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Introduction. 

I n  a p r e v i o u s  p a p e r  I one  of  us  h a s  p r e s e n t e d  t h e  t h e o r y  of  f in i te  s y s t e m s  

of  s i m u l t a n e o u s  l i n e a r  d i f f e r e n t i a l  e q u a t i o n s  in  such  a f o r m  t h a t  i t  is  f o r m a l l y  

i n d e p e n d e n t  of  t h e  d i m e n s i o n ,  i. e. t h e  n u m b e r  of  e q u a t i o n s  in  t h e  sys t em.  

F o r m a l l y  t h e  t h e o r y  may ,  t h e r e f o r e ,  be i m m e d i a t e l y  g e n e r a l i z e d  to  t h e  ca se  in 

w h i c h  t h e  d i m e n s i o n  is e n u m e r a b l e  inf in i te" .  S u c h  in f in i t e  s y s t e m s  of  d i f f e r e n t i a l  

Arley (I943) w167 2.2--2, 6 and chap. 7. 
'~ The theory may even he generalized to the ease ill which the dimension is non-enumerable. 

We intend to give.such a generalization in a later paper. 
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equations play an important  r61e in many applications, e. g. in the theory of 

discontinuous stochastic processes (discussed in part  I i )  and in  quantum mechanical 

per turbat ion theory (discussed in part  IV). 

In  order to make the theory work it is, however, necessary to impose certain 

convergence conditions t, which are at  any rote automatical ly fulfilled for every 

finite dimension. We shall in the present pal~er investigate these conditions more 

closely. I t  is, namely, obvious at  beforehand tha t  as soon as we have l imit  pro- 

cesses at  our  disposal, any 'pathological '  case desired may be constructed by 

properly utilizing limit processes. Such 'pathologies '  are not  only of great 

interest  in themselves, but  are even met  with in the practical applications of the 

theory ment ioned above. We shall, therefore,  not  only discuss the theory itself 

(parts I and l I I ) ,  but also the two applications ment ioned (parts I I  and IV). 

P A R T  I. 

G e n e r a l  T h e o r y .  

We shall first give a survey of the usual theory of f ini te  systems in the form 

given in the paper  quoted. 

The most  general form of a finite system of simultaneous l inear differential 

equat ions can be writ ten 

Foo(D,x )  Yo(x)  ~-, . �9 �9 + Fo. ,~=1 (D,x )  Y , , _ ~ ( x ) =  Bo(x)  
. . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 1 . 1 )  

F m - , . o ( D , x )  Yo(x) + ""  + /~'m-l.n,-1 (D, x) Y , ~ - x ( x ) =  B , , -~(x ) .  

The letters have here the following meaning:  

x:  The independ.ent variable , which may be real or complex 2. 

d 
D = d - - -  ~ �9 

Y~(x), i = o ,  I, 2 . . . .  , m- - I :  the unknown functions,  which may also be real 

or complex. 

' Arley (I943) ~ 2.2--2.6 and chap. 7. 
We shall in the following tacitly assume x to be real, but the proofs are also valid in ease 

x varies on a regular curve L without double points in the complex plane, if, only, we interpret 
I x - - x o [  as  t h e  l e n g t h  of  t h e  c u r v e  L f r o m  x o to  x.  
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Bi(x), i = o ,  I, 2 . . . .  , m - - i :  given functions,  assumed to be continuous in a 

Ftr i , j  = o ,  1 , 2 , . . . , ' ~ t - - I ;  

cer ta in  region (apart  f rom possible isolated 

singularities).  

given polynomials in D with coefficients 

which are func t ions  of x, assumed to be 

continuous in a cer ta in  region (apart  f rom 

possible isolated singularit ies):  

F~j(D,x)  = Fu(x)  D ~" + FN-, (x)D~'- I  + ...  + F~ (x) D + Fo (x), 
ij ij f.i ~ j 

i,j=o, I, 2, . . . ,  m -- I. 

m: the dimension of the system. 

3 T: �9 order  ~ �9 >, 

(I. 2) 

Using the  matr ix  symbolism our  equat ions can obviously be wri t ten ill the  com- 

pact  fo rm 

F ( D ,  x) .  Y ( x )  = B (x) ( ' .  3) 
with 

(D, x) = (x) + F , (x )  D + F0(x). (,.4) 

I f  the  matr ix  F,~.(x) has a reciprocal ,  F~vl(x), for  all x in the  region of defini- 

t ion of the system of equat ions  (I. 3), this system may, as is well-known, in several 

ways be t r ans fo rmed  into an equivalent  system of the first order  and dimension 

n = r e . N )  Le t  one such system be denoted  by 

D Y(x)----- Y ' ( x ) =  A ( x ) .  Y (x )  + B ( x )  (dimension: ,,). (I. 5) 

If ~'~l(X) does not exist for some values of x, (i. 5) is only defined for all other 
values of x. If j~,~l(x) does not exist for any value of x, this fact means that  our 
equations are restricted by a certain number of linear relations, and we may, there- 
fore, in such case write down a system of differential ec~nations containing a smaller 
number of functions and then transform this system to the form (I. 5) ~. 

As the  resul t  we thus see t ha t  we need only consider systems of the form 

(I. 5), socalled simple systems. On the o t h e r - h a n d  we note  tha t  a system of the 

fo rm (I. 5) may also in several ways be t r ans fo rmed  into a system of the form 

(I. 3), which fact  may sometimes be successfully uti l ized for  the  actual  solution 

of the  equations.  

t See e.g. Frazer, Duncan and Collar (I938). 
s Frazer ,  loc. cit. p. I63. 
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2. 

Let our system be of the form (I. 5), i.e. 

Here 

r(x)_./J; ~ I. 

Y'(x)==A(x).Y.(x) + B(x) (dimension: n). (2. ~) 

... Ao,,,..,(x) I i (2.2) 

' ..... , (x)i  

The two given matrices .4 and B are, as already mentioned, assumed to be con- 

tinuous in a certain region. We first observe that  Y, being differentiable, is also 

continuous, and A being continuous, Y' is, consequently, also continuous, due to 

the dimension of the system being.finite. Y '  may, therefore, be integrated. 

First we prove that if (2. I) has any solution, it can only have one, cor- 

responding to a given initial condition 

r(~o) = C (2.3) 

in which C is an arbitrary constang. 

Let l~(x) and l~(x) be two solutions satisfying the same initial condition 

(2.3)- Then 
r ( = )  = r ,  (~) - r~ (z )  (2  4) 

will be a solution of the corresponding homogeneous equation 

Y ' = A . .  Y 
satisfying the initial condition 

Thus we shall prove that Y(x)--O. 
following two matrices exist t 

K = ma~  I A (t) l 
7a'<t~x 

G '-- max I r ( t ) l  
xo~t~x 

From (2.5) we now have that 

(2.5) 

r (xo )  = o. (2.6) 

As both A(x) and Y(x) are continuous, the 

(2.7) 

(2. s) 

I Y'I <= K.I  YI_~ K .G .  (2.9)  

By I A I =  { I a / k l }  we u n d e r s t a n d  t he  m a t r i x  whose  e l emen t s  are  t he  numer i ca l  va lues  of 
tile co r r e spond ing  e l e m e n t s  of A .  By m a x  A we u n d e r s t a n d  the  m a t r i x  whose  e l e m e n t s  are t he  

m a x i m u m  va lues  of t he  co r r e spond i ng  e l e m e n t s  of .4  etc. We  note,  fu r the rmore ,  t h a t  by  xo-<: t S x 

we sha l l  a h v a y s  denote  t h e  in te rva l ,  also in the  case x < xo. 
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]Y'] being also continuous, (2.9) may be integrated; introducing the result into 

(2.9) and integrating again it follows by repeating this process that  

Ir l<K'lX--r176 for all v = I , 2 , 3  . . . .  ( 2 . 1 0 )  

c o  

We shall now show that the matrix function exp [K(x--Xo)]-----~K "lx-x~ 
v! ,=0 

exists, which fac~ we simply express by saying that A is absolutely exponentiable 
in the interval (Xo, x) and writing 

exp [KIx--:,,ol] = ~ K "lx-x~ (2.1 i) v[ < o o .  

, ' = 0  

K given in (2.7) being of finite dimension, there is, namely, among its n ~ elements 

a. greatest one, k. We thus have 

i. e.  

K<=kE 

Consequently 

w i t h  g i ~ =  I f o r  a l l  i , j = o ,  I ,  2,  . . . ,  n - -  I ,  (2.  12) 

,(nk)'E for all n~-- 1 , 2 , 3 , . . . ,  {2. I ~  K "  __< 
, J ]  

>> >> V ~ O , I , 2 ,  . . . .  

oo r  

exp [KIx--xol]= Y, K'lX-- x~ < E Z (n k "lx--x~ = 
! = ' v! 

= l~: e x p  [ n k l x - x o l ] <  oo. (2.14) 

Due to the finite dimension we next have for an arbitrary non-negative column 

matrix G that, due to (2. II), 

(exp[Klx--xoll. G)~= K'Ix- -z~ < ~  (2.15) 
v!  i 

$ '=0  

for all i = o , I , 2  . . . . .  n - - l .  

(2.15) shows that the right hand side of (2. IO) tends to zero 

i X  - - X o ]  v 
K "  v!  �9 G ---, O. ( 2 . 1 6 )  

~ o o  

(2. IO) can, consequently, only be satisfied for all values of v if 

q . e . d .  
Y (x) = 0, (2.17) 
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w  

Next we prove that  the system (2. z) actually has a solution satisfying the 

arbitrary initial condition (2.3). We first consider the homogeneous equation (2.5)- 

The dimension being .finite, Y '  is continuous and (2. S) is thus, due to (2.3), equi- 
valent with the equation 

~g 

Y(x) = C + f A(t). Y(t)dt. (3. i) 
.'r n 

We now use the method of iteration and put 

Y(x) = ~ Ir,.(x) (3.2) 

in whieh 
.T 

~o(~') = c ,  r~(x)  = f a (t). i ; _ ,  (t),l t, ~ = x, 2, 3 , .  �9 (3.3)  
.'r u 

The series (3.2) is called the Peano series. 

It  is then easily seen 

(a) that  (3.2) is absolutely and uniformly convergent, and 

(b) that (3.2) is a solution of (3. J). 
In fact we have, due to (2.7), (2. I1) and the fact that ICI satisfies (2. I5), 

oo  oo  

I r ( t ) l  < Y, I I ; ( t ) l  <~K'lX--x~ < ~  (3.4) 

which proves (a). InSerting (3.3) into (3.2) we next find 

Y ( x ) = C +  ~, a ( t ) .  Y._,( t)  d t -=  C +  a . l ; s ,  d t -~ 
(.) , [J) 

4 - ~  1 X o (3.5) 
c+ f A. d r = C +  A . Y d t .  

x .  \ r = 0  l :h~ 

The operation (~) is legitimate due to the series (3.2)being uniformly convergent; 
(~) due to the double-sum ~ A . I ;  being absolutely convergent, because using 

(2. Z) and (3.4) 
I A (t). It(t) ] < K .  e x p  [ K  ] z - -  Xo]] < ~ .  (3.6)  

The exponential is, namely, a power series in Ix--Xo] and its v'th differential 

coefficient is, therefore, obtained by term-by-term differentiation for all values of 
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x wi thin  the convergence region of the exponential. Due to (3.5) Y(x)  is the 

integral  of a continuous funct ion and, therefore,  differentiable with the continuous 

derivative Y ' =  A . Y ,  which proves (b). 

Pu t t ing  C----I in (3-1)--(3-5) we obtain a quadratic matrix each of whose 

columns is a solution of (3-I), i. e. (2.5). This matr ix we denote by 

F(x,  x o ) = c ~ ( l  + A( t )d t )= ~.aF,(X, Xo), (3.7) 
J'o ~ 0  

Fo =- l ,  ~ , ( x ,  Xo) = f a (t). F , _ ,  (t, Xo) d t 
.To 

= f . . . f  a (t,)... a( t , ) , t t ,  ... at, = f ~;_,  ( ~ , 0  A(t)dt, 
x ~ t . v ~ .  - �9 >~ t t  .>-- a'o a ' .  

V = I, 2, 3, . . . .  

F is called the product-integral (or the matrizant). The first name and the symbol 

~ ( l  + Adt )  refers to the fact  t ha t  J?" may also be defined as 
~ - - I  

F ( x ,  xo)---- lira 17[(1 +a(x,)d,)  (3.8) 

in which x 0 < x~ < .-. < x,,, = x, dz = xi +~ -- xi, is an arbi t rary division of the 

interval (x0, x). 1 

F satisfies z 

o_ #,(~. ~ o / =  a(:~) �9 V(~,  ~.o) (3- 9) 
Ox 

0 
- -  V ( x ,  Xo) = -  V(~,~o) .  a (x.) (S. ~o) 
OXo 

and 
lira F(x,  xo) = lira F(x,  Xo) = F(xo,  xo) ----- 1. (3. I I) 

Furthermore,  F is a fundamental solution, i. e. F has the property t ha t  any solution 

Y(x) is the product  of F and a constant  C ~  Y(xo). This fact  follows from the 

theorem of uniqueness (w 2), because (a): F .  C will for arbi t rary C be a solution 

of (3. I), i .e.  (2.5), and (b): Y(x) and F(X, Xo). Y ( x  o) are both solutions which 

are equal to C for x = x 0. They must,  therefore, coincide for all values of x, i .e.  

Y (x) ~ . ~ ( x ,  Xo) . ]~r(Xo). (3. I2)  

Cf. Arley (I943) w 2. 5 . We note t ha t  if i n A  exists and satisfies e x p  [ / n A [ ] = ~ 4 ,  then 
the product-integral is obviously related to the notion 'prodlwtal" introduced by Reiehenbach (1935) 

x. t t t - - I  
,as follows: r  A ( t )d t )=  , .~(A( t ) )  ,tt -~ lira H (A(xi)) ai. 

~" We note that  (3. Io), which is said to be adjointed to (3.9), fo l lows from (3.7) in exact ly  
the same way as (3.9) was proved ia  (3-5). 
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This equation being 

of uniqueness that  

We note that  this 

x = x  o and x ~ = x ,  due to (3.1I), 

F(xo, .~.). V ( ~ ,  ~o) - -  l 

which means that  3 ) = F ( X ,  Xo) has an inverse 

( ~ ) - - I : _ _ ~ ' r - - I ( X ,  X o ' ' - -  ~ ' ( X o ,  X) -~- .  ~ ) "  

:t o X 

We can now solve the inhomogeneous equation (2. I), i.e. 

Y ' = A . Y  + B .  

As B(x )  is assumed to be continuous, the matrix 

M =  max IB(t)l  

exists (cf. (2.8)) and satisfies, due to the finite dimension, (2.15)- 

Multiplying (3. t7) to the left with r we obtain 

,~-~. B -- ,~- '  . Y ' - -  , .~q.  A .  y = -  d ( ,~- '  . Y ). 

We have here used that  

Niels Arley and Vibeke Borchsenius. 

For arbitrary Xo, X and xt in the region of definition we now have 

Y(x) = F (x ,x , ) .  Y(x,)---- F ( x , x , ) .  F(x,,Xo). r ( x o ) =  F(x ,  Xo)" Y(xo). (3. '3) 

valid for all values of Y(xo), it follows from the theorem 

F ( x ,  xo) = F ( x , x , ) .  F(x,,Xo).  (3. I4) 

relation also follows from (3.8). Especially we obtain for 

(3. ~ 5) 

(3.16) 

(3. ;7) 

(3.~s) 

(3. ~9) 

O=l '= (~ . r  JJ-t, i.e. (~7~-')'=--,~,~-I.o~'.~ -~, (3.20) 

and next that,  due to (3.9), 

~ - ' . a .  Y = 3 ~ - ' . A . ~ . ~ - I . Y = 3 ~ - ' . ~ ' . ~ - ' . Y  . . . .  (3~- ' ) ' . r .  (3.2,)  

From (3. I9) we obtain at once by integration a particular integral of the in- 

homogeneous equation and adding the total integral o~.(7 of the homogeneous 

equation we finally have that  the total integral of the inhomogeneous equation 

(3. I7) is given by, using (3. I4) and (3. I6), 

Y(:c)= . C +  �9 . B ( t )  d t =  . C  + . B ( t ) d t .  (3.22) 
.t o ,r o , r  u .r o , :2" 0 9" u l 

We observe that this formula,is a direct generalization of the well-knowJ, formula 

in ease the system reduces to one equation with one unknawn function (ef. (d) p. 269). 
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w 
Apart from the properties given in (3.9)--(3. x l) it is directly seen from (3.7) 

that the product-integral has, furthermore, the properties 

x - b J x  

(1 + Adt)= ~'(x + Jx,  x) = 1 + A (x)Jx + o (,Ix) (4. x) 
g 

and 
g 

a at)] < exp [ K I x - x 0 1 ] .  (4.2) 
:to 

If A(x) and Fl(X, Xo ) - fA ( t )d t  commute, i.e. 
TO 

A. ~'~= F1. A, (4.3) 
we have 

0 �9 xo)= f(oiF (t, Xo))'F,(t, xo)dt = I  3-! (x, Xo))" (4.4) 
at• 

and thus generally 
I 

1~; (x, x0) ---- ~. (/~, (x, xo))". (4.5) 

Under the condition (4.3) it then follows that 

c_~(l  + Adt)-=- exp[fA(t)dt]. (4.6) 
Xu x o 

We note that  (4. 3) is satisfied in three important cases: 

(a) A(x) is constant, i.e. independent of x, 

(b) A(x) is the product of a constant matrix and a scalar function of x, 

(c) A(x) is a diagonal matrix, 

(d) A(x) is a one-dimensional matrix, i.e. a scalar function of x. 

I f  ,4(z) is analytic in some domain Y2 in the complex z-plane, i.e. that  this 

is the case for each element of A(z), then it follows that  also 

F(z,  z0)= c~) ( l  + Adz) (4. 7) 
=o 

is analytic in every inner point of ~, F being, furthermore, independent of the 

in~gTation curve L between z o and z. 

This is easily seen to be true. "First we have from (3- 7) that all the matrices 

-~;(X, Xo) are independent of L and analytic in ~. Due to the fact that  F - O  ) 

is given by a uniformly convergent series, the result next follows immediately from 

a well-known theorem from the theory of analytic functions. Using this theoreL,~ 
8-632047  Acta maOwmatica. 76 :3  -4 
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once ,,,ore we thus see that  due to I cI = I Y(zo)l  satisfying (2.15), each solution 

of our homogeneous equation Y ' = A . Y  is analytic. Next, assuming also B in 

Y ' ~ A . Y +  B to be analytic it is finally seen from (3.14), (3.22) and the fact 

that M7 given in (3.18) satisfies (2.15), that also each solution of the inhomo- 

geneous equation is analytic. 

I r A  and B in Y ' = A .  Y + B are a,alytic i~ ~, we thus see that th* solu- 

tions may for a ,  arbitrary ironer point oj" $2 be expanded in power series which are 

convergent in every circle not contai,ing any singular point of any of the elements 

of A(z) or B(z). For finite systems every regular point of both A and B is, con- 

sequentl!/, also a regular point of the equati~ Y ' =  A . Y  + B .  Furthermore, these 

power series may be obtained by the m'ual method of introducing the power series into 

the equation and equati,g eorrespo,ding coef.fieie,ts on both sides. 

Finally we shall note the following important transformation property of the 

productAntegral. Let us transform the unknown functions Y ( x ) t o  new functions 

Z(x) by means of 
Y(x) = T(x). Z(x) (4.8) 

in which T(x) is an arbitrary, non-singular matrix-function, i . e .  which has a 

reciprocal "l '-~ satisfying" 
T- '  (x)" T(x) = 1. (4.9) 

From Y ' = A .  1 r + B  we then obtain 

Z ' - ~ ( T - ~ . A . T - - T - ' . T ' ) . Z +  T - ' . B = A * . Z + B *  (4. Jo) 

in which A* and B*  denote the matrices 

A*-=--7 '-1" A" T - -  T -1" T '  
(4. If) 

B *  = T - l -  B .  

From (4-8) and (4. IO) we thus have in the ease of homogeneous equations, i.e. 

B-~B*~O, 
.E .r 

l '(x) = c_~(l  + a d t ) .  l '( .r , ,)= T(:r). c_~(1 + A*dt ) .  Z(xo)= 
a',, .r o 

(4. 
II . . 4*dr ) .  'r-'(:,o). r(:,.o). 

,G, 

x We note  t h a t  for f ini te d i m e n s i o n s  we t hen  also have  T .  T - 1 =  1 and  t h a t  ~ , - t  is u n i q u e l y  
1 - - |  de te rmined  by  T.  For  in f in i te  d i m e n s i o n s  rIright need no t  ex i s t  even if Tle-f~ exis ts .  I t  will be 

seen,  t h a t  we use on ly  tile le f t -hand reciprocal  of 1'. 
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Consequent ly  we have  f rom the t heo rem of uniqueness  

r  +A dr)=  T(x). (l + A*dt}. T-'(.o).  (4. ~3) 
X o x .  

We note  t ha t  this t r a n s f o r m a t i o n  fo rm u l a  may  e .g .  be appl ied for  the  invest iga-  

t ion  of the  behav iour  of the  solut ions in possible poles of A and B ~. 

I f  especially 
A (x) = A,  (x) + 4 : (x )  (4. i4) 

and we put  
x fr 

T(x) = c _ ~ ( l  + A,  dr) -- c_~(A,), (4 , '  5) 

(4.13) reduces,  due to (4. I I ) ,  (~. I I )  and (3.9), to 

.T ~" .T 

~ ( A , + A~) = ~ ( A , ) "  ~ (A:,) (4 I I{)) 
J 'o :ru -~,~ 

in which 

A a = r (A,).  (A~ -{- A~). ~ ) (A ,) - -  r (A,) .  A , .  r -~- 

= (A, �9 A : . c , ~ ( A 1 ) .  
. r  o 

The  fo rmulae  (4- 16) and  (4. 17), which may  be said to correspond to the fo rmula  

for  i n t eg ra t ing  by par t s  of  o rd inary  integrals ,  become much  simplified in case 

A~ commutes  wi th  A~, because in such case we ob ta in  A s = A 2 .  

w  
W e  shall  now give the genera l iza t ion  of our  theory  to the  case of the  dimen- 

sion being enumerab le  infinite. It  will be seen that a l l  the contents of  w167 1- -4  

remains valid for i n f i n i t e  systems if' we only demand the co~zdition.~ (2. Ix). (2. I5) 

a~zd the corresponding condition jbr B still to be fulfilled, ~- i .e. :  

(a): The  opera to r  ma t r ix  A of our  equa t ion  Y ' ~ A . Y +  B we assume 

to b e  absolute ly  exponent iab le  in the  in te rva l  (xo, x) (cf. p. 265) 

�9 ~ / ( , , I x - x o l "  (~) e x p [ K l ~  - x o l ]  = Y, ,,! <oo,  (~. I) 
~ ' ~ 0  

K = m a x  I A (t) l. 
xo~_t~X 

Cf. e.g. Raseh 093 ~ ) p. 59 ff. or Raseh 0934) P. IIo ff. 
We note, however, that in the e-lse of i~.finite systems the matrix T(x) oeeurring in 

(4.8)--(4. 76) may not be quite arbitrary. We leave the discussion of the necessary eonditions to 
the reader. We note, furthermore, that due to the remarks in w 1 we obtain by our generalization 
also a theory for ordinary linear differential equations of an i~finile order. Such equations seem, 
however, not yet to have been met with in practice. 
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(b): We consider only such solutions of Y ' =  A.  Y +  B for which 

(~) exp [ K  Ix  - -  x0 []" G < oo ', (5-2) 

G = m a x  I r ( t ) I .  

Especially it then follows that (5-2) shall be satisfied for the initial point 

exp [K I x - * o l ] .  I c l  < =, 

C = Y(xo) .  

(5.3) 

(c): Finally B is also ~sumed  to satisfy (5.2), i.e. 

(7) exp [ K  Ix - -  Xo[]" M < ~ ,  (5.4) 

M = ,ha. I ~ ( t )  l. 
xo~t~x 

The es.s'ential difference between the infinite and the finite case is, however, that 

in the latter case (a)--(T) are always automatically fulfilled (cf. w 2), whereas this 

need not be the case in the former case. In part I I I  we shall give examples 

showing that  the conditions (a)--(T) are only sufficient, but not necessary con- 

ditions for the theorems of uniqueness and existence to be true and, furthermore, 

that  these two theorems themselves are not generally true. On the other hand 

we observe, however, that for a general theory the main condition (a)cannot  be 

replaced by any weaker condition ensuring the necessary convergences. As we 

have seen we have, namely, that the majorizing expression (3 .4) for  the solution 

becomes identical with the solution proper, in case A and C are both constant 

and non-negative matrices. 

We shall shortly discuss criteria which are ~fficient to ensure the main con- 

dition (a) to be fulfilled. We have previously given the following four criteria ~, 

which will presumably cover most cases met with in the applications, at any 

rate in the theory of stochastic processes: 

We note  t ha t  due to (4. z) the  product- in tegral  i t se l f  satisfies the  condi t ion (~), but,  if . |  is 
only absolu te ly  exponen t iab le  in a finite in terval ,  possibly only in hal f  th is  interval .  In  general  
th is  fact is, however ,  i r re levant  due to an exponen t i ab le  cont inua t ion  be ing  as a rule  possible  (cf 
p. 284). Fur thermore ,  i t  is seen t h a t  if ( '  satisfies '.5.3',', then Y ( x ) =  F(:r, xo ~. ( '  will sat isfy (5.2) 

z Cf. Arley 0943), chap. 7. 
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Type I: I f  A(x) is a bounded matrix, which means that the column (row) 

sums of K are uniformly bounded, i.e. there exists a number M, so that  
oo  

~ , K ; q < M  for all q----o, I, 2 , . . .  

i=o (5 .5)  

then A(x) is absolutely exponentiable in each in te rva l  (x0, x) for which K 

satisfies (5.5). Furthermore, the exponential is again bounded. 

Type II: I f  A(x) is a row (column) half-finite matrix of order N, which 

means that all the rows (columns) contain only zeros after the N ' t h  column 

(row) index, then A(x) is absolutely exponentiable in each interval (x0, x). Further- 

more, the exponential (--1) is again row (column) half-finite. 

Type HI: If  A(x) is a row (column) half matrix, which means that  all the 

elements above (below) the main diagonal vanish, then A(x)is absolutely ex- 

ponentiable in each interval (xo, x). Furthermore, the exponential is again a row 

(column) half matrix. 

Type IV: If  A(x) is a column (row) semi-diagonal matrix, which means 

that  all the elements below (above) the diagonal lying parallel with and in 

the distance 1 below (above} the main diagonal vanish, and the numerical column 

(row) sums all exist and are bounded by the relation 

for all q > o  

(5.6) 

then A(x) is absolutely exponentiable in each interval (x0, x) satisfying 

I 
Ix-- ol < C=maxf(t). (5.7) 

Xo~g~x 

Furthermore, we have shown I that  if the numerical column (row) sums 

increase stronger than the first power of the column (row) number, it be ever 

so little, then A(x) need not be absolutely exponentiable in any interval. E.g.  

we showed that  the constant semi-diagonal matrix (l-~ I) 

Arley (I943) ex. I, p. 203. 
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A = 

O f ( I )  O O "'" 

f ( o )  0 f ( 2 )  0 "'" 

I i f(1) O ' f (3 ) ' ' '  
o f ( 2 )  o - . .  

, f (q )  = q'+" ( r >  o), ( 5 . 8 )  

is not absolutely exponentiable in any inberval as already the diagonal elements 

( A ~ ' ) " ' ~  ( 2 , , ) !  = ( 2 , , ) !  , . _ ~  

(for, all q = ,  r > o ~  1 , 2 , . . . ) .  

The criteria I - - I V  can be shown to be special cases of the following more general 

criterion -- or its analogue operating with row s u m s -  which is due to Cram4r1: 

A sufficient condition for A (x) to be absolutely exponentiable in (x0, x) is 

the existence of a non-negative matrix 

satisfying 
M = {.~r.,,} ____ 0 (5. ~o) 

M0~l>_-- I for all q - - - - o , I , 2 , . . .  (5.1I) 

~ , M , . , , K , ~ q ~ M , . ~ I . , ,  " ~ v , q = o ,  1 , 2 ,  . . .  (5. I2) 
6t~O 

~.j M,.,I v! 
"~'~0 

q = O ,  1,2, . . . .  (5" 13) 

It  is easily seen that due to (5. l l )  and (5. I2) we have for v----o and v =  I 

oo 

~. (K"),,~ <= M , ,  1 . (5. I4) 
i = 0  

Let (5. I4) be true for some value v, we then have from (5-J2) and (5. I4) 

~_j (K'+1)i,~ = ~ ,  ~_j(K")~, K,,~ 
f = 0  i = 0  a = O  

= K " ) i a  K ~ o  < M , , K ~ , I < - _ M , , ; I . , I .  ( 5 . 1 5 )  

t Private commun'ication. We wish to express our most sincere thanks to Prof. Cram6r for 
kindly communicating this theorem to us. 
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(5-14) is, thus, generally true. From (5.13) and (5.14) it then finally follows that  

+ + I + : ,  -  x-xo,. 
~ , ( e x p [ K I x - - x 0 1 ] ) , . + = y ,  X- - (K ' ) " ' ]  ~( -_<~M,, ,  +t <+o. (5.,+) 
i = 0  v : O  i--O v : O  

The exponential thus exists, having, furthermore, convergent column sums. 

Of course we have also a corresponding criterion operating with the row 

sums instead of the column sums (which is e. g. necessary if A is a row half 

matrix). By considering the transposed matrix A instead of A we see, however, 

that  we need only a criterion working with the column sums. (In the application 

to the theory of stochastic processes (cf. p. 285) it is, namely, the column sums 

which enter.) 

Finally, it may be of interest to note that, as also pointed out by Cram6r, 

the conditions of type IV may be weakened so that  A need not be semi-diagonal, 

if only the elements in each column of .4 decrease sufficiently rapidly: 

Type V: Let m o, m~, m~, . . .  be a non-decreasing sequence of positive numbers 

and g(x)~_ o so that  
o o  

~2exp[m,- , , ,q i lA, , , (x) l~g(x) , , ,~  for all q = o , ;  2 , . . .  (5. I7) 
i = 0  

in which 
[q for i~-o, I, 2 , . . . ,  q (5. 18) 

s=s(i 'q)-- (i �9 i>q. 
W e  then have for all i , q ,  �9 ~ o 

mi - m q l "  ~_ y Im'+Y~" (J+ exp [m---~(m,--mq,] < exp [ , , , --  mq]. (5.19) 
lm----q-~l : mo + Y ] - -  = 

Consequently i t  follows from (5. 171 that 

~(g(x))'(m,+,)'lA, q(x)l <= (g(x))'+l(mq+,+ ~)'+' for all v, q : o, I, 2, . . . .  (5-20) 
t = 0  

Putt ing now 
M,q-~C'(m,,+v)', c =  max g(t), (5:21) 

Xo < t ~ . x  �9 

we thus see that  the exponentiability conditions (5.1o)--(5.13) are satisfied for 

all values of I x -  xol for which 

lira c(mq+~+ t) "§ IX-Xo__l=celx_xo I <  I, (5.22) 
, + .  (rn~ + ~,)" ~, + t 

i . e .  I 
Ix- ol<- (5.23) 

c e  
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in type IV. Putting, namely, 
mq : k q 

and 

Nieis Arley and Vibeke Borchsenius. 

I t  will be seen that  the condition (5.17) is a generalization of the conditions 

(5.24) 

(5.25) 
g(x) = I ~, 

i e  f (x)  

we obtain from (5.6) and the fact that  A is semi-diagonal 

q+l  q+l  

Y, I A,q(x)l _-< ~ exp Ira,-  ?nql ~4iq (X) 
i = 0  i = O  q4-l 

_-< exp [,,,,,+, - m,,] ~, I A,,,(x) I <= ek' f (x)  q = g(x) mq, (5.26) 
i - O  

i.e. (5.17). Next we obtain from (5.21), (5.25) and (5.7), 

I ektC. c ---- ]c (5.27) 

I 
For k = i ,  e is seen to become as small as possible, i .e. (5.23) cannot generally 

give any greater interval of exponentiability than 

I 

Ix - Xo I < cz e'" (5.28) 

This interval is, however, e z times smaller than the interval  obtained from (5.7). 

The reason for this difference is, of course, that  different majorizations are applied, 

a factor of the type v! entering in the proof of (5.7), but  of the type v" in the 

proof of (5-23). 

Finally it may, however, be seen that if the column sums of I A (x)] increase 

more rapidly with q than in (5.6), i .e.  linearly with q, (5.17) cannot be fulfilled 

except in very special cases. From (5-17) it follows, namely, that  
oo oo 

exp [mq+, --  mq] ~_a I A,q (x) I <= ~. exp [ms -- mq] I a ,q  (x) [ <= g (x) mq. (5.29) 
i ~ q  + 1 f =0 

If, now, the column sums of [A[(x) l increase more rapidly than linearly with q, 

we see from (5.17) that  also the numbers mq increase more rapidly than linearly 
oo 

with q. In this case we see, however, from (5.29) that  unless Y, lA,  q(~)l 
t = q - t -  1 

decreases sufficiently with increasing values of q, we obtain a contradiction because 

the left hand side will increase more rapidly with q than the right hand side. 
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P A R T  I I .  

A p p l i c a t i o n  t o  t h e  T h e o r y  o f  S t o c h a s t i c  P r o c e s s e s .  

w 

A d i scon t inuous ,  s tochas t i ca l ly  defini te  process  I in which  t he  s tochas t i c  var iable  

can  assume only  an  e n u m e m b l e  m a n i f o l d  of  values  is cha rac t e r i zed  ana ly t i ca l ly  

by a relative probability function of  the  t y p e  P (n, t; n ' ,  ,'), n, n ' =  o, I, 2, . . . ,  t _--> s, 

d e n o t i n g  the  c o n d i t i o n e d  p robab i l i t y  o f  a s tochas t i c  var iab le  a s s u m i n g  the  value  

~ a t  the  t ime t, re la t ive  to  the  hypo thes i s ,  t h a t  i t  a s sumes  the  value  .~.' at  the  

t ime  s. W e  no te  t he  essent ia l  f ac t  t h a t  t:>s, as in all  p robab i l i t y  ques t ions  

the  t ime  can  m o v e  on ly  in  t he  forward d i r e c t i o n  (cf. p. 280). By the  express ion  

s, tochastically definite ~ we m e a n  t h a t  t he  f u n c t i o n  P ( n ,  t; n',s) is i n d e p e n d e n t  of  

any  k n o w l e d g e  of  the  a n t e c e d e n t  of  the  process,  i . e .  of  the  d e v e l o p m e n t  of  t he  

process  before  the  t ime  s. T h e  exac t  s t a t e m e n t  of  th is  f ac t  is t he  fo l l owing :  

Le t  a < s l < s , < . . - <  S p = S ~ t = t ~ < t ~ < . . . < t ~ <  b. Next ,  let  us cons ide r  the  

s imu l t aneous  c o n d i t i o n e d  p robab i l i t y  d i s t r i bu t ion  o f  the  values  o f  the  s tochas t i c  

var iab le  a t  t he  t imes  tl, t2, ts . . . .  , to re la t ive  to  the  h y p o t h e s i s  t h a t  i t  a s sumes  

a ce r t a in  va lue  n(s) a t  the  t ime  s. I f  now,  this  s i m u l t a n e o u s  p robab i l i ty  distr i -  

bu t ion  is independent of  t he  f u r t h e r  h y p o t h e s i s  ( the a n t e c e d e n t  o f  t he  process)  

t h a t  t he  var iab le  has  a s sumed  certn.ln values  n(s~), n(s~),. .... n(sp-l) at  t he  t imes  

s~, s~ . . . .  , sp_~ a n d  th i s  ho lds  t rue  fo r  arbitrary values of  p ,  q, s~ . . . . .  sp, t ~ , . . . ,  tq 

and  n(s~) . . . .  , n(sp), then t he  process  is cal led s tochas t i ca l ly  defini te  in the  inter-  

val  (a, b). 

W e  no te  t h a t  e v e n  in s imple  p rac t i ca l  app l i ca t ions  s we m a y  mee t  wi th  

s tochas t i c  processes ,  which  are  not s tochas t i ca l ly  definite,  t he  a n t e c e d e n t  e n t e r i n g  

in a decis ive  way.  i n  the  examples  jus t  m e n t i o n e d  the  r e l evan t  p robab i l i t y  

i Arley (1943) , part I. In part II  of this paper we have discussed various special stochastic 
processes of both one and two dimensions and their application to the theory of cosmic ray cascade 
showers. For the mathematical theory see also Kolmogbroff (1931) , Feller (I937) , Lundberg (194o) 
and Frdchet (1938). In the paper of Lundberg special attention is paid to the application of the 
theory to sickness and accident statistics. 

2 Khintehine (1934) has suggested the expression ~Markoff process~ instead of sstochastically 
definite process<<. We think, however, that the latter expression is already so widely adopted, that 
an alteration in the terminology would rather be confusing. Furthermore, the former expression is 
generally used to express the fact that the stochastic variable can assume only an enumerable 
manifold of values. 

s Cf. e.g. Arley (1943) ~ 4.5 and 4.9. 
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dis t r ibut ions were, however,  simply the marginal  dis t r ibut ions of a multi-dimen- 

sional stochastic process, i .e.  a process in which several mutual ly  dependent  

s tochast ic  variables enter .  Ano the r  way in which a non-definite process may be 

reduced to a definite one is to t~ke the  knowledge of the an teceden t  into account  

by in t roducing  some fu r the r  quanti t ies,  parameters ,  as e. g. the velocities in 

classical physics, t 

The  specification of the process is now given th rough  the  in t roduc t ion  of 

two funct ions,  the intensity function p (n, t) and the  relative transition probability 
.function lI(n; n', t), both assumed to be continuous ~. Here  p(n , t )d t  is an asymp- 

~ t i e  expression for  the probabil i ty  of a s~ehas t i e  change of the variable taking 

place in the in terval  between t and t + dt when the variable assumes the value 

n at  the t ime t. Nex t  / / ( n ;  n ' , t )  is the  condi t ioned probabil i ty  of the variable 

assuming the value n at  the t ime t + dt relat ive to the hypothes is  tha t  a sto- 

chastic change of the variable f rom the state n' has taken place dur ing  the  

in terval  between t and t + dt. From the  definition of the p and H funct ions  it  

follows tha t  
p(, , ,  t ) ~  o (6. x) 

o <_- H In;  , / ,  t) <= i; n (,,,'; , ' ,  t) - -  o (6.2) 

Z /- /(n ; 7/', [ ) ~  I. (6. 3) 
n-=0 

Next  it  follows from the definit ions tha t  the P funct ions  must  sat isfy the fol lowing 

five fundamental conditions: 

lim P(n, t; n',s) = lim P(n, t; n',s)-~ d,,,c (6.4) 

P ( n , t + d t ; n ' , t ) = ( I - - p ( n ' , t ) d t ) d n , , , + I I ( n ; n ' , t ) p ( n ' , t ) d t + o ( d t )  (6.5) 

t, d t ,  n ,). (o(Jt) = f ( n ,  '~ 
o o  

P(n, t ;  n ' , s ) =  ~ , P ( n , t ; n " , r ) P ( n " , ~ ; n ' , s ) f o r  all z in s<=z<=t (6.6) 
?tl*=O 

o <= 1"(,,, t; ,,', .,.) =< ,  (6.7) 
oo 

\ '  P (n, t; ,,', s) --= i. (6.8) 
71~-0 

The relat ion (6.6) is called the Chapman-Kolmogoroff equation. 

t Kolmogoroft (1930- 
2 W e  note  t h a t  i t  is possible to g i v e  up th i s  a s s u m p t i o n  of continuity and thus obta in  a 

more general theory of stochastic processes. We intend to deal with this problem ill a later paper. 
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w  

Introducing the distribution matrix 

P(t,,~) = { P ( n ,  t; , ' ,  s)}, (z. ~) 

tile diagonal intendty matrix 

p(t)  := {p(n, t) d,,,,} (7.2) 

and the relative transition matrix 

/t(t) --= {n(n;  ,,', t)}, (7-3) 

we see that  the fundamental  conditions (6.4)--{6.8) may be written in the 

compact form 
lim P( t ,  s) = lira l"(t, s) = I (7.4) 

P ( t  + d t ,  t ) =  1 + A ( t ) d t  + o (d t )  (7.5) 

P( t ,  s) = P( t ,  •). P ( , ,  s) (7.6) 

o__<P(t, ~)=< {~ } (7.7) 
oo 

~ . P ( t , s )  = ~ P ( n ,  t; n ' , s )=  {I} (7.8) 
n = 0  

in which 

A (t) = --  p (t) + l I ( t ) . p  (t) = (II  --  1) �9 1,. (7.9) 

Due to (6.3) A satisfies 
~o 

~'A----- __a~ An,,, ~ 0 .  (7.1o) 
n = 0  

Introducing (7.5) for the first, respectively the second, factor in (7.6), we obtain 

d , P ( t , s ) = P ( t + , d t , , ~ ) - - P ( t , s ) = - a ( t ) . l ' ( t , s ) , ~ t + o ( d t ) . P ( t , s )  (7. I~) 

and 

~/ ,P ( t , , s , )  = P(t,s + ~r p(t , .s , )  = - p(t,s).a(s)~ts-P(t, . , .) .o(,4s). (7. x2) 

Making now the natural assumptions that (a) .4.  P and P . A  are both convergent 

and (b) o ( d t ) .  P -~ o(,dt) and P .  o(,ds) = o(ds )  ~, we see that  P has partial differ- 

ential coefficients both with respect to t and s, which satisfy the fundamental equations 

We have  n o t  been able  to decide w h e t h e r  or  no t  t h e s e  two a s s u m p t i o n s  follow f rom t h e  
p rev ious  ones.  As will  be seen  t h e y  are  in a n y  case neces sa ry  for t he  t h e o r y  in t h e  p r e s e n t  form 

(ef., however ,  t h e  r e m a r k s  a t  t h e  end  of p. 283). 



28(I Niels Arley and Vibeke Borchsenius. 

O__ P(t ,s)  = A( t ) .  _P(t,s) (7.13) 
Ot 

O p( t , s )  = - -  P( t , s ) .  (s). A (7. I4 )  

It  is now the objeet of our theory to show that i f  A is given by (7.9) and p and 

I I  satisfy (6. I)--(6.3) a~d are assumed to be continuous for all t :> s, then (7.13) 

and (7. I4) has each one and only one solution which is the same for  both systems 

and which satisfies the fundamental conditions (7.4)--(7.8). 
Assuming now the nmtrix A (t) to be absolutely exponentiable in some interval 

s ~ v ~ t it follows from part I that  (7.13) has one and only one solution, satis- 

fying (5.2), given by the product-integral 
t 

l ' ( t , s )  ---- 3 ) ( 1  + A(~)d~) (7. I5) 
$ 

which will, due to (3. IO), also be the - -  unique - -  solution of the adjointed equation 

(7. I4). Furthermore, due to (3. I l), (4. I) and (3. '4) this unique solution will 

automatically satisfy the three first fundamental conditions (7.4)--(7.6). We thus 

see, that  the product-integral is the ideal mathematical tool for the theory of 

stochastic, discontinuous processes. 

The left hand side of the fourth fundamental  condition (7.7)follows im- 

mediately from the definition of the product-integral, mentioned in (3.8), and the 

essential fact that  t~_s. ~ Due to (6. I)  and (6.2) we have, namely, that all the 

non-diagonal elements of A are non-negative, because all H~ > o, and the diagonal 

elements of the form A, , , - - - - I - -p (n , t ) .4 t .  Thus in the limit also the diagonal 

elements become non-negative. We note the important fact that  this statement 

need not be true if t < s  (cf. p. 277). (7.7) may, however, also be seen by 

means of the transformation formula (4.16). Putt ing in this formula A~ =---1)  

and A~-----II.p we obtain, due to the fact that  p is a diagonal matrix and its 

product-integral thus given by the diagonal matrix (4.6), 
t t 

+ (7.'5) 
$ 8 

in which, from (4. I7), 
l t 

A ~ ( t ) = e x p [ f p ( x ) d z ] . H ( t ) . p ( t ) . e x p  [--fp(~)dx]>--_ o. (7.17) 
S $ 

�9 l We have no t  been able to decide w h e t h e r  there  may  exis t  a s tochas t ic  process admi t t i ng  of 
o ther  non-negat ive  so lu t ions  t han  (7. I5), i . e .  which do no t  sat isfy (5 .2) (cf .  p. 299). 
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All the matrix elements occurring in (7.16) and (7.17) now being non-negative, 

the left hand side of (7.7) follows a t  once. We note that from the Peano series 

(3.7) for the product-integral of a non-negative matrix it follows that all the 

diagonal elements of the product-integral are positive. From (7.16) it is next seen 

that  also the diagonal elements of P ( t , s )  have the same property 

P ,n  (t, s) :> o for all t_--s. (7. I8) 

From the Chapman-Kolmogoroff equation (7.5) we next have, due to the left hand 

side of (7-7), for the non-diagonal elements 

�9 ".n,(t, s)__> p,. ,  (t, ~) /..,,, (~,s)_>_ o. (7. ~9) 

(7. t9) combined with (7. I8) shows that if P,, , ,  =: o for some value 10 > s, then 

this is the ease for all times in s ~ f =< t0, i.e. we have generally 

)~either -----o for all t in s ~ t =  < t o 
/ ' . . .  (t, s (7.20) / or > o  z ~> t >  8. 

The right hand side of (7.7) now follows immediately from the fundamental  

equation (7. x3), (7.4) and the relation (7. xo), because 

t 

~ , P , , , ( t , s ) = l i _ . m  ~ , P , , , , ( t , s ) = l  + lira A,,,, ,(v) Pn,,,,'(~,s) d z .  (7.2I) 
n = 0  n = 0  N ~ ~ ~ /  0 

For each fixed vn.lue of N we have, namely, a finite number of convergent series 

and we may, therefore, first interchange ~ and f d ~ ,  and next ~ and ~ .  

Firstly, the left hand side is, due to (7.2o), non-decreasing with increasing 

N and the right hand side, therefore, either tends to a finite limit or to oo. 

Secondly, from (6. 2), (5. 3), (7.9) and (7.2o) it follows that for each fixed value 
of n" and 

At,,,,.. (~ I; , . . , , .  (~, s) =< o = (7.22) 

Consequently we have from (7.21) that  

oo  

Y, P.,, '  (~, ,,) --<~ (7. ~3) 
r l = 0  

from which the right hand side of (7.7) follows immediately. We note that 

(7.23) is just what may be expected to hold true generally. I t  is, namely, a 
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priori possible that  the stochastic variable can increase so strongly with the time, 

that  it may reach the value 'infinity' with a positive probability for a .finite value 

of t, i.e. 

P ( ~ ,  t; n', s) = I -- Z P(~ '  t; n',s) > o. (7.24) 
n ~ 0  

w  

Before discussing the main problem of the theory, namely whether (7.8) 

holds true or not, we shall consider the problem of the absolute probability 
distribution. If  P(s) is an arbitrary matrix function consisting of only one column 

which satisfies 
0 ~ !"(.~') ~ {i} (8. I) 

all d 

-z. 1, = y ,  t , ,  (,) = ,, (s. 2) 

P,,(s) can be interpreted as the absolute probability of the stocha~tic variable 

assuming the value n at the time s. From the definition of P(t,s) and P(s) it 

follows that the absolute probability distribution at the time t is given by 

l'(t) =- P(t, s). P(.,.) (8.3) 

in which P(t) is also a solution of the fundamental" equation (7. I3)and satisfies 

(8. I) and 
lira P(t) = P(s).  (8.4) 
t ~ g  

Firstly, it follows immediately from (7.7) and (8.2) that  P(t)given in (8.3)exists 

and is non-negative, the convergence being, furthermore, uniform in t. Secondly, the 

convergence being, of course, absolute it next follows from (7.23) that we have 

y ,  !,,, (t) = !,,,,,, (t, .,. /-,.(.,.) __< 1 ; , , ( . , . ) -  , ,  (s.  s) 
II - 0 ?ltc:O 11=0 7 l ' = 0  

the sign of equality holding true if and only if the same is  the case in (7.23). 

Consequently the right hand side of (8. I) is fulfilled. 

Finally, we shall prove that  l)(t) given in (8.3) satisfies 

/ t 
e ( t )  = e(~)  + f (A ~).  I,<~,.~.)) �9 e ( . , ) , t~  = P(.,.) + f A ( ~ ) - P ( ~ ) ~ ,  (s. 6) 
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m which the associative rule holds true because P(v , s )  and l'(s) are non-negative 

and A(v) has in each fixed row at most  one negat ive element.  (8 .6) is  proved in 
t 

the fol lowing way. As P (t, s) satisfies P ( t , s ) = l + f A ( z ) . P ( ~ , s ) d v ,  we have for 

all values of N--> n 

N N t 
~, P . . ' ( t ,  s) I~' (s) = l~(s) + ~ (J 'A l 'dv).~. P~'(s) = 

T/,t=l| 71, C.: 0 

p~(s )  + (A(~).  ~,(~,s)),,,,, ~;,,(s) d~  = 

- -  1,~ (s) + ~ A,,,,,, (~) e,,,,,,, (~, s) P,,, (s) 
B ' P ~ O  ~t t~O 

P,~(s) + ' " /  A,,,, P,,n'(~,s) P,r(s) dz + 
;~ ~,~ =o 

J z ,) + '" A~,,,, (~) J; , , ,  ~, (~, ,~.) l;~, (s d ~. (8.7) 

First ly we have that ,  due to (7.9) and P(%s) and P(s) being non-negative, the 

in tegrands in both terms (I) and (2) are monotonously  decreasing, respectively 

increasing, funct ions with increasing values of N. Going to the limit, N - *  oo, we 

secondly obtain  from (8.3) that  both terms (x) and ( 2 ) a r e  convergent.  Con- 

sequently it follows from a well-known theorem ~ tha t  we may in ( 8 . 7 ) g o  to 

the limit before we integrate,  which fact  proves (8.5). 

P(t) thus  being an integral  it follows" that  P'(t) exists almost everywhere 
and satisfies 

F ( t ) -  A (t). p ( t )  = (.4!t; �9 p ( t ,  .,~)) �9 :0(,,.) = p '  (t, s)- ~,(s).  (8.8) 

I f  especially P(s) besides (8. i) and (8.2) satisfies the condit ion (5.3) and, con- 

sequently,  P(t) the condition (6), (5.2), (cf. i p. 272), then it follows from part  I 

that  (8.8) holds true everywhere.  We note, however,  tha t  in general  this is not  

the case (cf. ex. (9. II)  and ex. (13. I)). In this connection it may be worth while 
to observe that the examples mentioned show that the assumptions underlying the de- 
duetio~l of the .fundamental equations (7. I3) and (7.14), ~mmely the convergence oJ" 

I Cf. e.g. Titchmarsh 0932) w IO. 82_. 
2 Cf. e.g. Titchmarsh 0932 ) w I I.5. 
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A .  !" and P . A  (cf. ~ p. 279), are too ~arrow for  a general theory of  stochastic 

processes as we may very well in practice meet with processes of' just  the type 

mentioned, i. e. i1~ which the rate of  change of  the probability of  certain values becomex 

infinite at certain times (and in which even the  condi t ion (7.5) is possibly no 

more fulfilled). 1 

I t  now follows tha t  P( t , s )  given in (7. I5) exists and is the unique solution 

in the whole region of definit ion independent  of whether  .4 is exponent iable  in 

.~'_--<v<~ or only in a finite in te rva l  s=<~_--<t. In the last  case there  exists a 

-finite ' radius of exponent iabi l i ty ' ,  i .e .  a radius of convergence of the  series (3.7)- 

Le t  t~ be a point  within this  radius.  We  then  simply s tar t  once more  f rom this 

p o i n t  and repeat  the i te ra t ion  process, calculat ing the product - in tegra l  P ( t ,  tl) in 

a ne w  in terval  t~<=t<=t2. Each column of P(t~,s) sat is fying (8. I) and (8.2) 

it  follows at  once f rom the  above discussion of the absolute  probabi l i ty  distri- 

bu t ion  tha t  

t ' ( t ,s)  = V(t ,  t,). l"(t,, s) (8.9) 

exists and is ~ at  any ra te  almost e v e r y w h e r e -  ~he solut ion in the whole 

interval  s=< t - -  < t~. This procedure,  which we call exponentiablc continuations, 

we may now repeat  ad infinitum: obta in ing a series of cont inua t ion  points 

t o = s <  t t < t~ < . . .  < T. P(t ,s)  given in (7. 15) thus exists and is the unique 

solution i n  the  whole in terval  s =< t_--< 1'. I t  is, of course, possible tha t  the 

exponent iable  cont inua t ion  stops within the region of definition o f . A .  In such 

case our  theory  would turn  out  to be too narrow.  I t  is, however,  easily seen 

tha t  the cont inua t ion  may be carr ied t h rough  to arbi t rar i ly  h igh values fo r  

matr ices  of the types I V. In  the  ease of the  types I - - I I I  there  is no problem 

as A is absolutely exponent iable  for  all intervals.  In  the  ease of the types IV 

and V the  distance between two consecutive cont inuat ion-points  is l imited by a. 

re la t ion of the form 

0 
t~ - - t , , -1 - -  coast.  C;~'  o < 0 <  I, C , =  max f (~) .  (8. IO) 

If,  novr the con t inua t ion  process should stop, i .e .  t,~-* T <. ~ ,  we obta in  a 
I 1 ~  oo  

contradic t ion,  as the left  hand  side of (8. io) then  tends to o, and the  r igh t  

hand  side does not,  0 being a cons tan t  and f ( t )  being finite for  all values of t. 

1 We intend in a later paper to put the theory in a more general form comprising such 
processes. 
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Example  (8. I). 
In the general case we may, on the other hand, very well meet with matrices 

for which the continuation process does stop. Let us, namely, consider the matrix 

given by ~ 

Avq(X)-----Kpq~(4)P2 q, p,q-=o, 1;2,...,  x > o .  ~(81 .i i ) 

By induction we can prove that  

~4 /  \ 2 -~ -~ I  ' ~' >-- ~' x < 2 .  (s .~2)  

(8.12) is obviously satisfied for �9 = I. Let 'it be true for v, we then have 

: =  

P2q\2~--~! for x < 2 

oo .~ X > 2 .  

(s. ~3) 

Consequently A(x) is absolutely exponentiable in the interval (xo, x)'~, 

because 

o ~ x o = < x <  2, (8. I4) 

(8. I5) shows in fact that  we cannot continue exponentiably beyond the critical 

point x---~ 2. 

Finally we shall discuss the last fundament.al condition (7.8). As already 

mentioned (cf. the end of p. 28I) this condition is, in contrast to the preceding four 

conditions, not generally fulfilled. In fact it is easy to indicate processes for 

which (7.24) holds true (ef. p. 288). 

We note  t h a t  th is  A does not  belong to a s tochast ic  process,  i t  could, however,  easi ly be 
modified so tha t  th is  were the  case. 

~ /  2 ~"2q 2 We observe tha t  pu t t i ng  _~lr~ q ~*~--~1 i t  may be seen t h a t  ~4[(x)is covered by  Cram~,r's 
cr i ter ion (of. p. 274). 

9-632047 A cta mathematica. 76:3-4 
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Let us first assmne that  the matrix of our process is covered by Cram6r's 

criterion (cf. p. 274 p. We then have, due to (5-I), (4-2), (5-I4) and (5.13), 

_*,s e) } ' < I a . u " ( * )  l { , "  ,,' (*, s) ] < ( ) _ K ' + l n , d  ( t -  8 ) * ' ~  

(8. I6 )  
o~ {}o 

,,,(t - ,1 F,  , , , { t -  
�9 v------if--. - -  d t  r! < ~  for all ~ in s=<~--<_t, 

v ~ O  *'~---'0 

(8. I6)  shows: 

(a) that the product A . / )  is uniformly convergent and thus, A and P being 

continuous, that a lso 0~. P is continuous, 

oo 0 
(b) that ~ ~ t~,,, is a uniformly convergent series of continuous functions, 

,=0 

from which fact it follows that 

~- Z/~,,d = Z ~-/-P,,,,', (8. I7)  

? l = O  n ~ O  

i.e., due to (7.4), 

(c) that  ~ ~, is an absolutely convergent double-sum, i.e. the order of 
?~ n tt 

summation may be inverted. Consequently we have, due to (7. Io), 

a 7  Z 1;,,,, = Z = . , . , ,  v . , , . ,  = . , . , ,  
n =  0 ~ t t t ~  0 ~ ' w ~  0 __ 

V,," ,e= o, (8. ,8) 

~, P,,,e (t, ,) = const. ---- ~, P,,e (s, ,s.)= i, (8. I9) 
7 t ~ O  7 1 = 0  

q . e . d .  

As a consequence the last fundamental condition (7- 8) is fulfilled for processes 

of the type I, IV, V (cf. p. 273 ft.), as Cram&'s criterion may be directly ap-  

plied in these cases. As regards type I [  there is two possibilities: either the 

matrix is row or column half-finite. In the latter case it is, however, seen from 

(7.9) that  the matrix is then also row half-finite (i. e. finite). In the former case 

the matrix is bounded, i .e .  of type I. As regards type I I I  there is also two 

possibilities: either the matrix is row or column half. In the latter case 

1 We observe tha t  at  this  place i t  is essential  tha t  the criterion operates with columns and 
not  with rows (cf. p. 275 ) . Consequently the following proof does not  apply if ~l is e. g. a row 
half matrix ~cf. p. 273). 
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Cramdr's criterion may be directly applied. In the jbrmer case it fails, however, 

notwithstanding the fact that  it may still be applied for the proof of the ex- 

ponentiability of the matrix (if we, namely, only consider the transposed matrix). 

Even though A is known always to have convergent numerical column sums 

because, due to (6.3), 

~IA~,~,I = ~ , ( (n  + l).p),,,,, = ~ p(,' ,  t)< oo, (s. ~o) 

already A 2 need not have convergent column sums in the case of a row half 

matrix, as shown by the following example. 

Example  (8. II). 
Let A be the following row half matrix 

Av~=p-1 -~q2~d(p>q) ,  p , q = I , 2 , 3 , . . . ,  

We then have 

and 

0 ~ /~ <. I ,  

d ( p > q ) - - = J I  for p > q  

= [o ,~ p < q .  

oo oo 

A~,,~- ~ i - ' -~q  2~ < ~(x + ~).q~ < 
i=l i'--q 

P 
(212)p q = ~ p - - l - - ~  (~2 ~C~--I--~ q~'~ J ( p >  a) ,4 (a > q) ____ p - l - E  qO.~ ~ g - - I + E  J (  p>____ q ) >  

a ~  1 a ~  q 

Consequently 

q . e . d .  

p- l -~q2~(p_q  + i ) J ( p >  q)p-,+~. 

oo oo 

y . ~  F , ( A %  > q~-~ Y, 7 -q'-~(q-- i) 
i~l i~q f=q  

(S. 2t) 

( 8 . 2 2 )  

(s. 23) 

= ~ ,  ( 8 . 2 4 )  

In the general case we can obtain a sufficient condition for the fundamental 

condition (7.8) in the following way. Integrating the fundamental equation (7. I3), 

summing over n and rearranging somewhat we obtain for an arbitrary process 

which is assumed to have a solution satisfying (3. I), (7.4)--(7.7), due to [~. z3), 

o = < ~ - y , 1 ; , , , , ( t , ~ ) =  ~ - F ,  ~ (n(~).v(~,),,,,, ,,,,,,,(~,~.)J~ (8.~5) 
n=0 n==Ni+l n " = 0  n=0  n " = N + l  

p 
for a l l  N > n .  
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This equation is simply a cont inui ty  equation for the 'probabili ty mass' of the 

values n ~ o, I, 2, . . . ,  N, the first and second term on the r ight  hand side being 

the 'probabili ty mass' which, in the t ime from s to t has flowed 'upwards' ,  

respectively 'downwards ' .  (8.25) sh'ows immediately t ha t  we have the following 

sufficient condit ion f o r  (7.8) to hold t rue  

lira 
oo N 

~, Z(H'P)n,e '=o,  
n~N+ I n " ~ O  

H =  max H(z), p = max p( .) .  

(8.26) �9 

This condition is, however, not very useful as it will in practice seldom be 

fulfilled. In the case of A being an arbitrary semi-diagonal matrix (cf. p. 273) 
we have previously 

Lundberg  condit ion t 

proved the following sufficient condition, called the Feller- 

D(-)= {p(.',,)} 

oo 
I. 

Y, 

for n ' = n - - l +  I, n - - l + 2 ,  . . . , n .  
(8.27) 

Furthermore,  we have in the case of A being an arbitrary row half matrix proved 

the following necessary condit ion 2 

oo 
I 

j , l . i  = 
n = O  - 

_p (n) ----- min p (n, z). 
s ~ r  

(8.28) 

If  e .g .  we put  p ( n , t ) - n  ~ (and e . g . H . , , = d , , , n ' + l )  we see tha t  (8.28) is not 
fulfillecl, i. e. t ha t  

oo 

~9(00,  t ;  ? i ' ,8)  = I - -  Z P ( , , ,  t ;  n ' , 8 )  > o .  ( 8 . 2 9 )  

" a = O  

t Arley (1943), p. 63. This  condit ion and the fol lowing one are general izat ions of results 
obtained by Fel ler  and Lundberg,  see Lundberg (I94o). 

2 Arley (I943) , p. 67 . 
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PART II I .  

' P a t h o l o g i e s '  i n  t h e  T h e o r y  o f  In f in i t e  S y s t e m s  o f  Di f f e ren t i a l  E q u a t i o n s .  

w 
We shall now return to the general theory of p a r t  I, investigating in more 

detail the conditions (a) and (~) (cf. p. 27I:---272 ) by discussing the 'pathological' 

cases arising when we go from finite to infinite dimensions. Our principle by the 

construction of these examples will be simply to split the system (2.5), i .e. 

Y ' = A . Y ,  (9. I) 

into two parts, one containing Yx, I72, Ya . . . .  and which may be solved succes- 

sively, the other containing only Yg expressed as a seiies in I~, Y~, ~[~ . . . . .  

I t  will be seen that for this purpose we need only take the first column of A 

equal to o throughout. Furthermore,  we shall as far as possible choose our 

examples in such a way that  (9. I) represents a stochastic process, i .e. that  A 

is of the type given in (7.9). 

Firstly, we observe that  in the equation (9. I) the dot now represents an in- 

finite sum. We cannot, consequently, from the fact that  A and Y are continuous 

functions now conclude that  Y '  is continuous, as the sum defining Y '  need not 

be uniformly convergent .  In fact Y '  can even be so discontinuous that  it is 

not absolutely integrable (even in the sense of Lebesgue). Before we give an 

example of this fact  we shall show that  we cannot even from (9. I) conclude to 

(2.9), i .e.  in the equation 
[ Y ' I ~ K . G  

the product K - G  need not necessarily exist. 

Example  (9. I). ((a):+. (~):--. un: + .  ex: +)1. 

o i - -2  3 " " ]  

[ o - - I  0 o . -  

Y ' ~  o o ~ 2  o . Y = A . Y ,  [ 
0 0 0 --3 "':1 

] 

(9.2) 

Y ( x o )  = 

o r 
(9.3) 

i The symbols (~): +, (6): --, Un: -F, ex: + and so on denote, respectively: the condition (~) 
is fulfilled, (6) is not, the theorem of uniqueness is fulfilled, that of existence is also, and so on. 
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I t  is easily seen tha t  for  this equation t the condition ( a ) i s  fulfilled, A being a 

half  matr ix  (ef. p. 273 ). Next  the equation is readily seen to have the unique 

solution 

Y,,(x) = ~ e -n (~-zo) for n >---_ I (9.4) 

and 

i .  e .  

As 

~:0 (X) ~ ( -  I)'+I --- _ _  e-n (~.-.~.o) = in (i + e-(,-,,,)) 
n = l  

2' c n ~  l 

I - -  e - n  (x-xo) 

I: 
K~) 

I 2 3 "'" 

I O O "'" 

0 2 0 " '" 

o o 3 

(Re (x -- xo) ~ o), (9. 5) 

(Re (x -- x o) _>-- o): (9.6) 

i: 

w e  see in fact  t ha t  K . G  is divergent,  q. e. d. Consequently the condit ion (~)is 

not  fulfilled. We observe, however, that a pathological ease of  this type eamwt occur 

undo" our assumption (~), because i t  then follows that K .  G is convergent. 

Example  (9. II). ((a): + .  (6): -- .  un:  + .  ex: (T)). 
I t  may be of interest  to observe t ha t  by omi t t ing  the negative signs in 

6 
the first row of A in the preceding example and mul t ip ly ing  Y(xo) by 

in order to make Z Y. (Xo) = I we obtain a stochastic process of jus t  the type 
n ~ O  

t We note t ha t  due to the  al te rna t ing  signs in the first row of .4 (9-3) does not  represent a 
stochastic process (cf., however, the  following example). 

2 As Yo ~ o, Y0(x) is monotonously increasing, i. e. 
oo oo oo 

Z Z ' ZI I max Yo(x)=  Yo(•) = n2 (2 n-TI)"  ( 2 n :  8 4 6 I 2 '  
n ~ l  n ~ 0  

which resul t  follows from the  theory of the  Riemann ~-function. 
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announced  above (of. the end of p. 283) in which Y '  does not  exist  ererywhere, 

but  only almost  everywhere.  In fac t  we now find 

6 I 
- - - - e  -n(~-~~ for  ~ > I (9-8) 

and instead of (9.5) 

Yo(x) .6 i - (9.9) 
, = _e_,,l~_~ ) = .  ~-/In (l - - e  -(~-~',,~) R e ( x - -  x o) > o 

,,=1 ~ Re (x - -  Xo) = o. 

Nevertheless  the funct ion  (9.9) is integrable,  and in tegra t ing  we obtain 

.r,  

~'o 

R e (x - -  x0) ~ o. (9. l o) 

I t  is easily seen ( a ) t h a t  the funct ions  given in ( 9 . 8 ) a n d  ( 9 - I o ) c o n s t i t u t e  a 

probabil i ty  dis t r ibut ion as they  are non-negat ive and have the  sum I, and (b) 

tha t  they satisfy the equat ion Y '  - A . Y  except  in the ini t ia l  point  x ~ xo, 

because here  the  rate  of change  of Yo is + *o 1. 

Final ly we observe tha t  due to the  fac t  t h a t  the solution given in (9-8) 

and (9- Io) is only a solution almost  everywhere,  it  is not a solution in every limit- 

point of points in which it is a solution. We shall later (cf. w 13) return 

to this interesting point. 

We shall nex t  give an  example showing t h a t  Y '  need not  be absolutely 

integrable,  the in tegra t ion  being taken  even in the sense of Lebesgue. (We note  

tha t  (2.9) then  shows tha t  K - G  cannot  be convergent).  In  such case we could 

not ,  consequently,  generally per form our  proof  of the  theorem of uniqueness by 

the method of i te ra t ion  applied in w 2. 

E x a m p l e  (O. III). ((~):+.  (~):--. un:  + .  ex: +). 

First ly,  we consider  the  well-known funct ion 

: / =  x" sin (x _>- o) (9.11) 
X" 

t It may be interesting to remark that in a stochastic process the rate of change of the 
probabilities can never assume the value --o% so long as the intensity function lo(t) is finite. 
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for which 

, 1 2 x s i n  I 2 I - -  - -  - COS x : >  0 
y = x= x ~ (9.12) 

0 X ~ O .  

Due to the term 2_ the function y', being discontinuous in x = o ,  is just  seen 
x 

to be non-int~grable in the sense of Lebesgue. In fig. I we have indicated the 

graph of y' in the interval o < x <  ~ .  The function y'(x)  has an infinity of 

zeros, given by the equation 

tg  x ~ - - x ~ ,  i.e. x p ~  + p ~  p = I , 2 , 3 , . . .  �9 (9.13) 

. .  

2: 
0 

-2 

- 4  

Jf21" 
D I 

2 

X 

Fig.  i .  F ig .  2. 

In the neighbourhood of each of these zeros we replace the curve of y'(x) by 

tWO suitable, monotonous, smooth curves y = l n ( x  ) (left hand curves)and y ~ r v ( x  ) 

(right hand curves), as indicated in fig. 2: 

Here 

�9 r t /  Y -- ll'(X) l f o r  xn<-~ x < x p .  (9.  I 4 )  
:1 - , -~(x)j  = 

s s l  s sp  

r t t~ 0 lp (xp) --- r v (xn) ----- (9- I 5) 

(x) + ~.~ (x) = ~'(x). 
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This replacement has to be done in such a way tha t  the following funct ions 

are differentiable with continuous derivatives in the whole interval o ~ x < ~ : 

o for o ~ x < x ' l  
i p  

X l ~  X l  zl (x) = Ii (x) >~ ' < x 
2 X sin I 2 I . < - -  - -  - C 0 8  >7 X z X ~ X l  ~ Z 

0 

~(x) 

zv(T) 2x  sin I 2 I = I ~ -  - ~- c o s  ~ .  

[ r ,(x) 

0 

Finally we put 

i: o<=x<=x'p 
t t t  

xp < x < xv  

" < x  < " )) X p  _~_ X p - -  1 

t I t t  
, x p _ l ~ X ~ - - _ X p _ l  

t t  

X p - - l ~  X. 

~tn(X)~-- Zn(X)  + ( - -  I )  n + l  I _ _ ,  
2 n 

p : 2 , 3 . 4 , . . .  

n = I , 2 , 3 , . . .  

(9. 16) 

(9. 17) 

and define a matr ix A ( x )  with the following elements: 

A . , , ( x ) -  ~ du. 
yn d x  

Ao, , (x)  = I 

A,~,n(X)  = o 

for n = I , 2 , 3 , . . .  

,, n =  1,2, 3 , . . .  (9. 18) 

>, all other  values of n, r e = o ,  I, 2 , . . . .  

We now consider the equation 

r '  (x) = .4 (x)- Y (x), (9.19) 

where A ( x )  is given in (9. I8). A ( x )  is thus continuous in o _ - - < x < ~  and is, 

being a half  matrix,  fur thermore  exponentiable in this interval (cf. p. 273). The 

condit ion (~) is thus satisfied. Corresponding to the init ial  value 

r (o) = 

I 0 
I 
2 

4 
I 

(9.20) 
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(9. I9) has thus the unique solut ion 

Y.(x)=y.(x) given in (9. XT) 
and, due to (9. I5), 

l)n+ i I 

= r .  = = 

I 2 I I 
"=' 2 x sin ~ - -  ~ cos ~ + 

for  x = o  

X > O ,  

(9.2I) 

i .e . ,  due to (9.20), 
I I 

Y o ( x ) = x '  sin ~i + - x .  (9.22) 
3 

(9" 2I), consequently,  shows tha t  we have in fac t  obta ined  an equat ion (9. I 9 ) f o r  

which  Y '  is not  absolutely integrable,  q. e. d. 

Finally we observe tha t  our example could, obviously, jus t  as well have 

been cons t ruc ted  in such a way tha t  the matrix A becomes not  only cont inuous 

as in our example - -  bu t  fur thermore  d i fe ren t i ab le  an arbitrary,  but  finite, 

number  of times. 

We stress, however, that a pathological case of this type is excluded in case our 

second condition (~) is fulfilled. From (~) it follows, namely,  tha t  K .  G is con- 

vergent,  i .e .  tha t  all the series defining A .  Y are uniformly - -  and absolutely 

convergent .  A and Y being continuous,  Y '  is, therefore,  also cont inuous i. e. 
X 

absolutely integrable  aSd satisfies, fur thermore,  f Y ' d x =  Y ( x ) - - Y ( x o ) ,  which 
~0 

relat ion was the  s tar t ing point  for  the proof of the theorem of existence (cf. w 3). 

In  this 

necessary condit ions for  the  theorem of uniqueness t o  hold true. 

E x a m p l e  (10. I). ((~): -- .  un : + .  ex: +).  

o ~ 3~ " 
I ' 2  

o - - x ~ .  o o 

I ~ --2~ o . . .  . Y = A . Y ,  Y ' ~  0 2"3 

o o - - 3 ) -  ' 
�9 3 " 4  . 

IO. 

paragraph we shall show tha t  our condit ions ( ~ ) a n d  (~) are no 

(lo. ,) 
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I t  will be seen tha t  A satisfies (7.9) and (7. Io) and tha t  (Io. I), therefore,  

represents  a stochastic process. 

( ") I I Since (`4')01 = ~' 2 nL Z =o0 (IO. 2) 
n ~ 3  ~/ 

already A-" does not  exist, i .e .  our  first condit ion (~) is not  fulfilled. Nevertheless,  

it is easily seen tha t  (Io. I) admits  of at  most  one solution (in w II we shall 

show tha t  it has in fact  a solution) because (IO. I) simply means 

Y ; = - - ; t r ~  
Z ( , o .  3 )  

Y ~ = - - ~ ' Y " + n ( n +  I) Y*' n = 2 '  3 ' 4  . . . .  
and 

;t | 
~# _ _  Z 

1 0 = i .  Y I + Z  .nY,,. 
n ~ 2  

W e  next  show tha t  nor our second condit ion (6)is necessary for  the theorem 

of uniqueness to hold true. For  this purpose we shall utilize the  theory of 

Four ier  series. 

E x a m p l e  (lO. II). ((0~): + .  (6):--. un: + .  ex: t+)). 

Y: 
Y; 

r ' =  r~ = 

ri, 
r :  

"0 $o 81 a- i  a l  

o o o o o 

o o i o o 
o 0 o - - i  o 

o o o o 27 

0 0 0 0 0 

a _  2 . . ,  

o . . .  

o . . -  

0 ""i" 0 
--.2 i 

Y = A . Y .  (,0.4) 

In  t h i s  case (a) is fulfilled, because .4 is simply a half  matr ix  (cf. p. 273). In  

fact  we find 

e x p  [Klx-- Xol] = (1o. 5) 

]i ~a~'-x~ ~a~(e~.~<~ ~a-~(e~<~.~ ~-~-~(e~'~-.)~ e .~-~',.~ o~ o~ : i i  I 

=17 o o o o I o o o e ~ l x - ~ o l  o �9 . .  

.o o. o o e 2 I x - , ' l  . ' "  
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Our second condition (8) need, however, not be fulfilled. I f  we e.g. as initial 

condition choose 
c 

~ I 
0 

I 

Y(xo)=  C----' I (IO. 6) 

I I I 

and e.g. put 

we see that  

I 
ao=O, a~=[~-]] ,  ~,----q-l, _+2, . . . ,  (IO. 7) 

or i 

( exp  [ K I x - -  x01]"  c)0 = 2 ~ ~-8(e " l x - ' ~  - - l )  = ~ .  (IO. 8) 

Nevertheless, it is again easily seen that  (lO. 4) has at most one solution'  since 

(lO.4) simply means 

y '  
2 n + l ~ - - n i Y 2 n + l ~  n~-o ,  1 ,2 , . .  , 

r t  

:}2,,= niY~, n = I , 2 , 3 , . . . ,  (Io. 9) 

Y~= ao Y, + a, lq + a-, Ys + " ".  

In w IX we shall consider this example in more detail. 

Finally we show that in the ease of our equation Y '  = A . Y  being of infinite 

dimension, the theorem of unhlueaess itself need not be true in contrast to the ease of 

finite dimensions. 

Example (10. HI). ((~): +. (~):--. un : - - ,  ex:(_+)). 

lot o�9 oi I 0 0 I 0 

Y '  -~- 0 0 0 I �9 

0 0 0 0 

Y =  A" Y .  (IO. I0) 

L We see, however, t ha t  (IO. 4) need not  have any solutions a t  all. By choosing a0, at ,  a_ I . . . .  

in a sui table  way, :Y~ given in (IO.9) need, namely, not  exist�9 Even if i t  exists, i t  may not  be 
integrable.  E .g .  we may choose ao, a l ,  a_ 1 . . . .  so t ha t  Y~I  for x > x o ,  Y ~ = - - I  for x < x  o and 
Y~ = o for x = o. In this  case Y~ cannot  be the  derivative of any function�9 



On the Theory of Infinite Systems of Differential Equations. 297 

This equation means, simply, 

Y1  = Yo 

' ' "  (IO. I I )  

Y , , =  Y'._~ = y,l.) 

We thus see tha t  }~(x) is uniquely determined by Yo(x) and tha t  Yo(x) may be 

an arbitrary function having, only, derivatives of arbitrary high order. 

Prom the initial condition 

and (Io. 11) it follows that  
Y(xo) = c (1o. 12) 

c,,. (io. 13) 

As i s  well-known the function Yo(x)is,  however, not uniquely determined by 

(IO. I3) , i .e. by its Taylor series. If, namely, I o is a ftinction for  which (IO. I3) 
is fulfilled, e.g. the function 

Yo ~- ~_j o)", (,o. I4) 

then for instance the function 

Y ~ =  Y ~  [ ~ ]  (10" 15) 

will for arbitrary values of the constant k also satisfy (Io. I3). The equation 

(IO. IO) has thus, corresponding to an arbitrary initial condition (Io. I2) for which 

(1o. 14) has a non-vanishing .radius of  conv~qence, an infinity of solutions. 1 

We note the very important  fact, tha t  this property is characteristic for a 

whole class of i~finite equations Y ' - - A - Y .  By a row semi-finite matrix we 

understand an infinite matrix which has in each row only a finite number of 

non-vanishing elements, but not  necessarily the same number for different rows. 

Let  us by pn denote the maximum column index in the p ' th  row of A, i.e. 

Avj t  ~= o for j----p~ (IO. 16) 
( = o >> all j >p~. 

The equation (IO. IO) need not, however, have any solutions at  all, as (IO. 14) may only be 
convergent for x ~ x 0 ,  e .g.  if C~=( v ! )  ~. 
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I f  especial ly pn satisfies 

p n > p  f o r ' a l l  p ~ o , I , 2 , . . )  (IO. I7) 

we obta in  the  class jus t  ment ioned.  ~ 

Each  o f  the  single equat ions  in Y ' - - - - A - I  r we may,  namely;  unde r  the  

condi t ions (lO. I6) and  (IO. I7) solve wi th  respec t  to I~: (x) ,  thus  ob ta in ing  

:1  ] 
r~ , , ( x ) -~A,v , , ( x )  Y:,(x) - - ~ , A , j ( x )  Yj(x) fo r  all p - ~ o ,  1 , 2 , . . . .  (lo.:18) 

' j = o  

This  equa t ion  means  t h a t  each Yp may  e i ther  be chosen as an a r b i t r a r y  funct ion,  

having,  only, der iva t ives  of  a rb i t r a ry  h igh  order,  or  may  be de te rmined  uniquely  and  

successively f rom the  lower  Yp-functions, i .e .  those  With lower  index p. I f  the  

equa t ion  Y ' - - ~ A .  Y h a s  any  solution a t  all, Y,  sa t i s fy ing  the  ini t ia l  condi t ion 

(Io.  ~2), i t  will  t hus  be seen t h a t  m a k i n g  aga in  the  subs t i tu t ion  (Io. 15) we may  

ob ta in  a d i f fe ren t  solut ion Y *  sa t i s fy ing  the  same ini t ia l  condi t ion  (Io. 12). Even 

for  such simple equations with row semi-finite matrices satisfying (IO. I7) it is, con- 

sequently, necessary to impose certain restrictions ~ e.g. our condition (~) - -  on the 

solutions considered in order to maintain a theorem of  uniqueness. This  f ac t  is 

especial ly in te res t ing  because in the  p rac t ica l  s ta t is t ical  appl ica t ions  of  s tochast ic  

processes we of ten  mee t  wi th  processes governed  by equat ions  o f  jus t  this  type.  

E x a m p l e  (10 .  I V ) .  ((~): + .  (6): + .  un : - - .  e x  : + ). 

Le t  us as an  example  consider  a s tochas t ic  process 8 with the  in tens i ty  funct ion  

p(n ,  t)----n and  the  re la t ive  t rans i t ion  probabi l i ty  ma t r i x  / / h a v i n g  only the  non- 

van ish ing  e lements  

---- and  / / , ' - l , ~ '  ~ , i . e .  

We observe that a row semi-finite matrix of the type (Io. I7) need not be absolutely ex- 
ponent;able, el. (5.8) and (5.9). 

In the other extreme case, pn_-<p for all p ~ o ,  1,2,... ,  .~[ is simply a row half matrix, 
and our first condition (~) is thus fulfilled (cf. p. 273). The equation Y ' ~ _ 4 - Y  is, therefore, in 
this ease covered by our theory. Furthermore, it will be seen from the proof of the theorem of 
uniqueness ~w 2) that in this ease our second condition (8). is automatically fulfilled, as the ex- 
ponential will again be a row half matrix. Under this condition the theorems of uniqueness and 
existence tlsus both hold generally true wiOwut any farther conditions, i.e. the equation behaves 
exactly as a finite equation. 

* Cf. Arley (I943) , w167 4.6--4.8. 
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o 

I ~ 
P '  = o 

o 

7 " I  0 0 " " ]  

- -  (~, "1- 7)" I 7" 2 0 I 
Z" I - - ( J ~ +  7) " 2 

7"3 " 1 "  o z.2 - ( z+7) .3  
�9 . . 

I '=a . v ,  P n ( O ) = ~ , , , l .  ( I 0 . 1 9 )  

By means of the genera t ing  funct ion it is possible to deduce the following exac t  

probability solution t 

Po(t) = i q 7 -  z 
). -- 7 exp [(7 -- Z) t] 

(io. 2o) 
- Z)* (i --  exp [(7 --  )-)t]) *- '  

P .  (t) = (7 it* exp [(7 -- Z) t] , = I, 2, 3 , . . .  �9 

I t  is easily seen tha t  (Io. I9) has apart  from the solution (Io. 2o), which is easily 

seen to satisfy (7.7) and (7.8), an infinity of solutions sat isfying the same initial  

condition P~ (o) ---- d,,1. In  fact  we find. put t ing  

[ I l (,o P ~ ( t ) = P o ( t ) + k  exp - - ~  , 

successively tha t  

p ~( t )=  P~(t) + k exp _ ~] 2 

(IO. 22) 
k [ _ |  : 

P~(t) = P~(t) * ~ - F  exp t t ~ J -  (Ix + :  - 3 ~" + 2) 

and so on. 

The solution given in (IO. 2I) and (I0 .22) is ,  however, no probabili ty solution 

because even if k >  0 we may obtain, negative values for some of the P,*,(t) funct ions 

at  various times t. I f  e .g.  Z = 7 =  i i t  is seen tha t  the second term of P~(t) 
2 

is negative in the interval  I < t < I + V22. The first te rm being at  most I, we 

thus  obtain P*2(t)<o in an interval  I + r ~ t ~  I +  V 2 - r  for sufficiently h i g h  

values of k. (We note tha t  in this example it may be shown tha t  no solution 

other than  (to. 2o) can be non-negative t h roughou t  (cf. p. 28o)). 

This  calculation is due to tekn. d:r. Conny Palm. We wish to express our most  sincere 
thanks  to Dr. Palm for communicat ing this  solution to us. We have, however, la ter  succeeded in 
obta in ing the  solution by a much simpler method, which may even be generalized to processes 
for which t h e  m e t h o d  o f  t h e  generat ing function cannot  be carried through�9 We intend to discuss 
this  method in another  paper. 
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i i .  

In the preceding paragraph we have discussed pathologies concerning the 

theorem of uniqueness. We shall now discuss pathologies concerning the theorem 

of existence. First  we give an example showing that  although the �9 (a) 

is not fulfilled, the theorem of existence may nevertheless hold true. 

Example (ll.I). ( = e x .  (IO.I). (:t):--. u n : + .  ex: +). 

Let us again consider the example (to. I). As shown there the equation 

(m. I) admits of only one solution obtained by solving successively the equatiolis 

(IO. 3). We thus find, corresponding to the special initial value 

r (Xo)  = { r,,.~,(Xo)} = I~,,~,}, . ' =  o,  ~, 2 . . . .  , ( ~ .  ~) 

Yln'  (x) ----- ~ln'  e -;:(x-x~ 

Y.~, (x) = ~n~' C -~  ~ (~-~~ + 

a n d  

Y ; ~ , ( x ) =  ...... ~ Y ~ ,  + ~ , n Y . ~ , =  x 
I ' 2  1"2  

~.n'e'"'~(~-'~ ' >= 2) + 

n (n + I ) ( n  - I 

~l n' e -~" (X-Xo) + )~ i n ~n~t' e-" ~" ( x - x d  + 
n ~ 2  

oo / , ~ - ~ ) . ( X - Z o )  e-n).(x-xo)~_ 

( i I . 2 )  

( ~ 1 . 3 )  

_ -  _ _ _ _  " e - ~ ( . ~ - x o ) ) l  �9 + ~ l n '  e "(~ ~o)- I _I (e~(~_~o)  _ e_:~(~_~o))  I n  ( I  
2 2 / 

[ t >  i for n ~ 2 
Re /t (x --xo) > o , J ( n ' > - > ~ 2 ) = ~ O  >> n ' < 2 .  

The last series in (II. 3) is seen to be uniformly convergent, thus having a con- 

tinuous sum for Re ~(x -- xo) > o, but  to be divergent for Re ;t (x -- x0) < o. The 

point x=xo  is thus a singular point as also shown by the result of .the summa- 

tion containing a term ln(I--e-~'('*-Xo)). This fact means that  although the ma 

trix A is so regular as we may demand, i.e. constant, one of the functions, 

Yo,!(t), does not even exist everywhere, but only in the complex half-plane 

Re lt(x-=Xo) ~ o and is, consequently, not analytic in x = x 0 .  

We thus have the very interesting fact  that the singular points of  an infinite 

equation need not at all coincide with those of  the matrix A of" the equation and 
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may, not, i~ fact, even be read off from A by an immediate inspeetiou. This ./'act 

shows in a most striking way the fundamental difference between infinite system,~ 

and finite systems, which last .~ystems can only have the singular points of A as 

singular points (eft w 4). 

As Yo,,' (x) given in (11. 3) is a continuous function for Reit(X--Xo)~O, it may 

be in tegra ted  and we thus find tha t  Yo,,'(x) is uniquely given by (substi tuting 

t--~ e -~(~ ..... )) 

] ' O n ' ( X )  ~--- (~Ou' -~- j (  )'~O,,t'(X)(l:L' = (~on' q- ~ ( ' ~ ' ~ -  2 ) ( 1  - -  e - n ' 2 ' ' t - - x ~  ~t_ 
O 

1 

dl,, 1(i _ e_>.(x_:~,) , i t ( x "  x(,)2 2I j"  (in (It,.,--t) In ( 1 - - t ) ) d t ] ~ - :  

e - a (x -- x,,) 

~o,,, + ~ ( n ' >  z ) (~  - e -'*'>~-'o)) + 

(11.4) 

§ (I--e->":'~'-~,,))--l(1--e-~'~'-x,,))"eZ('~-Xo)ln(l--e-~'(.~'-:"o )) , 
2 

Re it (x -- x0) ~ o. 

We see tha t  13,,,(x) has for x = z  o a very serious singulari ty of the  same type as 

the  funct ion  y--~ x ~ In x, namely an infinite branch-point.  

I t  will be seen tha t  all the  funct ions in (11.2) and ( I I .4)  are non-negative 

and satisfy 
oo  

Y,,,,,(x)=--I for all x > , c  o and n'----o, 1 , 2 , . . . ,  (I1.5) 
?~*=0 

as should be the  case because our equation represents  a stochastic process. 

The column matr ices  Y,~(x)= Y,~'(x--xo)corresponding to n ' = o ,  1 , 2 , . . .  

are now seen to const i tute  a fundamenta l  solution. Taking toge ther  these columns 

to form a quadrat ic  matrix,  which we shall again denote  as a product-integral  

x 

c ~ ( 1  +Adt ) -~{Y~n , (X- -Xo)} ,  x>=xo, (1I. 6) 

we see, namely,  tha t  our equation has for an arbi t rary initial value 

Y ( X o ) = C = { C , , }  with 5',16",1< | (11.7) 
~'~0 

a unique solution for all .r ~ .% which is given by 

X 

r ( ~ )  = ~_~(1  + a a t). ( ;  (~ 1. s) 
a ' .  

I0-632047 Aeta mathematiea. 76:3 4 
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i.e. formally identical with [3. I2). In our case (11. 7) will always be satisfied as 

Y(x0) denotes the absolute probabilities at  the time x= .," o. Due to (11, i), (II.5) 

�9 ~nd (I I. 7) the matr ix {~ ~.6) is seen to haw~" both the properties (3. l l ) a n d  (3-14) 

when x o ~ . q ~ x .  As (11.6) exists only for :~>'a:o it will, however, not  have 

the property (3. I6) i .e.  a reciprocal, in accordance with the  fact  tha t  in all 

probability problems the time variable will move only in the forward direction. 

As Y(x) is not  analytic for .r--.x: o it ean, consequently,  no t  be expanded 

in a power series in x - - x  0 front the init ial  value x,,. Nevertheless, as ]'(~,:) is 

differentiable to the r ight  also for . r =  x o, |" being a solution of a differential 

equation, the matr ix  (I1.6) is seen also to satisfy (4. I), i.e. w e  may for small 
values of x - - x  o obtain a good approximation by put t ing  

v ( . , )  = I1 + ~t x-.,'o::), v(.,.,,) (Ix-:,~01 ~< 1) (11. 9) 

i.e. usiJ~g the .first terms iJ~ the po,:er series (4.6), in spite of the ./hct that this 

series i tself  is divergent, as already .4 ~ does ~wt exist (cf. (to. 2)). 

We may, fur thermore,  make the interest ing observation tha t  in spite of 

the divergence of A ~ and~ consequently,  of all h igher  powers of A-, we can, 

nevertheless, in this example obtain the power series for any other initial 

point by the usual method. As Y(x) given in ( I I .2)  and ( I I .4)  is analytic  for 

Re)~(x--xo)>o , it  may be expanded in a power series from any point x I in this 

region 

�9 _ _ _  . E l )  r 

r ( x ) - - ~  Y,.(x~, i , l ~ , = Y ( x , )  (Rex~>Rex0 ,  R e x > R e x o ) .  ( i , . i o )  
I ' : 0  

In t roducing  (II.  I0) into Y ' = A .  ]" we obtain, due to the convergence of A .  Y 

being uniform, 

- -  x~)' ( i I  11) V ' -  y, ~ v,.(:~(,,_ I)!-'~')'-' - ~ j  v =  ~'  ~ v ' ( x  ,,! 

Equat ing  corresponding coefficients we next  obtain the well-known expressions 

Y , ~ - A ' Y o ,  Y ' _ , = A ' Y I k - A ' ( A ' u  A0-" u and so on, ( I1 . ,2 )  

in which the associative rule may ~ot be applied due to the  divergence of A", 

v = 2 , 3 , 4 , . . . .  The relations (11. I2) do not, however, hold generally true - -  

except the first one Y~ = A �9 u - -  because the inversion of the order of sumlaation 

in ( I1 .1I)  is not  legit imate in general. I f  it were legit imate it would, namely, 
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implicate that  the sum of the infinite series represented by A .  Y could be 

differentiated arbitrarily often term by term, but as is well-known, this is in 

general not legitimate even if the sum of the series is an analytic function - -  

as in our case (cf. ex. i2.[). 

In contrast to the case of our equation Y ' = A . Y  being of afinite dimension 

we shall now show that  the theorem of existence proper may fail in the case 

of infinite dimension.  

Example  (11. II). ((a):--. un: + .  ex: (=)). 

0 I I I ' ' "  

I O O O ' ' "  

Y '  ~--- I O O O " "  

I I O O O " "  

. Y - = A . Y .  

J 

( I I .  13 )  

Obviously this A is not exponentiable as aIready A 2 is divergent since 

( A Z ) 0 o =  I -{- I -}- I -{- . . . .  oo .  ( I I .  I 4 )  

Next it is seen that  (i I. I3) admits of at most one solution given by, due to I 0 

being continuous, 
t 

Y n = Y o  for n ~ 1 ,  

and 

i .e .  I~ ---- f Yo d x + C~ 

(ii. 15) 

) ) Yo= r d x * ,  Co= dx dx+ C, (X--Xo)+ Co (,x. 16) 
Xo f = l  Xo i ~ l  :c o i=1 

( I I .  16) shows that  for all initial values not satisfying the very special conditions 

oo 

C 0 o ,  Z Ci-~-o, ( I I . 1 7 )  

i = l  

our equation ( I I .  I 3 )  has no .,olutiou at all. For the only allowed initial condition 

given in (tI.  I7) we find, however, the trivial solution 

Y----C for all x. (II. I8) 

10 * 632047 Acta mathematica. 76:3-4 
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In  the  two examples hi ther to  discussed in this paragraph our first condit ion 

(a) has not  been fulfilled. W e  shall now discuss examples in which our condit ion 

(a) is fulfilled, but  our  second condition (~), i .e .  

exp  [Klx--xol] �9 G < ~ ,  (I I. I9) 
is not. 

W e  first give an example of this kind, in which the theorem of existence 

does hold true.  

E x a m p l e  (11. III). ( -  ex.(IO. II). (a): + .  (~):-- .  un: + .  

W e  again consider  the example (xo. II), i .e .  equat ion 

p u t  X o --~ O, 

f 
( o )  = C = ! Y 

/ 
71~ 2 I 

a o ~  - - ,  a+' . ,  (,.+1) ----- O ,  a + ( 2  ~ ,+1)  ~ 2 - - ~ (2~, + I )  ~ 

and 

ex: +) .  

]o .  4). Let  us now 

(i ~. :o)  

I I . 2 I )  

As is well-known f rom the theory of Four ier  series, our equat ion has thus in fac t  

a - -  unique - -  solution corresponding to the  initial value (l x. 2o), viz. 

- -  for  o ~ x < z  
2 x 

ro = f  l~l't~ = x' 
O 

2 

0 >) X ~ "~ ~ ' 

Y,=I / 
Y ~ n + l = e  - inz  - - ~ : < _ ~ x ~ u ,  I~= 1 , 2 , 3 , . . .  �9 

Y2n~" e inx ] 

( I  I .  22) 

In  fact  it is seen that  (~) is in this case not fulfilled, since, due to (Io. 5) and Xo~O, 

oo 

(exp[Klxl]'G)~176 Ix[+ (2~+  i) ~(e(2,'+ i. 
~ ' ~ 0  

W e  note the  in teres t ing  fact  tha t  our equat ion given in (xo. 4) and (II .  2t) has 

only solutions for  real values of x, as the series defining Yo is d ivergent  for  non- 

real  values of x. 
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Thus every point of the complex plane except the real axis is a singular point 

of the equation in spite of the fact that A is constant, i.e. analytic in the whole 
complex plane. 

Finally we consider an equation for which the condition (a)is satisfied,-and 

the theorem of existence does not hold true. 

E x a m p l e  (ii. IV). ((=): + .  (~): (7). un: + .  ex :  (+)). 

I O a 1 a~ aa "'" I 
I 0 0 " ' "  

Y ' =  0 0 I 0 . . . .  Y =  

I 0 0 0 I . . -  / 
A ' Y .  (I I. 24) 

As A is a half matrix, (=)is in fact fulfilled with 

e x p  [ K I x  - -  Xol] = 

Obviously 

x la,  
0 elx-xol 

0 o 

Yn(x)~- Cue z-~'', 

I.,1 �9 } 
0 " ' "  . 

elz-xol ... 

n ~ I ,  
oo 

~rO(X ) -~- C O + (eX-~'o-- i) Z au (;,. 
n-----1 

(I 1.25) 

(i i.  26) 

Thus we see that if. the initial point C does not satisfy the condition that the 

series 

~.j an CA is convergent, (I I. 27) 
~ = 1  

our equation (I I. 24) has no solution at all. 

I2. 

In fact, we have now given examples of all types of pathologies - -  in respect 

to our conditions (a) and (8) - -  which may arise in the case of infinite systems 

of simultaneous linear differential equations in contrast to the case of finite 

systems. There remain, however, still a few questions which it may be interesting 
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to discuss. First ly,  we shall remind of another  proof of the theorem of uniqueness 

of the finite equat ion (2. I), i .e .  Y ' = A .  Y + B ,  in case A and B are assumed 

to be analytic in a certain region. If  there were two analytic solut ions Y1 and 

Y~ of (2. l) for  the  same initial condition (2.3), then Y ~  Y i -  Y.~ would be a 

solution of the homogeneous  equation (2.5), i .e .  Y ' = A .  Y, sat isfying the initial 

condit ion (2.6), i .e.  Y(xo)----0. A and Y being analyt ic  and the system being 

f i , i te ,  we may differentiate the  series in Y ' = A .  Y term by term arbitrari ly often, 

thus obtaining,  due to Y(xo)=O,  

r '  (Xo) = a (Xo) �9 V(Xo) = 0 
(i2. I) 

Y "  (Xo) = A '  (xo)" Y(xo) + A (Xo)" Y '  (Xo) : 0 

and so on. 

From (12. I) and Taylor 's  theorem it then fol lows that  

--- o 

q. e. d., i .e .  Y ' = A .  Y + B has at  most  one analytic solution. 

This proof may, however,  not  be generalized to the case of D(finite systems. 

Firstly,  such systems need, namely,  not  at all admit  of solutions for complex 

values of x or even of solutions being only real-analytic t, even if .4 is con- 

s tant  (cf. ex. ( i I .  III)). 
Secondly, the  equation 

v " -  d ( A . r ) = A ' . r + • . r '  
-T/7 

and its analogues in (I2. I) need not  at  all hold t rue  in the case of infinite systems. 

The dot  represents,  namely, in this case an infinite sum, and the process of 

differentiat ing term by te rm need not, consequently,  a lways be legit imate,  as 

shown by the fol lowing example. 

E x a m p l e  (12. I). (=ex .  (I I. I I I ) .  (~): + .  (~):-- .  UU: + .  ex: + .  Y~'(o) does not  exist). 

W e  again consider example (I I. I II) .  As in this example we have 

rg  =[x]---- g 4 [ c o s x  cos 3______xx cos 5__._Zx ] 
2 ~L-T~-+ 35 + 5~ +- - -  , --Tr._<x_--<rl, ( i2 .4)  

By a real-analytic function we mean a function of a real variable, the Taylor series of which 
is convergent with a sum equal to the function. 
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we see that  Y~' does not exist at all for x----o. 

by term we obtain, however, 

(A. Y'  (o)) ~ = -.4 [sin x + ~ s i n  3x + __sinsx 
[i 3 5 
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Differentiating the series term 

j + + " ' '  ~ 0  

x . = O  

(12.5) 

In this connection it may be interesting to observe that we may for Yo ob- 

tain the well-known function of Weierstrass 1. 

Example (12. II). (~ ex. (IO. II). (~): + .  (8):--- un: + .  ex': + .  Y0' does not 

exist for any x.) 
rt 

In ex. (IO. II) we may choose the Fourier coefficients ao, a,, a_ , , . . ,  of Io  in 

such a way that ]7o becomes equal to the Weierstrass function 

Y~ = Z/zn COS (~,n ~ X) (I 2.6) 
~l=0 

in which a is an arbitrary number in o < a <  I and p is an odd, positive integer 

satisfying ap > , +3  ~. This function has just  the property of being continuous 
2 

in - - o o < x < o o  but  not differentiable for any value of x. 

w  

Finally we shall discuss an equation which has the following interesting 

proper~y. A certain matrix function Y(z) is analytic in the whole complex 

z-plane. Furthermore, Y(z) is in a certain open region ~2 a solution of an equation 

u  Y, in which A is analytic in the whole complex z-plane except in certain 

points in which A has simple poles, but which points do not lie on the  boundary 

of ~2 (see fig. 3). u is thus not a solution in limit-points of points in which 

it is a solution, a behaviour which is excluded in the case of finite dimensions 

(cf. ex. (9. II)). 

Example  (13. I}. ((~):+. (~):_+. un: 9. ex: ?. The regularity region of the 

equation may be open). 
Let us consider the functions 

Y n ( z )  - e - " =  - ,, = I ,  2 ,  3,  . . . ,  ( I 3 .  I) 

Cf, e.g. Titchmarsh (I932), p. 35I. 
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which are analyt ic  in the  whole complex z-plane. Next ,  we consider the equat ion 

in which 

I-' w [ r t  | ii I = / : i / :  o o w 
o o o - - 4  

�9 Y = A . Y  ( I 3 . 2 )  

e 2 z 
W = - -  (13.3) 2 e z - - I  

In  this  equat ion we see t ha t  .4 is in fact  analyt ic  in the  whole complex z-plane 

except  in the  simple poles 

2 e Z - - I = o  i . e .  z - - ~ - - l n 2 + p . 2 ~ i ,  p = o ,  +__I, + _ 2 , . . . .  (13.4) 

Nex t  it  is seen tha t  A, being a half  mat r ix  (cf. p. 273), is absolutely exponent iable  

along any regular  curve L between % and x. In  fac t  we have 

K p q  = qdp,, + _~Iq-P z l (q  > p ) ,  
(13.5) 

M =  m a x  I~,;(~)l ~ 
~o'<z<_x 

in which the  A-symbol is defined in (8.2I).  By induct ion we find 

( K ' ~ ) l , q - - - - q ' ~ p q + M ' l - l ' J ( q > p ) ( q ' - - ( q - - i ) ' ) ,  ~ , : 0 ,  1,2 . . . .  , (13.6) 
and thus  

(exp [ K I x - - x o l ] ) p ,  ~ : $p,l exp [q [ X - x o l  ] + 

+ M q - p J ( q > p ) ( e x p [ q [ X - x o l ] -  exp [(q--I)[X--Xo[]) .  (r3.7)  

Consequent ly  the  condi t ion (~) is fulfilled and the equat ion (I3.2) thus  c o v e r e d  

by our  theory.  

I t  is easily verified t ha t  (I 3. I) satisfies our  equat ion (I3.2):  

Y,', (z) = - n e -'~: + u e -(n-l~ ~ -  e - ( ' - l l  ~ 

1 e2Z \ i  

(,3. S) 
c r  e 2 :  \ i  

+ Y, I - - I  (e -(n+')" - -  e-(n+i-1)z)._ 
~=l ~2e  z - l /  - 

_ne-, ,~+ n e - ( n - , ) ~ _  e-n~(eZ_ I ) Z  ~ =--"e -nz -~ ' l ' c - (n -1 ) z - -  e-(n-1) z, 

i=l 

1 I f  the integration curve f rom x o to  x should be complex, we understand b y  t h i s  symbol 
max ~w(z)[ along this curve (of. ~ p. 262). 
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q. e.d. The convergence of the series in (I3.8) is, however, limited by the con- 

dition that  

I e~ I e2~ 4e ~ I < I ,  i.e. cosy + -  > o  (z  =-- x "+ i y), (I3.9) 
3 3 

the solution of which is 

x > l n  ~eosy  + cos~ y ~ 3  

x < In cos y --  ~ ~ 4  cos ~ !! ~ 3 

(I3. ]o) 

In fig. 3 we have shown ~e closed regions of divergence 

(hatehed regions) and the open region of convergence 

(the rest of the complex plane) as given by (x3. Io). 

Furthermore, we have in the same figure shown the sin- 

gular points of A as given by (I3.4)( the points denoted 

by ~). We thus see that  Y given in (t 3. I) satisfies the 

equation (I 3. 2) in all points of the complex z-plane except 

in the points of the closed, hatched regions of fig. 3; 

e.g. in  t h e  Point z =  o Y is not a solution although (1): 

z : o  is a limit-point of points in which Y is a solu- 

tion, (2): z = o  is an inner point of the regularity region 

of A and (3): Y is analytic in the whole complex z-plane. 

Consequently, we see again that  in the ease of infinite 

systems the singular points of the equation + initial 

condition need not be singular points of the matrix 
Fig. 3. 

\ 

yrr -~  

and cannot even be read off at all from the matrix by an immediate inspec- 

tion (ef. the observation p. 3oo--3ot). 

These facts are, of course, also met with by the consideration of the con- 

dition (~). If, namely, we take as initial point a point Zo in the regularity region 

given by (I3. IO) and as initial condition the corresponding values of Y given 

in (x3. I), the eondition (8) turns out to be fulfilled only in a region which lies 

entirely within the regularity region. Let us e.g. consider the simplest case, viz. 

zo real and positive, zo=Xo>O.  We then have from (13. I), considering only 

values o ~< x < xo, 

6~,,= lnax I Y~,(t)l=e-("-')'t--e-"x; (x > o), (I S. I I )  
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f rom (I 3.5) 

M = m a x  I " ( t )  l = 

x~t<:xo 

and, consequently,  f rom (i 3. 7) 

2 eX~ 
(I3. I2) 

(exp [ K l x - -  Xo [1" G)p = 

~ ( / e 2x" \a-p ) 
~ ,  (Ip~exp [a(Xo--X)} + ( ~ )  J(a>p)(exp[a(xo--x)]--ex p [(a- 1)(Xo--X)]) 
a ~ O ~  

�9 (exp [--(a - -  I)X] --  exp [ - -  aXo] ) ~-- 

exp [px o -- (21) -- I)x] - -  exp [ - -px ]  + 

2 
~ - ~ - -  ~ \ ~ !  ( - - e x p [ a ( 3 x  0 . 2 x ) +  2X--Xo]+ 

a ~ p +  1 

+ exp [a (2 :c o -- x) + x --  xo] + exp [a (3 :co -- 2 x) + x] - -  exp [a (2 x o - -  x)] ) . 

These series are obviously convergent  for such values of x for  which 

exp [ 3 x 0 - 2 x  ] < i o < X ~ X o ,  (13.14) 
2 e ~ ' ~  1 

and we jus t  see that  this  relation is fulfilled for x =-Xo, but  ,ot for x----o. 

P A R T  IV. 

Application to the Perturbation Theory of Quantum Mechanics. 

w I4 .  

In  quan tum mechanical  per turbat ion  theory stochastically definite processes 

are also met  with, bu t  here the probabil i t ies in quest ion are described by the 

numerical  sfluares of certain complex functions,  the  probability amplitudes. Let  

us shortly review the usual per turbat ion  method,  the  variation of parameters, 

in t roduced by DiracL This method  underl ies every application of the quantum 

field theories to practical  problems in which the per turba t ion  H 1 is considered 

See any textbook on quan tum theory, e.g.  Heit ler  (I936) chap. I I I  w 9.3. See also Heisen- 
berg (x938) in which paper  the  theory is presented in such a form tha t  the  relat ivist ic invariance 
is conspicuous. 
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as causing transitions of the unperturbed system. Let  this system have the 

Hamiltonian Ho, eigenvalues En and eigenfunctions Wnt: 

Ho~Pn= ~ . .  (I4.1) 

Here the ~0,/s are assumed to form a complete oVtho-normalized set. Further- 

more, it is assmned that all the following formal Operations are legitimate. The 

total Hamiltonian of the perturbed system is now 

H~-- Ho + H 1 (I4.2) 

in which H, H o and H 1 are Hermitian operator~ and //1, which may or may 

not conta in  the time explieitly, is assumed to be small compared wi th  Ho. We 

develop the solution ~p of the aetual SehrSdinger-equation 

o 
ih  ~ = (H0 +Hf)  ~ (14.3)  

in a series of the eigenfunctions ~Pn 

~p Zan(t)~pn exp - - b E n t  . (14.4) 
n 

The amplitudes a~(t)are funct ions  o f  the time only and the ~p,'s only of the 

various space and spin coordinates of the unperturbed system. By scaiar multi- 

plication of (14. 4) by ~p, we have 

l/ a~(/) = exp ~I':nt ~p,*~pd~. (I4. 5) 

(The integration includes here and in the following also a summation over  all 

spin variables.) Assuming ~ to be normalized to one it follows, furthermore, 

from (I4.4), due to the ~p,/s forming ~ eomplete ortho-normalized set, the Parseval 
relation. 

f W*Wd  = ~ la.(t)l ~=- 1. ( i4 .6)  
n 

The amplitudes a,(t) have the physical significance t h a t  l a . ( t ) l  -~ denotes the 

probability at the time t of finding the system in the s~ate ~p,, which inter- 

pretation is in agreement with (I4.6). From this interpretation it follows that  

the time variable t moves only in the positive direction, as a probability statement 

can refer only to the future, not to the past (of. p. 277 ). 

t This notation is used whether the energy spectrum is discrete, continuous or mixed. 
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Inser t ing  (I4.4) into ([4.3) and forming the scalar product  of both sides 

with ~0. we .~ust obtain an infinite system of l inear differential equations for the 

ampli tudes an(t) 

( t  
it,~. t a,(l) ---t, (E,,.-- E,) f , (I4.7) 

7t I 

where Hi,,, ,, denotes the matrix element  

�9 S g  
//1, ., - - j  ,tO,, ,~,,'d~ (,4.8) 

an(] represents a transition a6"om the state n' to the state J~. We stress the 

important fact that the form of the fundamental perturbation equations (14.7) 
is quite independent  of whether  they describe a physical system with only a. 

.fimte number  of deoTees of freedom (point-mechanics) or with an infi~ite number  

(field-meehanies). In  the first ease it follows, however, f rom the theory proper 

of the wave equation tha t  all our formal  operations are legitimate,  and tha t  

(I4.7) has in fact  a solution of the form required, but in the second ease these 

s ta tements  do no longer hold true. In  fact  a mathematical  theory has, so far 

as we know, not  yet  been given for a part ial  differential equation with  an 

infinity of independent  variables. 

By means of our matrix symbolism (I4. 7) may be wri t ten in the compact.  

form 

t / ( r  (t) = Or' (f) --  .4 (t)" r (I4.9) 
dt  

where a(t) is the matr ix  formed by the probability umplitudes 

a(t) = {a,(t)}  ( t4 .  io)  

and the matr ix  A (t) is given by 

[ 
A ( t ) =  {A , , ' , ( t ) }  = I -  - 

By means of the diagonal  matrix 

A may also be writ ten as 

.4 = - -  ~ e x p  

, , , ,  exp ~ �9 (I4. I I) 

(14. I2) 

ox,  ] . 



On the Theory of Infinite Systems of Differential Equations. 313 

//-1 being a Hermitian operator it follows from (x4. 13) that  A is anti-Hermit[an 

A *  = -- A .  (I4.  14) 

Assuming now A to be absolutely exponentiable, i.e. the condition (~t), (5. x), 

to be fulfilled, it follows immediately from part I that the equation (x4.9), i .e. 
(I4.7), has for eaeh initial condition 

a(s) = {a,~(s)l (I4. IS) 

satisfying (5-3) a unique solution given by 

t 

a(t)--  c ~ ( l  + Adt ) .  a(s). (I4. i6) 
$ 

Here the matrix 
t 

a(t ,  ~ ) - -  r . ~ ( l  + A a t )  ( i4.  i7) 
tr 

may be interpreted as a relative transition _m'obalfflity amplitude, in analogy with 

the matrix P(t ,s)  in part II ,  because it satisfies the conditions being analogous 

to (7.4/--(7.8), viz. 

lim {[a,,n,(t, s)[ s} == lira {[an,,,(t,s)[ ~} ---- 1 (I4. 18) 
t ~ $  t t ~ t  

l a . . , ( t , s )  l' = ~la,,.,'(t,~)r'la.".'(z,s}l' 
n pt 

(I4. I9) 

o _-< I a . , , . ( t ,  s)l  ~ < ~  (~4. 20) 

~ia..,(t,s)l~= I. (14.21)  
n 

( t 4 .  I 8 )  follows immediately from (3. I I ) .  Next we have, due to the fact that  

satisfies Chapman-Kolmogoroff's equation i.e. (3.14), 

~ t ~  ?Zfe 

- - i v  ~ t *  + ~s _ _  vs  2 y .  l a , , . , , ( t , ~ )a . . , , , ( t~ ) [  la.,,,,,(~,s)a.,,,.,(~,s)l cos w . . , , , - ~ . , , ,  ~o,,,,:., ~%,,,,,) 
1tip ~ . n  tt~ 

(a,,,t, (t, z) = [ a~. , ,  (t, ")1 exp [i ~0t~, , ] , . . . ) .  (' 4 . 2  2 ) 

Obviously the right hand side of (I4. 22) is, hc~wever, not equal to the right hand 
11-632047 Aeta mathematiea. 76:3-4 
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side of (I4. I9) unless the interference term 2 ~, vanishes. Whether  or not this 

is the case depends partly on. the problem itself and partly on the experimental 

arrangement 1. This  may, namely, be of such a kind that  it averages over all 

the phases q~ in the intermediate states n", n'" and as cos q~=o, (I4. I9) therefore 

holds true in such eases. (We observe that this phase averaging is caused by 

the fact  that  in quantum theory every observation means an interaction between 

obselYver and ob jec t  which brings about uncontrollable changes in the system 

observed. The fact that  the different probability amplitudes may interfere with 

each other, i .e.  that  the intermediate states do not exclude each other two and 

two, and that (14. I9) is, consequently, not generally true is just  one of the most 

essential features of the quantum theory. 

Thirdly it follows from (I4. I4), (3.8) and (3.16) that  a(t ,s ) is  a ~odtary 
matrix:: 

a*( t , s )=  ( l + A d t  -~lim .(1 - A ( t , ) d i ) -  r  -~ Adt) = a-l(t, s). (i 4. 23) 
8 ~ n ~  ~v t ' ~ m - -  1 t 

Consequently we have 

Y, I a,,~' (t, ~,)I-' ~ (a* :  a)~,,,, = (a - ' .  a),,,~, = i ( I 4 . 2 4 )  
?t 

which proves both (I4.2o) and (I4.2I). 

I t  may be interesting to observe that  the fact that  a (t, s) is a unitary matrix 

can also be seen directly. I f  we, namely, transform a(t,s) from the Heisenberg- 

representation used above to the SchrSdinger-representation ]'(t,s) by means of 

the transformation 

a(t,s) = exp ft Et  .f(t,s), (14.25) 

we see from (4. IO) that  je satisfies 

i (H,  + E).fCt, 8). ( 4.26) 

Assuming //1 to be independent of t h e  time, which is usually the ease, we have 

from (4.6) and (14 . 25) that  

[;:] [ ] - -  i ( H  1 + E ) ( t - - s )  ( I 4 . 2 7 )  a ( t , s ) = e x p  E t  .exp 

which shows immediately that  a( t , s )  is a unitary matrix. 

i Cf. the discussion in Heisenberg (I93o) chap. IV w 2. Cf. also Dirae (1930) chap. I. 
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Finally we see that  if a(s) in (14. I5) satisfies (5.3) and is besides a unitary 

column matrix 
a *  (.~). a ( 8 )  = i ,  (14  . 28)  

i .e. a(s) may be interpreted as an absolute probability amplitude, then a (t) given 

in (I4. 16) is, besides being a solution of (I4.9), a unitary matrix, i. e. may also be 

interpreted as an absolute probability amplitude. If, namely, a(s) is  an arbitrary 

unitary matrix, we have from (14.23), (I4.28) and Schwarz' inequality that  

I(a(t,s).a(s))~ I ~ V ( a * ( t , s ) . a ( t , s ) ) , ~  V a * ( s ) . a ( s ) = I .  (I4. 29) 

which shows that  a(t)----a(t ,  s). a(s) exists. Next we have 

a * ( t ) . a ( t ) = a * ( . ~ ) : a * ( t , s ) . a ( t , s ) . a ( s ) = a * ( s ) . a ( s ) =  i (I4.3 o) 

q . e .d .  

w  

From the Peano series (3.7) for the exact solution (14. i6) of the perturbation 

equations (I4.7) we now obtain the well-known expressions (in the ease of no 

resonance) for the probability amplitudes a,,o(t, o ) -  giving essentially the transit ion 

probabilities from the initial state n ' =  n o at the t ime s = o  to the final state n 

at the t ime t -  in the first, second and higher approximations 

..(1) t o) (') + , a.  ,,. (o, o) = ,~,, . .  (~5. I) ann,(t,o) =d,,,o + "n,.( , + a,,no(t,o) ... 

in which 

e x p [  - - i  t l t ~ (E ,o  - -  /~n) - -  I 

a(2).. (t, o) = (f  a (t) a t ) . .  = U , . . o  E . . - -  E .  (,,:~,,o) ( i5 .2 )  
o 

t t '  

a (2) ( t , o ) = g  d t ' A  (t') fdt"A(t"))..o= 
~ $10 

0 0 

( e x p [  i ( E , ~  
Hln,v Hln',o --  ?t 

E.o--E., E~o--E. n w 

- -  I exp [-'.- q-) ( n -/Sn) I 

E.,--E. 

and so on. (n + no) 

(I5.3) 

Now the perturbation //1 always contains an interaction parameter  - -  e.g. 

the electric charge e in electro-dynamics or the various f and g factors in the 
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meson t h e o r y -  and the Peano series (I 5. I) consequently consists in an ex- 

pansion in a power series of this interaction parameter. This procedure to be 

legitimate it is, however - -  quite independent of the numerical magnitude of 

the parameters in question i.e. whether or not H 1 is small compared with H 0 - -  

a necessary condition that  the probability amplitudes governing the transition 

probabilities we are looking for are analytic functions in the parameters, and 

this is by no means always the case. Although A given in (I4. II) may be an 

analytic function of any parameter contained in H 1 we can, as discussed in part I 

(of. p. 269), even in the case when A fulfills our essential condition of being 

absolutely exponentiable conclude only that  the solutions of our perturbation 

equations (I4.9), i .e. (I4.7), are analytic in every inner point of their convergence 

region. Jus t  the initial point from which we expand our series may, namely, be 

a singular point in which the first, but not the higher derivatives giving the 

coefficients of our expansion exist. This fact is in a most striking way illustrated 

by the equation in examples (IO.I) and ( I I . I ) i n  which one of the functions, 

given in (II.4), has in the initial point a very serious singularity of the same 

type as the function y----x 2 In x, namely an infinite branch-point. 

As is well-known we are in the application of quantum mechanics to the field 

theories ~ both electro-dynamics and the various meson theories - - j u s t  faced with 

this peculiar situation that the theories lead, when applied to practical problems, in the 

first approximation always to convergent results (simply because the probability amplitudes 

satisfy differential equations of  the first order, viz. (I4.9)) which agree with experi- 

mental results, but that the higher approximations often give divergent results, which 

]'act means that no physical meaning can be attached to them. Usually this difficult), 

is simply overcome by various artificial methods such as >>cutting off~, the diver- 

gent integrals at some suitably chosen point. Such a procedure is, of course, 

highly masatisfactory, quite apart  from the fact  that  it spoils the relativistic 

invariance of the theory. From our general theory it is, furthermore, obvious 

that  we may not expect results obtained in such ways to have much physical 

meaning in accordance with what is found to be the case, especially in the meson 

theories, which give quite wrong results for very high energies. 

The question thus naturally arises whether these di~:er.qenee difficulties are due 

to defieieoees of the present quantum theory or to our usual perturbation methods 

.]'ailing. The last possibility has previously been suggested from time to time ~ and 

axguments may also be given in its favour. Firstly it may be said that the existence 

Cf. e.g. Rosenfeld (I935). 
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of solutions of the perturbation equations (I4.7) follows by means of (I 4. 5)from 

the theory of the wave equation. Secondly such examples as that  discussed in 

examples (io. I) and (II.  I) show that even if our main condition of the operator 

matrix .4 of the equations being absolutely exponentiable is not fulfilled, i .e. 

that the usual method of solving by means of the Peano series diverges, the 

equations may still have a unique - -  although non-analytic - -  solution. In fact 

it may not be wondered at that  the usual perturbation methods may fail because 

these methods of solution have been formally carried over from finite systems o2 

equations which, as shown in part I, can have no other singularities than the 

singular points of the matrix .4 itself, to infinite systems in which, as discussed 

in part II1, the singular points may arise through the limiting processes proper 

defining the system itself ~nd need not at all be singular points of .4 or even 

be detectable by an immediate inspection of .4. Jus t  as the divergence difficulties 

which arose in the theory of collision problems by a too r o u g h  application of 

the Born approximation at low velocities were later removed by the more suitable 

perturbation methods of e.g. Fax~n and Holtsmark, we ought perhaps at present 

rather look for better mathematical methods of solving the perturbation equations 

(14. 7) than for better physical theories. Although for this purpose eventually 

quite new, and perhaps hitherto unknown, mathematical methods have to be 

invented for dealing with infinite systems of differential equations not admitting 

of iteration solutions, i .e. which are not covered by the condition of .4 being 

absolutely exponentiable, it may not be premature to suggest such methods to 

consist simply in new ways of expanding our solutions in series. Bearing in mind 

how partial differential equations are solved in problems of heat conduction or 

diffusion it is an obvious idea to suggest the application e. g. of Fourier analysis 

on our solutions. This method seems specially promising in as much as it is 

well-known that alone the existence of the first derivative of a function is enough 

to ensure its Fourier series to be convergent. Also the work of Poincar6 on the 

application of infinite determinants in the perturbation theory of astronomy may 

perhaps turn out to be useful 1. 

In spite of the arguments just  discussed, the first of the above mentioned 

possibilities of understanding the divergence diffizulties, viz. that they are more deep- 

rooted, being due to defieiences of the present quantum theory itself, must now be 

favoured by the following reasons. As regards the first argument in the discussion 

i We intend to investigate these problems more closely. 
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above it must not be. forgotten, firstly that the SchrSdinger equations (I4.3) oc- 

curring in the field theories describe physical systems with a n  iufinity of degrees 

of freedom~ a n d  secondly that  the perturbing interaction term H 1 between the 

atomic systems and the wave fields in question must, due to the relativistic in- 

variance, involve the highly discontinuous Dirac J-functions. Rigorous proofs of 

the existence of finite eigenvalues and eigenfunctions and of the completeness of 

the latter have, however, as already mentioned (p. 312) not yet been given.~ (In 

fact such systems may be constructed which have infinite eigenvalues.) These 

facts underlying the deduction of (I4. 5) we cannot, consequently, conclude that  

the existence of solutions of the perturbation equations follows from the theory 

of the wave equation. 

Secondly our discussion in part I I I  shows equally well that  our perturbation 

equations may have no solutions at all. In fact this may be the case in spite of 

A being anti-Hermitian as shown by example (II. II) if, only, we multiply the 

- -  symmetric - -  matrix of equation (II. I3) by i. 

Thirdly Heisenberg 1 has given strong arguments showing t h a t  in order that  

the present quantum meehanics shall give a consistent description of nature, the 

perturbation equations must not at all give convergent results. I f  th i s  were the 

ease, this fact would, e.g. ,  imply that  the theory would yield convergent ex- 

pressions for the self-energies of all the elementary, particles. Consequently t h e  

masses of these particles would be given by the theory itself in spite of the 

fact that  these masses enter also in the theory as arbitrary parameters, the 

values of which we may ourselves dispose of freely. The whole present quantum 

theory being just founded on the correspondence prineiple as shown by the way 

the Hamiltonian (I4.2) itself is built up from a o-approximation term, H 0' and 

a I-approximation term, //i, we cannot, consequently, expect the present theory 

to give convergent results beyond the first approximation - -  and if it did, this fact 

would, as mentioned, even lead to contradictions in the interpretation of the 

theory. 

Notwithstanding the fact  that a more general theory of  infinite systems of  

differential equations than the present theory will certaiuly be created in the future, 

and that such a generalization is much needed in e. g. the theory of  stochastic processes, 

we must conclude from the above discussion that such a generalization may not be 

expected to overcome any of  the divergence difficulties of the present quantum theory, 

these difficulties bdng f a r  more deep-rooted in this theory itself. 

' We wish to t hank  prof. Heisenberg  for valuable discussions on these quest ions.  
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Summary. 

In part I ( ~  I--5) we first review ( ~  I--4) the usual theory of .finite 
systems of simultaneous linear differential equations of arbitrary order. In w I 

we present the theory in matrix form, the theory becoming thus independent of 

the dimension of the system. In ~ 2--  3 we prove the theorems of uniqueness 

and existence, respectively. In w 4 we give some properties of the product-integral 

rePresenting the exact solutions. In w 5 we perform the transition to infinite 
systems, giving conditions which are sufficient to allow us of maintaining the 

whole theory of w167 I--4 for infinite systems. 

In part II  ( ~  6--8) we give the application of infinite equations to the 

theory of stochastic, discontinuous processes. I t  is shown that a wide class of 

such processes, being most important in t h e  practical statistical applications of 

this theory, is covered by our theory and satisfies all the requirements being 

necessary for an interpretation of the solutions as probabilities being possible. 

In part I I I  (w167 9--i3) we investigate the conditions of w 5, ensuring the 

necessary convergenees. By means of suitably constructed examples we show, 

partly that our conditions are only sufficient, but not necessary to maintain the 

theorems of uniqueness and existence, and partly the important fact that these 

theorems themselves do not generally hold true for infinite systems. Especially 

we discuss in w167 IO--I I the questions regarding the theorems of uniqueness and 

existence, respectively. As a result the important fact turns out that in contrast 

to finite systems an infinite system may have singular points other than the 

singular points of the matrix of the equation and that the former singular points 

may not always be read off from the matrix itself by an immediate inspection. 

In part IV ( ~  i4--i5) we give the application of infinite equations to the 

perturbation theory of quantum mechanics. It  is shown that the fact that the 

usual perturbation method gives in the first approximation always convergent 

results, being in agTeement with experiments, in spite of the higher approximations 

diverging, is simply explained by the fact that the solutions of the perturbation 

equations - -  if they exist at all - -  need not be a~alytie functions in the para- 

meters, but that the, initial point from which we expand our series may be 

a singular point in which the first, but not the higher derivatives, giving the 

coefficients of our expansion, exist. Finally we shortly discuss whether these 

divergence difficulties are due to deficiences of the present quantum theory or to 

our usual perturbation methods failing. Notwithstanding the fact that a more 
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general theory of infinite systems of differential eqnations than the present theory 

is required (and possibilities for such generalizations are suggested in the form 

of other ways of expanding the solutions in series) we conclude with Heisenberg 

that  the divergence difficulties are more deep-rooted. They are, namely, a con- 

sequence of the present quantum theory being based on the correspondence prin- 

ciple, a consequence which is not to be regretted, but on the contrary necessary 

for the consistent interpretation of the theory. 
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List  of  pa tho log ica l  examples  In p a r t  I I L  

(The symbols  (~): + ,  (~) : - - ,  un: + ,  e x : -  and so on denote,  respectively,  

the condit ion (~) is fulfilled, (~) is not,  the  theorem of uniqueness is fulfilled, 

tha t  of  existence is not, and so on.) 
Page 

Example (9. I). (~): + .  (~):-- .  un: + .  ex: + .  A----const. K . G  divergent  . . 289 

�9 (9. II). ( ~ ) : + .  ~ ) : - - .  u n : + .  ex : (+ ) .  A = c o n s t .  Y ' = A . Y  only 

~lmost everywhere  . . . . . . . . . . . . . . . . . . . . .  29o 

" (9. I I I ) .  (~): + .  ~ ) : - - .  un: + .  ex: + .  a is not  constant ,  I r ' l  not  

inteffrable . . . . . . . . . . . . . . . . . . . . . . . .  29! 

�9 (Io.I) .  (~) : - - .  u n : + .  e x : + .  A = e o n s t .  A n d ivergent  . . . . .  294 

�9 (m.II). (~): + .  ~ ) : - - .  un: + .  ex:(+). (Fourier  series) ~ t =  const.,  

but  no solutions for  non-real x . . . . . . . . . . . . . . .  295 

�9 (IO. III) .  ( ~ ) : + .  (~):-- .  u n : - - ,  ex:(+). A = c o n s t .  I f  any solution, 

an infinity of (non-analytic) solutions . . . . . . . . . . . .  296 

�9 (lo. IV). (~): + .  (~ ) : •  u n : - - ,  ex: + .  A ~ - c o n s t  . . . . . . . . .  298 

�9 ( l I . I ) .  ( = e x .  (xo.I)). A = c o n s t . ,  b u t n o  solut ions for  Re  3t(X--Xo)<O. 

The solut ions only analytic for  Re  ~ t ( x - - x o ) >  o . . . . . . . .  300 

, ( i i .  II). (~) : - - .  u n : + .  ex:l+). A = c o n s t .  AZdivergent .  On lyso lu -  

t ions m being constants  m for  very special init ial  values . . . .  303 

�9 ( I I . I I I ) .  ( N e x . ( i o . I I ) ) .  (0~):+. (~):-- .  u n : + .  e x : +  . . . . . .  304 

�9 ( I I . [V) .  ( ~ ) : + .  ~) : ( - - ) .  u n : + .  ex:�91 a = c o n s t  . . . . . . . .  305 

�9 02 .1) .  ( = e x .  (xI . I I I)) .  Ir~'(o) does no t  exist  . . . . . . . . . . .  306 

, 02.11). (~ex. (m. II)). u u : + .  e x : + .  Weiers t rass '  

funct ion:  Y~'(x) does not  exist  for  a~f/ x . . . . . . . . . . .  3o7 

�9 (i 3. I). (m): + .  (~): +__. un:  9. ex: 7. A en~lytic except  in isolated, 

simple poles. There  exists a 1 r which is only a solution in 

regions, i. e. l r  is no t  a solut ion in l imit  points  of  regular i ty  

points  . . . . . . . . . . . . . . . . . . . . . . . . . .  3o7 
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