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i n  STocKHOLM. 1 

In  this paper I want  to deduce some uniqueness theorems for harmonic 

funct ions with assigned boundary  values in the uni t  circle. 

I n  this direction there exists a classical result  for harmonic funct ions con- 

t inuous on the boundary,  based on the fact  tha t  harmonic  functions take their  

extreme values on the frontier.  Here,  there was understood by a boundary value 

what  we are going to denote by uP(z)  (cf. 2. I). I t  was shown tha t  a funct ion,  

harmonic in a domain and such tha t  u D-~ o at  all boundary  points, vanishes 

identically. Even discontinuous boundary values, defined as limits along the 

radius, have been considered, especially by G. C. Evans, in his book on the 

logari thmic potential .  The harmonic functions had to be restr icted by one of 

the fol lowing majorants :  
2~ 

lu0,0)l <-M, f lu(r,O)lp O<M 
o 

The aim of this paper is to  consider (i) more general boundary values, such 

as UD, defined in 2.2 or l imits uL along the radius, or even more general curves, 

defined in 6. o; (ii) more general  ma]orants .  

Thus we prove in 7 .4 .6  a result  which in a simplified form runs; 

I f  (i) u(r,  0) is harmonic in the uni t  circle, 

(ii) at  every boundary point 0o, u (r, 0) converges to zero, if (r, 0)-~ (I, 0o) 

in any sector (cf. def. in I.O), 

(iii) for every e > o, there is an B < I  such tha t  [u(r,  0 ) [ ~  e ~/(1-r)'' for 

r ~ R ,  

then  u ~ o. 

Now:  Maca les te r  College, St.  Pau l ,  Minn. ,  U. S. A. 
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I f  m--< I, then we may, in (ii), require  a t  every boundary  point  the con- 

vergence only in a sector, however  small, which contains the radius  in its 

inter ior .  

I f  we define a boundary  value not  as the  l imit  in a sector, but  the l imi t  

a long a curve, especially the  radius, then we are no more able to prove a 

uniqueness  theorem.  Even if these boundary  values are zero, there  can exist  

boundary  points, near  which the harmonic  funct ion is unbounded.  Bu t  we can 

still  prove the fol lowing theorem. 

I f  (i) u(, ' ,0) is harmonic  in the uni t  circle, 

(ii) lira I (r, 0)1< for all 0, 

(iii) lira u (r, 0)_< o--< lira u(r ,  0) for  a lmost  all 0, 
r ~ l  r ~ l  

then  there  is a reducible set of points N, such tha t  u ( r ,  0) takes cont inuously  

the value zero at  every b o u n d a ry  point  which does no t  belong to 9~. At  an 

isolated point  of this set, the analyt ic  funct ion f(z) ,  fo r  which 3~f(z)--u(r,O), 
has a pole of finite order.  

We  recal l  t h a t  a reducible  set of  points is such t h a t  it  contains  no par t  

dense in itself. Now, if  we study the behaviour  of the funct ion  in the neigh- 

bourhood of an isolated s ingular  poin t  (eft section 4), we may hope to find the 

most  convenient  and best condi t ions  for  the non-oecurenee of an isolated singular  

boundary  point.  But  a reducible set wi thout  isolated points is empty. Hence  

these last condi t ions toge the r  with the condit ions of the above theorem,  give u 

number  of very genera l  uniqueness  theorems (eft section 8). 

The fundamenta l  theorem,  a general isa t ion of t ha t  given above, is enuncia ted  

in 7. o. The importan~ not ion  of a res t r ic ted  Poisson In t eg ra l  on an arc of the  

f ron t ie r  is defined in 2.9. I t  describes a, what  we may call, normal  behaviour  

of a harmonic  func t ion  in the ne ighbourhood  of the f ront ier .  I t  makes i t  

possible to use for  such funct ions  the theory  of the Poisson integral ,  of  which 

an account  can be found  e .g .  in Evans '  book. 

]in section 2 there  is a number  of resul ts  f rom the theory of  the  Poisson 

i n t e g r a l  By means of a conformal  represen ta t ion  of a general  domain on a 

uni t  circle, we define the  Poisson in tegra l  for  general  domains (eft 24). The 

most  impor t an t  results  are to be found  in 2. I4, 2. I8, 2 .19 and ~. 2o. 
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In section 3 we deduce some known lemmas for harmonic and analytic 

functions. The chief difference from the classical cases is the use of T. Carle- 

man's extension of LindelSf's theorem and the authors extension of the Pragmen- 

LindelSf's theorem. 

Section 4 is devoted to the study of a harmonic function which is con- 

tinuously equal to zero on the boundary everywhere except at one point. We 

find it convenient to study the problem in a half-plane. 

In section 5, we state and deduce lemmas from the theory of conformal 

representation. 

Section 6 is devoted to lemmas and can be considered as the beginning of 

the proof of the main theorem. We find it stated in 7-o and proved in 7. I 

and 7.2. In 7. oi  and 7. o. 2 I state two particular cases which are important 

for the uniqueness problem of trigonometrical expansions. In 7. o. 3 and 7 .~  

I state alternative conditions for the validity of 7. o. In 7.4 we prove a result 

based on a double system of curves, which might prove useful in many cases. 

We deduce from it, in 7.4.6, a very important result of which I have above 

stated a particular case. 

Section 8 deals with conditions which make isolated singular points im- 

possible and lead to uniqueness theorems. The great variety of different possible 

uniqueness theorems has not been exhausted and the section presents rather a 

few examples for constructing such theorems with suitable conditions. 

In 9. o we state our main theorem for general domains. 

As regards the conditions in 7. o, the first four are essential. Condition (iii) 

may be somewhat relaxed by demanding only lira u (r, (Kr,  ,,~)) > -- oo. Then we 
r ~ l  

have to substitute Poisson Stieltjes integrals in our resoning. I f  we restrict a(~) 

in (iv) to be < o  o, the assertion of the theorem remains the same. Otherwise 

we should get at the end of 7.0 u = R 1 P I c u c  (cf. 2. I7) instead of u = R P I c u c .  

I t  seems that  with our method conditions (v) and (vi) are essential, too. But, 

by using some other method, they might possibly be improved. 

The first result o f  this kind I have explained in a talk at Professor G. H. 

Hardy's Conversation (3lass in Cambridge in December I937. In their full 

generality, the results have been made public when I had the honour to 

be invited by Mittag-Leffler's Insti tute to deliver two lectures on harmonic 

functions. 
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I want to express my deep gratitude to the Swedish government which, by 

granting me during two years a scholarship, made it possible for me to finish 

this paper3 

I. Notation. We denote the complex variable by z ~ - x  + i y ~ r d  ~ or by 

~ - ~  + i ~ = Q #  :~. The functions f ( z ) ,  g(z), h(z) are supposed to be analytic in 

certain specified domains. Their real and imaginary parts, or harmonic functions 

in general, will be denoted by u (z) -~ u (x, y) -~ u (r el~ v (~, V). For functions 

transformed by a conformal representation ~ : ~ ( z ) ,  z = ~(~) we shall use the 

notation f(~), u(~) etc. The domain D(z) in the z-plane and the domain D(~), 

in the ~-plane, are connected by the conformal transformation. The letter C 

is reserved for the unit-circle and H for the upper half-plane. The domains will 

be supposed simply-connected and bounded by free rectifiable Jordan curves. 

The functions a(z), b(z)  will be defined only on F(D) ,  the frontier of D. I f  

the unit-circle C(~) is conformally represented by ~ ~(z) on the domain D(z),  

and if u(~) or a(~) have a certain property A, then we say that  u(z) or a(z) 

>>have the property A in the corresponding unit-circle>>. Further, N(zo)will  

denote a neighbourhood of z o and e a positive number arbitrarly small. I f  z o 

is a point of the boundary F(D) ,  then we say that  z converges to zo in a sector, 

if, denoting by Q (z) the distance of z from F(D), we have lira I ~ (z) > o. The 

geometrical significance of this is well known. All boundary functions in C are 

supposed L-integrable as functions of 0. Generally, a boundary function in D 

will be supposed to 'be >>L-integrable in the corresponding C,>. 

2. I. Definition. Let  u(z) be defined in D(z) and z 0 < F(D). Then a is a 

boundary value of u(z) in z 0, if there exists a sequence {zk} such that  zk < D, 

zk-~ z0 and u (zk)-~ a. All such boundary values in a point Zo are values of the 

function u ~ (Zo). 

2.2. Definition. The number b is a boundary value in the strict sence, if 

there exists a sequence {zk} which converges in a sector to z o and such that  

u (z~) -~ b. All boundary values in the strict sense at the point Zo are values of 

the function UD(Zo). 

1 I am also very much  indebted to Professor  F. Carlson for his  k indness  and for reading the 
manuscr ip t  and calling m y  a t ten t ion  to a n u m b e r  of imperfect ions,  and to Professor  T. Carleman, 

who as Director of Mittag-Leffler 's I n s t i t u t e  has  invi ted me to lecture. 
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2.3- I f  uD(z) is finite in a closed set of F(D) ,  then  uD(z)is there bounded. 

The analogous resul6 for us(z) is false. 1 

2.4. I 

2 . 4 .  D e f i n i t i o n .  I f  

2~ 

I f I - -  r ~ 
u ( r e i ~  I - - 2  r c o s ( 0 - - ~ ) +  r ~a(e'~)d~F' 

0 

then  we say tha t  u(z) is the Poisson in tegra l  of the boundary funct ion a ( z ) . . .  

Short ly we shall write: u ( z ) =  P i c a  (z). I f  u (z) is defined in D (z) and ~ = ~  (z) 

represents conformally C(~) on D(z), then  

is equivalent  with 
u (z) = P I ~  a (~) 

u (~) = P I c a  (~). 

2.5. I f  u (z) is defined in H,  then  the two assertions 

2.5. I 

2 .5 .2  

are equivalent. 

The condit ion 

u (z) = P I . a  (z), 

y f a (x') 
(z) = ~ (x  - x')  ' + v ~ 

--ao 

a~ 

fla(x) ldx J I  + x  ~ <oo  

d :~P 

is equivalent  with the L-integrabil i ty of a(x) in the corresponding C. 

The relat ion z. 5.2 follows from 2. 4. I by a conformal representat ion of 

C o n  IT. 

2.5.  I f  u (z) -~ P I p  a (z), then Up (Z) = a (z) almost everywhe~'e, and for  the 

upper and lower bounds we get the relations 

U.B.  u(z) -< U.B.  a (z) 

L . B .  u(z) >-- L . B .  a (z). 

t Cf. E. LIIqDELOF, Calcul des r6sidus, Coll. Borel, Paris 19o5, p. 121. From the function 
E/~(z) we can construct a Gegenbeispiel. 
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For D - ~  C this is a well known property of Poisson integrals. 1 For a 

general domain, i t  follows from the definition of the Poisson integral (cf. 2.4). 

We  get the existence of up (z) only almost everywhere in the corresponding C. 

Since F ( D )  is rectifiable, this is also, by a theorem of Riesz-Privaloff ~, almost 

everywhere on F(D).  The two inequalities for the bounds are easy deductions 

f r o m  2 .4 -  I.  

2.7.  I f  u (z) is bounded, then u (z) -~ P I p  UD. 

By 2.4, i t  is sufficient to prove it for D ~-- C. But then, it is a well known 

result (cf. Evans, p. 52). 

2. s. I f  

and 
~ a (z) b (z) 2 

almost everywhere on a rectifiable par t  K o f  F ( D ) ,  then ( u -  V) D :  0 at all interior 

points o f  K.  

We may again consider only the case of D =  C. We have u - - v - ~  

= P I c  [ a ( z ) -  b(z)] and at K, which is a part  of the circumference (a < 0 < fl), 

a ( z ) -  b(z)-~ o almost everywhere. Without  changing the functions u(z), V(z) 

we may suppose a(z) and bIz) to be equal everywhere in (a, ~). And it  is a 

classical result that  the Poisson integral converges uniformly to its boundary 

in any interval which is interior to an interva.1 of continuity of the 

function (cf. Hobson, Theory of functions, II.  Cambridge 1926, 

2.9. Definition. I f  there is a z o ~ F ( D )  and a neighbourhood N(zo), such 

that  u(z) is a P I  in N(zo) .  D, then we shall say that u ( z ) i s  a restricted Poisson 

integral s in z0, and we shall write u(z)~-RPID(Zo).  

I f  D I ~ D ,  K ~ F ( D . D 1 )  and u ~ P / D , ,  then we shall say that  u(z) is a 

restricted Poisson integral on K. Shortly u ( z ) ~ - R P I D ( K ) .  

2. io. I f  u =- R P I ( z o ) ,  then u = R P I ( z ' )  for  all z'" < F(D) .  N(zo). 

2. I I. I f  u -~ t~ Pl(zo) ,  then up is. one-valued and finite almost everywhere on 

F(D). 
G. C. EVANS: The Log. Potential,  New York, 1927, p. 40. Corallary. Particular case of 

Fatou's  theorem in Acta math. 3 o. I9O6 , p. 345- 
F. & M. RIESZ, Ueber Randwerte analytischer Funktiouen, Stockholm Congress 1916; LUSlN- 

PRIVALOFF, Ann. de l 'Ecole Normale, T. 42, I925; the simplest proof F. RIESZ, Math. Zeitschrift, 

Bd. 18. 1923. P. 95. 
a W. H. Young has introduced the notion of a , restr icted Fourier series~. Cf. e.g. HOBSON 

II  p. 6116. 
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I f  u ~ - R P I ( K )  then Up is one-valued and finite almost everywhere on K. 

This follows f rom 2.9 and 2.6. 

2.12. I f  the values of UD(Zo) are finite, then u = RPI(zo).  I f  uP(z) is finite 

on g < F(D) ,  then u = R P I ( K ) .  

This is a consequence of 2. I, 2 . 7  and 2 .9 ,  because the values of u D(z) form 

closed set of points and if  it  does not  contain the infinite point  i t  must  be 

bounded. For  the second par t  of the assertion we use the He~ne-Borel theorem. 

2.13. I f  u(z) is harmonic in D~, and D < D ~ ,  then u - ~ R P I ( K )  for a K 

which lies in the interior of D~. 

On such a K, uD(z) is evidently bounded. 

2.14. I f  u(z) = PIp,,  and D < DI, then we have also u(z) = PID. 

By a eonformM representat ion we reduce the case to D = C. Fur the r  u(z) 

is the difference of two Poisson integrals  with positive boundary  functions.  

Hence, wi thout  loss of generMity, we may suppose t ha t  u(z )has  a positive 

boundary  funct ion on F(D1). We put  

The 

if UD,(Z) <-- A 

i f  uD,(z) > A. 

funct ion AU (Z)= PID,(AUD,) aS a funct ion of A is non-decreasing and 

lim Au (z) ~- u (z) 

in Dl (cf. 2.4.1). In  D =  C, AU(Z) is bounded. We have therefore (of. 2.7.) 

2rr  

f l--q* Au (~) = P I c  (Auc) = ~ i - 2 q cos  ( a -  ~1 + 0'" Auc (e"p) d ~. 
0 

I f  A-+ oo, the l imit  in the first member exists. Under  the integral  sign 

there is a non-decreasing sequence of positive functions.  Hence  lim Auc(d'P) 
A ~ a o  

exists and is L-integrable. Thus we get  

2. I5. I f  

u (~) = ~ c  (uc). 

(i) K < F (D. D1) 

(it) u = P I p  up, v = PIp,  vD, 

(iii) K rectifiable and up--vD, almost everywhere on K, 

then ( u -  v) D =  o at all inner points of K. 
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By 2.14, u-----PID. D, and  v : PII). D,. NOW, the result  follows f rom 2.8. 

2.16. I f  u = R H ( g , a < ~ ) )  and v = R P I ( g , a ( ~ ) )  then ( u - - v ) " = o  at  all 

interior points of K. 

This is a corollary of 2.15. 

2. I 7 �9 Definition. I f  
2 ~  

I f I ~ r ~ 
u(z)=~--~ ~ _ 2 r c o s ( 0 _ 9  ) + r~dU(~) 

0 

and U (9) : U1 (9) + U~ (9), where U1 is an integral  and U~ a non-decreasing 

function,  then  we shall say tha t  u (z) is a lower Poisson-Stieltjes integral  and we 

shall  write 

u(~) = l P I ~ ( v ) .  

d U  
I t  is known ~ tha t  uc exists almost everywhere and tha t  i t  is equal to d--O" 

2.17. I. A suffiNent condition for u (z) to be a lower Poisson-Stieltjes integral 

is the existence of an A such that 

u (z) >-- A ,  z < D.  

2. I7.2. I f  

u(~) = 1PX. (u), 

u>-- P I D ( d ~ )  = P I D u . .  

then 

I t  is sufficient to prove the  inequali ty for D =- (7/. I f  U is an integral ,  

then  u = P!~uD. We may, therefore,  suppose tha t  U is a non decreasing 

function.  Then u (z) >_ o. 

Using Fatou 's  theorem we deduce from 

2 ~  

u (z) = lira flJ- f O  g (0 r ~u(ed'r)d9 e ~ l z ~ d  - - 2 o r c o s  - - 9 ) +  
0 

the desired result  
2 ~  

I f I --  r8 
u(~)_> ~ i - 2 r c o s ( O - 9 )  + r ~uc(e'~)dg" 

0 

x EV~.Ss, p. 4 o, Corollary. 
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2. I8. I f  u(z) is harmonic in 1), 

2. I8. I Dk < D, 2fDk + ~F(Dk) ~ C, 

2. I8 .2  u(z) = PIDk UD~ 

2. I8 .3  [ul <_ M for z < F(Dk)D, k =  I, 2, . . . 

2. I8 .4 .  there exists a boundary function a(z), equal to one of the values of UD, 

which is integrable in the corresponding C, then 

u = P I p  up. 

W i t h o u t  lack of general i ty  we may suppose D ~ C, and Dk-Dt  ~ o, k ~ 1. 

I f  the  last  condi t ion would no t  be satisfied, i t  would be easy to const ruct  new 

D~ sat isfying this and all the  previous condit ions.  

The set F(C).  F(Dk). F(D~) consists of at  most  two points. L e t  there  exist  

two points  z,, z2. Then  we can join them by two curves Kk < Dk and Kt ~ D,. 

D1 will be conta ined in a domain bounded by Kk and  a circular  arc Zl, z2, and 

F(D,) can have points  on z~,z2, but  no t  on the complementary  arc. Since K, 

separates Dk f rom zl, z2, F(Dk) cannot  have points on z,,z2. This  shows tha t  

there  are no more common points on F(C) .  

The  points o f  F(Dk) are, there fore  (i) inner  points  of arcs F(Dk) .F(C) ,  

then  uc =-UDk; (ii) points which are not  on F (C) ,  there  [UD] g M; and ( i i i ) those 

of the enumerable  set 
F ( C ) - F ( D k ) .  F(D~). 

k,l 

W e  define 

and 
(z) = max (a (z), - N) 

( z ) =  p r r (z). 

At almost  all the  points of the first k ind we shall have ~vuD k >--UDk, since 

at  those points u ~- R P I ( z ) .  At  the points  of the  second kind we have uDk~--_Ar, 

and the enumerable  set of the points  of the  th i rd  k ind may be disregarded.  

Hence  in vir tue of 2. I8 .2  we shall have ~-u - -  u --> - -  h r - M i n  all Dk. The 

same is clearly t rue  at  the  points  of F(Dk). Hence  we get  z e u - - u - ~ l P I c .  

Since (lvu --  u)c ~ o, 2.17- 2. gives ~.u --  u >-- o or 

u <- Plc ~uc. 
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For N-~ r162 this becomes 

u <-- P Ic  uc. 

By means of a similar reasoning we can deduce the opposite inequality and 

complete the proof. 

2. I9. I f  

(i) 

(ii) 

(iii) 

then 

D ~ %Dk 

for a l l  z < F ( D )  there is an N(z) and a k such that JO .N( z )<Dk ,  and 

u = PIDk "Dk, 

u = PIp up 

We may again suppose D :  C. In every N(z), uc is almost everywhere 

one-valued and finite and, by (iii) and 5.5, L-integrable on F ( C ) . ~ ( z ) .  By 

means of the Heine-Borel theorem it is easy to show that  uc is L-integrable on 

the whole T'(C). 

Without  loss of generality we may suppose that  the 2Y(z) are all circles 

with centre in z. Since uc exists one-valued and finite almost everywhere, we 

can construct, by diminishing, circular neighbourhoods, such that  ue would be 

finite and one-valued at the points F(N(z ) ) .F(C) .  Now, u( z ) i s  bounded on 

F(N(z)) .  C. To every z ~ F ( C )  we make correspond a closed circular neighbourhood 

N '  (z) whose radius is half of that  of N(z). By the Beine-Borel theorem we 

may cover F(C)  by a finite number of N'(z), say N'(zk), k = I, 2 , . . .  K. Then 

K 

D~+I = C -  y ,  X(zk) 
k = l  

is completely interior to C and there is an M such that  lu(z) l ~ M in it. 

:Now it is easy to see that  the conditions of theorem 2.18 are satisfied for 
Dk = ~V(z~). 

2.20. I f  u = R P I ( z )  at all points z of l~(C), then u-~PIDuD.  

OUt of these neighbourhoods (s. 2.9) we can choose a finite number of them 

which completely cover F(D) and such that  in the rest of D, u is bounded. 

Then we can apply 2.19. 

2.21. I f  K <  F(D) is a curve with its both eudpoints and u ( z ) = l ~ P I ( z ) f o r  

all z < ~K, then u = R P  I(K).  
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The proof follows from 2.9 and 2.20. 

2.22. I f  u = P i e ,  then 

uniformly in O. 

We start from the expression 

2r  

I lei~p-~'re i~ 
f ( z )  = ~ j ~ _ r e i  o uc (~) d9~ 

0 

and establish the result by the usual reasoning. 

2.23. I l l ( z )  = u + i v  and u -~- PIH(a(x')), where 

then 

unijbrmly for  z ~ ~ in H. 

t 

The condition for a (x') is equivalent with the L-integrability of the boundary 

function in the corresponding C. We may therefore use 2.22. By 

z - - i  
z 4 - i  

we represent C(~) on H(z). Hence we get 

I I , ( x ' + y ' +  I I' 
i - l ~ p - y  2(x'+ y~+ y +,) 2y 

uniformly for z-+ ~r 

2 . 2  4 . I f  

2 . 2  4. I 

2 . 2 4 . 2  

2.24.3 

Now, 2.22 gives the required result. 

f ( z )  = u + i v ,  

u = P I ~  (a (x')) 

]a(x'))]~<M for x' > N,  

then f ( z )  is bounded for  x > N + 2, o < a < y < b. 
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W i t h o u t  lack of genera l i ty  we may  suppose N ~  o. Then  

where  

and  

(//) u =  ~ + 
(x - x ' )  ~ + y= d x P  ~ ~1 "~- u 2  

• u  f dx" < M lu, l -<-~- (~__ ,)= + y , -  
0 

0 0 

I a(x')[ y~dx'< I",l-<Yz ~,+~,=+ ~ j ,  +~,, 
- - a o  - - q . :  

for  o < y < c .  Hence  u is bounded  in the  s t r ip  x > N +  I o < y < e ,  for  any  

a r b i t r a r y  posi t ive  c. 

Now we use 3. r in a way s imilar  to 3.2 and  we deduce the  boundedness  

of  v in x>N+z ,  o<a<y<b<c .  

3.0. I n  this  sect ion we shall  prove  some resul ts  

ana ly t i c  func t ions  which we shall  use later .  

3. I- I f  ~ u [ - - < M i n  r < . R ,  then  

abou t  ha rmon ic  and  

F r o m  

we deduce 

Ou] 2M 
O r  ~=o, o----- e 

2 ~  

u (r e ~'~ ~ -  I f - , ,  2% d - 2 ,- o cos  (0 - ~)  + r'  u (e e i~) d ~  
0 

2r 

, - o o  - 

0 

Hence  the  desired inequa l i ty  easi ly follows. 

3.2.  I f  I ~ u(z) is ha rmon ic  in D, defined by 

a < a rg  z < 

2 ~ u (z) -~  O (z e) for  z - ~  :r un i fo rmly  in D;  then  

f ( z )  = u + i v = o (z~) 

for  z--* ~ ,  un i fo rmly  for  a + ~ ~ a r g z  ~ f l - -  8. 
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For  ~ = z  o.s, o < s <  I we get  

zo ~o -~o 

0 0 0 

77 

OU 
where ~ is the derivative in the direct ion of the normal  to a r g z  ~---argzo. In  

order to get  upper  bounds for  these derivatives, we use 3. I for  cercles with 

centres in ~, and radius e[~[ .  The rest  of the proof  is s t ra ightforward.  
[ 1 / ]  

3.3. I f  l ~ f ( z ) : u + i v  is an entire funct ion,  2 ~ [ u [ - - e x p  e[z[n+~ yn 

for  all e > o and [z[ > R(e); 3 ~ u(z)-~ o(z TM) for  z -~ or uni formly in a ~ argz<f l ,  

l in tegra l ;  then f(z) is a polynomial  of /-th degree. 

Using 3.2 for  cercles with centre at  z radius y/2 we get 

[( )+:/()1 ' / ]  Y ~ Y < exp , 2 n+2 [ g I n+~ yn 3.3. ~ I f ( z )  l -< exp ~ I z l  + ~ 2 - 

for a l l e > o  and [ z l > R ( ~ ) .  

By 3.2, it follows f rom 3 ~ tha t  

~+~  
for  a r g z ~ - - .  

2 

f(2') = 0 (~,l 4-1 

The funct ion  

I f  g g (,)  = (z) - f ( o )  - V. f (o) . . . . .  (o)] /z, +, 

Now, we use the generalized 
~ + ~  

satisfies 3 .3 .1  and is 0(I) on arg z = - - .  
2 

theorem of Phragm6n-LindelSf  I to the func t ion  g(e~(~+~)/2~ ~) in ~ ( ~ ) >  o. We get  

f ( z )  -~ o (z z q 1) 

uniformly for  all z--* or Hence  f ( z )  must  be a polynomial  of /-th degree. 

3.4. I f  f(z) is a polynomial  of degree l, whose coefficients are real, and 

there exists a sequence of points  {ak} such tha t  I ~ ak -~ oo, 2 ~ J{ f (ak)}  ----- o(ak), 

3 ~ lira arg ag ~-z~x where x is not  a fract ion,  with a denomina tor  less than  or 

equal l, then f ( z )  is a constant .  

1 F. WOLF, An extension of the P. L. theorem, Journal of the London Math. S. I939. 
p. 208. 
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If ,  indeed, the highest  power  in f ( z )  is ekz k (o <-- k <-- 1), then,  if 3 ~ is satisfied, 

~5"{f(ak)} - ek I~ *  I * sin (k ~r x). 

For  k > o, this  would be a cont rad ic t ion  to 2 ~ 

3.5. I f  I~ f(z)  is analyt ic  for  O, <-- 0 <-- 0~, 2 ~ If(z) l _< exp It r <~176 fo r  an 

, > o ,  o ~ _ < o _ < o ,  ~nd I~1 >-R(~), 

3 ~ f ( z )  = o (z ~) for  0 --- O, 

f ( ~ )  = o (,~) f o r  o = o~ 

4 ~ 
(0) = (0 0 0 b + (0, O) 

O~ - -  0 i 

t hen  f ( z )  = o (z'P (e)) uniformly for  01 -- 0 --< 0~. 

W e  prove it  by applying Phragm6n-LindelSf ' s  theorem to f(z)/z'P (-il~ in 

01 ~< 0 --< 0~. 

0 
I 

0 
2 

0 

3 

then 

4.0.  I f  
u (x, y) is  harmonic in  H ,  

u = R P I ( z )  fo r  all z < F ( I t )  

fl-.(~,o)l 
- - m  

oo oo 

- (*, v) = ~ ( .  _ ~)~ + 

QO 

The series ~ ,  an z" eonverges for  all z and J ( a k ) =  o for  all k. 
1 

By 2 ~ and 2. II ,  UH iS one-valued and finite almost  everywhere.  Condit ion 

3 ~ is equivalent  with the in tegrabi l i ty  of UH in the cor responding  C. By 2.5,  

1o (x, y) = P I H  uH and 2 . 7  gives 

(u - p ) ~  = o.  

Hence  s(x ,y)  is cont inuous and equal  to zero on y = o. I t  can be ex tended  

to a funct ion  which is harmonic  in the whole plane by the equat ion 

4. o. I s (x, - -  y) = - -  s (x, y). 



The Poisson Integral .  79 

an  ana ly t i c  en t i r e  f u n c t i o n  I t  m a y  be cons ide r ed  as t he  i m a g i n a r y  p a r t  of  
co 

~ a ~ , z  n which  is r ea l  on  the  rea l  axis. 
1 

4. I. Cond i t i ons  fo r  the  non -ex i s t ence  of  t he  s i ngu l a r  par t .  

4. I . I .  I f  the conditions o f  4. o are satisfied and u (z) = o (z2/y), then u = P I H  UH. 

By 2 .23 ,  we find t h a t  s = o ( z ~ / y )  in  H ,  and  by 4. o. I also in the  

whole  plane.  F u r t h e r  3. I gives  h (z) = s (z) + i t (z) = o (z2/y) which  shows t h a t  

3 ~  [h (z)]  ---  o ~ o r  u = P l ~ .  

4. I. 2. I f  the conditions of  4. o are satisfied and (i) u(z)  = o(zm), (ii) u ( z ) = o  (z) 

or~ a sequence o f  points  {ak}, such that  l im ] a~.l ~- r162 lira a rg  ak -~ 7~ z where z is 
k ]c 

not a f rac t ion  wi th  a denominator less than m, 

then u = P I H  u~. 
p > m  -! 

Cond i t i on  (i) gives,  in the  same way as above,  s ( z ) = ~  / ~ ,a~zk  I .  Now,  
L I A 

we app ly  3.4.  

[ 7 ] 4. I. 3. I f  the conditions o f  4. o are satisfied and  (i) I u I ~ exp ~ I z I "+~ y'~ 

for  all e > o and I z I > iR (e)(ii) u ( z ) =  o (z g+ 1) for  z -+ ~ uni formly  in  a < a rg  z "< fl, 

1 integral,  (iii) there exists a sequence of  points  {ak} such that  I ~ l i m [ a k [ =  ~ ,  
k 

2 ~ u(ak)-~o(ak) ,  3 ~ l im arg  ak-----zx where z is not a f rac t ion  w i th  a denomi~ator 
k 

less than or equal to l, then 

u = P I H U H .  

(i) 

(ii) 

W e  deduce  the  p roof  in  the  u sua l  way  f rom 3-3 and  3.5.  

4 .2 .  I f  

u (x ,  y) is harmonic in  H,  

u = i e P I ( ~ )  fo,- I~l  >- M, 

- - M  

(. _ ~), + v~d~ + v(~) + J ~ a , , z  ~ 
M 1 

(iii) 

then 

z Cf. Carleman's generalization of LindelSf's th. Acta m, 48. 
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where v(z) is harmonic in 

uniformly for z - *  r The 

all k. 

Similarly to 4. o 

Franti~ek Wolf. 

c~ 

series ~ a,,z" converges for all z and r o for 
1 

we have (U -- p)H ---- O for  Ixl ~-M. Hence q ( x , y ) =  

= u - - p = - - q ( +  x , - - y )  defines a funct ion harmonic  in I~1-> M, which may be 

considered to be the imaginary part  of a funct ion g (z) analytic in I zl ~ M. 

This can be wri t ten g ( z ) =  ~ a,~z '~, where ~(a~)----o. We  may, evidently, take 

a 0 = o .  Then we get 
m l  

which proves our assertion. 

4.3. I f  (i) zo is an isolated singular point on F(C),  i.e. i f  there is a circular 

neighbourhood N(zo), such that at all points z < F ( C ) .  N(zo), z 4= Xo, u = R P I ( z )  

(ii) u (z) = o (z -- Zo) - m  in z < C. 2V(Zo), 

then there are constants ck such that 

4.3.1  ] , f u (~) - 3 '  ~k (z - z0?  - ~ ~ - 2 ~. cos (e - <f) + r"  dq~ 
L k = 0  l F ( C ) . N ( z  o) 

is a harmonic function which is continuous in N(zo). C, zero on F ( C ) .  N(zo) and 

o (z - zo). 

I f  we define the functions 

0 Sn-I 
4 . 3 . 2  $1= I q- 2ZTnCOS910 , S n - -  O0 

1 

which are harmonic in C and S D = o at all points of F(C)  except at 0 -= o, then 

the imaginary part  of the sum in 4.3. I may be substituted by a sum of the form." 

4.3-3 

Proof. 

1d$ 

d~ Sk (r, 0 - -  0o), o ~ ( d D  = o .  
k = l  

We represent, by 

. z  + z o 

z - -  z o 
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H(~)  on  C(z)  and apply 4. 2. W e  get  

v f ~-(~) v "~ ~ ~ - (~) = ~ (~ - ~,) + 
F(H) 2r 

Now, we have only to prove tha t  the imaginary  par t  of the series can be 

wri t ten  in the  form which occurs in 4-3- I. But  this is evident f rom 

I 
~ = i  + 2 i Z o ' - -  

z --  z o 

Now we show tha t  4 .3 .3  is an a l ternat ive form. 

W e  have for  z 0 = I 

[ ] [ 8 ~ = 3 ~  ~ + 2 ~ ' ~  = o ~  = - , : 7  - i  z + 
[ z  - -  I J  z - -  1 

Similarly 

s~ o s~ [o~] 
=~o0 ~7 

= _  J(~). 

[ ~ - - - J  i ~ - z . Z  = 3  := 

[ (" + ')2 1 [ I '~ . ]  I 
2 2 ~ _- r 

Now, we shall suppose that ,  for  all k g d - - I ,  we have 

4 . 3 . 4  
( k -  ~)! 

& -Y,c~,,~gC'), c~,~ - -  2~_ ~ 

and we shall show tha t  this is t rue even for  k = 1. We have indeed 

S1 0 S l _ l  __ I k -1  

l - - I  
which is of the required form and cz, 1 - -  et- l , l -1.  The equations 4 . 3 . 4  are 

2 

such tha t  it is clearly possible to express J ( ~ )  by means of S~. We  have, thus, 

proved tha t  4-3 .3  can be subst i tuted in 4-3. I. 

5.0. I n  this section we shall formulate  some theorems 

representat ion.  

5. o . I .  Ostrowski has proved the fol lowing theorems:  1 

on conformM 

i ALEXANDER OSTROWSKI,  Acta math. V. 64, I935, p. IOO, I16, 173. 
6 
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Let  ~---~ q~(s) represent eonformally D(~) on D(z). Fur the r  .F(D(s)) has at  

Zo a ))corner)), i . e .  has two half  tangents ,  which form an inner  angle 7 > 0 .  

Similarly F(D(~)) has a corner at  ~o =~(zo )  with an  angle 7~ > o .  Then 

5 . 0 .  2.  

and 

5.0.3 .  

arg 
Z - -  2' 0 

a rg (z - -So )  + c +  e(Z--Zo) 

a r g ~ ' ( z ) = ( Y  7 -  I ) a r g ( z - - Z o ) +  c + ~ ( Z - - S o ) .  

Where  ~, sl converge to zero, as z-~ z 0, uniformly in a sector. 

5 .0 .4 .  We denote by c~, c~ two arbi t rary positive constants  such tha t  

c 1<c~.  If, now z l ~ z ~  are two points in a sector of s o such t h a t  

then 

c<[ z,-zo[<c  
I Z ~ -  Zol 

when z~, z.2 converge towards z 0. 

5-o. 5. Final ly,  

log [ z -- Zo [ 7 

and 

log [ s - -  Zo[ 7 
- - I  

for z converging towards z o in a sector. 

5.o. 6- (Warschawskil). We denote  by s the length  of F(D) f rom the point  

z o on and by O(s) the angle between the real axis and the t angen t  to F(D) 
•  

at 8. If(i) f {  
o 

exists, (iii) D(z) 

on D (Z), then 

cos 0(s) -- cos ~?(+ O)[ds, 6 > o converges, (ii) l im ]z(s)--Zo] 
8 8 

has all inner  angle Q at z 0 and (iv) ( - ~  q~(s) represents C(() 

t ~Tbe r das  R a n d v e r h a l t e n  etc. Math .  ge i t .  35 (1932) P. 427 �9 
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l ira ~ (~) - -  ~ (~o) 
z.--.,z, o (~' - -  ~O)Zr/q 

exists uni formly for z < D (z). 

5.o. 7. I t  is easy to show tha t  the  conditions are satisfied in the case 

that I o ( 8 ) -  o(+_ o)1 -< c l ~ l  ~ ,, > o. 
For  condit ion (i) this  is evident  and, as for (ii), we have 

8 8 8 

0 0 0 

0 

(o(~)--o(+_ o)) d s [ -~- 

0(8) - o ( •  o)1 ds )  = 8  + O(s~+l) .  

5. o. 8. (Warschawskil).  

Let  F(D) have an arc K with  a continuous t angen t  and z = lp(~), (~--= ~(z)) 

represent D(z) eonformally on C(~). We  denote by K '  an arc in ter ior  to K,  

and by 7' the corresponding arc of /;'(C). 

A necessary and sufficient condit ion for the  relat ions 

] ~o' (z) --  90' (z')] --< const ]z -- z' [ =, z, z' < g '  

I~' (~) - ~' (~')l -< const ] ~ - ~' L ~, ~' < r', 

is the existence of a k such tha t  

5.0.9.  1 O ( s ) - - 0 ( 8 ' ) l - < k l s - - 8 ' l  ~ s , s ' < K .  

5 - I .o .  Definition. The curve K(z) is said to have the property E at  the 

point  z0, if i t  is analytic in a certain neighbourhood of z0, except possibly at  

the  point z o itself. 

I f  it  is not  analyt ic  at z o, then  we suppose moreover K(z) to be such t h a t  

there exists a domain D* = D*, + D7 for which (i) K =  F(D,*)-F(D~) (ii)F(D*) 

has a corner at  z0, and (iii) /)~*, D* are inverse to each other  with respect to 

the analyt ic  part  of K(z). 
We see t ha t  if K(z) is analyt ic  also at  Zo, then  the last  conditions are 

superfluous. 

5. I . I .  I f  ~=~0(z)  represents conformally H(~) on D*(z)and o = ~ ( z 0 ) ,  

then  K(~) is, by our hypothesis ,  the upper  part  of the imaginary axis. :Now 

1. c. p, 447. 
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we see easily, by 5-o. 2 and 5. o. 3, t h a t  K(z)  is rectifiable near  z0, tha t  i t  has~ 

a t angen t  at  to, which is the bissectrice of  the  corner  of F(D*). 

Fur ther ,  i f  t~ is inverse to, z~, then  

lira (arg t~ + arg  t~} ~-~ z t im a rg  z 
z x ~ O  z ~ K ,  Z ~ Zo 

and, by 5- o. 4, 

un i formly ,  i f  z -~  t o in a sector. 

5-I.  2. An immedia te  consequence of  these results  is the following. 

I f  (i) D (t) has a corner  a t  to, (ii) K < F ( D )  has  the  property E at  one side 

of Zo and (iii) ~-----~(z) represents eonformatty H(~} on D(z) so t ha t  o =  ~(z0); 

t hen  ~----q~(z) represents also eonformal ly  H~(~) (>  H(~)), whose inner  ang le  is, 

la rger  t h a n  z,  on D 1 (z) whose inner  angle at  to is larger than  tha t  of D(z): 

Here  K(t )  comes to be in a sector of D 1 (t) and the  results of 5. o are. vat+ff 

in an  'one-sided' sector of D(z) whose one side is K(z) itself. 

5. I. 3. I f  (i) D (z) has a corner at Zo, (ii) K(z) lies in a ,vector at z o a~d has 

the property E at that point and (iii) ~ = q~ (z) represents 1) (~) on 1) (z), th'e~ K(~,) 

has the property ~E at ~ o ~  (Zo). 

Le t  D* (z) ~-- D* (z) + D* (z) be the domain of 5. I .o .  Since K l i e s i n  a 

sector at  to, we may suppose wi thout  loss of general i ty  t h a t  / ) * ~  D. L e t  

D+(t) be represented conformally on H(w), by z ---- g) (w). Then ~=qD(Z)' t rans-  

forms D* (z) into /)+ (~) ( <  D (~)) which, by ~ ----- ~0 (~p (w)) is conformalty represented 

on H(w). Hence D* (~) satisfies 5. I. (iii). 

I t  is easy to see tha t  D* (~) satisfies also (i) and (ii) and K(~} has there- 

fore the property  E .  

5.2. We  shall say t ha t  K(z) has the property E* at zo if  i t  has  the 

property E and if, 

(iv) denoting by s the length  of K(z) from the point t o on and by 0(s ) the  

angle between the t angen t  and a fixed direction, 

5.2. i. 1 0 ( s ) - 0 ( o ) l < -  Cs:, = > o ,  

is fulfilled, for  the  point  s, in a 2Y(zo). 

5.2.2. I f (1)  D(z) has a corner at zo and at each of the parts of F(D), in a 

certain neighbourhood of z0, 
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t 

5 .  : .  3. ,I,o (,s) - , o < ) I - < -  C t s  - s  I ,  - > o 

is satisfied, 

(ii) K ( z )  has the .property :E* ~at ,z o a n d  ,lies in  a sector at  zo 

(iii) ~ =99  (5)represents D ( ~ ) z o n f ~ r m a l l y  on I ) ( z ) ,  

,then K (~) has also the proper ty  E *  ,at ~o = "9 9 (Zo). 

I t  is, by 5. I. 3, e ~ d e n t l y  strffieient to  show Chat /~7(~) satisfies 5.2. I. I t  

i s  .easy ~o verify ~hu*, M C h o ~ h  the  eonstanCs ehange,  t he  proper ty  /~* is in- 

var iant  with the  tran~rformation ~ - - , t o  = ( z -  z0):. 1 

W e  may therefore  uuppose r Ih.e ~ o  parts  o f  F ( D )  at  Zo have a com- 

m o n  "tangent and Chat, therefore ,  5 . 2 . 3  :is val id  no t  only separately on both 

s ides  ,of Zo, bu~ in a ee.r~in #w<)-si,ded ne ighbourhood  of  Zo. 

.Now, we see tha~ the  condi t ions  of  5 .0 .8  are  satisfied. Hence  

~" (z) - -  9" (so) 

(z - zo) ~ 

is ,bo,unded, if z < F ( D ) .  2V(~o). By  the  Phragm6n-Lindel6f  t heo rem it mus t  be 

so .ev.en f o r  z < D .  2V(zo). And  the  same deduct ion can be made for  ~p' (~ )=  

=-I/,99'.(z), in the  corresponding C . N ( ~ o ) .  Hence  99'(z) is in absolute  value 

be tween  *wo posit ive constants .  W e  have, the re fore  

a r g  99' (~) - a r g  99' (5~ ---- o ((~ - -  ~o)~). 

If,  now, 0(a) has for  K(~) the analoguous  meaning  as O(s) has for  K(z ) ,  

then  

8 (~) - -  0~ (O) ----- 0 (s) - -  Os (o) + arg 99' (5) - -  arg 99' (So) = o (s a) + o ((z - -  Zo) ~) 

or, using 5. o. 7, 

o (a) - 0~ (o) = 0 ((~ - ~o) o) = o (<C - Co) ~ = o ( 0 %  

Thus, we  have proved t ha t  K(~) satisfies condit ion 5.2. I. 

5 .2 .9 .  W e  have the  fo l lowing result  similar to 5-I.  2. 

I f  (i) D ( z )  has a corner  of the same kind as in 5.o. 6 a t  z o (ii) K < F ( D )  

has the  proper ty  E* at  one side of z o and (iii) ~ =99(z)  represents  conformally 

H(~) on D (z) so tha t  o = q0 (So), then ~ = 99 (z) represents  conformal ly  also Hi  (~), 

whose inner angle a~ ~-----o is larger  than  z,  on D, (z), whose inner  angle at  Zo 

is larger  than tha t  of D (z). 

i WARSCHAWSKI ,  1. c. p.  446. 
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Further, instead for 5. o. 5, Warschawski 's more precise result 5. o. 6. holds 

in D (z). 

5.3. Let  ( = o < D ( ~ ) <  C(~) and ( a < O < f l ,  r = I ) < F ( D ) . F ( C ) .  By  

z = ~ ( ~ ) ,  C(z) is represented eonformally on D(~), in such a way that o=~p(o).  

Then -do >- I for a < O < f l .  

Since ~ (~) is analytic on (a, fl), ~ '  (~) must exist everywhere. By the theorem 

of Julia-Caratheodory 1, we have, for a < ~o < fl, e~~ = ~(d~~ and z ----- 9(~) 

, I - -  - Ig l - "  > ( e . o / I  ! . 

If we put  z=~-----o,  we get 

5.3. ~. I f  a (~) is a boundary function of  1)(~), which is integrable on. (a, ~) 

and bounded on the rest of .F(D),  then it  is integrable in the eorre~lwnding C(r,O). 

We have indeed 

flaIo)lao= fto(,)la, la l<_ f lo(,)ld, 
o ( d  ~) = " 

and on the rest of F(C)  it is bounded. 

5.4. For application of our uniqueness theorem to general domains we 

shall use a result proved by W. Seidel. = 

5.4. I. I f  z = ~ v ( ; )  represents conformally a convex 1)(z) on C(;), then 

I z ~ '  (z) [ is increasing on every radius. The boundary function, thus defined, 

is almost everywhere finite and greater than a certain positive number. 

5.4. 2. I f  z = ~p (~) represents conformally a domain with bounded ~outer 

curvature~ 1) (z) on C (~), then ] ~0' (~)l is everywhere greater than a certain 

positive number. 

This is a generalization of the preceding result and of another of Seidel's 

theorems. The outer curvature in a frontier point is the reciprocal value of 

the radius of the greatest circle which goes through the point and is completely 

x Cf. e .g.  NEVANLINNA: Eindeut ige analyt ische Funkt ionen,  p. 52. 
2 Ueber Ritnderzuordnung bei konformen Abbildungen,  Math. Annalen,  IO4 (I931), pp. 212~ 

217, 222. 
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outside D. By �9 linear transformation, which transforms this circle into 

the unit  circle, we reduce this theorem to the theorem of gulia-Caratheodory 

(cf .  5 . 3 ) .  

5.4.3. I f  a(z) is a boundary function, integrable on F(D), and D has a 

bounded outer curvature, then a(z) is integrable in the corresponding C. 

The proof is identical with that  given at the end of 5.3. I. 

5.5. I f  K < F(D) is nnalytic and K '  < K completely interior to K, then 

the L-integrability of a (z) on K '  is equivalent with the L-integrability of a (z) 

on the arc in the corresponding C. 

If ~ =  ~0(z) represents conformally C(~) on D(z), then, on K' ,  ]q~'(Z) l is 

between two positive constants. Hence the result readily follows. 

5.6. Let D(z)(< C(z)) be a domain bounded by ~ curve K(z) ~oining the 

points e i~, d: ,  and by the circular arc between those points. At ei% K(z) 
has the property E and D(z) an inner angle Q. If  z < / ) ( z ) ,  z ~ e i~ and 

; ~-~v(z)(z = ~p(~))represents H(~) on D(~), (o0= ~(e~'~)), then 

I 
5 . 6 .  r. - o ( ~ r  (F/T)) I - I ~ l  
for any positive e. 

If, moreover, K(z) has the property E* at g% then 

! 

~-I~1 
Proof. By applying 

from 5. o. 5 

5.6.3. 

Since the 

first the intermediary transformation ~ = ~-1, we get 

(~) - e i~ = 0 (~-~:~+~), (~' (~)-~ = o ( ~ + ~ / : ~ + q .  

circular arc has also the property E* at e i~ these relations are 

valid uniformly not only in a sector but, by 5. I. 2, for all z < D (z). 

:Now, let z-~ re  i~, z*= e in• be two points lying on a circle with centre at 

d ~. Then we get 

- I~--~] < 2 a r c  (z,  z*)  -< -2 ~,oma~ IV' /C) I"  I C - C'1-1  -< o (C~ '~ + "  ~C/~)). 

Thus 5.6. I is proved. 

In order to deduce 5.6.2 we have to use the more precise result of 

Warschawski (of. 5. o. 6). Hence we shall find instead for 5.6.3, that  
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and  

5 .6 .4  

are between two 

as above. 

Franti~ek Wolf. 

I 
finite positive constants.  The rest  of the proof is the same 

6.0. In  the unit-circle C(r, O) we define, by the equation O = K ( r ,  4), a 

system of  curves /s which shall satisfy the following conditions." 

i ~ The function K( r ,  4) is continuous as a function of  two variables, and 

periodic, with the period 2 ~c, in i," 

2 ~ K ( I ,  ~ ) ~ - ~  and (dK/dr)~=t is finite; 

3 ~ The curve 0 = K(r ,  ~) has the property E* (el. 5. o. I) at the point  r - -  ~, 0 = L 

6.0. I. A consequence of the definition is the uni form convergence of 

K(L~) to K(40) as ~,~-~ ~o. 

6 .0 .2 .  The second condit ion in 2 ~ signifies geometrically tha t  no curve 

is t angen t  to the circumference of the unit-circle. 

6. o. 3. I f  we say tha t  u(z) has a property in (a, fl), then  we mean tha t  it  

has ~hat property in the domain bounded by the circular arc a--< 0--< fl and by 

K (a), K(~). 

6. ~. Definition. We shall say t ha t  u (r, 0) satisfies condit ion A if (i) i t  is 

harmonic in C and  (ii) lira ]uIr  , K ( r ,  4))1 is finite for  all ~ except for  those 
r ~ l  

belonging to an enumerable set ~. 

6. 2. I f  u(r,  0) satisfies condit ion A, then for every perfect  set ~, there  is 

a number  M o and a section (~. (a, b), such tha t  

lu (r, K(r, --<Mo for X < (a, b). 

Since u(r,  K(r ,  )~)) is a cont inuous funct ion of r and ~, the set 

(M) = l im/~'  [1 u (r, K(r,  ~))l <- /If ,  r --< O] 

is closed. F rom (ii) it follows tha t  

lim 9A (M) > C (&) 

and in part icular  t 

1 We put ~ ) = Z 0 n .  
1 
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[ lira ~ ( M ) +  O~ . ~ = ~ .  
M ~  1 J 

Mo 

Hence follows the existence of a M o such that  9A (3/o) + ~ 0~ is dense in a 
1 

section of ~. But, then, even ~[ (3/o) must be dense in a section ~ .  (a, b). The 

rest follows from the closure of ~[ (2[0). 

6.3. I f  u (r, 0) satisfies the condition A, then the inner points of "the set 

of points a, for which u ~ l~t)I(et~), form an open everywhere dense set  ~ .  

By ~, we shall denote the closed set complementary to ~). 

If  we take ~ = (a, b) in 6. 2, we see that  u D is finite ~.t a partial :interval 

of (a, b), and since this is arbitrary it follows that  u" is finite at an every- 

where dense set of points. By 2. I2, ~ is, therefore, also everywhere dense. 

6. 4. If  u(r, 0) satisfies the condition A and ~ = ~ +  ~,  where ~ is per- 

fect and ~ reducible, then, if ~ is not  empty, we can find a closed interval 

(a, b), containing a section ~1 of ~ ,  and having no points of ~ in its interior. 

Further, there exists an M, such that 

6.4. I. 

for ~ < ~31. 

In  one 

[ u (r, KCr, ~)) [ _< M 

of the intervals complementary to ~, there exists a section of ~. 

To this we apply 6.2. 

7.0. Theorem. I f  

(i) u (r, O) is harmonic in C, 

(ii) the curve K(,~), defined in 6. o, forms with the circumference the angle fl(O) 

(iii) lira l u (r, K(r, "~))l is finite for  all O, except for  the points of an enumerable 

set ~. 

(iv) lira u (r, K(r, ,9)) --< a(,9) --< lira u (r, K(r,  ,9)) where a(~) is L-integrable, 
~ ' ~ 1  r---~ l 

(v) for every ,~ and ~, there is a N(e~),  such that 

I u (r, 0)[ --< exp [e/(I--r)~/2, ~(~)] for (r, O) < N(e i a), 
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(vi) for every ,9 there exists an angle A(,9): Cl(I--~') ~ 0 - - , 9  ~ ei~(I--r ) hating 

K(,9) in its interior, such that 

for (r, O) < A (,9), . (,9) integral, 

then u = B P I ( z )  (cf. 2. I) for  all z < F ( C ) ,  except for the points of  a reducible set ~. 

Remark.  Without  changing the conclusions, it is possible to introduce a 

reducible set ~1 for the points of which no conditions need to be satisfied. We 

may, indeed, by the following reasoning, show tha t  in every complementary 

interval of ~1, there is only a reducible set of singular points. The final set of 

singular points is again reducible. 

7. o. I. In  order to illustrate by simpler examples the meaning of the theorem, 

we enunciate two particular cases. 

I f  (i) u(r,O) is harmonic in the unit circle C(r,O), 

(ii) lira l u (r, 0) 1 is finite, except at the points of an enumerable set ~, 
r ~ l  

(iii) lira u (r, O) _< a (0) _< lim u (r, O) where a (0) is L-integrable, 

(iv) u (r, O) ~-- o u,dformly for all O, 

then u = R P I ( z )  for all z < F ( C )  except for the points of a reducible set ~t. 

This theorem is fundamental  for application to the uniqueness theory of sum- 

mable trigonometrical series (eft F. Wolf, On (C, k) summable tr igonometrical  series). 1 

7. o. 2. I f  (i) u (x, y) is harmonic in the upper half-plane H, 

(ii) lira l u (x, Y) I is finite except at the points of an enumerable set of points gJ, 
y ~ O  

o o  

- -  f la(x) l (iii) lira u (x, y) ~ a(x) <-- lira u (x, y), where j I + x ~ dx  < ~ ,  
y~O y~O 

(iv) u ( x , y ) =  o(y - ' (x ) )  uniformly in any finite interval ( - - X ,  X); 

then u ~ BPI ( z )  for all z < F(H) except for the points of a reducible set of  points 9t. 

This theorem is equally fundamenta l  for the uniqueness theory of (C,k) 

summable tr igonometrical  integrals. 

I t  is deduced from 7. o by the conformal representation of H(~) on C(z). 

I t  is easy to a e ~ n e  suitable K(`9). 
Proc. London Math. Soe. S. 2, Vol, 45, 1939, P. 328. 
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7 .0 .3 .  I f  the  first four  condi t ions of  7. o are satisfied and  

O'~v(r,O) 
u (% O) = Or,~O,~_,,~e 

where v(r ,0)  is a hurmonic  func t ion  con t inuous  in C + F ( C ) ,  then  the  resul t  of 

7. o holds good,  wi th  n ( ~ ) - - n .  

F r o m  3- I i t  follows indeed t h a t ,  

' < - ~ ( i - ~ l , o l ? f  I v ( * ) - ' ( ~ ~ 1 7 6  ~-~T~ol; 
Iz--zol =1--1 zol 

s imilar ly  fo r  h igher  der iva t ives  

0 n y 

o~,  oa . -~  = off - I*o  I)-".  

Hence  7.0 (v) and  (vi) are satisfied. 

7. o. 4- I f  the  first  four  condi t ions  of 7. o are satisfied and  

R 2 ~  

(,I f , , >  
0 o 

t hen  the  resu l t  of  7. o holds good,  wi th  

2 
~, (~) = m + - -  

P 
W e  have  indeed 

2K, 

,u o,o,l=l f u r,o do I 
0 

,R 2 r  

o o 

R 2zr 1 

<- f f 'u(r,e)l'rded,'] 
0 o 

F u r t h e r  for  an a rb i t r a ry  e > o there  exists a ~ > o such t h a t  

f f l  - r ) ~  I u (,-, e ) I ~ , - e ,  �9 d e  < 
D 

if the  a rea  of D is less t h a n  6. 



92 Franti~tek Wolf. 

Now, we take a R such tha t  the  area of / ~ < r < I  is less t han  (I. Then ,  

2 R + I  
for  all r >  , ~he circle C~ round  ( r , 0 ) w i t h  the  radius 

3 
domain  and we get  

, o r  

I - - r  o 
- - - -  is in  the  

2 

1 

[ + , f f  ] u(r,O)~) ~ ( i - - - - r  ]u(r ,O)lPrdrd8 ? 
Cr 

1 
r :22+~p f I+ dr dO] ? 

c~ 
2 1 

,~rt+ -- -- 
. 2  P ~ P  _< 

2 

u (r,0) = o ( I  --  r) -m-~/p. 

:7. i I f  

+(i) :(a, fl) is an in ter~al  of  ~ (el. 6.:3), 

(ii) u(r, K(r, a)) is bounded,  

~ii) :7 .such tha t  a < y <  8, and  ~ucY,7) is finite 

bounded, 

and the re fo re  u (r, K ( r ,  ~)) 

(iv) D = E [ K ( r , a )  < O < K ( r ,  7), o < r <  t] + / ~ [ , "  < B] ' ,  a n d  z =  9(C) is the  
.r, ~ r ,  0 

conformal  represen ta t ion  of D(z) on H(,~), ,such tha t  

, ,  ~ = ~ ( o , ) ,  o = ~ (o ) ,  
t hen  

7. t. ~ ~ (C) = p(C) + .8 (C) 

where  

7. i. 2 p (~) = p i n  u u  

and  
k ~ n(~). fl(a)/n--~ 

7.I.3 Z ak q. 
k ~ l  

7 .1 .4 .  Fu r the r  there  is an  angle B(a) :  - - ~ x < ~ 9 < ~  1 in which p(~)=o(~) 
uniformly for  ~-~ ~ .  

R < I, but so large that D should be connected. 
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The funct ion u(z) is, an  R P I  at  the points of K(a) and K(fl) (cf, 2, I2) 

except possibly at  their '  e~ldpoints e i~, el:. From the definition of ~ it follows 

t h a t  u=.RPIc (e  t~) a:<:c}<fl. By 2. 9 and 2. I4 we have also u--~RPID(e~). 
The only possible sin~u,l~r point  of u(z) on F(D) is, therefore, e% Condition 

(iv) shows tha t  4. o (ii), is, satisfied. 

The domain D satisfies the cond i t ions  in 5.3 and by  7, o (iv) and 5.3. I up, 

which exists a lmost-everywhere on F(D);  is integrable in, the  corresponding C. 

Hence 4. o (iii) is sa,tisged, and 4. o gives, 7: I. I and 7.1.2'. 

Le t  the i n n e r  angt, e of D a t  e ~ be denoted, by e (--<~'(~), cf, 7 .0 (ii)). No.w, 

w~e, use the second' pa.rt of 5.6 and we g,et: f r o m  7. o (v) 

/'u,(r l! = I-(z)  I -< exp [d(;z--r)~/ ':  /~ - <  

7. I. 5 ~ exp [e,~g/2:~ ̀ sin-~J2~: ' (arg ~,)']. 

exp [a~: ~: s i re1 a rg  ~]. 

We deduce, i~ a similar way from. 7'. o (vi} the  existence of an~ angle  

o < arg ~ < ~ i,r, which 

7- I. 6 u (r = 0.(r (:~:)/@ 

From 7. I,. ~, 7- I. 2 and 2.23 i t  fo.l.tow, s thab 7. r. 5 and 7. I. 6 are valie~ a~so 

for s (~). No,w, 3- 3 gives 7. I. 3- 

By 5 . 2 . 9 ,  ~ : ~ ( z )  represents a D ~ ( z ) > D ( z )  on D , ( ~ ) > H ( ~ ) .  Fu r t h e r  

D~ (~) ~ H(~) has a positive a ,g ]e  a t  ~ below the real positive axis and may be 

supposed to be so small tha~ Da (z) - -  D(z) < A (e) (cf. 7. o (vi)). Then, by 7. o (vi) 

and 5.o. 6, there is an angle --  d < a rg~  < 6 in Dx(~) in which u : o(~e'*(~)/~). 

In  --  ~/2 < arg~ < ~/2 we have, by 3 .2 , f (~ ) -~  u(~) + iv(~)=a(~en(~)/z). Further ,  

by 7. 1.3, h ( ~ ) =  s(~) + it(~)-~ o(~e '~r and therefore also g(~)~-p(~) + iq(~)= 
= o(~e.,~(,)/~) in the same angle. 

Since we know from 2.24 and condit ion ( i i ) tha t  g(~)~-o(I)for any constant  

positive J (z ) ,  we can apply 3.5- We get g ( ~ ) :  0 (~) in a certain part ial  angle 

B(a) :  - - 8 ~ < a r g ~ < ~ .  Thus,  7. I . 4  is proved. 

7.2. Proof  of  7. o. I f  the conditions of 7 .0  are satisfied, then so is 

condit ion A of 6, I. I f  the set of exceptional points is not  reducible, then, by 

6.4, there is an interval  (a, b), such t h a t  the exceptional points in (a, b) form a 

perfect set ~ ,  and there is a constant  N such tha t  

7.2.1 lu(r,K(r,~))[ <~ 2( 
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for ~ < ~ .  We shall show tha t  this is impossible, by deducing tha t  u~-l~PI(a, b), 

which is an obvious contradiction to the existence of ~ (cf. 6.3). 

Le t  a < ~ t  be a lef t -hand endpoint  of an interval  of ( a , b ) - - ~ .  Then 

all the  conditions of 7. I are satisfied. We can find a sequence of points {ak} 

such tha t  a k < ~ l ,  a k < a k + l  and l i m a ~ = a .  From 6. o . I  we know tha t  K(ak) 
converges uniformly to K(a). Hence for  all sufficiently large k, K(ak) intersect  

the nearer  side S of the angle B(a,z) (cf. end o f7 .  I ). We  call C(a,z)the 
angle formed by S and the bisseetrice of tha t  part  of B which lies outside D. 

(Then  B ( a , ~ ) i s  asymptot ical ly --~1 -< arg ~ ~ - - ~ ) .  The parts of K(ak)which 

lie in C(a,z) converge uniformly to e~'% In  H(~) there Will correspond to the sides 

of C(a,z) two curves K~,K2, which asymptotical ly form an angle (~/2, and to the 

parts of K(ak) correspond curves K~ which join K~ and K 2 and converge uni- 

formly to infinity. On g ~ ,  we have, by 7.2. I, [ u [ <-- N and by 7. I. 4, s(~) = o (~). 

But, by 7.1.3,  s(~) is a polynomial  to which we may apply 3.4. This shows 

tha t  s(~) is a constant  which is, by 7. I. 3 equal to zero. 

Hence 

reasoning we can apply to a r ight -hand endpoint  of any interval  of 

Hence we have proved t ha t  u=RPI(zo)  for all Zo<F(D(a,~)), 
A similar 

(a, b) - -  91 .  
where D(a,~) denotes the domain bounded by K(a), K(~) and the circular arc a, ft. 

By 2.20 this is equivalent  to u = PI~(~,~). The condit ions of 2. I8 are satisfied 

for D(a,b)  (cf. 5.3). Hence we get the desired contradict ion u = PID(,,b). 

7. 3. The theorem 7. o remains valid, if we subst i tute  (ii) by 

(iia) the curve K(~), defined in 6.0, has the property E ~ and forms with the 
circumference an angle which is less than fl(O). 

We have used the property E* in using 5.2. I to establish 5.6.2 and 7. I. 5. 

Now we use 5.6. I in the same way and we get 

Since fl(0) is this  t ime less t han  e, we take ~l so small as to make 

(e + ~1)/2 ~(0) ~ I/2 and we get  again 

l u (~)[ ~ exp [e ~1/2. sin--i arg ~]. 

1 Instead of E*. 
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7-4. Let  Ll(2 ), L~(2) be two systems of curves in C(r, O)given by the equa- 

t ions 0-----Lk(r, 2) which satisfy the fol lowing condit ions:  

(i) The funct ions  Lk(r, ~), k = o ,  I are cont inuous  as funct ions  of both  

variables and periodic with the  period 2 7r in 2, 

(ii) Lk(I ,2)----2,  and ~dLt~ , ~ d L ~  d r  ]~=1 ~d-~7" ],=x are finite and different from each 

other. That  means tha t  the two curves have at  (I, 2) tangents ,  different from 

each other  and from tha t  of the circumference.  

7 . 4 .  I. T h e o r e m .  1 I f  

(i) u (r, O) is harmonic in C(r, O) 

(ii) lim [u(r ,  Lk(v, 2))] is .finite for k : o, I except for 2 in an enumerable 

set of  points Y) 

(iii) there is a function a(O) integrable in (o, 2 ~r), lying between the larger 

upper and the smaller lower limit of  u(r, Lk(r, 0)), k = o, I as r---~ I 

(iv) for every ,9 and e > o  there is a _Y(d "9) such that [u I <--exp [e/(I _ ,.)~/2e], 

where e (~) is larger than the largest angle between a LK and the circumference; 

then u ~ R P I(z) at all z < F(D) except at the points of a reducible set ~. 

7.4 .2 .  We  shall say tha t  u(r, 0) satisfies condit ion B, if lim ]u(r, L~(r, #))1 
r ~ l  

exists finite for k -~  o, I at  all & except those of an enumerable  set  of points ~. 

7 .4 .3 .  I f  u(r ,  0) satisfies condit ion B, then for every perfect  set ~, there 

exists a 3 I  o and a section @. (a, b) such tha t  

l u (r, L (r, --< M0 

for ~ < ~ . ( a ,  b) and k : o ,  I. 

Since u(r, L~(r, ~)) is cont inuous  in (r, #) 

~ I ( M )  - - - l i l n  ~[ l~ tg ( r ,  nk(F, a)) I ~ M ,  ~ = o, I, r ~ Q] 
~ 1  5 ~ 

is closed. The rest  of the proof  is similar to tha t  of 6.2.  

7 .4 .4 .  I f  u satisfies condit ion B, then the results of 6.3.  and 6. 4. hold 

good. In 6.4. I, K( r ,  ~) should be subst i tu ted  by Lk(r, ,9), k---~ o, I. 

7 .4 .5 .  Let  a be a lef t-hand endpoint  of an interval of (a, b ) - - ~ 1 .  By 

7.4 (ii), one of the two Lk(r, a) is less than the other  in a certain neighbour-  

1 Note t ha t  th is  theorem has  a much  s impler  proof than  7. o. I t  does not  require the  resul ts  of w 5. 
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hood o f  r--= I.  We  shall suppose tha t  L,(r, a ) <  L2(r , a), f o r  R - -  < r < : I .  

W e  define 

D - ~ E [ L  l ( r , a ) < o < L 2 ( r , 7 ) ,  R ~ r < I ] + E [ r < R ]  
(r, 0) (r. 0) 

where  7 is  chosen in t he  same way as, in 7. I. 3. Now, 7. I . I  and 7. I -2  are  

deduced in  the same m a n n e r  as in 7. I. 

I f  a~ < ~1 and an-* a, then  f o r  sufficiently large  k the re  exists  domains  

1)'k ~---E [L~ (r, a) < 0 <: L~ (r, ak), B < r < I]. 
(r, o) 

F r o m  the: hypothes.is ma~e about  Le  (r, 0). i t  fo l lows t h a t  Dk converges uni formly  

to. Do-~E[L~(r ,~a)<O<L~(r ,a ) ,  R < r < I ] .  Fur the r ,  /)~ has  evident ly  no 
(r, O) 

po.int in common  with F ( 0 }  and u(z) is t he re fo re  cont inuous  in DR. Since i~ is 

o~ L~(ak), an ~ ~ and on L ,  (r, ~) in  absolute value less t h a n  M, i~ is so in 

D~ and hence in 2) 0 also. I f  we represen t  D ( t )  on H(~) in the  same way as 

iu 7. t t hen  Do(~) will be a domain  wi th  a posit ive angle a t  infinity. F rom the 

boundedness  of  u in D o (~) i t  is easy to  deduce,  by means  of 3- 3 and 2. ~3, tha t  

s ( ~ ) = o .  The  res t  of the  proof  is the  same as in 7-2. 

7.4.6. I f  (i) u(r, O) is harmonic in C(r, O), (ii) uo(O) is finite and there exists 

an L-integrable function a(O) lying between the largest and the smallest value of 

ue(O) and ( i i i ) f o r  every ,9 and ~ : > o  there is a N(d  ~) and M(&), such that 

I-I-< exp So,- (r, 0) < iV(e ' ) ;  then u(r, O)= PIeuc(O). 
I~ is easy to see t h a t  the condi t ions  of 7.4. 5 are satisfied, if we choose 

e. g. L~ (~), L.a (;~) to be the  two s t ra ight  lines going  t h ro u g h  e ~ and forming  

with the  radius  the angle ~ ( M - - I ) / 2 M .  In  the angle A(~-zr/2 M(a))between 

the  c i rcumference  and the  neares t  Lk(a), 7. I gives u - ~ R P I a ( e ~ ) .  Between 

L~(a) and L~(a), u(z) is bounded. Hence  we get  u = R P I o ( d  ~) for  all a. 

8. o. I n  order  to deduce f rom 7. o uniqueness  theorems,  i t  is sufficient to 

add condit ions which make an isolated s ingular  point  impossible (cf. 4. I). 

Indeed,  if the re  is no isolated point ,  then  the reducible  set of singular points 

mus t  be empty.  

Le t  z o ~ F(C) be an isolated point  of the  except ional  set ~ .  W e  cons t ruc t  

a ne ighbourhood  N(zo) which contains  no o ther  except ional  point  and is such 

t ha t  uc is finite at  F ( C ) . F ( N ) .  Then  u is bounded on F ( N ) .  C. Hence ,  the  

only possible except ional  point  on F ( N .  C) is z 0. Condi t ion 4. o (it) is there- 

fore  satisfied in the  corresponding H.  Fur the r ,  in v i r tue  of 7. o (iv), uc is inte- 
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grable on F ( C ) .  N, bounded on F ( N ) .  C and, by 5- 3, i t  is, therefore ,  in tegrable  

in the corresponding C. Hence  4. o (iii) is also satisfied. 

Now, we can apply 4. I in the  c o r r e s p o n d i n g / t .  The  conformal  representa-  

t ion ~ = ~ ( z )  of H(~) on N .  C, is analyt ic  in z = zo. W e  have,  therefore ,  

8. o. I l im (z - -  Zo) ~ = const  
Z ~ Z  o 

and hence, by 5 .6 .2  we get  

8. o .  2. l ira (I - -  r) I ~ I~/V = const. 
ICI--~ 

8. T. At an isolated point  of ~ which does not  belong to ~, we cannot  

have n (a) ---- I (cf. 7. o (vi)). 

Le t  a be the point .  Th en  7. I shows t h a t  s(~) is a polynomial  of degree 

n(a) f l (a ) / z - -  I. If ,  now, we apply the same conformal  representa t ion  as in 8. o 

we find by 8.0. i t ha t  in A(a,  ~), which corresponds to A(a), s ( ~ ) =  o(~'(")). 

Hence  s(~) is a polynomial  of degree at  most  n ( a ) - - I .  I f  n ( a ) ~ - I ,  t hen  

u =  R P I ( e  i") and a cannot  be a p o in t  of 9~. 

8. I . I .  At  an isolated point  a of ~ at  which to every e, there  is a N(ei"), 

in which lu(z)l  ~--exp [ e / ( I - - r )  '/'~] n(a) cannot be equal to I. 

I f  we represent ,  as in 8. o, N -  C conformal ly  on H,  then  it  is easy to see 

tha t  s(~) satisfies the  condit ions of 3.3. Hence  s(~) is a polynomial .  I f  

n(a) = I then,  as in 8. I, a cannot  be a poin t  of ~.  

8.2.  The  point  a cannot  be both  an isolated point  of ~ and satisfy one 

of the fol lowing condit ions:  

(i) if a belongs to ~,  then  to every ~ > o there  is a N ( e " " ) i n  which 

[ u (z) l ~-- exp [e/(I - - r )  '/'~] and n (a) = I. 

(ii) if a does not  belong to ~, t h en  there  exists a sequence of p o i n t s  

{a~-(a)} such tha t  (a) lim a~-(a) =- e i~, (b) lim arg (aK - -  e '~) -- a = z z ,  x no frac- 
K-- -~  ~ I ( ~  

t ion with a denomina tor  less t han  n(a) (c) u(a~.)= O(,/(aK--e%). 

At the point  a, s (~) will be again a polynomial  of degree n (c~)- I. Now, 

4 .2  gives u -= R P I(ei~). 

8.3. I. I f  the conditions of 7.0 are satis~ed, and those of 8.2 are satisfied 

dtbr all a, then u = P  lcuc.  

8.3.2.  I f  the conditions of  7. o are satisfied and for all a < gJ, we em~ find 

to e,ery a N(r176 i .  ,ehich exp [ d ( I - - r )  '/~] and n(a)---  1; fo r  all the 
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other a: i f  f i ( a ) =  zc• (cf 7, o (I i)), x not a fraction with a denominator less than 

n (a), then u ~ 1.> L u,, 

For a not  belonging to ~,  the points of K(a) have all the propert ies  of 

the  sequence required in 8.2. 

8.3.3.  I f  the conditions of 7. o are satisfied with n (~9)= 2 and, moreover, 

for all a < ~, we can find to every e a N(e  '~) in wtdeh I~(~) l -~  exp [ d ( i -  r) '/~] 

and n (a) = t, then u -~ 19 Icuc. 

This is a simple corollary of 8 .3 .2 ,  since fl(a)4= ~. 

8.3. 4. I f  K(a)  are straight lines through a point z o < C  , Zo~eO, ~ is empty 

a,ul n ( O ) <  N, the,, ~ has at most 2 N ( N - -  i ) .  are sin ]Zo]/~r + z points. 

I f  Zo = r o e  '~176 then 

z % sin ((9 - -  0o) 
f l ( O ) = -  + a r e t g  

2 I - ro c o s  ( 0 - 0 o )  

for  8 o - < 0 - - < o  o +  z.  F o r 8  o - J r - < 0 - < 0 o ,  we have t~(0)= ,8(20  o - 0 ) .  The func- 

t ion increases from t~ (8o) = 2 to fl (0 o + arc cos %) = Zz + arc sin ro and decreases 

back to fl (0 o + z ) - ~  z Hence  it takes every value four  t imes in the interval 
2 

m 
(o, 2z) .  A point  can be a s ingular  point  if f i ( O ) : - - z ,  n < iV. Fur the r  

n 

]ml~r  --<arc sin r o, There are, therefore,  not  more than 2 N ( N - - I ) a r c  s in ro /Z+ 2 

points of R. 

8.4. I. I f  u (z) satisfies the first four conditions of 7. o and i t  is the first 

derivative of a function continuous in the closed C, then u =  P Icuc. 

This is a consequence of 7. o. 3 and 8. I. 

8.4.2.  I f  u(~) satisfies the first four conditio,~s 02" 7. o, i f  at the points of 

~,  n ( ~ ) -  I and i f  u (z) is the second derivative of a function continuous i~ the 

closed C, then u = P Ic uc. 

This follows from 7. o. 3 and 8 .3 .3 .  

8.4. 3. I f  the first four co,~ditions of 7. o are satisfied, and 7. o. 4 (i) is ful- 

f l l ed  with m + 2/p <--- x, then u ---- 19 Ic, uc. 

This follows from 7. o. 4 and 8. I. 

8.4.4.  I f  u (z) satisfies the first four eonditio,,s of 7. o and 7. o. 4 (i) is ful- 

filled with m + 2/p <-- 2 and H =  o, then u ~ P lcuc .  

This follows from 7.o. 4 and 8 .2 .3 .  
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lim u(K(~,  t)) <-- a(~) <-- lim u(K(~, t)) where a(~) is L-integrable in the 
t ~ l  t ~ l  

corresponding C, 

(v) For every ~ ~ F ( D ) - - ~  and e >  o, there is a N(~) such that [u(z) I<- 

-- exp [~/0"/2 ~ (~)] for z < N(~) .  D, Q = min Iz--- ~'~1; 

(vi) for  every ~ < F ( D ) -  ~,  there exists an angle A(~) havi~g K(~) in its 

interior, such that 

u = o ( e - "  

for  z < A 

Then u = R P I ( ~ )  for all ~ < F(D) except for the points of a reducible set ~. 

9. o. I. (ii) I f  we add the condition that F(D) should satisfy 5.2.3,  then we 

may take fl(~) equal to the greater angle which K(~) forms with F(D) at ~. This 

relaxes somewhat (v). 

9.0.2.  I f  we represent  eonformally D(z) on C(z'), by z -~9(z ' ) ,  then all 

the respective conditions of 7. o are satisfied. 

We can disregard the reducible exceptional  set of points, since we can 

make the reasoning for each of the complementary  interval,  and at the end get  

the same result.  Since F ( D )  has a corner at all points, K(~') will still have 

the property /i:, by 5.1.3 and (ii), respectively ( i ia ) (c f .  7 . 3 ) w i l l  be satisfied. 

The t ransformat ion  of conditions (iii) and (iv) is immediate.  

Conditions (v) and (vi) must  be t ransformed by means of 5.o. 5 in a way 

very similar to 5.6 and go over into the  corresponding conditions of 7.o. 

set ~ ; 

(iv) 

Remark.  The two last results can be slightly generalized by means of 4.3. 

I t  is possible to introduce into the first integral  of 7. o. 4 (i) log ~ ~ without  
I - - r  

impair ing the results. 

9. o. T h e o r e m .  I f  

(i) u(z) is harmonic in D; 

(iia) except for the points of a reducible set ~j,  F(D) has at all points two 

half-tangents, forming a positive angle; there is a system of curves K(~), ~ <  F(D) 

given by the function z -~ K (~, t), o --< t --< I, which is continuous in both variables. 

Further ~-~ K(~, I), z 0 = K(~, o ) <  D, K(~) is analytic in a neighbourhood of 

and forms with F(D)  angles which are positive and less than ~(~). 

(iii) lim [u (g (~ ,  t))] is finite for all ~, except for the ~voints of an enumerable 
t ~ l  
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9. I. Now, we want to give a few criterii for the L-integrability of a(~)in 

the corresponding C. 

9. I . I .  I f  D is convex and a (~) is integrable on F(D), then a(~)is integrable 

in the eorresl~onding C. 

This follows from 5.4. I in a way similar to 5.3. 

9. I. 2. I f  t~(D) has bounded outer curvature and a(~) is integrable on F(D), 

then (~(~) is integrablc in the corresponding C. 

We use 5.4.2 instead of 5.4. I. 

9. I. 3. I t  is also possible to suppose that  on certain parts of F(D), u ~ is 

bounded, the rest. satisfying 9. I. I or 9. 1.2. From the results in w 7 and w 8, 

it is easy to deduce a number of theorems adapted to different individual cases. 

The only difficulty lies evidently in the field of conformal representation. 


