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t. I n t r o d u c t i o n .  

Our j>rcsent tmty~ose i,,, to ~)btaD2 rc.~~dts ~ '  a~ a~at?Iti~" d~ara<@r for  d~tferctttia! 

eqmltions ahjH~raie ~ 
(I. ,) y, y~! . . . .  !/"!, 

y beino" t h e  m l k n o w n  to  be  de t e r l n i l~ed  in  tel 'IllS o f  It c o m p l e x  v a r i a b l e  x ;  we  

t h u s  c o n s i d e r  t h e  e q u a t i o n  

(,. 2) 1 , ' ( ; r ,  : / ,  ~i(I>, . . . : / , , , )  = o ,  

a r r a n g e d  as  a p o l y n o m i a l  in  t h e  s y m b o l s  (r.  I). T h e  e o e f f i e i e n t s  o f  t h e  v a r i o u s  

m o n o n l i a l s  

(,. 2 a) ( , / ) ' , , ( . , / '%..  (.,/:")",,. 
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involved in the first member of (I. 2), will be assumed to be series of the form 

(I. 3) a,~x m + a m - i x  m-1 + " "  + ao + a - i x  -1 + a - 2 x  -2 + " " ,  

convergent for I x l > = e ( > o )  or, more generally, they will be assumed to be 

functions, analytic in suitable regions 1, extending to infinity, and asymptotic (at 

infinity) within these regions to series (possibly divergent for all x ~ or of the 

form (I. 3). The subject, as formulated,  is very vast. 

Accordingly, we shall examine  the situatio~ in  the ease when the equation (i .2) 

has f o r m a l  solutions o f  the same type as occur in the case o f  the irregular  s ingular  

point  (for ordinary l inear d~fferential equations). In  the formal  theory of the 

equation (I. 2) we replace the coefficients of the monomials (I. 2 a) by the series 

(of the form (I. 3)) to which these coefficients are asymptotic.  I t  will be desirable 

first to carry out suitable formal developments and afterwards to proceed with 

considerations of analytic character.  

At  this stage one may appropriately say a few words abou~ the classical 

problem of the irregular singular point.  Let  

F~ (x, y, y(1), . . . y(")) 

be the homogeneous part  of F of degree v in y, y(~) , . . ,  y('~); thus 

( I .  4)  ~ v  = Zf l t~ ;  ~ . . . .  i't (X)(y)[o (y (1) ) i l  . . (y(n))in, 

where the summation is over non-negative integers i o . . . .  i~, with io+ "'" +i,~--v. 

In particular, 

(I. 4 a) F o = F o (x) = fro . . . .  o (x), 

We have 

In  the particular case of a -~  I the equation. (I. 2) will be of the form 

(I* 6) F ,  (X, y ,  y ( l )  �9 �9 . y(,t)) : . -  FO (X). 

This is a non-homogeneous linear ordinary differential equation e whose solution 

is based on tha t  of 

( I .  6 a)  1'  1 = O. 

T he  precise  deta i l s  r egard ing  tile reg ions  will  be g iven  in tile sequel .  
2 In  order  t h a t  (I. 6) shou ld  be a di f ferent ia l  equa t ion  i t  is  necessa ry  t h a t  no t  al l  t h e  coef- 

f ic ients  in •1 s h o u l d  be ident ica l ly  zero. 
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I t  is the latter equation which presents the classical problem of Che irregular 

singular point. The complete ,~olution of the irregular siugular point problem, both 

fi'om the poiut of view of asymptotic represeutalion a~d expone~dial summability 
(Laplace i~#egrals, co~werge~# factorial series), has been given by W. J. TnaiTzi~s~Y ~. 

For a concise statement of the pertinent results the reader is referred to an 

address given by TRJITZINSKY before the American Mathematical Society 2. Of 

the earlier work involving asymptotic methods in the problem of the irregular 

singular point of fundamental importance is the work of G. D. BIRKHOVV (cf. 

reference in (T)), which relates to the particular case when the roots of the 

characteristic equation are distinct. With regard to the methods involving La- 

place integrals and factorial series, highly significant work had been previously 

done by N. E. N5RLV~D and J. HoR~ 3. 

The equation (I. 2) (with ~o (x)-~ o) is a special case of non-linear ordinary 

differential equations (single equation of ~-th order or systems) of the type 

investigated by a considerable number of authors, including W. J. T~JITZI~SKY 4, 

with respect to whose work (T~) 4 the following statements can be appropriate]y 

made at this time. 

The main purpose of the developments given in (T~) was the analytic theory 

of the single n-th order (n > I) non-linear ordinary differential equation 5. This 

necessitated use of asymptotic methods. As a preliminary was given the detailed 

treatment of the first order problem, the methods used being of the asymptotic 

type; this asymptotic method was then extended to the general case of n > I. 

I t  must be said, however, that on one hand when the equations are given asym- 

ptotically with respect to the uDknown and the derivatives of the ~nknown, th~ use 

of asymptotic methods in the development of the aualytic theory is imperative. On the 

other hand, in the particular case of a first order equation, given in the non- 

1 TRJITZINSKY, Analytic theory of l inear differential equations [Acta mathemat ica  62 (I934) , 
I67--226 ]. 

TRJITZINSKY, Laplace integrals and factorial series in the theory of l inear differential and 
l inear difference equations [Transactions Amer. Math. Soc. 37 (t935), 8o--I46].  

2 TR$ITZINSKY, Singular point  problems in the theory of linear differential equations 
[Bulletin Amer. Math. Soc. (1938), 2o9--2331, in the sequel referred to as (T). 

8 For references and some details cf. (T). 
4 TRJITZINSKY, Analytic theory of non-linear singular differential equations [M~morial des 

Sciences Math~matiques, No 9o (I938), I--SI] ,  in the sequel referred to as (T~). Many references 
are given in this  work. 

TRJITZINSKY, Theory of non-linear singular differential systems [Transactions Amer. Math. 
Soc. 42 (I937) , 225--32i] ,  in the sequel referred to as (T~). 

5 Cf. for formulation given in (TI). 
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asymptotic form ~, use of a,r methods is not necessary, the methods  of the 

highly i m p o r t a n t  paper  of J.  MAL~QVlST 2 being ent irely adequate  for  the com- 

plete analyt ic  t r e a t m e n t  of this case; the la t te r  fac t  was overlooked in (T1). 

I n  (/'1) and (T.~) 'actual '  solutions were ob ta ined  which (in sui table  complex 

ne ighborhoods  of the s ingular  point  in question) were of the form, whose essent ial  

componen t s  were of the same asympto t i c  charac ter  as tha t  of the ' ac tua l '  solu- 

t ions in the  problem of the i r regular  s ingular  point  for  l inear  differential  equa- 

tions. The non-l inear  problem,  refer red  to in (T~) and (T~), has obviously a 

connect ion with  our  present  problem. 

We shall also gire some derelopme~ts of a~alytic character, along the lines 

indicated above, for no~ li~ear algebraic differeT~l~'al equation,s co~#ai~i~Tg a para- 

meter. The fo rmula t ion  of the l a t t e r  p rob lem is given in section 9. 

The main results of the prese~t work are embodied in Theorems 6. I, 7. I, 8. I 

and I o. I. 

2. F o r m a l  D e v e l o p m e n t s .  

I n  so fa r  as the fo rmal  developments  are concerned,  the s i tua t ion  is some- 

what  analogous  to t h a t  involved in a paper  by 0.  E. LA~CASTEIr a, who gives 

par t ia l  fo rmal  resul ts  for  difference equations.  The analogy in the fo rma l  theory  

is to be expected.  I n  view of our  present  main  purpose with regard  to develop- 

ments  of analyt ic  character ,  i t  will be necessary to give in detai l  some fo rmal  

resul ts  fo r  differential  equations.  

In  accordance with  E. FABRY 4 the fo rma l  solut ions for  the i r regular  s ingular  

poin t  are of the  type  

( 2 .  

where 

2. I a) 

and 

s ( x )  = x r o ( x ) ,  

p p--1 1 

Q (x) ~ qp x e + qj~-i x k + "'" + ql x~  

( integer p ~ o ;  Q(x) -~o  for  p : o )  

1 The equation (with n = 1) being defined with the aid of convergent serics. 
J. MALMQUIST, Sur les points singuliers des dquations diffdrentielles [Arkiv fSr mat., astro- 

nomi och fysik, K. Svens. Vet. 15 (I92o) , No 31- 
80.  E. LANCASTER, Non-linear algebraic difference equations with formal solutions... Amer. 

Journ. of Math. LXI (I939) , i87--2o91. 
4 Cf. (T; 2Io). 
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(2. I b) a (x) --~ a 0 (x) + a, (x) log x + . . .  + a~, (x)log~*x ( in teger  /~ ~ o), 

1 2 
(2. I e) ~ . / ( x )  - -  {TT, o ~- clT, l X - ~ "  -~ aT, 2 x - ~ "  -+ . . . ;  

here ]c ( ~  I) is an  integer .  The  series (2. I c) may  diverge  for  all x ~ or 

Throughor, t this section, unless stated otherwise, the coefficients in F ((I. 2)) 

will be supposed to be series, co,vergent for  Ix [  > e, or divergent of  the form (I. 3). 

W e  recall  the  fo l lowing defini t ion of  (T; 213). 

Def in i t ion  2. 1. Generically {x}q (q an integer >= oJ, will denote an expression 

(2. 2) ~0(X) q- QI (x) l o g x  + "'" + ~q(X) log qx, 

the eJ (x) beiug series, possibly divergent (for all x ~ ~) ,  of the form 

1 2 

(2. 2 a) Qj, o + ej, i x  -~" + Qj,2x -~" + ... (k a positive integer). 

Let  s(x) be defined by an express ion  (2. I). I t  is observed  t h a t  

[ 1 ( ~ .  1)] 
P --i X--~i -- (2. 3) Q(1)(X) = X k r 0 + r 1 + "'" + rp--lX 

where,  if  Q ( x ) ~ o ,  one ma y  take  r o # o , p > o ,  

d~d {x}0 = x -  1 {X}o , dxd [{:)~}0 loo.Jx] : x -  1 [{x}01ogJx -{- {x}ologJ_ 1 x] 

(for j > o) and  

d 
(2. 3 a) o (1) (x) ----- c~x {x},, = x - '  {x},. 

In  view of (2. 3) and  (2. 3 a) 

(2. 4) s(l' (X)=  e Q(x, ;Z 'r(1) {x}/e [," ( I ) =  r -{- jo ] s(l' (X)= eQ(x, ;Z'r(1) {x}/e c - - i  �9 

Similar ly,  front  (2 .4)  we ob ta in  

and, in general ,  

(2.5) 
where  

(2.5 a) 

8 (2) (X) = ~Q(a.)X r (2) {X},~e 

8 Ij) (X) = e Q(x) X r(j) {x}lt, 

,+j(;_i) 

[ r ( 2 ) = r ( i )  + ~ - -  I ]  

( j = o ,  I, 2 , . . . ) .  
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T h u s  

(~. 6) 

(~. 6 a) 

prov ided  i o + -.. + i~ = v. 

Now,  by hypo thes i s ,  

W. J. Trj i tz insky.  

(8 (X)) i~ (8 TM (X))  i' . . . (8 (n) (X))  in = e ~ Q (x) x r'  { x } ~ ,  

= v r  + s  ~ =  - - I  ij, 

�9 ~ : to . . . .  i n + :io, .1 n x  m ~_ a ~ : i o  . . . .  i n x m - 1  ~_ . . .  + ao  (2. 7) f$~ . . . .  in (x) - -  a m " m-1 

+ a~:~ ..... < x  -1 + aZ~ ..... < x - 2  + . . . . .  x~{x}o --1 

where  m - ~ - m ( r : i o , . . ,  in). W h e n c e ,  in consequence  of (l.  4), (2 .6)  and  (2. 7), 

�9 ', (x, ,% , % . . .  ,~"))= e 'Q< x ~ 7s ~m+r {X}o {X},,; 

here  the  s u m m a t i o n  is wi th  r e spec t  to  i o , - - -  i= (io + " "  + i~ = v), while  in tegers  

m and  r a t i ona l  n u m b e r s  r depend  on i o . . . .  in. Clear ly  

(2.8) ,v ( , , , , , ( , ) , . . .  ,(,,))= ~ ' Q < x " f ( ~ ; ~ ) ;  f ( ~ ; x ) - x ~ ( ' ) { x } . , ,  

where  r e ( v ) =  l(v)/k ( in teger  l(v); v = I , . . .  a). 

I f  a series s(x) satisfies the  equa t ion  F =  o, in consequence  of  (2. 8) one  

shou ld  have  fo rma l ly  
o 

(z. 9) 2~ o + ~ e ' q ( ~ ) x ' ~ f ( v ; x ) =  o, 

where  by (I. 4 a) and  (2. 7) 

( 2 . 9  a) Fo = x ~ {X}o (m = re(o:  o ,  . . . o) = re(o)): 

I t  is accord ing ly  i n f e r r ed  w i thou t  di f f icul ty  t h a t  i f  s(x) sati.r (I. 2) (formally),  

while Q (x) ~ o, then ,ecessarily F o = o ~ a~d s (x) satisfiPs each of  the equations 

(2. ~o) G ( x , , , . . . ) =  o , . . .  ~ ' ~ ( , , , , . . . ) = o .  

I n  fact ,  the  coeff ic ients  in Q(x), r and  the  coeff ic ients  in a(x)wi l l  have  to  sa t i s fy  

each  of the  fo l lowing  a f o r m a l  re la t ions  

(2. IO a) f ( i ; x )  = o, f ( 2 ; x ) - ~  o , . . . f ( a ; x )  = o, 

in the  sense tha t ,  when  f (v ;  x) is a r r a n g e d  in the  f o r m  x ~(') {x},~ (cf. (2. 8)), the  

coeff icients  in the  var ious  power  series invo lved  are  all zero. On tak ing  no te  of 

' T h r o u g h o u t ,  a f o r m a l  se r ies  w i l l  be  sa id  to  he  ~= o p r o v i d e d  a l l  t h e  coef f ic ien t s  a r e  zero.  
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(m 9) and of the form of Fo and of the f ( v ; x )  it  is o b s e r v e d  that ,  i f  s(x) satis- 

~es (I. 2), while Q(x)=-0 and r ( #  o) is irrational, we shall have ~ o - - 0  and s(x) 

will satisfy each of the equatio.ns (2. I0). 

Inasmuch  as in the sequel i~ will be assumed tha t  in the series s(x), 

formally sat isfying F = o ,  Q(x) is not  identically zero or Q ( x ) ~  o, but  r is 

i rrat ional ,  we may confine ourselves to homoge,~eous equations of degree ~; ~amely, 

. ~  = 0 .  

The fol lowing will be proved. 

I f  the formal homogeneous equation of degree v, 

. (1) . .  y('~))= (actually of  order n), (2. II) F , ( x , y , y  . 0 

is satisfied by the general formal solution of a linear differential equation 

(2. 12) L (x, y (x)) ~ ~ ~. (x) y(~)(x) = o ,  
i=O 

actually of order V ( <  n) and with 

f i  (x) - -  x'~ (~) {X}o (V (i) rat io~aO,  

] (2. 13) F ~ ( x , y ,  . . . y("))--= t d x j L ( x ,  y(x)) q ) ~ ( x , y , y  (1) . . . .  y(~+J)) 

[~ a (~, y , . . .  y(,,))], 

where the q)i are homogeneous (of degree v -- I) in y . . . .  y(,l+i), the coefficients being 

of the form x ~, {X}o (41 ratio~2alJ. 
To establish this resul t  form the expression 

( 2  ~4) ~ - F~ - -  ~ ,  

where ~ is of the form of the second member  in (2. I3), the (/)j for  the present  

being undefined. We may write 

d j 
(2. I~) ~ x ) L ( x ,  y ( ~ 2 ) ) =  Z f j ( ? , , 0 , ? / ~ l ,  . . . ~nv~+j)(y)m~ . . . ( y (~+j ) )m~+j  

(summation with respect  to ~o, �9 �9 - m,l+j, with m o + --. + ran+ j = I); clearly the 

coefficients in (2. i5) are of the same form in x as the f,-(x). Also 

(2. I 5 ~) ~)J = Z ~Pj (X;  ~0,  �9 �9 �9 ~ + J )  (y)~'o . . . (y(~+J))~"i+J 

2. I2 a) 

then 
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(summation with respect to k 0 . . . .  k,;+:, with ko + " " +  ]g~,'+j~ ~--I). The ~j 

are at  our disposal; we w i s h  to select these express ions  so that  g: ( f  (2. I4) is  o f  

the f o r m  

(2. I6) ~p = ~ ) ( x , y ,  . . . y ( ' ~ - ' ) ) .  

w i t h  ~o der iva t ives  o f  y o f  order h igher  t h a ,  ~ - -  1 prese , t .  

Subst i tu t ion of (2. ~5) and (2. 15 a) into the expression ~ will yield 

n - - r  l 

( 2 .  I 7 )  n =  Z Z Z ~*('l'o . . . .  ";+J)~gJ(x; ~o, " " Z'~kJ)(Y)i~ " " (Y{'i+J))i"i+J, 
j=O m o , . . . k o , . . .  

where 

(2. 17 a) ix = ?)/). + k).; 1/~0 + " '"  Or 9lI,;4j --- I;  k 0 + ' ' "  + k,,~+j = V - -  I .  

W e  thus may write 
n 

a = Z Z qj (dO . . . .  i ' 2+J)  (~/)i~ ( i f ( l ) ) / ,  . . (ff(*l+j))i,l+j ' 
j=o 

where the second sum displayed is with respect  to i o , . . ,  i,2+j, with 

and 

(2. 17 b) 

i o + . . ' +  i,l+ j ~  v,  

y ,  ::o . . . .  

the summat ion  in (2. 17 b) (with Q . . . .  i~+j fixed) being subject  to (2. I7 a). 

Thus, by (2. ~4) and (I. 4) 

( 2 .  I 8 )  lp--- Z fie, . . . .  i n ( x ) ( f f ) i ~  (y(n))i n __ ~ = I~ n + I'~,--1 + ' ' "  "4- I;2--1 , 

go, �9 �9 �9 i~Z 

the expressions F,, . . . .  F,l_l being characterised as follows. F,, consists of all 

the therms in F , - - $ 2  which contain y('~); F , - I  contMns no y(n)but  contains 

y(n-1); F n - 2  contains n o  y(n) and n o  y(n-1)  b u t  contains y(,,-2); and so o n -  

finally, I~_~ contains no y ( n ) , . . ,  y(,~) but  contMns y(~,-~)~. Picking from $2 the 

terms for which j = n - - V  and in > o we obtain 

(2. I9) r n  -~ ~ [f/o .... in(x) - -  q,--~(i  o . . . .  Ln)] (y)r . �9 �9 (y(,,))i,, 

(summation with respect  to io . . . .  i,~; i o + ..- + i,~ ~- v; i,, > o). 

1 W h e n  I '~  is sa id  to con ta in  y(~) i t  is impl ied  ?~hat th i s  is the  case when  Certain pa r t i cu la r  
choices of t he  (pj a re  avoided.  
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To form Fn-t  we select f rom F~ the terms for which in = o, in--I > O; from ~2 

we choose terms for which 

O = ~ - ~ ,  i , , = o ,  i,,_, > o), O - - ~ , , - v - ~ ,  i,~_~ > o); 
thus 

/ ' , - ,  --- ~ [f~~ .... in  ( x )  - -  q n - ,  1 ( i 0 ,  . . . i n )  - -  q . . . .  i - 1  ( i 0 ,  �9 . �9 i n - - l ) ]  ( y ) i o . . .  (y(n))i,  
(2 .  I 9  a)  

( i o + .  + i , = v ; i , = o ; i n - ~ > o ) .  

Proceeding further ,  one similarly obtains 

(2. 19 b) 

In general 

r , , _ ~ -  ~ [Ao ... .  ' . ( ~ ) -  q._,~(io, . . .  i . )  - ~ . - , , - , ( i o  . . . .  i ._1)  

- q , , - , ~ - ~  ( i o , . . .  i,,-~)] ( y ) ; o . . .  ( r  

(io + "" + i,~ = v; i,~ = o; in-1 = o; i,~-2 > o) .  

r n - - ,  = Z I f  iv . . . . .  i n ( x )  - -  q n - , i ( i o ,  . �9 �9 in) - -  qn--,i--l ( io,  �9 �9 " i n - - l )  - -  

(2. 19 c) . . . .  qn--,i--o (io, . . .  in--u)] (y)io. . .  (V(n))i,, 

(i 0 + " "  + i n = V ;  i n = O ;  i n - - l = O ,  . . . ;  in--~+l---O; i n - - , >  O); 

such expressions are formed for ~ =  o, I , . . . ,  n - - ~ / .  The remaining expres- 

sion iw~_~ will consist of all terms of I " ~ -  ~ ,  not  contained in any of the 

F,,--~(o =< a =< 9~-  ~). The ~gj can be s o  chosen tha t  

qn--~ (io, . . .  in) + qn--,;--1 (i 0 . . . .  in--,) + ' ' "  + qn--,~--o(io, . . .  i , - - , )  = f J  . . . .  in (X) 
(2 20) 

[ef. (2. I7b);  i o + - . . +  i n = V ;  i , , = i n - ~  . . . . .  in--o+~ = O ;  i ,--,  > O] 

f o r  o ' ~ - 0 ~  I :  . . . ~  7 ~ - - -  ~ .  

Let  e(m, v) be the number  of dist inct  sets of integers io, i 1, . . .  i,,, such tha t  

i o + . . . + i ~ = ~ ;  i o ~ O , . . . , i ~ o ;  
then  

( m ,  v ) =  ~ ( m  - ~, o )  + ~ ( .~  - i ,  i )  + . .  + ~ ( .~  - i ,  v) 
( 2 . 2 i )  

( ' ~  = I ,  2 , . . . ;  C ( O ,  V ) - - -  I ) .  

The number  of equations (2. 20) (with a fixed) is the number  of se t s  (i0, i~, . . .  i ,_~)  

for which i o + . . .  + i , , - , = v  and i , , - o >  o. The number  of equations (2. 20) 

(with a and in - ,  fixed) will be c ( n - - a -  I, v -  i,,-o) and the total  number (for 

a given a) wili be 

(,~ - o - i ,  o )  + ~ ( .  - ~ - i ,  ~) + . .  + ~ ( .  - o - ~, v - i ) ;  
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in view of (2. 2I) the expression for this number  may be wri t ten as 

c(n --  a,-~ - -  I). 

Thus, the total number of  equatious (2, 2o), formed for a ~ o, . . .  n --  7, wil l  be 

n--~ 
(2. 2 I  a) cr = Z C(~$ - -  0", v - -  I) (cf .  (2. 2 I ) ) .  

a :0  

In  consequence of (2. 17 b) the equations (2.20) are l inear non-homogeneous in 

the  q~j(x; k0 . . . .  k~+j). Inasmuch  as in (2. 17 b) 

~0 -t- " '"  "~- ~, /+j  : ~ ' - -  I ()~0 2> O, . . . ,  )~/+j ~ O) 

it follows that ,  for  j fixed, there are 

c(7 +j, 

expressions q?j(x; k 0 , . . ,  k~+j). To infer this it is necessary merely to note the 

s ta tement  preceding (2. zI). Accordingly,  the total  number  of ~0j (for j = o , . . .  

n - - 7 ) ,  involved in the equations (2. 20), is 

C(7 , ~ - -  I)  ~- C(7 + I ,  ~ - -  I) + ' ' ' - ~  C ( , ,  , - -  I ) .  

The la t ter  sum, however,  is precisely the number  c, of (2. 2I a). I t  is not  dif 

ficult to see tha t  the equations (2. ~o) are actually satisfied (forn~ally) for  a suitable 

choice of  the ~i; clearly, the ~j so chosen will be in the form of a product  of a 

ra t ional  power of x by an expression {x}0. 

W i t h  the equations (2.20) satisfied, (2. I8) will be reduced to 

(2. 22) ~) ~- I~--I  : ~) (X, y,  y(1) . . .  y (~- l ) ) ,  

none of the y(~')()~ ~ 7) being involved. From (2. I4) we then obtain 

( 2 . 2 3 )  = (x,  y ,  . . .  + y ,  y %  . . .  

where $2 is of the form of the second member  in (2. I3). According to the 

hypothesis  of the assertion (to be proved) in connection with (2. I I ) , . . .  (2. I3), 

the equat ion F~----o is satisfied by the general formal solution (containing 7 

arbi t rary  constants) of (2. I2). In view of the definition of ~ by the second 

member  of (2. I3) we shall have ~ ~ o for the above mentioned gene ra l  formal  

solution. Whence  this solution must  also satisfy the equat ion ~0 ~-o.  Inasmuch 

as the lat ter  equat ion is of order ~ 7 --  I, the coefficients of the various monomials 
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(~. ~3 a) (V)~o... (r 

in ~p must be all formally zero. We thus have F~ ~-D,  which completes the 

proof of the assertion in question. Clearly, if the j~(x) in (2. I2) and the coef- 

ficients in F ,  are rational functions of x the same will be true of the coefficients 

in the q)i. 

An examination of the steps involved from (2. I4) to (2. 23 a) leads to the 

following conclusion. 

I f  the 'actual' homogeneous equation of  order n and degree ~, 

(2. 24) F,  (x, y, r . . . .  r  = o 

has coefficients asymptotic, in a region B extending to i~zfinity, to series of tkeform 

(2.7) and i f  (2.24) is satisfied by every 'actual' solution of an 'actual' linear dif- 

ferential equation 

(2 .2  5) L (x, u (x)) ~ Y , ~  (x) v(~) (~) = o (v < . ) ,  
i~O 

where 

(2. 25 a) J~ (x) ~ 5 (x) = x n ( ' ) { x } 0  (in R;  V (i) rational), 

then (2. 13) will hold, the coefficients in the q)j being functions aspmptotic in R to 

expressions of the form x ~ {X}o (~1 ratio~al). The above assertion is made under the 

supposition that 

(2. 25 b) 

The truth of 

~(x ;  k0 , . . ,  kn+j), 

f ( i J ) ( x ) ~  (i) X ( i n  j =  I ,  . ~ ) .  ~i (.~) /r 2 , . .  n - -  

this statement follows, if we recall that  the coefficients 

involved in the q)j, enter linearly in the system of equations 

(2.2o), while in (2 2o) the coefficients of the q~j are functions asymptotic in R 

to expressions of the  form xZ{x}o (Z rational). 

(3-i) 

3. Conditions for Existence of Formal  Solutions. 

In view of (I. 4) and (2. 7) the formal equation (I. 4) may be written as 

F , - - -  ~ x , ( "  . . . . .  ;~) [b:, . . . .  ", + b~ . . . . .  ' , x  - 1  + . . .  + b2 ....  ' , x  - ~  + . . . ] .  
il, . . ,  i~ 

�9 y(;1) y(i2) . . .  y(~'~) = o (o ~ i l ,  i~, . . .  i ,  ~ ~t), 

where the ~}(il, . . .  i,) are integers. We shall now examine conditions under 
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which (3- i) has a formal solution s(x), as given by (2. I), . . .  (2.  I C) with ~t = 0 

and p > o; that  is, a solution 

(3. ~) , (x)  = eQ(~)x~a(x) 

with 
1 m 

(3.2a) a(x)=ao(x)=ao  + a , x -  ~" + . . . +  amx k + . . .  (ao 4 =o), 

p 1 

(3. 2 b)  Q(x)  ~- ho x~" + . . .  + hp- l  x 7: (It o =4: o). 

(3.3) 

where 

Formally one then will have 

d x s (x) = e Q (~') x ~ ), (x) + d x  

--P--1 
~, (X) = q (1 ) (x )  + r x  - 1  --- x k w (x ) ,  

(3 .3  a) _ 1  _ ,  
w(x)=w0+,~, ,  ~ + . - . + w ~  ~, ~j=~(j)h~ 

(3. 3 b) ) . ( j ) - = ~ ( o < j < p - - i ) ,  ~(p) -= I, h t , = r .  

( j=o ,  ~,. . .~), 

Consecutive applications of the operations involved in (3. 3) will yield 

[ d ] i  
s ( ' ) ( x ) = e  Q(~)x ~ ~,(x) +dxx  a(x) ,  

which, in view of (3. 3 a) and (3. 3 b), can be put in the form 

-P--1 
(3"4) s(i)(x)=eQ('~)x r+`(k ) (r,(x), 

l _e  d l i - -  [w(x)  . , (x) = [w (x) + x ~ ~ ]  a (x) 
(3.4 a) 

Accordingly 

1 ~  d ] a , - ,  (x) 
+ x  k~x  x 

1 2 

= do'~ + ~ x'-- ~ + d:~ x -  ~ § . . .  

(3.4b) Oo (x) = a (x), o~ 

It is observed that in (3.4 a) the symbol 

~_-~ d ] ~ [ ,,,(x) + x ~ j  
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cannot be symbolically expanded according to the binomiM theorem. By (3.4a) 

(3. 5) 

where 

j=0 

IT = O, I, 2 , . . .  ; j ~ jO; of. (3' 3 b), (3 .4  b)], 

(3. 5a) q ( , ) = o ( f o r , ~ p ) ,  q ( , ) - -  

One may write (3. 5) in the form 

~--p  

k 
(for * > 1)). 

(3. 6) y~(i + l)-~-ay~(i) + f , ( i )  [a=-rk~) ,  

where 
,g 

v~ (,:) = q ,  f~ (,) = Y, ~ (4 h, <% + ~ (~) <% 
8 = 1  

,g 

- -  F, ~ (,4) t,~.,/~_j (;) + q (~) w - , ,  (i) 
j=l  

(3-6a) 

(of. ( 3 .3  b); j =<t,) 

and, by (3-4 b), 

(3 .6  b) :t~ (o) - -  ~ (~  = o, ~, . . . ) .  

If in (3.6)J~(i) is thought of as known, the resulting difference equation gives 

the following solution for positive integral values i: 

i - - 1  

(3- 7) y ,  (i) = a ~ y{  (o) + ~,.1~ ( j )  a ; - ' - J .  
j - - 0  

Accordingly, from (3- 5) we infer that 

- - , ,  o (.i) 1 (3. s) ,,~"> ~,'~ + F, - ' - ' -~  ' ~ (.,.) h,. <!>, + ,~ (,) ~_,,l 
j = o  - -  

(ef. (3. 6), (3. 3 b), (3- 5 a); ,s. < p).  
that tile a~) are of the form 

(3 .9)  

Consideration of (3- 8) leads to the conclusion 

e=0 

: Zr, r I �9 * .... ( o <  r), ' " ' =  ] [ i - - o ,  J , z , . . . , . , ,  e o = e <  

Substitution of this in (3. 8) will yield 
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(3. ~o) 

i ~ l  ~ ~ - - s  i - - 1  e - - ~  

e=0  j = 0  s=~ q=o j = o  ~=o 

~ a ' - ' - ~ l , ~  ~Z:s'h z(:~ z(.~.)h,z + . - .  ~ -  a t (rz + o ~ \ ) s "~--s,o + (I t  ~, t 

j = 0  t s ~ l  s-~l 

+ ~,  Z x (4 h,z(~~,_,, ~ + .., + ~,_~ z(,)h~ Z~,~, ,_,, ] + Z ~ ' - ' - :q ( ' )Z  z:),-~, o ~" 
s = l  j=O p=0 

Here and in the sequel 

(3. ~ o ~) z (j) h: = o 

Comparing the coefficients of the % we obtain 

i - - I  ~--q 

j~O S=I 

(for j > p).  

i--1 z--q i - - I  

( ~ - p  < e < ~ ) ,  

(3. l o  a) ~-0 ~-1 5=o 

( s < p ;  o ~ 0 ~ z - - p ;  cf. (3. ioa), (3. 5a), (3-3b). 

In view of (3 .9)  i~ is noted that  ~he ),(#'0 are known. For /== I ~he relations 

(3. Io b)--(3.  1o d) will serve to determine the Z~'/e" In  general, having obtained the 

zI~!> (j - -  ~, 2 , . . . ,  i -  ~), 

t,h~ z~i) 0 (o =< ~ __< ~) wnl be ~iven by (3. ~o bl- - (3 .  ~o a), a~ fo~mulatea.  Thus we 

observe ghat the eoef)qcie~,~s a~ il, involved in o,(x) o3" (3.4), are o f  the form (3-9), 
where the 2(~1 o can be detern~b~ed with the aid of (3. Io b)--(3. Io d). 

~y (3.4) 
i~, ~ (,,, 4. + 

8,,,, (,I... Ix) = II 

(3. I i) ~ 
- '  ( "+""  +"')Y __ c~ ~ -~" 

~ -  e ' q ( z )  X "  r x ~ . . . .  2C 

j = o  

where 

(3. ~x~)  ~ ..... ~', 
(j, ,  . . .  j ,  ~ o; .i, + "  + J~ = J). 
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In  consequence  of (3. i i )  and (3. I)  i t  i s  observed  t h a t  s(x) ((3. 2)) will be 

a f o r m a l  so lu t ion  of  T', = o, if  

(3. i2) 

where  

(3. i2a) 

n ~ ~ j 

Z . . . . .  ' ,  E . . . .  . . . . .  ,=o, 
i~, . . .  i~=0 fl=O j=O 

/ ,  \ 
~il, ~ ' ~ ' 2 ( i l , .  i,,)+ [~ . - - I ] ( i1+""  +i,)  - - I I  " 

( in tegers  li ..... i,). Fo r  conven ience  we shal l  wr i te  

w i th  

(3. i3) 

0o ov j 

0 .... ' , x - ~ =  Y~b~(: , , . . . , ; ) z -~ ,  
fl=o j=o 

( ) by (il, . -- i,) = o when  ~ ~= an  i n t e g e r  

O ~ ( i ,  . . . .  ,:,,) = b~ . . . .  ; ,  

F r o m  (3. I2) i t  is t hen  deduced  t h a t  

(8 = o,  ~, 2, . . . ) .  

n l l ,  . ~ . j 

(3" I4) E Xk~ ..... ' * 'Z@ ..... i .X ' : = 0  
il, , . .  i~=0  j=0  

where  

(cf. (3. I2 a)), 

(3. , 4 a )  dj . . . . .  , ~ -  E b~ , ( i , , . . ,  i~)~':;~ . . . . .  ; ,  
.h + J~=J 

( e l .  (3.  I 3 ) ,  (3 �9 I I  a ) ) .  

I n  o rde r  t h a t  (3. 14) should  be fo rma l ly  satisfied i t  is necessa ry  t h a t  t h e r e  

shou ld  be a t  l ea~t  two  t e rms  of  the  same degree  Q in x, the  o the r  t e rms  be ing  

all of degree  ~ Q. Thus ,  we should  have  

.... 
f o r  some pa r t i cu l a r  d i s t inc t  sets of values  (al, . . .  a~), (ill . . . .  fl,.), whi le  

I (Pl (for all sets (il . i,)). b ..... i~ ~ e \ ! ~  , ." 

I n  view of  (3. 12 a) i t  is acco rd ing ly  obse rved  t ha t  one should have  

p v(g, . . . .  #v)-v(-1  . . . .  -~) ( ~ )  
(3. ,s) k i - ( 3 ~ + . . . +  f l ~ ) _ ( ~ + . . . + , , , , )  > o  , 
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provided fix + "" + fir ~ a~ + ... + a~, and 

(3. ~5a) ~(il . . . .  i~)--  ~(fl,, .. �9 fl,,) ~ - -  ( ~ - -  , )  [(i, + " + i~,)-- (ill + ' " +  fl,')] 

(for all sets ( i 1 , . . .  iv)). This gives rise to a diagram of the Puisl,zvx-type, in a 

way analogous to tha t  of the ease of non-linear algebraic difference equations.  

Thus, the number-pairs 

(3. ~6) (i~ + . . .  + ,i~, v ( i , ,  . . .  i~)) 

we represent  in the Cartesian (x, y) plane, where x~- i~+. . .  +iv and y=v(i~ . . . .  i,.). 

I t  is then observed that  admissible values p (which will be taken rational,  

p and k being integers), such that  (3- I5), (3. I5 a) hold, are defined as the nega- 

tives of the slopes of the recti l inear segments joining pairs of points (3. I6), 

with the unders tanding tha t  only those segments are considered whose to ta l i ty  

const i tutes a polygonal  line L concave downward,  with no points (5. I6) above 

L.  Inasmuch  as we should have p > o, only those sides of the polygon L will 

give rise to admissible values p whose slopes are less than unity. 

In the case when a vertex P of L is multiple, that  is, when we have for 

at least two distinct sets (fl~, . . .  fl,,), (a~, . . .  c~,.) the equalities 

(3. i7) flj + - - -  + fl,. = a~ + . . .  + a,, V(fix, . . -  3,) = ~(ax . . . .  a,), 

one may choose for p i t - -  i any rat ional  number  a ( >  -- I), provided that  L lies 

to one side of the line through P with the slope -- a. W e  then shall have 

~ >  and (3. a) will be satisfied. 0 I 5 

Suppose P ( >  o) is given by (3. ~5) (or as described in the case of a multiple 

vertex). W e  proceed finding" conditions under  which the differential equation 

has a corresponding formal  solution of the stated type. I t  is observed that  

(3. 14) can be arranged as follows: 

(3 '  I 8) 2 1 2 
x~'[~o + dxx -~" § d ~ x - k  + ..-] = o ,  

where 
I 



Developments in the Analytic Theory of Algebraic Differential Equations. 17 

the i~,tegers ~, k being suitably ehosem Clearly one should have 

(3" I g a )  d j = O  ( j = o ,  I . . . .  ). 

Subsequent developments will be considerably sinlplified if, corresponding to the  

value p under  consideration, we take note of the relations 

(3. I9) X 
,~ ( i~ , . . .  i~) + ( ; -  ~) (i, + ... +i~) < ~ 

and write the differential  equation (3. I) in the form 

P ' ~ 1 
(3.~o) ~ , ; = 2 5 ~  ) / z ~ o ~ ' ~ * ~ , i ' ) x  ] . . .  = o .  

This is possible, inasmuch as in view of the second inequality (3. I9) one has 

(3.2o a) k --  ~ (fi + ' "  + i,,) -- ~ ( i , . . .  i~) = ~ ~ ( i ,  . . .  i,) _>-- o, 

where w(i  I . . . .  i,.) is an integer. By (3. 2oa) the b;(i~, . . .  i~) of (3. 20) are re- 

lated with the b,,,(i~, . .  i,.) of (3-I3) as follows: 

(3. ~o b) b; (i~ . . . .  ~:~.) = {o (y < ,e), 
b~_,~,(i , , . . . i~) ( ~ - - ~ ( i , . . . i , ) ;  7~w) .  

According to this the b'o(i~,.., i~) are those bo(i I . . . .  i , .)[= b~ .... q.] for which 

w ( i ~ , . . ,  i~) is zero; thus, amongst  the b'o(il , . . ,  i,) will be found in part icular  

( 3 . 2 0  ~o(~,, . . .  ,,~), b0(~,, . . ,  ,~0- 

Substitution of (3. II) in (3-20) will yield, af ter  division by x ' r  exp. [vQ(x)], 

" _ !  " _..{ 
(3.22) x k ~  >-~b'r(il , . . . i , .)x * ~ c ~  ..... i , x  k = o .  

it, �9 y-:0 j=0 

Thus, the di of (3. I8 a) (cf. (3. 18)) may be expressed as 

i 
(3.22 a/ ~ ' =  25 y , b ; _ , ( i ~ , . . ,  i,)c~ ..... ,,.. 



18 W . J .  Trjitzinsky. 

Hence, in view of (3. I I a), the equatibns (3- 18 a) may be written in the form 

(3" 23) ~ ' ~  Z Z b ; - t ( i l '  . . .  i,,) Z ]1- if(i,) = 0 ( i - - O ,  I,  . . . ) .  
II_ ~s  

i 1 . . . .  f~ /=0 "~1+'" " + ~ = t  8=1 

Furthermore, by virtue of (3.9) 

(3. 24) 
i qr "g6 

t,, . . . i~ / : 0  ~ + . - . + v ~ = t  s=l  0:O 

(cf. (3" IO b)--(3. Io d)). By (3. 24), for i = o, and by (3. Io b) 

(3.25) i l ,  . . .  f v s = l  

il, . . ,  i v 

+ ,  
~-- B o 

Thus the first equation 

the characteristic equation 

(3. 23) will be satisfied if and only if h~ ~,s a root of 

whe,'e Bo(u) is defined in (3. 25). 
From (3. ,on) - - (3 .  xod) we obtain 

(3 z7) Z (~) = i a  i-~ Z (l) h~ 

(3. 27a) ~,(i) ~Ci, o~(2)hoai-1 + Cil(),(,)hl)~ai 2. 

By induction it is established that 

)(i) 

(3.28) 

where 

(3 29) 

Fur thermore ,  

m 

q=l kiT. �9 .§ 

(m = I ,  . . . 1 0 -  I ) ,  

i--1 

p >  k j >  I; Ci, o = i ;  c~,o-----~Cj, o- , .  
j - - o  

)~(:) = q ( ~ ) e , ,  o a  ~ - ~  + F (:) z,  z - - 1  p 
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By induct ion it is inferred that  

+ I)c ,.a 

Z (~ (]C1) h k , ) . . .  (~ (~s) hks) 
k~+. �9 �9 +ks=m 

[E(s) h ~ = o  ( l o t s > p ) ;  p > k j = ~  I; m =  1 , 2 , . . .  v - - p ; - ~ p + I ] .  

In  view of (3. 2 4 ) i t  is then found that  61contains)~(i)hlB~l)(a)+ Bl(a)(a~-P--~-~ ~ 

as a factor. Accordingly, h~ will be determined from the equat ion 6~ = o, if a 

is a simple root  of the characteris t ic  equat ion (3. 26). 

The subsequent  expressions for the ~j (3" = 2, 3 , . . . )  are ra ther  complicated. 

pho Suffice it to say that ,  while it is necessary tha t  ~ should satisfy (3. 26), it is 

not  necessary for  the existence of a solution of the stated kind tha t  p ~  should 
k 

p ho be a simple root  of (3. 26). On the other  hand, a condition requiri~g ~ -  to be 

a simple root of (3.26), while sufficient in an exte~ded variety of  eases for the 

existence of  a forn~al solution of  the stated type, is sufficient not in all eases. 

Inasmuch as our main concern is with the analytic theory we shall not  

need any fur ther  details in this direction. I t  will be essential, however,  to note 

the following. 

Wi th  (3. 26) satisfied, 6~(i > o) is a funct ion of ho, . . .  hv, ao, . . .  ai-1; thus, 

6~ ~ 6 i  ( h o ,  �9 �9 �9 b y ;  a o ,  �9 �9 �9 a i - 1 ) ,  

6~ being independent  of ai, ot+l . . . . .  

Lemma  3 .1 .  Consider the formal non-li~ear differerdial equation F , = o  (3. I). 

Let ~ ( > o) be an admissible value (p, k integers).~brined in accordance with the 

text subseque~t to (3. I4a)  up to (3. I7). I f  the equation F , = o  has a formal solu- 

tion (3. 2)--(3. 2 b) with this value o f  p- then h o necessarily satisfies the characteristic ]g' 

equation (3. 26) and we have 6 o given by (3.25), while 

(3. 33) 6, = 6i(h o . . . .  hp; a o . . . .  ai-,) = o (i > o), 
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where the & are defined by (3. 24); the & are the coefficients in the expansion (3. I8) 

of  the first member of  (3. I4) (of. ( 3 . " ) - - ( 3 .  I4a)).  
Examples of equations F ,  = o (3. I) which possess formal  solutions (3. 2)--  

(3. 2b) can be easily given. For instance, let L(x,  y ) = o  be any equation of 

~he form (2. 1.2), (2. I2 a) and satisfied by the given formal solutions; we may 

then take Fv of the form (2. I3), assigning the coefficients in the ~j arbitrari ly 

of the form x ~'' [X}o (~, rational). 

4. A Transformat ion .  

Suppose tha t  we have on hand a differential equation 

F* ~ ~ x ~(i ..... ~,) b i ..... r (i'~) . . .  y ( r  o 

(4. I) t . . . . .  iv 

(0 _--< il, i~, . .. i~ _--< n; V (/1 . . . .  iv) integers) 

with coefficients b; ..... ;,(x) analytic (for x ~ ~r in a region R, extending to in- 

finity and bounded by two curves each with a l imit ing direction at infinity; 

moreover, suppose tha t  

(4. I a )  b ~ . . . . .  iv (X)  N "~.  b i . . . . .  i~ x -  7 = fli  . . . . .  i ,  ( x )  ( i n  R ) .  

y = o  

With  the 'actual '  differential  equation (4. 1) there is associated a formal equation 

(4. 2) F ,  ~ ~ x~(' ..... i,) fl, . . . . .  ,~(x)y(i,)y(i~) . . . y(i,) = o .  
il, .. �9 i v 

In  accordance with the previously established usage, we shall say tha t  s(x) is a 

formal solution of (4. I) if it is a formal solution of (4- 2). 

Suppose now tha t  s(x) of the form (3. 2)--(3. 2 b) is a formal solution of 

(4. 2) in accordance with Lemma (3. ')- The main purpose of  this paper is to 

examine the possibility that there should exist an 'actual' solution y(x), analytic in 

a suitable subregion (extending to infinity) It' of  R and satisfying in R'  the equa- 

tion (4. I) as well as the asymptotic relation 

(4. 3) y - s  

As a prel iminary to the investigation of this sort, we recall tha t  corresponding 

to the side of the Puiseux diagram, to which the  value p (involved in (3.2 b)) 
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belongs, the formal equation (4. 2) has been put in the form (3. 2o). The cor- 

responding form for the actual  equation will be 

(4. 4) ~ : -  E x~ - (~ - 1 ) ~ i ,  + . . .  + ,,.~ b",, .. �9 ;~ (x) v(;,~ y('~ . . .  v~;~, = o ,  
i l ,  . �9 �9 i ~  

where the funct ions b '~" ..... "~(x) satisfy the relations 

(4. 4 a) b ' i  . . . . .  r  - ~';  . . . . .  ;, (x) - -  ~ ,  ~,', ( i , ,  . . .  ; ,)  x ~ (in /?). 

On the basis of the form of s(x), as given by (3. 2), we envisage the trans- 

format ion 

y ( , )  = e~ (~')x" [(~(t, x) + e (x)], 

1 t 

k + . . . +  otx--~. 

(4. 5) 
where 

(4. 5a)  o ( t , x ) = a  0 + a , x  

and Q(x) is the new variable. We  have 

d' xr+~ (~-~) (4. 6) d~  ~ [e~ (~') ~" e (x)] = ~Q (~) e~ (~) 

with 

(4. 6 a) 

In  part icular  

1-~ d]  
(4. 6 b) Oi (x) = w (x) + x ~ dxx] Oi-1 (x) 

On the other  hand, 

~-P- d ]i 
ei~x)= w(:4 + x ~ e(x) (cf. (3. 3 a)). 

(4. 7) 

(4. 7 a) 

(i = I, 2, . . . ; qo (x) = q (x)). 

P 1 de [~Q~x~xr , , ( t ,~.)]=~Q<x.+~(r " - ) ,~i(t,,), 
d x ~ 

[ [ ,~ ( t , x )=  w ( x ) + x  k ~ x j ~ ( t , z ) =  w ( z ) + x  k ~  ~,._l(t,x) 

1 *1 

= < ) ( 4  + < ~ ( t ) x ~  + .- .  + o ~ , ~ ( t ) x  ~ + . .  (~o(t ,~) = o( t ,x~) .  
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In  section 3 the a (i) of (3 .4  a) have been computed explicitly in terms of 7 

the coefficients s 0 of (3. 2 a). In  view of (4. 5 a) it is inferred that  the a~ ~)(t) of 

(4. 7 a) are the d~) with the aj (j > t) replaced by zeros. Thus 

(4. 8) drt) (t) = a~ i) [with aj (j  > t) replaced by zeros]. 

Whence  in consequence of (3.9) 

t 

(4. s a) o~ ( t )=  ~ ~,:) ~ (i = o, , ,  ~ , . . . ;  o --< y); 
q = 0  

here the ~i)e are precisely the constants so designated in (3.9) and defined in 

(3.9), (3. Iob) ,  (3. IO c), (3. ,o d). 

By (4. 5), (4.6) and (4.7) 

(4. 9) y(i) (x) -~ e Q (~) x r +i (~--1) (at (t, x) + ei (x;) (cf. (4. 6 b), (4.7 a), (4. 8)). 

Fur thermore  

(4. 9 a) y (h ) (x )y ( i~ ) (x ) . . ,  y0",)(x)= e "Q(z) x "~ x(~-~) ( ; ' + ' " + i 0 f i  (o,,(t, x) + Q,, (x)). 

Subst i tut ing in (4.4) we get  

2 

( 4 "  I O )  ti'*~ ==-e'Q(x) x* 'r+k" Z b ' i  . . . .  i ' ( X )  H ( ( I i a ( t ' x )  + Qia(X)) = 0 "  

it ,  , . , i~ a = l  

Now, inasmuch as 

U ( I ~ -  Ca) = I -1- Z Z Cj' eJ'-" " " " Cjm ' 
a : l  m : l  j l  < j~< . . .  <:Jm 

the  above may be wri t ten as 

[ ~'~ . . . .  , . ( x ) H ~ , . ( t , ~  ) , 
fl, , �9 �9 i~ a : l  

�9 o'~m (x) 

+ ,~,~,<...~ o,~. (x)~ a(x) %(x)j O .  

Accordingly e satisfies 

(4. ~,) 
where 

(4. " a) 

L (Q) + K(e) = F(x),  

" " e,:~ (x) 
y, . . . . .  i (x) II ,o(t,x) Z 

il, . . .i~ a 1 j ~ l  
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(4. II b) K(Q) ~- ~ ,  b' i  . . . . .  r (x) l ~  e,, (t, x) "~ ~ e9 ' (x) eO,, (x) 
i . . . . .  i ,  a ~ l  m=2 jr .  . . . .  j m O O , ( x )  ffgm (x)  

(4. II  e) 
~a 

�9 '(x) = - Z b', ..... '. (x) I I ' ; o  (t, =) 
il . . . .  i~ a = l  

In  view of (4. 4 a) one may write for any �9 > o 

(4. '21 b'i . . . . .  ','(x) = ~ b ~ , ( i , , . . ,  i , ) x  k + x 
T = 0  

with 

(4. 12 a) I ~, ..... ;. (~, =) I < ~', 

v + l  
k ~i  . . . . .  Lv(T ,X) ,  

(x in 17). 

Thus F(x) of (4. I I e) may be expressed as 

(4. 13) F(=)  = ~', (x) + ~'~ (x), 

(4. ' 3 a) T '  1 (x) = - -  ~a' b~ ( i , ,  . . . i ,) x k [ [  a,, (t, x), 
il, �9 �9 �9 i ,  7 - - 0  ~ 1  

r ,., 

(4. x3 b) F=(xl----x k ~'(t, . ;~), ~ ' ( t , ~ ; = ) -  ~ ~', ..... ; . ( , ,x)  I[%(t,x). 
i l ,  . . . i ,  v a = l  

W e  

tha t  

(4. ]4) 

shall examine F(x)  closer. On taking account  of (3. I I)  it is inferred 

H o,.  (t, x) - -  Z ~  . . . . .  , . ( t ) x  ~, 
a = l  j = 0  

where (compare with (3. t [  a)) 

(4. [ 4  a) c~ ... . .  ; , ( t ) =  ~ ol.i,)(t)oJ~-4 ( t ) . . .  oJ~, ) (t) 
j . . . . .  j ,, 

~y (4. s ~) ~ d  (3.9) 
(4 . ,  s) o~) (t) = ~"), 

(j~ + . . .  +.] ,  = j ) .  

(o =< z =< t). 

Bence  f rom (4. I4 a) it is deduced tha t  

(4.  16)  ~i . . . . .  i~ (t) -~- c~ . . . . .  i~ (o  ~ j ~ t). 
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Subs t i tu t ing  (4. I4) in F:(x)  of (4. I3 a) one obtains 

1 i 

(4. : 7) - -  F :  (x) = 6 o (,, t) + 61 (~;, t) x -  i:. + . . .  + 6, (~:, t) x -  ~ + - - - .  

Fi rs t  of all we note  tha t  in view of the origin of F l(x) the  series (4. ~7) 

certainly converges for ] x l ~  x o (x o sufficiently great)i I f  it; is recalled how 6i 

of (3. 25) was derived, it  is concluded tha t  

(4. : 7 ~) 6, (,, t) =- 6i, 

wi th  the  aSi, ) replaced by oy~)(t) and  the  b'r( i~, . . ,  i , , ) (for  7 > * )  replaced by 

zeros. Accordingly,  by (4. I5) and (3. 23) 

(4. ,7 b) 6,: (~, t) = ~, (o __< i _-< t), 

provided we take �9 ~ t. 

The relat ions (4. I7 b) are of great  impor tance  for us, inasmuch as in con- 

sequence of the way the formal  solution s(x) has been defined 

60-~  o, 61--  o, &a = o , . . . .  

Thus,  with �9 ~ t, f rom (4. I7) it  is deduced tha t  

t + l  1 

- < ( x ) = .  ~ [6,+,(.,t) + 6 ,+ , , (~ , t ) . -~+  ...]. 

On tak ing  account  of the convergence of the  series (4. 17) we conclude t h a t  

t + l  

(4. I8) I G ( x ) l < l * l  k l i ( t , , )  

Fur thermore ,  by (4- :3 b), (4. I2 a) and (4-7 a) one has 

t d - 1  
tT (4" I8 ~1,) IG(X) I----< Ixl - - c  I dr,*) 

Thus,  by (4. ~3), (4. I8), ( 4 - IS  a) 

t 4 - 1  

(4. '9) F ( x ) = x  k F(t ,x ) ,  

(4. I9 a) 

(in R). 

(in /t). 

I F ( t , x ) l < F t  (in R;  finite F "  = t, i ndependen t  of x). 
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The  form of L ((~) ((4. I I a)) will be now determined.  I t  is observed t ha t  

Q0 ( x ) =  0(x) and tha~ in view of (4.6 b) 

(4"  2 0 )  Qi(X) = W i ,  o(X) Q(X) + ~Oi, l (X)~(1)(X) + "'" + Wi, f(X) O(i)(x), 

where Wo, o (x) - -  I and 

(4. 20 a) 

(4. 2o b) 

(4- 2o e) 
B y  (4. I i ~) and (4. 20) 

P P J 

w,,o (x) = w (x) ,,~_~,o (x) + ~ -  ~ w?) ~,o (x), ,v (~1 - ~'~ z 0)  ~ ~- ~, 
j~O 

1 _  p _ 

~,~,, ~ (x) = w (x) w , - , , , , ,  (x) + x ,~ ( w ~ , , ~  (x) + ~,_~,,, ,_~ (x)) 

(m = I, 2 , . . . i -  I), 
P 

~)i, i (X) : X 1 k tt)i__l,i__l (X). 

with 
( 4 . 2 1 b )  k i , ~ - - o  (for i<~ , ) ,  k i ,~= I (for i~>z).  

I t  is observed ~ha~ 

(4" 22) W,,m(X) = X m ( l ' ~ ' )  Vl, m(X) 

where 
1 

(4. 22 a) Vi,  m (x) = po lynomia l  in X - ~ ,  

Thus  

( 4 - 2 0  

where 

(4. 21 a) 

L (q) = l~ (x) e(")(x) + ln-1 (x) Q(,,-1)(x) + " '  + lo (x) Q (x), 

z~(~.) = y, ~, ' ,  . . . . .  "(*) Z%. , (x )  k "  II  o,,,(t,~) (c f  (4. 2o a ) - ( 4 .  2o c)) 
i I . . . .  i~ i = l  aCj 

( ~  ~ - - - 0 ,  I ,  . . �9 i ) ,  

Whence  (4. 2i u) may be put  in the  form 

I P'l ,v 

(4. 23) 1,(x) = x'~'--~J Z b'" .... ',(x) Z v,~,(x',k'J,' II %(t,x) 
tl,, �9 . L v j= l a# j 

[ef. (4. 2o a)--(4. 2o e), (4. 2I b), (4. 22)]. 

v,,,.(x) = I. 

L(~)= ~ V' ..... (x)~Q,~(~) H%(t,x) 
Q . . . .  i~, j = l  a# j  

il, . . . i~, j = l  7----0 a#j  
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By (4. 4 a), (4. 7 a) and (4. 23) 

(4. 24) l ~ ( x ) x  r ('-~-) Zr(x) -- 17,0(t) -~- l~',l ( t ) S  1 -~ - ' ' ' - ~ -  lT , j ( t )  X - j -  = k + . . .  (in B). 

The  series in (4. 24) is the formal  expansion of the  expression 

00 $ 

(4. 24 a) Z fl'i ..... i, (x) ~ vij, r (x) kcJ ,' H ~ o~,~) (t) x -  ~" (ef. (4. 4 a), (4. 2 1 b)). 
il . . . .  i~ j = l  aCj  6=0 

I t  is observed t ha t  

(4. 24 b) lr, j (t) = lr, j (j -~ o, i, . . . t'), 

where the  Ird are independen t  of t, be ing the coefficients in the formal  expan- 

sion of (4- 24 a) with  the  a~ ;/(t) replaeed by the  d, '/, respectively;  moreover,  t' can 

be made  arbitrari ly great  by a suitable ehoiee of t. On t ak ing  account  of (4- 24) 

one may  write (4. 2I) in the  form 

L(~)  ~ 2 ( I - ~ ) [ Z n  (x)~(n)(x)  "3 I- Z n -  1 ( x ) x  p - x  0 (n-l)  (x) "-~ "'" 

(4. 25) 

�9 .. + Jr, (x)x (n-r) (P - ' )  Q(r)(x) + - "  + Z o (x) x" (~" -1) Q (x)] (cf. (4. 24). 

Let  vi, r,o denote  the cons tan t  t e rm in the polynomial  vi, r(x). Then  by (4.22 a) 
we have 

(4. 26) Vn, n, o = I. 

The  cons tan t  l,~, o (t) ( =  ln, o), involved in ~,~ (x), is obta ined f rom (4 .24 a) on no t ing  
t h a t  

(4. 26 a) a~)(t)-----aoa'~ ( a = ~ )  

and on tak ing  aeeount  of (4 .4  a). Thus  

/ too= Z t / ~  n,~176 (ef. (4 .2 I  b)). 
tl . . . .  i~, j = l  aCj  

Whence ,  inasmuch as k g , " =  o for ij < n and k '~,'~ = I, one has 

i . . . . .  i~ j = l  
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and, finally, 

(4. 27) 1 --a v-1 ~x Z(J) ' ~ , , o - -  o X.~s  bo(i 1 . . . .  i,, 
j = l  i~ . . . .  i v 

here the summation symbol with the superscript j is over the lotality of all those sets 

(il . . . .  iv) which contain precisely j elements each equal to n. 

At times the supposition will be made that  ln, o ((4. 27)) is distinct from 
zero. This hypothesis depends only on those of the initial coefficients of the 

differential equation / ' ; = o  which correspond to the Puiseux-diagram-segment 

associated with p In  this connection it is to be recMled that  h o depends on 

the aforesaid coefficients only. 

By (4. 25), if 1,,,0 ~ o, one will have 

1 P ~ P 1 n IP----I~ 
(4- 28) L(O)= x"X --kl,~,(x)[o('O(x) + b,(x)x ~ (~("-8(x) + . . .  + bn(x)x xk /q(x)] 

(cf. (4. 24)), 
where 

1 
(4. 28 a) b~(x) ~ b~,o(t) + br,1 (t)x --~ + . ' .  (in R). 

Here the b?,j (o ~ j <= f )  are independent of t; on the other hand, j '  can be made 
arbitrarily great by a suitable choice of t. 

In view of (4. I1 b), of (4. 2o) and (4. 22) 

(4. 29) K ( Q ) =  ~ b 'i ..... ~' , (x)~ ~ Qij,(x)"'Q%(x) I Ia l , ( t , x )  
i t , . . .  ~'~ m=2  Jt <" " "<Jm a = l  

�9 r ';, 91 
J i l , . . . t v  = J l < ' ' ' < J m  1 7 : 0  

p)] r q t . . . .  17=~ 0 V~ , f  (X)~(7)(;:~)X 7 (1--~- ] ~11Vijra, 7 (X)~(7)(X)X 7 (1 p H ( T i a ( , Z ) ,  
LT=O g : l  

where the product symbol is with respect to ii, i 2 , . . ,  i , ,  omitt ing ~),, i j~,. . .  ijm. 

In  consequence of (4. 22 a) from (4. 29) it is inferred that  

(4. 30) K(o) ---- K~ (~) + K~ (0) + + K,  (0), 
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where 

(4. 3 ~ a) 
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K .  (~) ---- ~ k~ . . . . .  mn(t '  x) I [  (~(a)(x'))ma:TCa(1--P)'a 
'toO, , . . 7//11 ~Z~0 

( m  o + �9 �9 + r a n = m ) .  

In  (4. 30 a) the k~/ .... (t,x) are analytic in x for x in R (x # oo) and 

_ 7  
(4- 3 ~ b) k~ ..... " ,  (t, x) - ~ k '~ . . . . .  m, (t) x k (in R), m,~ 

~,=0 

while the k~7,r'"~n(t) are independent  of t for y ~ ~ ( 7 ' ~  oo with t). 

W e  formulate  the preceding results as follows. 

Lemma 4. 1. Consider the actual differential equation . F * = o  ((4. I)). Let 

s (x) ( (3 .2)-- (3 .2  b)) be a formal solution of  (4. 2) according to Lemma 3. I. Let 

(4-4) be the corresponding form for the equation ~ ~ o. The transformation (4. 5) 

(with (4. 5 a)) leads to the equation 

(4. 31) L(~) + K ( e ) =  F(x) 

for the new variable e(x). In  (4. 3 I) the linear differential expression L(q) is given 

by (4. 25) (with (4. 24)); when l,,o of (4. 27) is not zero, one may put L(e) in the 

form (4. 28) (with (4. 28 a)). Moreover 

K (O) = K2 (q) + ' "  + K,, (O), 

where Km(e)(2 < m  <= v) is a homogeneous differential expression of  order not ex- 

ceeding n and of degree m; Km (e) may be expressed as in (4. 3 ~ a) (with (4. 30 b)). 
The function V(x) is analytic in R ( x #  oo) and is of  the fo,'m (4. I9)(with (4.19 a)). 

5. L e m m a s  P r e l i m i n a r y  to  E x i s t e n c e  T h e o r e m s .  

To construct  a solution, wi th  appropriate properties, of (4. 3 I) we determine 

in succession functions 

(5. I) 
by means of the relations 

(5.2) 
(5.2 a) 

Wo (X), wl (x) . . . .  

L (Wo) = F ( x ) ,  w - ,  (x) - o,  

L ( w , ) =  - -  g ( w , - ~ )  + F ( x )  ( i =  I, 2, . . . ) .  

Under  suitable conditions l imwi(x)  will be a solution of (4. 3I) �9 Whe  shall write 
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(5. 3) 
then 

(5. 3 a) 

Z i (X)  : W i  (X)  - -  W i - - 1  (X)  

*0 (~) + ' ' "  + ~ (X) = Wj (X) 

29 

( i  = o ,  ~ , . . . ) ;  

( j = o ,  I . . . .  ). 

The successive differential  relations to be satisfied by the zi(x) are 

(5. 4) L(zo) = F(x) ,  L ( z j ( x ) ) = -  K(W~_l(X)) + K(wj_~(x))  (] = ~, e, . . .). 

Under  suitable convergence conditions the series 

( 5 . 5 )  ~ (x )  = Zo(.~) + < ( x )  + . . .  + z j (x )  ~ . . . .  

will represent  a solution of (4. 3I). 

Unless stated otherwise i t  wi l l  be assumed that B covers the complete neigh. 

borhood of  infinity; that  is, tha t  R consists of the region 

o_--< 2 ~< 2~rle; Ixl  => x0(>  o) (a? = angle of x). 

For the prese ,  t i t  wi l l  be assumed that l,,,0 ~ o (cf. (4. 27)). In  this case L(e) 
is given by (4-28). The equation 

(5" 6) I n I p - I ~  P- -1  
~ (x) x ~k ! L (Q) ~ T (0) ~ e ''~) (x) + bj (x) x k 0 (n-l) (x) + . . "  + 

"q- bn(X) X n ( p - l )  Q(X) = O 

presents the general  problem of the irregular singular point  (for l inear differential 

equations). I t  will be necessary to use some of the results of the complete 

analytic theory of this problem, developed by TRaITZlSSKY x. 

The equation (5- 6) possesses n formally linearly independent  formal solutions 

(s.  7) s, (x) = eQ, (~) x~, ~ (i, x) (i = I, ~ . . . .  ~ )  

where 

(5. 7 a) a ( i , x ) - ~  {x}l, t (cf. Definition 2. I) 

and 
1 

(5. 7 b) Q,(x) = polynomial in x k ' ,  (integers v, >__ i). 

The power  series involved in {x},~ are series in xlltkn ). We note also that the 
p_ 

highest power in Q~ is x k. Now the Qi(x) depend only on a certain initial 

See the  concise s t a t e m e n t  of the  p e r t i n e n t  results ,  e s tab l i shed  by  TllJITZINSKY, in  (T) [cf. 
foot-note on p. 3]. 
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number of the coefficients in the formal series to which the b~(x) are asymptotic. 

Hence by taking t sufficiently great (as forthwith is done) we have fhe Q~(x) i~ 
(5.7) indepe~dent of t. We recall the following definitions introduced in (T) (cf. 

pp. 213, 214). 

A curve B will be said to be regular if it is simple and extends to infinity 

where it has a unique limiting direction. 

A region R is regular if it is closed, extends to infinity, and is such that if 

x is in R then [x] _--> a > o; also the boundary of R is simple and consists of 

an arc y of the circle I x [ =  rl and of two regular curves extending from dif- 

ferent extremities of 7. In a generic sense 

(5. 8) R (01, 0.,) 

is to denote a regular region for which the two regular curves (parts of the boundary) 

have limiting directions 01 and 0~, respectively. 

We designate by Bi, i a regular curve along which 

(5.9) ~ (Q , ( x ) -  Qi(x))= o. 

Such curves are defined only provided Qi(x)-  Qj ( x ) ~  o. We denote by 

(5. IO) R , ,  R ~ ,  . . . R ~  

the regular regions, separated by the B~.j curves (formed, whenever possible, for 

i , j  = I, 2 . . . .  n), constructed so that interior no such region are there any Bi,~ 

curves. Any particular region Rk has the  form R (0k, ~, 0k, 2) (0~. ~ _--< 0k, 2). We 

shall designate the regular curves, forming part. of the boundary of Rk and 

possessing at infinity the limiting directions 0~.~ and 0~.,2, by ~Bk and ~Bk, 

respectively. 

According to the lr Existence Theorem, due to TRJITZlNSK~, the 

following may be stated for the equation (5.6), with reference to any particular 

region Rk of the set (5. IO). 

I f  Ok, 1 = 0k, 2, equation (5. 6) will possess a full set of solutions 

(~. II) yi(X) ( i =  I , . . .  $~), 

with elements y~(x) analytic in Rk(x # ~) and satisfying relations 

(~. I I  a) y i (x)  ~ si(x) (in Rk; i =  I , . . .  n; cf. (5. 7)); 
that  is, 



(5. I3a )  

for which 1 

(5. x3 b) 

(5. I 3 c )  

In the 
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with 

(5. ~2 a) y( i ,  x) ~ ~(i ,  x) = {~}~, (in R~). 

I f  Ok,~ < 0ko., there exist regular  overlapping subregions of R~., 

(5' I3) r~k = R(Ok, l, 0k, 2), ,R~-- R(e~,~, 0k,2), 

with boundaries  containing ~Bk and ~Bk, respectively, so that  there  exist two 

full sets of solutions 

,.v,(x) (i = ~ , . . .  , ) ;  ,v, (x) (i = ~ , . . .  ~), 

sequel the symbol (al,j) will denote a matrix with a~,j ill i-th row 

and j - th  column (i, j - -  I . . . .  n). The determinant  of (ai, j) will be designated 

by I(~,,J) l. 
In  view of 6he definition of T(Q), given in (5. 5), the equations (5.4) may 

be wri t ten in the form 

(S-~4) 

where 

(5. ~4 a) 

T (~j (~)) = *j (x) ( j - o ,  I , . . . ) ,  

r (,; _1)1,, (x), 
flo (x) - ~,, (x)x 

(5. I 4 b )  flj(x) Zn(x)Z [-- K(,(?j l(X)) Q- h~(l~'j--2 (.;c))] ( j - -  I, 2, . . . )  

(ef. (4. I9), (4. 3o), (4. 3oa), (4. 3ob)). 
Let  us consider now a non homogeneous  differential equation 

(5. I5) r(C(x?) = fl(x), 

typical  of any equat ion (5. I4). In  view of our purposes it will be desirable to 

t ransform (5. I5) into a system. 

First  of all we note tha t  the system, wri t ten in matrix form, 

1 For details see TRJITZINSKY [Acta mathematica, loc. cir.] 
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(5. I6) 

where 

W. J. Trjitzinsky. 

Z (1) (x) = Z (x) n (x), Z (x) = (Ci, j (X)), 

o,o, L ) 

(5-16a) D(x)=(di ,  j (x))= I ,  O , . . . , - - b n - - l ( X ) X  (n-l)(~-l) , 

o, o, . . .  I ,  - b, (x) x -~-1 

is associated with the equation T(~(x ) )~  o as follows. I f  (~,.j(x)) is a matr ix  

solution of (5. I6) then  (~,,j(X))=(~IJ--1)(X)) arid the ~ i ( x ) ( i =  I , . . .  n) will con- 

st i tute a full set of solutions of T (~ (x)) ---- o. On the other  hand,  i f  ~i (x) ( i= I , . . .  n) 

co~,stitute a ful l  set of  solutio~2s of T(~(x)) -~ o, the matrix 

(5. I6 b) Z (X) -~ (~,,j (x)) = (~j-1)(x)) 

will satisfy (5, 16). I t  is also observed tha t  if a matrix 

(5.j(~)) 

satisfies the non homogeneous system 

(5- 17) Z (1) (x) = Z (x) n (x) + B (x), Z (x) = (~;, j (x)) 

(el. (5. I6a)), where B ( x ) =  (fli, j(x)) with 

(5. i7  a) #,,~(x) = o (~ < n), #,.n(x) = #(x) ,  

then 

~(1) x ) =  ~), ~i,j+l i, 1 (5. I7 b) ~i,j( ~i,j+l (X) (j  ( (X) = ~(J) (X) 

and 

(5- I7 c) T(~i,l(x)) = ~(x). 

That is, every function in the first column of the mab'ix solution (~,',i(x)) of (5. I7) 
will satisfy the equation T (~ (x)) = ~ (x). 

A solution of (5. I7) may be given in the form 

(5. ~ s) z (x) = W(x)  z0  (~) I z  (x) = (C;, J (x)), Zo (~) = (C;, j:0 (x)), W(x)  = (w;,~.(x))], 

where Zo(x ) satisfies (5. I6) and 

(5. ~ s a) w(') ( x ) -  B (x) Z J  (x). 
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Let R de,ote a ,y  particular region referred to in the text fi'om (5-I  I)tO 
(5. I3)' 

On t ak ing  account  of the italieised s t a tement  in connect ion with (5. I6 b), 

the  mat r ix  Zo(x ) in (5. I8) is fo rmed  according to (5. ~6b), 

(5. I9) & (x) = ,.,.~r.: 0 ,~x; ~j = (y~0-,)(x)), 

where the yi(x) are f rom (5. I I  a) or f rom (5. I3b),  (5. I3C), according to the  
character  of R .  Thus  

(5. ' 9  a) yi(x) = eQ'('~)xriy(i, X), y(i, x ) ~  {x}~ i (in R). 

W e  also have 

(5" 19 b) Y~J-l)(x) = e qi(a') xr'+(J--1)(-Pk--1) yj--1 (17, ;Z'), 

where yj--l(i, x ) ~  {x},~ (in R). We proceed to de te rmine  the form of the ele. 
men t s  in the ~-th row of the  matr ix  

(5. 20) Z~ -1 (X) - -  (gi, j(x}). 

In  the de te rminan t  [(y~J-~)(x))[ the logar i thms,  occurr ing in (5. I9b),  will Of 

course disappear  and we obtain 

~" (n2_~)_ ~ 
(5. ~ , )  J ( . ) = l ( v ; ' - ' ) ( x ) ) l = r 1 4 9  '~ d(~), 

with in teger  t o ~  o, k' = P - -  I and 

1 

d ( x ) ~ d o + d ~ x  ~ + ' - "  (in R;  d o r  
By (s. 20) 

A ( x ) ~ . , j ( x )  = ( -  ~) , , -  

Whence,  in view of (5. I9b)  

(5.22) 

where 

�9 ~ (X),..�9 y.j~l (.,~'),. ff.j+.l (X), ..... yn (X)�9 . [ 

v!" ) ( x ) , .  yJ~,, (~), yJW'~ ( ~ ) ,  v~ ,-.) (~)] 

-~'- (,,-~--a n + 2) . , 

(x) :O.,J (x) = e ~ , / . >  +<,/ ' )-~j( .)  x . , + - -  +r,, rj X d,,.~ (x), 

d.,j(.) ~ {.} .  ~) (in lt). 
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Thus, in consequence of (5. 2I) and (5. 22) 

( ~ (s. 23) ~9~,~(~) = e-~/~}x- '~x-~,~(~,  L x) ~ =  ~ ' ( , -  ,)-~ , 

with 

(5. 23 a) ~ (n,.i, x) ~ {x},~ {i) (in B). 

By (5.17 a), (5.-~o) and (5. 18 a) 

9~ 

= ['fl(x')~,,,j (ef. (5. 23)) (5.24) ~,,j(.~) (x) d~ 

In  view of (S. I8) nnd (5. I9) a solution of (5. I7) will accordingly be given by 

(5.25) 
Z(x)-- (~i,j(x))= ()n~lwi, r(X)~2, J:O(xl) 

2t 
- .  y,y~J-X)(x) fl(x)~,~.(x)dx 

\ 2 = 1  

(el. (5. I9b)). 

In  consequence 
the eleme~ts 

of the remark subsequent to (5. I7 c) i~ may be asserted that  

2=I "J 

will be independent  of i ~nd will eo~stitute a solution of I '  (z (x)) -- fl (z) (provided 

the integrations can be ewluated) .  The s ta tement  with respect 1o (5. I7), (5. I7 b) 
will be applicable, yielding from (5. z5) the following important  fur ther  result  

./; 

" ) f  (s. :6) ,,,~(~-') ( ~ ) 1  = Y, :'fi!J-') ( x ~(x)~,,,,.i~)~tx = ~(J-*)x ( j - - , , . . .  ,,). 
2 = 1  

On taking account of (5. I9 b) and (5. 23) the following Lemma is inferred. 

Lemma 5. 1. Let T(z(x)) be the, li~ear d(~erential ope,rator of (5.6). Let It 

be a region of the text from (5. ~)  to (S. I3). Provided the integration,s i~coh,ed 
can be evaluated, the eguatio~t 
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will possess a sohttion z(x) such that (5. 26) will hold; that is, 

35 

Z (j- l)  (X) = ~ e Q~t (a-, xr~+(j-1)(P--l)yj--1 (~, X) 

(5. 27 a) 93 

In  eonsequense of the  asymptot ic  relat ion given subsequent  to (5. I9 b), as 

well as of (5. z3 a), from (5. 27 a) we derive 

x 
n 

(5 28) [z(J-1)(x)l < a ' f  ~lee~(~')x~x+(J-l)(P-1)+~l" le-qa(z)x-"z-r176 

( j  = I , � 9  n ;  e > o, arbi trar i ly s m ~ l l ;  x i n  /?)1 ,  

provided 

(5. 28 a) fl(x) = x -~ f (x ) ,  If(x)[  --<f 

In  this connect ion it  is unders tood  tha t  the integrals  

suitable paths;  moreover,  a may depend  on e. 

We  shall need the  fol lowing .Lemma. 
1 

L e m m a  5 .2 .  Let C(x) be a polynomial i~ x z'. 

to i~fi~dty. Suppose 

(S. 29) 

then 

(5. 29 a) 

(in R). 

in (5. 28) exist a long 

Let B be a region extend i~g 

0 
O~x-'~(C(x))l I --< o (in R), ~{(u) --< - -  I - -  o" (6>O); 

x 

O ~- 

for all x in R which are such that the ray 

0 = angle of .% r = > l x l  (polar coordinates  0, ,') 

lies in B,  the path of ii#egration in (5. 29 a) being along this ray. I f  in place 

of (5. 29) we have 

1 U s e  is  m a d e  of i n e q u a l i t i e s  I yj--1 (t, x) l, [ ~ (n, ~, x) [  < a [ x [% va l i d  in  R .  
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(S. 30) 

then 

W. J. Trjitzinsky. 

0 
b,~,3~(c/ .0~,  > o  (in R), le-C(~"l- o (i. R)~, 

X 

(5. 3on) IleC(")u"llaul<l~c(~)x"+~l(l~l~(,;); ,;-- --~r 
C 

provided x(lx  I ~ l c l )  is on a ray 0 = angle of c, extendi,,g into R .  
q 

I t  is noted that,  if the leading term in C(x) is gqx ~', rhea the asymptotic 

relation of (5. 3 ~ ) will hold when 

(5.3 I) e o s ( # q + ~ 0 ) > = ~ > o  (in B; # , l ~ a n g l e  of g,,). 

To establish the first part of the Lemma we write 

(5.32) I ~('(") -"1 = I e':'("),,"+ l+. l l  U - 1 - ~ r  I = I - - ~ - "  I e ' ( " ) ,  

where by (5-29) 

o H(.)  - -0- -~(C( . ) )+  ' 
(5. 32a )  Olul -Olul [ - ~ g l ( g  + . I  -]- O) ~ 0  (in I~). 

Along the ray in question H(u) is monotone non-increasing, on this ray 

exp. H(u) attains its upper bound at x. We have 

le~.("luoll,h,I =< em-~) I . . ] - l -Oldul  (x in R). 
oo ov 

The seeond member here is clearly identical with the last member in (5. 29 a). 

To demonstrate (5-3 ~ a) we note that  

(5.33) 

so that 

With 

I~Cr = exp. ~1("), H , ( . ) =  ~ (C(.)) + 9~(. log . ) ,  

o I u I H, (.) = o I u I ( c  (,,)) + ~ i  m ( . ) .  

x The asymptotic relatiou here is in the sense that lira Ixl~lc.p. (-C(x))l=o (as x - - ~  
in R; all V>o). 
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p 
and ~J~ (a)  : - -  a ,  

Hence for 
I . l=> l~ l ,  

q 1 

C(u) : g,, x T: +. . .  + g, x ~ ((jj -- angle of gj) 

it is inferred that  

q J ( 

i = 1  

a l l  u 

+~O)--a'. 

on the ray 0 = angle of c (] c] = e(a')) sufficiently great, with 

O 
o I . I H ~ ( . ) ~  o. 

In  view of (5. 33) this would imply that  the upper  bound of l u ~ exp. C(u)l, for 

u on the path of integrat ion in (5- 3o a), is a t ta ined at u = x. Thus, under the 

s tated condit ions 

J ]eC(")u"]]du] ~ leC':X) x " [J  

c c 

Id-I < I e~(")x~+' I. 

The Lemma is accordingly established. 

Definition 5. 1. Let R delwte any particular region referred to i ,  the text 
J +~'O~}~b (5- I I) to (5. I3 e). We shall designate by R* any regular subregion of R 
such that with respect to R* the following will hold for every particular function 

(5. 34) 

.Either 

(5. 34a) 

or  

(5. 34 b) 

0 ( 
q~.(x) - o I xl ~ (0~.,xJ) 

q~.(.) =_< o ( i .  ~ * )  

q2(x) > o  (in R*), leQ~(~)l ~o (in (R*). 

Given a region R ,  as specified in the above Definition, subregions R* could 

be found as follows. We  consider all regular  curves extending into R along 

which at least one of the funct ions qa(x) vanishes. 1 In ter ior  each of the several 

* Such curves are formed only  corresponding to the  funct ions  q)(x) which  are no t  ident ica l ly  

zero. A regular curve sa t i s fy ing  an equat ion qz(x) = o  will  have at  inf in i ty  the  l imi t ing  direct ion 

of a cor responding  curve sa t i s fy ing  the  equat ion ~ (Q~ ( x ) ) = o .  
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regular  subregions of R, into which R is subdivided by these curves, each of 

the functions 

(5. 35) q~(.~), . .  . q,~(x) 

will mainta in  its sign. Consider any such part icular  subregion /g.  I f  in R '  

all the q.~(~c)< o,  R '  is a region R*. I f  there are some q j (x ) ,  say 

( 5 . 3 6 )  q j , (x ) ,  . . .  

which are positive in R',  one may take as R* any subregion of R'  within which 

(5. 36 a) eQJ, (~'), eQJ~ ('~') , . . . eqJm (x) ~ O; 

in the case when B' = B (0~, 0.2) (0~ < 0.2) conditions (5.36 a) will be satisfied in 

H* = R(0~ + e~, 0 ~ -  ~j ) (~  > o, suitably small). 

In  any case, at  least when R = R ( c q ,  a~) (a~.~ ae) existence of subregions 

R* of R is certainly assured; moreover, the parts of R which are not  of the 

type B* (for Ix] > %; r 0 suitably great) can be enclosed in a number  of sectors 

the sum of whose angles can be taken arbitrari ly small. Furthermore,  these 

s tatements  can still be made with the subregions B* so chosen that ,  if x is a 

point  in B*, necessarily the ray 

(5. 37) 0 --  angle of x, r >  Ix] (polar eoordinatas O, r) 

will lie in B*. 
In the sequel i t  w i l l  be ahvay.s, i m p l i e d  tha t  a regio'n 1~* is  so chosen tha t  the 

s t a t e m e ~ t  i n  com~ection w i t h  (5. 37) hohls. 

Case I .  R *  is  a region,  as speci f ied i~z Defim'tioJ~ 5. I, such  tha t  

(5. 38) qj(x)  < o ( j  = I . . . .  n;  i)~ R*; cf. (5. 34)). 

Case II .  R *  is  a region,  as descr ibed  in  Def i~dt ion  5. I , s ~ t c h  that  q i l (x) ,  

q j , (x) ,  . . .  qjm(x) are pos i t i ve  in  R * ,  wh i l e  (5. 36 a) holds in  R * .  In  this case, as a 

mat te r  of notat ion,  entai l ing no loss of generality,  one may write 

(5. 39) qj (x) > 0 (j  = I  . . . .  m,), qj (x)  < 0 ( j  = m + I, . . .  n) 

for x in R* and 

(5. 39 a) eqJ ('~1 ~ o (j = I , . . .  m; in R*). 
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I t  will be sufficient to have (5- 39 a) satisfied to ~ finite (sufficiently great) 

number  of terms. W e  t h e n  may assert the results of Theorems 7. I, 8. I for 

some value t( > o), but  not necessarily for arbitrarily great  values of t. 

Let 

(5. 14). 

(6. I) 

where 

6. The First  Exis tence  Theorem. 

us consider Case I (w 5)- We shall solve in succession the equations 

In  view of (5. I4 a) and (4. I9), (4. 19 a) 

8o (~) = x - ~ o f o  (x), ~o - k n --  I , 

(6. ~ a) I/o (x) l g / o  

We choose t in the  tr~nsform~t;ion (4. 5) sufficiently great  so tha t  

(6. 2) }R ( - -  I'Z - -  0/1 - -  flO + 8) ~ - -  I - -  G 

With  the aid of (6. 2) and of Lemma 5 .2  we obtain 

x 

f I e--Q:r (x) x--r;t-- e2~--~o+* + 1 ] (6 3) l e-e*(:')~-',. . . . . .  -'%+'11 ~x I ----< T,I 

(in R*). Whence  in consequence of Lemma 5. I and of (5. 28) 

(in R*). 

( a > O ;  ; ~  I , . . . n ) .  

i Z(;. 1 ) (X) i <~ I a 2 f o  Z I eQ).(x ) x r ) . + ( j _ l ) ( ~ _  1)+~ I I e--Q)'(x)x--r)'--t~ �9 
).--1 

Thus 

(6. 4) 

where 

l/cdfo. (6 .4  a.) a o = 2 8 - -  0/1 - -  flO + I (Cf. (6. I)),  2' 0 --" 

I t  is supposed that  t is taken sufficiently grea~ so that  % < I. 

{j t) Ix"~ (j = I , . . .  ~; x in B*), I~(~-~) (x) l< . .o l~ l -  (7 - ' )  

This is secured 

in consequence of (6 .6  c), below. Using the definition of T(Q), given in (5.6) ,  

we obtain 

I~",(x)l= ~,,-,(x)x("-')(~--1)Jj~:~,(x)j + I~o(x)l. 
i=0 
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Inasmuch as (4. 28 a) implies tha t  

(6. 5) I t~-(x)l =< b 

in consequence of (6. I), (6. I a) and (6.4) we obtain 

P 1 
I~?)(x) I < ,,t.~olX" (k-)+~176 + fo lx l  -,~~ (6. 5 a) 

Thus 

(6. 6) 

wi~h 

(6. 6 a) 

here in view of (5. 23) 

I<,~, (x)[ < ~o lx[" (~-~) /~  p 

e o = max. of z o, n b z  o + f o Q 7 " ' ;  

, 
(6 .6b)  n - ~ f l o + % + n  - - I  = 2 ~ +  k ( p + w ) > o .  

The relation (6 .6  b) is secured in wiew of (5. 23). 

(6 .6c )  t+_ I ~ 2n ' .  
k -- 

Combining (6. 4) and (6.6) it is inferred tha t  

;p__, 
(6. 7) Iq)(~)l < colo~l (~ )1-1 .... 

where ~o and ~o are de~nea by (6. 4 a), (6. 6 ~). 
By (5. I4 b; j = I )  

- - I  ,, ( ~ . - - )  / I . (Zo(X)) .  f i , ( x ) - ~ x  ' ' ,~ (*) 

Thus, using (4-3o), (4. 3 ~ b) and (6. 7) we obtain 

I a ~  (,o (x))l < ~ I z: ........... ,,, (t, x) ll~l ~:'~ I* I ..... ~ 
lllo-[- �9 " " -~ ' l l l? t=l l t  ~ 0  

and 

(6. 8) 

fu r thermore  

Ik~': ~ x)l =< 

] K (z o (x))] ~ ~_~ I K,, (Zo (x))l < k ~_~ c'~'lx I . . . .  q,~ 
~ t l ~ 2  m ~ 2  

(in R*), 

(in R*). 

(x in R*; I .  I --> e,), 

We take t so that  

( i = o , . . .  n; x in B*), 

(in //*) 

(in B*); 
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(in R*), where 

(6. 9) 

thus, inasmuch as % < o, 

(6  io) 

( 6 .  I O  a )  

Whence,  with 

we obtain 

(6. ~)  

where 

(6. 11 a) 

Z ~ qm : =  I , 

~//10-1 ' �9 �9 -} "lll?l,~ '111, 

I K r ~:x)) I --< ~ k' I x I ~ ~'' 

k' ~ .... --  co qm 
"r 2 

(in B*; I*1 ~ I), 

(ef. (6. 9), (6. 6 a)). 

I ] < Z' (in R*~ 

~, (x) - :  x-~,r  (x) i)+  oo) 
I A (*) I =<- A (in If*), A = k lc' ~: (el. (6. Io a), (6. 8)). 

In  view of (5. 28), (5. 28a) a solution z , (x)  of the equation T(z~(x))=:fl~(x) 

will satisfy the  inequalities (5.28) with f l =  fl, and f=~J~ (x in B*). Application 

of Lemma 5. 2 will yield 

(6. I2) I~/-*)(. , :) I  < < l . l ~Y-~ ) (~ - -01x l  ,~, ( j =  ~ , . . .  ,,; x in R*), 

where ( , , )  
( 6 .  I 2 a )  ~1 - -  2 ~ - -  (2) 1 - -  /~1 -[- I el. (6. ] 1), zl = a '  J'l ' 

ff 

In  this connection it is unders tood that  t is so chosen tha t  

(6. 13) 

which 

(6. 12) we obtMn the inequality,  analogous to (6. 5 a), 

~ l ( - -  r r - -  ~o 1 - / ~ 1  + ~) =< - -  I - -  ff ( q  > O ;  ~ = I ,  . . . ?l) ,  

holds in consequence of tile preceding. W i t h  the aid of (5.6) and of 

I <")(~)I < , , t < I x "  (~- ' )  +"'I + A I*I-~' 
Whence 

I~?)(~)I < ~,~ixl"(~-') i~.i o, 

q = max. of zl, n b z~ 4- j ;  QT"'; 
73. I m p r i m 6  le 20 aof l t  1940. 

(6. I4) 

valid in /~*. 

(6. I4 a) 

with 

(6. I4 b) 
6 - - 4 0 4 5 9 .  Acta mathematica. 

(el. (6. I I ) ,  (6. I I a)), 

(in R*; I*l >= e,), 
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h e r e  n' is f rom (6. 6 b). 

(6. I 5) 

W. J. Trj i tzinsky.  

T o g e t h e r  wi th  (6. I4) this  yields 

I-'? (*)I < ~11- I;(~-1) I~1 ' '  ( i  = o ,  I ,  . . .  n ;  i n  B * ) .  

where  

W e  have  

wi th  

(6. ~8) 

T ~  = K,,, (z~_t (x) + wj_~ (x)) - Ic~ (~v:-~_ (x)). 

~(.~ x-(~ -~) ' ~ G  (x) = ~",)(.~) + . .  + v - ~ -  ('~) = '~-~- .o  (~), 

,~; -~ ,  ~ (~)  = Co..  (*) + . -  + C~-,,  ~ (*) .  

(8 = O, I,  . . . j - - I ;  i = 0 ,  I ,  . . . II), 

( i = o ,  ~ , . . .  ,,; in I t ;  I*1 > ~,) 

(n' f rom (6. 6 b)). 

In  consequence  of (6. 4 u), (6. I) and  (5- 23) 

, , 

(6. I6) % = )~' - -  ~ - - ,  a I = n + 2 a 0 --- 3 n - -  2 - - - -  , 

where  n ' ( >  o) is g iven by ( 6 . 6 b ) .  U n d e r  ( 6 . 6 e )  

(6. I6  a) ~, < % < o. 

Let  A be a n u m b e r  such t ha t  

c o G A ,  e t G A L  

W e  may replace  Co, cj in (6, 7), (6, I5) by A and  A ~, respect ive ly .  

S a p p o s e  that .  f o r  some  j > 2 w e  h a v e  

(6. ,7) 4 ) ( / )  = x ' (~ -O c~,,(/) 

(6. ~7 ~) [C,.,(x)[ =< A*§ �9 

fo r  s = o , . . . j - - I :  w h i l e  f o r  s - - o ,  I ,  . . . j - -  I 

i ) ( t - ] -  I~ (6. 17 b) a. = (2 8 q- I) lZ' - -  (8 q- \ - - ~ - - ]  

The  s t a t e m e n t  wi th  respec t  to (6. I7)- - (6 .  17 b) has  been  a l ready  es tab l i shed  

for  j =  2 (in (6.7), (6. I5), (6. I6)). 
By (4. 30), (4. 30 a) 

I K ( , , u - ,  <.>) - K ( , o ; _ 2  <*>)i = I K(Zj_l (x> -~ H)j-2 (g)) - -  IK~(IlY;--2 (;/2)) I ~ Z I ~Pm (X)l, 
91t~2 
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Moreover, 

(6. I9) T ' ~ = z ~  m , ,  
~ o +  �9 �9 " + r a n =  m L a ~  0 a = 0  

�9 no+  �9 �9 - + m n = m  a = l  r  

(o G i~, . . .  i~ ~ n). 

Here  sets of subscripts (it, i 2 , . . .  G) depend on the sets (too, . . .  n~,). Now 

(6. I 9 a )  ] ]  ( w j - 2 ,  i~ (x) + ; j - i ,  i a (x)) - -  ?,~'-2, i a (x) = 2(~-2, i s (x) ~j-l, f],t (x) 

+ S ( H~'J--2"is(X))~J--l'iTl(gg)~J--l'iY~ ( x )+ ' ' '+~ j - l ' i l ( x )~ '~ - l ' i~ (2C) ' ' ' ~ j - l " im(x ) "  
71 < i,~=l s :4: ?j, "~ 

On the other hand,  by (6. I8) and (6. 17 a), (6. I7 b) 

~-~ j- , ,  o (*-~ ') 
I~-~,o(x)l _-< Z A~+'I~I ~  I~1 ~176 2; A'~f x r  ' ' ' -~ 

s=O s=O 

s~O 

Choosing t sufficiently great  so that  in R* 

(in B*). 

(6. 19 b) 

one accordingly obtains 

(6. 2o) 

it+ 1~ 
A [x[~'"'-~ ~ J < ~, 

2 

] . , j -2.o(x) l  < z A Ixloo ( in R*;  a - -  o ,  I , . . . n ) .  

Using (6. 8), (6. IZu;  s = j - -  I), (6. zo) and (6. I9) , (6. I9a),  it  is inferred tha t  

(6. 2I) 
2 

�9 (2 A) m-~ A 2j + .. .  + A '~J[x  ['~"J-~] 

= kqm {[2 A [x[ "o + AJ[x[ '~ j -q  m - -  (2 A [x[~") "} 

-~-~qm(2A)m[x[~~ + a(.j, .~c))"* - -  I ]  ( i l l  ] ~ * ) ,  

where q.~ is given by (6. 9) and 
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(6. 22) ~(j.)x)~- I~.4J--lIX'a.]--l--a~ I--[AIxI2n'--(t@-'l)] '']-1. 
2 2 

Now, by a mean value theorem 

(I  -[- U) m - -  I ~ ~ ( I  -[- , ,)m--l t t~ 
hence 

(6. 23) (i + a(j,  x)) ~ -  

In view of (6. 19 b) and (6. 22) 

Thus, by (6. 23) and (6. 22) 
o (j, x) _--< 2 -j .  

( ,  + - < . , _ ,  '-1 
(1(3, X)) m -  I = (I  q- 2--J) m-1  

2 
~ , It + l \ ] j - - 1  

<m2m--~ Alxl"~- t~Pl  
whence front (6. 2I) we deduce 

(6 24) I T~I < ~q..,,2m-~(~ A) m.4j-I I x I%(m-')+"J - , .  

Furthermore, in consequence of the inequality subsequent to (6. 17 b) 

(d. zS) I K ( w j - ~  (x)) - -  K(wj_~  (x))l < k ~_~ m q~ 22~-21 x I(m'l)a~ - I  A "~ + J - - '  

= k [  X]a~ - 1  C' A j + i  

with c' denoting a number, independent of x and j, such that  

(for u > o); 

(in R*); 

(in /R*), 

(6. z 5 a) ~ m qm 2 ~ ~-2 (A ] x 1~0)~-~ G c' (in/~*). 
f/l~2 

By virtue of the 
inferred that  

inequality I,/z,,(x)l ~ z '  from (6. 25) and (5. I 4 b ) i t  is 

One accordingly may write 

(6. 26) ~j(x) = x-~j.fj(x), I.~(x)l <y? 

where 

(6. 26 a) - -~j  : ~0-~-CCj__I-~-n ( ~ -  I ) ,  f 3 " : Z ' c ' k A  j+l . 

(in B*). 

(in R*), 
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By (5. z8), stated in connection with (5. 28 a), in consequence of the rela- 

tion T ( z j ( x ) ) = f l y ( x ) ,  from (6. 26) it is deduced tha t  

~+' ~ - '  .[ I~-Q,.(x~-~,- .... -~J+~ldxl 
),=1 

i - - O ,  . . .  n - -  I ;  

great  so that  

(6. 27) 

We then obtain 

(6. 28) 

where 

(6. 28 ~) 

in R*). Lemma  5. 2 is applicable if t is chosen sufficiently 

~ ( - - r l - -  O / l - - ~ j  "[- ~) ~ - -  I - - ( l  ( { l >  O; ~ - - -  I ,  . . .  7t). 

I~J" (~)1 < ~l~l  ~ (~-1) Ixl"5 ( / =  O, I . . . .  9l - -  I )  

zj = a a~ z e - -  ~ol + I - - ~ j .  

Using the equation T ( z j ( x ) ) - = f l j ( x )  and the definition of T given in (5.6), f rom 

(6. 28) and (6. 26) it is inferred tha t  

(6.  29 )  

Now 

n--1 l -  " " (n--i)(P--1)lI.~{ji)(x)[ q-[flj(Z)[ 
i~O 

(in B*). 

by (6.6 b). 

{6. 30) 

where 

(6. 3o a) 

Hence (6. 29) and (6. 28) imply  

] 4 ' ) ( x ) l  < c j l x ( ( { - - ~ ) l x ] = j  (i  = :  O, I ,  . . . ?l ;. i n  B*), 

c~ : max. of zj, n b zj + y~ Q7"', 

inasmuch as x is in R* with [x I ~> 0~. Let  us examine ctj, as given in (6. 28 a). 

In  consequence of (6. 26a), (6. 17 b) and (5. 23), as well as in view of the de- 

finition of u' 
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(6. 30 b) 

W. J. Trjitzinsky. 

i)  ( ~ - ~  I~ 

This is what we would obtain from (6. 17 b ) f o r  s = j .  

Turning  a t tent ion to (6. 3oa), in view of (6. 28 a) and (6. 26 a) it is con- 

eluded tha t  

(6. 31) c j = a ' f j = a ' ~ ' e ' k A  ~+1, 

where 
, ~z ~ n ~t)  a ,  ~ n__n," 

(6. 3~a) a = m a x .  o f - - a , - -  + 
(7 6 

By taking ~ > o and et suitably great  one may secure a (from the inequalities 

of foot-note p. 35) to be as small as desired. Accordingly, a' of (6. 31 a) can 
~t C t ~ be made so small tha t  a' /,' < I. We then obtain cj < A ~+1, and one may take 

(6. 31 b) Cj = ~_j+l.  

This completes the induction formulated in coT~,,eclion u, ith (6. ~7)--(6. ~7 b). 

Recall ing the s ta tement  with respect to (5. 5), we conclude that  the series 

r162 ao 
(~. 32 ) ~)(i) (.~?) m Z Z~i) (~Z') = Z ~i (P - - I )  ~'~, i(X) (i = O, I,  . . .  ,l) 

8~0 8=0 

are absolutely and uniformly convergent  for x in B* ([x[ > ~ ;  QI sufficiently 

great). In  fact, the series displayed in the last member  of (6. 32) is dominated by 

= ixl (  A +,I Io  = Z . . . .  [ 

8~0 s=O 

(in /~*; Ix[ ~ Oh); the lat ter  series converges in the indicated reo'ion, inasmuch 

as (6. I 9 b) holds. We have 
l?) \ t t + l ~  , __ l i ~ k  - 1 )  

(6. 33) ] ( ' ) (x) l  < 2 A l x  /xl n - t  ~! ( in / /~;  [xl  > o,; el. (6.6 b)) 
I 

for i = o, I , . . .  n. Clearly the funcliou (~(z), &fined in B* by the above limili)~g 

process and satisfying (6. 33), eonstihdes an 'actual' solution of the tran,~formed 

differential equation (4. 31) (of- Lemma 4. I). 

Exis tence Theoreme 6.1 .  Consider lhe actual d~ff(,rcntial equation ((4.~)). 

Let s(x) ((3. 2)--(3.2 b)) be a formal sohdion o/' (4. 2). Let (4.4) (with (4- 4 a)) be 
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linear dt:g'erential expressio~ 

P 

T(e(x~) =-- e(') (~) + ~,, ( x ) ~  
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corresponding form for  the equation F*~ --  o. Corres~t)ondiJ~g to s (:c) there is a 

m l  
O(n--1) (X) -]- " '" -I- ~)n(X)O? 7' \ k - l /  Q(X) 

[ef. (4. 2Sa), (4-2S), (4. 25), (4. 21)]; 

i t  is assumed that the number 1,,.o of (4. 27) is distinct fi 'om zero. lVe let R denote 

a reqio~, of  the t ex t f i ' om (5. ~ )  to (5-~3). Let  R* denote a regular subregio~ of  

R ./'or ~chieh (5. 39; J -  I, 2 , . . .  n) holds, (el. formulation of  Case I in eonneetion 

wi th  (5.39), as well as (5. 34)). 

Given an integer t, however large (t > t'; t' suitable great), there exists a solu- 

tion y (x) of  1"*~ := o, anal!die in R* a~d such that 

(6. 34) 

here ~ (t) -+ o~ 

(6. 35) 

where 

r  (x) ~ ~(~)(x) (x  i,~ R * ;  to ,~ (t) t ~ , . , ~ ;  i = o . . . .  , ) ;  

, as t ~ ~ .  ~lIore preeisel~j, u'e have 

(~i 

(i : o, I . . . .  J~'), 

1 t 

(6. 35a) ~ ( t , x ) = a o + G ~ x  - ; +  . + a , x  k 

and e(x) is aJ~alytie i~ 1~* and sati,~fies in R* the i.nequa[ities (6: 33). 

We  observe that  the funct ion y(x), involved in the above Theorem may 

conceivably depend on t. The question whether  y(x) does actually depend on t 

is for the present lefg open. I f  !!(:~) is independent  of t, then the asymptot ic  

relat ions (6. 34) will be in the ordinary sense; tha t  is, to infinitely many terms. 

7. The  Second Ex i s t ence  Theorem.  

We cow,sider ~ww Case I I  (cf. the end of section 5). Accordingly,  in B*, 

(7. ~) qj(x) > o ( j =  I . . . .  m), qj(x) < o ( j =  m + I, . . . n), 

and (5 .40 a) will hold; qj(x) is defined in (5. 34)- All the inteo'rations in this 

section will be along a port ion of a fixed ray 1" in R*, say 

( 7 . 2 )  0 = 00. 

As in section 6 one has 
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(7.3) ~o(X)=~-~Ofo(X), 

W e  choose t so t h a t  

W. J. Trji tzinsky. 

(7. 4) ~ ( - - r z - - ~ o  a -{ /o - / -  e) ~ --  2 

L e m m a  5 . 2  may  be t hen  appl ied wi th  a = I ,  y ie ld ing  

1 

(7. s) ~ I,'-~.(~)x-'~.-'~'-~o+~ll~xl <= [e -~e).(*)x-r). . . . . .  - r 'o" -~ ' l  

(on I ' ;  m < X =< ~). I n  consequence of the  second pa r t  of L e m m a  5-2 

l 

(7. s ~) [ I~.-'~.~)x-"~.-~ < I~-'~.(~~* - ' ' -  ..... -"~ 
I v '  

l? 0 

( ,  on r ;  I*1 >= I~ol; I~'ol = %(t) ~,~faoi~,xtl:,, great; Z < ,,,). 

On no t ing  tha~ T(zo%') ) =/~o(x),  f rom (5. 28) we infer  

(7.7) 
where 

(7.7 a) 
Thus  

(ef. (6. 6 b)). 

As before,  i t  is a r r a n g e d  to have ~ t ' >  o. By me thods  like those  employed f rom 

(6. 4 a) to (6 .6  a) we now obta in  

1~>(.~)l~,:olxl"(12-')l:~l.o (x o~ r ;  I , I  >= eo(t)), 

f (c ~t ~-~' (:o max. of 2'o, ')lbz o + do~ o ~/ �9 

(z. s) I< ' ) (x) l  =< ~o lx l ;~k"~ l , l~ ,o  ~" ~ ( i = o ,  . . .  ,~; on r ;  I x l  >_- Co(t)). 

:Now, i t  is noted th.a,t ~, (a,-) is given by a formula subsequent to (6. 7). In  
consequence of (7. g) we ob ta in  the  ana logue  of (6. I I), (6. I I a) 

(7-9) ~ , ( x ) = x - ( ~ , j i ( x ) ,  If,(x) l<=f, (on r ;  I x l>eo~ t>>  ,), 

(7.6) I~-!J- '~(.)l<z01xl~J-1)~- '11xl "0 ( j - ~  . . . .  ,,; x o .  r; I. l>=%(t,) ,  

wi th  

( 7 . 6 a )  " o - - 2 ~ - % - ~ o +  I = ~ Z  . . . .  , Z o - , ~ a ~ f o  
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( 7 . 9 a )  - - f l l - - n ( P - - ' ) + 2 a 0 ,  f l : ~ ' k ' Z  ( k ' f r o m ( 6 .  a ) ) .  I O  

It  is noted that, in view of ( 7 . 6 a ) a n d  (7. 7 a), Co and hence k' can be n~ade 
arbitrarily small, if we take e > o and c0(~ ) suitably great}  W h e n  solving the 

equation T(Zl(X))=ill(x), in view of (7.9)  and (5. 28) it is concluded that 

n I Ip ~ I 
,o) < 

�9 l le-Q~.(~ ' Ix- r~- '~  ( j =  ,, . .  ~,; x on F;  I x l ~ c o ( t > ) ;  

l 

here l : c  o for I ~ Z ~  and l :  ~ f o r m < Z ~ .  By Lemma 5. 2 ( w i t h a : I )  

x 

(on r ;  I=1 ~ .o'.t>;.,  < z =< .). Thus 

f .  

(7. I,) j [ e-(~;~(')x-r' .... - " '+ ' l ld~ l - -<  z,l'-Q"<")x -' ' '  . . . .  -~'~'-~'+'1 

(x on F; [xl>=co(t>; , , , <  Z=<. ) ,  r,:(Co'.t:)~'-( !~)'', 
inasmuch as f l o - - f l l : 2 n ' - - ( t +  i)/k. As before, we choose t so tha t f lo - - f l l<o .  
On the other hand, for I _ - - < 2 ~ m  

I~ -Q~(~) ~-"~-~~'-'~'+~ I --< 7~ I~ -~(x) x-~.-~~'-,~~ I 

for x on I" ( I z l  ~ ~o<t;). Thus, by (7. 5 a) 

9~ 

(7. I, ~) l ]e-Q~.(X)x--~.--~,-~,+~[[dx[ < 7,[e--Q~.(X)x--~z-~,--,'~o+*+'[ 
r  

CO 

(on r ;  Ix l  == ~0<t); Z : , , . . . . , ) .  

By virtue of (7. ~o), (7. ~i), (7- I I u) it is inferred that  

On e  m a y  ;~rrange to  h a v e  a as s m a l ]  as des i red .  

4 
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(7. 12) 

W. J. Trjitzinsky. 

( j =  I , . . .  n; x on F;  Ixl _->,o(t); 2'1 -~'la~.fl). 

In  consequence of (7. I2) and of the inequal i ty obta ined f rom 

T(zt(x)) =f l , (x )  and  of (7.9), one observes t ha t  

I~?) (x)I < .  b z , ~ , l ~  I" ( ~ - ' ) + ~ 1 7 6  + A I x I "  C - ' ) + ~ ~  
Thus  

~ ( ' - 0 1  (7. I3) I~!")(x)l=<e~lxl ~ xl  ~o 

for i = o , . . . n ,  where 
[t  + 1"~ 

n r _  _ _  

(7. 13 a) cl = max.  of 71 Zl, n b 71 zl + f l  (Co (t)) l, k ) 

the  relat ion 

(x on F; [ x [ _-> Co (t)) 

(cf. (7. I2), (7.9 a), (7. II)). 

For  a suitable choice of Co(t ) we have both c o and e~ sufficiently small so t ha t  

(7. I4) l e o l = < A ,  le;I--< A ~, o < A ~  I-" 
2 

Suppose now that for some j ~ 2 we have 

(7. I 5) z ~  ) ( x )  = x i (~. - 1 )  ~ s , i ( x  ) 

(7. I5 a) Ig~,,(x)l <= A*+' Ix l  ~ 

where a o is from (7 .6  a). 

The relat ions (7-15), (7. 15 a)  have 

(7. I3), (7. I4). 
In  view of (4. 3 ~ ) and (4. 3 ~ a) 

,v 

I ]~ ('/;J--1 ( X ) )  - -  K (wy-2 (x?)l --<_ ~ I T,,~ (x) l,  

where 

(8 = O, I ,  . . . j - -  I ;  i =  O . . . .  ~), 

(i = o , . . .  ,~; on r ;  I ~ I >= ~o(t) 

been established for j - ~  2 in (7. 8), 

As before, we write  

or 
(7. i 6 )  wJo_)~. (x) = ~(:) (x) + .  + ~ J ~  (x) = x " - , j -2 ,  ~ (x ) ,  

~ _ 2 ,  o (x) = ~0 , ,  (x) + . . .  + ~5-~, c~ (x). 
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In  consequence of (7. I5 a) we now have 

(7. I6 a) ]wj-2,~(x)[ < [ x [ ~ o ( A + A 2 + . . . ) ~ 2 A I x [  ~ ( a = o , . . . n )  

for  x on 1" (Ix] ~ co(t)). 
By (6. I9), (6. I9 ~) and  (7 - I6  a) 

IT~(x)l < ~ Y, y ,  ICj_l,,.(x) l(zAIxpo)m-1 
too+ " " �9 +mn=m 71 =1 

m 

+ Y. I ~-,, ,.:, (x) ~,-,,,7, (~) I (2 A I x Ioo) "-~ +.-. + I ~J-,,,,(x) �9 �9 �9 ~-~, ;.(x) l. 
71 < 72 = I 

Hence  by vir tue of (7. I5 a) (for s = j - -  I) 

I rm (x)I < ~ q,  [(A~I x I "o + 2 A I~1~) ~ - ( 2  A I x Ioo) m] 

(on r ;  Ixl->-Co(t); cf. (6.9)). Whe,ce by (7. I4) 

I r . ( x ) l  < k q ' ( e A  Ix["~ [ (  * +  2I -AJ - i )  m --I] 

( 2 v~-~ ~ Aj_I <_ - _k,~q,~(zAl~l.~),~Aj-~ (7. I7) <~mq,,C2AIzl~o) ~ I + 2 A  3 - 1 )  

and 

(7" I8 )  [K(Ws_l(X))--K(ws_~(x))[<~(2Alxl.o)~e=2~eAS+~lx[~,~~ 

where 5 is a n u m b e r  independen t  of j and  x, such t h a t  

- 

(7. xSa) y,  mq,~(2AIxl~o)'~-~<=e 
~n=2 

eor ~ on r (1~1-->- co(t)). Consequentb ,  in view oe the inequality ] I/2n(x)] ~ 2', 
f rom (7. I8) and  (5. I4 b) it  is inferred t ha t  

--1) 1 l:,(x)l< 2z'~el~l '~176 A J + .  

Thus  

(z. ~9) 

(7" 19 a) 

~j(~) = x - :~ I  (x), I~ (~)l < ~ (o. r), 

- ~ j =  2 ~o + ~ ( ~ -  ~) - - -  tr j5 = ~ Z~eA~+~ (cf. 7.9a).  
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I n  consequence of (5. 28) and in view of the  relat ion T(zj(x))-~flj(x) 

x 

/ t~  1 l 

( i = o , . . . n - - ~ ;  on F;  I as in (7. :o)). I n a s m u c h  as, by (7. I9U) , f l J=f l~  it  is 
concluded tha t  the  integrals  displayed in (7. 20) are identical  with those in 

(7. :o). Recall ing (7. It), (7. :I  a) one obtains 

(7 .2I )  

( r  . . . .  , ~ - : ;  x on r ;  I~ /~Co( t ) ;  zj = . . ' f ~ . ) ,  

where 71 is f rom (7. : : )  and y~ is f rom (7- I9  a). Wi th  the  aid of (7. 21 )and  of 
the  inequal i ty  

iz?,(x/I ~ ~ i ~,~-,(x)x:~-'> ~-1~1 I~?(~/I + I~(xtl, 
i = 0  

in view of (7. I9), (7, :9 a) it is deduced tha t  

Thus  by (7 .9  a) and (7. 2I) 

(7. zz) I~?(x)l<=~lxf(~-l)l~l .... (x on F;  Ix I ~  %(t)) 

for i ~  o, I , . . .  n, where 

Cj = m ~ x .  o f  7 1 Z J ,  ~1 b71z j  + f j  (c O(t)) \ k ! 

(compare with (7. :3 a)). In  consequence of (7. :9 a), (7- 21),(7.  :9 a) 

(7. zz a) c ~ = m ' Z " A ~  +: ( z " = z Z ' ~ e ;  el. (7. ,8 a)), 

(7. 22 b) m max.  of 7t~2a 2, n*ba~Tt + (Co(t)) '*'-~t+:l 

I n a s m u c h  as 71 is given by (7. : : )  ~nd n ' - -  - - -  < o, it  is observed tha t  m' 

of (7. 22 b) can be made  arbitrarily small by choosing e~ (t) suitably great.  On 
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the other  hand,  2~" in (7. 22 a) does not  increase indefinitely with Co(t). Thus,  

if we take Co(t ) sufficiently great  (but independent  of j) so tha t  

f rom (7. 22 a) we obtain 

(7, 23) 

In con junc t ion  with (7. 22) the 

holds for s = j .  

m'  ; t"  _< I,  

(7. 24) 

(7 .24  a) 

provided eo(t ) is taken s,~ficiently great. 

The series 
lp \ 

(~. 25) ~,~(x): y, x't~-~ ~,,(x) 
$:0 

c j ~ A  j+l .  

inequal i ty  (7. 23) implies thn t  (7. I5), (7. I5 a) 
Therefore  by induction it  has been established that 

~,,(x) -x~(~-O~.,(x) ( s :o ,  ~, . . . ;  i = o , . . .  ~), 

I~,~(x)<=A~+~ixl.o ( i=o , . . . . ;  on r ;  Ixl_->~0(t)), 

(i = o, I, . . . n) 

converge absolutely and uniformly for x on F (Ix] ~ c0(t)); moreover,  in view of 

(7. 24 a) 

(~. ~) i~,', (~) ~ A lx i"(~-')Ix i ~ __< (on r;  Ix I "--- Co <t>) 

for i --  o, I, . . . n. The function e (x) Will be an 'act,al' solution of  the transformed 

equation referred to in Lemn~a 4. I. 

Existence Theorem 7. 1. Let ~ = o be an 'actual' d~ff'erential equation, as 

gwen in (4. I). Let  s(x) ((3. 2)--(3. 2 b)) be a formal  solution, of (4. 2). lVe recall 

the fac t  that corresponding to s(x) there is a linear differential expression T(e(x)) 
(el. (4. 28 a), (4. 28), (4. 25), (4. 2,)). We assume that ln, o of (4. 27) # o. With R 

designating a region of  the text iJz connection with (5. ~ ) - - (5 .  ~3), let B* denote a 

subregion, of  B, as specified in Definition 5. I. Thus, with suitable notation oz~e 

cO 
may assert (5.4o), (5 .4o  a), where q j ( x ) = - -  b i x l  m(Q~.<x)). 

Given an integer t(t  >--_ t'; t' suitably great), however large, and given a fixed 

ray F, 0 = 0 o ,  in B .1 there exists a solution y(x)  of  F ~ = o  a~alytic on F 

(]xi ~ co(t); Co(t) sufficiently great) and such that 

1 Extending to infinity in R*. 
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(7. 27) y(')(x)~s(~)(x) (x on F;  to n(t) terms; i = o , . . .  ~); 

here n (t)--* ~ , as t -*  ~ .  In  detail, one has 

d' + e(x))] (i = o , . . .  n), (7. 28) y(i) ( x ) :  dx---7~ 

where a (t, x) is given by (6. 35 a) and q (x) is analytic on 1" (for I x I >= Co (t)) and 
satisfies on I" the inequalities (7. 26). 

8. The Third Existence Theorem. 
W i t h  

0 
(8. I) q j ( x ) = - o - - - M l ~ ( Q j ( x j  ) (j -- , , . . .  n), 

where the Qj(x) are the polynomials involved in the text  f rom (5- 6) to (5- 7 b), 

Theorem 6. I was concerned with existence results for  if* = o (4- I) for  x in a 

regular  region /R*, in which qi (x) ~ o (~ -= I, . . . n). 

I n  Theorem 7- I we succeeded in obtaining existence results for  F * - ~  o 

when x is merely on a ray F in a regular  region R, in which some of the qj(x) 

are non-positive and others  are positive; thus, qj(x) > o (j = I, . . . m), qj(x) <= o 

(j = m + I , . . .  n), exp. Qj (x) ~ o (3"-  x , . . .  m) in R*. 

We  are now concerned with the possibility of proving existence of solutions 

of ~'* = o, under  the same circumstances as in Theorem 7. I, but  for  x in 

regular  region R',  in place of a ray F. We proceed to construct  suitable regions 

/~'. First,  let R* denote a regular subregion of R (R fi'om the text in conjunction 

with (5 .7 )~ (5 .  I3 c)) such that the qi(x) of (8. I) do not change signs in R*;  as 

a matter of notation one then may write 

(8. qJ > o 
qj (x) < o 

Take R* so that exp. Q j ( x ) ~ o  ( j = 1 , .  . . . m ;  

regular subregion of  R*, such that interior 

defined by the equations 

( j = I , . . . m ;  in R*), 

( j =  m + I , . . .  n; in R*). 

in R*). We let R '  denote a~y 

R '  there extend no regular curves 1 

q 1 
1 If Qj (x) = qj, o x ~  + " "  + qj, ~-1 xk (qj, o = [ qj, o [ exp. (1 / - ! qj, 0) ~ o), then the regular curves 

qj ( x ) =  o ( j  fixed) will possess at infinity the limiting directions satisfying the equation 

~ 
c o s  , 0 q - ~ 0  = o ;  on the other hand, the regular curves q ( j , x ) - ~ o  ( j  fixed) will have at in- 

finity directions 0 for which siu(~j,0 + kf l )  = o .  
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q (j, x) --= OOO ~ ( Q j ( x ) ) = o  ( ] ' =  I, . . .  m; 0 = angle of x); 

moreover, .R' is to be such that, i f  x represents a point in R', the ray 0 = angle 

of x, r->-I*1 (o, ,. looZa; coordinates), is in R', 

With  respect  to the behaviour  of the Qj(x) in R '  we note the following. 

I f  C(x) --~-- Qj(x) (m < j  <= n), then by Lemma 5. 2 

X 

(8. 4) fle<~)u~ I d u l  ~ le~(~/~"+~l (x in R'), 

provided {R (a )=<- -2  and the path of integrat ion is along the ray 0 = angle of 

x. I f  C(x)=--Q~(x)  (I =<j=<m) one has 

0 
(8. 5) HO'x~(C(x))=qJ(x)  > o, e-C('~ ~ o (in R'); 

hence by Lemma 5 .2  we again have 

(8. 5 a) fleCr Id,,I < I~<~/x"+'l 
C 

(1~ I > I ~1/ on the ray O - -  ~ g X e  of  c. for  x 

(I _--<j =< m) is such tha t  

(8. 6) 
, 9  
~- {R (C(x)) = q (j, x) 

O0 

The funct ion C ( x ) = - -  Q~(x) 

does not  change sign in R' .  Let  the two regular  curves (without  common 

points) which form par t  of the boundary  of R' be designated as T 1 and T~. 

I n  view of the s ta tement  with reference to (8. 6), there exists a curve T,{j) 

(v(3)= I or 2) such that ,  when 7(J) is a point  on T,C~), lexp. C(x)l is monotone 

non-decreasing as x varies in R '  from y(j) along an arc of the circle r = ] 7 1 .  

W i t h  integrat ion along an arc r =  I)'(J)l and c (in R') on this arc, we shall have 

(8.7) 
e c 

r 03 r 03 

t r  where a ~ - - a ' +  1 / ~ - i a  and 



56 W . J .  Trjitzinsky. 

(8. 7 a) B (a") - -  upper bound in R '  of e -~' '~ 

moreover, 

/ i (s. s) I~C()~,~ Idul~B('r I 
.+ 

7 (J) 7 (J) 

dul <= B' B(,;')leC(C) c-"'+~l, 

where B '  is the upper  bound of ] 0 ~ -  0.~] (0,---angle of x~, 0~ = angle of x,,) 

for ~11 pairs of points x~, x~ in R'. Wi th  j =< m and C ( x ) - = - -  Qj(x) it  will be 

unders tood that  

/ f i (8. 9) e c'("l ,u ~ d u  = e <'('~) u ~ d u  4- e c('') u ~ d u  

~' (J) 7 (J) c 

(angle of c = angle of x; ] c ] = ] 7 (i) ]; ] x ] _--> ] 7 (j)]), where the integrat ion from 

7(.]) to c is within R '  along an arc of the circle r =  17(3")[ and the integrat ion 

from e to x is along a rectilinear segment. By (8.9), (8. 8) and (8. 5 a) 

(8. io) 

7 (J) 

x in R' ;  a ' - - - - ~ a ) ,  provided [7(J)[ is selected sufficiently great. Inasmuch 

as ~ ( C ( u ) ) i s  monotone increasing along (c,x), f rom c to x,  and ] c ( x ) ] ~ 1 ,  

f rom (8. IO) we obtain 

23 

~, (j) 

Thus, with C(x) = - -  Qj (x) ( j  <= m), 

"l (J) 

where 

(s. i i a) 

< Dj (.")[ c ~ / x ~ l [  (x in R') 

Dj(ct") = upper bound in R '  of e""~ + B') 

[ 0 :  ang'le of x; x in R ' ;  IxI>=r(j); B ( r  (S. 7 a)]. 

In  consequence of (8.4) and (8. II) we have the following result. 
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L e m m a  8. 1. 
We shall have 

(8. i2) 

57 

Consider the italicised statement in connection with (8. 2), (8.3). 

gc 

Idul  =< I e-QJ(~) x"+l l  

(j = m + I . . . .  n ;  x in R'), provided ~ (a) <= -- 2 and the path of integration is 

along the ray 0 = angle of x. Also 

/ 
(8. ,3) ]le-O~l")u"l Idul < D~(~,")I e-Q~(')x "+' I 

. ]  
~,Li) 

( j =  i , . . .  m; X in. J~'; Ixl ->_ ~,(/); 7(J) sufficiently great; a " =  imaginary part of 

D (a,) fi'om (8. I I a)). In (8. I3) 7(J) is a point as specified subsequent to (8.6) 
and the path of integration is as described with respect to (8.9). 

Note.  In  (8. 13) one may replace D(a") by 

(8. 13 a) D = max. of  Dj(a") and I (j = I , . . .  ~r~). 

As before, we arrange to have n' (cf. (6 .6  b)) > o. We have (7. 3) in R'  
and t is chosen so tha t  (7.4) holds. On using (5.28), from the equation 
T(zo(x) ) =rio(X) it  is inferred that  

",+'C-1) +' 
Iz~)(x)] < a2fo ]eq, (~) x ] ] e-qz(x) x-r)'-~176 ~ [ ]dx]  

s 

( i = o , . . .  n - - I ;  in R'). Integrations here and in the remainder of this section 

are along paths indicated in Lemma 8. I. Thus 

(8. I4) ] z ~ ' ) ( x ) ] ~ D z o [ X ] i k k - l t ] x l  ~o ( i = o , . . . n - - , ;  in R'), 

where z o ana  ao a r e  from (7. 6 a) and Ix I ~ yo (t) (yo (t) sufficiently great). In  
consequence of the inequali ty subsequent to (6. 4 a) and of (6. 5) with the aid 
of (8. I4) it  is deduced tha t  

(8. ,5) I,?)(x)l =< zol=l 'C-') lxloo ( i = o , . . . n ;  in R'; Ixl => to(t)), I 
[ (8.  15 a) ro = max.  of  D Zo, n b D z o + fo (to (t))--'. 
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Using  

t h a t  

Thus  

(8. I6) 

(8. I6 a) 

W. J. Trjitzinsky. 

(8. I5) and  repea t ing  the  a rgumen t  f rom (5. 7) to (5. IO), i t  is concluded 

I~,(~)1 < z '~ lx l  " ( ~ - ' )  ~ 7rlxl~'q~ 
m=2 

fl~ (x} = x-f~, f , (x), IA(x) l _-<f,, 

- ~, = .  - ~ + 2 %,  f ,  = Z ~ ~ ,  7~ (70 (t)) (~-') ~q . , .  
m = 2  

I n a s m u c h  as, by (7-6 a), Zo--~ n a~fo and one may  arrange to have a arbitrari ly 
small, wi th  70 (t) sufficiently great ,  i t  is inferred t ha t  7o of (8. 15 a) can be made 

as small as desired; the same will be true o f f  t of  (8. I6 a). 

Since flo --f l ,  ~- 2n '  - - ( t  + I)/k and Ixl--> n(t ) ,  f rom (8. i6) i t  is deduced t ha t  

(8. 17) 

In  

obtain 

, y t  +1~  

I~, (~11 --< I x I-~oA 7", J'  = (70 (t))' " -  t ~ )  

consequence of the  relat ion T ( z ( x ) ) =  fl,(x), of (8. I7) and  of (5.28) we 

inequali t ies like those preceding (8. 14), wi th  zo (x), fo replaced by z~ (x) 
and ~ 7 " ,  respectively. Accordingly,  by vir tue of L e m m a  8. I it  is observed t h a t  

[p_ 3 
(8. ,8) I,(,') (x} I _-< 9 7",, I = l"~k- 'J l  = I ~ ~1-- , ,a 'A 

( i - - ~ o , . . . n - - I ;  in R').. As before, t is taken so that 2 n ' - - ( t +  I ) / k < o ;  
accordingly,  7" can be made as small as desired by suitable choice of  70 (t). W i t h  
the  aid of (8. 18) and (8. 17) i t  is concluded tha t  

Thus  

• - -11.  . `  (V'--'/ ( ~  - -  1) 
I~, ") (=)1 =< ~ ,  b._, Ix) = II ~(,;)(x)l + I~, (=)1 

i=0  

<=l=l"(~-')+~{,,bDT"~, + f,7"lxl-" '}.  

(8. I9) 

(8. 19 a) 

Since y" 

7o(t) and  since 7o can be made as small as needed,  we shall a r range  to have 

x), 'P ), Is(,')( =<r, lx l  ( ~ - '  xl ~ ( i = o , . . , ;  in R'; Ixl>70(t)),= 

~'1 = max. of D 7" z~, n b D 7" zl + f l  7" (70 (t))-"'. 

of (8. 17)' may be made  as small as desired by suitable choice  of 
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(8.2o) 70 ~ A, 71 ~ A'~, 

Suppose that for some j >= 2 

(8. 21) g~i) (x) -----= X i ( ~ - 1 )  ~,,i(X) 

(8. 21  a) I;~,,(x) l --< A,+' I~1'~ 

I 
o < A < - .  

2 

( s = o , . . . j - - I ;  i - o , . . . n ) ,  

(i = o , . . .  , ;  in R'; Ixl ->- ~,o<t~). 

In  consequence of (8 .2I) ,  (8 .2 I  a) we obtain (7. I8), (7- I8 a), valid in R'.  

Hence  f rom (5. I4 b) we infer  

(8. ~ )  I~J(~)l < ~ z ' ~ l x l  ~ + " ( ~ - 0  a~+l (in R'), 

where e is from (7. ~8 a) (with x in R'; I x l ~  no, t>). Whence 

(8. ~2 a) fl~(~)= ~'-a,~(x), I/~(x)l <~---- ~Z'~ea~+'  

and  

(8. 23) I#~(x)l < Ixl-~oJj~ ,'' (cf. (8. 22 a), (8. I7); in R'). 

By (5.28), as applied to T(e~{x))=fl~(z), by (8.23) and view of Lemma (8. ~) it 
is deduced tha t  

(8.24) I~y)(x)l < Dr"z~lx I'([-1)lzl,,o, z~ = ,  a*Jj 

(cf. (8. 22a) ;  i = o , . . . n - - I ;  in R'). I n  place of (8. I9), (8. I9a)  one now has 

(8.25) I ~J:)(x)l < n l x l ' ~ - 9 1 x l  ~o 

w h e r e  

(8.25 a) 

(cf. (8. 24), 
is seen tha t  

Zj--~-Izj~7"' < 2];'~el~7"' AJ+1 
where 

/, = max. of D n a  ~, 

( i = o , . . .  n; in R ' ;  Ix[  ~ 7o(t)), 

7 j = m a x .  of DT"z j ,  nbDT"Zj+~7"(To( t ) )  -~' '  

{8. I7) , (8.22 a)). On t ak ing  account  of (8. 24) and  of (8. 22 a), it  

(e f rom (7. 18 a); z in R ' ; . I  x [ ~ 70 (t)) 

n ~ b a ~ D q- (Y0 (t)) -~' 

I n  consequence of the  definit ion of 7", given in (8. I7) , on.e may choose 7o(t) (in- 
dependen t  of j) so great that 2 2( [c ~ t, 7" <~ i. We then  have 

(8.26) 7J < AJ+l. 
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The  inequali t ies (8.25) , (8. 26) imply t ha t  (8, 21), (8, 2I a) will hold for s = L  
This completes the induct ion,  and one may assert t ha t  the  equat ions 

T (z/(x)) ---- flj (x) ( j  = o, I, . . . )  

can be solved in succession in such a wise t h a t  

(8.27) 
(8 = O, I ,  . . . ;  i = O , . . .  n ;  Z in i~'; Ixl --> to(t)); 

here 7o(t) is to be suitably great ;  the ~,,~(x) are analyt ic  in /t ' .  

e (x) = ~o (x) + ~ (x) + , 

ol~e has (7. 25) and  

(8. ~7 a) I,o(') (x)l < ~ A l x l  ' ( - ' -  ') 
[ t  +lht  

= ~ I x I " -  ~ -v - )  
$ 

, y t + l ' ~  

15,,(*)1 --< A~+~ Ixl  " - t ~ )  

W i t h  

(in R';  Ixl >_- r0(t)). 

As before, Q(x) will cons t i tu te  an analyt ic  solut ion of the  t rans formed  equat ion  

of L e m m a  4. I. 

The  above developments  enable fo rmula t ion  of the  fol lowing result.  

Existence Theoreme 8. 1. Let  s(x) ((3- 2) - - (3 .2b))  be a formal solution of  

(4- 2) and let F ;  = o be the 'actual' differential equation (4. I). Assume that l,,.o 

o f  (4. 2 7 ) #  o. Designate by R '  a region as described in the  italicised s t a t emen t  

in connect ion with (8. 2), (8. 3). 

Given an integer t (t ~ t'; t' suitably great), however large, there exists a solu- 

tion y (x) of  F~.=o analytic in R '  (for Ix[ ~ ~'o (t); 70 (t) sufficiently great), such that 

(8. ~8) 

where n (t) -~ oo with t. 

(8. e8 a) 

y(i)(x)~s(')(x) (x in R'; to n(t) , terms; i = o ,  I, . . . n ) ,  

In  particular, one has 

d~ [eq(X)x~(a(t,x) + Q(x))] ( i = o ,  . . .  n); yli) (x) = d x--- ~ 

here a(t, x) is given by (6. 35 a) and Q(x) satisfies (8. 27 a). 
I t  is observed t ha t  existence of  regions R',  referred to in the  obove theorem,  

is always assured. 

W h e n  the given algebraic differential  equat ion has a formal  solut ion s (x) 

of the  general  type (21 I)--(2. I c), we still shall have existence results  of essen- 
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tially the same form as presented in theorems 6. I, 7. r, 8. I. These results 

can be obtained by the methods already used. Some additional,  but no t  an- 

surmountable,  difficulties are encountered in this connection. No new ideas 

are necessary in the indicated extension; accordingly, we shall not  present the 

details involved in such a generalisation. 

, 

In  this  section and in section I o use will be made 

notat ion.  

Generically {x, ;~} is to signify a series 

(9" I) 

whose 

t inuous 

P r e l i m i n a r i e s  for  Equa t ions  wi th  a P a r a m e t e r .  

of the following 

1 'r 

{x, z} = + + . . .  + . . .  (integer k > o), 

coefficients a,(x) are, together  with the derivatives of all orders, con- 

on a real interval (a =< x ~ b); the series may diverge for any or all x 

(9. 3 a) 

(9. 3 b) 

With 

equation 

(9.4) 

on (a, b) for all ~ ~ ~ .  

I'(a, b: R) will denote the aggregate of the values of x and ~ for which 

(9.2) a<=x<= b and ~ is in R, 

where R is a region regular in the sense indicated preceding (5. 8). 

Generically Ix, ~]~(x, X in F(a, b; R)) is a funct ion asymptotic in F(a, b; R), 

to a terms, to a series {x, ~}; this will be expressed by writ ing 

(9- 3) [x, ~]~ oo {x, hi (x, ~. in r(a,  b; B)). 
ct 

We shall denote by Ix, 4] a function ~ {x, 4} to any number of terms, however great. 

A relation (9. 3) will signify tha t  

1 a - - 1  a 

In-( x, ~')l < b~ (x, ~. in l '(a,  b; B)). 

the above notation in view we shall consider the algebraic d~[ferential 

F(x ,  4, y) ~ ~ f ;  . . . . .  in (x, 4)(y)io(yr . . .  (y{,/),, = o 

/ o ~ , , .  

(o ~ io, . . .  i , ;  i~ + "" + i,~ <= v), where the coefficients are of the form 
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(9. 5) jVo .... ',, (x, 4) ~-- Z m ('o .... ',) [x, 4] (x, Z in F(a, b; R)) 

(the m ( i o , . . ,  i,) integers), the symbol involved in the second member in (9. 5) having 

the generic significance indicated above. Withou t  any loss of general i ty one may 

ar range  to have only integral  powers of Z involved in [x,~] of (9- 5). Amongs t  

funct ions of the form (9. 5) are obviously included polynomials in 4, whose 

coefficients are funct ions of x indefinitely differentiable on (a, b). 

The par t i cu la r  case of (9. 4), when �9 ~ I, t ha t  is, when the equation is 

l inear is of considerable importance,  as it contains as special instances a number  

of classical equations and problems. Impor t an t  earlier work for the l inear case 

of problem (9. 4) has been previously done b y  G. D. B1RKUO~F, R. La~OF~R, 

J. D. TA~ARKIN. 1 A theory,  complete from a certain point of view, of the  

l inear equation (9. 4) has been given by TRJITZI]SSK'~; 2 the  results o f  his work 

(T.~) will be widely u s e d  in the sequel for the purpose of solution of the follow- 

ing analyt ic  problem. 

In  the case when (9. 4) has a formal solution 

s(x, ~)-~eQ(X,~'){x, 4} [cf. (9. I); x on (a, b)], (9. 6) 

where 
h b- -1  1 

(9 .6  a) Q (x, 4) = qo (x) ~ +  ql (x) ~ k § ... + qh-~ (x) it ~' 

[the qi(x) indefinitely d~fferentiable on (a, b); h > o; q~)(x) ~ o], to construct regions 

F(a',  b'; R)[(a', b') sub interval  of (a, b); cf. definition in connection with (9. 2)] 

and 'actual' solutions y (x, 4) such that 

(9. 6 b) 

to a number of  terms. 

Formal  solutions of type 

every n-th order homogeneous 

4)~ 8(x, 4) (x, x i .  r(a', b'; R)) 

(9. 6) are of interest  because it is known tha t  

l inear equation (9.4) has a full set of formal  

solutions of the  type (9. 6). Of course, some or all of the Qr 2~)may be 

zero. a 

By a reasoning of the type used before it follows that,  inasmuch as we 

consider the case when (9.4) has a formal  solution ( 9 . 6 ) w i t h  Q(1)(x, 4 ) ~  o, 

1 For  references  see (T, foo tnote  4). 
2 TRJITZINSKY, T h e o r y  of l inear  differential  equa t i ons  c o n t a i n i n g  a p a r a m e t e r  [Acta ma the -  

mat ica ,  6 7  (I936), I - -5o] ,  in t h e  seque l  referred to as (Ts). Also see (T; pp.  215--219) .  
a I n  sec t ions  9, IO all  t h e  de r iva t ions  are  w i th  respec t  to x. 
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we should confine ourselves to the  homogeneous  equat ion of degree, say, v. 

Thus,  the equation under consideration will be 

(9. 7) 

where 

(9.7 ~) 

�9 ; (x, ~; v) =- ~ ,  ~ ( '  ..... ',) b' ..... ', (x, ~) u(;,> v(;,)..,  v",) = o 
i~ , . . ' ,  i~, 

[o =< i~, . . .  i ,  < n; the  ~(il ,  . . .  i,) integers], 

b' ..... ' . ( . ,  ~ ) =  [x, X] (x, ~ in V(a, b; R)). 

The corresponding formal equation will be 

(9- 8) ~*(~,  ~; y )=-  F ,x , ( '  ..... ',) ~' ..... ' ,(~, x)v(; ,> . . . t , ( ' , )=o  
i l , . . ,  f, v 

~, ..... ;,(~, x) - {~, x} 

(o =< il,  . . .  i ,  < n), where  

(9. s ~) 

In  aecordanee with (9. 8 a) 

oo 

(9. 8 b) ~' ..... "~ (.,  X) = ~ b:~,...', (~) ~-~,  

(x on (a, b)). 

the  b~,...i,(x) being indefinitely differentiable for  a =< x <  b. 

By reasoning of the type employed in section 2 the  fol lowing is established. 

I f  the equation (9. 7) (ae'tually of o~'der .n) is satisfied bythe general 'actual' 
solution of the 'actual' linear differential equation 

(9.9) 

where 

(9. 9 a) 

(9 .9  b) 

the~ 

(9. ,o) 

7 
L(x,  ~; y ) ~  ~,j~(x, ~)y(O = o  

i~O 

the 

( A  (x, z) ~ o), 

d~(x, ~)~ ~i(x, ~)~-~(*'){x, ~} (~(i) integers;  in F(a, b; R)), 

f}Ji(x, ~)~ ~S)(x) (j  = I , . . .  n - - 7 ;  in I'(a, b; R)), 

n--~l j ] 
j.~o [d Y(~+J)), F,(x, x; v)=- = TxJ V(x,  ~; y) ~j(x, x; v , . . .  

q)j being homogeneous (of degree v -  I) in y, . . .  y(~+J) with coefficients of the 
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f o rm ZY[x, Z] (integer Z; x, Z in V(a', b'; R); (a', b') a sub interval o f (a ,  b)). 

The same will hold with respect to (9. 8), with 'actual' replaced by 'formal' and 
Ix, ~] replaced by {x, ~}. 

With  the above in view, i t  is easy to give examples of  equations (9. 7), havi~g 

one or more formal solutions of  the type (9.6), (9.6 a). 
Consider now a series s(x, 2) of the form (9. 6) 

j 

(9. II) s(x,Z)=eQ(~',a)a(x, Z), a ( x , Z ) = ~ a j ( x ) ) ,  e (q(x ,Z)  from (9.66)). 
j=o  

Differentiating formally one obtains 

h 
(9. I2) sO)(x, Z) = eQI< ~') f f  a~ (x, 2); 

(9.  12 a) 61 (x , )~)  = w ( x , ) . )  6 (x ,  ~) + )~ 

From this it is inferred that  

h 
~ 6<(x, ;~), 

~(')1 (x) z ,~ (x, z) = q~)(x) + . . .  + ~ _  
h--1 

k 

(9. I3) 
i h  

(9- I3 a) 

where 

(9. 14) 

and 

(9. 14 ~) 

h 

"~4--I ( i =  1 ,2 ,  . . . ) ,  

1 

6o Ix, z) = 6 (x, z), 6, (x, z) = 6o,, (x) + ~ , , ,  (x) z -  ~ + . . .  (6~" o (x) = 6j (x)) 

6o,, (x) = q~')(x) 60, ~-1 (x), 61,, (x) = q~')(x) 6,. ,_1 (x) + qi')(x) 6o, ,_ ,  (x) . . . .  , 

6 h - - l , i  (X)  = q~l)(X) (7h--1 i--1 (X) -~- " "' "~- q(1) (X) 0"0, i--1 (X); , h--1 

(9. I4 b) 

for m ~ h .  Thus 

(9" 15) 

and, for 6 = o ,  J , . . .  h - - i ,  

(9. 15 a) 

6m, i (X) = 6 (1) i--1 (x) + [@)(x)a,,, i--1 (x) § ... + q(h~l (x) 6m-h+1, i - -1  (X)] 
�9 m - - h ,  

( i ~  I ,  2~ . . . ) ,  

8 
%~(*) = ~ a ( <  i; Z)6~(*) (i = i ,  2 , . . . ) ,  

7=0 
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where  the  a ( . . . )  a re  po lynomia ls  in q~l)(x),.., q~l,)(x). Moreover ,  in view of  

(9. I4 b) (for m = h) and  (9. I5), (9. I5 a), one has  

h 
(9. I6) ah, i(x)--  rio(h, i)a;1)(z) + ~ a(h, i ;  7)at(x) 

7=o 

[~(h, i), a ( . . . )  po lynomia l s  in q!t) (x), . . .  q~,!)--1 (x), q!2)(x)]. 

Using (9- I6) and  the  p reced ing  relat ions,  we obta in  

h41 

(9" I6 a) ( ~ h + l , i ( x ) = ~ o ( h +  I, i)o(1)(x) --~ ~1 (h + I, i) o'~1) (x) + Z a ( h  + I, i ;  r)o'7(x), 
7=0 

where  rio(.. .),  fl~ ( . . . ) ,  a ( . . . )  are  po lynomia ls  in 

q~l) (x) . . . .  q(:)-i (x); q(~')(x), ql ~) (x). 

I n  consequence  of (9. I 4a ) - - (9 .  I 6 a )  by induc t ion  we infer  that ,  for  o ~ 6 ~ h - - 1 ,  

(9. i7) ~h+<,(*) = ~o(h + a, i) <~) (x) + . . .  
h+d 

~,=0 

where  the  coefficients  ~j ( . . . ) ,  a ( . . . )  are  po lynomia l s  in 

q~'> (x), . . .  q~l)_, (x); q~'))(x), q~2) (x), . . . q(2)(x). 

W e  next  obta in  
2h h 

(9" 18) O'2h, i(X) = flo(2h, i)o!~)(x) + ~ a(2h, i; 7)or(x) + ~ a~(2h, i; Z)(I~I) (X) 
7=o 7=0 

I~o (...), ~(.. 4, < (...) polynomials i .  q}~ (.), q?)(*), q~(x)l.  

By induc t ion  in a l a rger  sense i t  is finally deduced  t h a t  

~m,, (x) = ~o (,~, ~) <')(x) + ~ (~, ~) oI,~ (~) + ..- + ~ (~, ~) <!)(x) 

th+ d (t--l) h+c? (t--2} h+d 
+ F~ ~(m, i; ~)o~(.) + E ~(. , ,  i; ~)~,)(x) + ~ ( . ~ ,  i; z ) o ~ ) ( x )  + . . .  

7--0 7=o 7=o 
(9. I9) ,~+~' 

+ ~ ~_ ,  (m, i; ~)o~,-, (x) 
7=o 

polynomials  [ m = t h +  5; ~( . . . ) ,  , j ( . . . )  

for  t =  I, 2 . . . .  and  c~ = o, I 
5 

, . . . h - - I .  

i n  q~ l ) (x )  . . . .  q~t) ( x ) ( j  = o ,  . . .  h - -  I ) ,  

�9 ' " ~ / d  
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By (9. I3) and  (9. 14) 
oo 

(9. 2o) s(")s{") . . .  s( 'v)= e"e (* ,a ) f f '+ ' "+ ;v )~  Z c~ .... ;v (x)), 
j = O  

J 
k 

( 9 . 2 0  a) c~ ..... ~*(x) = ~ aj,, ~, (x) aj,. i , ( x ) .  . . ajv ,iv (x) ( j , ,  . . .  f i  ~ o; j , ~ - . . .  + j ,  = j ) .  
J~ . . . .  J v  

I f  s (x ,  s is a fo rma l  so lu t ion  of (9. 8) one m u s t  have  

(9. 2 i )  

where  

(9. 21 ,.) 

and 

(9. 2I b) 

i~, . . .  i v j = O  

_ _  I l (li .... in tegers)  ~ i  . . . . .  fv  = ~ ( / 1 ,  " " " i v )  "~  ( i  I + ' ' "  + i v )  h _ k- ~' . . . . .  ;, �9 iv  

m+t=j 

t he  bm (i,, . . .  iv; x) be ing  defined by the  re la t ions  

bm(i l ,  . . .  i , ;  x )  --:- o 

(9. 2I  c) 
b ~ k  ( i l ,  " " " i v  ; X)  = b ~  . . . .  iV(x)  

( " ) for  k- # an in t ege r  , 

( f l =  o, I, . . . ;  cf. (9. 8 b)). 

One shou ld  select  h / k  so t ha t  there  are a t  leas t  two  t e rms  of  the  same 

degree  Q in ~, the  o the r  t e rms  be ing  all of degree  ~ Q. Thus,  h / k  mus t  be 

so se lec ted  t ha t  fo r  some par t i cu la r  two  d is t inc t  sets ( % , . . .  a,), (fij . . . .  fir) 

while  

I I~ 

I 1 (for all sets  (il, . - .  iv)). 

Thus ,  p rov ided  fll + "'" +f i ,  # al + "" + av, 

(9. 22) 

while  

h V (& . . . .  fir) - -  V (a, . . . .  a~) 
k (~, + . . . .  ~ ~,) - (6, + . . .  + ~,,) 
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h 
(9 .22a)  ~(i , , . . . i , ) - -~( f l , , . . . f l , )<_--- - -k[( i~  + . . . + i v ) - - ( f l ,  +...+flv)] 
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(for all sets ( i~ , . . .  iv)). I t  is important  to note tha t  admissible values of h/k 

will arise only i f  the second member in (9. 22) is positive. We represent the num- 

ber pairs (i 1 + ... + iv), v ( i a , . . ,  iv) in the Cartesian (x, y) plane, with x---- 

i~ + ... + iv and y = V (iI, . . .  iv). There arises a diagram L of Puiseux-type precisely 

as described in the text  from (3. I5 a) to (3. I7). The polygonal line L is con- 

h 
cave downward. The admissible values of ~ are found amongst the negatives of 

the slopes of the rectilinear segments constituting 

have h ~->  o, only those sides of L will give rise 

slopes are negative. 

L. Inasmuch as one should 

h 
to admissible values -~., whose 

In  the ease when for at  least two dist inct  sets (ill . . . .  fly), (al, . . .  av) one has 

~ + . . .  + ~v = , ,  + . . .  -~ ,v ,  ,~ (e , ,  . . .  ~v) - ,~ ( , , ,  . . .  -v) ,  

tha t  is, when there is a vertex P of L which is 'multiple', we may take for 

h 
any positive ra t ional  number a, provided tha t  L lies to one side of the line 

h 
th rough  P with the slope - - a .  One then will have ~ > o (h, k integers) and 

(9. 22 a) will be satisfied. 

h 
Suppose k- i s  selected as an admissible value according to the above, either 

given by (9. 22) or as indicated above in connection with a 'multiple'  vertex of 

L. One may then  arrange (9.2I)  formally as 

(9.23) F•(x,Z;  s(x,Z))--e'C~(*,a)), ~ 8o(X)+~l(x)J,'[" +~2(x)),--i + . . . .  o, 

r 
where ~ - =  Q. Thus, if s(x, ~) is a formal  solution of /e* = o, necessarily 

(9.  241 ~, (x) = o ( i  = o ,  ~ , . . . ) .  

h 
Corresponding to the value ~ under  consideration we write the equation 

/e~ = o [(9- 8), (9- 8 b)] as follows 
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(9-25) 

W. J. Trji tzinsky. 

do 

F : - =  Y , z ~ ( '  . . . . .  ' , . , y ,  ~ ( i , ,  . . .  ; , ;  ~ ) z  

i t , , . . ,  i ,  v m = O  

k y(i~) . . .  y(q.) 

r *  h . oo 

_ E z ~ - ~ .  ~' ,++;, ,)  y ,  b;(~, . . .  i~; xlZ 
f i  . . . .  i ~  7 = 0  

(of. (9. 21 c), (9. 8 b)), where  

/o  
(9. 25 a) b; (i,, . . .  i,,; x) = / b r - w  (i~ . . . .  i , ;  x) 

wi th  

(9.25 b) 

,y 

k ~(6) . . .  u ( ~ , )  ~ o 

(o < r < w), 

(7 ~ w = w (/1, . . .  i,,)) 

_ r h (, ;  + - . .  + i,,) - ,: ( i , ,  . .  , , )  > o .  w(i, . . . i , )  k k 

i n  view of (9. 25), (9. 25 b) the  equat ions  (9. 24) are  expressible in the  fo rm 

i 

(9.26) &(x) =-- ~_~ ~, b;-t (iD . . .  i,.; x) e~ ..... q.(x) = o. (eft (9. 20 a)), 
i l ,  . . .  i ~  t = 0  

By (9. 26), ( 9 - 2 o a )  and  (9. IS) 

(9. 26 a) ~o (x) ~ ao (x) E (x; q~X)(x)) ~ a: (x) ~ b: (i,, . . .  i , ;  x) (q~l) (x)),,+.. �9 + ,, _ o. 
i t ,  . . .  i ,  

W e  thus  see t h a t  of  impor t ance  is the  characteristic equation E(x; q(ol)(x))=o, 

which  mus t  be satisfied by q~t/(x). The re  is a cha rac te r i s t i c  equa t ion  like (9. 26 a) 

co r r e spond ing  to every  side, wi th  a nega t ive  slope of the  polygon L, as well  

as co r re spond ing  to some l ines t h r o u g h  the  'mul t ip le '  vert ices of  L. I t  is 

reca l led  t h a t  qo(x) is the  l ead ing  coeff icient  in the  po lynomia l  Q(x, ~). 

W e  sh~ll no t  go t h r o u g h  any  f u r t h e r  fo rma l  detai ls  except  to no te  tha t ,  

in view of (9- 26), (9. 2oa) ,  (9. I5), (9. 15 a) and  (9. I9), 

(9- 27) ~i(x) ~ ~i(q~'), . . . q(hl)x; %(x) , . . .  ai(x)) (i = O, I , . . . ) ,  

with  a n u m b e r  of der ivat ives  of q( t ) (x ) ( j=o , . . ,  h - - I )  and  of ~j(x)(j----o . . . .  i) 

involved.  The  a~+~(x)(fl= I, 2 , . . . )  do no t  en te r  in the  express ion for  &. 

L e m m a  9. 1. Consider the formal non linear &fl'erential eq~ation (9. 8), 

h (h, k positive integers) be an admissible .value in accordance with (9 .8b ) .  Let -~ 
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the text fi'om (9. 2I c) to (9. 23). I f  the equation T'*, -~ o has a formal solution 

(9. 28) 

where 

(9. 28 a) 

[ h 1] 
S(X, Z ) = e  Q(x,a) a(x, 2) Q(X, )~)-~qo(X)Z T" q- .q- qh--l(X) 2T" , 

1 
o (~, z) = Oo (x) + o~ (x) z -  ~ + . .  

for x i ,  (a, b), then necessarily q~a) sa@fies the characteristic equation (9-26 a), 

h 
associated with the side of  the Puiseux-polygon to which -s belongs; moreover, the 

di (x) in the formal expa~Tsion (9. 23) will be of  the form described in connection 

with (9. 27); we have & ( x ) =  o (i = o, I , . . . ) .  
The 'actual '  differential  equat ion ~ ; (x ,  ).; y)----o (9. 7) may be b rought  to 

the form corresponding to (9. 25)- Thus,  

r 
(9" 29) F,,(X, Z; y ) ~  Z Z  k 

Q ,  . .  . i v 

where 

(9. 29 a) 

]l 

k (r " "+;,) b' i ..... i,(x, ~) y(i,). . ,  y(i~) = o, 

oo ~ 
b 'i ..... q'(x, ;~)~fl'i ..... ;~(x, 2 ) =  ~,  b.~(i~, . . .  i ,;  x);~ k 

7=0 
(in F(a, b; R)). 

Basing on (9. 28), (9. 28 a), we make use of the t r ans fo rmat ion  

(9. 30) 

where 

(9. 3 ~ a) 
1 t 

o (t; x, ~.) = % (x) + o, (~) z -  ~ + .  + o, (=) z -  ~i 

0(x, Z) being the  new variable. One has 

(9. 3 1 ) 

where 

(9 .31  a) 

d i  . h 

h z- A] Qi(X, ) - ) =  Iv (x ,  Z) q- d a j  Qi_l(X, ~) ( i =  I,  2, . . . ;  Qo(X, Z ) = q ( x ,  J~)) 

with w(x, Z) f rom (9. I2 a). Moreover,  
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(9. 32 ) 

(9. 32 a) 

dt h 
d-xx,[e ~(~,~) a ( t ;  x ,  z)] = ~Q(~,~)Z~ ~ ( t ;  x ,  z), 

[ 
1 r _  

=~0, , ( t ;  ~) +~ , , , ( t ;  x)E-~ + . .  + o~.,(t; z)z  ~ + -  

[ao(t; x,~.)=a(t; x,Z)]. In  consequence of (9. 3o), (9. 3 2a) and (9. I3 a) it is in- 
ferred that  ar,,(t; x) is a~,t(x)(cf. (9. I4)) with the aj(x)( j> t)replaced by zeros. 
t tence,  by virtue of (9-I5 a) and (9. I9), 

(9. 3 2 b) ar, i(t; x ) =  ar, t(x) (i-----o, I , . . . ;  Z - -o ,  I , . . .  t). 

and 

In  view of (9-30), (9. 3I) and (9-32 ) 
. h  

h . , . qv 

y(tl) . . ,  y(~',) __-- e,q(z,a) 2~(' . . . . .  + '")H [aid(t; x, ),) + Oi,(x, Z)]. 
g = l  

Substi tut ing this into the 'actual' equation (9. 29) we obtain 

(9- 3 3) F ,  (x, Z; y) ---- e" q (z, a)Zk Z b't ..... ~', (x, Z)H [ai, (t; x, Z) + 0;, (x, Z)] --~ o 
t l  . . . .  t~ a = l  

(of. (% 29 a)). Using developments of the type employed subsequent to (4. Io) 
it is now inferred that  Q (x, s satisfies 

(9. 34) 

where 

(9. 34 a) 

L(q) + K(Q) = F(x, ),), 

. , _  %(x, ) 
E t", .... 

i i , . . ,  i~ a = l  = 

(9. 34 b) 

(9. 34 c) 

E b" ..... "(x,z}II'o(t;x,z) E Z 
tl, . . .  i~, a ~ l  m ~ 2  j l <  . . .  < J m  

e,.~, (x, z) 
% (t; x, z) 

P(~,  z ) - -  - F, t'" . . . . .  ' ,  (~, z) H % ( t ;  ~, z). 
i l , . . ,  i~, a ~ l  

,79,~ (t; x, z)' 
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lqow, the asymptotic  relations (9. 29 a) imply in part icular  tha t  

(9. 35) 
t __y  t + l  

b', ..... , , ( x ,  z) = ~ b;(i~ . . . .  i,; x) z ~ + z k ~, ..... ,, (t; ~, it), 
7=0 

(9. 35 a) Its; ..... ,,(t; x, z) l _-< ~, (x, Z in F(a, b; R)). 

Hence,  by (9. 34 c), F (x ,  J . )= ~'1 + F.~, where 

t 

(9-36) F ,  (x, )~)---- - -  ~ ~ b ; ( i , , . .  / , ; x ) z  *]I~;,(t;  x, Z), 
i~ . . . .  i~ ] '=0 a = l  

t +  1 

~(t; ~, ~), ~(t; ~ , ~ ) =  y ,~ ,  ..... ,,(t; x,z)H, ,~o(t;  ~ ,z) .  
iz . . . .  i~ a = l  

By the same 
we now obtain 

(9. 37) 

method as involved from (4. I4) to (4- I8) and using Lemma 9- I 

t + l  

[ F1 (x,)~) [ <_-- I it [ k F1 (t) (x, it in F(a,  b; R)). 

Similarly by (9. 36) and (9. 35 a) it is deduced that  

f + l  

(9. 3za) IF , (* ,~ ) l - -< l i t l  k ~,( t )  

Whence 
t + l  

(9. 38) F (x ,  Z)-= Z ~ F( t ;  x, it), 

(x, it in V(a, b; B)). 

(9. 38 a) IF( t ;  x, J.)l ---- Ft (in F(a, b; R)), 

where F~ is independent  of x and ~. 

Using (9. 31 a) one finds 

(9. 39) O* (x,).) -~- wi, o (x, it) O (x, ~.) + Wi, x (x) q(~l (x, ;(.) + . . "  + w;,i (x,)1.) 0("t (x, ~.), 

where w0, o (x, ~) ---- I and 

(9. 39 a) 

(9. 39 b) 

h h--~ j 
w,,o (x, z) = w (x, z) w,_,,o (x, z) + ; -  ~ '" '~ z), w (x, z) = y ,  q},)(x) z--~ $43i--1, 0 ~ ~ 

j = 0  

h 
(D w,,~(x, z ) =  w(x, ~)~,-1,~(~, it) + it k[w;_1,.(~, ~) + ~,_~, ._ ,  (x, 4)1 

( m ~ -  I ,  2 ,  . . .  i ~  I ) ,  
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h 

(9. 39 c) u'i,i (x, Z) = ~. k.wi-1, i-1 (x, Z). 

By virtue of (9, 39 a)--(9. 39 e) 
h 

(9.40) w i ,  ~ ( x ,  Z) --~ Z - ~  ~" r , .  ~ ( x )  

(9.40 a) vi, ,, (x, ~) = polynomiM in Z 

In  consequence of (9. 39), (9.40) and (9. 34 a) 

L (e) = 1,~ (x, Z) (n) + ln--1 (X, Z) e ( n - l )  @ ' ' "  n L l 0 (X, Z) q ,  (9. 4I) 

where 

(9 .4I  u) 

( r e = o ,  . . .  i ) ,  

1 

k =  [x, Z], v;.,(x, 2 ) = i  (in r (a ,  b; R)). 

h 

il, . . .  i~ j = l  a ~  3" 

(U,~ from (4. 21 b)). One has 

h 1 j 

(9.42) Pr(x,  Z) = ;~'~'l, (x, Z) ~/2r,0(t; x) + Pr, ' ( t ;  x) Z - k  + . .  + pj(t; x)~ -~" + . . .  

for x, ;~ in F(a, b; B). The series last displayed in (9.42) is the formal ex- 
1 

pansion in powers of ;~ k of 

(9 .42a)  ~_a fl'i .... ' , ( x , Z ) ~ v i j .  r ( x , ~ ) k % ' I I  ~ a s . i , ( t ; x ) ~  k 
i2 . . . .  i v j = l  a ~ j  s = 0  

(cf. (4. 2! b), (9. 29a), (9.4o), (9. 32 a)). Hence 

(9.42 b) pr, j(t; x) =lo,~,j(X) ( j = o , . . .  t'; t ' ~  ~o with t), 

where the second members are independent  of t. Thus, L(Q) may be expressed as 

h i  h h ]  
(9.43) L(O) X- '~  - v,, (x, z) d"' + p , , - ,  (x, z) ~ d ''-') + .  + po (x, z) z" ~e 

(cf. (9.42), (9.42 b)). We  shall now obtain explicitly p,,,0(t; x)=p, , ,o(X).  Since 
W0, o(X, ~ ) =  I, in consequence of (9. 39c) we obtain v,,,,,(x, Z ) =  I. I t  is noted 

1 

that  pn, o(X) is the term free of ~ in the formal expansion in powers of ~-~' of 

( 942a )  (for 7 = u ) .  Thus, in view of (9. I5) and (4. 2 Ib)  
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,p 

(9. 44) pn, o ( X ) = a o - - l ( x ) Z  j Z (j) bo(i~ . . . .  i,,; x)(q~l)(x)) i'+ "'" +i,--~, 
j = l  ix . . . .  i~ 

where the summation symbol with the superscript j is over all sets ( i ~ , . . .  i,) con- 

taining precisely j elements each equal to n. 

Case 9. 45. There is a closed sub interral (a', b') of  (a, b) in which p,,, o (x) 

of  (9. 44) does ,~ot vanish. 
Case 9. 46. pn, o (x )=p , , , , ( x )~ -  . . . .  p ..... - , ( x ) = o  (x on (a, b); w > o), while 

p,,,~(x) (which is the coefficient of  2 ~ in the expa~sion of  (9. 4 2 a ;  for  7 = n ) )  
is not identically zero. In  this case let (a', b') be a closed sub interval of  (a, b) in 

which p~,~(x) does not vanish. 

I f  Case 9 . 4 6  is on band  we choose t sufficiently great  so t ha t  the  p,,,j(x) 
( j -=  o , . . .  w) are independen t  of t. 

i n  the Case 9 . 4 5  one mmy write L(e) in the  form 

h 

L(q)-~ )~--n-kpn(X, L)T(Q) (cf. (9" 42); p,,(x, ;~), p-~'(x, ;~)=[x, L]), 

h h 

T(q) -- o (~) + b, (x, Z) Z~ d"- ' )  + . . -  + b. (x, z) 2' ~ q, 

(9. 47) 

(9. 47 a) 

where 

(9.47 b) 
1 

b.~(x, Z ) =  Ix, Z ] -  b,, o(t; x) + b.,.~(t; ~)Z ~ + . . .  

here the  l%:}(t; x)(o <=j <='j'; j ' -+ ~ with t) are independen t  of t. 

In  the Case 9 . 4 6  

(9. 48) 

where 

(9. 48 a) 

a~nd 

(9. 48 b) 

with  

1 

L(Q) -- z-~("~+w)p. (x, ~t)T(~), 

i l l  "~ ' ~a, b'; R)); 

�9 I [X ,  Z] ~,, (x, ~) = Ix, z] - p, .... (x) + ,  ~, ,(x,  z) (in F (a' b' ; R)] 

- -  O (n- l )  + . . .  + b,~(x, k ) k  ~ I ' 'h+ ' ' l  e 

(9- 48 c) 
1 

Lt(x, z ) - - [x ,  z ] -  ~,o(t;  x) + b ~ , l ( t ; x ) Z - ~  + 

the b~l,j(t; x ) ( o ~ j  ~ i,; Jl ~ with t) being independen t  of t. 

(in F(a ' ,  b' ; R)), 
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By (9. 34b), (9. 39) and (9. 40) we get an ,nalogue of (4. 29), (4. 30) and 
More precisely, 

K(Q) = K~ (Q) + K 3 (Q) + . . -  + K,  (e), 

n h 

K~(Q)-= ~ k~ ..... "~(t; x, k)II(0(~))~2-""-  ~" 

(4. 3oa) .  

(9. 49) 

where 

(9.49 a) 

with 

(9- 49 b) 

( m 0 - P  . . .  - [ - m n ~ - m )  

k,. ... . .  " . ( t ;  z,  z ) =  [=, z] ~ ~ ' k "  ...... ,..,(t; =)z  * (in r ( a ,  b; Zr m z:~ ra,7 
7=0  

the coefficients in the series last displayed being independent of t for 7--< 7' 

( 7 ' ~  with t). 

Lemma 9. 2. Suppose that s (x, J~) (9.28) is a formal solution for x on (a, b) 

of the formal ,on linear homogeneous differential equalion (9- 8), (9. 8 b), in accordance 

with Lemma 9. I. Let  F ,  = o (9. 29) be the corresponding form of the 'actual' 

differential equation. The transformation 

y = eQ (~, ~)[ , , ( t ;  x, 2) + e (~, z)] ( r  (9- 3o), (9. 30 a)) 

will yield the equation 

(% 50) L(Q) + K(Q)=  F(x,  ~). 

In the Case 9. 45 L(e) is given by (% 47)--(9. 47 b). In the Case (9. 46) L(Q) is 

given by (9. 48)--(9. 48 c). K(Q) is of the form (9. 49)--(9. 49 c) a,~d the function 

F(x ,  Z) satisfies (9. 38)--(9-38 a). 

~o. T h e  F o u r t h  E x i s t e n c e  T h e o r e m .  

With T(@) from (% 47) or (9.48), as the case may be, consider the equation 

(1o. i) r (0 )  = o.  

In accordance with the existence theorems established by T r ~ J I T Z I N S K Y  1 for 
linear differential equations containing a parameter a sub-interval (a 1, bl) of (a', b') 

can be found and a regular sub region B, of R so that the equation (1o. I) 
possesses a full set of solutions yi (x, s (i = I . . . .  n) of the form 

1 (Ta)" 
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(~o. 2) u~(x, 2) = c~(~, ~) ~ ( x ,  z), 

where 
1 

(~o. 2 a) "~ + v;,~ (x) 2 

75 

w (~, 2) = [~, 2]~ ~ v,,o (~) + v;,, (x) 2 
2 

,~ k + . . . .  ia (x, 2) 

for  x, 2 in I'(r b~; R~). In  (Io. 2) the  Q~(x, 2) are polynomials  in 2~ k (integers 

v~ > o) wi th  coefficients indefinitely differentiable for a~ _--< x _--< b~. The  h ighes t  

h 2~(h+~ ) 
possible power  of 2 in Q~(x, 2) is )~ (in the Case 9 .45)  and in the  Case 

9-46.  By choosing t sufficiently great  we arrange to have the Q~(x, 2), as well 

as the  W,i(x) (o = < j < y ;  j '  ~or  with t), independent o f  t. The region 1~ is such 

that no fitnction 

(m.  3) "' ~ ' ("x  Z)) (i, j---= I . . . .  n) 

Such sub regions t~ 1 of  1~ can changes sign for  2 in R1 and for  al ~ x<=bl.  

always be constructed, taking,  if necessary, b 1 - - a  1 sufficiently small. 

Given a, however  large, the solut ion referred to in (io. 2), (Io. 2 a) can be so 

j--1 
(in F(a l ,  bl; /~)) 

cons t ruc ted  t ha t  

( ,o.  4) 

for  3"= I, . . .  n and  
h- 

(I O. 4 a) V~ j - l )  (x, 2) = eq*(~, a)2 I j-a) k ~7,. j-x (x, 2) (h' ~ h or h + w), 

(IO. 4b)  V,,j--l(x, 2) = [x, 2], (in r (a , ,  b,; R1); j - ~  i , . . .  n). 

The de t e rminan t  of the mat r ix  (yl:J-~)(x, 2)) (i, j = I , . . .  n) is 

�9 ~ ( X ,  2)-~-I(y~j--1)(X,  2))[-== e x p .  - - ~ .  l h '  ~" j e , ( x , 2 ) a x  , 

where c~ (x, 2) is by (x, 2) (9. 47 b) or b~ (x, 2) (9. 48 c) and  where the  'constant '  of 
Toge the r  wi th  

(integer co --> o), 

in tegra t ion  may depend  on 2 and is to be suitably chosen. 

(IO. 4a)  this implies t ha t  
1 h' r 

(m.  5) ,r  2) = e~,(~,~)++~(=,~)  2 ~ ( ' -n)~ '  ~d (x, 2) 

1 

(IO. 5 a) d(x,  Z ) =  [x, it] ~ do(z ) + dl@)Z k + .. .  (in I '(al,  bl; ~1); do(x) ~ ~ 
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I t  is noted that do(x ) of (IO. S a) does $?ot vanish on (a~, ba). Thus 

I --[X, )~] 
(IO. 5 b) d(x, 2~) (in F(al,  bl; 1tl)). 

Define the ~, j (x ,  Z) by the matrix relation 

(9,,J(~, z ) )=  (v~J -~) (~, z))-~ (IO. 6) 

One has 

z~(X, )~)yn, j (X, )~)(- -  I) n + j =  

Yl , . . .  y j - - 1 ,  y j + l  , . . .  y n  

y(n--2) qt(n--2) ~l(n--2) ~1(,~--2) 
1 ~ "" " :73"--1 -" J j + l  ' " " " ~n 

which in consequence of (IO. 4 a) yields 
1 h ~ 

(IO. 6 a) z~C(x, Z) yn, j (X, Z ) =  eQt(x ' ) ' )+ '"+Qn(x ' ) ' ) - -QJ(X' ) ' )Z2(n*-- -3n+2)k"  IX,, Z]a 

(in F(al, bl; R1)). 

By (IO. 6 a), (IO. 5) and (IO. 5 b) one finally o b t a i n s  

(IO. 7) 

with 

(m. 7 a) 

I~ is to be 

from (5.6)) we 
equation 

0o.  8) 

~)~,j(x, Z )=  ez-QJ(~, z) Z--~ ~ (n, j ; x, )~) 

~( , , , j ;  x, Z)=  Ix, Z]~ (in I '(a, ,  b~; R,)). 

recalled that  for a solution z of the equation T ( z ) = f l  (T(z) 
have previously obtained (5. 26). Adapting that  result to the 

r (~) = ~ (x, Z) (T from (IO. I)) ,  

we conclude that, provided the integrations can be carried out, a solution z(x,  ;~) 
of (IO. 8) will satisfy 

x 

~u-1) (x, z) = ~ yl/-1) (x, z) ~(~, z)~),,~(x, z ) d x  (j = i, . . .  ,), 
" t = l  

where the ~)n,~(x, •) are given by (IO. 7), (IO. 7 a) and the y~'-l)(x, Z) are of the 

form (IO. 4a), (IO. 4b).  Accordingly, it is observed that  for a solution z(x,  ~) 
of (IO. 8) one has, for j ~ I , . . .  n, 
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z(J -~) (x, ~) = ~ eQ~(~'.~')Z (J-~) "' f " v w ,  j_~(.% z) e-Q,(~,~)z-~, . , ) ( , ,  , ;  ~, z)~(,, ,  Z)du 
~ 1  J 

= ( n - -  I ) - -  ~ ;  el .  (IO. 5), (IO. 7a) ,  (m. 4 b  

here h ' = h  (in Case 9. 45) and h ' = h  + w (in Case 9. 46). 

We shall now proceed to construct  an appropriate  solution of the trans- 

formed equation (9. 50) �9 Unless stated otherwise we shM1 consider the Case 

9 .46 ,  when L(Q) is expressible by (9-48). 

A solution of (9. 50) will be given in a form of a convergent  series 

(io. io) e (x, z)--  ~0 (~, z ) .  ~ (x, z) + . . - ,  

whose terms are suitable determined funct ions sat isfying 

I0. I I) 

(IO. I2) 

with 

(io. i~ a) 

L (~o) = F ( . ,  2), 

L ( ~ j ) -  - K ( , ~ - I ) +  K( ,~ ' j -4  (j-= I, 2, . . . ;  ~47-- 1 --- O) 

,~j (x, z) = ~0 (~, 2) + ~, (x, z) + . -  + ~j (x, z) 

By (9.48) the equations ([o. I l), (IO. I2) may be put in the form 

1( 
A(x ,  z) = (~,,(x, - .~  F ( t ;  x, z) 

1 
flj (x, Z) = (~n (x, Z)) -1 Z k (nh+,,,) [_ K (wj-1) + K (wj-2)] 

In view of (9.48 a) 

~o (x, z) z-~,, ro (.% z), 

(m. I3) 

where 

(io. 13 a) 

(IO. ~3 b) 

( j =  I, 2 , .  .). 

(io. 14) 

Hence by (1o. 13 a) 

(Io. IS) 

(io. I5 a) 

t is taken so that  {~o > o. 

(j----- o, I , . . . ) .  

(j = o, I, . . . ) ,  

(cf. (9. 38 a)), 

(x, Z in F(al, b,; R1)). 

I 
r io= (t+ ~ ) - - k (nh+w) ,  

(in F(at, bl; //1)); 
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By virtue of (IO. 4b)  and (Io. 7 a) 

I ~ , f : ( x , ~ ) [ ,  [[/(n,~;x,Z)l<=pt (in F(a,,b:;R~)). 

t t ence  in consequence of (IO. 9) it is inferred tha~ for a solution z(x,Z) of the 

equation 

(IO.  I6 )  

where ~ > o, we have 
�9 h r 

(lO. ,6a) i~(~_~)(~,Z)l__<p, z l z l :~ -~ ) :  

T (z (z, z)) = z-~  r (x, z) []7('% Z)I ~ 7 in r(a,, b,;/~1)], 

at least for b ~ -  a~ ( >  o) sufficiently small. 

We shall take 

( IO.  18) C 1 = / a l  
[ bi 

Then the integral  displayed in (Io. I6 a) will satisfy 

(io. I9) 

Lemma 10. 1. 

(when ~ Q~'(x, Z) ~ o in F(a:, b~; R~)), 

r~(~>lx ),~ > o in /-'(al, bl; /~)). (when ~,e~ t , J =  

e l  

(in F(al, bl; R~)). 

For a solution z (x, Z) of the equation 

r (z (x, z)) - -  z-~ r (x, z) [1 r (x, z) ] =< r in r (a .  b~ ; R,~], 

where fl is real and R~ is defined in connection with (IO. I7) , one has, for x, ~ in 

F(a:, b:; 1~) and for j := I, . . .  n, 
h t . o3 

(1o. 20) ] # - ~ )  (x, z)] __< ~ 71 z] - ~ + : ( ~ - " ) + ~  (,,: = n(b~ - a~)p,~), 

provided 7 (x, s is integrable in x for x on (a:, b j). This result holds with h '=h +w 

in the Case 9. 46 and with h ' =  h in the Case 9.45. 

C1 

for j =  I, 2 , . . .  n and x, ). in F(a~, bl; R~), provided 7(x,,~) is integrable in x for 

x on (a:, bl). In (IO. 16a) c: is a: or b 1 (see (IO. 18), below). 

Let R~ be a regular sub region of B~ such that no function 

(IO. 17) ~(QJ ' (x ,  ~)) ( j ~ I ,  . . .  n; cf. Def. orB: with resj~ect to (IO. 3)) 

changes sign for x. in R~ and for a: < x ~ b:. Regions R~ will exist in all cases 
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Let  b' be a number,  independent  of x and ~, such that  

(io. 2t) Ib,(x, Z) l ~ b' (i----- I, . . .  n; in F(al, b~; Bz)), 

in the Case 9 .45 ,  and such that 

(~o: 21 a) Ig,(x, z)l _-< b' (i = z , . . .  n; in  F(a~, bl; l:t~)), 

in the Case 9. 46. In  consequence of (9.47 a) and ( 9 . 4 8 b ) f o r  the solution 

referred to in Lemma Io. I one will have 

I 0 .  2 2 )  I~(">(~, z)l ~ ~ b'lzl~('~+~)l,I'-;)(x, z)l + 71zl-a 
t = 1  

(in / ' (al ,  bl; R2)); here w is to be replaced by zero in the Case 9 .45 .  By (IO. 20) 

and (lO. 22) 

(lO~23/ I~ , ) (~ ,~ / i_ -<~ lz l - e+y ,b ' . , ~ , i z i  - ~ - ' r §  h~= ( h ' + o ~ / > o .  

Inasmuch as in R 2 iZ]-->Xo, where for simplicity one may t a k e  Xo_-- > I, it is 

concluded that  

(I0. 24) IZ(') (x, Z) I _-<-~zlzl-g +~-" (n~ : nTl lb '+  i ; h~ from (IO. 23) ) 

for  x, ~. in F(al,  bl; R~). 

L e m m a  10.  2. 

for i ~ o ,  I, . . n 

(lO. 25) 

Using (IO. 24) and Lemma IO. I we obtain 

For the solution z(x ,  ~) referred to in Lemma IO. I 

h' 

I~ ') (~, z) l --< n'~l ~ [-~+ ~ ('-")+~' 

+ ,,, + h ' =  h + x,  i , ,  bx; 
/t: J 

, we have 

in the Case 9.46 .  In (lO. 25) n' is the greater of lhe numbers nl and n~--~nnlb' + i. 

In  the Case 9-45 the same result may be asserted with w replaced by zero. 

On t~king account  of (IO. I5), (IO. I5 a) with the aid of Lemma IO. 2 we 

obtain ~ solution Zo(X , ~) of the first equat ion (IO. 13) such tha t  

] ( t+l)+ h ' i  

(io. 26) i~) (x, z)] =< ~o I z i - ~  ~ +~o (in real, bl; ~)), 

for i = o , . . . n ,  where 
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(IO. 26 a) Co = ~*' to, ho - -  h.~ - -  ( .  - ~) U 

In  view 

x, 2 so t ha t  

(I0. 27) 

of (9 .49 b) there  exists a constant  k independent  of s % . . .  m., 

Ik,'~ . . . . . .  '~,,(t; x ,  z ) l  _-< 

I t  is noted tha t  K,~(q) is given by (9 .49 a) in both Cases 9: 45, 9 .46 .  

and (10. 27) 

IKm(zo(X, Z))l < ,~o"~1 zl ';(t+l)+mh~ E Izl  ~ ' '  +2me+'''+nmn) 
t o o +  �9 �9 �9 + ~ ; , t ~  nt 

Now, for  mo, �9 �9 �9 m~ > o and m o + ..- + m,~ = m the greates t  value of nq+2n~ . ,+  

�9 . + n m ~  is nm.  Thus, with I Z ] >  I, one has 

(in F(al, bl; R.~)). 

By (IO. 26) 

~(l , . + ~ l ? t ? l l  ) 10  $ l l l ~  

E IZl ~ ("~+~''+ < l z l  s qm, 

where 

~ 0 - } -  " " " 4 ~ l l n =  ~11 

and 
2 (t +2)+2ho§ ~v n 

(IO. 29) IKm(zo(x, z31 _-< Z;ff'~q.~lzl ~ ~ (i~ r ( a , ,  b,; R~); , ~ = 2 , . . .  ,,), 

provided we take t so that 

(IO. 29 a) 
W [ I .~U] 

I ( t +  I ) + h o + ~ n  = - - - ( t +  I )+h . ,+  < o .  
k k " = 

2 w 

IK(zo (x, z))l < X, ko I Z I - ~  (t+l)+~,,o+~ ~ ,~ 

By virtue of (9.49) 

(IO. 29 b) 

in F(at, b~; R.2) and, by (IO. 13 b) and (IO. I4) 
I 

(IO. ~0) Ifil (X, Z)] ~ p]Zl-k-(nh+W) lK(Zo(X, ~))1 ~ yllZ]--~ ~ 

where 
H~ 

(IO. 30a) r l - - f f~k0 ,  {]1 = ; ( t  - 4- i ) - -  2110--2~1l 

m =2 / 

(in F(al, bl; R o)), 

I 
* (~ h + ,,) = e flo - -  2 h., + / ~  (.  h - -  w). 
k 
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In consequence of (IO. 3 o) and Lemma IO. 2 there exists a solution z l(x, ~) of 
the equation (Io. x3; j =  I) satisfying 

h' 
(I0. 31) I~i;>(~, Z)[ < C0121 -~'+ ~- ('-")+'~ (CI = ~'z , ;  i ,  r<a,,  b~; n~)) 

for i = o . . . .  n. 
We choose t so that in addition to (IO. 29 a) the inequality 

( i ) 
(I0.32) d ' = - - k I ( t +  x ) + 2 h 2 + 2 k < O  h~.=]c(h+w+~a ) 

is satisfied. 

By (IO. 26) and (IO. 31 ) we have 

(I0. 33) Iz(Jl(x, Z)l--< Co121% I~i'~(x, 2)1 _-__ C, I21"'IZV 

[ I ( t +  I)-l- h' ] i = o , . . .  n; d~ ---- -- ]c ~ i + ho; in F(aa, b~; R~) . 

We take 2, in R~, so that ]~[ >= 2o (>--_ I), where 2 o is sufficiently great so that 

(IO. 34) C, 121 a' __< Co q (for 12 [ > 2 o; d' from (I o. 32)) 

where q is some fixed mtmber such that o < Q <  i. With 2 o >  I one may secure 
(IO. 34) taking t sufficiently great. Whence (io. 33) will yield 

~(o'~ (x, 2) = 2,',~o,, (x, 2), ~')(x, 2) = 2~,~,,, (~, z), (io. 35) 
where 

(io. 35 a) I ~o,,(x, 2)1 _-< Co, I~,, ,(x,  ~)[ =< CoO 

[ I ( t +  x)+ Ikh'i + ho; in r(al,  ',1, tO]  i = o , . . . n ;  & = - - ~  

With a view to proof by induction a suppositio, is ~wu, nmde that for  some 

j >= 2 we have 

(IO. 3 6) 

(IO. 3 6 a) 

for  s = o ,  I, . . . j - -  I. 

On writing 

(io. 37) 

one has 
6 

Z~ i) (X, Z) = Z di gs, i (X, Z) (8 ~ O, I, . . .  j - -  I ; i = o ,  . . .  ,n), 

]z,,~(x, Z)] < Cor (i=o,...,;inr~a,,b,;R~.)) 

~,,~') (x, z) = ~ ) ( x ,  z) + + z~,~ (x, z) - z,,; ,,.~, (x, z), 
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(~o. 37 a) I"~,,, (=, Z) I _--< ~o = . o  
I - - Q  

By (IO. 13 b) and (IO. I4) 

(s--o . . . .  j - - I ;  i = o , . . ,  n; in l ' ( a l ,  bl; R2)). 

1 (nh+w) 1 (nh+w) 
Ib'j(x, z) I _-<plZl r [K(wj_2+Zj_l)--K(wj_2)]<~p[,~[ ~ ~_jlTm[, 

'//t=2 

where (compare with (6. I9)) 

~, j--9. 
too+ �9 �9 �9 + m n = m  a = 0  

- - (z 7f~o{ -~, ~ --oc t//,o~ + ~?~l),.oz ~ -  (,~j%),.o 
ct~O 

[fi : Z ]g~n . . . . .  mn ( t ;  X ,  ~) ~ f (m . . . . .  ran) (Wj--2, 

~ n o , . . .  L a = O  

where 

(m. 38) 

Thus 

(I0. 39) 

= + ZJ- - l "" ) '~ - -  f i  (WJ--~"")m'~] 

n 

[ I ( t  + I ) +  h o ]  + ~ ; a ~  1 f ( ~ o ,  . . .  ~ , )  = ~ - ~ ~ " ~ .  

too+ �9 �9 �9 +run--fit  [ a = l  a = l  

(sets (i ,  . . .  i~) depending on (too,. . .  m.)). 

The difference of products involved above can be expressed as 

m 

7t--1 s =~ 7t ~'l < Y:~= 1 s # 7s, 7 ~ . 

-4- .." + zj--1, ~, z j-1,  f~ �9 �9 �9 zj--1, i m . 

In view of (IO. 36 a) and (IO. 37 a) this differences satisfies 

m 7/t 

I { } I =< Z e ~ - '  (Co Qj-1) + y ,  Q~-2 (Co e~-l)  ~ + " + (Co r  
"ll =1 ?t < 72 ~I 

[(  o j-il ] 
= (r + Co d-~)  '~ - ~ = r ~ ~ + ~o / (in F ( a l ,  bl; B2)). 

With the aid of the inequality subsequent to (6. 22) we finally obtain 
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t m - - 1  Co ~j-A Co 

which by virtue of (IO. 39), (IO. 38) and (IO. 27) implies that 

I r,,, I--< ~ ~ I Z I-'<"~ 1.-}1 
~no+ �9 - �9 + ~ n  ~ m 

_-<lzl'[ -~(r176 I + ~0 O ~0 O ~ I z  

m0, . . .  

1 w 

<= t~oJlzl'[-~('§176 ~', 

t ,~='q,e~o m ( 2 - - e ) m - l ( L J )  

where 

(I0. 4o) 

The above is asserted for x, Z (IZl----> I) in r(a, ,  4; R2). 

Ir~l------ t~OJI Zl ~ [-~-/'+1)+~~ ~ ]  

83 

(q,~ from (I0. 28)). 

By virtue of (IO. 2 9 a) 

--~=~(nh 

~ = ~  

(in I'(aD bl; R2)), 

W 2 ( t +  l ) +  2ho + ~ n ;  § w ) -  

(ill from (IO. 3 ~ a)). 

Applying Lemma IO. 2 to the equation T(z j )=~j(x ,  ~) (of. (IO. 41)), a solu- 
tion zj(x, ,~) is obtained for which 

h' 

(IO. 42) I~?(x, Z ) l _ - < . ' r J l z l  - '~ '+  ~ ( '-~)+~' ' = .  ~ , l X l ~ , l z V  ' 

[ I Ch + w +  )in r(al,  b,; ..)] i = o  . . . .  n; h~----~ , . 

In (IO. 42) di, d' are from (IO. 33) and (IO. 32). 
We take ~, in R~, with I ~1 > ~o, where Z o is so great that 

(IO. 41) 

where 

( I0 .4  la)  yj=(t~ + t 8 + "" q- t,)vO j, 

it is noted that  

(I0. 41 b) 

I ~'.jCx, Z)l _-< :,,.j I z I %  

m :  2, . . . v), 

which implies in consequence of the inequality subsequent to (io. 37 a) that 
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(IO, 43) (~'~ + ' + t~)n':,12p'_--< Co 

One may choose 20 independent  of j .  

Subst i tut ing 7/ from (m. 4I a) in (IO. 42) and applying (IO. 43), we derive 

(I o. 44) zJ!) (x, ~) - -  2di zj, i (x, 2) 

with 

(I0. 44 a) 

I t  is 

determine functions zj(x,~.) ( j = o ,  I, . . . ) f o r  which (m. 44), 
asserted for  

j = o , I  . . . .  ; i = o ,  . .  . n. 

(for 121 >= 20). 

(i = o, . .. n), 

]zj, ,(x, ~)l ------- 6o0 j ( i =  o, . . .  n; in I'(ax, ba; R~)). 

clear tha t  equations T (z~)= ~j (x, 2) can be solved in succession so as to 

(IO. 44a) may be 

Moreover, we shall have 

I ~ ( x ,  2) 1-<_ 1 2 1 - ~ , ~  (rj = ( t ,+  .. .  + t ,)p d)  

for j----- 1 , 2 , . . .  and for x, 2 in F(al ,  b,;R~). The flj(x,~) will be integrable in 
x for x on (a,, bl). 

In  terms of the above functions zj(x, 2) one may now form the series 
(IO. Io). One will have 

oo 

(m. 45) (i) (x, 2 ) =  z~')(x, 2) + el i) (x, 2) + . . . .  Zai ~ z,., (x, 2) 
S ~ 0  

( i -~ o , . . .  n). The fi~nction Q(x, 2) wiU be a solution of  the transformed equation 

(9. 50) and will satisfy 

6o (,o. 46) I Q{;) (x, 2) [ --<-- ~ _  ~ [ 2 [ai (i = o, . . .  n; in F(al,  bl; R2)), 

h'.  
with & :  --a~(t + I) + ~ ,  + h o. By (Io. 26a) and (lo. 23) 

(IO. 46 a) 
i h' I 

d i =  - - ~ ( t  -I- I) -{- ~-(i -t- I) -t- ]g[w-- ( n - -  I)W] (oa from (IO. 5)). 

By virtue of Lemma 9. 2 and of the result  just  formulated it is possible 
to assert the following theorem. 

Existence Theorem 10. 1. Suppose s(x, 2) (9. 28), (9. 28 a) is a formal solu- 

tion for  x on (a, b) of  the formal  non linear homogeneous differential equation (9.8), 
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(% 8 b) (el. Lemma 9. I). Correspondingly the formal  equation may be written as 

(9. eS), (9- 25 a): the ~aetual,> equation ~;  = o may be expressed as (9. 29), (9- 29 a). 

Associated with s(x,  4) the non linear problem has the linear equation T (Q)~-o  

(Io. I), whose solutions involve polynomials Qi(x, 4) (independent of  t, i f  t is suf- 

ficiently great) (eft (IO. 2)). We rtote that existence of  solutions oJ T(~) = o o f  form 

(Io. 2), (Io. 2 a) is asserted for  x, ~ in F(al, b~; Ri) (notation of  the early part  o f  

section 9); (al, b,) is a closed sub interval of (a, b); .g~ is a regular sub region of  

R such that no function (Io. 3) changes sign for  x, 4 in F(al ,  bl; R1). We let R~ 

be a regular sub region of R~ so that no funct ion {R QJ~) (x, 4) changes sign for  x, 4 
in r (a,  bl; R~). 

In  the Case 9. 45 (al, b~) is to be chosen so that p,.o(x) o f  (9.44) does not 

vanish for  al <= x <= bl. 

In  the Case 9. 46 we choose (al, b~) so that p~, ~ (x) does not vanish for  a 1 <= x <= bl. 

Given an integer t (t ~ t'; t' suitably great), however large, there exists a solu, 

tion y(x ,  4) o f  F ,  = o, defined for  x, 4 (141 >= 40; 4 o suitably great) i.n F(a 1, b~; R2), 
such that 

(m. 47) y(') (x, 4) ~ s(')(x, 4) Ix, 4 in F Ca,, b, ;R2); to n (t) terms; i = o , . . .  n], 

where n (t) + ~ with t. More specifically, one has 

(m. 47 a) y(~) (x, Z ) =  cl~ [e~( < a)(a(t; x, Z) + O(x, 4))] 
d x * 

( i =  o, I, . . .  n) wi th  
1 t 

(Io. 47b)  a(t; x, 4)=no(X)  + al(x)Z - ~  + -.- + at (x )~  --k 

and q(x, 4) sati,~es in F(a~, b~; R,,) the relations (m. 46), (Io. 46a).  

Tn the above h ' = h  + w, where w = o  in the Case 9. 45. 

Briefly, the essence of the developments  of this work is as follows. 

W h e n  the given 'actual'  non l inear homogeneous  n-th order algebraic dif- 

ferential  equution / 7  = o has a formal  solution s of the same type  as occurs in 

the corresponding linear case, one can always construct  regions / /  and 'actual 

solutions'  yt of F ,  = o for which 

y~') ~ s (~'1 (i = o, . . . n; in R; to n (t) terms ; n (t)-+ ~ with t). 

Essentially, the regions ure determined by the character  of a certain linear 

problem ussociated with F~ = o. 


