangent, .

® For, I' permits with the arc length s as parameter, the total length of I' being 27, the
representation

@

14 .
w, ==+ 3 (a,, cosms + by, sinms),

and corresponding harmonic vectors pr with these boundary values have, for a concentric circle
with radius # < 1 the Dirichlet integral

Dr(x)=nZr2m(@’? + b’ Bm.
m, v

Since the existence of the arc length implies the convergence of
v2 2
3(ay,” + by Hm?,

the existence of D (r) = lim Dr(x) is obvious.

r—I
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The Euler equation of these problems is (1), and it will be seen-that the
degree of freedom in the boundary representation, together with the degree of
freedom in the choice of the domain B, leads to the relations (2 a) as »natural

boundary conditions>».

Douglas, starting from the same Dirichlet integral, restricts the admissible
vectors to harmonic vectors and then considers D(xr) explicitly as a functional
of the boundary values which depends on functions of only one variable, whereas
the systematic exploitation of the greater degree of freedom in the two dimen-
sional integral (6) is essential for our method. This accounts for the possibility
of an extension of our method to the problems with free boundaries for which
such a boundary representation would not be feasible. The viewpoint of the
two-dimensional problem also permits an intrinsic consideration without explicit

calculations.

The interconnection between the theory of conformal mapping and that of
the Plateau-Douglas problem may be illuminated by the following remarks: Origin-
ally the conditions (1) and (2) characterizing a minimal surface are local conditions,
invariant under conformal mapping. It is, accordingly, not required that the whole
minimal surface be represented in a continuous way by the same uniform para-
meter w =1u + 2v; instead any abstract Riemann domain B of suitable connectivity
with different local variables » might be chosen. However, for solving the Pla-
teau-Douglas problem by convergent processes involving sequences of domains B,
we shall have to restrict the admissible domains B to certain compact classes in
which such passages to a limit can be performed. Therefore our solution ap-
pearsb dependent on the underlying choice of domains B. To free our results
from the reference to the class of parameter domains B, we have to know that
more general Riemann domains can be »uniformized», that is conformally
represented by »normal domains» B of the type under consideration. A cer-
tain knowledge of this kind is likewise necessary to establish the equivalence of
our problem with that of the surfaces of least area.

Tn the case of genus zero it is possible to obtain satisfactory results without
preliminary use of mapping theorems because sufficiently general mapping theo-
rems can be obtained as a consequence of the solution of the gemeral Douglas

problem by verifying that certain sufficient conditions for the solvability are

! See e.g. [10] p. 717 ff
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satisfied'. For higher topological structure, however, the results obtainable with-
out use of mapping theorems are decidedly less complete as a eritical examination
will show. The mapping theory seems therefore preferable as a basis in these
higher cases, all the more as thereby also the variational part of the investiga-
tion is greatly simplified.

In the first part of the following paper first, assuming our variational
problem solved, we shall prove that the solution is a minimal surface. Secondly
we shall establish the existence of the solution under suitable sufficient condi-
tions. To make these conditions more easily verifiable we shall transform them
into another form. It is at this point where in case of higher topological struc-
ture the theory of conformal mapping becomes indispensable. — In the second

part, we shall discuss the case of free boundaries.

Part I. The Plateau-Douglas problem.

§ 1. Proof by Conformal Mapping that the Solution is a Minimal Surface.

We first show how simply the proof in the most general case can be given
(provided the existence of a solution of the variational problem is assumed), if
the theory of conformal mapping of Riemann domains is used. Suppose the
variational problem be solved by an admissible vector ¢ and a domain B of our
class, so that

D(x)=d
is the minimum value. The vector r, according to the Dirichlet Principle, must
then be a harmonic vector.” In regard to the class of admissible domains B we
assume the following mapping theorem to the true: Every Riemann domain of
the prescribed topological structure with £ piecewise smooth boundary lines can
be mapped conformally onto a domain B of the class.

The type of such »normal domains» for which the proof of this mapping
theorem can be given most easily is that of the »parallel slit domains»>. These
domains consist of the whole w-plane or the upper half w-plane except for a

! Bee e.g. [10] p. 707 ff. or [12].

* The Dirichlet principle states that, with given continuous boundary values, the minimum
of the Dirichlet integral over B of a function with piecewise continuous first derivatives is given
by the harmonic function and only by it. This principle, which here is nceded only for our
special class of domains B, is equivalent to the boundary value problem of the Laplace equation.
For its proof see e.g. Courant-Hilbert, Meth. der math. Phys. vol. II, (1937). Chap. VII.
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finite number of slits parallel to the w-axis. In case of domains of genus zero
the parallel boundary slits are of finite length. In case of domains not of genus
zero and of characteristic number x» there are x pairs of unilaterally infinite slits
whoses edges are coordinated in a simple manner'. — To fix the ideas we may
suppose that B is a slit domain.

To prove that our solution r, B represents a minimal surface we first show
that ¢ furnishes a minimum of the Dirichlet integral also in comparison with cer-
tain discontinuous vectors 3.2 We consider in B a small straight segment L
with the end points A; A, through an arbitrary point P, e. g. the segment |u|=<a,
v=o0 through the origin, and in L the function A(u)= (u®— a®); ¢ may be a
small parameter and @ a rectangle in B adjacent to L, e.g. |u|<a and
o=v=5h. )

The domain B is now cut along the segment L and the minimizing har-
monic vector r(w,v) is replaced by a vector 3(w,v) which is identical with 1
outside of ¢ and which, in €, is defined by

() =1(u + eo,v)
with

b—v_W—=d)b—1)

@:)"(u) b = ) -

The varied vector 3, therefore, is discontinuous along the cut L, but analytic
along the interior of either edge of L. Our statement now is

Dr(3) = Dp(x) =4,

or, which is equivalent
(7) Dq(3) = Dolp).

In other words: The vector r gives a minimum of the Dirichlet integral with
respect to the vector 3 for the rectangle .

To prove this we consider the Riemann domain G which we obtain by
cutting the domain B along L and by coordinating the lower and upper edge
of the cut in such a way that to a point with the coordinate » on the lower
edge the point with the coordinate u + ¢A{u) corresponds on the upper edge.

By assuming |e2a| < 1 we ensure that w + ¢ is monotonic in u and that there-

! See e.g. Hurwitz-Courant, Funktionentheorie, 3d edition p. 472 ff. For higher genus,
Courant, Math. Zeitschrift vol. 3. (1919) p. 1 ff., and [10], pp. 721 ff. and [15].
* See [9], [10].

8 —39615. Acta mathematica. 72. Imprimé le 22 janvier 1940.
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fore we have a one-one correspondence. The boundary of G cousists of the
boundary b of B plus the end points 4, and 4, of L. Hence according to the
mapping theorem assumed above, we can map G conformally on a domain G’
of the type B (e. g. slit domain), so that the boundary slits b of B are trans-
formed in a one-one way into nmew boundary slits &’ and the points 4,, 4, into
points (or slits) 4, 4’,.

Corresponding interior points of the different edges of the cut L, forming
together an interior point of the Riemann domain &, will be transformed into an
interior point of G’ and thus the vector 3 will be transformed into a vector 3,
in @', which is continuous not only in G’ but also in the domain B = G’ +
+ A’y + A’y. The domain B’ is an admissible domain in our variational problem
and 3’ is there an admissible vector since there is a continuous and one-one cor-
respondence between the boundaries b and . Therefore, because B and 1 were

supposed to solve the minimum problem, we have
Dy (3') = Dp(t) = d.

On the other hand, because of the invariance of the Dirichlet integral under our

conformal mapping, we have
Dy (3') = Dp(3) = Dz (u + €0, v)),
and because of ¢ =0, except in the rectangle ¢, we finally obtain

Dq(3) = Dqlx(u + eo, v)) = Dq(x),
as stated.

To show that the solution is a minimal surface becomes now a matter
of the classical formalism of the variational calculus, since 1 and therefore 3 is
analytical in w,v and & in the rectangle ¢ and on its boundary. The Dirichlet
integral of 3 over @ must have a minimum for ¢ =0, which by differentiation

under the integral sign can by expressed by

(8) ff(%u Jue T 3 dudv=o0, for &=o.
Q

By transforming the left side by Green’s formula, and observing that o («, v) and
hence 3. vanish on the boundary of ¢, except on L, that r is harmonic, and
that for ¢ =0 we have on L

36 = l (u) &'u (M, 0)7
we conclude
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(9) fl Tulydu = 0.

L

Since A is positive in L and since @ can be chosen arbitrarily small it follows

by the classical reasoning that in the point P

In the same way, by choosing as our cut a segment u— v = const., we

obtain
E—G= (gu - Ev) (Zgu + gv) =0

Therefore the equations (2) characterizing S as a minimal surface are proved for

every point P in B.

It should be mentioned that the same mapping theorem which permits the
»seweng together> different analytically coordinated edges of a cut, also serves to
furnish the proof for the minimum area property of the minimal surface, as
shown in [10].

§ 2. Proof without Use of Conformal Mapping.

In this section, again assuming that the domain B and the harmonic vector
z solve the variational problem, we shall prove the relation ¢ (w) = o0 without
using any theorems on conformal mapping. We shall do this not only for the case
of surfaces of genus zero but also for the case of higher topological structure.
By performing suitable variations, we first establish variational conditions
in a rather general form from which then we shall obtain the condition ¢ (w)=o0

for different types of normal domains B.

1. General Variational Formula.

To express analytically the fact that ¢ and B furnish a minimum with respect
to variations of the boundary values of ¢ and of the domain I3 we can proceed
as follows:! We transform the domain B of the variables u, v or the complex
variable w =u + 7v into another admissible domain B’ of the complex variable

w =wu" + 79 by a one-one transformation of the form

! See also Shiffman [16],
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u=u + &4
(10) v=1v +e¢M
’ o, ..
w=uw+ &(A4 + 1 M),
where ¢ is a small parameter and the quantities .4 and M are continuous funec-
tions of u, v, ¢ or #/, v, ¢ in B or B’ with piecewise continuous first derivatives'.

The derivatives with respect to all three variables are supposed to be absolutely
bounded in the domain B.

We shall use the symbol

if in the whole domain concerned we have
|4] < ae?
where @ is a constant in this domain. Then we have, if for ¢ = o the notation
A (u,v,0) = Au, )
(11)

M (u,v,0) = p(u, ),
is introduced,

(12) edy=ce¢dy =cl,=c¢ehy, etc;
a0 . '
d{u,v) D& (e o+ a);
(13) ol
o) _
5(27,77,) =1 + & (lu + [uu).

Now we introduce a variation of the vector t, replacing r in B by a vector
3(u’,?') in B', by the definition

3 () =z (u, ).

The fanctions 4, M are chosen so that B’ again is an admissible domain; there-

fore we certainly have, because of the minimum property of r and B,

Dy (3) = Di(x).

' If B is a Riemann surface then our functions are supposed to be univalued there, but not
necessarily in the simple plane.
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This gives:

d (', v

I 2
5./:f{hu(l + Edu') + g::&MzL'J [ZuEAL -+ Iu(l + SM[))] } (5(1;77)611““

Taking into account the fact that the Dirichlet integral D(z) and hence also -

/‘flxtt @vldu dv
“

is finite, we obtain, because of (11), (12), and (13)

(14) D) =Dp(3l=D{) + ¢ ff Pl = ) — gl + )] dudo,
where

(15) ptig=gp(0) =L — 1) — 2050

Hence the minimum property is expressed by the equation
(16) ff P Ay — ) — q Ay + w.)] dudv = o.

This fundamental equation can be modified as follows: We malke the as-
sumption that B is divided into two parts B = DB, + b, having the common
piecewise smooth boundary line L in the interior of B3, and we suppose that
A ++M and 2+ {u are analytic functions of w in B,. Then by (10) the
domain B, is mapped conformally onto a domain Bj; therefore the corresponding
part of the Dirichlet integral remains invariant, and we may apply our whole
reasoning only to B,. Hence under the assumption of the boundedness of the
derivatives of 1, w for B, not necessarily for B,, we have instead of (16) the

relation

(16 a) ff {p(Ae—10e) —qhy + )} dudv = o.

By

Under the further assumption that A and g vanish in a neighborhood of the
boundary lines of B,, except L, the condition (16a) is, by integration by parts

equivalent with
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(17) AMpdv + qgdu) + p(pdu— qdv)=o.
Lt

For, the expressions p and ¢ satisfy the Cauchy-Riemann equations, so that the
resulting domain integral over B, vanishes and only the contour integral remains.

If J denotes the imaginary part of a complex quantity, we may write the
variational condition (17) in the convenient form

(18) S[(} + 7p) @ (w) dw = o.

L

Our general conditions (16) and (18) will now be applied to definite types
of domains B, which requires a suitable choice of the functions 4, M.

2. Variation of the Boundary Representation.

We suppose that B is bounded by circles, one of which e, g. C;, may be
the unit circle with corresponding polar coordinates r, 0. Keeping B fixed,
we establish the variational condition referring to the representation of I', on
the corresponding boundary curve ;. TFor this purpose we choose 4 + M =o0
except in a small annular ring R, adjacent to ;. With R, we denote such
an annular ring between the circles with the radii » and 1, with B, the domain
B— R,, with C, the circle with the radius ». From (16) we infer, since the
existence of the Dirichlet integral D(z) implies

ff(xi+xi)dudv—>o, for -1
RT

and therefore for » —» 1
ff(lpl +{ql)dudv - o,

B,

that
(10) ff (9l — 1) — g (o + )} dudo > o,

for » »1. Since A + ¢u was assumed equal to zero except in a small ring R,
adjacent to C; and since p and g satisfy the Cauchy-Riemann equations we
obtain by integration by parts
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(20) 3[@ + su) @ (w)dw - o, for r-o.

Gt

Now, with an arbitrary real function «(r,f) having continuouas first derivatives,
we choose in the neighborhood of C; the variation

. eiea(r,@) — 1
A+iM=—w"— .

Our transformation (10) then becomes ' = we'** and transforms the circle C,
into itself in a one-one way if ¢ is sufficiently small. Since near C,
A+ ip=zwealrb),

our condition (20) becomes

(21) E]?fa(r, 0) w e (w)dw — o,

Cp

where 9t means »real part>. By dw =<wd8, this is equivalent to

(22) Sfa(r, 0) wiep (w)dl - o.

Cp

Since ¢ is arbitrary, we can, for any boundary cirle () easily deduce from this

formula':

The analytic function:
(23) Y (w) = w? p ()

has real boundary values on the boundary circle C. This incidentally implies that
the function ¥ (w) and hence ¢ (w) is regular on the boundary.

In the simplest case of the Plateau problem we conclude immediately that
in the unit circle 9 (w) =0 is a real constant, which must be zero since ¢ (w)
is regular for w==0. Thus, in this case, the solution is recognized as a minimal
surface.

! Bee [10] p. 712 or [12].
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3. Variation of Circular Boundaries.

We now consider variations of the domain L. In particular, again sup-
posing B to be bounded by circles, we vary I3 with respect to a boundary circle
C, by displacing it, or by expanding or contracting it around its center.

A translation of the circle in direction of the w-axis is effected by putting
A+ M=%+ 1u=1,

in a mneighborhood of C,, bounded by a line L which can, in B, be deformed
into €y, and 4 + ¢M = o in the neighborhood of all the other boundary com-
ponents. Since in the ring B, between L and C, the expression 4 + 7u is con-
stant, hence analytic in w, we can apply (18) and obtain immediately

%fgp(w)dw=o.
L
In the same way we obtain, by choosing 4 + ¢ =17 in B,, the equation

fﬂfq)(u‘)di():O,

L

which combined gives
(24) [(p(w)dwzo.
I
A dilatation of the unit circle €| can be represented by putting in B,
w=((0+ew or w=(1+7ew,

which gives

A+ du=w or A+ ip=zw,
and therefore, as above

(25) fwgo(w)&w:o,

L

as an expression of the variability of the radius.
Because of the regularity of ¢ (w) on the boundary (24) and (25) are equi-
valent to '
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(24 a) f(p(w)dw=o,

¢

(25 a) fwgp(w)dwzo
¢
for each boundary circle which may be arbitrarily varied within the class of
admissible domains.
The relation ¢(w)=o0 is a consequence of the conditions (23), (24), (25), if
the domains B are plane domains bounded by % circles, which correspond to the
case of genus zero and % contours. For the proof we refer to [10].

As pointed out there (p. 721 f.) the same reasoning yields ¢ (w)= o0 also in
case of higher topological structure, if e.g. the class B consists of fundamental
domains of Schottky-groups from which £ circular discs are removed.!

In this paper I want to carry out the variational analysis for another class
of representing domains B namely Riemann surfaces, all of whose boundary lines
are unit circles.” For the analysis of such domains we must study the effect.
of a variation of branch points which here is the only admissible form of a varia-
tion of the domain.

4. Variation of Branch Points.

We now suppose that the domain I is a Riemann domain over the «-plane
containing a branch point P, e. g. the point w = 0, which is not fixed for the
class of admissible domains. Then we perform variations of the domain B
by only deforming a neighborhood N of the branch point enclosing a smaller
neighborhood B, which is bounded by a closed curve L on the Riemann domain
B. We again choose 4 and p as zero outside of the larger neighborhood N,
and 4 + 7u as an analytic function of w in B,; then our formula (18) is applic-
able. 1If, in particular, we choose 4+ 7u=1 or A+ 7iu=7¢ in B,, we obtain
immediately as before the variational condition

(26) f@(w)dwzo

L

! In [10] it was supposed that such fundamental domains are bounded by circles. However, this
restriction is pot essential and shounld be dropped.
* These domains were introdnced in [14]. Sce also [12].

9--39615. _dcta mathematica. 72. Imprimé le 22 janvier 1940.
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where L is any closed curve on the Riemann dowmain enclosing the branch point
P and only this branch point, where ¢, as we shall see, may have a singularity.

In the case of a simple branch point this is the only variational condition.
However, if P is a branch point of higher order, say of order », we have to
supplement the condition by others corresponding to a resolution of P into
branch points of lower order. This resolution is effected in a simply connected
neighborhood B, of P, bounded by L, by an analytic transformation of the form

»

(27) w —w= gw *!

v

(28) w —w=dew *!

where » may range from o to r—1." Accordingly we choose w' —w=(1+7u)e
in B, and A+ ¢u=o0 outside of a wider simply connected neighborhood N
around P.

Then our conditions (18) immediately yield as before

8‘1[10"“¢(w)dw—-0, warﬁq)(w)dw:o,
I

L

or
v
(29) /‘207'+1(p(w)dw =0,
4
forv=o0,1, ..., r— 1.

For these conditions the following interpretation can be given: An analytic

function of the form
@ (w) = = fu (w)®

has in general at the branch point P a polar singularity of the order 2.
Indeed, by

o= +1!

the neighborhood of the branch point w == 0 is transformed into the simple neigh-
borhood of o=o0; since for ¢ - o, the functions f,(w) have their real parts
bounded, they must be regular in o; hence

20 =gl = ($2) 3 (%) = -1 a0

do (r + 1)2 o?r

! As easily seen by first mapping the vicinity of P on the simple neighborhood of ¢ = o
by w = or+1, (27) and (28) produce for B’ one (¥ — 1)fold and » + 1 — » simple branch points.
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where A (o) is regular for ¢ =0, which exhibits the character of the singularity
at ¢ =o.
Now the conditions (29) can be written as conditions in the o-plane:

[°v+r§pd‘7: [UVJ”X(U)dU:O (v=0,1,...,7—1)
. J,

L'

where L' is a simple closed curve around the pole ¢ =o.
Therefore, in the expansion of x(s) in powers of o
ar U, by

a
@lw)=y0)= - +;‘+ S e S SRR e

all the coefficients b, must vanish and we have as a final expression of the varia-
tional conditions for a branch point: The function ¢ (w) has at a branch point of

order r a pole of an order at most 7.

5. Evaluation of the Variational Condition for Riemann Domains B Bounded
by Unit Circles.

On the basis of the previous results, the proof of the characteristic relation
@ (w) =0 for the solution of the variational problem becomes very simple, if the
underlying class of domains B is chosen not as a domain in the plane but as
a Riemann surface all of whose boundary lines are unit circles.! This class
is defined as follows:

We consider for the case of genus zero a k-fold connected domain B formed
by the dises of % unit circles which are connected in branch points of the
total multiplicity 2% — 2. For higher genus p, we obtain domains B by affixing
to the kfold circular disc p full planes each in 4 branch points®. Branch points
connecting two circular discs are supposed to be interior points, while branch
points connecting full planes with circular discs may lie on boundary circles.

We make the assumption — for the proof under suitable conditions see § 4
— that our variational problem is solved by a vector ¢ in a domain B of this
class.

By reflecting our domains on all boundary circles, we could consider instead

! See also [12] and [14].
? Each such full plane represents a »handle» and increases the genus by I.
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lines and then require that the functions r have the same values on the Rie-
mann surface at points corresponding by this symmetry. Such closed symmetric
surfaces which remain connected after being cut along the unit circles, also take
care of non-orientable minimal surfaces.!

Since under a linear transformation of the unit circle into itself the Dirichlet
integral is invariant, we may conveniently assume for the solution g, I that
w =0 is no branch point.

In considering first the case of genus zero, we count the zeros and poles of

Y (w) = " g (w)
in B. Tf N is the total multiplicity of the former, P that of the latter, and
if we assume that (w) is not identically zero, we have

(30) N— = ;fdloo W (w)

the integrals being extended in the positive sense along Oy, where C; is the
unit circle €, except for small halfcircles circumventing, in the negative sense,
zeros of ¥ (w) which may lie on C,..

Since ¥ (w), according to the variational condition established in No. 2z, is
real on C,, the arcs of (), do not contribute to the imaginary parts of the inte-
grals; while each circumventing halfcircle contributes — m< for a simple zero,
and — sszw¢ for a zero of order s. Hence,

N—P=o,
or
NP
From the result of No. 4 we know that P =< 2k — 2; on the other hand the
factor w® in (w) provides a double zero at each of the % origins of the discs
forming B and hence ensures N =2k Thus

2k< N<2k—2

would result. This being absurd, 1 (w) = o, hence, ¢ (w) =0 is proved.’
For higher topological structure the same reasoning holds. The equality

(30) again leads to a contradiction. E‘or in addition to the 2% zeros at the

' See p. 78. Closed, symmetric Riemann surfaces as domains of representation are used in a
- general way by Douglas. Cf. [8].

? The following variant of the reasoning, due to M. Shifiman, may be indicated: We can
replace the variational condition (29) by the equivalent: The function
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k origins of the unit circles, we have 2p more zeros at the origins of the p full
planes and zp more at their points of infinity. The latter follows because
Ju(w) is bounded, hence regular there; therefore f;(w) has a zero there of
order at least 2 and likewise «®ZX3f;(w)® has a zero of at least the order 2.
Thus N=2k + 4p, while P<2k—2 4+ 4p, so that a contradiction N< P
again results if the right hand side in (30) is non positive which was proved
if all the branch points are interior points.

However, in the case of higher topological structure, if branch points lie on
the boundary', the following supplementary argument is necessary, because such
branch points make a positive contribution to the right hand side of (30). As
appears immediately from considering the corresponding symmetric surface B*,
such a branch point connecting » + 1 sheets in B is a 27-fold branch point on
the symmetric surface B*. Hence ¢ (w) may have at this point R of C, a pole
of order not higher than 272 On the other hand v (w) = w® ¢ (w) is real on
C. as before. By the same reasoning as above, circumventing B by a small
circular arc, we find now as contribution to the right hand side of (30) at most

the positive value —;27' ==r, while our branch point on the boundary reduces the
total multiplicity of interior branch points, and therefore the number P, by .

Thus the conclusion above, leading to a contradictory inequality, subsists.

In a similar way the reasoning for non-orientable surfaces can be carried out.

w

fw(p(w)dw=x(w)=@ tio
w

is regular and univalued in B. (See also [10)).

Now the condition (23) shows that ¢ = const. =g, on each boundary C,. Hence not only ¢
but also ¢ can be extended beyond C» and has equal values in points near (, and symmetric to
Cy. But ¢ must attain its maximum in B-+ € in a point K on a circle C,. This maximum
would thus be a maximum of ¢ in a whole neighborhood of R, which is impossible for a regular
not. constant harmonic function.

! This occurence can, as the construction of the solution in § 4 shows, not be excluded,
unless the genus is zero.

® This follows by the method of Nr. 4. We first transform B by a linear transformation

so that the unit ecirele, i.e. the symmetryline, becomes the real axis and that the branch point
v

+1

falls into the origin. Then we apply in the vicinity of the origin the variation w'—w = gw”

v v—1
for odd » and for » = o0, and the variation w' —w=-c¢ (w?H'l—l— ww'H) for even positive v.
Thereby the symmetry of the image of B* and the one-one correspondence of the boundaries of
B and B’ is preserved so that the reasoning of Nr. 4 remains applicable. Because of the sym-

metry of ¢ (w) the condition (29) is again a consequence, L now being a ‘closed curve on B*.
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8§ 3. Solution of the Variational Problem in the Simplest Case.

What remains to be shown is the existence of the solution of the variational

problem. The discussion of this cardinal point is based on a simple Lemma.

1. Fundamental Lemma:

In a domain G =Gy of the u, v plane, which may vary with the index n, we
constder a class of continuous vectors = gn with piecewise contenuous first derivatives,
so that thedr Derichlet integrals are equally bounded by a constant M.

Around a fixed arbitrary point @, we draw cercles of the radius r; C, may denote
an arc or a set of arcs of such a circle contained tn G and s may be the arc length

on Cr. Then there exists for each positive 0 < 1 a value ¢ with

0<g= V;)‘,
so that
(31) f s <l
0
C
with
(52) e0) =22 oo
loga
Jor & — o.

Consequently for the length L, of the image C; of C, in the r-space, we have
(33) L <2ne(d).

The proof of (31) follows immediately by introducing in D (x) polar coordinates
r, & around @ and reducing D(r) to a double integral®; then (33) follows by

Schwarz’ inequality because of

L, :j Viids.
¢

e

! See [10] p. 688 f. The fact that G is an open domain presents no difficulty since the
integrand is positive in G.
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2. Minimizing Sequences. Equicontinuity.

We consider our variational problem for the simple Plateau problem, B being
the unit ecircle with the circomference ¢ mapped by the admissible vectors g
monotonically on the (rectifiable) Jordan curve I. A sequence 1, of admissible

vectors for which

D) ~d

is called a minimizing sequence if, as before, d denotes the lower limit of D (z).
Since a linear transformation of the unit circle B into itself leaves the Dirichlet
integral unchanged, we may in advance assume that by such a transformation
the vectors r, coordinate three given points P, P,, P, on C to three fixed points
P{, P;, P; on I (three point condition), so that the mutual distance between the
latter points is greater than a positive quantity a.

We state: The boundary values of a set of admissible vectors ¢, are equi-
continuous if the 1, satisfy the three point condition and if D (r,) < M with a
fixed M.

Proof: Any Jordan curve I' has the following property. There exists for
©>o0 a ofr) with ¢(z) > o for v > 0, so that for any pair of two points 4’, B’
on I whose distance is not greater than 7, one of the two arcs A’ B’ on I' has
a diameter not exceeding o(z). Now let ¢ be any point on €. We choose for
a given small ¢ the quantity d according to (32). Then, by our fundamental Lemma,
there exists a ¢ with d <o =<V, so that the inner arc A B of the circle with
the radius ¢ around ¢, i.e. the closed intersection of this circle with B + C,

is mapped on a curve with the length not exceeding v =12 we.

The endpoints A, B of this arc, which are on C, are mapped on two points
A’ B on I whose distance does not exceed z; and hence, one of the arcs A" B’
of I' has a diameter not exceeding o (7). For sufficiently small ¢, or d, or =,
this arc must correspond to the small arc 4 @ B of C, becanse the larger of the two
arcs on I''must contain at least two of the three fixed points Pi, P;, P; and because
the three point condition prevents the small are 4 @ B, for sufficiently small d,
from containing two of the fixed points P, P,, P, on . Hence it is proved
that the oscillation of gy, on any are of C with a chord not exceeding d does not
exceed ¢, with ¢ — o for d — 0. Since all these quantities depend on M only,
the statement concerning equicontinuity is proved. The vectors y, need not be
harmonic. But in this case, by replacing t. by a harmonic vector with the same
boundary values, we obtain a vector with a smaller Dirichlet integral according
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to the classical Dirichlet Principle.! Therefore, we may assume that the minimizing
sequence under consideration consists of harmonic vectors.

To solve our variational problem, we now choose among the uniformly
bounded and equicontinuous boundary value functions of the vectors 1, a uni-
formly converging snbsequence. The corresponding harmonie vectors 1, then

converge uniformly also in B and

r=lim 1,

is an admissible harmonic vector. Since for each closed subdomain B the deriv-
atives of the harmonic vectors converge uniformly also, we have
Dz (x) = lim Dg(x,) < lim D (z,) = d.

Hence
D) =d

and therefore, since d was the lower bound,
Dp(x) =d.

Thus 1 represents a solution of the variational problem and therefore, because
of § 2 and § 3, of the Plateau problem.

3. Remarks — Semicontinuity.

The preceding reasoning holds if 1, does not map C exactly on I" but on a
continuous (rectifiable) curve I'"™ which tends to I' in the strong sense,? i.e. so
that together with two points P®™, @™ on I'™ tending to P, ¢ on I" the whole arc

P"/Z)” on I'™ tends to the are I’/(; on I We need not suppose that I'" is a
Jordan curve, but we permit I'™ to have multiple points and corresponding
small loops which disappear in the limit. If r, satisfies a three point condition,
by mapping three fixed points P,, Py, P, of C on the points P{™ P, P®
which tend to three points P;, P, P5 on I', then equicontinuity of the boundary
values of 1, is proved exactly as above. Hence, the concept of a minimizing
sequence may be generalized by permitting for r, a mapping on I'™, without
changing our reasoning. At the same time we draw the conclusion:

If d™ is ‘the lower limit of D(r) under the condition that r maps the
boundary C on I'™), then

d < lim inf d™.

! See (11l
2 Or in the »Frechet sense».
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In other words: The lower lLimst depends on the boundary in a semi-continu-
ous way.

A second remark is: The solution ¢ furnishes eo ipso a one-one correspondence
between the boundaries ¢ and I'. For the simple proof we refer to [10].

Thirdly: The three point condition serves to ensure the equicontinuity of the
boundary values. It is possible to attain the same objective in other ways.
For example, we consider in the g-space a Jordan curve H which interlocks with
I Then each surface @ bounded by I must have a point in common with H.
Hence, if « is a lower bound for the distances between points of H and points
of I, there must be a point 4 in B, so that the corresponding t has a distance
greater than e from I'. By a linear transformation of B into itself we may
throw the point 4 into the origin. We assume that the vectors ¢ of a minimal
sequence be subject to this transformation which, because of the invariance of
the Dirichlet integral under conformal mapping, does not change the character of
a minimizing sequence. Then we can prove equicontinuity of this new sequence
by slightly modifying an argument from No. 2: If not the arc ¢: A ¢B, but the
complementary arc ¢* were mapped on an arc ¥ of I' with a diameter less than
o, then we consider the subdomain B’ of B bounded by c¢* and the circular arc
¢e with the radius ¢. On the boundary of B’, the oscillation of y, is less than

o+ Vzme. Hence r at the origin, according to the maximum and minimum

principle of potential theory, cannot differ by more than ¢+ Vz2me from a
boundary value for B, e.g. from the value in A, which is on I. If ¢ is suf-
ficiently small, we have o6 + V27m¢ < ¢ and this would contradict our assump-
tion. Hence, again the equicontinuity is established.

Thus we may impose the following condition in our variational problem,
instead of the three point condition: The origin of B shall have an image ¢
at a distance not less than « from I.

Fourth: As was first emphasized by Douglas, the solution of the Plateau
problem contains — for the special case of a plane curve I — a proof of the
Riemann mapping theorem stating that the unit circle can be mapped conformally
on the interior of a plane curve I. In addition the one-one correspondence of

the boundaries follows.

4. Critical Analysis of the Method.

The method requires no more knowledge of potential theory than the Pois-
son solution of the Dirichlet problem for the circle and its minimum property.

10 —-39615. Acta mathematica. T2. Imprimé le 22 janvier 1940.
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The conformal equivalence of the unit cirele BB with other plane domains bounded -
by a Jordan curve being a consequence, we might have chosen for B, instead of
a circle, such a more general domain. This remark apparently removes the ob-
jection that the method refers to a special type of parameter domains B. How-
ever, we could have chosen as parameter domain quite different simply connected
Riemann domains B for which the previous method does not establish the con-

formal equivalence to a circle. For example, B may be a parallel strip o=u =1,

— o < p< ® except the circle u? + v* < i Simple connectivity is established

by coordinating and »identifying» the boundary points of the strip on u=o
which those on w=1. E.g., we may identify the point u =0, v =a with the
point w=1, v=+ta with fixed ¢. In such corresponding points the values of
r shall be required to be equal. Or we might choose for B any simply con-
nected Riemann surface bounded by a Jordan curve. A priori it is conceivable
that such domains would provide a different lower limit d and hence different
solutions. This is not the case because Riemann's mapping theorem can be
generalized to any such simply connected domain. However, the proof of this
fact is not obtained by our method and therefore an a priori knowledge of some
of the theory of conformal mapping of Riemann domains' seems unavoidable,
if one wants to free our solution from reference to special classes of domains B.

It is also on the basis of such mapping theorems that the equivalence of
our solution with that of the least area problem follows: d is the lower limit

of the areas of all surfaces, images of B, which are bounded by I'.?

§ 4. Solution of the Variational Problem in the General Case.
1. Condition of Cohesion.

In the general problem of Douglas the boundary I' consists of % separated®

Jordan curves I'y,..., Ix, and the minimal surface under consideration may
! Or, what for simply-connected domains ~— and only for these — is equivalent, of Green's
funection.

? See [10] p. 721

® It may be pointed out that eurves I', may even be permitted to have points in commen.
Our methods can then easily be applied, and the result contains an alternative. E.g., for two
Jordan curves with a point P in common, we obtain either a regular minimal surface or two dif-
ferent surfaces bounded by I'; and I', respectively and having P in common; of these cases the
one occurs in which the lower limit of the Dirichlet integral — or the area — is smaller. It is
easy to verify this result on the basis of the subsequent reasonings.
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have the genus zero or any prescribed genus p or, if non-orientable, characteristic
number x. Accordingly the domains B of representation must have the same
topological structure.

As simple examples show, it may be that the general problem has no proper
solution. For example, there is no doubly connected minimal surface of revolu-
tion to be spanned between two parallel circles, if these circles are far apart.
Or for a single plane boundary curve there certainly does not exist a minimal
surface of genus one. Therefore we have to specify the problem by additional
conditions, sufficient for the solvability., In this section the existence of the
golution will be shown under the condition that for minimizing sequences a
certain tendency to degeneration is excluded a priori. In the next section this
condition will be replaced by another in the form of an inequality, first in-
troduced by Douglas which is more easily verified in concrete cases. It is in con-
nection with this form of sufficient conditions that recourse to the mapping
theory for higher topological structure seems inevitable.

We define: A sequence of surfaces 1, in the r-space satisfies the condition of
cohesion or condition €, if there is a positive « so that every simple closed curve
on 1,* of diameter less than « can, on the surface, be continuously contracted
to a point (or is homotopic to zero).? Otherwise the sequence is said to tend to
degeneration, which means essentially that the surfaces tend to degenerate either
into separated surfaces connected only in single points, or for higher topological
structure, e.g. genus p, possibly to degenerate into a surface of lower structure,
e.g. of lower p. '

If for our variational problem, formulated for a certain class of domains
B of representation, there exists a minimizing sequence satisfying the condition
€ of cohesion, then also the problem is said to satisfy the condition €.

It may be emphasized that in important cases the condition can be verified.?

2, Solution of the Variational Problem for Genus Zero and Plane Circular
Domains B.

Now the main theorem is: If the condition € us satisfied, the variational
problem can be solved. Then, either by § 1 or by § 2, the solution of the Douglas-
Plateaw problem is established.

! By this is meant a curve corresponding to a closed Jordan curve in the parameter domain B,

® The process of deformation is always defined with respect to the parameter domain.

? S8ee e.g. for the case of plane houndaries [12], where mapping theorems appear as a con-
sequence.
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The proof is essentially the same for the different types of normal domains
B considered in § 2.

To construct the solution under the assumption that the condition € is
satisfied, we consider the minimizing sequence 1, in corresponding domains B,
such that

DBIL (gn) - d.

We have to show that we can select a subsequence of the domains B, tending
to a limiting domain B of the prescribed topological type and that on the
boundaries of B the vectors g, are equicontinuous functions; whereafter, the
reasoning proceeds exactly as in § 3.

We carry out the proof for the case of genus zero, assuming the domains
B to be plane regions bounded by % circles. (The reasoning is typical of that for
other suitable classes B). By a linear transformation we may transform such a
domain into the whole plane exterior to % circles, or into a domain bounded by
two concentric circles, €, C;, one being the unit circle, and & — 2 circles lying
in the ring between €, and C,. This latter normalization — which replaces
the three point condition of § 2 — shall now be assumed for every B,.

We prove that the DB, define a limiting #A-fold connected domain B.
This is evident, if B, cannot degenerate in one of the following ways:

1) Two circles, e.g. C; and C,, come arbitrarily near at a point P, while
their radii remain above a positive bound «.

2) The same happens, but the radius of one of them, say C,, shrinks to zero.

3) One or more circles, e.g. C,, C,, shrink to the same point P while P
remains bounded away from the non-shrinking circles.

The first type of degeneration is excluded as follows: By our Lemma, § 3,

there is for a fixed arbitrarily small ¢ a circle around P with radius ¢ between

and V'd so that the image of any arc of this circle by 1, has a length L, with

Ly < 2me(d) where ¢(0) = 2 M and M is a bound for D(r.). But an arc of this
log —

=0
circle joins, for sufficiently small J and sufficiently large %, a point of C, with
one of C,; the image therefore joins a point on I'y with one on I',. The
distance between points on these curves is bounded away from zero. Since
and hence ¢ and thus I, can be made arbitrarily small, we therefore have a

contradiction.
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The third type of degeneration is impossible, because here we can, with
fixed sufficiently large n, include the circles shrinking to P in a circle K, with
a radius ¢ around P, so that the image of K, by 1, has a length L, not exceeding
V2rme(d). But this shows that r, tends to degeneration in contradiction to
our assumption €.

To exclude the second type of degeneration, we consider the typical case
that a cirele C; shrinks to a point P on (), while C,, concentric with C,, stays
away from C;. Again, by our lemma we can, for suitably small fixed o
and n» sufficiently large, draw a circular arc ¢=e¢, around P joining two
points A und B on (), so that the length L, of the image y =y, of ¢ by
tn is less than Vz2me(d)=n(d). The arc APB and the complementary arc ¢*
of C; are mapped on two complementary arcs of I', whose endpoints, the images
of 4 und B, have a distance less than 7(d) so that one of them has a diameter
arbitrary small for sufficiently small 6. This arc together with the arc y, then
defines on the surface 1, a closed curve with a total diameter arbitrarily small
if ¢ is chosen suitably small. This curve is, on B, not homotopic to a point.
For it separates on the surface I'y from I, because in B, the corresponding
curve separates C, from (;. But this expresses the fact that 1, tends to separa-
tion, in contradiction to our assumption.

Hence degeneration of B, is excluded, and we may assume that the sequence
B, or a subsequence tends to a domain B of the same type.

Now equicontinuity of r, on each boundary, e.g. C), is proved as follows:
As above, there exists an inner circular are ¢ = ¢, with radius ¢ = ¢, around P
on C, joining two points A, B of C, with 6§ < ¢ < V4, so that for the length
L, of the image y, of ¢, we have L; < 2me(d) = n(d)%
on (, means that the oscillation of 1. on the arc APB remains arbitrarily
small with d. If this is not so, then ¢, together with the arc ¢ of O, com-
plementary to the arc APB has as image a closed curve £, on £, whose diameter
can be made arbitrarily small with § and which cannot be contracted to a point
because it is homotopic to the curve Iy. In other words, non equicontinuity
would mean tendency to separation in contradiction to our assumption. Hence

Equicontinuity of 1,

the equicontinuity is proved. ,

The existence proof then is completed exactly as in § 3 after we replace
the 1, by harmonic vectors with the same equicontinuous boundary values, so
that a suitable subsequence of them converges to an admissible harmonic vector
T in B for which D () =d.



78 R. Courant.

3. Solution for Other Cases and Other Normal Domains.

If B, instead of being a circular domain, is of another type, e. g. a parallel
slit domain (see § 2), the reasoning remains the same. However, if we pre-
scribe a higher topological structure for the minimal surface bounded by I,
then B cannot any longer be chosen as a simple plane domain. We have the
choice between plane domains B with »inner edges» coordinated by analytic
correspondences, as slit domains, or fundamental domains of groups of linear
transformations (see [10]), or between Riemann surfaces B with several sheets
and branch points. In either case the proof is very similar to that above. For
parallel slit domains B we refer to [10] and [16]. For the Riemann surface
type, we consider as particularly simple the surfaces introduced in § 2, bounded
by % unit circles and, in the case of genus p, having % + p sheets. By a linear
transformation, they always can be normalized so that one branch point has a

fixed position, e.g. at w=o0 or at w= é, bounded away from the boundary

circles.
The slight modification necessary may be explained for two-fold connected

domains B, consisting of two unit circles with two connecting branch points
one of which, ¢, may be fixed, e.g. at w = é The only possible variability of

B is the position of the free branch point P, and we have to show that this
branch point P in B, tends neither to ¢ nor to the boundary. The first degen-
eration is excluded as above by our Lemma'; the second as follows: If P tends
to a boundary point B on the unit circle €, then we draw around R for suf-

ficiently small d a circle (, with radius ¢ between § and V'é as in our lemma.
P will, for large », be separated from @ by C,, and thus C, will join a point
A4 on C, with a point B on C,. Since on (, the oscillation of 1, becomes
arbitrarily small with J, while the images of 4 and B must have a distance at
least equal to the minimum distance between the curves I'y and Iy, this type
of degeneration is excluded.

Higher topological structure does not affect our previous reasoning to ex-
clude degeneration of B,. — In the case of non-orientable surfaces it is preferable
to use the closed Riemann surfaces symmetric by reflection on % unit circles.
(See § 2). TFor example, for the type of the Moebius strip we may use a

! It is obvious that the Lemma is valid also for Riemann surfaces B.
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surface consisting of 3 sheets, symmetric with respect to the unit circle in one
sheet, this sheet being connected by two branch points to each of the other two
and those latter by two branch points connected together.

§ 5. Further Discussion of the Solution.

1. Lemmas. — Theorems.

The sufficient condition € of § 4 can be replaced by another which appears
more explicit. A surface r having the boundary I' is, with respect to the re-
quired topological structure, said to be degenerate, if it consists of two separate
surfaces (possibly meeting each other in points) having together as boundary I"
and a total characteristic number not exceeding the prescribed x; or if, without
being decomposed, it has a lower genus or characteristic number than prescribed.
The lower limit for such a type of degenerate surfaces with the boundary I" may
be called d*. If p is decomposed into two surfaces 3’, "’ with I and I as
boundaries respectively and with prescribed characteristic numbers x’, x” as
well as prescribed character of orientability, then we define the Dirichlet inte-
grals D'(¢'), D”(x”) and the lower limits d’ and d"’ correspondingly and, for this
type of degeneration

a*=d +d"

We shall show that for every type of degeneration

d=d
and, in the next section, we shall prove the mazn theorem:

The variational problem and with <t the Douglas-Plateau problem has a solution,
if the strict inequality condition
d<ad*

s satisfied for every possible degeneration.'

To prove these statements without making use of the fact that the lower
limits d, d*, d', d’ are really lower limits of the area, we shall formulate two
properties of the Dirichlet integral in two Lemmas and then prove the lower
semicontinuous character of the lower limit ¢ in its dependence on I

Lemma 2. If 3(u, v) ¢s an arbitrary continuous vector with piecewise continuous
first derivatives in B with finite D(3) and with |3| < M, then to every point P

! An equivalent statement was first formulated by Douglas [3].
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of B, e.g. the origin, and to any prescribed o therve exists an arbitrarily small 7
and a vector Y(u,v) such that Y is equal to 3 outside the neighborhood w® + v* < 5?

of P and has a prescribed fixed value, e.g. Y) =0 in the smaller neighborhood
u? + v < n* and that
(34) D)< D) +o

In other words, without essentially increasing the Dirichlet integral, we can
locally pull out a spine from the surface 3 reaching to a given point. For
the proof' we define with »® =« + ¢* and with given 5 <1 the function

p()=plu, v) by

p=1forr>n p=oforr<z’ p=1+ : loggfor N < <n,

log 7
and 1 by
(35) Y (, ) = p(u,v) 3 (u, ).

L and, using |pl <1, il <M

We find D(p)ZEf[(pi + py)dudv=—n

and Schwarz' inequality

log 7

D(U)SD<3) + MzD(p) +ffpa(pu3u +27v3v)dudv = _D(?;) + M282 + ZMVGD(ﬁ)

pr<r<y

or

(36) D)=V D) + MVep.
Since we can satisfy (34) by making 5 and hence ¢ sufficiently small, our Lemma
is proved.

An immediate consequence of Lemma 2 is the theorem: There is always
(37) d=<d*
wm particular
(38) d=d +d”
Jfor every type of degeneration of the surfaces under consideration® We prove this,
e.g. for Riemann domains bounded by unit circles, assuming the degenerate
surfaces to have %" and % boundary curves forming the boundaries I’ and I'”,

respectively. Then we consider two such corresponding domains B’ and B with

vectors ¢, t’" for which, with fixed arbitrarily small e,

! See [10] p. 685 f. )
2 See [10] p. 699, where the proof is given in detail for plane circular domains.
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Dp(¥)<d +e  Dp@)<d +e

In two congruent sufficiently small circles XK', K” in B' and B” respectively,
we replace according to Lemma 2 these vectors by vectors §)” and §)” respectively,
which vanish identically in these circles and for which

Dp@y)<d +2s  Dp(y)<d' +2ze

Finally we join B  and B” by two branch points situated within K’ and K.
Thus we obtain a domain B in which )" and y” together define a vector Y
admissible in the problem for I and with the Dirichlet integral

D)= Dp )+ Dp ()< d +d’ + 4.
Hence, whatever ¢ may be, we have

d<Dgly)<d +d’ + 48,

which proves our theorem.

The semicontinuity of ¢ and the main theorem will appear as a consequence
of a further lemma, by means of which the treatment given in previous papers
is essentially simplified: :

Lemma 3: If the sequence 3. of admissible vectors with D (3,) < M tends to
degeneration as described in § 4,1, we can replace 3, by a vector v, in B, so that
ha 8 actually degenerated and so that

(39) D) = D () + o,
with 6, — 0 and with the boundary I'™ of vy, tending to T in the strong sense.

In other words, without mnoticeably interfering with the Dirichlet integral
or the boundaries one can slightly deform a sequence of surfaces tending to
degeneration into another sequence whose members are actually degenerated, the
different parts touching in a single point.

Proof: We may suppose that our sequence degenerates around the origin
r==o, i.e. that there is on 3, a curve 7,, on 3, not homotopic to zero, whose
largest distance d, from the origin tends to zero with increasing #. Then we
subject the whole m-dimensional z-space to a deformation which contracts the
interior of a small sphere around the origin into the origin and leaves all the
points of the space outside a larger, but still small, sphere unchanged: The
point 2z is taken into the point y by

11—-39616. Adcta mathematica. 72. Imprimé lo 23 janvier 1940.
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Yo =plr)zu or y=p()3
where p(r) is the following® function of the distance r=V2* + - +23 and a

parameter 7:

! 17 2 g <
lognlogrforn_q =71.

p=1 for r>mn; p=o for r<172;p:1+

Now we substitute for z, the values given by the vector 3(u,v) and for 7 the

value V4,. Then the vector
(40) Dh=1p (7”) 3n
represents a degenerated surface as described in the Lemma. We have to
establish the inequality (39).

Omitting in the following the index # we consider in B the open point
set B* where n*< |3 =7r <7 We have

I . g
(41) D(D):;ff {(p3u +pu?j)z + (p%v +pv3)2} dudv=a + b+ c,
B

where because of p <1

(42) azéffpg(ai—F35)dudv£D(3),
B

furthermore
I 2 2 I 2 2
(43) b:;jff(pu+pv)dudv=5ff32(pu+p@)dudv,
B B*

(44) C:ff(ppu?)%u+ppv33v)d“dvsff(ppu52m+ppv35v) dudv.
B B*

Now we have in B* with

I 1
lpol =213l Apel=c_Isl,  lppassel =esi  |pposs] < e

Hence, because of | 3| =1,
8° (P + p2) = & (31 + 5)

! This function is essentially different from that nsed for Lemma 2, because it refers to the
vector space, not to the parameter domain B.
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and
b=¢&Dp(3) = & Dy (3),
¢ <2&Dp:(3) < 2¢Dp(3).
Therefore
D) =Dp@) (1 + 26+ &) =(1+ ¢*D3),

which proves the lemma since ¢ tends to zero with ».

2. Semicontinuity of the Lower Limit d. — Sufficient Condition.

We want to establish the following theorem: If I'™ 4s a system of k con-
tinuous contours — not mnecessarily without multiple points ~— which converge to I
in the strong sense, and tf tn tn the domain By of the prescribed structure s a vector
of the admissible type mapping the boundary of B. monotonically on T'™, then we

have the relation

(45) d <lim inf Dz (ts),

whech expresses the semicontinuous dependence of d on I'. For the proof we may
use induction assuming the theorem to be true for lower values of % or for
lower topological structure.

There are two possibilities: First: the r, satisfy the condition € of cohesion.
Then our reasoning of § 4 subsists literally; the domains B, form a compact
set and define a limiting domain B; we have equicontinuity of the g, on the

boundaries, and the corresponding harmonie vectors yield a limiting vector ¢ with
D(z) <1lim inf D (z,)

which maps the boundary of 5 on I" and has the prescribed topological properties.
All the more (435) holds.

Second: the g, tend to degeneration. Then we may assume — if necessary after
choosing a suitable subsequence — that there is on the surface y, a closed curve
7» not homotopic to a point, so that on =, we have |1.]| <d =, > 0. To the
curve v, there belongs in B, a closed simple curve f, which in case of genus
zero separates B, into the domains By, B, bounded by ¢, and by the systems
¢’ and C” respectively, consisting of "> o and %" >o0 boundary curves of B,
with ' + &” =k, and which in case of higher topological structure may dissect

B, into a domain of lower topological structure'.

! Or separates into different surfaces.
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We first discuss the case of genus zero! supposihg that the representing
domains are plane domains, e.g. domains bounded by k& circles, two of them
concentric.

According to Lemma 3, we replace the surface g, defined in B, by an actually
degenerated surface V), so that Dp (9.) < Dg, (t.) + on with 6, > 0, and so that Y,
takes the boundary C of B into a system I'*® of curves which tends to I" as
well as '™ does. — As a matter of fact, I'*™ is identical with I'™ unless the
origin is on I.

Certainly we have

(46) lim inf Dg, (y,) < lim inf Dp (1.).

We may assume that the curve f» in By, on which p vanishes, contains B, in
its interior and B, in its exterior. Then we define B, = B, plus the whole
exterior of #,, and B;*= B, plus the whole interior of #,; and define Y, =1, in

B, and v, =0 outside of #,, Yi* =1, in B, and y,* = o inside of ¢,.

Then we have

(47) Dgz(v*) + D+ (v**) = Dy, (v),

and Y5, Di* are continuous and have piecewise continuous first derivatives in
Bh, Bi* respectively. They furthermore take the boundaries into I'*™ and I**®
where I ' 1**® 1"  Thus they correspond .to variational problems
relating to lower numbers £ and %" of boundary curves. For such lower numbers

the semicontinuity may be assumed already proved. Then we have
lim inf Dp* (y*) = d’
lim inf Dyt+ (p**) = d”

where d' and d” refer to the partition of the boundary I' into I'" and I'”.
Consequently by (46) and (47) we have

(48) d 4+ d” =< lim inf Dg, (1)
Since by (38)
d<d +d',

our theorem is proved; for it was proved for £=1 so that induction is possible.

! See [10] p. 683.
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Incidentally, if a degenerating minimizing sequence g, exists, the right
hand side of (45) becomes d, and our reasoning yields the equality

=d +d’.

A consequence of the preceding analysis is our main theorem of No. 1,
which for genus zero states:

A sufficient condition in the case of genus zero for the solvability of the
variational problem is the inequality

d<d +d”
for all partitions of the boundary I into I’ and I'".

For this condition, according to the reasoning above, excludes tendency to
degeneration.

Our proof can without difficulty be modified to cover types of domains B
which are Riemann surfaces of the kind considered in § 3. It made no use
of conformal mapping. However, if the genus of the domain is not zero, the
proof requires a modification using mapping theorems. The domains of lower
topological structure which we obfain in this case by a construction as above
using the ecurve ¢, are in general not of the same type as our domains B.
Hence to complete the proof we must know that such domains, or rather all
domains, can be mapped conformally to domains of the type B. (See the
detailed discussion in No. 3.)

The sufficient condition stated by the main theorem is in a general way

expressed by
d<d*

where d* refers to any type of degenerated surfaces with the same total
boundary, degeneration including the possibility of a topological structure lower
than the prescribed.

The sufficient conditions of this section are easily verified in every case in
which the degenerate solutions or such of lower topological type are self intersecting.
Then the inequality condition for the higher type becomes evident if we identify
the lower limit of the Dirichlet integral with that of the area. For along the
lines of self-intersection we can pull the different parts of the surface of lower

! That the condition is not necessary is apparent if we realize that it is violated e.g., for a
minimal surface of revolution, if the area or the Dirichlet integral is exactly equal to the sum of
the areas of the two boundary circles.
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type apart in such a way fthat the self-intersection disappears and the area
decreases. Thereby surfaces of higher type originate or degenerations disappear.

For example, for p=o0 and k=2, if Iy and I, are interlocking, it is
seen immediately that for the degenerate surface consisting of the two simply
connected minimal surfaces through I'; and I', the area is larger than that of
other doubly connected surfaces which we obtain from an intersecting pair of
surfaces by a deformation eliminating the self-intersection.

Similarly we can see that through a knotted cwrve I' we always have besides

the self-intersecting simply connected mimimal- swrface one of higher structure.!

3. Remarks. Critical Analysis of the Method.?

As already mentioned our sufficient conditions can be verified directly for
the genus zero if the boundary curves I'; are in a plane. (See [10] and [12])
Then mapping theorems result as a consequence by means of a general con-
tinuity theorem. By this latter it can be shown that the sufficient conditions,
if satisfied for a system I' of contours, remain satisfied if I" is deformed in a
suitable neighborhood. Consequently the solvability of the problem is assured
for boundaries I" sufficiently near to a plane and sufficiently smooth.

The inclusion of mapping theorems in our theory removes the objection
to the specific reference to certain classes of domains B of representation.
But it must be stated that there exist Riemann domains B of connectivity k for
which our theory does not immediately yield the conformal equivalence to
domains of our type B, so that they might possibly yield a smaller value of d.

The difficulty is enhanced for higher topological structure and may be
explained in the sufficiently general case of one contour and genus one: k=1
and p=1. Then we choose for B the unit circle plus another full plane con-
nected to the unit ecircle by 4 branch points. If a minimizing sequence B,
degenerates in such a way that two branch points tend to the same point, can-
celling each other, so that in the limit only two branch points remain, we would
have degeneration into a simply connected domain with p = 0. But this domain,
consisting of a unit circle with a full plane affixed in two branch points, is of
a different type from the domains B used originally for defining the lower limit

d for simply connected domains of genus zero. Conformal mapping must be

! The result that two interlocking curves always define a doubly connected minimal surface,
was first obtained by Douglas.
2 See also § 3, 3.
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applied to establish the equivalence of such domains obtained by processes of
degeneration with domains of the originally admitted type B.

The same situation arises with other types of domains B, e.g. for plane
domains defined by fundamental domains of Schottky groups of linear substitu-
tions with p generating transformations. Since the group and the boundary
circles depend on only a finite number of parameters, the reasoning concerning
the solution of the variational problem proceeds exactly as that in §§ 3, 4.
Also the variational part of the theory, the proof of ¢ (w)= o, is similar to that
given above. But again a degeneration of B, may occur so that in the limit B
becomes of lower genus but still is defined by a group with p generating trans-
formations; namely, if two corresponding boundaries of the fundamental domains
touch each other in corresponding points or, as one says, if the fundamental
domain of the limiting group has a »parabolic vertex». Then the genus of the
limiting domain will be lowered and therefore this domain will no longer belong
to the admitted type for the lower genus, so that such an equivalence must
be established by some mapping theorems. — For slit domains corresponding

considerations hold.!

Part II. Free Boundaries.

§ 1. Preliminaries.

1. Position of the Problem.

In the second part of this paper we give the solution to the Plateau problem
with free boundaries. This means, we prove the existence of minimal surfaces
of least area d or least Dirichlet integral? whose boundaries, or parts of whose
boundaries, are free to move on prescribed continuous manifolds of less than m
dimensions. These »free problems» present a much greater variety than those
with fixed Jordan curves as boundaries. For, not only may the topological
structure of the minimal surface be prescribed in the problem, but so also may
topological properties relative to the given manifolds. All such questions, in
particular the proof of sufficient conditions in topologically higher cases, can

! The preceding remarks, which indicate that the theory of conformal mapping is the preferable
basis for the treatment of Douglas’ problem for higher topological structure, seem to apply also
to the presentation of Douglas’ theory in [8).

2 In our proof we shall not make use of their equivalence but refer to it for convenience.



88 . R. Courant.

be treated in a manner similar to the corresponding theory of part I. I shall
leave an analysis of the general possibilities for another occasion, and treat in
detail solely the typical case of a doubly-connected minimal surface, one of whose
boundaries s free on a closed manifold M} while the other is a Jordan curve I’
monotonically described.

The free boundaries, under the very general assumptions concerning M, are
not necessarily continuous curves. The methods of part I, therefore, inasmuch
as consideration of vectors r as functions on the boundary of the domain B
of representation is concerned, must be replaced by a reasoning referring to
the interior of the domain B. Correspondingly, the behavior of the solution is
analyzed by means of a theorem on harmonic — or more generally, monotonic
— vectors, given in No. 2.

To formulate our problem precisely we suppose the surfaces under considera-
tion to be represented by continuous vectors t(u,v) with piecewise-continuous
first derivatives in a concentric annular ring B of the wu, v-plane between the
unit circle C; and a concentric circle C, of radius @, so that x has continuous
boundary values on C,, mapping C, monotonically on I'; and that the boundary
of t corresponding to C, is on M. This latter property is defined as follows:
Denote by ¢(r) the distance of the point r from M. If r=1(u,v) is a surface
defined in B, g(r) becomes a function g(w,v) of u,v in B; if g(u, v) tends to
zero as the point w,v in B tends to C,, then we say that the boundary
of t(u,v) corresponding to ) is on M. It is immediately clear that, in polar
coordinates 7,9, the distance g(u,v)= g (r,9) tends to zero uniformly in 9 as »
tends to one. — Note that our definition does not imply existence of continuous
boundary values of ¢ on C..

Our problem now is to find a doubly-connected minimal surface of least area d
bounded by I' and M. We shall prove in § 2 that such a minimal surface exists,
provided that the lower limit d is smaller than the lower limit d* belonging to the
Plateau problem for I' as the sole boundary. The solution is obtained as solution
of the variational problem: To find a domain B and an admissible vector 1 as
above, for which D(x)=d is a minimum.

! In [13] T have discussed the case when one part of the boundary is a prescribed Jordan
arc, another free on a manifold M. — In [23] Mr. Ritter has treated the case of a »Schwarz Chain»,
where the boundary consists of & fixed Jordan arcs alternating with %k parts free on manifolds M;
which in his paper are planes, but with the methods of the present paper or [13] could be chosen
as general continuous manifolds.



The Existence of Minimal Surfaces of given Topological Structure. 89

2. Theorem on Boundary Values.

The proof will be based on a theorem which, for convenience, we first state
for a half-plane B: v>o0. Let t=1,(u,1v) be a sequence of harmonic vectors in
B: v > o0, having the boundary on a closed manifold M,, for which

D(E)Ziff(zﬁ + )dude < A®
B

is bounded by a constant A% In each closed subdomain of the halfplane B the 1,
may converge uniformly to a harmonic vector t. Furthermore, we assume that the
manifolds M, tend to a continuous manifold M so that the longest distance of points
of M, from DM tends to zero. Then the boundary of the vector t s on M. —
Note that no assumptions are made concerning the dimensions of M, and M.
In our application M, will be a curve, 3 a surface.

Proof: We observe that the uniform convergence of the p, implies that of
the derivatives in closed subdomains of B, and hence the inequality

D) < 4.

By the existence of D(r) we have for the small strip By: o<v<{zh

(49) e(h)t = ff (tw + i) dudv—> o0 for h - o.
B

We now appraise the oscillation of y on the line v =- A, in particular on a seg-
ment L = Ly:

[ — | < th,v="h, with ¢t= o (h)
whose length relative to % tends to o as b —»o. Along L=:1, we have, by

the mean value theorem of potential theory,

I
gu:;;hzf[g,,dudv
1\',: .

where the integral is extended over a circle of radius 2 around the point u, 2
of L; hence by Schwarz' inequality and (49)

o I I
(50) < e < e ()

12—39615. .Acta mathematica. 72. Tmprimé le 23 janvier 1940.
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From
U

£, B) — 1 (i h)=fxu<u, B) du

Ua

we obtain immediately by (50) along L
I
(51 30 1) 2, 1] < - 00 e — ) < 20

which shows that the oscillation of r on Lj is small with A, uniformly in w«,.
To link the boundary of g with that of tr, we choose » sufficiently large
so that on Lj;, because of the convergence of g, to ,

[z (o, B) — 2 (o, )| < & (R);
then by (51) we have on L,

Izs (w0, 1) — 2o, )| = 2 & (h).

For every positive ¢ with d < h we have now, with «, k in L,

(52) |g(u0a h)_gv(u: 6)' = 2£(h) + |2V(“: h) "_ g"(% 6)' =
<ze(h) +f|‘9.§!0_(%1)|d

The distance of the point 1,(w, d) from M, is, for sufficiently small 4, less
than a quantity 7(d) tending to zero, if ¢ and » are fixed. Since the distance
to M, satisfies the triangular inequality, we have, from (52), for the distance
gy [t (10, h)] = g» (uy, h) of the point 1z (uy, k) from M,

h
gv(ug, B) — n(0) < 2¢(h) + f l(;i"ldz,
§

for, the distance g, is not greater than the distance from z(u,, #) to 1, (u, d)
plus the distance 1, (u, d) from I,.
By integration with respect to u over the interval

lu—uy| <th=he(h)?
we find

th[gm(uo,'h)—w(a)]sm+ffi(’aﬂdudv,
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where the integral on the right hand side is extended over the rectangle |u—u,| < th,
d <v=<h. Hence we have by n(d) ~ o for d > 0 and by Schwarz’ inequality

Bt lim inf g, (up, h) < 2h + AVhth =h(z + AV,

and, since for the distance g from M by the triangular inequality ¢ (u,, h) <
lim inf g, (g, h) holds, we obtain finally

gluy, B) < 2/t + A/Vt.

For & — 0 we have { > o uniformly in u,; hence we have for the distance g(u,, )
the relation g - o for k> 0, which expresses our theorem.’

It is obvious that the theorem subsists if from the half-plane one or more
domains are cut out, so that B becomes a multiply-connected domain. Further-
more, by conformal mapping, the theorem is extended literally to the interior B

of a circle or to an annular ring B.

§ 2. Solution of the Problem.
1. Construction of the Solution.

We suppose
d < d*
where d* is the minimum for the Plateau problem referring to the single con-
tour I', and we consider a minimizing sequence of ring domains B, together
with admissible vectors g. in B. with Dg, (1) — d.

First we show, in a manner similar to § 3 and § 4 of part I, that B, cannot
tend to degeneration. If the radius a = a, of the inner circle C, of B, were to
come arbitrarily near to 1, we would have exactly the same contradiction as in
§ 4 of part I, because M and I have a positive distance «. If a = a, should
tend to zero for a subsequence B,, then, according to the fundamental Lemma
in part I, we would have, for an arbitrarily small ¢ and sufficiently large =,

a concentric circle C of radius ¢ = ¢, such that
i=po=< Vs

and that on C the oscillation of 1, is less than the square root of

! In [13] it is pointed out that the theorem can immediatly be generalized in different ways,
one generalization — wuseful in connection with the classical problem of Riemann — permitting
the manifolds to depend continuously on the boundary point of B.
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242n
29 g = —

I
log 5

bl

where A is a common upper bound for Dp, (1)

Then, for sufficiently large n the circle C, is inside (' and defines with €
an annular ring DB,. We may suppose that with increasing n the quantity -d
and hence ¢ tends to zero, while always a. <<d. We certainly have

Dy, (1)) = Dy, (tn).

According to Lemma 3 of part I, § 5, we replace 1, by a vector ), which has a
constant value on C, say zero, for which

Dy, (9a) < Dy, (tn) + 0(e),

with ¢(¢) > 0 for ¢ > 0, and which maps C; on a continuous curve I'® tending
in the strong sense to I’ for ¢ =~ 0. If we extend 1, as identically zero into the
whole plane outside C, we have for the domain B* outside of C,, for sufficiently
large n,

1)1;; (t),,) < Dy (gn) -+ 0(6‘) = ])Bn (gn) + 0'(8).

On the other hand we have d) << Dpg+(0,), where d5 is the lower limit of the
Dirichlet integral in the Platean problem for the single contour I,

If we now let n tend to infinity and J, ¢ at the same time to zero, we have,
because of the semi-continuity of the lower limit of D (z)in the Plateau problem
and because of o(e) >0,

d* = lim inf d7 < lim Dy, (£.) + a(e) = d,

which contradicts our assumption d < d*. Hence there is no degeneration of B,
possible, and we can choose a subsequence of the domains I, which tend to an
annular ring B with radii 1 and a, where 0 <a < 1. ,

In the same way as in part I, § 4 we see that the boundary values of X
on (), are equicontinuous, so that, at least for a suitable subsequence, they con-
verge uniformly to a monotonic, continunous representation of I Next, the vee-
tors 1, are replaced by harmonic vectors 1), in B having on the inner circle the
boundary values r,(a., ?) and on the unit circle the boundary values Iy (ra, &),
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where 7, is a sequence tending to 1. These values r,(rn, 9) represent a con-
tinuous curve M,, and we suppose r», so near to C; that M, tends to M.!

For the harmonic vectors 1), we certainly have
lim inf Dy () < lim Dg (f) =d,

as easily seen by the Dirichlet principle.

By a wellknown theorem of potential theory? the harmonie vectors ), having
an equally bounded Dirichlet integral are equicontinuous in every closed sub-
domain of B and therefore permit a subsequence converging to a limiting har-
monic vector . Because of the equi-continuity of 1, on (/, we may suppose that
h. tends to r also on the boundary C,, so that ¢ maps €, monotonically on I

Our theorem of § 1, 2 and the concluding remark there implies that the
vector ¢ has its boundary corresponding to C; on M. Hence p is admissible,
and D(x) =d. But as in part I we have

D) < lim D(x,) ==d.

Therefore we have D(g)==d and consequently ¢ is a solution of the variational
problem.

That ¢ is a minimal surface is seen exactly as in part 1.

A general case in which our sufficient condition 1is satisfied is that in

which the simply-connected minimal surface through I’ meets the surface M.

2. The Transversality Condition.

We prove for the free boundary on I a relation which expresses in a weak
sense the orthogonality between M and the minimal surface. For this, we sup-
pose M to have a continuous tangent plane. We further suppose that we can
transform the z-space in the neighborhood of M by transformations

wi=wr + e&i(wy, .. Zmy e)

depending on a small parameter ¢ and having piecewise-continuous derivatives
with respect to the coordinates x, and ¢; so that M is transformed into itself,
while everywhere else, in particular near I, the fubctions & are zero. We.

write &(z,, ... 2m; 0) =& and combine the x; as a vector v, the & as a vector &.

! There need not be continuous boundary values of g, defined on the unit circle ).

? See e.g. Hurwitz-Courant, Funktionentheorie, 3d ed., p. 461.
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By the substitution of the components ;= x;{u, v) of the minimizing vector

these vectors ) become admissible vectors in B. Now, since certainly
D(y) = D(y),

we obtain in the usual way

D(g, 5):;ff(?;urgu-l-gv&)dudv:o,
B

or, if L, is a piecewise-smooth curve in B tending to C, for ¢ -~ o0 and including
a domain B, with C,,

ff (gu §u + Lo gv) dudv - o for ¢ > o.
BE

By Green's formula and Agx=o0 we have
Oy
fgav ds —> 0,
LE

where (%} means differentiation along the normal to L. and s the arc length on

L;. If § is our minimal surface, L; the image of L. on S, then this formula

becomes, if now interpreted on Lz,
0
f§ ()—i ds — o0,
L,

where again aﬁ means differentiation in S normal to L; and s the arc length
v

on L;. For, our integral is invariant under conformal mapping and ¢ maps B
conformally on S.
Ox

Since 5, O0 S is a unit vector, tangent to S, and & an arbitrary tangential

vector field near M, this equation expresses what may be called a weak condi-
tion of orthogonality between M and S. The curves L. here may be chosen as
any sequence of piecewise-smooth curves on 8, so that the area on S between
L{ and M tends to zero with &.!

' The method of this section can be applied to the discussion of the transversality condition
in other twodimensional variational problems.
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§ 3. Remarks.

1. Critical Analysis of the Result.

It should be observed that, to the generality of our method, a lack of
desirable detailed information corresponds. I.g., we learn nothing concerning
the question, under what conditions the free boundary of § is a continuous
curve, or an analytic curve, or under what conditions § may be analytically
extended beyond the boundary. Answers to such questions, even in the case
of analytic boundaries I' or M, have not yet been given. Nor do we know
how to replace our statement of weak orthogonality by one of actual orthogon-
ality for sufficiently smooth surfaces M. In these directions our insight into
the problems is far from being satisfactory, except for straight or plane bound-
aries.

The following remarks illustrate the fact that our assumption of mere
continuity of M is not sufficient to ensure smooth behavior of ¢ on the free
boundary: Suppose, first, M to be not bounded. It may then be that the solu-
tions are of necessity not bounded. To exemplify this, we consider the problem
of a simply-connected minimal surface whose boundary is partly a Jordan are,
and partly free on a surface M. For M we choose a plane, 2 = o, slightly de-
formed along a groove as follows: We remove from the plane around the z-axis

—

a strip bounded by the curves y= t e and replace this part by a surface

whose cross-section for x = a is given by two straight segments

- b
. — y+b y +

for y = o; z = for y <o,
Vi+a . ..
where b=¢"% and ¢ = 6 e The area of this cross-section is
16~ ¢
Vi+a?

while the area of the removed part of the plane from xz=a to = + = is for
a>o0

w

., 1
2[ e dr < =@,
a

a
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For every positive « the latter area is less than the former. If, therefore, we

take as the given Jordan arc simply the straight segment
z=o0, z=a, |y|=<e

then the éorresponding minimal surface is the infinite plane spike consisting of
the removed part of the plane with x> a. The example can be generalized
to show that there are cases where infinitely many such infinite spikes occur
in the solution. Such phenomena are not restricted to manifolds M which
extend to infinity. It is easily seen that one can carve out similar grooves from
any closed, smooth surface winding asym]t)toticallyvaround asymptotic curves.
The surfaces M thus obtained lead to minimal surfaces with boundaries on M

which are not continuous curves.

2. Other Types of Problems.

The most interesting among other problems with free boundaries are those
in which the entire boundary is free on a given closed surface not of genus zero,
e.g. on a torus. Then, apart from the topological character of the minimal sur-
face, e. g. simple-connectivity, also topological data- relative to M must be pre-
scribed, such as linking numbers between curves interlocking with M or with
curves M, on the minimal surface S which are near to the boundary. The result
to be expected is that minimal surfaces of a presecribed type exist if, with the same
boundary conditions, the lower limit ¢ for this topological type is actually less
than that for any lower or degenerate type, provided lower topological type is

properly defined.



IT.

12,

14.

15.
16.

7.

18.

The Existence of Minimal Surfaces of given Topological Structure. 97

Bibliographical References.

Rapo, T., The problem of Plateau, Ergebnisse der Math. Berlin, 1933, an
illuminating report, discussing the preceding literature.

Dotcras, J.,, The Problem of Plateau, Bull Am. Math. Soc. 1933, p. 227 ff.
containing a complete reference to Douglas’ previous papers.

——, Some New results in the problem of Plateau, Journal of Math. and Phys.,
vol. 15 (1936), p. 55 ff.

——-, Minimal surfaces of general topological structure, Ibid. pp. 106 ff.
——, Minimal surfaces of higher topological structure, Proc. Nat. Ac. Sciences,
Washington, vol. 24 (r938), pp. 343 ff.

——, Greens function and the problem of Plateau, Ibid. p. 353 ff.

——, The most general form of the problem of Plateau, Ibid. p. 360 ff.
——, Minimal surfaces of higher topological structure, Ann. of Math., vol. 4o
(1939), pp. 205—298. Contains detailed bibliography of Douglas’ previous
papers.

CotraxT, On the Problem of Plateau, Proc. Nat. Ac. Sciences Wash., vol. 22
(1936), pp. 367 ff.

~——, Plateaus Problem and Dirichlet’s Principle, Ann. of Math., vol. 38 (1937),
pp. 679 ff.

—— and HiLBert, Methoden der Mathematischen Physik.,, vol. 2 (1937),
Cap. 1.

——, Conformal mapping of multiply connected domains, Duke Math. Journal,
vol. 5 (1939).

——, The Existence of a Minimal Surface of least area bounded by prescribed
Jordan arcs and prescribed surfaces, Proc. Nat. Ac. Sciences, Wash., vol. 24
(1938), p- 97 f£.

-——, Remarks on Plateau’s and Douglas’ Problem, Proc. Nat. Acad. Sciences,
Wash. vol. 24 (1938), p. 519 ff.

——, The Dirichlet Principle, Cambridge Tract in preparation.

SHIFFMAN, Minimal surfaces of higher topological structure. To appear in Americ.
Journal of Math. (1939).

——, The Plateau Problem for Minimal Surfaces which are relative Minima.
Ann. of Math., vol. 39 (1938), pp. 309 ff.

——, Abstract in Bulletin of the Americ. Math. Soc., vol. 44 (1938), p. 637,
of a paper read before the society on Sept. 7, 1938,

13- -39615. Acta mathematica. 72. Imprimé le 1 mars 1940.



98

19.

20.

21.

22.
23.

R. Courant.

SuirFMAN, The Plateau Problem for Non-relative Minima. Proc. Nat. Acad.

Sciences, vol. 25 (rg939), p. 215—220.

~——, The Plateau Problem for Non-relative Minima. To appear in Ann. of
Math.

MorseE and TompkiINs, Existence of Minimal Surfaces of General Critical Type.
Proc, Nat. Acad. Wash., vol. z5 (1939), p. 153 ff.

——, Same Title. Ann. of Math., vol. 49 (1939), p. 443 ft.

I. RITTER, Solution of Schwarz’ Problem concerning Minimal Surfaces. Not yet

published.



