DEVELOPMENTS IN THE ANALYTIC THEORY OF ALGEBRAIC DIFFERENTIAL EQUATIONS.

By

W. J. TRJITZINSKY
of Lrbana, Ill. L.S. A.

Index.

Page
I. Introduction 1
2. Formal developments 4
3. Conditions for existence of formal solutions 11
4. A transformation 20
5. Lemmas preliminary to existence theorems 28
6. The first existence theorem 39
7. The second existence theorem 47
8. The third existence theorem 54
9. Preliminaries for equations with a parameter 61
Io. The fourth existence theorem $7 \pm$

I. Introduction.

Ow present purpose is to obtain rexnlts of an amalytie character for alfferential equations algebraic ${ }^{\prime \prime}$
(1. 1)

$$
y, y^{(1)}, \ldots y^{(n)}
$$

I/ being the unknown to be determined in terms of a complex variable x; we thus consider the equation
(I. 2)

$$
I^{\prime}\left(x, y, y^{(x)}, \ldots y^{\prime \prime}\right)=0
$$

arranged as a polynomial in the symbols (I. I). The coefficients of the various monomials
(I. 2 a)

$$
(y)^{j_{0}}\left(y y^{1}\right)^{i_{1}} \ldots\left(y^{n}\right)^{\prime \prime},
$$

involved in the first member of (I, 2), will be assumed to be series of the form

$$
\begin{equation*}
a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0}+a_{-1} x^{-1}+a_{-2} x^{-2}+\cdots, \tag{1.3}
\end{equation*}
$$

convergent for $|x| \geqq \varrho(>0)$ or, more generally, they will be assumed to be functions, analytic in suitable regions ${ }^{1}$, extending to infinity, and asymptotic (at infinity) within these regions to series (possibly divergent for all $x \neq \infty$) of the form (1.3). The subject, as formulated, is very vast.

Accordingly, we shall examine the situation in the case when the equation (1.2) has formal solutions of the same type as occur in the case of the irregular singular point (for ordinary linear differential equations). In the formal theory of the equation (I. 2) we replace the coefficients of the monomials (I. 2 a) by the series (of the form ($\mathrm{I}, 3$)) to which these coefficients are asymptotic. It will be desirable first to carry out suitable formal developments and afterwards to proceed with considerations of analytic character.

At this stage one may appropriately say a few words about the classical problem of the irregular singular point. Let

$$
F_{v}\left(x, y, y^{(1)}, \ldots y^{(n)}\right)
$$

be the homogeneous part of F of degree ν in $y, y^{(1)}, \ldots y^{(n)}$; thus

$$
\begin{equation*}
F_{v}=\sum f_{v}^{i_{0}, \ldots i_{n}}(x)(y)^{i_{0}}\left(y^{(1)}\right)^{i_{1}} \ldots\left(y^{(n))^{i_{n}}}\right. \tag{I.4}
\end{equation*}
$$

where the summation is over non-negative integers $i_{0}, \ldots i_{n}$, with $i_{0}+\cdots+i_{n}=\nu$. In particular,
(1. 4 a)

$$
F_{0}=F_{0}(x)=f_{0}^{0, \ldots 0}(x),
$$

We have
(1. 5)

$$
F \equiv F_{0}+F_{1}+\cdots+F_{\sigma}
$$

In the particular case of $\sigma=$ I the equation (r.2) will be of the form

$$
\begin{equation*}
F_{1}\left(x, y, y^{(1)}, \ldots y^{(n)}\right)=-F_{0}(x) . \tag{1.6}
\end{equation*}
$$

This is a non-homogeneous linear ordinary differential equation ${ }^{2}$ whose solution is based on that of
(1. 6 a) $\quad F_{1}=0$.

[^0]It is the latter equation which presents the classical problem of the irregular singular point. The complete solution of the irregular singular point problem, both from the point of view of asymptotic representation and exponential summability (Laplace integrals, convergent factorial series), has been given by W. J. Trjitzinsky ${ }^{1}$. For a concise statement of the pertinent results the reader is referred to an address given by Trjitzinsky before the American Mathematical Society ${ }^{2}$. Of the earlier work involving asymptotic methods in the problem of the irregular singular point of fundamental importance is the work of G. D. Birkhoff (ef. reference in (T)), which relates to the particular case when the roots of the characteristic equation are distinct. With regard to the methods involving Laplace integrals and factorial series, highly significant work had been previously done by N. E. Nörlund and J. Horn ${ }^{3}$.

The equation (r. 2) (with $F_{0}(x) \equiv 0$) is a special case of non-linear ordinary differential equations (single equation of n-th order or systems) of the type investigated by a considerable number of authors, including W. J. Trjitzinsky ${ }^{4}$, with respect to whose work $\left(\mathrm{T}_{1}\right)^{4}$ the following statements can be appropriately made at this time.

The main purpose of the developments given in $\left(T_{1}\right)$ was the analytic theory of the single n-th order ($n>1$) non-linear ordinary differential equation ${ }^{5}$. This necessitated use of asymptotic methods. As a preliminary was given the detailed treatment of the first order problem, the methods used being of the asymptotic type; this asymptotic method was then extended to the general case of $n>\mathrm{I}$. It must be said, however, that on one hand when the equations are given asymptotically with respect to the unknown and the derivatives of the unknown, the use of asymptotic methods in the development of the analytic theory is imperative. On the other hand, in the particular case of a first order equation, given in the non-

[^1]asymptotic form ${ }^{1}$, use of asymptotic methods is not necessary, the methods of the highly important paper of J. Malmquist 2 being entirely adequate for the complete analytic treatment of this case; the latter fact was overlooked in (T_{1}).

In $\left(T_{1}\right)$ and $\left(T_{2}\right)$ 'actual' solutions were obtained which (in suitable complex neighborhoods of the singular point in question) were of the form, whose essential components were of the same asymptotic character as that of the 'actual' solutions in the problem of the irregular singular point for linear differential equations. The non-linear problem, referred to in $\left(T_{1}\right)$ and $\left(T_{2}\right)$, has obviously a connection with our present problem.

We shall also give some developments of analytic character, along the lines indicated above, for non linear algebraic differential equations containing a parameter. The formulation of the latter problem is given in section 9.

The main results of the present work are embodied in Theorems 6. I, 7. I, 8. I and Io. I.

2. Formal Developments.

In so far as the formal developments are concerned, the situation is somewhat analogous to that involved in a paper by O. E. Lancasters ${ }^{3}$, who gives partial formal results for difference equations. The analogy in the formal theory is to be expected. In view of our present main purpose with regard to developments of analytic character, it will be necessary to give in detail some formal results for differential equations.

In accordance with E. FABRy ${ }^{4}$ the formal solutions for the irregular singular point are of the type
(2. 1)

$$
s(x)=e^{Q(x)} x^{r} \sigma(x)
$$

where
(2. I a)

$$
Q(x)=q_{p} x^{\frac{p}{t}}+q_{p-1} x^{\frac{p-1}{k}}+\cdots+q_{1} x^{\frac{1}{k}}
$$

and

$$
\text { (integer } p \geqq 0 ; Q(x) \equiv 0 \text { for } p=0 \text {) }
$$

[^2]Developments in the Analytic Theory of Algebraic Differential Equations. 5
(2. 1 b)

$$
\begin{aligned}
& \left.\sigma(x)=\sigma_{0}(x)+\sigma_{1}(x) \log x+\cdots+\sigma_{\mu}(x) \log ^{\mu \mu} x \quad \text { (integer } \mu \geqq 0\right) \\
& \sigma_{\gamma}(x)=\sigma_{\gamma, 0}+\sigma_{\gamma, 1} x^{-\frac{1}{k}}+\sigma_{\gamma, 2} x^{-\frac{2}{k}}+\cdots
\end{aligned}
$$

here $k(\geqq 1)$ is an integer. The series (2. I c) may diverge for all $x \neq \infty$.
Throughout this section, unless stated otherwise, the coefficients in F ((1. 2)) will be supposed to be series, convergent for $|x|>\varrho$, or divergent of the form (1.3).

We recall the following definition of ($\mathrm{T} ; 2 \mathrm{I} 3$).
Definition 2.1. Generically $\{x\}_{q}$ (q an integer $\geqq 0$), will denote an expression

$$
\begin{equation*}
\varrho_{0}(x)+\varrho_{1}(x) \log x+\cdots+\varrho_{q}(x) \log ^{q} x \tag{2.2}
\end{equation*}
$$

the $\varrho_{j}(x)$ being series, possibly divergent (for all $x \neq \infty$), of the form
(2. 2 a)

$$
\left.\varrho_{j, 0}+\varrho_{j, 1} x^{-\frac{1}{k}}+\varrho_{j, 2} x^{-\frac{2}{k}}+\cdots \quad \text { (k a positive integer }\right) .
$$

Let $s(x)$ be defined by an expression (2.1). It is observed that

$$
\begin{equation*}
Q^{(1)}(x)=x^{\frac{p}{k}-1}\left[r_{0}+r_{1} x^{-\frac{1}{k}}+\cdots+r_{p-1} x^{-\left(\frac{p-1}{k}\right)}\right] \tag{2.3}
\end{equation*}
$$

where, if $Q(x) \neq 0$, one may take $r_{0} \neq 0, p>0$,

$$
\frac{d}{d x}\{x\}_{0}=x^{-1}\{x\}_{0}, \frac{d}{d x}\left[\{x\}_{0} \log ^{j} x\right]=x^{-1}\left[\{x\}_{0} \log ^{j} x+\{x\}_{0} \log ^{j-1} x\right]
$$

(for $j>0$) and
(2. 3 a)

$$
\sigma^{(1)}(x)=\frac{d}{d x}\{x\}_{\mu}=x^{-1}\{x\}_{\mu}
$$

In view of (2.3) and (2.3 a)

$$
\begin{equation*}
s^{(1)}(x)=e^{Q(x)} x^{r(1)}\{x\}_{\mu} \quad\left[r(\mathrm{I})=r+\frac{p}{k}-\mathrm{I}\right] . \tag{2.4}
\end{equation*}
$$

Similarly, from (2.4) we obtain

$$
s^{(2)}(x)=e^{Q(x)} x^{r(2)}\{x\}_{\mu} \quad\left[r(2)=r(\mathbf{1})+\frac{p}{k}-\mathrm{I}\right]
$$

and, in general,
(2. 5)
$s^{(j)}(x)=e^{Q(x)} x^{r(j)}\{x\}_{\mu}$,
where
(2. 5 a)

$$
r(j)=r+j\left(\frac{p}{k}-\mathrm{I}\right) \quad(j=\mathrm{o}, \mathbf{1}, 2, \ldots)
$$

Thus
(2. 6)

$$
\begin{gathered}
(s(x))^{i_{0}}\left(s^{(1)}(x)\right)^{i_{1}} \ldots\left(s^{(n)}(x)\right)^{i_{n}}=e^{\nu Q(x)} x^{r^{\prime}}\{x\}_{\nu \mu}, \\
r^{\prime}=\nu r+\bar{r}, \quad \bar{r}=\left(\frac{p}{k}-\mathrm{I}\right) \sum_{j=0}^{n} j i_{j},
\end{gathered}
$$

(2. 6 a)
provided $i_{0}+\cdots+i_{n}=\boldsymbol{\nu}$.
Now, by hypothesis,
(2.7)

$$
\begin{aligned}
f_{v}^{i_{0}, \ldots i_{n}}(x)=a_{m}^{v: i_{0}, \ldots i_{n}} x^{m} & +a_{m-1}^{v: i_{0}, \ldots i_{n}} x^{m-1}+\cdots+a_{0}^{v: i_{0}, \ldots i_{n}}+ \\
& +a_{-1}^{v: i_{0}, \ldots i_{n}} x^{-1}+a_{-2}^{v: i_{0}, \ldots i_{n}} x^{-2}+\cdots=x^{m}\{x\}_{0}
\end{aligned}
$$

where $m=m\left(\nu: i_{0}, \ldots i_{n}\right)$. Whence, in consequence of (1.4), (2.6) and (2.7),

$$
F_{\nu}\left(x, s, s^{(1)}, \ldots s^{(m)}\right)=e^{\nu Q(x)} x^{\nu r} \sum x^{m+\bar{r}}\{x\}_{0}\{x\}_{\nu \mu} ;
$$

here the summation is with respect to $i_{0}, \ldots i_{n}\left(i_{0}+\cdots+i_{n}=\nu\right)$, while integers m and rational numbers \bar{r} depend on $i_{0}, \ldots i_{n}$. Clearly

$$
\begin{equation*}
F_{\nu}\left(x, s, s^{(1)}, \ldots s^{(n)}\right)=e^{\nu Q(x)} x^{\nu r} f(v ; x) ; f(v ; x)=x^{m(v)}\{x\}_{\nu \mu} \tag{2.8}
\end{equation*}
$$

where $m(\boldsymbol{\nu})=l(\boldsymbol{\nu}) / k$ (integer $l(\nu) ; \boldsymbol{\nu}=\mathbf{I}, \ldots \sigma$).
If a series $s(x)$ satisfies the equation $F=0$, in consequence of (2.8) one should have formally

$$
\begin{equation*}
F_{0}+\sum_{v=1}^{o} e^{\nu Q(x)} x^{v r} f(\nu ; x)=0 \tag{2.9}
\end{equation*}
$$

where by (1. 4 a) and (2.7)
(2.9a)
$F_{0}=x^{m}\{x\}_{0} \quad(m=m(\mathrm{o}: \mathrm{o}, \ldots \mathrm{o})=m(\mathrm{o}))$.

It is accordingly inferred without difficulty that if $s(x)$ satisfies (I. 2) (formally), while $Q(x) \neq 0$, then necessarily $F_{0} \equiv 0^{1}$ and $s(x)$ satisfies each of the equations
(2. 10)

$$
F_{1}(x, s, \ldots)=0, \ldots F_{\sigma}(x, s, \ldots)=0
$$

In fact, the coefficients in $Q(x), r$ and the coefficients in $\sigma(x)$ will have to satisfy each of the following σ formal relations
(2. 10 a$) \quad f(\mathrm{I} ; x)=0, f(2 ; x)=0, \ldots f(\sigma ; x)=0$,
in the sense that, when $f(\nu ; x)$ is arranged in the form $x^{m(v)}\{x\}_{v \mu}$ (cf. (2.8)), the coefficients in the various power series involved are all zero. On taking note of

[^3](2.9) and of the form of F_{0} and of the $f(\boldsymbol{v} ; x)$ it is observed that, if $s(x)$ satisfies (I. 2), while $Q(x) \equiv 0$ and $r(\neq 0)$ is irrational, we shall have $F_{0} \equiv 0$ and $s(x)$ will satisfy each of the equations (2. 10).

Inasmuch as in the sequel it will be assumed that in the series $s(x)$, formally satisfying $F=0, Q(x)$ is not identically zero or $Q(x) \equiv 0$, but r is irrational, we may confine ourselves to homogeneous equations of degree v; namely, $F_{v}=0$.

The following will be proved.
If the formal homogenerus equation of degree $\boldsymbol{\nu}$,

$$
\begin{equation*}
F_{v}\left(x, y, y^{(1)}, \ldots y^{(n)}\right)=0 \quad \text { (actually of order } n \text {), } \tag{2.II}
\end{equation*}
$$

is satisfied by the general formal solution of a linear differential equation
(2. 12)

$$
L(x, y(x)) \cong \sum_{i=0}^{\eta} f_{i}(x) y^{(i)}(x)=0
$$

actually of order $\eta(<n)$ and with
(2. 12 a)
$f_{i}(x)=x^{\eta^{(i)}\{x\}_{0}}$
(η (i) rational),
then
(2.13) $\quad F_{\nu}\left(x, y, \ldots y^{(n)}\right) \equiv \sum_{j=0}^{n-\eta}\left[\frac{d^{j}}{d x^{j}} L(x, y(x))\right] \boldsymbol{\Phi}_{j}\left(x, y, y^{(1)}, \ldots y^{(\eta+j)}\right)$

$$
\left[\equiv \Omega\left(x, y, \ldots y^{(n)}\right)\right]
$$

where the $\boldsymbol{\sigma}_{j}$ are homogeneous (of degree $v-1$) in $y, \ldots y^{(\eta+j), ~ t h e ~ c o e f f i c i e n t s ~ b e i n g ~}$ of the form $x^{\lambda_{1}}\{x\}_{0}$ (λ_{1} rational).

To establish this result form the expression
(2. 14)

$$
\psi=F_{v}-\Omega
$$

where Ω is of the form of the second member in (2.13), the Φ_{j} for the present being undefined. We may write
(2. 15) $\quad \frac{d^{j}}{d x^{j}} L(x, y(x))=\sum f_{j}\left(m_{0}, m_{1}, \ldots m_{\eta+j}\right)(y)^{m_{0}}\left(y^{(1)}\right)^{m_{1}} \ldots\left(y^{(\eta+j)}\right)^{m_{\eta}} \ldots j$
(summation with respect to $m_{0}, \ldots m_{\eta+j}$, with $m_{0}+\cdots+m_{\eta+j}=1$); clearly the coefficients in (2, 15) are of the same form in x as the $f_{i}(x)$. Also
(2. 15 a)

$$
\Phi_{j}=\sum \varphi_{j}\left(x ; k_{0}, \ldots k_{\eta+j}\right)(y)^{k_{0}} \ldots\left(y^{(\eta+j)}\right)^{k_{\eta+j}}
$$

(summation with respect to $k_{0}, \ldots k_{v_{i}+j}$, with $k_{0}+\cdots+k_{i_{i}+j}=\boldsymbol{v}-1$). The φ_{j} are at our disposal; we wish to select these expressions so that ψ of (2. 14) is of the form
(2. 16)

$$
\psi=\psi\left(x, y, \ldots y^{(\eta-1)}\right)
$$

with no derivatives of y of order higher than $\eta-1$ present.
Substitution of (2.15) and (2.15 a) into the expression Ω will yield

$$
(2.17) \quad \Omega=\sum_{j=0}^{n-\eta} \sum_{m_{0}, \ldots} \sum_{k_{0}, \ldots} f_{j}\left(m_{0}, \ldots m_{r_{i}+j}\right) \varphi_{j}\left(x ; k_{0}, \ldots k_{\eta+j}\right)(y)^{i_{0}}\left(y^{(1)}\right)^{i_{1}} \ldots\left(y^{\left.\left.i_{\eta}+j\right)\right)^{i_{i}+j},}\right.
$$

where
(2. 17 a) $\quad i_{\lambda}=m_{\lambda}+k_{\lambda} ; m_{0}+\cdots+m_{\eta+j}=1 ; k_{0}+\cdots+k_{\eta+j}=\nu-\mathrm{I}$.

We thus may write

$$
\Omega=\sum_{j=0}^{n-\eta} \sum q_{j}\left(i_{0}, \ldots i_{\eta+j}\right)(y)^{i_{0}}\left(y^{(\mathbf{1})}\right)^{i_{1}} \ldots\left(y^{(\eta+j)}\right)^{i_{\eta}+j}
$$

where the second sum displayed is with respect to $i_{0}, \ldots i_{i j+j}$, with

$$
i_{0}+\cdots+i_{\eta+j}=\nu
$$

and
(2. 17 b) $\quad q_{j}\left(i_{0}, \ldots i_{\eta+j}\right)=\sum_{m_{0}, \ldots} \sum_{k_{0}, \ldots} f_{j}\left(m_{0}, \ldots m_{\eta+j}\right) \varphi_{j}\left(x ; k_{0}, \ldots k_{\eta+j}\right)$,
the summation in ($2,17 \mathrm{~b}$) (with $i_{0}, \ldots i_{\eta+j}$ fixed) being subject to (2, 17 a). Thus, by (2.14) and (1.4)
(2. I8) $\quad \psi=\sum_{i_{0}, \ldots i_{n}} f_{v}^{i_{0}, \cdots i_{n}}(x)(y)^{i_{0}} \ldots\left(y^{(n)}\right)^{i_{n}}-\Omega=\Gamma_{n}+I_{n-1}+\cdots+I_{i_{i-1}}$,
the expressions $\Gamma_{n}, \ldots \Gamma_{\eta-1}$ being characterised as follows. Γ_{n} consists of all the therms in $F_{v}-\Omega$ which contain $y^{(n)} ; \Gamma_{n-1}$ contains no $y^{(n)}$ but contains $y^{(n-1)} ; \Gamma_{n-2}$ contains no $y^{(n)}$ and no $y^{(n-1)}$ but contains $y^{(n-2)}$; and so on finally, $\Gamma_{\eta-1}$ contains no $y^{(n)}, \ldots y^{(\eta)}$ but contains $y^{(\eta-1) 1}$. Picking from Ω the terms for which $j=n-\eta$ and $i_{n}>0$ we obtain
(2. 19) $\quad \Gamma_{n}=\sum\left[f_{v}^{i_{0}, \ldots i_{n}}(x)-q_{n-\eta}\left(i_{0}, \ldots i_{n}\right)\right](y)^{i_{0}} \ldots\left(y^{(n)}\right)^{i_{n}}$

$$
\text { (summation with respect to } i_{0}, \ldots i_{n} ; i_{0}+\cdots+i_{n}=\nu ; i_{n}>0 \text {). }
$$

[^4]Developments in the Analytic Theory of Algebraic Differential Equations. 9
To form Γ_{n-1} we select from F_{v} the terms for which $i_{n}=0, i_{n-1}>0 ;$ from Ω we choose terms for which

$$
\left(j=n-\eta, i_{n}=0, i_{n-1}>0\right),\left(j=n-\eta-\mathbf{1}, i_{n-1}>0\right)
$$

thus
(2. 19a)

$$
\begin{array}{r}
\Gamma_{n-1}=\sum\left[f_{v}^{i_{0}, \ldots i_{n}}(x)-q_{n-\eta}\left(i_{0}, \ldots i_{n}\right)-q_{n-i-1}\left(i_{0}, \ldots i_{n-1}\right)\right](y)^{i_{0}} \ldots\left(y^{(n)}\right)^{i_{n}} \\
\left(i_{0}+\cdots+i_{n}=\boldsymbol{v} ; i_{n}=0 ; i_{n-1}>0\right)
\end{array}
$$

Proceeding further, one similarly obtains
(2. 19 b)

$$
\left.-q_{n-\eta-2}\left(i_{0}, \ldots i_{n-2}\right)\right](y)^{i_{0}} \ldots\left(y^{(n)}\right)^{i_{n}}
$$

$$
\left(i_{0}+\cdots+i_{n}=\nu ; i_{n}=0 ; i_{n-1}=0 ; i_{n-2}>0\right)
$$

In general
(2. 19 c)

$$
\begin{array}{r}
\Gamma_{n-\sigma}=\sum\left[f_{v}^{i_{0}, \ldots i_{n}}(x)-q_{n-\eta}\left(i_{0}, \ldots i_{n}\right)-q_{n-\eta_{-1}}\left(i_{0}, \ldots i_{n-1}\right)-\right. \\
\left.\ldots-q_{n-\eta-\sigma}\left(i_{0}, \ldots i_{n-\sigma}\right)\right](y)^{i_{0}} \\
\left(i_{0}+\cdots+i_{n}=\boldsymbol{v} ; i_{n}=0 ; i_{n-1}=0, \ldots ; i_{n-\sigma+1}=0 ; i_{n-\sigma}>0\right)
\end{array}
$$

such expressions are formed for $\sigma=0,1, \ldots, n-\eta$. The remaining expression $\Gamma_{\eta-1}$ will consist of all terms of $F_{\nu}-\Omega$, not contained in any of the $\Gamma_{n-\sigma}(\mathrm{o} \leqq \sigma \leqq n-\eta)$. The φ_{j} can be so chosen that
(2. 20)

$$
q_{n-\eta}\left(i_{0}, \ldots i_{n}\right)+q_{n-r-1}\left(i_{0}, \ldots i_{n-1}\right)+\cdots+q_{n-r-\sigma}\left(i_{0}, \ldots i_{n-v}\right)=f_{v}^{i_{0}, \ldots i_{n}(x)}
$$

$$
\left[\mathrm{cf.}(2.17 \mathrm{~b}) ; i_{0}+\cdots+i_{n}=\boldsymbol{v} ; i_{n}=i_{n-1}=\cdots=i_{n-\sigma+1}=\mathrm{o} ; i_{n-\sigma}>\mathrm{o}\right]
$$

for $\sigma=0, \mathrm{r}, \ldots, n-\eta$.
Let $c(m, v)$ be the number of distinct sets of integers $i_{v}, i_{1}, \ldots i_{m}$ such that

$$
i_{0}+\cdots+i_{m}=\nu ; i_{0} \geqq 0, \ldots, i_{m} \geqq 0 ;
$$

then

$$
\begin{gather*}
c(m, \nu)=c(m-\mathrm{I}, \mathrm{o})+c(m-\mathrm{I}, \mathrm{I})+\cdots+c(m-\mathrm{I}, \nu) \\
(m=\mathrm{I}, 2, \ldots ; c(\mathrm{o}, \nu)=\mathrm{I}) . \tag{2.2I}
\end{gather*}
$$

The number of equations (2.20) (with σ fixed) is the number of sets ($i_{0}, i_{1}, \ldots i_{n-\sigma}$) for which $i_{0}+\cdots+i_{n-\sigma}=\nu$ and $i_{n-\sigma}>0$. The number of equations (2. 20) (with σ and $i_{n-\sigma}$ fixed) will be $c\left(n-\sigma-\mathrm{I}, \nu-i_{n-o}\right.$) and the total number (for a given σ) will be

$$
c(n-\sigma-\mathrm{I}, \mathrm{o})+c(n-\sigma-\mathrm{I}, \mathrm{I})+\cdots+c(n-\sigma-\mathrm{I}, \nu-\mathrm{I})
$$

in view of (2.21) the expression for this number may be written as

$$
c(n-\sigma, \nu-\mathrm{I})
$$

Thus, the total number of equations (2, 20), formed for $a=0, \ldots n-\eta$, will be
(2.21 a)

$$
e_{\nu}=\sum_{\sigma=0}^{n-\eta} c(n-\sigma, \nu-1)
$$

$$
(\text { cf. }(2.21))
$$

In consequence of (2.17 b) the equations (2.20) are linear non-homogeneous in the $\varphi_{j}\left(x ; k_{0}, \ldots k_{\eta+j}\right)$. Inasmuch as in (2. 17 b)

$$
k_{0}+\cdots+k_{\eta+j}=\nu-\mathrm{I} \quad\left(k_{0} \geqq 0, \ldots, k_{\eta+j} \geqq 0\right)
$$

it follows that, for j fixed, there are

$$
c(\eta+j, v-\mathrm{I})
$$

expressions $\varphi_{j}\left(x ; k_{0}, \ldots k_{\eta+j}\right)$. To infer this it is necessary merely to note the statement preceding (2.21). Accordingly, the total number of φ_{j} (for $j=0, \ldots$ $n-\eta$), involved in the equations (2.20), is

$$
c(\eta, \nu-\mathrm{I})+c(\eta+\mathrm{I}, \nu-\mathrm{I})+\cdots+c(n, \nu-\mathrm{I})
$$

The latter sum, however, is precisely the number c_{v} of (2.21 a). It is not dif ficult to see that the equations $(2,20$) are actually satisfied (formally) for a suitable choice of the φ_{j}; clearly, the φ_{j} so chosen will be in the form of a product of a rational power of x by an expression $\{x\}_{0}$.

With the equations (2.20) satisfied, (2.18) will be reduced to

$$
\begin{equation*}
\psi=\Gamma_{\eta-1}=\psi\left(x, y, y^{(1)}, \ldots y^{(\eta-1)}\right) \tag{2.22}
\end{equation*}
$$

none of the $y^{(2)}(\lambda \geqq \eta)$ being involved. From (2.14) we then obtain
(2.23)

$$
F_{\nu}=\Omega\left(x, y, \ldots y^{(n)}\right)+\psi\left(x, y, y^{(1)}, \ldots y^{(\eta-1)}\right)
$$

where Ω is of the form of the second member in (2.13). According to the hypothesis of the assertion (to be proved) in connection with (2. II), .. (2. I3), the equation $F_{v}=0$ is satisfied by the general formal solution (containing η arbitrary constants) of (2. I2). In view of the definition of Ω by the second member of (2.13) we shall have $\Omega=0$ for the above mentioned general formal solution. Whence this solution must also satisfy the equation $\psi=0$. Inasmuch as the latter equation is of order $\leqq \eta-1$, the coefficients of the various monomials

$$
\begin{equation*}
(y)^{i_{0}} \ldots\left(y^{(\eta-1)}\right)^{i_{n}}-1 \tag{2.23a}
\end{equation*}
$$

in ψ must be all formally zero. We thus have $F_{\nu}=\Omega$, which completes the proof of the assertion in question. Clearly, if the $f_{i}(x)$ in (2.12) and the coefficients in F_{v} are rational functions of x the same will be true of the coefficients in the $\boldsymbol{\Phi}_{j}$.

An examination of the steps involved from (2.14) to (2.23 a) leads to the following conclusion.

If the 'actual' homogeneous equation of order n and degree ν
(2. 24)

$$
F_{v}\left(x, y, y^{(1)}, \ldots y^{(n)}\right)=0
$$

has coefficients asymptotic, in a region R extending to infinity, to series of the form (2.7) and if $(2,24)$ is satisfied by every 'actual' solution of an 'actual' linear differential equation
(2.25)

$$
L(x, y(x)) \equiv \sum_{i=0}^{\eta} f_{i}(x) y^{(i)}(x)=0 \quad(\eta<n)
$$

where
(2. 25 a) $\quad f_{i}(x) \sim \zeta_{i}(x)=x^{\eta(i)}\{x\}_{0} \quad$ (in $R ; \eta(i)$ rational),
then (2. 13) will hold, the coefficients in the Φ_{j} being functions asymptotic in R to expressions of the form $x^{\lambda_{1}}\{x\}_{0}\left(\lambda_{1}\right.$ rational $)$. The above assertion is made under the supposition that
(2.25b) $\quad f_{i}^{(j)}(x) \sim \zeta_{i}^{(j)}(x) \quad$ (in $\left.R ; j=\mathrm{I}, 2, \ldots n-\eta\right)$.

The truth of this statement follows, if we recall that the coefficients $\varphi_{j}\left(x ; k_{0}, \ldots k_{\eta+j}\right)$, involved in the Φ_{j}, enter linearly in the system of equations (2.20), while in (220) the coefficients of the φ_{j} are functions asymptotic in R to expressions of the form $x^{2}\{x\}_{0}$ (λ rational).

3. Conditions for Existence of Formal Solutions.

In view of (1.4) and (2.7) the formal equation (1.4) may be written as

$$
\begin{align*}
F_{v} \equiv \sum_{i_{1}, \ldots, i_{v}} x^{\eta\left(i_{1}, \ldots i_{v}\right\rangle}\left[b_{0}^{i_{1}, \ldots i_{v}}+\right. & \left.b_{1}^{i_{1}, \ldots i_{v}} x^{-1}+\cdots+b_{\sigma}^{i_{1}, \ldots i_{v}} x^{-\sigma}+\cdots\right] \tag{3.1}\\
& \cdot y^{\left(i_{1}\right)} y^{\left(i_{2}\right)} \ldots y^{\left(i_{v}\right)}=0 \quad\left(0 \leqq i_{1}, i_{2}, \ldots i_{v} \leqq n\right)
\end{align*}
$$

where the $\eta\left(i_{1}, \ldots i_{v}\right)$ are integers. We shall now examine conditions under
which (3. I) has a formal solution $s(x)$, as given by (2. I), ... (2. I c) with $\mu=0$ and $p>0$; that is, a solution

$$
\begin{equation*}
s(x)=e^{Q(x)} x^{r} \sigma(x) \tag{3.2}
\end{equation*}
$$

with
(3. 2 a) $\quad \sigma(x)=\sigma_{0}(x)=\sigma_{0}+\sigma_{1} x^{-\frac{1}{k}}+\cdots+\sigma_{m} x^{-\frac{m}{k}}+\cdots \quad\left(\sigma_{0} \neq 0\right)$,
(3. 2 b)

$$
Q(x)=h_{0} x^{\frac{p}{k}}+\cdots+h_{p-1} x^{\frac{1}{k}} \quad\left(h_{0} \neq 0\right)
$$

Formally one then will have
(3. 3)

$$
\frac{d}{d x} s(x)=e^{Q(x)} x^{r}\left[\lambda(x)+\frac{d}{d x}\right] \sigma(x)
$$

where
(3. 3 a)

$$
\lambda(x)=Q^{(1)}(x)+r \cdot x^{-1}=x^{\frac{p}{k}-1} w(x)
$$

$$
w(x)=w_{0}+w_{1} x^{-\frac{1}{k}}+\cdots+w_{p} x^{-\frac{p}{k}}, w_{j}=\lambda(j) h_{j} \quad(j=\mathrm{o}, \mathrm{I}, \ldots p)
$$

(3. 3 b)

$$
\lambda(j)=\frac{p-j}{k}(0 \leqq j \leqq p-\mathrm{I}), \quad \lambda(p)=\mathrm{I}, \quad h_{p}=r
$$

Consecutive applications of the operations involved in (3.3) will yield

$$
s^{(i)}(x)=e^{Q(x)} x^{\tau}\left[\lambda(x)+\frac{d}{d x}\right]^{i} \sigma(x)
$$

which, in view of (3.3a) and (3.3b), can be put in the form

$$
s^{(i)}(x)=e^{Q(x)} x^{r+i\left(\frac{p}{k}-1\right)} \sigma_{i}(x)
$$

$$
\begin{align*}
\sigma_{i}(x)=\left[w(x)+x^{1-\frac{p}{k}} \frac{d}{d x}\right]^{i} \sigma(x)=[w(x) & +x^{\left.1-\frac{p}{k} \frac{d}{d x}\right] \sigma_{i-1}(x)} \tag{3.4a}\\
& =\sigma_{0}^{(i)}+\sigma_{1}^{(i)} x^{-\frac{1}{k}}+\sigma_{2}^{(i)} x^{-\frac{2}{k}}+\cdots
\end{align*}
$$

Accordingly
(3. 4 b)

$$
\sigma_{0}(x)=\sigma(x), \sigma_{\gamma}^{(0)}=\sigma_{\gamma}
$$

It is observed that in (3.4a) the symbol

$$
\left[w(x)+x^{1-\frac{p}{k}} \frac{d}{d x}\right]^{i}
$$

Developments in the Analytic Theory of Algebraic Differential Equations. 13 cannot be symbolically expanded according to the binomial theorem. By (3.4a)
(3. 5)

$$
\sigma_{\tau}^{(i)}=\sum_{j=0}^{\tau} \lambda(j) h_{j} \sigma_{\tau \rightarrow j}^{(i-1)}+q(\tau) \sigma_{\tau \rightarrow p}^{(i-1)}
$$

$$
[\tau=\mathrm{o}, \mathrm{I}, 2, \ldots ; j \leqq p ; \text { cf. }(3.3 \mathrm{~b}),(3 \cdot 4 \mathrm{~b})]
$$

where
(3. 5 a) $q(\tau)=0($ for $\tau \leqq p), q(\tau)=-\frac{\tau-p}{k} \quad($ for $\tau>p)$.

One may write (3.5) in the form

$$
\begin{equation*}
y_{\tau}(i+\mathrm{I})=a y_{\tau}(i)+f_{\tau}(i) \tag{3.6}
\end{equation*}
$$

$$
\left(a=\frac{p h_{0}}{k}\right)
$$

where

$$
\begin{align*}
y_{\tau}(i)=\sigma_{\tau}^{(i)}, f_{\tau}(i) & =\sum_{s=1}^{\tau} \lambda(s) h_{s} \sigma_{\tau-s}^{(i)}+q(\tau) \sigma_{\tau-p}^{(i)} \tag{3.6a}\\
& \left.=\sum_{j=1}^{\tau} \lambda(j) h_{j} y_{\tau-j}(i)+q(\tau) y_{\tau-p}(i) \quad \text { (cf. }(3 \cdot 3 \mathrm{~b}) ; j \leqq p\right)
\end{align*}
$$

and, by (3.4 b),
(3. 6 b$) \quad y_{\tau}(\mathrm{O})=\sigma_{\tau} \quad(\boldsymbol{x}=0, \mathrm{I}, \ldots)$.

If in (3.6) $f_{\tau}(i)$ is thought of as known, the resulting difference equation gives the following solution for positive integral values i :
(3.7)

$$
y_{\tau}(i)=a^{i} y_{\tau}(0)+\sum_{j=0}^{i-1} f_{\tau}(j) a^{i-1-j}
$$

Accordingly, from (3.5) we infer that

$$
\begin{equation*}
\sigma_{\tau}^{(i)}=a^{i} \sigma_{\tau}+\sum_{j=0}^{i-1} a^{i-1-j}\left[\sum_{s=1}^{\tau} \lambda(,) h_{s} \sigma_{\tau-s}^{(j)}+q(\tau) \sigma_{\tau-p}^{(j)}\right] \tag{3.8}
\end{equation*}
$$

(cf. (3.6), (3.3 b), (3.5 a); $s \leqq p$). Consideration of (3.8) leads to the conclusion that the $\sigma_{r}^{(i)}$ are of the form
(3.9)

$$
\begin{aligned}
\sigma_{r}^{(i)} & =\sum_{\varphi=0}^{r} \lambda_{r, \varrho}^{(i)} \sigma_{Q} \\
& {\left[i=0, \mathbf{I}, 2, \ldots ; \lambda_{r, Q}^{(0)}=0(0 \leqq \varrho<r), \lambda_{r, r}^{(\omega)}=\mathbf{1}\right] }
\end{aligned}
$$

Substitution of this in (3.8) will yield

$$
\begin{aligned}
& \sum_{\rho=0}^{\tau} \lambda_{\tau, \rho}^{(i)} \sigma_{Q}=a^{i} \sigma_{\tau}+\sum_{j=0}^{i \sim 1} a^{i-1-j} \sum_{s=1}^{\tau} \lambda(s) h_{s} \sum_{\rho=0}^{\tau-s} \lambda_{\tau-\Omega, \rho}^{(j)} \sigma_{\rho}+\sum_{j=0}^{i-1} a^{i \sim 1-j} q(\tau) \sum_{\rho=0}^{\tau-p} \lambda_{\tau-p, \rho}^{(j)} \sigma_{\rho} \\
(3.10)= & a^{i} \sigma_{\tau}+\sum_{j=0}^{i-1} a^{i-1-3}\left\{\sigma_{0} \sum_{s=1}^{\tau} \lambda(s) h_{s} \lambda_{\tau-s, 0}^{(j)}+\sigma_{1} \sum_{s=1}^{\tau \sim 1} \lambda(s) h_{s} \lambda_{\tau-s, 1}^{(j)}+\cdots\right. \\
& \left.+\sigma_{m} \sum_{s=1}^{\tau-m} \lambda(s) h_{s} \lambda_{\tau-s, m}^{(j)}+\cdots+\sigma_{\tau-1} \lambda(1) h_{1} \lambda_{\tau-1, \tau-1}^{(j)}\right\}+\sum_{j=0}^{i \sim 1} a^{i-1-j} q(\tau) \sum_{\rho=0}^{\tau-p} \lambda_{\tau-p, \rho}^{(j)} \sigma_{\rho} .
\end{aligned}
$$

Here and in the sequel
(3. 10 a)

$$
\lambda(j) h_{j}=0
$$

$$
(\text { for } j>p)
$$

Comparing the coefficients of the σ_{ρ} we obtain

$$
\begin{equation*}
\lambda_{\tau, \tau}^{[i)}=a^{i} . \tag{3.10b}
\end{equation*}
$$

$$
\left(a=\frac{p h_{0}}{k}\right)
$$

(3. 10 c)

$$
\lambda_{\tau, \varrho}^{(i)}=\sum_{j=0}^{i-1} a^{i-1-j} \sum_{s=1}^{\tau-\varrho} \lambda(s) h_{s} \lambda_{\tau-s, \varrho}^{(j)} \quad(\tau-p<\varrho<\tau)
$$

$$
\lambda_{z_{s, \rho}}^{(i)}=\sum_{j=0}^{i-1} a^{i-1-j} \sum_{s=1}^{\tau-\rho} \lambda(s) h_{s} \lambda_{\tau-s, \rho}^{(j)}+\sum_{j=0}^{i-1} a^{i-1-j} q(v) \lambda_{\varepsilon \rightarrow p, \rho}^{(j)}
$$

$$
(s \leqq p ; 0 \leqq \varrho \leqq x-p ; \text { cf. }(3.10 \mathrm{a}),(3 \cdot 5 \mathrm{a}),(3 \cdot 3 \mathrm{~b})
$$

In view of (3.9) it is noted that the $\lambda_{t, e}^{(0)}$ are known. For $i=\mathrm{I}$ the relations (3. IO b) $-(3.10 \mathrm{~d})$ will serve to determine the $\lambda_{t, \rho}^{(1)}$. In general, having obtained the

$$
\lambda_{\tau, \rho}^{(j)} \quad(j=\mathrm{I}, 2, \ldots, i-\mathrm{I})
$$

the $\lambda_{t, \rho}^{(i)}(0 \leqq \varrho \leqq t)$ will be given by $(3.10 b)-(3.10 \mathrm{~d})$, as formulated. Thus we observe that the coefficients $\sigma_{r}^{(i)}$, involved in $\sigma_{i}(x)$ of (3.4), are of the form (3.9), where the $\lambda_{r, \rho}^{(i)}$ can be determined with the aid of (3. 10 b)-(3. Io d).

By (3.4)

$$
s^{\left(i_{1}\right)}(x) s^{\left(i_{z}\right)}(x) \ldots s^{\left(i_{v}\right)}(x)=e^{v Q\langle x\rangle} x^{v r} x^{\left(\frac{p}{k}-1\right)\left(i_{1}+\cdots+i_{v}\right)} \prod_{\alpha=1}^{v} \sigma_{i_{\alpha}}(x)
$$

$$
\begin{equation*}
=e^{v Q(x)} x^{\nu} x^{\left(\frac{p}{k}-1\right)\left(i_{1}+\cdots+i_{x}\right)} \sum_{j=0}^{\infty} c_{j}^{j_{j}, \ldots i_{\nu}} x^{-\frac{j}{k}} \tag{3.11}
\end{equation*}
$$

where
(3. II a)

$$
\begin{aligned}
c_{j}^{i_{j}, \cdots i_{\nu}}=\sum_{j_{1}, \ldots j_{v}} \sigma_{j_{1}}^{\left(i_{1}\right)} \sigma_{j_{2}}^{\left(i_{2}\right)} \cdots & \sigma_{j_{v}}^{\left(i_{v}\right)} \\
& \left(j_{1}, \ldots j_{v} \geqq 0 ; j_{1}+\cdots+j_{v}=j\right)
\end{aligned}
$$

In consequence of (3.1I) and (3.1) it is observed that $s(x)((3.2))$ will be a formal solution of $F_{v}=0$, if
(3. 12)

$$
\sum_{i_{1}, \ldots i_{v}=0}^{n} x^{\eta_{i_{1}}, \ldots i_{v}} \sum_{\beta=0}^{\infty} l_{\beta}^{i_{1}, \ldots i_{v}} x^{-\beta} \sum_{j=0}^{\infty} c_{j}^{i_{1}, \ldots i_{v}} x^{-\frac{j}{k}}=0,
$$

where
(3. 12 a)

$$
\eta_{i_{1}, \ldots i_{v}}=\eta\left(i_{1}, \ldots i_{v}\right)+\left(\frac{p}{k}-\mathrm{I}\right)\left(i_{1}+\cdots+i_{v}\right)=\frac{\mathrm{I}}{k} l_{i_{1}, \ldots i_{v}}
$$

(integers $l_{i_{1}}, \ldots i_{y}$). For convenience we shall write

$$
\sum_{\beta=0}^{\infty} b_{\beta}^{i_{1}, \ldots i_{\nu}} x^{-\beta}=\sum_{j=0}^{\infty} b_{j}\left(i_{1}, \ldots i_{\nu}\right) x^{-\frac{j}{k}}
$$

with
(3. I3) $b_{j}\left(i_{1}, \ldots i_{v}\right)=0 \quad\left(\right.$ when $\frac{j}{k} \neq$ an integer $)$

$$
b_{\beta k}\left(i_{1}, \ldots i_{v}\right)=b_{\beta}^{i_{1}, \ldots i_{v}} \quad(\beta=0, \mathbf{1}, 2, \ldots)
$$

From (3. 12) it is then deduced that
(3. 14)

$$
\left.\sum_{i_{1}, \ldots i_{v}=0}^{n} x^{\frac{1}{k} l_{i_{1}} \ldots i_{v}} \sum_{j=0}^{\infty} d_{j}^{i_{1}, \ldots i_{v}} x^{-\frac{j}{k}}=\mathrm{o} \quad \text { (cf. (3. 12 a }\right) \text {) }
$$

where
(3. 14 a)

$$
d_{j}^{i_{1}} \ldots i_{v}=\sum_{\jmath_{1}+j_{2}=j} b_{j_{1}}\left(i_{1}, \ldots i_{v}\right) c_{j_{2}}^{i_{1}, \ldots i_{v}} \quad \text { (cf. (3. I 3), (3. I I a)). }
$$

In order that (3. 14) should be formally satisfied it is necessary that there should be at leat two terms of the same degree ϱ in x, the other terms being all of degree $\leqq \varrho$. Thus, we should have

$$
\frac{\mathrm{I}}{k} l_{\alpha_{1}, \ldots \alpha_{v}}=\frac{\mathrm{I}}{k} l_{\beta_{1}, \ldots \beta_{v}}=\varrho=\varrho\left(\frac{p}{k}\right)
$$

for some particular distinct sets of values $\left(\alpha_{1}, \ldots \alpha_{v}\right),\left(\beta_{1}, \ldots \beta_{v}\right)$, while

$$
\frac{1}{k} l_{i_{1}, \ldots i_{v}} \leqq \varrho\left(\frac{p}{k}\right) \quad\left(\text { for all sets }\left(i_{1}, \ldots i_{\nu}\right)\right)
$$

In view of (3.12 a) it is accordingly observed that one should have

$$
\begin{equation*}
\frac{p}{k}-\mathrm{I}=-\frac{\eta\left(\beta_{1}, \cdots \beta_{v}\right)-\eta\left(\alpha_{1}, \ldots \alpha_{v}\right)}{\left(\beta_{1}+\cdots+\beta_{v}\right)-\left(\alpha_{1}+\cdots+\alpha_{v}\right)} \quad \quad\left(\frac{p}{k}>0\right) \tag{3.15}
\end{equation*}
$$

provided $\beta_{1}+\cdots+\beta_{v} \neq \alpha_{1}+\cdots+\alpha_{v}$, and
(3. I5 a) $\quad \eta\left(i_{1}, \ldots i_{v}\right)-\eta\left(\beta_{1}, \ldots \beta_{v}\right) \leqq-\left(\frac{p}{k}-\mathrm{I}\right)\left[\left(i_{1}+\cdots+i_{v}\right)-\left(\beta_{1}+\cdots+\beta_{v}\right)\right]$
(for all sets $\left(i_{1}, \ldots i_{v}\right)$. This gives rise to a diagram of the Puiseux-type, in a way analogous to that of the case of non-linear algebraic difference equations. Thus, the number-pairs
(3. 16)

$$
\left(i_{1}+\cdots+i_{v}, \eta\left(i_{1}, \ldots i_{v}\right)\right.
$$

we represent in the Cartesian (x, y) plane, where $x=i_{1}+\cdots+i_{v}$ and $y=\eta\left(i_{1}, \ldots i_{v}\right)$. It is then observed that admissible values $\frac{p}{k}-1$ (which will be taken rational, p and k being integers), such that (3.15), (3.15 a) hold, are defined as the negatives of the slopes of the rectilinear segments joining pairs of points (3. 16), with the understanding that only those segments are considered whose totality constitutes a polygonal line L concave downward, with no points (5. 16) above L. Inasmuch as we should have $\frac{p}{k}>0$, only those sides of the polygon L will give rise to admissitle values $\frac{p}{k}$ whose slopes are less than unity.

In the case when a vertex P of L is multiple, that is, when we have for at least two distinct sets $\left(\beta_{1}, \ldots \beta_{v}\right),\left(\alpha_{1}, \ldots \alpha_{v}\right)$ the equalities
(3. 17) $\quad \beta_{1}+\cdots+\beta_{v}=\alpha_{1}+\cdots+\alpha_{v}, \eta\left(\beta_{1}, \ldots \beta_{v}\right)=\eta\left(\alpha_{1}, \ldots \alpha_{v}\right)$,
one may choose for $\frac{p}{k}$ - I any rational number $\alpha(>-1)$, provided that L lies to one side of the line through P with the slope $-\alpha$. We then shall have $\frac{p}{k}>0$ and (3.15a) will be satisfied.

Suppose $\frac{p}{k}(>0)$ is given by (3.15) (or as described in the case of a multiple vertex). We proceed finding conditions under which the differential equation has a corresponding formal solution of the stated type. It is observed that (3. 14) can be arranged as follows:

$$
\begin{equation*}
x^{\frac{2}{k}}\left[\delta_{0}+\delta_{1} x^{-\frac{1}{k}}+\delta_{2} x^{-\frac{2}{k}}+\cdots\right]=0, \tag{3.18}
\end{equation*}
$$

where

$$
\frac{\lambda}{k}=\varrho=\frac{1}{k} l_{\alpha_{1}, \ldots \alpha_{v}}
$$ the integers λ, k being suitably chosen. Clearly one should have

(3. 18 a)

$$
\delta_{j}=\mathrm{o}
$$

$$
(j=0,1, \ldots)
$$

Subsequent developments will be considerably simplified if, corresponding to the value $\frac{p}{k}$ under consideration, we take note of the relations

$$
\begin{gather*}
\eta\left(\alpha_{1}, \ldots \alpha_{v}\right)+\left(\frac{p}{k}-\mathrm{I}\right)\left(\alpha_{1}+\cdots+\alpha_{v}\right)=\eta\left(\beta_{1}, \ldots \beta_{v}\right)+\left(\frac{p}{k}-\mathrm{I}\right)\left(\beta_{1}+\cdots+\beta_{v}\right)=\frac{\lambda}{k} \tag{3.19}\\
\eta\left(i_{1}, \ldots i_{v}\right)+\left(\frac{p}{k}-1\right)\left(i_{1}+\cdots+i_{v}\right) \leqq \frac{\lambda}{k}
\end{gather*}
$$

and write the differential equation (3. I) in the form
(3. 20) $\quad F_{\nu} \equiv \sum_{i_{1}, \ldots i_{v}} x^{\frac{\lambda}{k}-\left(\begin{array}{l}p \\ k\end{array}-1\right)\left(i_{1}+\cdots+i_{\nu}\right)}\left[\sum_{\gamma=0}^{\infty} b_{\gamma}^{\prime}\left(i_{1}, \ldots i_{v}\right) x^{-\frac{\gamma}{k}}\right] \cdot y^{\left(i_{2}\right)} \ldots y^{\left(i_{v}\right)}=0$.

This is possible, inasmuch as in view of the second inequality (3. 19) one has (3. 20 a) $\frac{\lambda}{k}-\left(\frac{p}{k}-\mathrm{I}\right)\left(i_{1}+\cdots+i_{v}\right)-\eta\left(i_{1}, \ldots i_{v}\right)=\frac{1}{k} w\left(i_{1}, \ldots i_{v}\right) \geqq 0$,
where $w\left(i_{1}, \ldots i_{v}\right)$ is an integer. By (3.20 a) the $b_{\gamma}^{\prime}\left(i_{1}, \ldots i_{\nu}\right)$ of (3.20) are related with the $b_{\gamma}\left(i_{1}, \ldots i_{\nu}\right)$ of (3.13) as follows:

$$
b_{\gamma}^{\prime}\left(i_{1}, \ldots i_{\gamma}\right)=\left\{\begin{array}{lc}
0 & (\gamma<w) \tag{3.20~b}\\
b_{\gamma-w}\left(i_{1}, \ldots i_{v}\right) & \left(w=w\left(i_{1}, \ldots i_{v}\right) ; \gamma \geqq w\right) .
\end{array}\right.
$$

According to this the $b_{0}^{\prime}\left(i_{1}, \ldots i_{v}\right)$ are those $b_{0}\left(i_{1}, \ldots i_{v}\right)\left[=b_{0}^{\left.i_{1}, \ldots, i_{v}\right] \text { for which }}\right.$ $w\left(i_{1}, \ldots i_{v}\right)$ is zero; thus, amongst the $b_{0}^{\prime}\left(i_{1}, \ldots i_{v}\right)$ will be found in particular (3.21) $\quad b_{0}\left(\alpha_{1}, \ldots \alpha_{v}\right), b_{0}\left(\beta_{1}, \ldots, \beta_{v}\right)$.

Substitution of (3.11) in (3.20) will yield, after division by $x^{\nu r} \exp .[\nu Q(x)]$,

$$
\begin{equation*}
x^{\frac{\lambda}{k}} \sum_{i_{1}, \ldots i_{v}} \sum_{\gamma=0}^{\infty} b_{\gamma}^{\prime}\left(i_{1}, \ldots i_{v}\right) x^{-\frac{\gamma}{k}} \sum_{j=0}^{\infty} c_{j}^{i_{1}, \ldots i_{v}} x^{-\frac{j}{k}}=0 \tag{3.22}
\end{equation*}
$$

Thus, the δ_{i} of (3. 18 a) (cf. (3. 18)) may be expressed as

$$
\begin{equation*}
\delta_{i}=\sum_{i_{1}, \ldots i_{v}} \sum_{t=0}^{i} b_{i-t}^{\prime}\left(i_{1}, \ldots i_{r}\right) c_{t}^{i_{1}} \ldots i_{v} \tag{3.22a}
\end{equation*}
$$

Hence, in view of (3. II a), the equations (3.18a) may be written in the form

$$
\begin{equation*}
\delta_{i} \equiv \sum_{i_{1}, \ldots i_{v}} \sum_{t=0}^{i} b_{i-t}^{\prime}\left(i_{1}, \ldots i_{v}\right) \sum_{\tau_{1}+\cdots+\tau_{v}=t} \prod_{s=1}^{v} \sigma_{\tau_{s}}^{\left(i_{s}\right)}=0 \quad(i=\mathrm{o}, \mathrm{I}, \ldots) \tag{3.23}
\end{equation*}
$$

Furthermore, by virtue of (3.9)
(3. 24)

$$
\delta_{i} \equiv \sum_{i_{1}, \ldots i_{v}} \sum_{t=0}^{i} b_{i-t}^{\prime}\left(i_{1}, \ldots i_{v}\right) \sum_{\tau_{1}+\cdots+\tau_{v}=t} \prod_{s=1}^{\nu} \sum_{\varrho=0}^{\tau_{s}} \lambda_{\tau_{, \rho}}^{\left(i_{s}\right)} \sigma_{Q}
$$

(cf. (3. 10 b)-(3. 10 d)). By (3.24), for $i=0$, and by (3. 10 b)

$$
\begin{aligned}
(3.25)
\end{aligned} \begin{aligned}
\sigma_{0}^{-v} \delta_{0} \equiv \sigma_{0}^{-v} \sum_{i_{1}, \ldots i_{v}} b_{0}^{\prime}\left(i_{1}, \ldots i_{v}\right) & \prod_{s=1}^{v} \lambda_{0,0}^{\left(i_{s}\right)} \sigma_{0} \\
& \equiv \sum_{i_{1}, \ldots, i_{v}} b_{0}^{\prime}\left(i_{1}, \ldots i_{v}\right)\left(\frac{p h_{0}}{k}\right)^{i_{1}+\cdots+i_{v}} \equiv B_{0}\left(\frac{p h_{0}}{k}\right)
\end{aligned}
$$

Thus the first equation (3.23) will be satisfied if and only if i_{v} is a root of the characteristic equation

$$
\begin{equation*}
\mathcal{B}_{0}\left(\frac{p h_{0}}{k}\right)=\mathrm{o} \tag{3.26}
\end{equation*}
$$

where $B_{0}(u)$ is defined in (3.25).
From (3. 10 a) - (3. io d) we obtain
(3.27)
$\lambda_{t, r-1}^{(i)}=i a^{i-1} \lambda(\mathrm{I}) h_{1}$
$\left(a=\frac{p h_{0}}{k}\right)$,
(3.27a)

$$
\lambda_{i, v-2}^{(i)}=c_{i, 0} \lambda(2) h_{2} a^{i-1}+c_{i, 1}\left(\lambda(\mathrm{I}) h_{1}\right)^{2} a^{i-2} .
$$

By induction it is established that
(3. 28)

$$
\begin{gathered}
\lambda_{\tau, \tau-m}^{(i)}=\sum_{q=1}^{m} c_{i, q-1} a^{i-q} \sum_{k_{1}+\cdots+k_{q}=m}\left(\lambda\left(k_{1}\right) h_{k_{1}}\right) \ldots\left(\lambda\left(k_{q}\right) h_{k_{q}}\right)=\Gamma_{m}^{(i)} \\
(m=\mathrm{I}, \ldots p-1),
\end{gathered}
$$

where

$$
\begin{equation*}
p \geqq k_{j} \geqq \mathrm{I} ; \cdot c_{i, 0}=i ; \quad \mathrm{c}_{i, \sigma}=\sum_{j=0}^{i-1} c_{j, \sigma-1} \tag{3,29}
\end{equation*}
$$

Furthermore,
(3. 30)

$$
\lambda_{\tau, \tau-1}^{(i)}=q(\boldsymbol{v}) c_{i, 0} a^{i-1}+\Gamma_{p}^{(i)}
$$

$$
\left(q(\tau)=\frac{\tau-p}{-k}\right)
$$

By induction it is inferred that

$$
\lambda_{\tau, \tau-p-m}^{(i)}=\Gamma_{p+m}^{(i)}+q\left(\tau-\frac{m}{2}\right) \sum_{s=1}^{m}(s+1) c_{i, s} a^{i-s-1}
$$

(3. 3 I)

$$
\begin{array}{r}
\sum_{\substack{k_{1}+\cdots+k_{s}=m}}\left(\lambda\left(k_{1}\right) h_{k_{1}}\right) \ldots\left(\lambda\left(k_{s}\right) h_{k_{s}}\right) \\
{\left[\lambda(s) h_{s}=\mathrm{o}(\text { for } s>p) ; p \geqq k_{j} \geqq \mathrm{I} ; m=\mathrm{I}, 2, \ldots \tau-p ; \tau \geqq p+\mathrm{I}\right]}
\end{array}
$$

In view of (3.24) it is then found that δ_{1} contains $\lambda(\mathrm{I}) h_{1} B_{0}^{(1)}(a)+B_{1}(a)\left(a=\frac{p h_{0}}{k}\right)$ as a factor. Accordingly, h_{1} will be determined from the equation $\delta_{1}=0$, if a is a simple root of the characteristic equation (3.26).

The subsequent expressions for the $\delta_{j}(j=2,3, \ldots)$ are rather complicated. Suffice it to say that, while it is necessary that $\frac{p h_{0}}{k}$ should satisfy (3.26), it is not necessary for the existence of a solution of the stated kind that $\frac{p h_{0}}{k}$ should be a simple root of (3.26). On the other hand; a condition requiring $\frac{p h_{0}}{k}$ to be a simple root of (3.26), while sufficient in an extended variety of cases for the existence of a formal solution of the stated type, is sufficient not in all cases.

Inasmuch as our main concern is with the analytic theory we shall not need any further details in this direction. It will be essential, however, to note the following.

With (3.26) satisfied, $\delta_{i}(i>0)$ is a function of $h_{0}, \ldots h_{p}, \sigma_{0}, \ldots \sigma_{i-1}$; thus,

$$
\boldsymbol{\delta}_{i} \equiv \delta_{i}\left(h_{0}, \ldots h_{p} ; \sigma_{0}, \ldots \sigma_{i-1}\right)
$$

δ_{i} being independent of $\sigma_{i}, \sigma_{i+1}, \ldots$
Lemma 3. 1. Consider the formal non-linear differertial equation $\boldsymbol{F}_{\boldsymbol{v}}=\mathrm{o}$ (3. 1). Let $\frac{p}{k}(>0)$ be an admissible value (p, k integers) formed in accordance with the text subsequent to (3.14a) up to (3.17). If the equation $F_{v}=0$ has a formal solution (3.2)-(3.2 b) with this value of $\frac{p}{k}$, then h_{0} necessarily satisfies the characteristic equation (3.26) and we have δ_{0} given by (3.25), while

$$
\begin{equation*}
\delta_{i} \equiv \delta_{i}\left(h_{0}, \ldots h_{p} ; \sigma_{0}, \ldots \sigma_{i-1}\right)=0 \tag{3.33}
\end{equation*}
$$

$$
(i>0)
$$

where the δ_{i} are defined by (3.24); the δ_{i} are the coefficients in the expansion (3.18) of the first member of (3.14) (cf. (3.11)-(3.14a)).

Examples of equations $F_{v}=0$ (3. 1) which possess formal solutions (3.2)(3. 2 b) can be easily given. For instance, let $L(x, y)=0$ be any equation of the form (2. 12), (2. 12 a) and satisfied by the given formal solutions; we may then take F_{v} of the form (2.13), assigning the coefficients in the φ_{j} arbitrarily of the form $x^{\lambda_{1}}\{x\}_{0}$ (λ_{1} rational).

4. A Transformation.

Suppose that we have on hand a differential equation

$$
\begin{gather*}
F_{v}^{*} \equiv \sum_{i_{1}, \ldots i_{v}} x^{\eta\left(i_{1}, \ldots i_{v}\right)} b^{i_{1}, \ldots i_{v}}(x) y^{\left(i_{1}\right)} y^{\left(i_{2}\right)} \ldots y^{\left(i_{v}\right)}=0 \tag{4.1}\\
\left(0 \leqq i_{1}, i_{2}, \ldots i_{v} \leqq n ; \eta\left(i_{1}, \ldots i_{v}\right) \text { integers }\right)
\end{gather*}
$$

with coefficients $b^{i_{1}} \ldots i_{v}(x)$ analytic (for $x \neq \infty$) in a region R, extending to infinity and bounded by two curves each with a limiting direction at infinity; moreover, suppose that

$$
\begin{equation*}
b^{i_{1}, \ldots i_{v}}(x) \sim \sum_{\gamma=0}^{\infty} b_{\gamma}^{i_{1}, \ldots i_{v}} x^{-\gamma}=\beta^{\prime_{1}, \ldots i_{v}}(x) \tag{4.1a}
\end{equation*}
$$

(in R).

With the 'actual' differential equation (4. 1) there is associated a formal equation

$$
\begin{equation*}
F_{\nu} \equiv \sum_{i_{1}, \ldots i_{v}} x^{\eta\left(i_{1}, \ldots i_{\nu}\right)} \beta^{i_{1}, \ldots i_{\nu}}(x) y^{\left(i_{1}\right)} y^{\left(i_{2}\right)} \ldots y^{\left(i_{\nu}\right)}=0 \tag{4.2}
\end{equation*}
$$

In accordance with the previously established usage, we shall say that $s(x)$ is a formal solution of (4. 1) if it is a formal solution of (4. 2).

Suppose now that $s(x)$ of the form (3.2)-(3.2b) is a formal solution of (4.2) in accordance with Lemma (3. 1). The main purpose of this paper is to examine the possibility that there should exist an 'actual' solution $y(x)$, analytic in a suitable subregion (extending to infinity) R^{\prime} of R and satisfying in R^{\prime} the equation (4. I) as well as the asymptotic relation

$$
\begin{equation*}
y(x) \sim s(x) \tag{4.3}
\end{equation*}
$$

As a preliminary to the investigation of this sort, we recall that corresponding to the side of the Puisenx diagram, to which the value $\frac{p}{\vec{k}}$ (involved in $(3.2 \mathrm{~b})$) belongs, the formal equation (4.2) has been put in the form (3.20). The cor responding form for the actual equation will be
(4. 4) $\quad F_{v}^{*} \equiv \sum_{i_{1}, \ldots i_{v}} x^{\bar{i}}-\left(\frac{p}{k}-1\right)\left(i_{1}+\cdots+i_{v}\right) b^{i_{1}, \ldots i_{v}}(x) y^{\left(i_{1}\right)} y^{\left(i_{v}\right)} \ldots y^{\left(i_{v}\right)}=0$,
where the functions $b^{i_{1}, \ldots i_{v}}(x)$ satisfy the relations
(4. 4 a)

$$
b^{\prime} i_{1}, \ldots i_{v}(x) \sim \beta^{\prime i_{1}} \ldots i_{v}(x)==\sum_{\gamma=0}^{\infty} b_{\gamma}^{\prime}\left(i_{1}, \ldots i_{\nu}\right) x^{-\frac{\gamma}{k}}
$$

(in R)

On the basis of the form of $s(x)$, as given by (3.2), we envisage the transformation
(4. 5)

$$
y(x)=e^{Q(x)} x^{r}[\boldsymbol{\sigma}(t, x)+\varrho(x)],
$$

where
(4. 5 a)

$$
\sigma(t, x)=\sigma_{0}+\sigma_{1} x^{-\frac{1}{k}}+\cdots+\sigma_{t} x^{-\frac{t}{k}}
$$

and $\varrho(x)$ is the new variable. We have
(4. 6)

$$
\frac{d^{i}}{d x^{i}}\left[e^{Q(x)} x^{\tau} \varrho(x)\right]=e^{Q(x)} x^{r+i\left(\frac{p}{k}-1\right)} \varrho_{i}(x)
$$

with
(4. 6 a)
$\varrho_{i}(x)=\left[w(x)+x^{1-\frac{p}{k}} \frac{d}{d x}\right]^{i} \varrho(x)$
(cf. (3. 3 a)).
In particular

$$
\begin{equation*}
\varrho_{i}(x)=\left[w(x)+x^{1-\frac{p}{k}} \frac{d}{d x}\right] \varrho_{i-1}(x) \quad\left(i=1,2, \ldots ; \varrho_{0}(x)=\varrho(x)\right) . \tag{4.6~b}
\end{equation*}
$$

On the other hand,

$$
\frac{d^{i}}{d x^{i}}\left[e^{Q(x)} x^{r} \sigma(t, x)\right]=e^{Q(x)} x^{r+i}\left(\frac{p}{k}-1\right) \sigma_{i}(t, x)
$$

(4. 7 a) $\quad \sigma_{i}(t, x)=\left[w(x)+x^{1-\frac{p}{k}} \frac{d}{d x}\right]^{i} \sigma(t, x)=\left[w(x)+x^{\left.1-\frac{p}{k} \frac{d}{d x}\right] \sigma_{i-1}(t, x), ~(t)}\right.$

$$
=\sigma_{0}^{(i)}(t)+\sigma_{1}^{(i)}(t) x^{-\frac{1}{k}}+\cdots+\sigma_{\gamma}^{(i)}(t) x^{-\frac{\gamma}{k}}+\cdots \quad\left(\sigma_{0}(t, x)=\sigma(t, x)\right)
$$

In section 3 the $\sigma_{\gamma}^{(i)}$ of (3.4 a) have been computed explicitly in terms of the coefficients σ_{g} of (3.2 a). In view of (4.5 a) it is inferred that the $\sigma_{\gamma}^{(i)}(t)$ of (4. 7 a) are the $\sigma_{\gamma}^{(i)}$ with the $\sigma_{j}(j>t)$ replaced by zeros. Thus

$$
\begin{equation*}
\sigma_{\gamma}^{(i)}(t)=\sigma_{\gamma}^{(i)} \quad\left[\text { with } \sigma_{j}(j>t) \text { replaced by zeros }\right] . \tag{4.8}
\end{equation*}
$$

Whence in consequence of (3.9)

$$
\begin{equation*}
\sigma_{\gamma}^{(i)}(t)=\sum_{\rho=0}^{i} \lambda_{\gamma, \rho}^{(i)} \sigma_{\rho} \quad(i=\mathrm{o}, \mathrm{I}, 2, \ldots ; \varrho \leqq \gamma) \tag{4.8a}
\end{equation*}
$$

here the $\lambda_{\gamma, \rho}^{(i)}$ are precisely the constants so designated in (3.9) and defined in (3.9), (3. 10 b), (3.10 c), (3. 10 d).

By (4. 5), (4. 6) and (4.7)
(4.9) $\quad y^{(i)}(x)=e^{Q(x)} x^{r+i\left(\frac{p}{k}-1\right)}\left(\sigma_{i}(t, x)+\varrho_{i}\left(x^{\prime}\right) \quad\right.$ (cf. (4. 6 b$\left.),(4.7 \mathrm{a}),(4.8)\right)$.

Furthermore
(4. 9 a) $y^{\left(i_{1}\right)}(x) y^{\left(i_{2}\right)}(x) \ldots y^{\left(i_{\nu}\right)}(x)=e^{\nu Q(x)} x^{\nu r} x^{\left(\frac{p}{k}-1\right)\left(i_{1}+\cdots+i_{\nu}\right)} \prod_{\alpha=1}^{\nu}\left(\sigma_{i_{\alpha}}(t, x)+\varrho_{i_{\alpha}}(x)\right)$.

Substituting in (4.4) we get
(4. 10)

$$
F_{\nu}^{*} \equiv e^{\nu Q(x)} x^{\nu r+\frac{\lambda}{k}} \sum_{i_{1}, \ldots i_{\nu}} b^{\prime i_{1} \ldots i_{\nu}}(x) \prod_{\alpha=1}^{\nu}\left(\sigma_{i_{\alpha}}(t, x)+\varrho_{i_{\alpha}}(x)\right)=0 .
$$

Now, inasmuch as

$$
\prod_{\alpha=1}^{v}\left(\mathrm{I}+c_{\alpha}\right)=\mathrm{I}+\sum_{m=1 j_{1}<j_{2}<\ldots<j_{m}}^{v} \sum_{j_{1}} c_{j_{2}} \ldots c_{j_{m}}
$$

the above may be written as

Accordingly ϱ satisfies

(4. I I)

$$
L(\varrho)+K(\varrho)=F(x)
$$

where
(4. II a)

$$
L(\varrho) \equiv \sum_{i_{1}, \ldots i_{v}} b^{i_{1}, \ldots i_{v}}(x) \prod_{\alpha=1}^{v} \sigma_{i_{\alpha}}(t, x) \sum_{j=1}^{v} \frac{\varrho_{i j}(x)}{\sigma_{i_{j}}(x)}
$$

(4. I I b) $K(\varrho)=\sum_{i_{1}, \ldots i_{v}} b^{\prime i_{1}, \ldots i_{v}}(x) \prod_{\alpha=1}^{v} \sigma_{i_{\alpha}}(t, x) \sum_{m=2}^{v} \sum_{j_{1}, \ldots<j_{m}} \frac{\varrho_{i_{j_{1}}}(x)}{\sigma_{i_{1}}(x)} \cdots \frac{\varrho_{i_{j_{m}}}(x)}{\sigma_{i_{j_{m}}}(x)}$,
(4. I I c)

$$
\boldsymbol{F}(x)=-\sum_{i_{1}, \ldots i_{v}} b^{i_{1}, \ldots i_{v}}(x) \prod_{\alpha=1}^{v} \sigma_{i_{\alpha}}(t, x)
$$

In view of (4.4 a) one may write for any $\tau>0$
(4. 12)

$$
b^{\prime i_{1}, \ldots i_{v}}(x)=\sum_{\gamma=0}^{\tau} b_{\gamma}^{\prime}\left(i_{1}, \ldots i_{v}\right) x^{-\frac{\gamma}{k}}+x^{-\frac{\tau+1}{k}} \beta_{i_{3}, \ldots i_{v}}(\tau, x)
$$

with
(4. I2 a)
$\left|\beta_{i_{1}, \ldots i_{\nu}}(\tau, x)\right| \leqq \beta_{\tau}$
$(x$ in $R)$.
Thus $F(x)$ of (4. I I c) may be expressed as
(4. 13)

$$
F(x)=F_{1}^{\prime}(x)+F_{2}(x)
$$

(4. I 3 a)

$$
F_{1}(x)=-\sum_{i_{1}, \ldots i_{v}} \sum_{\gamma=0}^{\tau} b_{\gamma}^{\prime}\left(i_{1}, \ldots i_{\gamma}\right) x^{-\frac{\gamma}{k}} \prod_{\alpha=1}^{\nu} \sigma_{i_{\alpha}}(t, x)
$$

(4. I3 b) $\quad F_{2}(x)=-x^{-\frac{\tau+1}{k}} \beta(t, \tau ; x), \beta(t, \tau ; x)=\sum_{i_{1}, \ldots i_{\nu}} \beta_{i_{1}, \ldots i_{v}}(\tau, x) \prod_{\alpha=1}^{\nu} \sigma_{i_{\alpha}}(t, x)$.

We shall examine $F(x)$ closer. On taking account of (3. II) it is inferred that
(4. 14)

$$
\prod_{\alpha=1}^{v} \sigma_{i_{\alpha}}(t, x)=\sum_{j=0}^{\infty} c_{j}^{i_{1}, \ldots i_{v}} v(t) x^{-\frac{j}{k}}
$$

where (compare with (3. I I a))
(4. I 4 a)

$$
c_{j}^{i_{1}, \ldots i_{v}}(t)=\sum_{j_{1}, \ldots j_{v}} \sigma_{j_{1}}^{\left(i_{1}\right)}(t) \sigma_{j_{2}}^{\left(i_{2}\right)}(t) \ldots \sigma_{j_{v}}^{\left(i_{v}\right)}(t)
$$

$$
\left(j_{1}+\cdots+j_{v}=j\right)
$$

By (4. 8 a) and (3.9)
(4. I 5)

$$
\boldsymbol{\sigma}_{\gamma}^{(i)}(t)=\sigma_{\gamma}^{(i)}
$$

$$
(0 \leqq \gamma \leqq t)
$$

Hence from (4. I4 a) it is deduced that
(4. 16)

$$
c_{j}^{i_{1} \ldots i_{v}}(t)=c_{j}^{i_{1}, \ldots i_{v}}
$$

$$
(0 \leqq j \leqq t)
$$

Substituting (4. 14) in $F_{1}(x)$ of (4. 13 a) one obtains

$$
(4.17) \quad-F_{1}(x)=\delta_{0}(\tau, t)+\delta_{1}(\tau, t) x^{-\frac{1}{k}}+\cdots+\delta_{i}(\tau, t) x^{-\frac{i}{k}}+\cdots
$$

First of all we note that in view of the origin of $F_{1}(x)$ the series (4. 17) certainly converges for $|x| \geqq x_{0}\left(x_{0}\right.$ sufficiently great). If it is recalled how δ_{i} of (3.25) was derived, it is concluded that
(4. I7 a)

$$
\delta_{i}(\tau, t)=\delta_{i}
$$

with the $\sigma_{j}^{\left(i_{s}\right)}$ replaced by $\sigma_{j}^{\left(j_{s}\right)}(t)$ and the $b_{\gamma}^{\prime}\left(i_{1}, \ldots i_{\nu}\right)$ (for $\gamma>\tau$) replaced by zeros. Accordingly, by (4. I5) and (3.23)
(4. 17 b)
$\delta_{i}(\tau, t)=\delta_{i}$
$(\mathrm{o} \leqq i \leqq t)$,
provided we take $\tau \geqq t$.
The relations (4. 17 b) are of great importance for us, inasmuch as in consequence of the way the formal solution $s(x)$ has been defined

$$
\delta_{0}=0, \delta_{1}=0, \delta_{2}=0, \ldots
$$

Thus, with $\tau \geqq t$, from (4. 17) it is deduced that

$$
-F_{1}(x)=x^{-\frac{t+1}{k}}\left[\delta_{t+1}(x, t)+\delta_{t+2}(\tau, t) x^{-\frac{1}{k}}+\cdots\right]
$$

On taking account of the convergence of the series (4.17) we conclude that

$$
\begin{equation*}
\left|F_{1}(x)\right| \leqq|x|^{-\frac{t+1}{k}} F_{1}(t, v) \tag{4.18}
\end{equation*}
$$

$$
\text { (in } R \text {) }
$$

Furthermore, by (4. 13 b), (4. 12 a) and (4.7a) one has

$$
\begin{equation*}
\left|F_{2}(x)\right| \leqq|x|^{-\frac{t+1}{k}} F_{2}^{\prime}(t, x) \tag{4.18a}
\end{equation*}
$$

$$
(\text { in } R)
$$

Thus, by (4. 13), (4. 18), (4. 18 a)
$F(x)=x^{-\frac{t+1}{k}} F(t, x)$,
(4. 19 a)
$|F(t, x)| \leqq F_{t} \quad$ (in $R ;$ finite $F_{t} ;$ independent of $\left.x\right)$.

Developments in the Analytic Theory of Algebraic Differential Equations. 25
The form of $L(\varrho)$ ((4. II a)) will be now determined. It is observed that $\varrho_{0}(x)=\varrho(x)$ and that in view of (4.6 b)
(4. 20)

$$
\varrho_{i}(x)=w_{i, 0}(x) \varrho(x)+w_{i, 1}(x) \varrho^{(1)}(x)+\cdots+w_{i, i}(x) \varrho^{(i)}(x)
$$

where $w_{0,0}(x)=\mathrm{I}$ and
(4. 20 a) $\quad w_{i, 0}(x)=w(x) w_{i-1,0}(x)+x^{1-\frac{p}{k}} w_{i-1,0}^{(1)}(x), w(x)=\sum_{j=0}^{p} \lambda(j) h_{j} x^{-\frac{j}{k}}$,
(4. 20 b)

$$
w_{i, m}(x)=w(x) w_{i-1, m}(x)+x^{1-\frac{p}{k}}\left(w_{i-1, m}^{(1)}(x)+w_{i-1, m-1}(x)\right)
$$

$$
\left(m=\mathrm{I}, 2_{2} \ldots i-\mathrm{I}\right)
$$

(4. 20 c)

$$
w_{i, i}(x)=x^{1-\frac{p}{k}} w_{i-1, i-1}(x) .
$$

By (4. II a) and (4. 20)

$$
\begin{aligned}
L(\varrho)=\sum_{i_{1}, \ldots i_{v}} b^{\prime_{1}, \ldots i_{v}}(x) \sum_{j=1}^{\nu} \rho_{i_{j}}(x) & \prod_{\alpha \neq j} \sigma_{i_{\alpha}}(t, x) \\
& =\sum_{i_{1}, \ldots i_{v}} b^{i_{i}, \ldots i_{v}}(x) \sum_{j=1}^{\nu} \sum_{\gamma=0}^{i_{j}} w_{i_{j}, \gamma}(x) \varrho^{(\gamma)}(x) \prod_{\alpha \neq j} \sigma_{i_{\alpha}}(t, x) .
\end{aligned}
$$

Thus
(4. 2I) $\quad L(\varrho)=l_{n}(x) \varrho^{(n)}(x)+l_{n-1}(x) \varrho^{(n-1)}(x)+\cdots+l_{0}(x) \varrho(x)$,
where
(4. 21 a) $l_{\gamma}(x)=\sum_{i_{1}, \ldots i_{v}} b^{i_{1}, \ldots i_{v}}(x) \sum_{j=1}^{v} w_{i_{j}, \gamma}(x) k^{i_{j}, \gamma} \prod_{\alpha \neq j} \sigma_{i_{\alpha}}(t, x) \quad$ (cf. (4.20 a)-(4.20 c))
with
(4. 21 b) $\quad k^{i, \gamma}=0 \quad($ for $i<\gamma), \quad k^{i, \gamma}=\mathrm{I} \quad($ for $i \geqq \gamma)$.

It is observed that
(4. 22)

$$
w_{i, m}(x)=x^{m\left(1-\frac{p}{k}\right)} v_{i, m}(x) \quad(m=0, \mathrm{I}, \ldots i)
$$

where
(4. 22 a)

$$
v_{i, m}(x)=\text { polynomial in } x^{-\frac{1}{k}}, \quad v_{i, i}(x)=1
$$

Whence (4. 21 a) may be put in the form
(4. 23)

$$
l_{\gamma}(x)=x^{\gamma\left(1-\frac{p}{k}\right)} \sum_{i_{1}, \ldots i_{\nu}} b^{i_{i_{1}}, \ldots i_{v}}(x) \sum_{j=1}^{v} v_{i_{j}, \gamma}\left(x^{\prime}, k^{i_{j}, \gamma} \prod_{\alpha \neq j} \sigma_{i_{\alpha}}(t, x)\right.
$$

By (4. 4 a), (4. 7 a) and (4.23)
(4. 24) $\quad l_{\gamma}(x) x^{-\gamma\left(1-\frac{p}{k}\right)}=\lambda_{\gamma}(x) \sim l_{\gamma, 0}(t)+l_{\gamma, 1}(t) x^{-\frac{1}{k}}+\cdots+l_{\gamma, j}(t) x^{-\frac{j}{k}}+\cdots \quad$ (in $\left.R\right)$.

The series in (4.24) is the formal expansion of the expression
(4. 24 a$) \quad \sum_{i_{1}, \ldots i_{v}} \beta^{i_{1}, \ldots i_{v}}(x) \sum_{j=1}^{\nu} v_{i_{j}, \gamma}(x) k^{i_{j}, \gamma} \prod_{a \neq j} \sum_{\varepsilon=0}^{\infty} \sigma_{s}^{\left(i_{\alpha}\right)}(t) x^{-\frac{8}{k}} \quad$ (cf. (4. 4 a), (4. 21.b)).

It is observed that
(4. 24 b)
$l_{\gamma, j}(t)=l_{\gamma, j}$
$\left(j=0, i, \ldots t^{\prime}\right)$,
where the $l_{\gamma, j}$ are independent of t, being the coefficients in the formal expansion of (4. 24 a) with the $\sigma_{s}^{(i)}(t)$ replaced by the $\sigma_{8}^{(i)}$, respectively; moreover, t^{\prime} can be made arbitrarily great by a suitable choice of t. On taking account of (4. 24) one may write (4.2I) in the form
(4. 25)

$$
L(\varrho) \equiv x^{n\left(1-\frac{p}{k}\right)}\left[\lambda_{n}(x) \varrho^{(n)}(x)+\lambda_{n-1}(x) x^{\frac{p}{k}-1} \varrho^{(n-1)}(x)+\cdots\right.
$$

$$
\left.\cdots+\lambda_{\gamma}(x) x^{(n-\gamma)\left(\frac{p}{k}-1\right)} \varrho^{(\gamma)}(x)+\cdots+\lambda_{0}(x) x^{n\left(\frac{p}{k}-1\right)} \varrho(x)\right] \quad \text { (cf. (4. 24) }
$$

Let $v_{i, \gamma, 0}$ denote the constant term in the polynomial $v_{i, \gamma}(x)$. Then by (4.22 a) we have
(4. 26)

$$
v_{n, n, 0}=\mathrm{I}
$$

The constant $l_{n, 0}(t)\left(=l_{n, 0}\right)$, involved in $\lambda_{n}(x)$, is obtained from (4. 24 a) on noting that
(4. 26 a)

$$
\sigma_{0}^{\left(i_{\alpha}\right)}(t)=\sigma_{0} a^{i_{\alpha}}
$$

$$
\left(a=\frac{p h_{0}}{k}\right)
$$

and on taking account of (4.4 a). Thus

$$
l_{n, 0}=\sum_{i_{1}, \ldots i_{v}} b_{0}^{\prime}\left(i_{1}, \ldots i_{v}\right) \sum_{j=1}^{v} v_{i_{j}, n, 0} k^{i j}, n \prod_{\alpha \neq j}\left(\sigma_{0} a^{i} \alpha\right) \quad \text { (cf. (4. 2I b)). }
$$

Whence, inasmuch as $k^{i_{j}, n}=\mathrm{o}$ for $i_{j}<n$ and $k^{n, n}=\mathrm{I}$, one has

$$
l_{n, 0}=\sum_{i_{1}, \ldots i_{v}} b_{0}^{\prime}\left(i_{1}, \ldots i_{\nu}\right) \sum_{j=1}^{v} v_{n, n, 0} k^{i_{j}, n} \sigma_{0}^{\nu-1} a^{i_{1} \dot{+} \cdots+i_{v}-i_{j}}
$$

Developments in the Analytic Theory of Algebraic Differential Equations. 27 and, finally,

$$
\begin{equation*}
l_{n, 0}=\sigma_{0}^{\nu-1} \sum_{j=1}^{v} j \sum_{i_{1}, \ldots i_{v}}^{(j)} b_{0}^{\prime}\left(i_{1}, \ldots i_{v}\right)\left(\frac{p h_{0}}{k}\right)^{i_{1}+\cdots+i_{v}-n} \tag{4.27}
\end{equation*}
$$

here the summation symbol with the superscript j is over the totality of all those sets $\left(i_{1}, \ldots i_{v}\right)$ which contain precisely j elements each equal to n.

At times the supposition will be made that $l_{n, 0}((4.27))$ is distinct from zero. This hypothesis depends only on those of the initial coefficients of the differential equation $F_{v}=0$ which correspond to the Puiseux-diagram-segment associated with $\frac{p}{\vec{k}}$. In this connection it is to be recalled that h_{0} depends on the aforesaid coefficients only.

By (4. 25), if $l_{n, 0} \neq 0$, one will have

$$
\begin{gather*}
L(\varrho) \equiv x^{n\left(1-\frac{p}{k}\right)} \lambda_{n}(x)\left[\varrho^{(n)}(x)+b_{1}(x) x^{\frac{p}{k}-1} \varrho^{(n-1)}(x)+\cdots+b_{n}(x) x^{n\left(\frac{p}{k}-1\right)} \varrho(x)\right] \tag{4.28}\\
(\text { cf. (4. 24)), }
\end{gather*}
$$

where
(4. 28 a)

$$
b_{\gamma}(x) \sim b_{\gamma, 0}(t)+b_{\gamma, 1}(t) x^{-\frac{1}{k}}+\cdots
$$

(in R).
Here the $b_{\gamma, j}\left(o \leqq j \leqq j^{\prime}\right)$ are independent of t; on the other hand, j^{\prime} can be made arbitrarily great by a suitable choice of t.

In view of (4. II b), of (4.20) and (4. 22)

$$
\text { (4. 29) } \begin{aligned}
& K(\varrho)=\sum_{i_{1}, \ldots i_{\nu}} b^{\prime i_{1}, \ldots i_{\nu}}(x) \sum_{m=2}^{v} \sum_{j_{1}<\cdots<j_{m}} \varrho_{i_{j_{1}}}(x) \cdots \varrho_{i_{m}}(x) \prod_{\alpha=1}^{v} \sigma_{i_{\alpha}}(t, x) \\
&=\sum_{i_{1}, \ldots i_{\nu}} b^{i_{i_{1}}, \ldots i_{\nu}}(x) \sum_{m=2}^{v} \sum_{j_{1}<\cdots<j_{m}}\left[\sum_{\gamma=0}^{i_{j_{1}}} v_{i_{j_{1}, \gamma}}(x) \varrho^{(\gamma)}(x) x^{\gamma\left(1-\frac{p}{k}\right)}\right] \\
& \cdot\left[\sum_{\gamma=0}^{i_{j_{2}}} v_{i_{j_{2}, \gamma}}(x) \varrho^{(\gamma)}(x) x^{\gamma\left(1-\frac{p}{k}\right)}\right] \ldots\left[\sum_{\gamma=0}^{i_{j_{m}}} v_{i_{j_{m}, \gamma}}(x) \varrho^{(\gamma)}(x) x^{\gamma\left(1-\frac{p}{k}\right)}\right] \prod_{\alpha=1}^{v} \sigma_{i_{\alpha}}(t, x),
\end{aligned}
$$

where the product symbol is with respect to $i_{1}, i_{2}, \ldots i_{v}$, omitting $i_{j_{1}}, i_{j_{2}}, \ldots i_{j_{m}}$. In consequence of (4. 22 a) from (4.29) it is inferred that
(4. 30)

$$
K(\varrho)=K_{2}(\varrho)+K_{3}(\varrho)+\cdots+K_{v}(\varrho)
$$

where
(4. 30 a$) \quad K_{m}(\varrho)=\sum_{m_{0}, \ldots m_{n}} k^{m_{0}, \ldots m_{n}(t, x)} \prod_{a=0}^{n}\left(\varrho^{(\alpha)}(x)\right)^{m_{\alpha}} x^{\alpha\left(1-\frac{p}{k}\right) m_{\alpha}} \quad\left(m_{0}+\cdots+m_{n}=m\right)$.

In (4. 30 a) the $k_{m_{i}}^{m_{0}} \cdots(t, x)$ are analytic in x for x in $R(x \neq \infty)$ and

$$
\begin{equation*}
\left.k_{m}^{m_{0}, \ldots m_{n}}(t, x) \sim \sum_{\gamma=0}^{\infty} k_{m, \gamma}^{m_{0}, \ldots m_{n}}(t) x^{-\frac{\gamma}{k}} \quad \text { (in } R\right) \tag{4.30~b}
\end{equation*}
$$

We formulate the preceding results as follows.
Lemma 4. 1. Consider the actual differential equation $F_{v}^{*}=0((4.1))$. Let $s(x)((3.2)-(3.2 \mathrm{~b}))$ be a formal solution of (4.2) according to Lemma 3. 1. Let (4. 4) be the corresponding form for the equation $F_{\nu}^{*}=0$. The transformation (4. 5) (with (4. 5 a)) leads to the equation

$$
\begin{equation*}
L(\varrho)+K(\varrho)=F(x) \tag{4.3I}
\end{equation*}
$$

for the new variable $\varrho(x)$. In (4.31) the linear differential expression $L(\varrho)$ is given by (4.25) (with (4.24)); when $l_{n, 0}$ of (4.27) is not zero, one may put $L(\varrho)$ in the form (4. 28) (with (4. 28 a)). Moreover.

$$
K(\varrho)=K_{2}(\varrho)+\cdots+K_{v}(\varrho)
$$

where $K_{m}(\varrho)(2 \leqq m \leqq \nu)$ is a homogeneous differential expression of order not exceeding n and of degrec $m ; K_{m}(\varrho)$ may be expressed as in (4. 30 a) (with (4. 30 b)). The function $F(x)$ is analytic in $R(x \neq \infty)$ and is of the form (4. 19) (with (4.19 a)).

5. Lemmas Preliminary to Existence Theorems.

To construct a solution, with appropriate properties, of (4.31) we determine in succession functions

$$
\begin{equation*}
w_{0}(x), w_{1}(x), \ldots \tag{5.1}
\end{equation*}
$$

by means of the relations

$$
\begin{equation*}
L\left(w_{0}\right)=F(x), w_{-1}(x)=0 \tag{5.2}
\end{equation*}
$$

(5.2 a)
$L\left(w_{i}\right)=-K\left(w_{i-1}\right)+F(x)$

$$
(i=\mathrm{I}, 2, \ldots)
$$

Under suitable conditions $\lim w_{i}(x)$ will be a solution of (4.31). Whe shall write

$$
z_{i}(x)=w_{i}(x)-w_{i-1}(x) \quad(i=0, \mathrm{I}, \ldots)
$$ then

(5. 3 a)
$z_{0}(x)+\cdots+z_{j}(x)=w_{j}(x)$
$(j=\mathrm{o}, \mathrm{I}, \ldots)$.
The successive differential relations to be satisfied by the $z_{i}(x)$ are

$$
\begin{equation*}
L\left(z_{0}\right)=F(x), L\left(z_{j}(x)\right)=-K\left(w_{j-1}(x)\right)+K\left(w_{j-2}(x)\right) \quad(j=\mathrm{I}, 2, \ldots) \tag{5.4}
\end{equation*}
$$

Under suitable convergence conditions the series

$$
\varrho(x)=z_{0}(x)+z_{1}(x)+\cdots+z_{j}(x)+\cdots
$$

will represent a solution of (4.31).
Unless stated otherwise it will be assumed that R covers the complete neigh. borhood of infinity; that is, that R consists of the region

$$
\mathrm{o} \leqq \bar{x} \leqq 2 \pi k ;|x| \geqq x_{0}(>0) \quad(\bar{x}=\text { angle of } x)
$$

For the present it will be assumed that $\eta_{n, 0} \neq 0(c f .(4.27))$. In this case $L(\varrho)$ is given by (4.28). The equation
(5. 6) $\quad \frac{1}{\lambda_{n}(x)} x^{n\left(\frac{p}{k}-1\right)} L(\varrho) \equiv T(\varrho) \equiv \varrho^{(n)}(x)+b_{1}(x) x^{\frac{p}{k}-1} \varrho^{(n-1)}(x)+\cdots+$ $+b_{n}(x) x^{n\left(\frac{p}{k}-1\right)} \varrho(x)=0$
presents the general problem of the irregular singular point (for linear differential equations). It will be necessary to use some of the results of the complete analytic theory of this problem, developed by Trjitzinsex ${ }^{1}$.

The equation (5.6) possesses n formally linearly independent formal solutions

$$
\begin{equation*}
s_{i}(x)=e^{Q_{i}(x)} x^{r_{i}} \sigma(i, x) \tag{5.7}
\end{equation*}
$$

$$
(i=1,2, \ldots n)
$$

where
(5.7a)

$$
\sigma(i, x)=\{x\}_{\mu_{i}}
$$

(cf. Definition 2. I)
and

$$
\begin{equation*}
Q_{i}(x)=\text { polynomial in } x^{\frac{1}{k v_{i}}} \tag{5.7~b}
\end{equation*}
$$

$$
\text { (integers } \nu_{i} \geqq \mathrm{I} \text {) }
$$

The power series involved in $\{x\}_{\mu_{i}}$ are series in $x^{1 /\left(k v_{i}\right)}$. We note also that the highest power in Q_{i} is $x^{\frac{p}{k}}$. Now the $Q_{i}(x)$ depend only on a certain initial

[^5]number of the coefficients in the formal series to which the $b_{\gamma}(x)$ are asymptotic. Hence by taking t sufficiently great (as forthwith is done) we have the $Q_{i}(x)$ in (5.7) independent of t. We recall the following definitions introduced in (T) (cf. pp. 213, 214).

A curve B will be said to be regular if it is simple and extends to infinity where it has a unique limiting direction.

A region R is regular if it is closed, extends to infinity, and is such that if x is in R then $|x| \geqq a>0$; also the boundary of R is simple and consists of an arc γ of the circle $|x|=r_{1}$ and of two regular curves extending from different extremities of γ. In a generic sense

$$
\begin{equation*}
R\left(\theta_{1}, \theta_{2}\right) \tag{5.8}
\end{equation*}
$$

is to denote a regular region for which the two regular curves (parts of the boundary) have limiting directions θ_{1} and θ_{2}, respectively.

We designate by $B_{i, j}$ a regular curve along which

$$
\begin{equation*}
\mathfrak{R}\left(Q_{i}(x)-Q_{j}(x)\right)=0 . \tag{5.9}
\end{equation*}
$$

Such curves are defined only provided $Q_{i}(x)-Q_{j}(x) \neq 0$. We denote by
(5. 10)

$$
R_{1}, R_{2}, \ldots R_{N}
$$

the regular regions, separated by the $\boldsymbol{B}_{i, j}$ curves (formed, whenever possible, for $i, j=\mathrm{I}, 2, \ldots n$, constructed so that interior no such region are there any $B_{i, j}$ curves. Any particular region R_{k} has the form $R\left(\theta_{k, 1}, \theta_{k, 2}\right)\left(\theta_{k, 1} \leqq \theta_{k, 2}\right)$. We shall designate the regular curves, forming part of the boundary of R_{k} and possessing at infinity the limiting directions $\theta_{k, 1}$ and $\theta_{k, 2}$, by ${ }_{l} B_{k}$ and ${ }_{r} B_{k}$, respectively.

According to the Fundamental Existence Theorem, due to Triatzinsky, the following may be stated for the equation (5.6), with reference to any particular region R_{k} of the set (5. 10).

If $\theta_{k, 1}=\theta_{k, 2}$, equation (5.6) will possess a full set of solutions
(5. II)

$$
y_{i}(x)
$$

$$
(i=\mathrm{I}, \ldots n)
$$

with elements $y_{i}(x)$ analytic in $R_{k}(x \neq \infty)$ and satisfying relations

$$
\begin{equation*}
y_{i}(x) \sim s_{i}(x) \quad\left(\text { in } R_{k} ; i=\mathrm{I}, \ldots n ; \text { cf. }(5 \cdot 7)\right) ; \tag{5.11a}
\end{equation*}
$$

that is,
(5. 12)

$$
y_{i}(x)=e^{Q_{i}(x)} x^{r_{i}} y(i, x)
$$

Developments in the Analytic Theory of Algebraic Differential Equations. 31 with
(5. 12 a)

$$
y(i, x) \sim \sigma(i, x)=\{x\}_{\mu_{i}}
$$

$$
\text { (in } R_{k} \text {). }
$$

If $\theta_{k, 1}<\theta_{k, 2}$, there exist regular overlapping subregions of R_{k},

$$
\begin{equation*}
{ }_{r} R_{k}=R\left(\theta_{k, 1}, \theta_{k, 2}\right),{ }_{\imath} R_{k}=R\left(\theta_{k, 1}, \theta_{k, 2}\right) \tag{5.13}
\end{equation*}
$$

with boundaries containing ${ }_{l} B_{k}$ and ${ }_{r} B_{k}$, respectively, so that there exist two full sets of solutions
(5. 13 a)

$$
{ }_{r} y_{i}(x)(i=\mathrm{I}, \ldots n) ;{ }_{i} y_{i}(x)(i=\mathrm{I}, \ldots n)
$$

for which ${ }^{1}$
(5. 13 b)
${ }_{r} y_{i}(x) \sim s_{i}(x)\left(i=\mathrm{I}, \ldots n ;\right.$ in $\left.{ }_{r} R_{k}\right)$,
(5. 13 c)

$$
{ }_{\imath} y_{i}(x) \sim s_{i}(x)\left(i=1, \ldots n ; \text { in }{ }_{l} R_{k}\right)
$$

In the sequel the symbol $\left(a_{i, j}\right)$ will denote a matrix with $a_{i, j}$ in i-th row and j-th column $(i, j=\mathrm{I}, \ldots n)$. The determinant of $\left(a_{i, j}\right)$ will be designated by $\left|\left(a_{i, j}\right)\right|$.

In view of the definition of $T(\varrho)$, given in (5.6), the equations (5.4) may be written in the form
(5. 14)

$$
T\left(z_{j}(x)\right)=\beta_{j}(x)
$$

$$
(j=0, I, \ldots)
$$

where
(5. 14 a)
(5. 14 b)

$$
\beta_{j}(x)=\frac{\mathrm{I}}{\lambda_{n}(x)} x^{n\left(\frac{p}{k}-1\right)}\left[-K\left(v_{j-1}(x)\right)+K\left(w_{j-2}(x)\right)\right] \quad(j=1,2, \ldots)
$$

(cf. (4. 19), (4. 30), (4. 30 a), (4. 30 b$)$).
Let us consider now a non homogeneous differential equation

$$
\begin{equation*}
T(\zeta(x)=\beta(x) \tag{5.15}
\end{equation*}
$$

typical of any equation (5. 14). In view of our purposes it will be desirable to transform (5. 15) into a system.

First of all we note that the system, written in matrix form,

[^6](5. 16)
$$
Z^{(1)}(x)=Z(x) D(x), Z(x)=\left(\zeta_{i, j}(x)\right)
$$
where
(5.16a)
\[

D(x)=\left(d_{i, j}(x)\right)=\left\{$$
\begin{array}{l}
0,0, \ldots,-b_{n}(x) x^{n\left(\frac{p}{k}-1\right)} \\
\mathrm{I}, \ldots, \ldots-b_{n-1}(x) x^{(n-1)\left(\frac{p}{k}-1\right)} \\
\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\
0, \mathrm{o}, \ldots \mathrm{I},-b_{1}(x) x^{\frac{p}{k}-1}
\end{array}
$$\right\}
\]

is associated with the equation $T(\zeta(x))=0$ as follows. If $\left(\zeta_{i, j}(x)\right)$ is a matrix solution of (5.16) then $\left(\zeta_{i, j}(x)\right)=\left(\zeta_{i}^{(j-1)}(x)\right)$ and the $\zeta_{i}(x)(i=1, \ldots n)$ will constitute a full set of solutions of $T(\zeta(x))=0$. On the other hand, if $\zeta_{i}(x)(i=1, \ldots n)$ constitute a full set of solutions of $T(\zeta(x))=0$, the matrix

$$
\begin{equation*}
Z(x)=\left(\zeta_{i, j}(x)\right)=\left(\zeta_{i}^{(j-1)}(x)\right) \tag{5.16b}
\end{equation*}
$$

will satisfy $(5,16)$. It is also observed that if a matrix

$$
\left(\zeta_{i, j}(x)\right)
$$

satisfies the non homogeneous system
(5.17)

$$
Z^{(1)}(x)=Z(x) D(x)+B(x), Z(x)=\left(\zeta_{i, j}(x)\right)
$$

(cf. (5. 16a)), where $B(x)=\left(\beta_{i, j}(x)\right)$ with
(5. 17 a)

$$
\beta_{i, j}(x)=0(j<n), \beta_{i, n}(x)=\beta(x)
$$

then
(5.17 b)

$$
\zeta_{i, j}^{(1)}(x)=\zeta_{i, j+1}(x)(j<n), \zeta_{i, j+1}(x)=\zeta_{i, 1}^{(j)}(x)
$$

and
(5.17 c)

$$
T\left(\zeta_{i, 1}(x)\right)=\beta(x)
$$

That is, every function in the first column of the matrix solution $\left(\zeta_{i, j}(x)\right.$ of (5. 17) will satisfy the equation $T(\zeta(x)=\beta(x)$.

A solution of (5.17) may be given in the form
(5. 18) $\quad Z(x)=W(x) Z_{0}(x)\left[Z(x)=\left(\zeta_{i, j}(x)\right), \quad Z_{0}(x)=\left(\zeta_{i, j: 0}(x)\right), \quad W(x)=\left(w_{i, j}(x)\right)\right]$,
where $Z_{0}(x)$ satisfies (5.16) and
(5. I8 a)

$$
W^{(1)}(x)=B(x) Z_{0}^{-1}(x)
$$

Let R denote any particular vegion referred to in the text from (5. I I) to (5.13).

On taking account of the italicised statement in connection with (5.16 b), the matrix $Z_{0}(x)$ in (5. I8) is formed according to (5. I6 b),
(5. 19)

$$
Z_{0}(x)=\left(\zeta_{i, j: 0}(x)\right)=\left(y_{i}^{(j-1)}(x)\right)
$$

where the $y_{i}(x)$ are from (5. II a) or from (5.13b), (5.13c), according to the character of R. Thus

$$
\begin{equation*}
y_{i}(x)=e^{Q_{i}(x)} x^{r_{i}} y(i, x), y(i, x) \sim\{x\}_{\mu_{i}} \tag{5.19a}
\end{equation*}
$$

(in R).
We also have
(5.19 b)

$$
y_{i}^{(j-1)}(x)=e^{a_{i}(x)} x^{r_{2}+(j-1)}\left(\frac{p}{k}-1\right) y_{j-1}(i, x)
$$

where $y_{j-1}(i, x) \sim\{x\}_{r_{i}}$ (in R). We proceed to determine the form of the ele. ments in the n-th row of the matrix

$$
\begin{equation*}
Z_{0}^{-1}(x)=\left(\bar{y}_{i, j}(x)\right) . \tag{5.20}
\end{equation*}
$$

In the determinant $\left|\left(y_{i}^{(j-1)}(x)\right)\right|$ the logarithms, occurring in (5. 19 b), will of course disappear and we obtain

$$
\begin{equation*}
A(x)=\left|\left(y_{i}^{(i-1)}(x)\right)\right|=e^{Q_{1}(x)+\cdots+Q_{n}(x)} x^{r_{1}+\cdots+r_{n}} x^{\frac{k^{\prime}}{2}\left(n^{2}-n\right)-\frac{\omega}{k}} d(x) \tag{5.2r}
\end{equation*}
$$

with integer $\omega \geqq 0, k^{\prime}=\frac{p}{k}-\mathrm{I}$ and

$$
d(x) \sim d_{0}+d_{1} x^{-\frac{1}{k}}+\cdots \quad\left(\text { in } R ; d_{0} \neq 0\right)
$$

By (5.20)

Whence, in view of (5.19 b)

$$
\begin{equation*}
\mathcal{A}(x) \bar{y}_{n, j}(x)=e^{Q_{1}(x)+\cdots+Q_{n}(x)-Q_{j}(x)} x^{r_{1}+\cdots+r_{n}-r_{j}} x^{\frac{k^{\prime}}{\left.\frac{2}{2}_{2}^{2}-3 n+2\right)}} d_{n, j}(x) \tag{5.22}
\end{equation*}
$$

where

$$
d_{n, j}(x) \sim\left\{x_{n(j)}\right.
$$

(in R).

Thus, in consequence of (5.21) and (5.22)

$$
\begin{equation*}
\bar{y}_{n, j}(x)=e^{-Q_{j}(x)} x^{-r_{j} x^{-\omega_{1}} \bar{y}(n, j, x) \quad\left(\omega_{1}=k^{\prime}(n-1)-\frac{\omega}{k}\right), ~, ~} \tag{5.23}
\end{equation*}
$$

with
(5.23a)
$\bar{y}(n, j, x) \sim\{x\}_{n(j)}$
(in R).
By (5. 17 a), (5.20) and (5. I8 a)
(5.24)

$$
w_{i, j}(x)=\int^{x} \beta(x) \bar{y}_{n, j}(x) d x
$$

$$
(\text { cf. }(5.23))
$$

In view of (5.18) and (5.19) a solution of (5.17) will accordingly be given by
(5.25)

$$
Z(x)=\left(\zeta_{i, j}(x)\right)=\left(\sum_{\lambda=1}^{n} w_{i, r}(x) \zeta_{\lambda, j: 0}(x)\right)
$$

$$
=\left(\sum_{\lambda=1}^{n} y_{\lambda}^{(j-1)}(x) \int^{x} \beta(x) \bar{y}_{n, \lambda}(x) d x\right) \quad(\text { cf. (5. 19 b) })
$$

In consequence of the remark subsequent to (5.17c) it may be asserted that the elements

$$
\zeta_{i, 1}(x)=\sum_{\lambda=1}^{n} y_{\lambda}(x) \int^{x} \beta(x) \bar{y}_{n, \lambda}(x) d x=z(x)
$$

will be independent of i and will constitute a solution of $T(z(x))=\beta(x)$ (provided the integrations can be evaluated). The statement with respect to (5. 17), (5. I7 b) will be applicable, yielding from (5.25) the following important further result

$$
\zeta_{i, 1}^{(j-1)}(x)=\sum_{\lambda=1}^{n} y_{\lambda}^{(j-1)}(x) \int^{x} \beta(x) \eta_{n, \lambda}(x) d x=z^{(j-1)} x \quad(j=1, \ldots n)
$$

On taking account of (5.19 b) and (5.23) the following Lemma is inferred.
Lemma 5. 1. Let $T(z(x))$ be the linear differential operator of (5.6). Let R be a region of the text from (5.11) to (5. 13). Provided the integrations involved can be evaluated, the equation
(5.27)

$$
T(z(x))=\beta(x)
$$

($\beta(x)$ defined in R)

Developments in the Analytic Theory of Algebraic Differential Equations. 35 will possess a solution $z(x)$ such that (5.26) will hold; that is,

$$
z^{(j-1)}(x)=\sum_{\lambda=1}^{n} e^{Q_{\lambda}(x)} x^{r_{\lambda}+(j-1)}\left(\frac{p}{k}-1\right) y_{j-1}(\lambda, x)
$$

(5.27a)

$$
\int^{x} \beta(x) e^{-Q_{\lambda}(x)} x^{-r_{2}-\omega_{1}} \bar{y}(n, \lambda, x) d x \quad(j=1, \ldots n)
$$

In consequense of the asymptotic relation given subsequent to (5. 19 b), as well as of (5.23 a), from (5.27 a) we derive

$$
\begin{gather*}
\left|z^{(j-1)}(x)\right|<a^{2} f \sum_{\lambda=1}^{n} \left\lvert\, e^{Q_{\lambda}(x)} x^{r_{\lambda}+(j-1)}\left(\frac{p}{k}-1\right)+\varepsilon\right. \tag{5.28}\\
\left(j=1, \int n ; \varepsilon>0, \text { arbitrarily small; } x \text { in } R\right)^{-Q_{\lambda}(x)} x^{-r_{\lambda}-\omega_{1}-\beta+\varepsilon}| | d x \mid
\end{gather*}
$$

provided
(5. 28 a)

$$
\beta(x)=x^{-\beta} f(x),|f(x)| \leq f
$$

$$
(\text { in } R)
$$

In this connection it is understood that the integrals in (5.28) exist along suitable paths; moreover, a may depend on ε.

We shall need the following Lemma.
Lemma 5. 2. Let $C(x)$ be a polynomial in $x^{\frac{1}{k}}$. Let R be a region extending to infinity. Suppose
(5.29)

$$
\frac{\partial}{\partial|x|} \mathfrak{R}(C(x)) \leqq 0(\text { in } R), \mathfrak{R}(\alpha) \leqq-\mathbf{I}-\sigma(\sigma>0) ;
$$

then
(5.29a)

$$
\int_{\infty}^{x}\left|e^{C(u)} u^{\alpha}\right||d u| \leq \frac{I}{\sigma}\left|e^{C(x)} x^{\alpha+1}\right|
$$

for all x in R which are such that the ray

$$
\theta=\text { angle of } x, r \geqq|x| \quad \text { (polar coordinates } \theta, r \text {) }
$$

lies in R, the path of integration in (5.29a) being along this ray. If in place of (5.29) we have
${ }^{1}$ Use is made of inequalities $\left|y_{j-1}(\lambda, x)\right|,|\bar{y}(n, \lambda, x)|<a|x| \varepsilon$, valid in R.
(5. 30)

$$
\left.\frac{\partial}{\partial|x|} \Re(C(x))>0 \text { (in } R\right),\left|e^{-C(x)}\right| \sim 0(\text { in } R)^{1},
$$

then
(5. 30 a)

$$
\int_{c}^{x}\left|e^{C(u)} u^{\alpha}\right||d u|<\left|e^{C(x)} x^{c+1}\right|\left(|c| \geqq c\left(\alpha^{\prime}\right) ; \alpha^{\prime}=-\mathcal{M}(\boldsymbol{\alpha})\right),
$$

provided $x(|x| \geqq|c|)$ is on a ray $\theta=$ angle of c, extending into R.
It is noted that, if the leading term in $C(x)$ is $g_{\mathrm{q}} x^{\frac{q}{2}}$, then the asymptotic relation of (5.30) will hold when

$$
\begin{equation*}
\cos \left(\bar{y}_{q}+\frac{q}{k} \theta\right) \geqq \xi>0 \quad\left(\text { in } R ; \bar{g}_{q}=\text { angle of } g_{q}\right) \tag{5.3I}
\end{equation*}
$$

To establish the first part of the Lemma we write
(5.32)

$$
\left|e^{C(u)} u^{\alpha}\right|=\left|e^{C(u)} u^{\alpha+1+\sigma}\right|\left|u^{-1-\sigma}\right|=\left|u^{-1-\sigma}\right| e^{H(u)}
$$

where by (5.29)
(5. 32 a)

$$
\frac{\partial}{\partial|u|} H(u)=\frac{\partial}{\partial|u|} \Re(C(u))+\frac{1}{|u|} \Re(\alpha+. \mathrm{I}+\sigma) \leqq 0
$$

$$
\text { (in } R \text {). }
$$

Along the ray in question $H(u)$ is monotone non-increasing, on this ray $\exp . H(u)$ attains its upper bound at x. We have

$$
\int_{\infty}^{x}\left|e^{C(u)} u^{\alpha}\right||d u| \leqq e^{H(x)} \int_{\infty}^{x}|u|^{-1-\sigma}|d u| \quad(x \text { in } R)
$$

The second member here is clearly identical with the last member in (5. 29 a).
To demonstrate (5.30 a) we note that
(5. 33) $\quad\left|e^{C(u)} u^{\alpha}\right|=\exp . H_{1}(u), H_{1}(u)=\mathfrak{R}(C(u))+\mathfrak{R}(\alpha \log u)$,
so that

$$
\frac{\partial}{\partial|u|} H_{1}(u)=\frac{\partial}{\partial|u|} \Re(C(u))+\frac{\mathrm{I}}{|u|} \Re(\alpha) .
$$

With

[^7]$$
C(u)=g_{1} x^{\frac{q}{k}}+\cdots+g_{1} x^{\frac{1}{k}} \quad\left(\bar{g}_{j}=\text { angle of } g_{j}\right)
$$
and $\mathfrak{R}(\alpha)=-\alpha^{\prime}$, it is inferred that
$$
|u| \frac{\partial}{\partial|u|} H_{1}(u)=\sum_{i=1}^{q}\left|g_{j}\right| \frac{j}{k}|u|^{\frac{j}{k}} \cos \left(\bar{g}_{j}+\frac{j}{k} \theta\right)-\alpha^{\prime}
$$

Hence for all u on the ray $\theta=$ angle of $c\left(|c|=c\left(\alpha^{\prime}\right)\right.$ sufficiently great, with $|u| \geqq|c|$,

$$
\frac{\partial}{\partial|u|} H_{1}(u) \geqq \mathrm{o} .
$$

In view of (5.33) this would imply that the upper bound of $\left|u^{\alpha} \exp . C(u)\right|$, for u on the path of integration in (5.30 a), is attained at $u=x$. Thus, under the stated conditions

$$
\int_{c}^{x}\left|e^{C(u)} u^{\alpha}\right||d u| \leqq\left|e^{C(x)} x^{\alpha}\right| \int_{c}^{x}|d u|<\left|e^{C(u)} x^{\alpha+1}\right|
$$

The Lemma is accordingly established.
Definition 5. 1. Let R denote any particular region referred to in the text from (5. II) to (5.13 c). We shall designate by R^{*} any regular subregion of R such that with respect to R^{*} the following will hold for every particular function

$$
q_{\lambda}(x)=-\frac{\partial}{\partial|x|} \Re\left(Q_{\lambda}(x)\right)
$$

Either

$$
\begin{equation*}
q_{2}(x) \leqq 0 \tag{5.34a}
\end{equation*}
$$

or

$$
\begin{equation*}
q_{\lambda}(x)>0\left(\text { in } R^{*}\right),\left|e^{Q_{k}(x)}\right| \sim 0\left(\operatorname{in}\left(R^{*}\right)\right. \tag{5.34~b}
\end{equation*}
$$

Given a region R, as specified in the above Definition, subregions R^{*} could be found as follows. We consider all regular curves extending into R along which at least one of the functions $q_{\lambda}(x)$ vanishes. ${ }^{1}$ Interior each of the several

[^8]regular subregions of R, into which R is subdivided by these curves, each of the functions
\[

$$
\begin{equation*}
q_{1}(x), \ldots q_{n}(x) \tag{5.35}
\end{equation*}
$$

\]

will maintain its sign. Consider any such particular subregion R^{\prime}. If in R^{\prime} all the $q_{j}(x) \leqq o, R^{\prime}$ is a region R^{*}. If there are some $q_{j}(x)$, say

$$
q_{j_{1}}(x), q_{j_{2}}(x), \ldots q_{j_{m}}(x)
$$

which are positive in R^{\prime}, one may take as R^{*} any subregion of R^{\prime} within which (5. 36 a$) \quad e^{Q_{j_{1}}(x)}, e^{Q_{j_{2}}(x)}, \ldots e^{Q_{j_{m}}(x)} \sim 0$;
in the case when $R^{\prime}=R\left(\theta_{1}, \theta_{2}\right)\left(\theta_{1}<\theta_{2}\right)$ conditions (5.36a) will be satisfied in $R^{*}=R\left(\theta_{1}+\varepsilon_{1}, \theta_{2}-\varepsilon_{1}\right)\left(\varepsilon_{1}>0\right.$, suitably small).

In any case, at least when $R=R\left(\alpha_{1}, \alpha_{2}\right)\left(\alpha_{1} \neq \alpha_{2}\right)$ existence of subregions R^{*} of R is certainly assured; moreover, the parts of R which are not of the type R^{*} (for $|x| \geqq r_{0} ; r_{0}$ suitably great) can be enclosed in a number of sectors the sum of whose angles can be taken arbitrarily small. Furthermore, these statements can still be made with the subregions R^{*} so chosen that, if x is a point in R^{*}, necessarily the ray
(5.37) $\quad \theta=$ angle of $x, r \geq|x| \quad$ (polar coordinatas θ, r)
will lie in R^{*}.
In the sequel it will be always implied that a region R^{*} is so chosen that the statement in connection with (5.37) holds.

Case I. R^{*} is a region, as specified in Ilefinition 5. 1, such that

$$
q_{j}(x) \leqq 0 \quad\left(j=1, \ldots n ; \text { in } R^{*} ; c f .(5 \cdot 34)\right)
$$

Case II. R^{t} is a region, as described in Definition 5. I, such that $q_{j_{1}}(x)$, $q_{j_{2}}(x), \ldots q_{j_{m}}(x)$ are positive in R^{*}, while (5.36 a) holds in R^{*}. In this case, as a matter of notation, entailing no loss of generality, one may write

$$
\begin{equation*}
q_{j}(x)>\circ(j=\mathbf{1}, \ldots m), q_{j}(x) \leqq \circ(j=m+\mathbf{1}, \ldots n) \tag{5.39}
\end{equation*}
$$

for x in R^{*} and
(5. 39 a)
$e^{q_{j}(x)} \sim 0$
$\left(j=\mathrm{I}, \ldots m ;\right.$ in $\left.R^{*}\right)$.

It will be sufficient to have (5.39 a) satisfied to a finite (sufficiently great) number of terms. We then may assert the results of Theorems 7. 1, 8. I for some value $t(>0)$, but not necessarily for arbitrarily great values of t.

6. The First Existence Theorem.

Let us consider Case I (\S). We shall solve in succession the equations (5. 14). In view of (5. 14 a) and (4. 19), (4. 19 a)

$$
\begin{equation*}
\beta_{0}(x)=x^{-\beta_{0}} f_{0}(x), \beta_{0}=\frac{t+\mathrm{I}}{k}-n\left(\frac{p}{k}-\mathrm{I}\right), \tag{6.ı}
\end{equation*}
$$

where
(6. 1 a)

$$
\left|f_{0}(x)\right| \leqq f_{0}
$$

We choose t in the transformation (4.5) sufficiently great so that

$$
\begin{equation*}
\Re\left(-r_{\lambda}-\omega_{1}-\beta_{0}+\varepsilon\right) \leqq-\mathrm{I}-\sigma \quad(\sigma>0 ; \lambda=\mathrm{I}, \ldots n) . \tag{6.2}
\end{equation*}
$$

With the aid of (6.2) and of Lemma 5.2 we obtain

$$
\begin{equation*}
\int_{\infty}^{x}\left|e^{-Q_{\lambda}(x)} x^{-r_{\lambda}-\omega_{1}-\beta_{0}+\varepsilon}\right||d x| \leqq \frac{\mathrm{I}}{\sigma}\left|e^{-Q_{\lambda}(x)} x^{-r_{\lambda}-\omega_{1}-\beta_{0}+\varepsilon+1}\right| \tag{6.3}
\end{equation*}
$$

(in R^{*}). Whence in consequence of Lemma 5. 1 and of (5.28)

$$
\left|z_{0}^{(;-1)}(x)\right|<\frac{1}{\sigma} a^{2} f_{0} \sum_{\lambda=1}^{n}\left|e^{Q_{\lambda}(x)} x^{r_{\lambda}+(i-1)}\left(\frac{p}{k}-1\right)+\varepsilon\right|\left|e^{-Q_{\lambda}(x)} x^{-r_{\lambda}-\omega_{1}-\beta_{0}+\varepsilon+1}\right| .
$$

Thus

$$
\begin{equation*}
\left|z_{0}^{(j-1)}(x)\right|<z_{0}|x|^{(j-1)}\left(\frac{p}{k}-1\right)\left|x^{\alpha_{0}}\right| \quad\left(j=1, \ldots n ; x \text { in } R^{*}\right), \tag{6.4}
\end{equation*}
$$

where
(6. 4 a)

$$
\alpha_{0}=2 \varepsilon-\omega_{1}-\beta_{0}+\mathrm{I} \quad\left(\text { cf. (6. І)), } \quad z_{0}=\frac{n}{\sigma} a^{2} f_{0}\right.
$$

It is supposed that t is taken sufficiently great so that $\alpha_{0}<1$. This is secured in consequence of (6.6 c), below. Using the definition of $T(\varrho)$, given in (5. 6), we obtain

$$
\left|z_{0}^{(n)}(x)\right| \leqq \sum_{i=0}^{n-1}\left|b_{n-i}(x) x^{(n-i)}\left(\frac{p}{k}-1\right)\right|\left|z_{0}^{(i)}(x)\right|+\left|\beta_{0}(x)\right| .
$$

Inasmuch as (4.28 a) implies that
(6.5)
$\left|b_{j}(x)\right| \leqq b$
(in R^{*}),
in consequence of (6. I), (6. I a) and (6.4) we obtain
(6. 5 a)

$$
\left|z_{0}^{(n)}(x)\right|<n b z_{0}\left|x^{n}\left(\frac{p}{k}-1\right)+\alpha_{0}\right|+f_{0}|x|^{-\beta_{0}}
$$

(in R^{*}).

Thus
(6. 6)

$$
\left|z_{0}^{(n)}(x)\right|<c_{0}|x|^{n}\left(\frac{p}{k}-1\right)|x|^{x_{0}} \quad\left(x \text { in } R^{*} ;|x| \geqq \varrho_{1}\right)
$$

with
(6. 6 a) $\quad c_{0}=\max$. of $z_{0}, n b z_{0}+f_{0} \rho_{1}^{-n^{\prime}} ;$
here in view of (5.23)
(6. 6 b)

$$
n^{\prime}=\beta_{0}+\alpha_{0}+n\left(\frac{p}{k}-\mathrm{I}\right)=2 \varepsilon+\frac{\mathrm{I}}{k}(p+\omega)>0
$$

The relation (6.6 b) is secured in wiew of (5.23). We take t so that
(6. 6 c)

$$
\frac{t+\mathrm{I}}{k} \geqq 2 n^{\prime}
$$

Combining (6.4) and (6. 6) it is inferred that

$$
\begin{equation*}
\left|z_{0}^{(i)}(x)\right|<c_{0}|x|^{i}\left(\frac{p}{k}-1\right)|x|^{x_{0}} \quad\left(i=0, \ldots n ; x \text { in } R^{*}\right) \tag{6.7}
\end{equation*}
$$

where α_{0} and c_{0} are defined by (6.4 a), (6.6 a).
By (5. $14 \mathrm{~b} ; j=\mathrm{I}$)

$$
\beta_{1}(x)=\frac{-\mathrm{I}}{\lambda_{n}(x)} x^{n}\left(\frac{p}{k}-1\right) K\left(z_{0}(x)\right)
$$

Thus, using (4. 30), (4.30 b) and (6.7) we obtain

$$
\left|K_{m}\left(z_{0}(x)\right)\right| \leqq \sum_{m_{0}+\cdots+m_{n}=m}\left|i^{m_{0}, \ldots m_{n}}(t, x)\right| \prod_{\alpha=0}^{n} c_{v}^{m_{\alpha}}|x|^{\alpha_{0} m_{\alpha}} \quad \text { (in } R^{*} \text {) }
$$

and

$$
\begin{equation*}
\left|k_{m}^{m_{v}} \quad m_{n}(t, x)\right| \leqq \bar{k} \tag{6.8}
\end{equation*}
$$

$$
\text { (in } \left.R^{*}\right)
$$

furthermore

$$
\left|K\left(z_{0}(x)\right)\right| \leqq \sum_{m=2}^{v}\left|K_{m}\left(z_{0}(x)\right)\right| \leqq \bar{k} \sum_{m=2}^{v} c_{0}^{m}|x|^{\alpha_{0} m} q_{m}
$$

(in R^{*}), where
(6.9)

$$
q_{m}=\sum_{\substack{m_{0}+\cdots+m_{n}=m}} \mathrm{I}
$$

thus, inasmuch as $\alpha_{0}<0$,
(6. 10)

$$
\begin{aligned}
\mid K\left(\left.z_{0}(x)\left|\leqq \bar{k} k^{\prime}\right| x\right|^{2 \alpha_{0}}\right. & \left(\text { in } R^{*} ;|x| \geqq 1\right), \\
k^{\prime}=\sum_{m=2}^{v} c_{v}^{m} q_{m} & \text { (cf. (6. 9), (6. } 6 \mathbf{a})
\end{aligned}
$$

(6. IO a)

Whence, with

$$
\left|\begin{array}{c}
1 \\
\lambda_{n}(x)
\end{array}\right| \leqq \lambda^{\prime} \quad\left(\text { in } R^{*}\right)
$$

we obtain
(6. I I)

$$
\beta_{1}(x)=x^{-\beta_{1}} f_{1}(x) \quad\left(-\beta_{\mathrm{i}}=n\left(\frac{p}{k}-\mathrm{I}\right)+2 \alpha_{0}\right)
$$

where
(6. II a)
$\left|f_{1}(x)\right| \leqq f_{1}\left(\right.$ in $\left.R^{*}\right), f_{1}=\bar{J}_{i} \pi^{\prime} \lambda^{\prime}$
(cf. (6. го а) , (6. 8)).

In view of (5.28), (5.28 a) a solution $z_{1}(x)$ of the equation $T\left(z_{1}(x)=\beta_{1}(x)\right.$ will satisfy the inequalities (5.28) with $\beta=\beta_{1}$ and $f=f_{1}\left(x\right.$ in $\left.R^{*}\right)$. Application of Lemma 5.2 will yield
(6. 12)
$\left|z_{1}^{(j-1)}(x)\right|<z_{1}|x|^{(j-1)}\binom{p-1}{k}|x|^{x_{\mathbf{t}}} \quad\left(j=1, \ldots n ; x\right.$ in $\left.R^{*}\right)$,
where
(6. 12 a)

$$
\alpha_{1}=2 \varepsilon-\omega_{1}-\beta_{1}+\mathrm{I} \quad\left(\text { cf. }(6 . \mathrm{I} 1), z_{1}=\frac{n}{\sigma} \mu^{2} f_{1}\right),
$$

In this connection it is understood that t is so chosen that
(6. 13)

$$
\mathfrak{R}\left(-r_{r}-\omega_{1}-\beta_{1}+\varepsilon\right) \leqq-\mathrm{I}-\sigma \quad(\sigma>0 ; \lambda=\mathrm{I}, \ldots n),
$$

which holds in consequence of the preceding. With the aid of (5.6) and of (6.12) we obtain the inequality, analogous to (6.5 a),

$$
\begin{equation*}
\left|z_{1}^{(n)}(x)\right|<n b z_{1}\left|x^{n\left(\frac{p}{k}-1\right)+\alpha_{1}}\right|+f_{1}|x|^{-\beta_{1}} \tag{6.14}
\end{equation*}
$$

(cf. (6. II), (6. I I a) ,
valid in R^{*}. Whence
(6. 14 a)

$$
\left.\left|z_{1}^{(n)}(x)\right|<c_{1}|x|^{n\left(\frac{p}{k}-1\right)}|x|^{\alpha_{1}} \quad \text { (in } R^{*} ;|x| \geqq \varrho_{1}\right)
$$

with
(6. 14 b) $c_{1}=\max$. of $z_{1}, n b z_{1}+f_{1} \varrho_{1}^{-n^{\prime}} ;$
6-40459. Acta mathematica. 73. Imprimé le 20 août 1940.
here n^{\prime} is from (6.6b). Together with (6.14) this yields
(6. 15)

$$
\left|z_{1}^{(i)}(x)\right|<c_{1}|x|^{i\left(\frac{p}{k}-1\right)}|x|^{\alpha_{1}} \quad\left(i=0,1, \ldots n ; \text { in } R^{*}\right)
$$

In consequence of (6.4a), (6. 1) and (5.23)
(6. 16)

$$
\alpha_{0}=n^{\prime}-\frac{t+1}{k}, \quad \alpha_{1}=n^{\prime}+2 \alpha_{0}=3 n^{\prime}-2\left(\frac{t+1}{k}\right)
$$

where $n^{\prime}(>0)$ is given by (6.6 b). Under (6.6 c)
(6. 16 a)

$$
\alpha_{1} \leqq \alpha_{0} \leqq 0
$$

Let A be a number such that

$$
c_{0} \leqq A, \quad c_{1} \leqq A^{2}
$$

We may replace c_{0}, c_{1} in $(6,7),(6,15)$ by A and A^{2}, respectively.
Suppose that. for some $j \geqq 2$ we have
(6. I7)

$$
\begin{array}{r}
z_{s}^{(i)}(x)=x^{i\left(\frac{\rho}{k}-1\right)} \zeta_{s, i}(x) \\
(s=0, \mathrm{I}, \ldots j-\mathrm{I} ; i=0, \mathbf{1}, \ldots n) \\
\left|\zeta_{s, i}(x)\right| \leqq A^{s+1}|x|^{\gamma_{s}} \quad\left(i=0,1, \ldots n ; \text { in } R^{*} ;|x| \geqq \varrho_{1}\right)
\end{array}
$$

(6. 17 a)
for $s=0, \ldots j-1$: while for $s=0, \mathrm{I}, \ldots j-\mathrm{I}$
(6. 17 b)

$$
\alpha_{s}==(2 s+\mathrm{I}) n^{\prime}-(s+\mathrm{I})\left(\frac{t+\mathrm{I}}{k}\right) \quad\left(n^{\prime} \text { from }(6.6 \mathrm{~b})\right)
$$

The statement with respect to (6.17)-(6.17 b) has been already established for $j=2($ in (6.7), (6.15), (6.16)).

By (4.30), (4.30 a)

$$
\left|K\left(w_{j-1}(x)\right)-K\left(w_{j-2}(x)\right)\right|=\left|K\left(z_{j-1}(x)+w_{j-2}(x)\right)-K\left(w_{j-2}(x)\right)\right| \leqq \sum_{m=3}^{v}\left|T_{m}(x)\right|
$$

where

$$
T_{m}=K_{m}\left(z_{j-1}(x)+w_{j-2}(x)\right)-K_{m}\left(w_{j-2}(x)\right)
$$

We have

$$
w_{j-2}^{(\alpha)}(x)=z_{v}^{(x)}(x)+\cdots+z_{j-2}^{(\alpha)}(x)=x^{\alpha\left(\frac{p}{k}-1\right)} w_{j-2, a}(x)
$$

with
(6. 18)

$$
w_{j-2, \alpha}(x)=\zeta_{0, \alpha}(x)+\cdots+\zeta_{j-2, \alpha}(x)
$$

Moreover,
(6. 19) $\quad T_{m}=\sum_{m_{0}+\cdots+m_{n}=m} k_{m}^{m_{0}, \ldots m_{n}}(t, x)\left[\prod_{\alpha=0}^{n}\left(w_{j-2, \alpha}(x)+\zeta_{j-1, \alpha}(x)\right)^{m_{\alpha}}-\prod_{\alpha=0}^{n}\left(u_{j-2, \alpha}(x)\right)^{m_{\alpha}}\right]$

$$
\begin{gathered}
=\sum_{m_{0}+\cdots+m_{n}=m} k_{m}^{m_{0}, \ldots m_{n}}(t, x)\left[\prod_{\alpha=1}^{m}\left(w_{j-2, i_{\alpha}}(x)+\zeta_{j-1, i_{\alpha}}(x)\right)-\prod_{\alpha=1}^{m} w_{j-2, i_{\alpha}}(x)\right] \\
\left(0 \leqq i_{1}, \ldots i_{m} \leqq n\right) .
\end{gathered}
$$

Here sets of subscripts $\left(i_{1}, i_{2}, \ldots i_{n}\right)$ depend on the sets $\left(m_{0}, \ldots m_{n}\right)$. Now
(6. 19 a) $\prod_{a=1}^{m}\left(u_{j-2, i_{\alpha}}(x)+\zeta_{j-1, i_{\alpha}}(x)\right)-\prod_{\alpha=1}^{m} u_{j-2, i_{\alpha}}(x)=\sum_{\gamma_{1}=1}^{m}\left(\coprod_{\varepsilon \neq \gamma_{1}} u_{j-2, i_{s}}(x)\right) \zeta_{j-1, i_{\gamma_{1}}}(x)$
$+\sum_{\gamma_{1}<\gamma_{2}=1}^{m}\left(\prod_{\delta \neq \gamma_{1}, \gamma_{2}} w_{j-2, i_{s}}(x)\right) \zeta_{j-1, i_{\gamma_{1}}}(x) \zeta_{j-1, i_{\gamma_{2}}}(x)+\cdots+\zeta_{j-1, i_{1}}(x) \zeta_{j-1, i_{2}}(x) \ldots \zeta_{j-1, i_{m}}(x)$.
On the other hand, by (6.18) and (6. 17 a), (6. 17 b)

$$
\begin{aligned}
\left|w_{j-2, \alpha}(x)\right| \leqq \sum_{s=0}^{j-2} A^{s+1}|x|^{\alpha_{s}}=|x|^{\alpha_{0}} A & \sum_{s=0}^{j-2} A^{s}|x|^{2 s n^{\prime}-s\left(\frac{t+1}{k}\right)} \\
& <A|x|^{\alpha_{0}} \sum_{s=0}^{\infty}\left[A|x|^{\left.\left.2 n^{\prime}-\left(\frac{t+1}{k}\right)\right]^{s} \quad \text { (in } R^{*}\right) .}\right.
\end{aligned}
$$

Choosing t sufficiently great so that in R^{*}
(6. 19 b)

$$
A|x|^{n^{\prime}-\left(\frac{t+1}{k}\right)} \leqq \frac{1}{2}
$$

one accordingly obtains
(6. 20)

$$
\left.\left|w_{j-2, \alpha}(x)\right|<2 A|x|^{\alpha_{0}} \quad \text { (in } R^{*} ; \alpha=0, \mathrm{I}, \ldots n\right)
$$

Using (6.8), (6. 17 a; $s=j-1),(6.20)$ and (6.19), (6. 19 a), it is inferred that
(6. 21) $\quad\left|T_{m}\right|<\bar{K} q_{m}\left[m|x|^{(m-1) c_{0}+\alpha_{j-1}}(2 A)^{m-1} A^{j}+\frac{1}{2} m(m-1)|x|^{(m-2) \alpha_{0}+2 \alpha_{j-1}}\right.$

$$
\cdot(2 A)^{m-2} A^{2 j}+\cdots+A^{m j}|x|^{\left.m c_{j-1}\right]}
$$

$$
=\bar{k} q_{m}\left\{\left[2 A|x|^{\alpha_{0}}+A^{j}|x|^{\alpha_{j-1}}\right]^{m}-\left(2 A|x|^{\alpha_{0}}\right)^{m}\right\}
$$

$$
\left.=\bar{k} q_{m}(2 A)^{m}|x|^{\alpha_{0} m}\left[(\mathrm{I}+\sigma(j, x))^{m}-\mathrm{I}\right] \quad \text { (in } R^{*}\right)
$$

where q_{m} is given by (6.9) and

$$
\begin{equation*}
\sigma(j, x)=\frac{\mathrm{I}}{2} A^{j-1}|x|^{\alpha_{j-1}-\alpha_{0}}=\frac{\mathrm{I}}{2}\left[A|x|^{\left.2 n-\left(\frac{t+1}{k}\right)\right]^{j-1}}\right. \tag{6.22}
\end{equation*}
$$

Now, by a mean value theorem
hence

$$
(\mathrm{I}+u)^{m}-\mathrm{I} \leqq m(\mathrm{I}+u)^{m-1} u
$$

$$
(\text { for } u>0)
$$

(6. 23)

$$
(\mathrm{I}+\sigma(j, x))^{m}-\mathrm{I} \leqq m(\mathrm{I}+\sigma(j, x))^{m-1} \sigma(j, x)
$$

In view of (6. 19 b) and (6.22)
Thus, by (6. 23) and (6. 22)

$$
\begin{aligned}
(\mathrm{I}+\sigma(j, x))^{m}-\mathrm{I} & \leqq m \frac{\mathrm{I}}{2}\left[A|x|^{2 n^{\prime}-\left(\frac{t+1}{k}\right)}\right]^{j-1}\left(\mathrm{I}+2^{-j}\right)^{m-1} \\
& <m 2^{m-2}\left[A|x|^{\left.2 n^{\prime}-\left(\frac{t+1}{k}\right)\right]^{j-1}}\right.
\end{aligned}
$$

$$
\left(\operatorname{in} R^{*}\right)
$$

whence from (6.2I) we deduce
(6. 24)

$$
\left|T_{m}\right|<\bar{K}_{i} q_{m} m 2^{m-2}(2 A)^{m} A^{j-1}|x|^{\alpha_{j}(m-1)+\alpha_{j-1}}
$$

Furthermore, in consequence of the inequality subsequent to (6.17 b)
(6. 25) $\mid K\left(w_{j-1}(x)\right)-K\left(\left.w_{j-2}(x)\left|<\bar{k} \sum_{m=2}^{\nu} m q_{m} 2^{2 m-2}\right| x\right|^{(m-1) \alpha_{j}+\alpha_{j-1}} A^{m+j-1}\right.$

$$
\left.=\bar{K}_{i}|x|^{\alpha_{0}+\alpha_{j}-1} c^{\prime} A^{j+1} \quad \text { (in } R^{*}\right)
$$

with e^{\prime} denoting a number, independent of x and j, such that
(6. 25 a) $\quad \sum_{m=2}^{v} m q_{m} 2^{2 m-2}\left(A|x|^{\alpha_{0}}\right)^{m-2} \leqq c^{\prime} \quad$ (in $\left.R^{*}\right)$.

By virtue of the inequality $\left|\mathrm{I} / \lambda_{n}(x)\right| \leqq \lambda^{\prime}$ from (6.25) and (5. 14 b) it is inferred that

$$
\left|\beta_{j}(x)\right|<\lambda^{\prime} c^{\prime} \bar{k}|x|^{\alpha_{0}+\alpha_{j-1}+n\left(\frac{p}{k}-1\right)} A^{j+1}
$$

(in R^{*}).
One accordingly may write
(6. 26)
$\beta_{j}(x)=x^{-\beta_{j}} f_{j}(x), \quad\left|f_{j}(x)\right|<f_{j}$
(in R^{*}),
where
(6. 26 a) $\quad-\beta_{j}=\alpha_{0}+\alpha_{j-1}+n\left(\frac{p}{k}-\mathrm{I}\right), \quad f_{j}=\lambda^{\prime} c^{\prime} \bar{k} A^{j+1}$.

By (5.28), stated in connection with (5.28 a), in consequence of the relation $T\left(z_{j}(x)\right)=\beta_{j}(x)$, from (6.26) it is deduced that

$$
\left.\left|z_{j}^{(i)}(x)\right|<a^{2} f_{j} \sum_{i=1}^{n}\left|e^{Q_{i}(x)} x^{r_{i}+i\left(\begin{array}{c}
p \\
i
\end{array}-1\right) \div \varepsilon}\right| \int_{\infty}^{x}\left|e^{-Q_{\lambda}(x)} x^{-r_{\lambda}-\omega_{1}-\beta_{j}+\varepsilon}\right| d x \right\rvert\,
$$

$i=0, \ldots n-\mathrm{I}$; in R^{*}). Lemma 5.2 is applicable if t is chosen sufficiently great so that

$$
\begin{equation*}
\Re\left(-r_{\lambda}-\omega_{1}-\beta_{j}+\varepsilon\right) \leqq-\mathrm{I}-\sigma \quad(\sigma>0 ; \lambda=\mathrm{I}, \ldots n) \tag{6.27}
\end{equation*}
$$

We then obtain

$$
\begin{equation*}
\left|z_{j}^{(i)}(x)\right|<z_{j}|x|^{i\left(\frac{p}{k}-1\right)}|x|^{\alpha_{j}} \quad(i=0, \mathrm{I}, \ldots n-\mathrm{I}) \tag{6.28}
\end{equation*}
$$

where
(6. 28 a)

$$
z_{j}=\frac{n}{\sigma} a^{2} f_{j}, \quad \alpha_{j}=2 \varepsilon-\omega_{1}+\mathrm{I}-\beta_{j} .
$$

Using the equation $T\left(z_{j}(x)\right)=\beta_{j}(x)$ and the definition of T given in (5.6), from (6.28) and (6.26) it is inferred that
(6.29) $\quad\left|z_{j}^{(n)}(x)\right| \leqq \sum_{i=0}^{n-1}\left|b_{n-i}(x) x^{(n-i)}\left(\frac{p}{k}-1\right)\right|\left|z_{j}^{(i)}(x)\right|+\left|\beta_{j}(x)\right|$

$$
\left.<n b z_{j}|x|^{n\left(\frac{p}{k}-1\right)}|x|^{\alpha_{j}}+|x|^{-\beta_{j}} f_{j} \quad \text { (in } R^{*}\right)
$$

Now

$$
\beta_{j}+n\left(\begin{array}{l}
p \\
k
\end{array}-\mathrm{I}\right)+\alpha_{j}=n^{\prime}>0
$$

by (6. 6 b). Hence (6. 29) and (6. 28) imply
(6. 30)

$$
\left|z_{j}^{(i)}(x)\right|<c_{j}|x|^{i\left(\frac{p}{k}-1\right)}|x|^{\alpha_{j}} \quad\left(i=0, \mathrm{I}, \ldots n ; \text { in } R^{*}\right)
$$

where
(6. 30 a)
$c_{j}=\max$. of $z_{j}, n b z_{j}+f_{j} \varrho_{1}^{-n^{\prime}}$,
inasmuch as x is in R^{*} with $|x| \geqq \varrho_{1}$. Let us examine α_{j}, as given in (6. 28 a). In consequence of (6.26 a), (6.17 b) and (5.23), as well as in view of the definition of n^{\prime}
(6. 30 b)

$$
a_{j}=(2 j+1) n^{\prime}-(j+1)\left(\frac{t+\mathrm{I}}{k}\right)
$$

This is what we would obtain from (6. 17 b) for $s=j$.
Turning attention to (6.30 a), in view of (6.28 a) and $(6.26 \mathrm{a})$ it is concluded that

$$
\begin{equation*}
c_{j}=a^{\prime} f_{j}=a^{\prime} \lambda^{\prime} c^{\prime} \bar{k} A^{j+1} \tag{6.3I}
\end{equation*}
$$

where
(6. $3^{\mathrm{I}} \mathrm{a}$)

$$
a^{\prime}=\max . \text { of } \frac{n}{\sigma} a^{2}, \frac{n^{2} b}{\sigma} a^{2}+\varrho_{1}^{-n^{\prime}}
$$

By taking $\varepsilon>0$ and ϱ_{1} suitably great one may secure a (from the inequalities of foot-note p. 35) to be as small as desired. Accordingly, a^{\prime} of (6.3 I a) can be made so small that $a^{\prime} \lambda^{\prime} c^{\prime} \bar{k} \leqq \mathrm{I}$. We then obtain $c_{j} \leqq A^{j+1}$, and one may take (6. 3 I b)

$$
c_{j}=A^{j+1}
$$

This completes the induction formulated in connection with (6. у7)-(6. 17 b). Recalling the statement with respect to (5.5), we conclude that the series (6. 32)

$$
\varrho^{(i)}(x)=\sum_{s=0}^{\infty} z_{s}^{(i)}(x)=\sum_{s=0}^{\infty} x^{i\left(\frac{p}{k}-1\right)} \zeta_{s, i}(x) \quad(i=0, \mathrm{I}, \ldots n)
$$ are absolutely and uniformly convergent for x in $R^{*}\left(|x| \geqq \varrho_{1} ; \varrho_{1}\right.$ sufficiently great). In fact, the series displayed in the last member of (6.32) is dominated by

$$
\left.S(x)=\sum_{s=0}^{\infty}|x|^{i\left(\frac{p}{k}-1\right)} A^{s+1}|x|^{\alpha_{s}}=|x|^{i\left(\frac{p}{k}-1\right)}|x|^{n^{\prime}-\left(^{t+1} k\right.} k\right) \sum_{s=0}^{\infty}\left[A|x|^{2 n^{\prime}-\left(\frac{t+1}{k}\right)}\right]^{s}
$$

(in $R^{*} ;|x| \geqq \varrho_{1}$); the latter series converges in the indicated region, inasmuch as (6. I9 b) holds. We have
(6. 33) $\quad\left|\varrho^{(i)}(x)\right| \leqq 2 A|x|^{i\left(\begin{array}{c}n \\ k\end{array}-1\right)}|x|^{n^{\prime}-\binom{t+1}{k}} \quad$ (in $R^{*} ;|x| \geqq \varrho_{1} ;$ cf. $(6.6 \mathrm{~b})$
for $i=0, \mathrm{I}, \ldots n$. Clearly the function $\varrho(x)$, defined in R^{*} by the above liniting process and satisfying (6.33), constitutes an 'actual' solution of the transformed differential equation (4.3I) (cf. Lemma 4. I).

Existence Theoreme 6.1. Consider the actual differential equation (4.1)). Let $s(x)(3.2)-(3.2 \mathrm{~b})$ be a formal solution of (4.2). Let (4.4) (with (4.4 a) be

Developments in the Analytic Theory of Algabraic Differential Equations. 47 the corresponding form for the equation $F_{v}^{*}=0$. Corresponding to $s(x)$ there is a linear differential expression

$$
\begin{aligned}
& T(\varrho(x)) \equiv \varrho^{(n)}(x)+b_{1}(x) x^{p-1} \varrho^{(n-1)}(x)+\cdots+b_{n}(x) x^{n\left(\frac{p}{k}-1\right)} \varrho(x) \\
& {[c f .(4.28 \mathrm{a}),(4.28),(4.25),(4.2 \mathrm{I})] }
\end{aligned}
$$

it is assumed that the number $l_{n, 0}$ of (4.27) is distinct from zero. We let R denote a region of the text from (5. II) to (5. 13). Let l^{*} denote a regular subregion of R for which $(5.39 ; j=1,2, \ldots n)$ holds, (cf. formulation of Case I in connection with (5.39), as well as (5.34)).

Given an integer t, however large ($t \geqq t^{\prime}$; t^{\prime}, suitable great), there exists a solution $y(x)$ of $F_{v}^{*}=0$, analytic in R^{*} and such that
(6. 34)

$$
y^{(i)}(x) \sim s^{(i)}(x) \quad\left(x \text { in } R^{*} ; \text { to } n(t) \text { terms } ; i=0, \ldots n\right) ;
$$

here $n(t) \rightarrow \infty$, as $t \rightarrow \infty$. More precisely, we have

$$
\begin{equation*}
y^{(i)}(x)=\frac{d^{i}}{d x^{i}}\left[e^{Q(x)} x^{r}(\sigma(t, x)+\varrho(x)] \quad(i=0, \mathrm{I}, \ldots n)\right. \tag{6.35}
\end{equation*}
$$

where
(6. 35 a) $\quad \sigma(t, x)=\sigma_{0}+\sigma_{1} x^{-\frac{1}{k}}+\cdots+\sigma_{t} x^{-\frac{t}{k}}$
and $\varrho(x)$ is analytic in R^{*} and satisfies in R^{*} the inequalities (6. 33).
We observe that the function $y(x)$, involved in the above Theorem may conceivably depend on t. The question whether $y(x)$ does actually depend on t is for the present left open. If $y(x)$ is indepeudent of t, then the asymptotic relations (6.34) will be in the ordinary sense; that is, to infinitely many terms.

7. The Second Existence Theorem.

We consider now Case II (cf. the end of section 5). Accordingly, in R^{*},

$$
\begin{equation*}
q_{j}(x)>\mathrm{o}(j=\mathrm{I}, \ldots m), \quad q_{j}(x) \leqq \mathrm{o}(j=m+\mathrm{I}, \ldots n) \tag{7.I}
\end{equation*}
$$

and (5.40 a) will hold; $q_{j}(x)$ is defined in (5.34). All the integrations in this section will be along a portion of a fixed ray I in R^{*}, say

$$
(7.2) \quad \theta=\theta_{0}
$$

As in section 6 one has
(7.3) $\quad \beta_{0}(x)=x^{-\beta_{0}} f_{0}(x), \quad\left|f_{0}(x)\right| \leqq f_{0}($ on $\Gamma), \quad \beta_{0}=\frac{t+\mathrm{I}}{k}-n\left(\begin{array}{l}p \\ k\end{array}-\mathrm{I}\right)$.

We choose t so that
(7.4)

$$
\mathfrak{R}\left(-\gamma_{\lambda}-\omega_{1}-\beta_{0}+\varepsilon\right) \leqq-2 \quad(\lambda==m+1, \ldots n)
$$

Lemma 5.2 may be then applied with $\sigma=1$, yielding

$$
\int_{\infty}^{x}\left|e^{-Q_{i}(x)} x^{-r_{i}-\rho_{1}-\beta_{0}+\varepsilon}\right||d x| \leqq\left|e^{-Q_{k}(x)} x^{-r_{2}-()_{1}-\beta_{0}+\varepsilon+1}\right|
$$

(on $\Gamma ; m<\lambda \leqq n$). In consequence of the second part of Lemma 5.2
(7. 5 a)

$$
\int_{c_{0}}^{x}\left|e^{-Q_{\lambda}(x)} x-r_{2}-\omega_{1}-\beta_{0}+\varepsilon\right||d x|<\left|e^{-Q_{\lambda}(x)} x^{-r_{k}-\omega_{1}-\beta_{0}+\epsilon+1}\right|
$$

$\left(x\right.$ on $I ;|x| \geqq\left|c_{0}\right| ;\left|c_{0}\right|=c_{0}(t)$ sufficiently great; $\lambda \leqq m$).
On noting that $T\left(z_{0}^{\prime} x\right)=\beta_{0}(x)$, from (5.28) we infer
(7. 6) $\quad\left|z_{j}^{(j-1)}(x)\right|<z_{0}|x|^{(j-1)}\left(\begin{array}{l}p \\ k\end{array}-1\right)|x|^{\alpha_{0}} \quad\left(j=1, \ldots n ; x\right.$ on $\left.\Gamma ;|x| \geqq c_{0}(t)\right)$,
with
(7.6a) $\quad a_{0}=2 \varepsilon-\omega_{1}-\beta_{0}+1=n^{\prime}-\left(\frac{t+1}{k}\right), \quad z_{0}=n a^{2} f_{0} \quad$ (cf. (6. 6 b$)$).

As before, it is arranged to have $u^{\prime}>0$. By methods like those employed from (6.4 a) to (6.6 a) we now obtain

$$
\left|z_{0}^{(n)}(x)\right| \leqq c_{0}|x|^{n}\left(\begin{array}{l}
p \\
k
\end{array}-1\right)|x|^{\alpha_{0}} \quad\left(x \text { on } \Gamma ;|x| \geqq c_{0}(t)\right)
$$

where
(7.7a)

$$
c_{0}=\text { max. of } z_{0}, n b z_{0}+f_{0}\left(c_{0}^{\prime} t_{j}\right)^{-n^{\prime}}
$$

Thus
(7.8) $\quad\left|z_{0}^{(i)}(x)\right| \leqq c_{0}|x|^{i\left(\begin{array}{l}j \\ k\end{array}-1\right)}|x|^{\alpha_{0}} \quad\left(i=0, \ldots n\right.$; on $r ;|x| \geqq c_{0}(t)$.

Now, it is noted that $\beta_{1}(x)$ is given by a formula subsequent to (6.7). In consequence of (7.8) we obtain the analogue of (6.11), (6 . II a)

$$
\beta_{1}(x)=x^{-\beta_{1}} f_{1}(x), \quad\left|f_{1}(x)\right| \leqq f_{1} \quad\left(\text { on } \Gamma ;|x| \geqq c_{0}(t) \geqq 1\right) .
$$

$$
\begin{equation*}
-\beta_{1}=n\left(\frac{p}{k}-1\right)+2 \alpha_{0}, \quad f_{1}=\bar{k} k^{\prime} \lambda \quad\left(k^{\prime} \text { from (6. (o a) }\right) \tag{7.9a}
\end{equation*}
$$

It is noted that, in view of (7.6a) and (7.7a), c_{0} and hence k^{\prime} can be made arbitrarily small, if we take $\varepsilon>0$ and $c_{0}(t)$ suitably great. ${ }^{1}$ When solving the equation $T\left(z_{1}(x)\right)=\beta_{1}(x)$, in view of (7.9) and (5.28) it is concluded that
(7. 10) $\quad\left|z_{1}^{(j-1)}(x)\right|<a^{2} f_{1} \sum_{\lambda=1}^{n}\left|e^{Q_{\lambda}(x)} x^{r_{\lambda}+(j-1)\left(\frac{p}{k}-1\right)+\varepsilon}\right|$

$$
\cdot \int_{i}^{x}\left|e^{-Q_{\lambda}(x)} x^{-r_{\lambda}-\omega_{1}-\beta_{1}+\varepsilon}\right||d x| \quad\left(j=1, \ldots n ; x \text { on } \Gamma ;|x| \geqq c_{0}(t)\right) ;
$$

here $l=c_{0}$ for $\mathrm{I} \leqq \lambda \leqq m$ and $l=\infty$ for $n<\lambda \leqq n$. By Lemma 5. 2 (with $\sigma=\mathrm{I}$)

$$
\int_{\infty}^{x}\left|e^{-Q_{\lambda}(x)} x^{-r_{\lambda}-\omega_{1}-\beta_{1}+\varepsilon}\right||d x| \leqq\left|e^{-Q_{k}(x)} x^{-r_{\lambda}-\omega_{1}-\beta_{1}+\varepsilon+1}\right|
$$

(on $\left.\Gamma ;|x| \geqq c_{0}(t) ; m<\lambda \leqq n\right)$. Thus
(7.11)

$$
\begin{aligned}
& \int_{\infty}^{x}\left|e^{-q_{k}(x)} x^{-r_{i}-w_{1}-\beta_{1}+\varepsilon}\right||d x| \leq \gamma_{1}\left|e^{-Q_{k}(x)} x^{-r_{k}-w_{1}-\beta_{1}+\varepsilon+1}\right| \\
& \left(x \text { on } \Gamma ;|x| \geqq c_{0}(t) ; m<\lambda \leqq n\right), \quad \gamma_{1}=\left(c_{0}(t)^{2 n^{\prime}-\left(\frac{t+1}{k}\right)}\right.
\end{aligned}
$$

inasmuch as $\beta_{0}-\beta_{1}=2 n^{\prime}-(t+1) / k$. As before, we choose t so that $\beta_{0}-\beta_{1}<0$.
On the other hand, for $I \leqq \lambda \leqq m$

$$
\left|e^{-Q_{2}(x)} x^{-r_{i}-\omega_{1}-\beta_{1}+\varepsilon}\right| \leqq \gamma_{1}\left|e^{-Q_{2}(x)} x^{-r_{2}-\omega_{1}-\beta_{0}+\varepsilon}\right|
$$

for x on $\Gamma\left(|x| \geqq c_{0}(t)\right.$. Thus, by (7. 5 a)
(7. I I a) $\quad \int_{c_{0}}^{x}\left|e^{-Q_{\lambda}(x)} x^{-r_{\lambda}-\omega_{2}-\beta_{1}+\varepsilon}\right||d x|<\gamma_{1}\left|e^{-Q_{\lambda}(x)} x^{-r_{\lambda}-\omega_{1}-\beta_{0}+\varepsilon+1}\right|$

$$
\text { (on } \left.\Gamma ;|x| \geqq c_{0}(t) ; \lambda=\mathrm{I}, \ldots m\right)
$$

By virtue of (7. 10), (7. 11), (7. II a) it is inferred that
${ }^{1}$ One may arrange to have a as small as desired.
4
(7.12)

$$
\begin{gathered}
\left|z_{1}^{(j-1)}(x)\right|<\gamma_{1} z_{1}|x|^{(j-1)\left(\frac{p}{k}-1\right)}|x|^{\alpha_{0}} \\
\left(j=\mathrm{I}, \ldots n ; x \text { on } \Gamma ;|x| \geqq c_{0}(t) ; z_{1}=n a^{2} f_{1}\right) .
\end{gathered}
$$

In consequence of (7.12) and of the inequality obtained from the relation $T\left(z_{1}(x)\right)=\beta_{1}(x)$ and of (7.9), one observes that

$$
\left|z_{1}^{(n)}(x)\right|<n b \gamma_{1} z_{1}|x|^{n\left(\frac{p}{k}-1\right)+\alpha_{0}}+f_{1}|x|^{n\left(\frac{p}{k}-1\right)+2 \alpha_{0}}
$$

Thus
(7.13) $\quad\left|z_{1}^{(i)}(x)\right| \leqq c_{1}|x|^{i\left(\frac{p}{k}-1\right)}|x|^{\alpha_{0}} \quad\left(x\right.$ on $\Gamma ;|x| \geqq c_{0}(t)$
for $i=0, \ldots n$, where
(7. I3 a) $\quad c_{1}=$ max. of $\gamma_{1} z_{1}, n b \gamma_{1} z_{1}+f_{1}\left(c_{0}(t)\right)^{n^{\prime}-\left(\frac{t+1}{k}\right)} \quad$ (cf. (7.12), (7.9a), (7.11)).

For a suitable choice of $c_{0}(t)$ we have both c_{0} and c_{1} sufficiently small so that
(7.14)
$\left|c_{0}\right| \leqq A,\left|c_{1}\right| \leqq A^{2}$,
$0<A \leqq \frac{\mathrm{I}}{2}$.

Suppose now that for some $j \geqq 2$ we have
(7. 15) $\quad z_{s}^{(i)}(x)=x^{i\left(\frac{p}{k}-1\right)} \zeta_{s, i}(x) \quad(s=0, \mathrm{I}, \ldots j-\mathrm{I} ; i=0, \ldots n)$,
(7. 15 a) $\quad\left|\zeta_{s, i}(x)\right| \leqq A^{s+1}|x|^{\alpha_{1}} \quad\left(i=0, \ldots n ;\right.$ on $\Gamma ;|x| \geqq c_{0}(t)$
where α_{0} is from (7. 6 a).
The relations (7.15), (7. 15 a) have been established for $j=2$ in (7.8), (7.13), (7.14).

In view of (4.30) and (4.30 a)

$$
\mid K\left(w_{j-1}(x)\right)-K\left(w_{j-2}(x)\left|\leqq \sum_{m=2}^{v}\right| T_{m}(x) \mid\right.
$$

where

$$
T_{m}(x)=K_{m}\left(z_{j-1}(x)+u_{j-2}(x)\right)-K_{m}\left(u_{j-2}(x)\right)
$$

As before, we write
(7. 16) $\quad w_{j-2}^{(\alpha)}(x)=z_{0}^{(\alpha)}(x)+\cdots+z_{j-2}^{(\alpha)}(x)=x^{\alpha\left(\frac{p}{k}-1\right)} u_{j-2, a}(x)$,

$$
u_{j-2, a}(x)=\zeta_{0, \alpha}(x)+\cdots+\zeta_{j-2, \alpha}(x)
$$

In consequence of (7.15 a) we now have
(7. 16 a)
$\left|w_{j-2, \alpha}(x)\right|<|x|^{\alpha_{0}}\left(A+A^{2}+\cdots\right) \leqq 2 A|x|^{\alpha_{0}} \quad(\alpha=0, \ldots n)$
for x on $\Gamma\left(|x| \geqq c_{0}(t)\right)$.
$\mathrm{By}(6,19),(6.19 \mathrm{a})$ and (7.16a)

$$
\begin{aligned}
& \left|T_{m}(x)\right|<\bar{k} \sum_{m_{0}+\cdots+m_{n}=m} \sum_{\gamma_{1}=1}^{m}\left|\zeta_{j-1, i_{\gamma_{2}}}(x)\right|\left(2 A|x|^{\alpha_{0}}\right)^{m-1} \\
& \quad+\sum_{\gamma_{1}<\gamma_{2}=1}^{m}\left|\zeta_{j-1, i_{\gamma_{1}}}(x) \zeta_{i-1, i_{\gamma_{2}}}(x)\right|\left(2 A|x|^{\alpha}\right)^{m-2}+\cdots+\left|\zeta_{j-1, i_{1}}(x) \ldots \zeta_{j-1, i_{m}}(x)\right| .
\end{aligned}
$$

Hence by virtue of (7.15 a) (for $s=j-1$)

$$
\left|T_{m}(x)\right|<\bar{k} q_{m}\left[\left(A^{j}|x|^{\alpha_{0}}+2 A|x|^{\alpha_{0}}\right)^{m}-\left(2 A|x|^{\alpha_{0}}\right)^{m}\right]
$$

(on $\Gamma ;|x| \geqq c_{0}(t) ;$ cf. (5.9)). Whence by (7.14)
$\left|T_{m}(x)\right|<\hbar q_{m}\left(2 A|x|^{\alpha_{0}}\right)^{m}\left[\left(1+\frac{1}{2} A^{j-1}\right)^{m}-\mathrm{I}\right]$
(7.17) $<\bar{k} m q_{m}\left(2 A|x|^{\left.\alpha_{0}\right)^{m}}\left(1+\frac{1}{2} A^{j-1}\right)^{m-1} \frac{1}{2} A^{j-1} \leqq\left(\frac{5}{4}\right)^{m-1} \frac{1}{2} \bar{k} m q_{m}\left(2 A|x|^{\alpha_{0}}\right)^{m} A^{j-1}\right.$
and
(7. 18) $\quad\left|K\left(w_{j-1}(x)\right)-K\left(w_{j-2}(x)\right)\right|<\bar{k}\left(2 A|x|^{\alpha_{0}}\right)^{2} \bar{c}=2 \bar{k} \bar{c} A^{j+1}|x|^{2 \alpha_{0}}$,
where \bar{c} is a number independent of j and x, such that
(7. I8 a)

$$
\sum_{m=2}^{\nu}\left(\frac{5}{4}\right)^{m-1} m q_{m}\left(2 A|x|^{\alpha_{0}}\right)^{m-2} \leqq \bar{c}
$$

for x on $\Gamma\left(|x| \geqq c_{0}(t)\right)$. Consequently, in view of the inequality $\left|\mathrm{I} / \lambda_{n}(x)\right| \leqq \lambda^{\prime}$, from (7. 18) and (5. 14 b) it is inferred that

$$
\left|\beta_{j}(x)\right|<2 \lambda^{\prime} \bar{k} \bar{c}|x|^{2-\alpha_{0}+n\left(\frac{p}{k}-1\right)} A^{j+1}
$$

Thus
(7. I9) $\quad \beta_{j}(x)=x^{-\beta_{j}} f_{j}(x),\left|f_{j}(x)\right|<f_{j} \quad$ (on Γ),
(7.19 a) $\quad-\beta_{j}=2 \alpha_{0}+n\left(\frac{p}{k}-\mathrm{I}\right)=-\dot{\beta}_{1}, f_{j}=2 \lambda^{\prime} \bar{k} \bar{c} A^{j+1} \quad$ (cf. 7.9 a).

In consequence of (5.28) and in view of the relation $T\left(z_{j}(x)\right)=\beta_{j}(x)$
(7. 20) $\left|z_{j}^{(i)}(x)\right|<a^{2} f_{j} \sum_{\lambda=1}^{n}\left|e^{Q_{\lambda}(x)} x^{r_{\lambda}+i\left(\frac{p}{k}-1\right)+\varepsilon}\right| \int_{l}^{x}\left|e^{-Q_{\lambda}(x)} x^{-r_{\lambda}-\omega_{1}-\beta_{j}+\varepsilon}\right||d x|$
$\left(i=0, \ldots n-1\right.$; on $\Gamma ; l$ as in (7.10)). Inasmuch as, by (7. 19a), $\beta_{j}=\beta_{1}$ it is concluded that the integrals displayed in (7.20) are identical with those in (7. 10). Recalling (7. I 1), (7. I I a) one obtains

$$
\begin{gather*}
\left|z_{j}^{(i)}(x)\right|<\gamma_{1} z_{j}|x|^{i\left(\frac{p}{k}-1\right)}|x|^{\alpha_{0}} \tag{7.21}\\
\left(i=0, \ldots n-\mathrm{I} ; x \text { on } \Gamma ;|x| \geqq c_{0}(t) ; z_{j}=n a^{2} f_{j}\right)
\end{gather*}
$$

where γ_{1} is from (7. II) and f_{j} is from (7.19 a). With the aid of (7.21) and of the inequality

$$
\left|z_{j}^{(n)}(x)\right| \leqq \sum_{i=0}^{n-1}\left|b_{n-i}(x) x^{(n-i)\left(\frac{p}{k}-1\right)}\right|\left|z_{j}^{(i)}(x)\right|+\left|\beta_{j}(x)\right|
$$

in view of (7, 19), (7, 19 a) it is deduced that

$$
\left|z_{j}^{(n)}(x)\right|<n b \gamma_{1} z_{j}|x|^{n\left(\frac{p}{k}-1\right)}|x|^{\alpha_{0}}+f_{j}|x|^{-\beta_{1}}
$$

Thus by (7.9a) and (7.21)

$$
\begin{equation*}
\left|z_{j}^{(i)}(x)\right| \leqq c_{j}|x|^{i\left(\frac{p}{k}-1\right)}|x|^{c_{0}} \quad\left(x \text { on } \Gamma ;|x| \geqq c_{0}(t)\right. \tag{7.22}
\end{equation*}
$$

for $i=\mathrm{o}, \mathrm{I}, \ldots n$, where

$$
c_{j}=\max . \text { of } \gamma_{1} z_{j}, n b \gamma_{1} z_{j}+f_{j}\left(c_{0}(f)\right)^{n^{\prime}-\left(\frac{t+1}{k}\right)}
$$

(compare with (7.13 a)). In consequence of (7.19 a), (7.21), (7.19 a)
(7.22 a) $\quad c_{j}=m^{\prime} \lambda^{\prime \prime} A^{j+1} \quad\left(\lambda^{\prime \prime}=2 \lambda^{\prime} \bar{i} \bar{c} ; \mathbf{c f} .(7.18\right.$ a $\left.)\right)$,
$(7.22 \mathrm{~b}) \quad \quad m^{\prime}=\max$. of $\gamma_{1} n a^{2}, n^{2} b a^{2} \gamma_{1}+\left(c_{0}(t)\right)^{n^{\prime}-\left(\frac{t+1}{k}\right)}$.
Inasmuch as γ_{1} is given by (7.11) and $n^{\prime}-\left(\frac{t+1}{k}\right)<0$, it is observed that m^{\prime} of (7.22 b) can be made arbitrarily small by choosing $c_{1}(t)$ suitably great. On
the other hand, $\lambda^{\prime \prime}$ in (7.22 a) does not increase indefinitely with $c_{0}(t)$. Thus, if we take $c_{0}(t)$ sufficiently great (but independent of j) so that

$$
m^{\prime} \lambda^{\prime \prime} \leqq \mathrm{I}
$$

from (7.22 a) we obtain
$(7,23)$

$$
c_{j} \leqq A^{j+1}
$$

In conjunction with (7.22) the inequality (7.23) implies that (7. 15), (7. I 5 a) holds for $s=j$. Therefore by induction it has been established that
(7.24)

$$
(7 \cdot 24 \mathrm{a})
$$

$$
\begin{aligned}
& z_{s}^{(i)}(x)=x^{i\left(\frac{p}{k}-1\right)} \zeta_{s, i}(x) \quad(s=0, \mathrm{I}, \ldots ; i=0, \ldots n), \\
&\left.\left|\zeta_{s, i}(x) \leqq A^{s+1}\right| x\right|^{\alpha_{\mathrm{e}}} \quad\left(i=0, \ldots n ; \text { on } \Gamma ;|x| \geqq c_{0}(t)\right),
\end{aligned}
$$

provided $c_{0}(t)$ is taken sufficiently great.
The series
(7.25)

$$
\varrho^{(i)}(x)=\sum_{s=0}^{\infty} x^{i\left(\frac{p}{k}-1\right)} \zeta_{\S, i}(x) \quad(i=0, \mathrm{I}, \ldots n)
$$

converge absolutely and uniformly for x on $\Gamma\left(|x| \geqq c_{0}(t)\right.$; moreover, in view of (7.24 a)
(7.26)

$$
\left.\left|\varrho^{(i)}(x) \leqq 2 A\right| x\right|^{i}{ }^{\left(\begin{array}{l}
p \\
k
\end{array}-1\right)}|x|^{n^{\prime}-\left(\frac{t+1}{k}\right)} \quad\left(\text { on } \Gamma ;|x| \geqq c_{0}(t)\right)
$$

for $i=0, \mathrm{I}, \ldots n$. The function $\varrho(x)$ will be an 'actual' solution of the transformed equation referred to in Lemma 4. I.

Existence Theorem 7. 1. Let $F_{v}^{*}=\mathrm{o}$ be an 'actual' differential equation, as given in (4. 1). Let $s(x)((3.2)-(3.2 \mathrm{~b}))$ be a formal solution of (4. 2). We recall the fact that corresponding to $s(x)$ there is a linear differential expression $T\left(\varrho^{\prime}(x)\right)$ $(c f .(4.28 \mathrm{a}),(4.28),(4.25),(4.21))$. We assume that $l_{n, 0}$ of $(4.27) \neq 0$. With R designating a region of the text in connection with (5.11)-(5.13), let R^{*} denote a subregion of R, as specified in Definition 5. I. Thus, with suitable notation one may assert (5.40), (5.40 a), where $q_{j}(x)=-\frac{\partial}{\partial|x|} \mathfrak{R}\left(Q_{j}(x)\right)$.

Given an integer $t\left(t \geqq t^{\prime} ; t^{\prime}\right.$ suitably great $)$, however large, and given a fixed ray $\Gamma, \theta=\theta_{0}$, in $R^{* 1}$ there exists a solution $y(x)$ of $F_{v}^{*}=0$ analytic on Γ $\left(|x| \geqq c_{0}(t) ; c_{0}(t)\right.$ sufficiently great $)$ and such that
${ }^{1}$ Extending to infinity in R^{*}.

(7. 27)

$$
y^{(i)}(x) \sim s^{(i)}(x) \quad(x \text { on } \Gamma ; \text { to } n(t) \text { terms; } i=0, \ldots n) ;
$$

here $n(t) \rightarrow \infty$, as $t \rightarrow \infty$. In detail, one has

$$
\begin{equation*}
y^{(i)}(x)=\frac{d^{i}}{d x^{i}}\left[e^{Q(x)} x^{r}(\boldsymbol{\sigma}(t, x)+\varrho(x))\right] \quad(i=0, \ldots n) \tag{7.28}
\end{equation*}
$$

where $\sigma(t, x)$ is given by (6.35 a) and $\varrho(x)$ is analytic on $\Gamma\left(\right.$ for $|x| \geqq c_{0}(t)$ and satisfies on Γ the inequalities (7.26).

8. The Third Existence Theorem.

With
(8. I)

$$
q_{j}(x)=-\frac{\partial}{\partial|x|} \Re\left(Q_{j}(x)\right) \quad(j=\mathbf{\imath}, \ldots n)
$$

where the $Q_{j}(x)$ are the polynomials involved in the text from (5.6) to (5.7 b), Theorem 6. I was concerned with existence results for $F_{\nu}^{*}=0$ (4. I) for x in a regular region R^{*}, in which $q_{j}(x) \leqq 0(j=1, \ldots n)$.

In Theorem 7. I we succeeded in obtaining existence results for $F_{\nu}^{*}=0$ when x is merely on a ray Γ in a regular region R, in which some of the $q_{j}(x)$ are non-positive and others are positive; thus, $q_{j}(x)>0(j=\mathbf{I}, \ldots m), q_{j}(x) \leqq 0$ $(j=m+\mathrm{I}, \ldots n)$, exp. $Q_{j}(x) \sim o(j-1, \ldots m)$ in R^{*}.

We are now concerned with the possibility of proving existence of solutions of $F_{v}^{*}=0$, under the same circumstances as in Theorem 7. I, but for x in regular region R^{\prime}, in place of a ray Γ. We proceed to construct suitable regions R. First, let R^{*} denote a regular subregion of R (R from the text in conjunction with (5.7)-(5.13 c)) such that the $q_{j}(x)$ of (8.1) do not change signs in R^{*}; as a matter of notation one then may urite

$$
\begin{array}{lr}
q_{j}(x)>0 & \left(j=\mathrm{I}, \ldots m ; \text { in } R^{*}\right) \tag{8.2}\\
q_{j}(x) \leqq 0 & \left(j=m+\mathrm{I}, \ldots n ; \text { in } R^{*}\right)
\end{array}
$$

Take R^{*} so that $\exp . Q_{j}(x) \sim \mathrm{o}\left(j=\mathrm{I}, \ldots m\right.$; in $\left.R^{*}\right)$. We let R^{\prime} denote any regular subregion of R^{*}, such that interior R^{\prime} there extend no regular curves ${ }^{1}$ defined by the equations
${ }^{1}$ If $Q_{j}(x)=q_{j, 0} x^{\frac{\sigma}{\bar{k}}}+\cdots+q_{j, \sigma-1} x^{\frac{1}{\bar{k}}}\left(q_{j, 0}=\left|q_{j, 0}\right| \exp .\left(\sqrt{-1} \bar{q}_{j, 0}\right) \neq 0\right)$, then the regalar curves $q_{j}(x)=0$ (j fixed) will possess at infinity the limiting directions satisfying the equation $\cos \left(\bar{q}_{j, 0}+\frac{\sigma}{k} \theta\right)=0$; on the other hand, the regular curves $q(j, x)=0(j$ fixed) will have at infinity directions θ for which $\sin \left(\bar{q}_{j, 0}+\frac{\sigma}{k} \theta\right)=0$.

Developments in the Analytic Theory of Algebraic Differential Equations. 55

$$
\begin{equation*}
q(j, x) \equiv-\frac{\partial}{\partial \theta} \Re\left(Q_{j}(x)\right)=\mathrm{o} \quad(j=\mathrm{I}, \ldots m ; \theta=\text { angle of } x) ; \tag{8.3}
\end{equation*}
$$

moreover, R^{\prime} is to be such that, if x represents a point in R^{\prime}, the ray $\theta=$ angle of $x, r \geqq|x|(\theta, r$ polar coordinates $)$, is in R^{\prime},

With respect to the behaviour of the $Q_{j}(x)$ in R^{\prime} we note the following. If $C(x)=-Q_{j}(x)(m<j \leqq n)$, then by Lemma 5.2

$$
\begin{equation*}
\int_{\infty}^{x}\left|e^{C(u)} u^{\alpha}\right||d u| \leqq\left|e^{C(x)} x^{\alpha+1}\right| \quad\left(x \text { in } R^{\prime}\right) \tag{8.4}
\end{equation*}
$$

provided $\mathfrak{R}(\alpha) \leqq-2$ and the path of integration is along the ray $\theta=$ angle of x. If $C(x)=-Q_{j}(x)(\mathrm{I} \leqq j \leqq m)$ one has

$$
\begin{equation*}
\left.\frac{\partial}{\partial|x|} \mathfrak{\Re}(C(x))=q_{j}(x)>0, e^{-C(x)} \sim 0 \quad \quad \text { (in } R^{\prime}\right) \tag{8.5}
\end{equation*}
$$

hence by Lemma 5. 2 we again have

$$
\begin{equation*}
\int_{c}^{x}\left|e^{C(u)} u^{\alpha}\right||d u|<\left|e^{C(x)} x^{\alpha+1}\right| \quad\left(|c| \geqq c\left(\alpha^{\prime}\right) ; \alpha^{\prime}=-\Re(\alpha)\right) \tag{8.5a}
\end{equation*}
$$

for $x \quad(|x| \geqq|c|)$ on the ray $\theta=$ angle of c. The function $C(x)=-Q_{j}(x)$ ($\mathrm{I} \leqq j \leqq m$) is such that

$$
\begin{equation*}
\frac{\partial}{\partial \theta} \Re(C(x)) \equiv q(j, x) \tag{8,6}
\end{equation*}
$$

does not change sign in R^{\prime}. Let the two regular curves (without common points) which form part of the boundary of R^{\prime} be designated as T_{1} and T_{2}. In view of the statement with reference to (8.6), there exists a curve $T_{\nu(j)}$ $(\nu(j)=\mathrm{I}$ or 2$)$ such that, when $\gamma(j)$ is a point on $T_{\left.v^{\prime} j\right)}, \mid$ exp. $C(x) \mid$ is monotone non-decreasing as x varies in R^{\prime} from $\gamma(j)$ along an are of the circle $r=|\gamma|$. With integration along an are $r=|\gamma(j)|$ and c (in R^{\prime}) on this arc, we shall have

$$
\begin{equation*}
\int_{\gamma(j)}^{\mathrm{e}}\left|e^{C(u)} u^{\alpha}\right||d u| \leqq B\left(\alpha^{\prime \prime}\right) \int_{\gamma(j)}^{c}\left|e^{C(u)} u^{-\alpha^{\prime}}\right||d u| \tag{8.7}
\end{equation*}
$$

where $\alpha=-\alpha^{\prime}+\sqrt{-1} \alpha^{\prime \prime}$ and
(8.7 a) $\quad B\left(\alpha^{\prime \prime}\right)=$ upper bound in R^{\prime} of $e^{-\alpha^{\prime \prime} \theta}$;
moreover,
(8. 8) $\int_{\gamma(j)}^{c}\left|e^{C(u)} u^{\alpha}\right||d u| \leqq B\left(\alpha^{\prime \prime}\right)\left|e^{C(c)} c^{-\alpha^{\prime}}\right| \int_{\gamma(j)}^{e}|d u| \leqq B^{\prime} B\left(\alpha^{\prime \prime}\right)\left|e^{C(c)} c^{-\alpha^{\prime}+1}\right|$,
where B^{\prime} is the upper bound of $\left|\theta_{1}-\theta_{2}\right|\left(\theta_{1}=\right.$ angle of $x_{1}, \theta_{2}=$ angle of $\left.x_{2}\right)$ for all pairs of points x_{1}, x_{2} in R^{\prime}. With $j \leqq m$ and $C(x)=-Q_{j}(x)$ it will be understood that

$$
\begin{equation*}
\int_{\gamma(j)}^{x} e^{c(u)} u^{\alpha} d u=\int_{\gamma(j)}^{c} e^{C(u)} u^{\alpha} d u+\int_{c}^{x} e^{C(u)} u^{\alpha} d u \tag{8.9}
\end{equation*}
$$

(angle of $c=$ angle of $x ;|c|=|\gamma(j)| ;|x| \geqq|\gamma(j)|$), where the integration from $\gamma(j)$ to c is within R^{\prime} along an arc of the circle $r=|\gamma(j)|$ and the integration from c to x is along a rectilinear segment. By (8.9), (8.8) and (8. 5 a)
(8. 10) $\quad\left|\int_{\gamma(j)}^{x} e^{C(u)} u^{\alpha} d u\right|<B^{\prime} B\left(\alpha^{\prime \prime}\right)\left|e^{C(c)} c^{-\alpha^{\prime}+1}\right|+\left|e^{C(x)} x^{\alpha+1}\right|$
x in $R^{\prime} ; \alpha^{\prime}=-\Re(\alpha)$, provided $|\gamma(j)|$ is selected sufficiently great. Inasmuch as $\Re(C(u))$ is monotone increasing along (c, x), from c to x, and $|c(x)| \leqq 1$, from (8. 10) we obtain

$$
\begin{aligned}
\left|\int_{\gamma(j)}^{x} e^{C(u)} u^{\alpha} d u\right|<B^{\prime} B\left(\alpha^{\prime \prime}\right) \mid & e^{C(c)} c^{-\alpha^{\prime}+1}\left|+B\left(\alpha^{\prime \prime}\right)\right| e^{C(x)} x^{-\alpha^{\prime}+1} \mid \\
& \leqq B\left(\alpha^{\prime \prime}\right)\left|e^{C(x)} x^{-\alpha^{\prime}+1}\right|\left(\mathrm{I}+B^{\prime}\right) \quad\left(x \text { in } R^{\prime} ; \alpha^{\prime}=-\Re \alpha\right) .
\end{aligned}
$$

Thus, with $C(x)=-Q_{j}(x)(j \leqq m)$,

$$
\begin{equation*}
\left|\int_{\gamma(j)}^{x} e^{c(u)} u^{\alpha} d u\right|<D_{j}\left(\alpha^{\prime \prime}\right)\left|e^{C(x)} x^{\alpha+1}\right| \quad \quad\left(x \text { in } R^{\prime}\right) \tag{8.іІ}
\end{equation*}
$$

where
(8. II a) $\quad D_{j}\left(\alpha^{\prime \prime}\right)=$ upper bound in R^{\prime} of $e^{\alpha^{\prime \prime} \theta} B\left(\alpha^{\prime \prime}\right)\left(\mathrm{I}+B^{\prime}\right)$

$$
\left[\theta==\text { angle of } x ; x \text { in } R^{\prime} ;|x| \geqq \gamma(j) ; B\left(\alpha^{\prime \prime}\right) \text { from }(8.7 \text { a })\right]
$$

In consequence of (8.4) and (8. II) we have the following result.

Lemma 8. 1. Consider the italicised statement in connection with (8. 2), (8. 3). We shall have

$$
\begin{equation*}
\int_{\infty}^{x}\left|e^{-Q_{j}(u)} u^{\dot{a}}\right||d u| \leqq\left|e^{-Q_{j}(x)} x^{a+1}\right| \tag{8.І2}
\end{equation*}
$$

$\left(j=m+1, \ldots n ; x\right.$ in $\left.R^{\prime}\right)$, provided $\Re(\alpha) \leqq-2$ and the path of integration is along the ray $\theta=$ angle of x. Also
(8. 13)

$$
\int_{\gamma(j)}^{x}\left|e^{-Q_{j}(u)} u^{\alpha}\right||d u|<D_{j}\left(\alpha^{\prime \prime}\right)\left|e^{-Q_{j}(x)} x^{\alpha+1}\right|
$$

$\left(j=\mathrm{I}, \ldots m ; x\right.$ in $R^{\prime} ;|x| \geqq \gamma(j) ; \gamma(j)$ sufficiently great; $\alpha^{\prime \prime}=$ imaginary part of $D\left(\alpha^{\prime \prime}\right)$ from (8. II a)). In (8. 13) $\gamma(j)$ is a point as specified subsequent to (8. 6) and the path of integration is as described with respect to (8. 9).

Note. In (8. 13) one may replace $D\left(\alpha^{\prime \prime}\right)$ by
(8. 13 a)

$$
D=\max . \text { of } D_{j}\left(\alpha^{\prime \prime}\right) \text { and } \mathrm{I} \quad(j=\mathrm{I}, \ldots m)
$$

As before, we arrange to have $n^{\prime}($ cf. $(6.6 \mathrm{~b}))>0$. We have (7.3) in R^{\prime} and t is chosen so that (7.4) holds. On using (5.28), from the equation $T\left(z_{0}(x)\right)=\beta_{0}(x)$ it is inferred that

$$
\left|z_{0}^{(i)}(x)\right|<a^{2} f_{0} \sum_{\lambda=1}^{n}\left|e^{Q_{\lambda}(x)} x^{r_{\lambda}+i}\left(\frac{p}{k}-1\right)+\varepsilon \quad\right| \int\left|e^{-Q_{\lambda}(x)} x^{-r_{2}-\omega_{2}-\beta_{0}+\varepsilon}\right||d x|
$$

$\left(i=0, \ldots n-1\right.$; in $\left.R^{\prime}\right)$. Integrations here and in the remainder of this section are along paths indicated in Lemma 8. 1. Thus

$$
\begin{equation*}
\left|z_{0}^{(i)}(x)\right| \leqq D z_{0}|x|^{i\left(\frac{p}{k}-1\right)}|x|^{\alpha_{0}} \quad\left(i=0, \ldots n-\mathrm{I} ; \text { in } R^{\prime}\right) \tag{8.14}
\end{equation*}
$$

where z_{0} and α_{0} are from (7. 6 a) and $|x| \geqq \gamma_{0}(t)\left(\gamma_{0}(t)\right.$ sufficiently great). In consequence of the inequality subsequent to $(6.4 \mathrm{a})$ and of (6.5) with the aid of (8. 14) it is deduced that
$\begin{array}{ll}\text { (8. 15) } & \left|z_{v}^{(i)}(x)\right| \leqq \gamma_{0}|x|^{i\left(\frac{p}{k}-1\right)}|x|^{\alpha_{0}} \quad\left(i=0, \ldots n ; \text { in } R^{\prime} ;|x| \geqq \gamma_{0}(t)\right), \\ \text { (8. . } 5 \text { a) } & \gamma_{0}=\max . \text { of } D z_{0}, n b D z_{0}+f_{0}\left(\gamma_{0}(t)\right)^{-n^{\prime}} .\end{array}$

Using (8. 15) and repeating the argument from (6.7) to (6. Io), it is concluded that

$$
\left|\beta_{1}(x)\right| \leqq \lambda^{\prime} \bar{k}|x|^{n}\left(\frac{p}{k}-1\right) \sum_{m=2}^{\eta} \gamma_{0}^{m}|x|^{\alpha_{0} m} q_{m} .
$$

Thus

$$
\begin{array}{cc}
\text { (8. 16) } & \beta_{1}(x)=x^{-\beta_{1}} f_{1}(x),\left|f_{1}(x)\right| \leqq f_{1} \\
(8.16 \mathrm{a}) & -\beta_{1}=n\left(\frac{p}{k}-\mathrm{I}\right)+2 \alpha_{0}, \quad f_{1}=\lambda^{\prime} \bar{k} \sum_{m=2}^{v} \gamma_{0}^{m}\left(\gamma_{0}(t)\right)^{(m-2) \alpha_{0}} q_{m}
\end{array}
$$

Inasmuch as, by (7.6a), $z_{0}=n a^{2} f_{0}$ and one may arrange to have a arbitrarily small, with $\gamma_{0}(t)$ sufficiently great, it is inferred that γ_{0} of (8. 15 a) can be made as small as desired; the same will be true of f_{1} of (8. 16 a).

Since $\beta_{0}-\beta_{1}=2 n^{\prime}-(t+\mathrm{I}) / k$ and $|x| \geqq \gamma_{0}(t)$, from (8. 16) it is deduced that

$$
\begin{equation*}
\left|\beta_{1}(x)\right| \leqq|x|^{-\beta_{0}} f_{1} \gamma^{\prime \prime}, \quad \gamma^{\prime \prime}=\left(\gamma_{0}(t)\right)^{2 n^{\prime}-\left(\frac{t+1}{k}\right)} \tag{8.17}
\end{equation*}
$$

In consequence of the relation $T(z(x))=\beta_{1}(x)$, of (8.17) and of (5.28) we obtain inequalities like those preceding (8.14), with $z_{0}(x), f_{0}$ replaced by $z_{1}(x)$ and $f_{1} \gamma^{\prime \prime}$, respectively. Accordingly, by virtue of Lemma 8. I it is observed that

$$
\begin{equation*}
\left|z_{1}^{(i)}(x)\right| \leqq D \gamma^{\prime \prime} z_{1}|x|^{\left(\frac{p}{k}-1\right)}|x|^{\alpha_{0}}, z_{1}=n a^{2} f_{1} \tag{8.I8}
\end{equation*}
$$

$\left(i=0, \ldots n-\mathrm{I} ;\right.$ in $\left.R^{\prime}\right)$. As before, t is taken so that $2 n^{\prime}-(t+1) / k<0$; accordingly, $\gamma^{\prime \prime}$ can be made as small as desired by suitable choice of $\gamma_{0}(t)$. With the aid of (8. 18) and (8.17) it is concluded that

$$
\begin{aligned}
&\left|z_{1}^{(n)}(x)\right| \leqq \sum_{i=0}^{n-1} \left\lvert\, b_{n-i}(x) x^{(n-i)}\left(\frac{p}{k}-1\right)\right. \\
&\left|\left|z_{1}^{(i)}(x)\right|+\left|\beta_{1}(x)\right|\right. \\
& \leqq|x|^{n\left(\frac{p}{k}-1\right)+\alpha_{0}}\left\{n b D \gamma^{\prime \prime} z_{1}+f_{1} \gamma^{\prime \prime}|x|^{-n^{\prime}}\right\}
\end{aligned}
$$

Thus
(8. 19)
$\left|z_{1}^{(i)}(x)\right| \leqq \gamma_{1}|x|^{i\left(\frac{p}{k}-1\right)}|x|^{\alpha_{0}} \quad\left(i=0, \ldots n ;\right.$ in $R^{\prime} ;|x| \geqq \gamma_{0}(t)$,
(8. 19 a)

$$
\gamma_{1}=\max . \text { of } D \gamma^{\prime \prime} z_{1}, n b D \gamma^{\prime \prime} z_{1}+f_{1} \gamma^{\prime \prime}\left(\gamma_{0}(t)\right)^{-n^{\prime}}
$$

Since $\gamma^{\prime \prime}$ of (8. 17) may be made as small as desired by suitable choice of $\gamma_{0}(t)$ and since γ_{0} can be made as small as needed, we shall arrange to have
(8. 20)

$$
\gamma_{0} \leqq A, \quad \gamma_{1} \leqq A^{2}, \quad o<A \leqq \frac{\mathrm{I}}{2}
$$

Suppose that for some $j \geqq 2$

$$
\begin{equation*}
z_{s}^{(i)}(x)=x^{i\left(\frac{p}{k}-1\right)} \zeta_{\zeta, i}(x) \quad(s=0, \ldots j-1 ; i=0, \ldots n) \tag{8.21}
\end{equation*}
$$

$$
\begin{equation*}
\left|\zeta_{\varepsilon, i}(x)\right| \leqq A^{\varepsilon+1}|x|^{\alpha_{0}} \quad\left(i=0, \ldots n ; \text { in } R^{\prime} ;|x| \geqq \gamma_{0}(t)\right) \tag{8.21a}
\end{equation*}
$$

In consequence of (8.21), (8.21 a) we obtain (7.18), (7.18 a), valid in R^{\prime}. Hence from (5. 14 b) we infer

$$
\begin{equation*}
\left.\left|\beta_{j}(x)\right|<2 \lambda^{\prime} \bar{k} \bar{c}|x|^{2 \alpha_{0}+n\left(\frac{p}{k}-1\right)} A^{j+1} \quad \text { (in } R^{\prime}\right) \tag{8.22}
\end{equation*}
$$

where \bar{c} is from (7. 18 a) (with x in $R^{\prime} ;|x| \geqq \gamma_{0}(t)$). Whence
(8. 22 a)

$$
\beta_{j}(x)=x^{-\beta_{1}} f_{j}(x), \quad\left|f_{j}(x)\right|<f_{j}=2 \lambda^{\prime} \bar{k} \bar{c} A^{j+1}
$$

and
(8. 23) $\quad\left|\beta_{j}(x)\right|<|x|^{-\beta_{0}} f_{j} \gamma^{\prime \prime} \quad$ (cf. (8. 22 a), (8. 17); in R^{\prime}).

By (5.28), as applied to $T\left(z_{j}(x)\right)=\beta_{j}(x)$, by (8.23) and view of Lemma (8. 1) it is deduced that

$$
\begin{equation*}
\left|z_{j}^{(i)}(x)\right|<D \gamma^{\prime \prime} z_{j}|x|^{i\left(\frac{p}{k}-1\right)}|x|^{\alpha_{0}}, \quad z_{j}=n a^{2} f_{j} \tag{8.24}
\end{equation*}
$$

(cf. (8. 22 a); $i=0, \ldots n-\mathrm{I}$; in R^{\prime}). In place of (8. 19), (8. 19 a) one now has

$$
\begin{equation*}
\left|z_{j}^{(i)}(x)\right|<\gamma_{j}|x|^{i\left(\frac{p}{k}-1\right)}|x|^{\alpha_{0}} \quad\left(i=0, \ldots n ; \text { in } R^{\prime} ;|x| \geqq \gamma_{0}(t)\right) \tag{8.25}
\end{equation*}
$$

where
(8. 25 a)
$\gamma_{j}=\max$. of $D \gamma^{\prime \prime} z_{j}, \quad n b D \gamma^{\prime \prime} z_{j}+f_{j} \gamma^{\prime \prime}\left(\gamma_{0}(t)\right)^{-n^{\prime}}$
(cf. (8.24), (8. 17), (8. 22 a)). On taking account of (8.24) and of (8. 22 a), it is seen that

$$
\gamma_{j}=\mu f_{j} \gamma^{\prime \prime}<2 \lambda^{\prime} \tilde{c}_{\tilde{c} \mu \gamma^{\prime \prime} A^{j+1} \quad\left(\bar{c} \text { from (7. 1 } 8 \text { a) } ; x \text { in } R^{\prime} ; .|x| \geqq \gamma_{0}(t)\right), ~(t)}
$$

where

$$
\mu=\text { max. of } D n a^{2}, \quad n^{2} b a^{2} D+\left(\gamma_{0}(t)\right)^{-n^{\prime}}
$$

In consequence of the definition of $\gamma^{\prime \prime}$, given in (8. 17), one may choose $\gamma_{0}(t)$ (independent of j) so great that $2 \lambda^{\prime} \bar{k} \bar{c} \mu \gamma^{\prime \prime} \leqslant \mathrm{I}$. We then have
(8. 26)

$$
\gamma_{j}<A^{j+1}
$$

The inequalities (8.25), (8.26) imply that (8,21), ($8,2 \mathrm{I}$ a) will hold for $s=j$. This completes the induction, and one may assert that the equations

$$
T\left(z_{j}(x)\right)=\beta_{j}(x) \quad(j=0, \mathbf{I}, \ldots)
$$

can be solved in succession in such a wise that

$$
z_{s}^{(i)}(x)=x^{i\left(\frac{p}{k}-1\right)} \zeta_{s, i}(x),\left|\zeta_{s, i}(x)\right| \leqq A^{s+1}|x|^{n^{\prime}-\left(\frac{t+1}{k}\right)}
$$

(8. 27)

$$
\left(s=\mathrm{o}, \mathrm{I}, \ldots ; i=0, \ldots n ; x \text { in } R^{\prime} ;|x| \geqq \gamma_{0}(t)\right)
$$

here $\gamma_{0}(t)$ is to be suitably great; the $\zeta_{8, i}(x)$ are analytic in R^{\prime}. With

$$
\varrho(x)=z_{0}(x)+z_{1}(x)+\cdots
$$

one has (7.25) and

$$
\begin{equation*}
\left|\varrho^{(i)}(x)\right| \leqq 2 A|x|^{i\left(\frac{p}{k}-1\right)}|x|^{n^{\prime}-\left(\frac{t+1}{k}\right)} \quad\left(\text { in } R^{\prime} ;|x| \geqq \gamma_{0}(t)\right) \tag{8.27a}
\end{equation*}
$$

As before, $\varrho(x)$ will constitute an analytic solution of the transformed equation of Lemma 4. I.

The above developments enable formulation of the following result.
Existence Theoreme 8.1. Let $s(x)((3.2)-(3.2 \mathrm{~b}))$ be a formal solution of (4. 2) and let $F_{v}^{*}=0$ be the 'actual' differential equation (4. I). Assume that $l_{n, 0}$ of $(4,27) \neq 0$. Designate by R^{\prime} a region as described in the italicised statement in connection with (8. 2), (8.3).

Given an integer $t\left(t \geqq t^{\prime} ; t^{\prime}\right.$ suitably great $)$, however large, there exists a solution $y(x)$ of $F_{v}^{*}=0$ analytic in $R^{\prime}\left(\right.$ for $|x| \geqq \gamma_{0}(t) ; \gamma_{0}(t)$ sufficiently great $)$, such that (8. 28)

$$
y^{(i)}(x) \sim s^{(i)}(x) \quad\left(x \text { in } R^{\prime} ; \text { to } n(t) \cdot \text { terms } ; i=0, \mathrm{r}, \ldots n\right)
$$

where $n(t) \rightarrow \infty$ with t. In particular, one has
(8. 28 a)

$$
y^{(i)}(x)=\frac{d^{i}}{d x^{i}}\left[e^{Q(x)} x^{r}(\sigma(t, x)+\varrho(x))\right] \quad(i=0, \ldots n) ;
$$

here $\sigma(t, x)$ is given by (6. 35 a) and $\varrho(x)$ satisfies (8.27 a).
It is observed that existence of regions R^{\prime}, referred to in the obove theorem, is always assured.

When the given algebraic differential equation has a formal solution $s(x)$ of the general type (2.I)-(2.I c), we still shall have existence results of essen-
tially the same form as presented in theorems 6. I, 7. r, 8. I. These results can be obtained by the methods already used. Some additional, but not unsurmountable, difficulties are encountered in this connection. No new ideas are necessary in the indicated extension; accordingly, we shall not present the details involved in such a generalisation.

9. Preliminaries for Equations with a Parameter.

In this section and in section 10 use will be made of the following notation.

Generically $\{x, \lambda\}$ is to signify a series
(9. I) $\{x, \lambda\}=\sigma_{0}(x)+\sigma_{1}(x) \lambda^{-\frac{1}{k}}+\cdots+\sigma_{v}(x) \lambda^{-\frac{v}{k}}+\cdots \quad$ (integer $k>0$),
whose coefficients $\sigma_{v}(x)$ are, together with the derivatives of all orders, continuous on a real interval ($a \leqq x \leqq b$); the series may diverge for any or all x on (a, b) for all $\lambda \neq \infty$.
$I^{\prime}(a, b: R)$ will denote the aggregate of the values of x and λ for which

$$
\begin{equation*}
a \leqq x \leqq b \quad \text { and } \quad \lambda \text { is in } R, \tag{9.2}
\end{equation*}
$$

where R is a region regular in the sense indicated preceding (5.8).
Generically $[x, \lambda]_{\alpha}(x, \lambda$ in $\Gamma(a, b ; R))$ is a function asymptotic in $\Gamma(a, b ; R)$, to α terms, to a series $\{x, \lambda\}$; this will be expressed by writing

$$
\begin{equation*}
[x, \lambda]_{\alpha} \underset{\alpha}{\sim}\{x, \lambda\} \quad(x, \lambda \text { in } \Gamma(a, b ; R)) \tag{9.3}
\end{equation*}
$$

We shall denote by $[x, \lambda]$ a function $\sim\{x, \lambda\}$ to any number of terms, however great. A relation (9.3) will signify that
(9. 3 a) $[x, \lambda]_{\alpha}=\sigma_{0}(x)+\sigma_{1}(x) \lambda^{-\frac{1}{k}}+\cdots+\sigma_{\alpha-1}(x) \lambda^{-\frac{\alpha-1}{k}}+\sigma_{\alpha}(x, \lambda) \lambda^{-\frac{\alpha}{k}}$,
(9.3b) $\quad\left|\sigma_{\alpha}(x, \lambda)\right|<b_{\alpha} \quad(x, \lambda$ in $\Gamma(a, b ; R))$.

With the above notation in view we shall consider the algebraic differential equation

$$
\begin{equation*}
F(x, \lambda, y) \equiv \sum_{i_{0}, \ldots} f^{i_{0}}, \ldots i_{n}(x, \lambda)(y)^{i_{0}}\left(y^{(1)}\right)^{i_{1}} \ldots\left(y^{(n)}\right)^{i_{n}}=0 \tag{9.4}
\end{equation*}
$$

$\left(0 \leqq i_{0}, \ldots i_{n} ; i_{1}+\cdots+i_{n} \leqq \nu\right)$, where the coefficients are of the form

$$
\begin{equation*}
f^{i_{0}, \ldots i_{n}}(x, \lambda)=\lambda^{m\left(i_{0}, \ldots i_{n}\right)}[x, \lambda] \quad(x, \lambda \text { in } \Gamma(a, b ; R)) \tag{9.5}
\end{equation*}
$$

(the $m\left(i_{0}, \ldots i_{n}\right)$ integers), the symbol involved in the second member in (9. 5) having the generic significance indicated above. Without any loss of generality one may arrange to have only integral powers of λ involved in $[x, \lambda]$ of (9.5). Amongst functions of the form (9.5) are obviously included polynomials in λ, whose coefficients are functions of x indefinitely differentiable on (a, b).

The particular case of (9.4), when $\nu=1$, that is, when the equation is linear is of considerable importance, as it contains as special instances a number of classical equations and problems. Important earlier work for the linear case of problem (9.4) has been previously done by G. D. Birkhoff, R. Langer, J. D. Tamarkin. ${ }^{1}$ a theory, complete from a certain point of view, of the linear equation (9.4) has been given by Trjitzinsey; ${ }^{2}$ the results of his work $\left(T_{3}\right)$ will be widely used in the sequel for the purpose of solution of the following analytic problem.

In the case when (9.4) has a formal solution

$$
\begin{equation*}
s(x, \lambda)=e^{Q(x, \text { i) }}\{x, \lambda\} \quad[c f .(9.1) ; x \text { on }(a, b)], \tag{9.6}
\end{equation*}
$$

where

$$
\begin{equation*}
Q(x, \lambda)=q_{0}(x) \lambda^{\frac{h}{k}}+q_{1}(x) \lambda^{\frac{h-1}{k}}+\cdots+q_{h-1}(x) \lambda^{\frac{1}{k}} \tag{9.6a}
\end{equation*}
$$

[the $q_{j}(x)$ indefinitely differentiable on $(a, b) ; h>0 ; q_{0}^{(1)}(x) \neq 0$], to construct regions $\Gamma\left(a^{\prime}, b^{\prime} ; R\right)\left[\left(a^{\prime}, b^{\prime}\right)\right.$ sub interval of (a, b); cf. definition in connection with (9. 2)] and 'actual' solutions $y(x, \lambda)$ such that
(9. 6 b$) \quad(x, \lambda) \sim s(x, \lambda) \quad\left(x, \lambda\right.$ in $\left.\Gamma\left(a^{\prime}, b^{\prime} ; R\right)\right)$
to a number of terms.
Formal solutions of type (9.6) are of interest because it is known that every n-th order homogeneous linear equation (9.4) has a full set of formal solutions of the type (9.6). Of course, some or all of the $Q^{(1)}(x, \lambda)$ may be zero. ${ }^{3}$

By a reasoning of the type used before it follows that, inasmuch as we consider the case when (9.4) has a formal solution (9.6) with $Q^{(1)}(x, \lambda) \neq 0$,

[^9] we should confine ourselves to the homogeneous equation of degree, say, v. Thus, the equation under consideration will be
\[

$$
\begin{equation*}
F_{v}(x, \lambda ; y) \equiv \sum_{i_{1}, \ldots, i_{v}} \lambda^{\eta\left(i_{1}, \ldots i_{\nu}\right)} b^{i_{1}, \ldots i_{v}}(x, \lambda) y^{\left(i_{1}\right)} y^{\left(i_{2}\right)} \ldots y^{\left(i_{v}\right)}=0 \tag{9.7}
\end{equation*}
$$

\]

(

$$
\left[\mathrm{o} \leqq i_{1}, \ldots i_{v} \leqq n ; \text { the } \eta\left(i_{1}, \ldots i_{v}\right) \text { integers }\right]
$$

where

$$
\text { (9. } 7 \text { a) } \quad b^{i_{1}, \ldots i_{v}}(x, \lambda)=[x, \lambda] \quad(x, \lambda \text { in } \Gamma(a, b ; R)) .
$$

The corresponding formal equation will be

$$
\begin{equation*}
F_{\nu}^{*}(x, \lambda ; y) \equiv \sum_{i_{1}, \ldots i_{\nu}} \lambda^{\eta\left(i_{1}, \ldots i_{\nu}\right)} \beta^{i_{1}, \ldots i_{v}}(x, \lambda) y^{\left(i_{1}\right)} \ldots y^{\left(i_{\nu}\right)}=0 \tag{9.8}
\end{equation*}
$$

($\mathrm{O} \leqq i_{1}, \ldots i_{\nu} \leqq n$), where
(9. 8 a) $\quad \beta^{i_{1}, \ldots i_{\nu}}(x, \lambda)=\{x, \lambda\} \quad(x$ on $(a, b))$.

In accordance with (9.8 a)

$$
\begin{equation*}
\beta^{i_{1}, \ldots i_{v}}(x, \lambda)=\sum_{m=0}^{\infty} b_{m}^{i_{1}, \ldots i_{v}}(x) \lambda^{-m} \tag{9.8~b}
\end{equation*}
$$

the $b_{m}^{i_{1}, \ldots i_{v}}(x)$ being indefinitely differentiable for $a \leqq x \leqq b$.
By reasoning of the type employed in section 2 the following is established.
If the equation (9.7) (actually of order.n) is satisfied by the general 'actual' solution of the 'actual' linear differential equation
(9. 9)

$$
L(x, \lambda ; y) \equiv \sum_{i=0}^{\eta} f_{i}(x, \lambda) y^{(i)}=0 \quad\left(f_{n}(x, \lambda) \neq 0\right)
$$

where
(9.9 a) $\quad f_{i}(x, \lambda) \sim \zeta_{i}(x, \lambda)=\lambda^{\eta(i)}\{x, \lambda\} \quad(\eta(i)$ integers; in $\Gamma(a, b ; R)$,
(9.9 b) $\quad f_{i}^{(j)}(x, \lambda) \sim \zeta_{i}^{(j)}(x) \quad(j=\mathrm{I}, \ldots n-\eta ;$ in $\Gamma(a, b ; R)$,
then
(9. 10) $\quad F_{v}(x, \lambda ; y) \equiv \sum_{j=0}^{n-\eta}\left[\frac{d^{j}}{d x^{j}} \Gamma(x, \lambda ; y)\right] \boldsymbol{\Phi}_{j}\left(x, \lambda ; y, \ldots y^{(\eta+j)}\right)$,
the Φ_{j} being homogeneous (of degree $\nu-1$) in $y, \ldots y^{(\eta+j)}$ with coefficients of the
form $\lambda^{\gamma}[x, \lambda]$ (integer $\gamma ; x, \lambda$ in $\Gamma\left(a^{\prime}, b^{\prime} ; R\right) ;\left(a^{\prime}, b^{\prime}\right)$ a sub interval of (a, b)). The same will hold with respect to (9.8), with 'actual' replaced by 'formal' and $[x, \lambda]$ replaced by $\{x, \lambda\}$.

With the above in view, it is easy to give examples of equations (9.7), having one or more formal solutions of the type (9.6), (9.6a).

Consider now a series $s(x, \lambda)$ of the form (9.6)
(9. II) $\quad s(x, \lambda)=e^{Q(x, \lambda)} \sigma(x, \lambda), \sigma(x, \lambda)=\sum_{j=0}^{\infty} \sigma_{j}(x) \lambda^{-\frac{j}{k}} \quad(Q(x, \lambda)$ from (9. 6 a$\left.)\right)$.

Differentiating formally one obtains
(9. 12)

$$
s^{(1)}(x, \lambda)=e^{Q(x, \lambda)} \lambda^{\frac{h}{k}} \sigma_{1}(x, \lambda)
$$

(9. 12 a)

$$
\begin{aligned}
\sigma_{1}(x, \lambda)=w(x, \lambda) \sigma(x, \lambda)+\lambda^{-\frac{h}{k}} \sigma^{(1)}(x, \lambda) & \\
& w(x, \lambda)=q_{0}^{(1)}(x)+\cdots+q_{h-1}^{(1)}(x) \lambda^{-\frac{h-1}{k}}
\end{aligned}
$$

From this it is inferred that
(9.13)

$$
s^{(i)}(x, \lambda)=e^{Q(x, \lambda)} \lambda^{\frac{i \hbar}{k}} \sigma_{i}(x, \lambda)
$$

(9. I 3 a)

$$
\sigma_{i}(x, \lambda)=w(x, \lambda) \sigma_{i-1}(x, \lambda)+\lambda^{-\frac{h}{k}} \sigma_{i-1}^{(1)}(x, \lambda) \quad(i=\mathbf{I}, 2, \ldots)
$$

where
(9. 14) $\quad \sigma_{0}(x, \lambda)=\sigma(x, \lambda), \quad \sigma_{i}(x, \lambda)=\sigma_{0, i}(x)+\sigma_{1, i}(x) \lambda^{-\frac{1}{k}}+\cdots \quad\left(\sigma_{j, 0}(x)=\sigma_{j}(x)\right)$
and
(9. 14 a$) \quad \sigma_{0, i}(x)=q_{0}^{(1)}(x) \sigma_{0, i-1}(x), \quad \sigma_{1, i}(x)=q_{0}^{(1)}(x) \sigma_{1, i-1}(x)+q_{1}^{(1)}(x) \sigma_{0, i-1}(x), \ldots$,

$$
\sigma_{h-1, i}(x)=q_{v}^{(1)}(x) \sigma_{h-1, i-1}(x)+\cdots+q_{h-1}^{(1)}(x) \sigma_{0, i-1}(x)
$$

(9.14 b) $\quad \sigma_{m, i}(x)=\sigma_{m-h, i-1}^{(1)}(x)+\left[q_{v}^{(1)}(x) \sigma_{m, i-1}(x)+\cdots+q_{h-1}^{(1)}(x) \sigma_{m-h+1, i-1}(x)\right]$
for $m \geqq h$. Thus
(9. 15)

$$
\sigma_{0, i}(x)=\left(q_{0}^{(\mathbf{1})}(x)\right)^{i} \sigma_{0}(x)
$$

$$
(i=\mathrm{I}, 2, \ldots)
$$

and, for $\delta=0, \mathrm{I}, \ldots h-\mathrm{I}$,
(9. 15 a)

$$
\sigma_{\delta, i}(x)=\sum_{\gamma=0}^{\delta} a(\delta, i ; \gamma) \sigma_{\gamma}(x) \quad(i=\mathrm{I}, 2, \ldots)
$$

where the $a(\ldots)$ are polynomials in $q_{0}^{(1)}(x), \ldots q_{d}^{(1)}(x)$. Moreover, in view of (9. 14 b) (for $m=h$) and (9.15), (9. 15a), one has
(9. 16)

$$
\sigma_{h, i}(x)=\beta_{0}(h, i) \sigma_{i j}^{(1)}(x)+\sum_{\gamma=0}^{h} a(h, i ; \gamma) \sigma_{\gamma}(x)
$$

$\left[\beta(h, i), a(\ldots)\right.$ polynomials in $\left.q_{0}^{(1)}(x), \ldots q_{h-1}^{(1)}(x), q_{0}^{(2)}(x)\right]$.
Using (9.16) and the preceding relations, we obtain
(9.16a) $\quad \sigma_{h+1, i}(x)=\beta_{0}(h+\mathrm{I}, i) \sigma_{0}^{(1)}(x)+\beta_{1}(h+\mathrm{I}, i) \sigma_{1}^{(1)}(x)+\sum_{\gamma=0}^{h+1} a(h+\mathrm{I}, i ; \gamma) \sigma_{\gamma}(x)$, where $\beta_{0}(\ldots), \beta_{1}(\ldots), a(\ldots)$ are polynomials in

$$
q_{0}^{(1)}(x), \ldots q_{h-1}^{(1)}(x) ; \quad q_{0}^{(2)}(x), q_{1}^{(2)}(x)
$$

In consequence of (9.14a)-(9. 16 a) by induction we infer that, for $0 \leqq \delta \leqq h-1$, (9.17)

$$
\begin{aligned}
\sigma_{h+\delta, i}(x)=\beta_{0}(h+\delta, i) \sigma_{0}^{(1)}(x) & +\cdots \\
& +\beta_{\delta}(h+\delta, i) \sigma_{\delta}^{(1)}(x)+\sum_{\gamma=0}^{h+\delta} a(h+\delta, i ; \gamma) \sigma_{\gamma}(x)
\end{aligned}
$$

where the coefficients $\beta_{j}(\ldots), a(\ldots)$ are polynomials in

$$
q_{v}^{(1)}(x), \ldots q_{h-1}^{(1)}(x) ; \quad q_{0}^{(2)}(x), q_{1}^{(2)}(x), \ldots q_{\delta}^{(2)}(x)
$$

We next obtain

$$
\begin{equation*}
\sigma_{2 h, i}(x)=\beta_{0}(2 h, i) \sigma_{v}^{(2)}(x)+\sum_{\gamma=0}^{2 h} a(2 h, i ; \gamma) \sigma_{\gamma}(x)+\sum_{\gamma=0}^{h} a_{1}(2 h, i ; \gamma) \sigma_{\gamma}^{(1)}(x) \tag{9.18}
\end{equation*}
$$

$\left[\beta_{0}(\ldots), a(\ldots), a_{1}(\ldots)\right.$ polynomials in $\left.q_{j}^{(1)}(x), q_{j}^{(2)}(x), q_{0}^{(3)}(x)\right]$.
By induction in a larger sense it is finally deduced that

$$
\begin{aligned}
& \sigma_{m, i}(x)=\beta_{0}(m, i) \sigma_{0}^{(t)}(x)+\beta_{1}(m, i) \sigma_{1}^{(t)}(x)+\cdots+\beta_{\delta}(m, i) \sigma_{\delta}^{(t)}(x) \\
& \quad+\sum_{\gamma=0}^{t h+\delta} a(m, i ; \gamma) \sigma_{\gamma}(x)+\sum_{\gamma=0}^{(t-1) h+\delta} a_{1}(m, i ; \gamma) \sigma_{\gamma}^{(1)}(x)+\sum_{\gamma=0}^{(t-2) h+\delta} a_{2}(m, i ; \gamma) \sigma_{\gamma}^{(2)}(x)+\cdots
\end{aligned}
$$

(9. 19)

$$
+\sum_{\gamma=0}^{n+\delta} a_{t-1}(m, i ; \delta) \sigma_{\gamma}^{(t-1)}(x)
$$

$\left[m=t h+\delta ; \beta_{j}(\ldots), a_{j}(\ldots)\right.$ polynomials in $q_{j}^{(1)}(x), \ldots q_{j}^{(t)}(x)(j=0, \ldots h-\mathrm{I})$, $\left.q^{(t+1)}(x), \ldots q_{\delta}^{(t+1)}(x)\right]$
for $t=\mathrm{I}, 2, \ldots$ and $\delta=\mathrm{o}, \mathrm{I}, \ldots h-\mathrm{I}$.

By (9. 13) and (9. 14)
(9. 20)

$$
s^{\left(i_{i}\right)} s^{\left(i_{2}\right)} \ldots s^{\left(i_{\nu}\right)}=e^{v Q(x, i)} \lambda^{\left(i_{1}+\cdots+i_{\nu} \frac{h}{k}\right.} \sum_{j=0}^{\infty} c_{j}^{i_{\nu} \cdots i_{\nu}}(x) \lambda^{-\frac{j}{k}},
$$

(9.20 a) $c_{j}^{i_{1}, \ldots i_{v}}(x)=\sum_{j_{1}, \ldots j_{v}} \sigma_{j_{1}, i_{1}}(x) \sigma_{j_{2}, i_{2}}(x) \ldots \sigma_{j_{v}, i_{v}}(x) \quad\left(j_{1}, \ldots j_{v} \geqq 0 ; j_{1}+\cdots+j_{v}=j\right)$.

If $s(x, \lambda)$ is a formal solution of (9.8) one must have
(9.21) $\quad F_{\nu}^{*}(x, \lambda ; s(x, \lambda)) \equiv e^{\nu Q(x, \lambda)} \sum_{i_{1}, \ldots i_{v}} \lambda^{\eta_{i}, \ldots i_{v}} \sum_{j=0}^{\infty} d_{j^{\prime}}^{i} \ldots i_{v}(x) \lambda^{-\frac{j}{k}}=0$,
where
(9. 21 a)

$$
\eta_{i_{1}, \ldots i_{v}}=\eta\left(i_{1}, \ldots i_{v}\right)+\left(i_{1}+\cdots+i_{v}\right) \frac{h}{k}=\frac{\mathrm{I}}{k} l_{i_{1}, \ldots i_{v}} \quad\left(l_{i_{1}}, \ldots i_{v} \text { integers }\right)
$$

and
(9.2I b) $\quad d_{j}^{i_{1}}, \ldots i_{\nu}(x)=\sum_{m+t=j} b_{m}\left(i_{1}, \ldots i_{v} ; x\right) c_{t}^{i_{1}, \ldots i_{v}(x),}$
the $b_{m}\left(i_{1}, \ldots i_{v} ; x\right)$ being defined by the relations

$$
b_{m}\left(i_{1}, \ldots i_{v} ; x\right)=0 \quad\left(\text { for } \frac{m}{k} \neq \text { an integer }\right)
$$

(9.21 e)

$$
b_{\beta k}\left(i_{1}, \ldots i_{v} ; x\right)=b_{\beta}^{i, \ldots i v}(x) \quad(\beta=0, \mathrm{I}, \ldots ; \text { cf. }(9.8 \mathrm{~b}))
$$

One should select h / k so that there are at least two terms of the same degree ϱ in λ, the other terms being all of degree $\leqq \varrho$. Thus, h / k must be so selected that for some particular two distinct sets $\left(\alpha_{1}, \ldots \alpha_{v}\right),\left(\beta_{1}, \ldots \beta_{\nu}\right)$

$$
\frac{\mathrm{I}}{k} l_{\alpha_{1}, \ldots \alpha_{v}}=\frac{\mathrm{I}}{k} l_{\beta_{1}, \ldots \beta_{v}}=\varrho
$$

while

$$
\frac{\mathrm{I}}{k} l_{i_{1}}, \ldots i_{\nu} \leqq \varrho \quad\left(\text { for all sets }\left(i_{1}, \ldots i_{\nu}\right)\right)
$$

Thus, provided $\beta_{1}+\cdots+\beta_{\nu} \neq \alpha_{1}+\cdots+\alpha_{v}$,

$$
\begin{equation*}
\frac{h}{k}=-\frac{\eta\left(\beta_{1}, \ldots \beta_{v}\right)-\eta\left(\alpha_{1}, \ldots \alpha_{v}\right)}{\left(\beta_{1}+\cdots+\beta_{v}\right)-\left(\alpha_{1}+\cdots+\alpha_{v}\right)}, \tag{9.22}
\end{equation*}
$$

while

$$
\text { (9.22 a) } \quad \eta\left(i_{1}, \ldots i_{v}\right)-\eta\left(\beta_{1}, \ldots \beta_{v}\right) \leqq-\frac{h}{k}\left[\left(i_{1}+\cdots+i_{v}\right)-\left(\beta_{1}+\cdots+\beta_{v}\right)\right]
$$

(for all sets $\left(i_{1}, \ldots i_{\nu}\right)$). It is important to note that admissible values of h / k will arise only if the second member in (9.22) is positive. We represent the number pairs $\left(i_{1}+\cdots+i_{v}\right), \eta\left(i_{1}, \ldots i_{v}\right)$ in the Cartesian (x, y) plane, with $x=$ $i_{1}+\cdots+i_{v}$ and $y=\eta\left(i_{1}, \ldots i_{v}\right)$. There arises a diagram L of Puiseux-type precisely as described in the text from (3.15 a) to (3.17). The polygonal line L is concave downward. The admissible values of $\frac{h}{k}$ are found amongst the negatives of the slopes of the rectilinear segments constituting L. Inasmuch as one should have $\frac{h}{k}>0$, only those sides of L will give rise to admissible values $\frac{h}{k}$, whose slopes are negative.

In the case when for at least two distinct sets $\left(\beta_{1}, \ldots \beta_{v}\right),\left(\alpha_{1}, \ldots \alpha_{v}\right)$ one has

$$
\beta_{1}+\cdots+\beta_{v}=\alpha_{1}+\cdots+\alpha_{v}, \quad \eta\left(\beta_{1}, \ldots \beta_{v}\right)=\eta\left(\alpha_{1}, \ldots \alpha_{v}\right)
$$

that is, when there is a vertex P of L which is 'multiple', we may take for $\frac{h}{k}$ any positive rational number α, provided that L lies to one side of the line through P with the slope $-\alpha$. One then will have $\frac{h}{k}>0(h, k$ integers $)$ and (9. 22 a) will be satisfied.

Suppose $\frac{h}{k}$ is selected as an admissible value according to the above, either given by (9.22) or as indicated above in connection with a 'multiple' vertex of L. One may then arrange (9.21) formally as
(9. 23) $\quad F_{\nu}^{*}(x, \lambda ; s(x, \lambda)) \equiv e^{\nu Q(x, \lambda)} \lambda^{\frac{r}{k}}\left[\delta_{0}(x)+\delta_{1}(x) \lambda^{-\frac{1}{k}}+\delta_{2}(x) \lambda^{-\frac{2}{k}}+\cdots\right]=0$,
where $\frac{r}{k}=\varrho$. Thus, if $s(x, \lambda)$ is a formal solution of $F_{v}^{*}=0$, necessarily (9. 24)

$$
\delta_{i}(x)=0 \quad(i=0, \mathrm{I}, \ldots)
$$

Corresponding to the value $\frac{h}{k}$ under consideration we write the equation $F_{\nu}^{*}=\mathrm{o}[(9.8),(9.8 \mathrm{~b})]$ as follows

$$
\begin{aligned}
\boldsymbol{F}_{\nu}^{*} & \equiv \sum_{i_{1}, \ldots i_{v}} \lambda^{n\left(i_{v}, \ldots i_{v}\right)} \sum_{m=0}^{\infty} l_{m}\left(i_{1}, \ldots i_{v} ; x\right) \lambda^{-\frac{m}{k}} y^{\left(i_{\nu}\right)} \ldots y^{\left(i_{v}\right)} \\
& \equiv \sum_{i_{1}, \ldots i_{v}} \lambda^{\frac{r^{\prime}}{h^{k}}-\frac{h}{k}\left(i_{i}+\cdots+i_{v}\right)} \sum_{\gamma=0}^{\infty} b_{\gamma}^{\prime}\left(i_{1}, \ldots i_{v} ; x\right) \lambda^{-\frac{\gamma}{k}} y^{\left(i_{1}\right)} \ldots y^{\left(i_{v}\right)}=0
\end{aligned}
$$

(9. 25)
(cf. (9. 2 I c), $(9.8 \mathrm{~b})$), where
(9.25 a) $\quad b_{\gamma}^{\prime}\left(i_{1}, \ldots i_{v} ; x\right)= \begin{cases}0 & (0 \leqq \gamma<w), \\ b_{\gamma-w}\left(i_{1}, \ldots i_{v} ; x\right) & \left(\gamma \geqq w=w\left(i_{1}, \ldots i_{v}\right)\right)\end{cases}$
with
$(9.25 \mathrm{~b}) \quad \frac{\mathrm{I}}{k} w\left(i_{1}, \ldots i_{v}\right)=\frac{r}{k}-\frac{h}{k}\left(i_{1}+\cdots+i_{v}\right)-\eta\left(i_{1}, \ldots i_{v}\right) \geqq 0$.
In view of (9.25), (9.25 b) the equations (9.24) are expressible in the form

$$
\begin{equation*}
\delta_{i}(x) \equiv \sum_{i_{1}, \ldots i_{v}} \sum_{t=0}^{i} b_{i-t}^{\prime}\left(i_{1}, \ldots i_{v} ; x\right) c_{t}^{i_{1}, \ldots i_{v}}(x)=0 . \quad \text { (cf. (9.20 a)), } \tag{9.26}
\end{equation*}
$$

By (9.26), (9.20 a) and (9.15)
(9.26a) $\quad \delta_{0}(x) \equiv \sigma_{0}^{\nu}(x) E\left(x ; q_{0}^{(1)}(x)\right) \equiv \sigma_{0}^{\nu}(x) \sum \sum_{i_{1}, \ldots i_{v}} b_{0}^{\prime}\left(i_{1}, \ldots i_{\nu} ; x\right)\left(q_{0}^{(1)}(x)^{i_{1}+\cdots+i_{\nu}}=0\right.$.

We thus see that of importance is the characteristic equation $E\left(x ; q_{0}^{(1)}(x)\right)=0$, which must be satisfied by $q_{0}^{(1)}(x)$. There is a characteristic equation like (9. 26 a) corresponding to every side, with a negative slope of the polygon L, as well as corresponding to some lines through the 'multiple' vertices of L. It is recalled that $q_{0}(x)$ is the leading coefficient in the polynomial $Q(x, \lambda)$.

We shall not go through any further formal details except to note that, in view of $(9.26),(9.20 \mathrm{a}),(9.15),(9.15$ a) and (9.19),
(9.27) $\quad \delta_{i}(x) \equiv \delta_{i}\left(q_{0}^{(1)}, \ldots q_{h-1}^{(1)} ; \sigma_{0}(x), \ldots \sigma_{i}(x)\right) \quad(i=0, \mathbf{1}, \ldots)$,
with a number of derivatives of $q_{j}^{(1)}(x)(j=0, \ldots h-\mathrm{I})$ and of $\sigma_{j}(x)(j=0, \ldots i)$ involved. The $\sigma_{i+\beta}(x)(\beta=1,2, \ldots)$ do not enter in the expression for δ_{i}.

Lemma 9. 1. Consider the formal non linear differential equation (9. 8), (9.8 b). Let $\frac{h}{k}(h, k$ positive integers) be an admissible value in accordance with the text from (9.21 c) to (9.23). If the equation $F_{v}^{*}=0$ has a formal solution

$$
\begin{equation*}
s(x, \lambda)=e^{Q(x, \lambda)} \sigma(x, \lambda)\left[Q(x, \lambda)=q_{0}(x) \lambda^{\frac{h}{k}}+\cdots+q_{h-1}(x) \lambda^{\frac{1}{k}}\right] \tag{9.28}
\end{equation*}
$$

where
(9. 28 a)

$$
\sigma(x, \lambda)=\sigma_{0}(x)+\sigma_{1}(x) \lambda^{-\frac{1}{k}}+\cdots
$$

for x in (a, b), then necessarily $q_{0}^{(1)}$ satisfies the characteristic equation (9. 26 a), associated with the side of the Puiseux-polygon to which $\frac{h}{k}$ belongs; moreover, the $\delta_{i}(x)$ in the formal expansion (9.23) will be of the form described in connection with (9.27); we have $\delta_{i}(x)=0(i=0,1, \ldots)$.

The 'actual' differential equation $F_{v}(x, \lambda ; y)=0(9.7)$ may be brought to the form corresponding to (9.25). Thus,
(9. 29) $\quad F_{v}(x, \lambda ; y) \equiv \sum_{i_{1}, \ldots i_{v}} \lambda^{\frac{r}{k}-\frac{h}{k}\left(i_{1}+\cdots+i_{v}\right)} b^{\prime i_{1}, \ldots i_{v}}(x, \lambda) y^{\left(i_{1}\right)} \cdots y^{\left(i_{v}\right)}=0$,
where
(9. 29 a) $\quad b^{\prime i_{1}, \ldots i_{v}}(x, \lambda) \sim \beta^{\prime i_{1}, \ldots i_{v}}(x, \lambda)=\sum_{\gamma=0}^{\infty} J_{\gamma}^{\prime}\left(i_{1}, \ldots i_{v} ; x\right) \lambda^{-\frac{\gamma}{k}} \quad($ in $\Gamma(a, b ; R))$.

Basing on (9.28), (9.28 a), we make use of the transformation
(9. 30)

$$
y(x, \lambda)=e^{Q(x, \lambda)}[\sigma(t ; x, \lambda)+\varrho(x, \lambda)]
$$

where
(9. 30 a)

$$
\sigma(t ; x, \lambda)=\sigma_{0}(x)+\sigma_{1}(x) \lambda^{-\frac{1}{k}}+\cdots+\sigma_{t}(x) \lambda^{-\frac{t}{k}}
$$

$\varrho(x, \lambda)$ being the new variable. One has

$$
\begin{equation*}
\frac{d^{i}}{d x^{i}}\left[e^{Q(x, \lambda)} \varrho(x, \lambda)\right]=e^{Q(x, \lambda)} \lambda^{i^{i} \stackrel{h}{k}} \varrho_{i}(x, \lambda) \tag{9.3I}
\end{equation*}
$$

where
(9. 3І a) $\varrho_{i}(x, \lambda)=\left[w(x, \lambda)+\lambda^{-\frac{h}{k}} \frac{d}{d x}\right] \varrho_{i-1}(x, \lambda) \quad\left(i=1,2, \ldots ; \varrho_{0}(x, \lambda)=\varrho(x, \lambda)\right)$
with $u(x, \lambda)$ from (9.12 a). Moreover,
(9. 32)

$$
\begin{gathered}
\frac{d^{i}}{d x^{i}}\left[e^{Q(x, \lambda)} \sigma(t ; x, \lambda)\right]=e^{Q(x, \lambda)} \lambda^{i^{\frac{h}{k}}} \sigma_{i}(t ; x, \lambda), \\
\sigma_{i}(t ; x, \lambda)=\left[w(x, \lambda)+\lambda^{-\frac{h}{k}} \frac{d}{d x}\right] \sigma_{i-1}(t ; x, \lambda)
\end{gathered}
$$

$$
=\sigma_{0, i}(t ; x)+\sigma_{1, i}(t ; x) \lambda^{-\frac{1}{k}}+\cdots+\sigma_{\gamma, i}(t ; x) \lambda^{-\frac{\gamma}{k}}+\cdots
$$

$\left[\sigma_{0}(t ; x, \lambda)=\sigma(t ; x, \lambda)\right]$. In consequence of (9.30), (9.32 a) and (9. 13 a) it is inferred that $\sigma_{\gamma, i}(t ; x)$ is $\sigma_{\gamma, i}(x)$ (cf. (9. 14)) with the $\sigma_{j}(x)(j>t)$ replaced by zeros. Hence, by virtue of (9.15 a) and (9.19),
(9. 32 b)

$$
\sigma_{\gamma, i}(t ; x)=\sigma_{\gamma, i}(x) \quad(i=0, \mathrm{I}, \ldots ; \chi=\mathrm{o}, \mathrm{I}, \ldots t)
$$

In view of (9.30), (9.3I) and (9.32)
and

$$
y^{(i)}(x, \lambda)=e^{Q(x, \lambda)} \lambda^{i \frac{h}{k}}\left[\sigma_{i}(t ; x, \lambda)+\varrho_{i}(x, \lambda)\right]
$$

$$
y^{\left(i_{1}\right)} \ldots y^{\left(i_{v}\right)}=e^{\nu Q(x, \lambda)} \lambda^{\frac{h}{k}\left(i_{1}+\cdots+i_{v}\right)} \prod_{\alpha=1}^{\nu}\left[\sigma_{i_{\alpha}}(t ; x, \lambda)+\varrho_{i_{\alpha}}(x, \lambda)\right] .
$$

Substituting this into the 'actual' equation (9.29) we obtain
(9.33) $\quad F_{\nu}(x, \lambda ; y) \equiv e^{\nu Q(x, i)} \lambda^{\frac{r}{k}} \sum_{i_{1}, \ldots i_{v}} b^{i_{1}, \ldots, i_{\nu}}(x, \lambda) \prod_{\alpha=1}^{v}\left[\sigma_{i_{\alpha}}(t ; x, \lambda)+\varrho_{i_{\alpha}}(x, \lambda)\right]=0$
(cf. (9. 29 a)). Using developments of the type employed subsequent to (4. 10) it is now inferred that $\varrho(x, \lambda)$ satisfies
(9. 34)

$$
L(\varrho)+\boldsymbol{K}(\varrho)=\boldsymbol{F}(x, \lambda)
$$

where
(9. 34 a)

$$
\begin{aligned}
& L(\varrho) \equiv \sum_{i_{1}, \ldots i_{v}} b^{\prime} i_{1}, \ldots i_{v}(x, \lambda) \prod_{\alpha=1}^{v} \sigma_{i_{\alpha}}(t ; x, \lambda) \sum_{j=1}^{v} \frac{\varrho_{i_{j}}(x, \lambda)}{\sigma_{i_{j}}(t ; x, \lambda)}, \\
& K(\varrho) \equiv \sum_{i_{1}, \ldots i_{v}} b^{\prime i_{1}, \ldots i_{v}}(x, \lambda) \prod_{\alpha=1}^{v} \sigma_{i_{\alpha}}(t ; x, \lambda) \sum_{m=2}^{v} \sum_{j_{1}<\cdots<j_{m}} \\
& \cdot \frac{\varrho_{i_{j_{1}}}(x, \lambda)}{\sigma_{i_{j_{2}}}(t ; x, \lambda)} \cdots \frac{\varrho_{i_{j_{m}}}(x, \lambda)}{\sigma_{i_{j_{m}}}(t ; x, \lambda)},
\end{aligned}
$$

(9. 34 b)
(9. 34 c)

$$
F(x, \lambda)=-\sum_{i_{1}, \ldots i_{\nu}} b^{i_{1}} \ldots i_{\nu}(x, \lambda) \prod_{\alpha=1}^{\nu} \sigma_{i_{\alpha}}(t ; x, \lambda)
$$

Now, the asymptotic relations (9.29 a) imply in particular that

$$
\begin{equation*}
b^{i_{1}, \ldots i_{v}}(x, \lambda)=\sum_{\gamma=0}^{t} b_{\gamma}^{\prime}\left(i_{1}, \ldots i_{v} ; x\right) \lambda^{-\frac{\gamma}{k}}+\lambda^{-\frac{t+1}{k}} \beta_{i_{1}, \ldots i_{v}}(t ; x, \lambda) \tag{9.35}
\end{equation*}
$$

(9. 35 a)
$\left|\beta_{i_{1}, \ldots i_{\nu}}(t ; x, \lambda)\right| \leq \beta_{t}$ $(x, \lambda$ in $\Gamma(a, b ; R))$.

Hence, by (9.34 c), $\boldsymbol{F}(x, \lambda)=F_{1}+F_{2}$, where

$$
\begin{gather*}
F_{1}(x, \lambda)=-\sum_{i_{\nu}, i_{v}} \sum_{\gamma=0}^{t} b_{\gamma}^{\prime}\left(i_{1}, \ldots i_{\nu} ; x\right) \lambda^{-\frac{\gamma}{k}} \prod_{\alpha=1}^{v} \sigma_{i_{\alpha}}(t ; x, \lambda), \tag{9.36}\\
F_{2}(x, \lambda)=-\lambda^{-\frac{t+1}{k}} \beta(t ; x, \lambda), \beta(t ; x, \lambda)=\sum_{i_{1}, \ldots i_{v}} \beta_{i_{1} \ldots i_{v}}(t ; x, \lambda) \prod_{\alpha=1}^{v} \sigma_{i_{\alpha}}(t ; x, \lambda) .
\end{gather*}
$$

By the same method as involved from (4. 14) to (4. 18) and using Lemma 9. I we now obtain
(9. 37)

$(x, \lambda$ in $\Gamma(a, b ; R))$.
Similarly by (9.36) and (9.35 a) it is deduced that
(9. 37 a)

$$
\left|F_{2}(x, \lambda)\right| \leqq|\lambda|^{-\frac{t+1}{k}} F_{2}(t) \quad(x, \lambda \text { in } \Gamma(a, b ; R)) .
$$

Whence
(9. 38)

$$
F(x, \lambda)=\lambda^{-\frac{t+1}{k}} F(t ; x, \lambda),
$$

(9. 38 a)

$$
|F(t ; x, \lambda)| \leqq F_{t} \quad(\text { in } \Gamma(a, b ; R))
$$

where F_{t} is independent of x and λ.
Using (9.31 a) one finds
(9. 39) $\rho_{i}(x, \lambda)=w_{i, 0}(x, \lambda) \varrho(x, \lambda)+w_{i, 1}(x) \varrho^{(1)}(x, \lambda)+\cdots+w_{i, i}(x, \lambda) \varrho^{(i)}(x, \lambda)$,
where $w_{0,0}(x, \lambda)=1$ and
(9. 39 a) $\quad w_{i, 0}(x, \lambda)=w(x, \lambda) w_{i-1,0}(x, \lambda)+\lambda^{-\frac{h}{k}} w_{i-1,0}^{(1)}(x, \lambda), w(x, \lambda)=\sum_{j=0}^{n-1} q_{j}^{(1)}(x) \lambda^{-\frac{j}{k}}$,
(9. 39 b)

$$
w_{i, m}(x, \lambda)=w(x, \lambda) w_{i-1, m}(x, \lambda)+\lambda^{-\frac{h}{k}}\left[w_{i}^{(1)} 1, m(x, \lambda)+w_{i-1, m-1}(x, \lambda)\right]
$$

$$
(m=1,2, \ldots i-1),
$$

(9. 39 c)

$$
u_{i, i}(x, \lambda)=\lambda^{-\frac{h}{k}} w_{i-1, i-1}(x, \lambda) .
$$

By virtue of (9, 39 a)-(9. 39 c)
(9.40) $\quad w_{i, m}(x, \lambda)=\lambda^{-\frac{h}{k}}{ }_{i, m}(x) \quad(m=0, \ldots i)$,
(9.40a) $\quad v_{i, m}(x, \lambda)=$ polynomial in $\lambda^{-\frac{1}{k}}=[x, \lambda], v_{i, i}(x, \lambda)=\mathrm{I}($ in $\Gamma(a, b ; R)$).

In consequence of (9.39), (9.40) and (9.34 a)

$$
\begin{equation*}
L(\varrho)=l_{n}(x, \lambda) \varrho^{(n)}+l_{n-1}(x, \lambda) \varrho^{(n-1)}+\cdots+l_{0}(x, \lambda) \varrho, \tag{9.4I}
\end{equation*}
$$

where
(9.41 a) $\quad l_{\gamma}(x, \lambda)=\lambda^{-\gamma \frac{h}{k}} \sum_{i_{1}, \ldots i_{v}} l^{i_{1}} \ldots, i_{v}(x, \lambda) \sum_{j=1}^{v} c_{i j}, \gamma(x, \lambda) k^{i_{j}, \gamma} \prod_{\alpha \neq j} \sigma_{i_{\alpha}}(t ; x, \lambda)$
$\left(k^{i, y}\right.$ from (4. 21 b)). One has
(9.42) $\quad p_{\gamma}(x, \lambda)=\lambda^{\gamma^{\frac{h}{k}}} l_{\gamma}(x, \lambda) \sim p_{\gamma, 0}(t ; x)+p_{\gamma, 1}(t ; x) \lambda^{-\frac{1}{k}}+\cdots+p_{j}(t ; x) \lambda^{-\frac{j}{k}}+\cdots$ for x, λ in $\Gamma(a, b ; R)$. The series last displayed in (9.42) is the formal expansion in powers of $\lambda^{-\frac{1}{k}}$ of
(9. 42 a)

$$
\sum_{i_{z}, \ldots i_{v}} \beta^{i^{i}, \ldots i_{v}}(x, \lambda) \sum_{j=1}^{v} v_{i_{j}, \gamma}(x, \lambda) k^{k^{i}, \gamma} \prod_{a \neq j} \sum_{\varepsilon=0}^{\infty} \sigma_{\delta_{k}, i_{\alpha}}(t ; x) \lambda^{-\frac{s}{k}}
$$

(cf. (4.2I b), $(9.29 \mathrm{a}),(9.40),(9.32 \mathrm{a}))$. Hence

$$
(9.42 \mathrm{~b}) \quad p_{\gamma, j}(t ; x)=p_{\gamma, j}(x) \quad\left(j=0, \ldots t^{\prime} ; t^{\prime} \rightarrow \infty \text { with } t\right),
$$

where the second members are independent of t. Thus, $L(\varrho)$ may be expressed as (9.43) $\quad L(\varrho) \equiv \lambda^{-n \frac{h}{k}}\left[p_{n}(x, \lambda) \varrho^{(n)}+p_{n-1}(x, \lambda) \lambda^{\frac{h}{k}} \varrho^{(n-1)}+\cdots+p_{0}(x, \lambda) \lambda^{\frac{h}{k}} \rho\right]$
(cf. (9.42), (9.42 b)). We shall now obtain explicitly $p_{n, 0}(t ; x)=p_{n, 0}(x)$. Since $w_{0,0}(x, \lambda)=\mathrm{I}$, in consequence of (9.39 c) we obtain $v_{n, n}(x, \lambda)=\mathrm{I}$. It is noted that $p_{n, 0}(x)$ is the term free of λ in the formal expansion in powers of $\lambda^{-\frac{1}{k}}$ of (942 a) (for $\gamma=n$). Thus, in view of (9.15) and (4.2I b)

$$
\begin{equation*}
p_{n, 0}(x)=\sigma_{0}^{\imath-1}(x) \sum_{j=1}^{v} j \sum_{i_{1}, \ldots i_{v}}^{(j)} b_{0}^{\prime}\left(i_{1}, \ldots i_{v} ; x\right)\left(q_{0}^{(1)}(x)\right)^{i_{1}+\cdots+i_{1}-n} \tag{9.44}
\end{equation*}
$$

where the summation symbol with the superscript j is over all sets $\left(i_{1}, \ldots i_{v}\right)$ containing precisely j elements each equal to n.

Case 9. 45. There is a closed sub interval $\left(a^{\prime}, b^{\prime}\right)$ of (a, b) in which $p_{n, 0}(x)$ of (9.44) does not vanish.

Case 9. 46. $p_{n, 0}(x)=p_{n, 1}(x)=\cdots=p_{n, u-1}(x)=0(x$ on $(a, b) ; w>0)$, while $p_{n, w}(x)$ (which is the coefficient of $\lambda^{-\frac{w}{k}}$ in the expansion of (9.42 a ; for $\gamma=n$) is not identically zero. In this case let $\left(a^{\prime}, b^{\prime}\right)$ be a closed sub interval of (a, b) in which $p_{n, w}(x)$ does not vanish.

If Case 9.46 is on band we choose t sufficiently great so that the $p_{n, j}(x)$ $(j=0, \ldots w)$ are independent of t.

In the Case 9.45 one may write $L(\varrho)$ in the form
(9. 47)

$$
L(\varrho) \equiv \lambda^{-n \frac{h}{k}} p_{n}(x, \lambda) T(\varrho) \quad\left(\text { cf. }(9.42) ; p_{n}(x, \lambda), p_{n}^{-1}(x, \lambda)=[x, \lambda]\right)
$$

(9. 47 a)

$$
T(\varrho) \equiv \varrho^{(n)}+b_{1}(x, \lambda) \lambda^{\frac{h}{k}} \varrho^{(n-1)}+\cdots+b_{n}(x, \lambda) \lambda^{n \frac{h}{k}} \varrho
$$

where
(9. 47 b$) \quad b_{\gamma}(x, \lambda)=[x, \lambda] \sim b_{\gamma, 0}(t ; x)+b_{\gamma, 1}(t ; x) \lambda^{-\frac{1}{k}}+\cdots \quad$ (in $\Gamma\left(a^{\prime}, b^{\prime} ; R\right)$; here the $b_{\gamma, j}(t ; x)\left(0 \leqq j \leqq j ; j^{\prime} \rightarrow \infty\right.$ with $\left.t\right)$ are independent of t.

In the Case 9.46

$$
\begin{equation*}
L(\varrho) \equiv \lambda^{-\frac{1}{k}(n h+w)} \bar{\mu}_{n}(x, \lambda) T(\varrho), \tag{9.48}
\end{equation*}
$$

where
(9.48 a) $\quad \bar{p}_{n}(x, \lambda)=[x, \lambda] \sim p_{n, w}(x)+\cdots, \frac{1}{\overline{p_{n}}(x, \lambda)}=[x, \lambda] \quad$ (in $\left.\Gamma\left(a^{\prime} b^{\prime} ; \pi\right)\right]$
and
$(9.48 \mathrm{~b}) \quad T(\varrho) \equiv \varrho^{(n)}+\bar{b}_{1}(x, \lambda) \lambda^{\lambda^{\frac{1}{k}}(h+w)} \varrho^{(n-1)}+\cdots+\bar{b}_{n}(x, \lambda) \lambda^{\lambda^{\frac{1}{k}(n h+w)}} \varrho$
with
(9. 48 c)

$$
\left.\bar{b}_{\gamma}(x, \lambda)=[x, \lambda] \sim \bar{b}_{\gamma, 0}(t ; x)+\bar{b}_{\gamma, 1}(t ; x) \lambda^{-\frac{1}{k}}+\cdots \quad \text { (in } \Gamma\left(a^{\prime}, b^{\prime} ; R\right)\right)
$$

the $\bar{h}_{\gamma, j}(t ; x)\left(0 \leqq j \leqq j_{1} ; j_{1} \rightarrow \infty\right.$ with $\left.t\right)$ being independent of t.

By (9.34 b), (9.39) and (9.40) we get an analogue of (4.29), (4.30) and (4. 30 a). More precisely,

$$
\begin{equation*}
K(\varrho)=K_{2}(\varrho)+K_{3}(\varrho)+\cdots+K_{v}(\varrho), \tag{9.49}
\end{equation*}
$$

where
(9. 49 a$) \quad K_{m}(\varrho)=\sum_{m_{0}, \ldots m_{n}} k_{m}^{m_{m} \ldots m_{n}}(t ; x, \lambda) \prod_{\alpha=0}^{n}\left(\rho^{(\alpha)}\right)_{m_{\alpha}} \lambda-\alpha m_{\alpha} \frac{h}{k} \quad\left(m_{0}+\cdots+m_{n}=m\right)$
with
(9. 49 b$) \quad k_{m}^{m_{0}, \ldots m_{n}}(t ; x, \lambda)=[x, \lambda] \sim \sum_{\gamma=0}^{\infty} k_{m, \gamma}^{m_{0}, \ldots m_{n}}(t ; x) \lambda^{-\frac{\gamma}{k}} \quad$ (in $\Gamma(a, b ; R)$),
the coefficients in the series last displayed being independent of t for $\gamma \leqq \gamma^{\prime}$ ($\gamma^{\prime} \rightarrow \infty$ with t).

Lemma 9.2. Suppose that $s(x, \lambda)(9.28)$ is a formal solution for x on (a, b) of the formal non linear homogeneous differential equation (9.8), (9.8 b), in accordance with Lemma 9. 1. Let $\boldsymbol{F}_{\nu}=0(9.29)$ be the corresponding form of the 'actual' differential equation. The transformation

$$
y=e^{Q(x, \lambda)}[\sigma(t ; x, \lambda)+\varrho(x, \lambda)] \quad(c f .(9.30),(9.30 \mathrm{a}))
$$

will yield the equation
(9.50)

$$
L(\varrho)+K(\varrho)=F(x, \lambda) .
$$

In the Case $9.45 L(\varrho)$ is given by (9.47)-(9.47b). In the Case (9.46) $L(\varrho)$ is given by (9.48)-(9.48 c). $K(0)$ is of the form (9.49)-(9.49 c) and the function $F(x, \lambda)$ satisfies (9.38)-(9.38a).

10. The Fourth Existence Theorem.

With $T(\varrho)$ from (9.47) or (9.48), as the case may be, consider the equation (10. 1)

$$
T(e)=0 .
$$

In accordance with the existence theorems established by Tritizinsky ${ }^{1}$ for linear differential equations containing a parameter a sub-interval $\left(a_{1}, b_{1}\right)$ of $\left(a^{\prime}, b^{\prime}\right)$ can be found and a regular sub region R_{1} of R so that the equation (10. 1) possesses a full set of solutions $y_{i}(x, \lambda)(i=\mathrm{I}, \ldots n)$ of the form

[^10]Developments in the Analytic Theory of Algebraic Differential Equations. 75
(10. 2)

$$
y_{i}(x, \lambda)=e^{Q_{i}(x, \lambda)} \boldsymbol{\eta}_{i}(x, \lambda)
$$

where
(1о. 2 a) $\quad \eta_{i}(x, \lambda)=[x, \lambda]_{\alpha} \underset{a}{\sim} \eta_{i, 0}(x)+\eta_{i, 1}(x) \lambda^{-\frac{1}{v_{i} k}}+\eta_{i, 2}(x) \lambda^{-\frac{2}{v_{i} k}}+\cdots={ }_{i} \sigma(x, \lambda)$
for x, λ in $\Gamma\left(a_{1}, b_{1} ; R_{1}\right)$. In (10. 2) the $Q_{i}(x, \lambda)$ are polynomials in $\lambda^{\frac{1}{v i k}}$ (integers $\nu_{i}>0$) with coefficients indefinitely differentiable for $a_{1} \leqq x \leqq b_{1}$. The highest possible power of λ in $Q_{i}(x, \lambda)$ is $\lambda^{\frac{h}{k}}$ (in the Case 9.45) and $\lambda^{\frac{1}{k}(h+w)}$ in the Case 9.46. By choosing t sufficiently great we arrange to have the $Q_{i}(x, \lambda)$, as well as the $\eta_{i, j}(x)\left(0 \leqq j \leqq j^{\prime} ; j^{\prime} \rightarrow \infty\right.$ with $\left.t\right)$, independent of t. The region R_{1} is such that no function

$$
\begin{equation*}
\mathfrak{\Re}\left(Q_{i}^{(1)}(x, \lambda)-Q_{j}^{(1)}(x, \lambda)\right. \tag{10.3}
\end{equation*}
$$

$$
(i, j=\mathrm{I}, \ldots n)
$$

changes sign for λ in R_{1} and for $a_{1} \leqq x \leqq b_{1}$. Such sub regions R_{1} of R can always be constructed, taking, if necessary, $b_{1}-a_{1}$ sufficiently small.

Given α, however large, the solution referred to in (10.2), (10.2 a) can be so constructed that
(IO. 4)

$$
y_{i}^{(j-1)}(x, \lambda){\underset{\alpha}{ }}^{\frac{d^{j-1}}{d x^{j-1}}\left[e^{Q(x, \lambda)} \sigma(x, \lambda)\right] \quad\left(\text { in } \Gamma\left(a_{1}, b_{1} ; R\right)\right), ~}
$$

for $j=\mathrm{I}, \ldots n$ and
(10. 4 a)

$$
y_{i}^{(j-1)}(x, \lambda)=e^{\mathcal{Q}_{i}(x, \lambda)} \lambda^{(j-1) \frac{h^{\prime}}{k}} \eta_{i, j-1}(x, \lambda) \quad\left(h^{\prime}=h \text { or } h+w\right)
$$

(10. 4 b)

$$
\eta_{i, j-1}(x, \lambda)=[x, \lambda]_{\alpha} \quad\left(\text { in } \Gamma\left(a_{1}, b_{1} ; R_{1}\right) ; j=\mathrm{I}, \ldots n\right)
$$

The determinant of the matrix $\left(y_{i}^{(j-1)}(x, \lambda)\right)(i, j=\mathrm{I}, \ldots n)$ is

$$
\Delta(x, \lambda)=\left|\left(y_{i}^{(j-1)}(x, \lambda)\right)\right|=\exp \cdot\left[-\lambda^{\frac{1}{k} \mu^{\prime}} \int^{x} c_{1}(x, \lambda) d x\right]
$$

where $c_{1}(x, \lambda)$ is $b_{\gamma}(x, \lambda)(9.47 \mathrm{~b})$ or $\bar{b}_{\gamma}(x, \lambda)(9.48 \mathrm{c})$ and where the 'constant' of integration may depend on λ and is to be suitably chosen. Together with (IO. 4 a) this implies that

$$
\begin{equation*}
\left.\mathcal{A}(x, \lambda)=e^{Q_{1}(x, \lambda)+\cdots+Q_{n}(x, \lambda)} \lambda^{\frac{1}{2}\left(n^{2}-n\right) \frac{n^{\prime}}{k}-\frac{\omega}{k}} d(x, \lambda) \quad \text { (integer } \omega \geq 0\right) \tag{10.5}
\end{equation*}
$$

(1о. 5 a) $\quad d(x, \lambda)=[x, \lambda] \sim d_{0}(x)+d_{1}(x) \lambda^{-\frac{1}{k}}+\cdots \quad$ in $\left.\Gamma\left(a_{1}, b_{1} ; R_{1}\right) ; d_{0}(x) \neq 0\right)$.

It is noted that $d_{0}(x)$ of (10. 5 a) does not vanish on $\left(a_{1}, b_{1}\right)$. Thus
(10. 5 b)

$$
\frac{I}{d(x, \lambda)}=[x, \lambda]
$$

$\left(\right.$ in $\left.\Gamma\left(a_{1}, b_{1} ; R_{1}\right)\right)$.

Define the $\bar{y}_{i, j}(x, \lambda)$ by the matrix relation
(10.6)

$$
\left(\bar{y}_{i, j}(x, \lambda)\right)=\left(y_{i}^{(j-1)}(x, \lambda)\right)^{-1}
$$

One has

$$
\boldsymbol{\Delta}(x, \lambda) \bar{y}_{n, j}(x, \lambda)(-\mathrm{I})^{n+j}=\left|\begin{array}{ccccccc}
y_{1} & , \ldots & y_{j-1}, & y_{j+1} & \ldots & y_{n} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
y_{1}^{(n-2)}, & \ldots & y_{j-1}^{(n-2)}, & y_{j+1}^{(n-2)}, & \ldots & y_{n}^{(n-2)}
\end{array}\right|
$$

which in consequence of (10. 4 a) yields
(10. 6 a)

$$
\begin{gathered}
\Delta(x, \lambda) \bar{y}_{n, j}(x, \lambda)=e^{Q_{1}(x, \lambda)+\cdots+Q_{n}(x, \lambda)-Q_{j}(x, \lambda)} \lambda^{\frac{1}{2}\left(n^{2}-3 n+2\right) \frac{h^{\prime}}{k}}[x, \lambda]_{\alpha} \\
\left(\text { in } \Gamma\left(a_{1}, b_{1} ; R_{1}\right)\right)
\end{gathered}
$$

By (10. 6 a), (10. 5) and (10. 5 b) one finally obtains
(10. 7)

$$
\bar{y}_{n, j}(x, \lambda)=e^{-Q_{j}(x, \lambda)} \lambda^{-\omega_{1}} \bar{y}(n, j ; x, \lambda) \quad\left(\omega_{1}=\frac{h^{\prime}}{k}(n-1)-\frac{\omega}{k}\right)
$$

with
(10. 7 a)

$$
\bar{y}(n, j ; x, \lambda)=[x, \lambda]_{\alpha}
$$

$$
\text { (in } \Gamma\left(a_{1}, b_{1} ; R_{1}\right) \text {) }
$$

It is to be recalled that for a solution z of the equation $T(z)=\beta(T(z)$ from (5.6)) we have previously obtained (5.26). Adapting that result to the equation
(10. 8)

$$
T(z)=\beta(x, \lambda)
$$

(T from (IO. I)),
we conclude that, provided the integrations can be carried out, a solution $z(x, \lambda)$ of (IO. 8) will satisfy

$$
z^{(j-1)}(x, \lambda)=\sum_{\tau=1}^{n} y_{\tau}^{(j-1)}(x, \lambda) \int^{x} \beta(x, \lambda) \bar{y}_{n, \tau}(x, \lambda) d x \quad(j=\mathrm{I}, \ldots n)
$$

where the $\bar{y}_{n, \tau}(x, \lambda)$ are given by (10. 7), (10. 7 a) and the $y_{\tau}^{(j-1)}(x, \lambda)$ are of the form (10.4a), (10. 4 b). Accordingly, it is observed that for a solution $z(x, \lambda)$ of (10. 8) one has, for $j=1, \ldots n$,

$$
\begin{aligned}
& z^{(j-1)}(x, \lambda)=\sum_{\tau=1}^{n} e^{Q_{\tau}(x, \lambda)} \lambda^{(j-1) \frac{h^{\prime}}{k}} \eta_{\tau, j-1}(x, \lambda) \int^{x} e^{-Q_{\tau}(x, \lambda)} \lambda^{-\omega_{1}} \cdot \bar{y}(n, \tau ; u, \lambda) \beta(u, \lambda) d u \\
& (10.9) \\
& \quad\left[\omega_{1}=\frac{h^{\prime}}{k}(n-\mathrm{I})-\frac{\omega}{k} ; \text { cf. (10. 5), (10. } 7 \mathrm{a}\right),(10.4 \mathrm{~b}] ;
\end{aligned}
$$

here $h^{\prime}=h$ (in Case 9.45) and $h^{\prime}=h+w$ (in Case 9.46).
We shall now proceed to construct an appropriate solution of the transformed equation (9.50). Unless stated otherwise we shall consider the Case 9. 46 , when $L(\varrho)$ is expressible by (9.48).

A solution of (9.50) will be given in a form of a convergent series
(10. 10)

$$
\varrho(x, \lambda)=z_{0}(x, \lambda)+z_{1}(x, \lambda)+\cdots,
$$

whose terms are suitable determined functions satisfying
(10. It)

$$
L\left(z_{0}\right)=F(x, \lambda)
$$

(10. 12)

$$
L\left(z_{j}\right)=-K\left(w_{j-1}\right)+K\left(w_{j-2}\right) \quad\left(j=\mathrm{I}, 2, \ldots ; w_{-1}=0\right)
$$

with
(io. 12 a)

$$
w_{j}(x, \lambda)=z_{0}(x, \lambda)+z_{1}(x, \lambda)+\cdots+z_{j}(x, \lambda) \quad(j=\mathrm{o}, \mathrm{I}, \ldots)
$$

By (9.48) the equations (IO. II), (IO. I2) may be put in the form

$$
\begin{equation*}
T\left(z_{j}\right)=\beta_{j}(x, \lambda) \tag{10.13}
\end{equation*}
$$

$$
(j=\mathrm{o}, \mathrm{I}, \ldots)
$$

where
(IO. 13 a)

$$
\beta_{0}(x, \lambda)=\left(\bar{p}_{n}(x, \lambda)\right)^{-1} \lambda^{\frac{1}{k}(n h+w-i-1)} F(t ; x, \lambda)
$$

(cf. (9. 38 a)),
(10. 13 b) $\beta_{j}(x, \lambda)=\left(\bar{p}_{n}(x, \lambda)\right)^{-1} \lambda^{\frac{1}{k}(n h+w)}\left[-K\left(w_{j-1}\right)+K\left(w_{j-2}\right)\right]$
$(j=\mathrm{I}, 2, \ldots)$. In view of (9.48 a)
(10. 14)

$$
\left|\begin{array}{c}
\mathrm{I} \\
\bar{p}_{n}(x, \lambda)
\end{array}\right| \leqq p \quad\left(x, \lambda \text { in } \Gamma\left(a_{1}, b_{1} ; R_{1}\right)\right)
$$

Hence by (10. 13 a)
(10. 15) $\quad \beta_{0}(x, \lambda)=\lambda-\beta_{0} \gamma_{0}(x, \lambda), \quad \beta_{0}=\frac{\mathrm{I}}{k}(t+\mathrm{I})-\frac{\mathrm{I}}{k}(n h+w)$,
(IO. 15 a)

$$
\left|\gamma_{0}(x, \lambda)\right| \leqq \gamma_{0}
$$ (in $\Gamma\left(a_{1}, b_{1} ; R_{1}\right)$;

t is taken so that $\beta_{0}>0$.

By virtue of (10.4b) and (10.7a)

$$
\left.\left|\eta_{\tau_{, j} j_{-1}}(x, \lambda)\right|,|\bar{y}(n, \tau ; x, \lambda)| \leqq p_{1} \quad \text { (in } \Gamma\left(a_{1}, b_{1} ; R_{1}\right)\right)
$$

Hence in consequence of (10.9) it is inferred that for a solution $z(x, \lambda)$ of the equation
(10. I6)

$$
\left.T(z(x, \lambda))=\lambda-\beta \gamma(x, \lambda) \quad \| \gamma(x, \lambda) \mid \leqq \gamma \text { in } \Gamma\left(a_{1}, b_{1} ; R_{1}\right)\right],
$$

where $\dot{\beta}>0$, we have
(10. 16 a)

$$
\left|z^{(j-1)}(x, \lambda)\right| \leqq p_{1}^{2} \gamma|\lambda|^{(j-n) \frac{n^{\prime}}{k}+\frac{\omega}{k}-\beta} \sum_{\tau=1}^{n} \int_{c_{1}}^{x}\left|e^{\theta_{\tau}(x, \lambda)-Q_{\tau}(u, \lambda)}\right||d u|
$$

for $j=\mathrm{I}, 2, \ldots n$ and x, λ in $\Gamma\left(a_{1}, b_{1} ; R_{1}\right)$, provided $\gamma(x, \lambda)$ is integrable in x for x on (a_{1}, b_{1}). In (Io. 16 a) c_{1} is a_{1} or b_{1} (see (Io. 18), below).

Let $R_{\mathrm{\Omega}}$ be a regular sub region of R_{1} such that no function
(10. 17) $\quad \mathfrak{R}\left(Q_{j}^{(1)}(x, \lambda)\right) \quad\left(j=1, \ldots n ;\right.$ cf. Def. of R_{1} with respect to (1o. 3)) changes sign for x.in R_{2} and for $a_{1} \leqq x \leqq b_{1}$. Regions R_{2} will exist in all cases at least for $b_{1}-a_{1}(>0)$ sufficiently small.

We shall take
(10. 18)

$$
c_{1}= \begin{cases}a_{1} & \left(\text { when } \Re Q_{\tau}^{(1)}(x, \lambda) \leqq 0 \text { in } \Gamma\left(a_{1}, b_{1} ; R_{2}\right)\right), \\ b_{1} & \left(\text { when } \mathfrak{R} Q_{\tau}^{(1)}(x, \lambda) \geqq 0 \text { in } \Gamma\left(a_{1}, b_{1} ; R_{2}\right)\right) .\end{cases}
$$

Then the integral displayed in (10. 16a) will satisfy
(10. 19)

$$
\left.\int_{c_{1}}^{x}\left|e^{q_{\tau}(x, \lambda)-a_{\tau}(u, \lambda)}\right||d u| \leqq b_{1}-a_{1} \quad \quad \text { (in } \Gamma\left(a_{1}, b_{1} ; R_{2}\right)\right)
$$

Lemma 10.1. For a solution $z(x, \lambda)$ of the equation

$$
\left.T(z(x, \lambda))=\lambda-\beta \gamma(x, \lambda) \quad \| \gamma(x, \lambda) \mid \leqq \gamma \text { in } \Gamma\left(a_{1}, b_{1} ; R_{2}\right)\right\},
$$

where β is real and R_{2} is defined in connection with (10. 17), one has, for x, λ in $\Gamma\left(a_{1}, b_{1} ; R_{2}\right)$ and for $j=1, \ldots n$,

$$
\begin{equation*}
\left|z^{(j-1)}(x, \lambda)\right| \leqq n_{1} \gamma|\lambda|^{-\beta+\frac{h^{\prime}}{k}(j-n)+\frac{\omega}{k}} \quad\left(n_{1}=n\left(b_{1}-a_{1}\right) p_{1}^{2}\right), \tag{10.20}
\end{equation*}
$$

provided $\gamma(x, \lambda)$ is integrable in x for x on $\left(\alpha_{1}, b_{1}\right)$. This result holds with $h^{\prime}=h+w$ in the Case 9.46 and with $h^{\prime}=h$ in the Case 9.45.

Let b^{\prime} be a number, independent of x and λ, such that
(10. 2I)

$$
\left|b_{i}(x, \lambda)\right| \leqq b^{\prime} \quad\left(i=\mathrm{I}, \ldots n ; \text { in } \Gamma\left(a_{1}, b_{1} ; R_{2}\right)\right),
$$

in the Case 9.45, and such that
(10. 2 I a) $\quad\left|\bar{b}_{i}(x, \lambda)\right| \leqq b^{\prime} \quad\left(i=\mathrm{I}, \ldots n\right.$; in $\left.\Gamma^{\prime}\left(a_{1}, b_{1} ; R_{2}\right)\right)$,
in the Case 9.46. In consequence of $(9.47 \mathrm{a})$ and $(9.48 \mathrm{~b})$ for the solution referred to in Lemma io. i one will have

$$
\begin{equation*}
\left|z^{(n)}(x, \lambda)\right| \leqq \sum_{i=1}^{n} b^{\prime}|\lambda|^{\left.\frac{1}{k^{(i n+w)}}\left|z^{(n-i)}(x, \lambda)\right|+\gamma \right\rvert\, \lambda \vdash^{\beta} ; ~} \tag{10.22}
\end{equation*}
$$

(in $\Gamma\left(a_{1}, b_{1} ; R_{2}\right)$); here w is to be replaced by zero in the Case $9.45 . \mathrm{By}$ (10. 20) and (10. 22)
(10. 23) $\quad\left|z^{(n)}(x, \lambda)\right| \leqq \gamma|\lambda|^{-\beta}+\sum_{i=1}^{n} b^{\prime} n_{1} \gamma|\lambda|^{-(i-1) \frac{w}{k}+h_{2}-\beta} \quad\left(h_{2}=\frac{1}{k}\left(h^{\prime}+\omega\right)>0\right)$.

Inasmuch as in $R_{2}|\lambda| \geqq \lambda_{0}$, where for simplicity one may take $\lambda_{0} \geqq \mathrm{I}$, it is concluded that
(1.. 24)

$$
\left|z^{(n)}(x, \lambda)\right| \leqq n_{2} \gamma|\lambda|^{-\beta+h_{3}} \quad\left(n_{2}=n n_{1} b^{\prime}+1 ; h_{2}\right. \text { from (10. 23)) }
$$

for x, λ in $\Gamma\left(a_{1}, b_{1} ; R_{2}\right)$. Using (1o. 24) and Lemma io. I we obtain
Lemma 10. 2. For the solution $z(x, \lambda)$ referred to in Lemma 10. 1 , we have for $i=\mathrm{o}, \mathrm{I}, \ldots n$
(10. 25)

$$
\left|z^{(i)}\langle x, \lambda)\right| \leqq n^{\prime} \gamma|\lambda|^{-\beta+\frac{h^{\prime}}{k}(i-n)+h_{2}}
$$

$$
\left[h_{2}=\frac{1}{k}(h+w+w) ; h^{\prime}=h+w ; x, \lambda \text { in } \Gamma\left(a_{1}, b_{1} ; R_{2}\right)\right]
$$

in the Case 9.46. In (10.25) n^{\prime} is the greater of the numbers n_{1} and $n_{2}=n n_{1} b^{\prime}+\mathrm{i}$. In the Case 9.45 the same result may be asserted with w replaced by zero.

On taking account of (10. 15), (10. 15 a) with the aid of Lemma io. 2 we obtain a solution $z_{0}(x, \lambda)$ of the first equation (10.13) such that
(io. 26)

$$
\left.\left|z_{0}^{(i)}(x, \lambda)\right| \leqq \zeta_{0}|\lambda|^{-\frac{1}{k}(t+1)+\frac{h^{\prime} i}{k}+h_{0}} \quad \quad \text { (in } \Gamma\left(a_{1}, b_{1} ; R_{2}\right)\right)
$$

for $i=0, \ldots n$, where
(10. 26 a)

$$
\zeta_{0}=n^{\prime} \gamma_{0}, \quad h_{0}=h_{2}-(n-\mathrm{I}) \frac{v}{k}
$$

In view of $(9.49 \mathrm{~b})$ there exists a constant \bar{k} independent of $m_{0}, \ldots m_{n}$, x, λ so that
(10. 27)
$\left|k_{m}^{m_{n}, \ldots m_{n}}(t ; x, \lambda)\right| \leqq \overline{h_{i}}$
(in $\Gamma\left(a_{1}, b_{1} ; R_{2}\right)$.

It is noted that $K_{m}(\varrho)$ is given by (9.49 a) in both Cases 9. 45, 9. 46. By (10. 26) and (10.27)

$$
\left|K_{m}\left(z_{0}(x, \lambda)\right)\right| \leqq \hbar \zeta_{0}^{m}|\lambda|^{-\frac{m}{k}(t+1)+m h_{0}} \sum_{m_{0}+\cdots+m_{n}=m}|\lambda|^{\frac{w}{k}\left(m_{1}+2 m_{2}+\cdots+n m_{n}\right)}
$$

Now, for $m_{0}, \ldots m_{n} \geqq 0$ and $m_{0}+\cdots+m_{n}=m$ the greatest value of $m_{1}+2 m_{2}+$ $\cdots+n m_{n}$ is $n m$. Thus, with $|\lambda| \geqq 1$, one has

$$
\sum_{m_{0}+\cdots+m_{n}=m} \left\lvert\,\left\{\left|\left.\right|^{\frac{w}{i}\left(m_{1}+2 m_{2}+\cdots+n m_{n}\right)} \leqq|\lambda|\right|^{\frac{w}{k^{n} n}} q_{m}\right.\right.
$$

where
(10. 28)

$$
q_{\substack{m \\ m_{0}+\cdots+m_{n}=m}}
$$

and
(IO. 29) $\left|K_{m}\left(z_{0}(x, \lambda)\right)\right| \leqq \bar{k} \zeta_{v}^{m} q_{m}|\lambda|^{-\frac{2}{k}(t+2)+2 h_{0}+2 \frac{w}{k} n} \quad$ (in $\left.\Gamma\left(a_{1}, b_{1} ; R_{2}\right) ; m=2, \ldots \nu\right)$, provided we take t so that
(10. 29 a$) \quad-\frac{\mathrm{I}}{k}(t+\mathrm{I})+h_{0}+\frac{w}{k} n \quad\left[=-\frac{\mathrm{I}}{k}(t+\mathrm{I})+h_{2}+\frac{w}{k}\right] \leqq 0$.

By virtue of (9.49)
(Io. 29 b)

$$
\left|K\left(z_{0}(x, \lambda)\right)\right| \leqq \bar{k} k_{0}|\lambda|^{-\frac{2}{k}(t+1)+2 h_{0}+2 \frac{w}{k} n} \quad\left(k_{0}=\sum_{m=2}^{v} \zeta_{0}^{m} q_{m}\right)
$$

in $\Gamma\left(a_{1}, b_{1} ; R_{2}\right)$ and, by (10. 13 b) and (1о. 14)
(10. 30) $\quad\left|\beta_{1}(x, \lambda)\right| \leqq p|\lambda|^{\frac{1}{k^{(}(n h+w)}}\left|K\left(z_{0}(x, \lambda)\right)\right| \leqq \gamma_{1}|\lambda|^{-\beta_{1}} \quad$ (in $\Gamma\left(a_{1}, b_{1} ; R_{2}\right)$, where
(10. 30 a)

$$
\begin{aligned}
\gamma_{1}=p \bar{k} h_{0}, \quad \beta_{1}=\frac{2}{k}(t+\mathrm{I}) & -2 h_{0}-2 \frac{w}{k} n \\
& -\frac{\mathrm{I}}{k}(n h+w)=2 \beta_{0}-2 h_{2}+\frac{\mathrm{I}}{k}(n h-w) .
\end{aligned}
$$

Developments in the Analytic Theory of Algebraic Differential Equations. 81 In consequence of (10.30) and Lemma 10.2 there exists a solution $z_{1}(x, \lambda)$ of the equation (10. $13 ; j=1$) satisfying
(Io. 3 I)

$$
\left|z_{1}^{(i)}(x, \lambda)\right| \leqq \zeta_{0}|\lambda|^{-\beta_{1}+\frac{h^{\prime}}{k}(i-n)+h_{2}} \quad\left(\zeta_{1}=n^{\prime} \gamma_{1} ; \text { in } \Gamma\left(a_{1}, b_{1} ; R_{2}\right)\right)
$$

for $i=0, \ldots n$.
We choose t so that in addition to (10. 29 a) the inequality
(10. 32)

$$
d^{\prime}=-\frac{1}{k}(t+\mathrm{I})+2 h_{2}+2 \frac{w}{k}<0 \quad\left(h_{2}=\frac{1}{k}(h+w+\omega)\right)
$$

is satisfied.
By (1o. 26) and (io. 3I) we have
(10. 33)

$$
\begin{gathered}
\left|z_{0}^{(i)}(x, \lambda)\right| \leqq\left.\zeta_{0}|\lambda|\right|_{i}, \quad\left|z_{1}^{(i)}(x, \lambda)\right| \leqq \zeta_{1}|\lambda| d^{d_{i}}|\lambda| d^{d^{\prime}} \\
{\left[i=0, \ldots n ; \quad d_{i}=-\frac{1}{k}(t+\mathrm{I})+\frac{h^{\prime}}{k} i+h_{0} ; \quad \text { in } \Gamma\left(a_{1}, b_{1} ; R_{2}\right)\right] .}
\end{gathered}
$$

We take λ, in R_{2}, so that $|\lambda| \geqq \lambda_{0}(\geqq 1)$, where λ_{0} is sufficiently great so that
(10. 34)

$$
\zeta_{1}|\lambda|^{d^{*}} \leqq \zeta_{0} \varrho \quad\left(\text { for }|\lambda| \geqq \lambda_{0} ; d^{\prime}\right. \text { from (10. 32)) }
$$

where ϱ is some fixed mumber such that $0<\varrho<\mathrm{I}$. With $\lambda_{0}>\mathrm{I}$ one may secure (10.34) taking t sufficiently great. Whence (Io.33) will yield
(10. 35)

$$
z_{u}^{(i)}(x, \lambda)=\lambda^{d_{i}} z_{0, i}(x, \lambda), \quad z_{1}^{(i)}(x, \lambda)=\lambda^{d_{i}} z_{1, i}(x, \lambda)
$$

where
(10. 35 a)

$$
\left|z_{0, i}(x, \lambda)\right| \leqq \zeta_{0}, \quad\left|z_{1, i}(x, \lambda)\right| \leqq \zeta_{0} \varrho
$$

$$
\left[i=\mathrm{o}, \ldots n ; \quad d_{i}=-\frac{1}{k}(t+\mathrm{I})+\frac{\mathrm{I}}{k} h^{\prime} i+h_{0} ; \text { in } \Gamma\left(a_{1}, b_{1}, R_{2}\right)\right]
$$

With a view to proof by induction a supposition is now made that for some $j \geqq 2$ we have
(10. 36)

$$
z_{s}^{(i)}(x, \lambda)=\lambda^{l_{i}} z_{\varepsilon, i}(x, \lambda) \quad(s=0, \mathrm{I}, \ldots j-1 ; i=0, \ldots n)
$$

(10. 36 a)
$\left|z_{s, i}(x, \lambda)\right| \leqq \zeta_{0} \varrho^{s} \quad\left(i=0, \ldots n ;\right.$ in $\left.\Gamma\left(a_{1}, b_{1} ; R_{2}\right)\right)$
for $s=0, \mathrm{I}, \ldots j-\mathrm{I}$.
On writing
(10. 37)

$$
u_{s}^{(i)}(x, \lambda)=z_{0}^{(i)}(x, \lambda)+\cdots+z_{s}^{(i)}(x, \lambda)=\lambda^{d_{i}} u_{s, i}(x, \lambda)
$$

one has
(10. 37 a) $\left|w_{\varepsilon, i}(x, \lambda)\right| \leqq \varrho_{0}=\frac{\zeta_{0}}{\mathrm{I}-\varrho} \quad\left(s=0, \ldots j-\mathrm{I} ; i=0, \ldots n\right.$; in $\Gamma\left(a_{1}, b_{1} ; R_{2}\right)$).

By (1o. 13 b) and (io. 14)

$$
\left|\beta_{j}(x, \lambda)\right| \leqq p|\lambda|^{\frac{1}{k}(n h+w)}\left|K\left(w_{j-2}+z_{j-1}\right)-K\left(w_{j-2}\right)\right| \leqq p|\lambda|^{\frac{1}{k}(n h+w)} \sum_{m=2}^{v}\left|T_{m}\right|
$$

where (compare with (6. 19))

$$
\begin{aligned}
& T_{m}=\sum_{m_{0}+\cdots+m_{n}=m} k_{m}^{m_{0} \ldots m_{n}}(t ; x, \lambda)\left[\prod_{\alpha=0}^{n}\left(w_{j-2}^{(\alpha)}+z_{j-1}^{(\alpha)}\right)^{m_{\alpha}} \lambda^{-\alpha m_{\alpha} \frac{h}{k}}-\prod_{\alpha=0}^{n}\left(w_{j-2}^{(\alpha)}\right)^{m_{a}} \lambda^{-\alpha m_{\alpha} \frac{h}{k}}\right] \\
&=\sum_{m_{0}, \ldots} k_{m}^{m_{0}, \ldots m_{n}}(t ; x, \lambda) \lambda^{f\left(m_{0}, \ldots m_{n}\right)}\left[\prod_{\alpha=0}^{n}\left(w_{j-2, \alpha}+z_{j-1, \alpha}\right)^{m_{\alpha}}-\prod_{\alpha=0}^{n}\left(w_{j-2, \alpha}\right)^{m_{\alpha}}\right]
\end{aligned}
$$

where
(10. 38) $\quad f\left(m_{0}, \ldots m_{n}\right)=m\left[-\frac{1}{k}(t+\mathrm{I})+h_{0}\right]+\frac{w}{k} \sum_{\alpha=1}^{n} \alpha m_{\alpha}$.

Thus
(10. 39) $\quad T_{\boldsymbol{m}}=\sum_{m_{0}+\cdots+m_{n}=m} k_{m}^{m_{0}, \ldots m_{n}}(t ; x, \lambda) \lambda\left(m_{0}, \ldots m_{n}\right)\left\{\prod_{\alpha=1}^{m}\left(w_{j-2, i_{\alpha}}+z_{j-1, i_{\alpha}}\right)-\prod_{\alpha=1}^{m} w_{j-2, i_{\alpha}}\right\}$

$$
\text { (sets } \left.\left(i_{1}, \ldots i_{m}\right) \text { depending on }\left(m_{0}, \ldots m_{n}\right)\right)
$$

The difference of products involved above can be expressed as

$$
\begin{gathered}
\{\cdots\}=\sum_{\gamma_{1}-1}^{m} z_{j-1, i_{\gamma_{1}}} \prod_{\delta \neq \gamma_{1}} w_{j-2, i_{s}}+\sum_{\gamma_{1}<\gamma_{2}=1}^{m} z_{j-1, i_{\gamma_{1}}} z_{j-1, i_{\gamma_{2}}} \prod_{\substack{ \\
\xi \neq \gamma_{1}, \gamma_{2}}} v_{j-2, i_{s}} \\
+\cdots+z_{j-1, i_{1}} z_{j-1, i_{2}} \ldots z_{j-1, i_{m}} .
\end{gathered}
$$

In view of (10. 36 a) and (10. 37 a) this differences satisfies

$$
\begin{aligned}
& |\{\cdots\}| \leqq \sum_{\gamma_{1}=1}^{m} \varrho_{0}^{m-1}\left(\zeta_{0} \varrho^{j-1}\right)+\sum_{\gamma_{1}<\gamma_{2}=1}^{m} \varrho_{0}^{m-2}\left(\zeta_{0} \varrho^{j-1}\right)^{2}+\cdots+\left(\zeta_{0} \varrho^{j-1}\right)^{m} \\
& \left.=\left(\varrho_{0}+\zeta_{0} \varrho^{j-1}\right)^{m}-\varrho_{0}^{m}=\varrho_{0}^{m}\left[\left(1+\frac{\zeta_{0}}{\varrho_{0}} \varrho^{j-1}\right)^{m}-\mathrm{I}\right] \quad \text { (in } \Gamma\left(a_{1}, b_{1} ; R_{2}\right)\right)
\end{aligned}
$$

With the aid of the inequality subsequent to (6.22) we finally obtain

$$
\|\left\{\cdots \| \leqq \varrho_{0}^{m} m\left(1+\frac{\zeta_{0}}{\varrho_{0}} \varrho^{j-1}\right)^{m-1} \frac{\zeta_{0}}{\varrho_{0}} e^{j-1},\right.
$$

which by virtue of (10. 39), (10.38) and (10. 27) implies that

$$
\begin{gathered}
\left|T_{m}\right| \leqq\left.\bar{k} \sum_{m_{0}+\cdots+m_{n}=m}|\lambda|\right|^{f\left(m_{0}, \cdots m_{n}\right)|\{\cdots\}|} \\
\left.\leqq|\lambda|^{m\left[-\frac{1}{k}(t+1)+h_{0}\right]}\right] \\
\bar{k} \varrho_{0}^{m} m\left(1+\frac{\zeta_{0}}{\varrho_{0}} \varrho^{j-1}\right)^{m-1} \frac{\zeta_{0}}{\varrho_{0}} \varrho^{j-1} \sum_{m_{0}, \cdots}|\lambda|^{w \frac{w}{k}\left(m_{1}+2 m_{3}+\cdots+n m_{n}\right)} \\
\leqq t_{m} \varrho^{j}|\lambda|^{m\left[-\frac{1}{k}(t+1)+h_{0}\right]}|\lambda|^{\frac{w}{k} n m},
\end{gathered}
$$

where
(10. 40)

$$
t_{m}=\bar{k} q_{m} \varrho_{0}^{m} m(2-\varrho)^{m-1}\left(\frac{\mathrm{I}-\varrho}{\varrho}\right) \quad\left(q_{m}\right. \text { from (10. 28)) }
$$

The above is asserted for $x, \lambda(|\lambda| \geqq 1)$ in $\Gamma\left(a_{1}, b_{1} ; R_{2}\right)$. By virtue of (10. 29 a)

$$
\left|T_{m}\right| \leqq t_{m} \varrho^{i}|\lambda|^{2}\left[-\frac{1}{k}(t+1)+h_{0}+\frac{w}{k} n\right] \quad(m=2, \ldots \nu)
$$

which implies in consequence of the inequality subsequent to (io. 37 a) that
(10.4I)

$$
\left.\left|\beta_{j}(x, \lambda)\right| \leqq \gamma_{j}|\lambda|^{-\beta_{j}} \quad \text { (in } \Gamma\left(a_{1}, b_{1} ; R_{2}\right)\right)
$$

where
(1о. 4 І a) $\gamma_{j}=\left(t_{2}+t_{3}+\cdots+t_{k}\right) p \varrho^{j}, \quad-\beta_{j}=\frac{1}{k}(n h+w)-\frac{2}{k}(t+1)+2 h_{0}+\frac{w}{k} n$;
it is noted that
(10. 4 I b)
$\beta_{j}=\beta_{1}$
(β_{1} from (10. 30 a$)$).

Applying Lemma 10.2 to the equation $T\left(z_{j}\right)=\beta_{j}(x, \lambda)$ (cf. (10. 4I), a solution $z_{j}(x, \lambda)$ is obtained for which
(10. 42)

$$
\begin{gathered}
\left|z_{j}^{(i)}(x, \lambda)\right| \leqq n^{\prime} \gamma_{j}|\lambda|^{-\beta_{1}+\frac{h^{\prime}}{k}(i-n)+h_{2}}=n^{\prime} \gamma_{j}|\lambda|^{a_{i}}|\lambda|^{a^{\prime}} \\
{\left[i=0, \ldots n ; h_{2}=\frac{1}{k}(h+w+\omega) ; \text { in } \Gamma\left(a_{1}, b_{1} ; R_{2}\right)\right] .}
\end{gathered}
$$

In (10.42) d_{i}, d^{\prime} are from (10. 33) and (10. 32).
We take λ, in R_{2}, with $|\lambda| \geqq \lambda_{0}$, where λ_{0} is so great that
(10.43)

$$
\left(t_{2}+\cdots+t_{v}\right) n^{\prime} p|\lambda|^{d^{\prime}} \leqq \zeta_{0}
$$

$$
\left(\text { for }|\lambda| \geqq \lambda_{0}\right)
$$

One may choose λ_{0} independent of j.
Substituting γ_{j} from (10. 4 I a) in (10.42) and applying (10.43), we derive

$$
\begin{equation*}
z_{j}^{(i)}(x, \lambda)=\lambda^{d_{i}} z_{j, i}(x, \lambda) \quad(i=0, \ldots n) \tag{10.44}
\end{equation*}
$$

with
(10. 44 a)

$$
\left|z_{j, i}(x, \lambda)\right| \leqq \zeta_{0} \varrho^{j} \quad\left(i=0, \ldots n ; \text { in } \Gamma\left(a_{1}, b_{1} ; R_{2}\right)\right)
$$

It is clear that equations $T\left(z_{j}\right)=\beta_{j}(x, \lambda)$ can be solved in succession so as to determine functions $z_{j}(x, \lambda)(j=0, \mathrm{I}, \ldots)$ for which (10. 44), (10. 44 a) may be asserted for

$$
j=\mathrm{o}, \mathrm{I}, \ldots ; \quad i=\mathrm{o}, \ldots n
$$

Moreover, we shall have

$$
\left|\beta_{j}(x, \lambda)\right| \leqq|\lambda|^{-\beta_{1}} \gamma_{j} \quad\left(\gamma_{j}=\left(t_{2}+\cdots+t_{v}\right) p \varrho^{j}\right)
$$

for $j=\mathrm{I}, 2, \ldots$ and for x, λ in $\Gamma\left(a_{1}, b_{1} ; R_{2}\right)$. The $\beta_{j}(x, \lambda)$ will be integrable in x for x on $\left(a_{1}, b_{1}\right)$.

In terms of the above functions $z_{j}(x, \lambda)$ one may now form the series (io. Io). One will have
(10. 45) $\quad \varrho^{(i)}(x, \lambda)=z_{0}^{(i)}(x, \lambda)+z_{1}^{(i)}(x, \lambda)+\cdots=\lambda^{d_{i}} \sum_{s=0}^{\infty} z_{s, i}(x, \lambda)$
$(i=0, \ldots n)$. The function $\varrho(x, \lambda)$ will be a solution of the transformed equation (9. 50) and will satisfy
(10.46) $\quad\left|\varrho^{(i)}(x, \lambda)\right| \leqq \frac{\zeta_{0}}{\mathrm{I}-\varrho}|\lambda|^{\alpha_{i}} \quad\left(i=0, \ldots n ;\right.$ in $\Gamma\left(a_{1}, b_{1} ; R_{2}\right)$, with $d_{i}=-\frac{\mathrm{I}}{k}(t+\mathrm{1})+\frac{h^{\prime}}{k} i+h_{0} . \quad$ By (10. 26 a) and (10. 23)
(10. 46 a$) \quad d_{i}=-\frac{\mathrm{I}}{k}(t+\mathrm{I})+\frac{h^{\prime}}{k}(i+\mathrm{I})+\frac{\mathrm{I}}{k}[\omega-(n-\mathrm{I}) w] \quad(\omega$ from (10.5) $)$.

By virtue of Lemma 9.2 and of the result just formulated it is possible to assert the following theorem.

Existence Theorem 10.1. Suppose $s(x, \lambda)(9.28)$, (9.28a) is a formal solution for x on (a, b) of the formal non linear homogeneous differential equation (9.8),
(9. 8 b) (cf. Lemma 9. I). Correspondingly the formal equation may be written as (9.25), (9.25 a): the vactual» equation $F_{\nu}=0$ may be expressed as (9. 29), (9. 29 a). Associated with $s(x, \lambda)$ the non linear problem has the linear equation $T(\varrho)=0$ (Io. 1), whose solutions involve polynomials $Q_{i}(x, \lambda)$ (independent of t, if t is sufficiently great) ($\mathrm{c} f .(10.2)$). We note that existence of solutions of $T(\rho)=0$ of form (10.2), (10. 2 a) is asserted for x, λ in $\Gamma\left(a_{1}, b_{1} ; R_{1}\right)$ (notation of the early part of section 9); $\left(a_{1}, b_{1}\right)$ is a closed sub interval of $(a, b) ; R_{1}$ is a regular. sub region of R such that no function (10.3) changes sign for x, λ in $\Gamma\left(a_{1}, b_{1} ; R_{1}\right)$. We let R_{2} be a regular sub region of R_{1} so that no function $\Re Q_{j}^{(1)}(x, \lambda)$ changes sign for x, λ $\operatorname{in} \Gamma\left(a_{1}, b_{1} ; R_{2}\right)$.

In the Case $9.45\left(a_{1}, b_{1}\right)$ is to be chosen so that $p_{n, 0}(x)$ of (9.44) does not vanish for $a_{1} \leqq x \leqq b_{1}$.

In the Case 9.46 we choose $\left(a_{1}, b_{1}\right)$ so that $p_{n, w}(x)$ does not vanish for $a_{1} \leqq x \leqq b_{1}$.
Given an integer $t\left(t \geqq t^{\prime} ; t^{\prime}\right.$ suitably great $)$, however large, there exists a solu, tion $y(x, \lambda)$ of $F_{v}=0$, defined for $x, \lambda\left(|\lambda| \geqq \lambda_{0} ; \lambda_{0}\right.$ suitably great) in $\Gamma\left(a_{1}, b_{1} ; R_{2}\right)$, such that
(10. 47) $\quad y^{(i)}(x, \lambda) \sim s^{(i)}(x, \lambda) \quad\left[x, \lambda\right.$ in $\Gamma\left(a_{1}, b_{1} ; R_{2}\right) ;$ to $n(t)$ terms $\left.; i=0, \ldots n\right]$, where $n(t) \rightarrow \infty$ with t. More specifically, one has

$$
\begin{equation*}
y^{(i)}(x, \lambda)=\frac{d^{i}}{d x^{i}}\left[e^{Q(x, \lambda)}(\sigma(t ; x, \lambda)+\varrho(x, \lambda))\right] \tag{10.47a}
\end{equation*}
$$

$(i=0, \mathbf{I}, \ldots n)$ with
$(10.47 \mathrm{~b}) \quad \quad \sigma(t ; x, \lambda)=\sigma_{0}(x)+\sigma_{1}(x) \lambda^{-\frac{1}{k}}+\cdots+\sigma_{t}(x) \lambda^{-\frac{t}{k}}$
and $\varrho(x, \lambda)$ satisfies in $\Gamma\left(a_{1}, b_{1} ; R_{2}\right)$ the relations (10.46), (10.46a).
In the above $h^{\prime}=h+w$, where $w=0$ in the Case 9. 45.
Briefly, the essence of the developments of this work is as follows.
When the given 'actual' non linear homogeneous n-th order algebraic differential equation $F_{\nu}=0$ has a formal solution s of the same type as occurs in the corresponding linear case, one can always construct regions R and 'actual solutions' y_{t} of $F_{v}=0$ for which

$$
y_{t}^{(i)} \sim s^{(i)} \quad(i=0, \ldots n ; \text { in } R ; \text { to } n(t) \text { terms; } n(t) \rightarrow \infty \text { with } t) .
$$

Essentially, the regions are determined by the character of a certain linear problem associated with $F_{\nu}=0$.

[^0]: ${ }^{1}$ The precise details regarding the regions will be given in the sequel.
 ${ }^{2}$ In order that (1.6) should be a differential equation it is necessary that not all the coefficients in F_{1} should be identically zero.

[^1]: ${ }^{1}$ Trditzinsky, Analytic theory of linear differential equations [Acta mathematica 62 (1934), 167-226].

 Tritizinsky, Laplace integrals and factorial series in the theory of linear differential and linear difference equations [Transactions Amer. Math. Soc. 37 (1935), 80-146].
 ${ }^{2}$ Trditzinsky, Singular point problems in the theory of linear differential equations [Bulletin Amer. Math. Soc. (1938), 209-233], in the sequel referred to as (T).
 ${ }^{8}$ For references and some details cf. (T).
 ${ }^{4}$ Trjitzinsky, Analytic theory of non-linear singular differential equations [Mémorial des Sciences Mathématiques, No 90 (1938), I-81], in the sequel referred to as (T_{1}). Many references are given in this work.

 Trditzinsky, Theory of non-linear singular differential systems [Transactions Amer. Math. Soc. 42 (1937), 225-32I], in the sequel referred to as (T_{2}).
 ${ }^{5}$ Cf. for formulation given in (T_{1}).

[^2]: ${ }^{1}$ The equation (with $n=1$) being defined with the aid of convergent series.
 ${ }^{2}$ J. Malmquist, Sur les points singuliers des équations différentielles [Arkiv för mat., astronomi och fysik, K. Svens. Vet. 15 (1920), No 3].
 ${ }^{8}$ O. F. Lancaster, Non-linear algebraic difference equations with formal solutions. . . Amer. Journ. of Math. LXXI (1939), 187-209].
 ${ }^{4}$ Cf. (T; 210).

[^3]: ${ }^{1}$ Throughout, a formal series will be said to be $\equiv 0$ provided all the coefficients are zero.

[^4]: ${ }^{1}$ When I_{μ} is said to contain $y^{(x)}$ it is implied that this is the case when certain particular choices of the φ_{j} are avoided.

[^5]: ${ }^{1}$ See the concise statement of the pertinent results, established by Trjitzinsky, in (T) [cf. foot-note on p. 3].

[^6]: ${ }^{1}$ For details see Trititainsky [Acta mathematica, loc. cit.]

[^7]: ${ }^{1}$ The asymptotic relatiou here is in the sense that $\lim |x| y|\exp .(-C(x))|=0$ (as $x \rightarrow \infty$ in R; all $\gamma>0$).

[^8]: ${ }^{1}$ Such curves are formed only corresponding to the functions $q_{\lambda}(x)$ which are not identically zero. A regular curve satisfying an equation $q_{\lambda}(x)=0$ will have at infinity the limiting direction of a corresponding curve satisfying the equation $\Re\left(Q_{\lambda}^{*}(x)\right)=0$.

[^9]: ${ }^{1}$ For references see (T, footnote 4).
 ${ }^{2}$ Trjitzinsky, Theory of linear differential equations containing a parameter [Acta mathematica, 67 (1936), 1-50], in the sequel referred to as (T_{8}). Also see ($\mathrm{T} ; \mathrm{pp} .215-219$).
 ${ }^{3}$ In sections 9 , 10 all the derivations are with respect to x.

[^10]: ${ }^{1}\left(\mathrm{~T}_{\mathrm{B}}\right)$.

