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Fourier Analysis of Distribution Functions. 

I n t r o d u c t i o n .  

For about two hundred years the normal, or, as it also is called, the Laplace- 
Gaussian distribution function 

I" f y, �9 (x) - -  V ~ z  e - u  d y  

- -  r  

has played an important rble in the theory of probability and its statistical 

applications. Thus, for instance, the distribution of the random errors in a 

series of equivalent physical measurements may with good approximation be re- 

presented by ~ ( x ) ,  a being the dispersion. To explain this many hypotheses 

have been proposed. One of the most convincing is the hypothesis of elementary 
errors, introduced by HAG~.s and BESSEL. According to this hypothesis the error 

of a measurement etc. is regarded as the sum of a large number of independent 

errors, so-called elementary errors. Let X1, X2, . . .  be a sequence of one-dimen- 

sional random variables (r, v.), each variable representing, for instance, an  ele- 

mentary error, with the same or different distribution functions (d. f.), the mean 

value zero and the finite dispersions a~ (i = I, 2 , . . . ) .  I f  

and /rn (x) is the d. f. of 

s~ = d + ~ + . . .  + ,r,', 

Z,~=X1+ X~ + "" + X" 
sn 

then under certain conditions F,, (x) is approximately equal to �9 (x) for large 

values of n. This is the Central Limit Theorem of the theory of probability. 

From this we infer that  it is of fundamental importance in the theory of 

probability and mathematical statistics to determine the range of validity of the 

Central Limit Theorem. LAPLAC~ [I] 1 and others having formulated the theorem 

more or less explicitly as early as about the end of the eighteenth century, it 

was first proved under fairly general conditions by the Russian mathematicians 

TCHEBYCHEFF, ]~ARKOFF and LIAPOUNOFF [I, 2]. Liapounoff used what are now 

called characteristic functions (c. f.), the others employed the moments of the 

a [ ] refers to the bibliography at the end of the work. 
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distributions. I f  F(x) is a d . f . ,  the c . f .  f(t) is the Fourier-Stieltjes trans- 

form of F(x):  
oo 

f(t) ~- f e 't~ d F(x). 

LIAPOUNOYF also succeeded in estimating t/le remainder term, showing that  

log n 

K being independent of n under certain conditions. 

The inequality (1) has later been studied by CRAM~R Ix, 3, 5]" f13, being the 

third absolute moment of Xi, and the quantities /~2n and B3n being defined by 

B , .  ~ ( 4 + ~ + . - . + o ' ) ,  
n 

he shows that  

B3,~ ---- [ (~s, + ~8. + "'" + f13.), 
n 

B,. l o g n  
(~) I F,,(x) - �9 (x) l -< 3" ~ /~"  

In  recent years important works on the Central Limit Theorem have further  

been performed by LX~DEBERG [I], L~VY [I, 2], KHXNTCHINE [X] and others. 

Though the normal d . f .  may often be used with good approximation to 

represent the distribution of a statistical material, there are many cases where 

the agreement is not satisfactory. To obtain a better result it has been pro- 

posed to expand the d.f .  F(x)  in a series of ~(x)  and its derivatives 1 (we 

suppose the mean value ----o and the dispersion ----- x): 

(3) F(x)---- ~(x) + ~(3)(~) + ... + ~ ( , ) ( ~ )  + ..., 

the coefficient ~, being determined by 

c,----(-- I ) ' ; H , ( x ) d F ( x ) ,  

where H,(x) is the ~th Hermite polynomial: 

' or, to be exact, the frequency function F'(x) in a series of 4"(z) and its derivatives. 
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H,(x)  = (--  ,)'e e- 
d x �9 

The coefficient e, only depends on the first �9 moments of F ( x ) .  

The expansion (3) was introduced by BauNs If], EDGEWORTH [I], CHARLIER 

[I, 2, 3, 4] and others, being called by Charlier an .4 series, as distinguished from 

another expansion by Charlier, the B series. 1 I t  is possible to deduce the A 

series in a formal way, as Edgeworth and Charlier did, by using the hypothesis 

of elementary errors. A more rigorous mathematical proof was needed, however�9 

In the applications there was nevertheless often a good agreement between/~'(x) 

and the sum of the first terms in (3). 

A question that  naturally arose was that  of the convergence properties of 

the A series. Compare CRA~R [2]. The essential question, however, is the asymp- 

totic behaviour of the partial sums in (3) and the order of magnitude of the 

remainder term. Starting from the hypothesis of elementary errors, regarding 

F ( x )  as the d.f.  of the variable 

X, + X ~ + . . . +  X,  

where the variables Xi are mutually independent and for the sake of simplicity 

each Xi has the same d.f .  with the mean value zero, the dispersion a ~ o and 

finite moments of arbitrarily high order, it  is easily seen that  ~ 

I f  a, is the moment of order �9 of X~ it is found that  

C3 t.t3/2 n l / 2  ' 1~4 ~ a~  @$ 
--2 

�9 - - ~  a~ IOa~aa. I IOas._I + a ~ n ~ 
e5 = a~/2 n a/~'  Cs ---- a ]  n 2 

I 
Every e, (u > 5) generally contains different powers of ~nn" After a rearrangement 

I 
of (3) according to powers of ~ n  it becomes equal to 

i The series derived by Edgeworth was not formally identical with (3) but a rearrangement 
of  it. Compare (4). 

2 C R A M E R  [2, 3], 
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p,(X)e_~ + p'(x)e-~ + . . .  + e-u +-.- ,  (4) = + . 

where p,(x.) is a polynomial i~a x, the coefficients of which are only dependent 

on the moments a. This is the development of Edgeworth (in the following we 

call it the Edgeworth expansion) which has later been studied by CRA~R [3, 5], 

especially with regard to the order of magnitude of the remainder term. 

The function f(t) being the c.f .  of each variable Xl, the Cramdr condition (C) 
implies that  

(c) Um If(t) l < ' ,  

this for instance being the case when the d.f .  of Xi contains an absolutely con- 

tinuous component. Provided that the condition (C) is satisfied, Cram~r shows that 

p,  Ix) e- u (5) E(x)----- ~(x)  + l.J - ~  + 0 , (k an in teger - -  > 3). 
,=1 ,n  T /  

In this case the expansion (4) may be regarded as an asymptotic series. I t  

follows from (5) with k----3, that  the Liapounoff remainder term in (I) can be 

,o  improved 
~l /n!  

Contents of Part L 

I t  has been supposed that  log n is on the whole superfluous in (I), but  this 

was not proved until a few years ago. I t  follows from a somewhat more general 

theorem of the present work (Chap. I I I ,  Theorem I) that  (2) can be replaced by 

Bsn. I 
(6) I F .  (z) - -  m (x) I -< 7.5" ns/~ V-~." 

~ 2  n 

The inequality (6) was proved in an earlier work of the present author t and at 

the same time by BERRY n [I], independently of each other. 

One of the main problems of this work may be formulated thus: Given a 

sequence of independent r .v. 's  X1, Xz . . . .  all having the same s d.f .  F (z )  with 

' Sss~Es [ i ] .  
s T h i s  work  is  not yet access ib le  in  Sweden.  I h a v e  found  in a review in  M a t h e m a t i c a l  

Rev iews ,  2 ( I94I )  p. 228, t h a t  an  i n e q u a l i t y  l ike (6) is  to be  found  in  BERRY Ill. My  own  proof 
of  (6) was  compl e t ed  in  t h e  a u t u m n  of I94O. See ESSEEN [I]. 

s As  we are  m o s t  i n t e r e s t ed  in  p r inc ip les  we gene ra l l y  res t r ic t  ou r se lves  to t h i s  case.  
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mean value zero, the dispersion a ~ o and some finite absolute moments of higher 

order, study the d.f .  F,~(x) of the variable 

x l + x ~ +  . . .  + x , ,  

a V--~ 

as ~ -* ~ ,  especially the remainder term problem. A complete discussion of this 

question necessitates the introduction of a certain class of d. f ' s  called lattice 

dist~ibutions. A d.f .  is a lattice distribution if it is purely discontinuous, the 

jumps belonging to a sequence of equidistant points. This is one of the most 

usual types of d.f .  met with in the applications. 

Three different cases may occur, which together cover all possibilities. 

z. The condition (C) is satisfied. Then the expansion (5) holds. 

2. F(x) is a lattice distribution. Even if all moments are finite an ex- 

pansion like (5) is impossible with k > 3, there being jumps of F~(x) of order 

I 
of magnitude ~nn" By adding an expression to (5) containing a discontinuous 

function, it is possible to diminish the order of magnitude of the remainder term. 

3. Condition (C) is not satisfied and the distribution is not of lattice type. 

I t  is found that  

�9 ( a )  F~ ( x ) =  �9 (x) + "~ (z - z ' ) e - ~  + o , 
6 a~l/2 z n  

a 8 being the third moment of Xi. 

These questions are investigated in Chapter IV and the results make it 

possible to determine the asymptotic maximum deviation of Fn (x) from ~(x). 

In  Chapter V we study the dependence of the remainder term on n and 

on x; the results are applied to the so-called Uniform Law of Great Numbers. 

The theorems of Chapters I I I - - V  are based on  a theorem concerning the 

connection between the difference of two d.f. 's and the difference between their 

c.f. 's. The proof is given in Chapter II .  In proving the inequalities (1)and (2) 

respectively, Liapounoff and Cram~r used a convolution method. Liapounoff 

considered the convolution of the difference between the d. f.'s with a convenient 

normal d.f . ,  while Cramgr applied Riemann-Liouville integrals. By these meth- 

ods, however, it is not possible to obtain the real order of magnitude of the 

remainder term. In proving the inequality (6) and others, consequences of the 

main theorem of Chapter II ,  we consider the convolution with a function having 
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the Fourier-Stieltjes transforxp equal to zero outside a finite interval. I t  is just  

this property of the transform that  is essential. 

The c.f. 's  being the most important analytical implements of this work, an 

account of their theory is given in Chapter I. Many of the theorems stated here 

are well known but are included for the sake of continuity. A closer study is 

devoted to certain questions, for instance the problem whether two c.f. 's  equal 

to each other in an interval about the zero point are identical or not. The c. f.'s 

form a sub-class of a more general set of functions, the class (TI. We begin 

Chapter I by investigating these functions. 

Contents of Part II.  

In Par t  I I  we study the Central Limit Theorem and the remainder term 

problem for r .v. 's  in k dimensions. Concerning the remainder term problem 

there have hitherto been only rough estimations. The results are applied to the 

so-called ~" method. I t  follows from Chapter VI I I  that  the remainder term 

problem is intimately connected with the lattice point problem of the analytic 

theory of numbers. For further information the reader is referred to the in- 

troduction of Chapter VII. 

I take the opportunity of expressing my warmest thanks to Prof. ARN~ 

BEURLTNG, Uppsala, for suggesting this investigation and for his kind interest 

and valuable advice in the course of the work. 

PART I. 

Distribution Functions of One Variable. 

Chapter I. 

Functions of Bounded Variation and Their Fourier-Stieltjes Transforms. 

The concept of the distribution function plays an important r61e not  only 

in the theory of probability but  also in several other branches of mathematics. 

As an introduction to the study of this class of functions we shall, however, 

devote the first sections of this chapter to a treatment of a more general class, 

the functions of bounded variation. For the proofs of several theorems mentioned 

below reference is made to BEVRLING [X], BOCH~ER [I] and CRA~R [5]. In the 

following treatment Lebesgue or Lebesgue-Stieltjes integrals are used. 
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I.  F u n c t i o n s  o f  b o u n d e d  v a r i a t i o n .  L e t  F(x) b e  a real or complex-valued 

function of the real variable x and of bounded variation on the whole real axes: 

(~) v ( F )  = f l  d 2"(x) I < ~ .  
- - 0 0  

Further let F ( - - r  o. I t  is well known that  2"(x) has at the most an enu- 

: merable set of discontinuity points. In such a point we define 

2"(x) = ~ [2"(x + o) + 2 " ( x -  o)]. 

The class of all such functions is denoted by (V). A sub-class (Vp) consists of 

those real functions 2"(x) ~ (V) which a r e  non-decreasing. If  F(x) ~ (Vp) and 

2"(-~-~)~ I, then F(x) is a distribution function (d.f.). 

By a well-known theorem of Lebesgue, 2'(x), belonging to (V), can be re- 

presented as the sum of three components: 

F(x) = F1 (x) + 2", (x) + Fs (x), 

where 2' 1 (x) is absolutely continuous, F~ (x) singular, i.e. continuous and having 

the derivative = o almost everywhere, and where 2"s(x) is the step function, i. e. 

constant in every interval of continuity of F(x)and having the jump 2"(x § o)-- 

--2"(x--o) at every point of discontinuity. Hence it is convenient to divide (V) 

into three sub-classes: 

( v )  = (vl) + (v,) + (v~), 

(V1) being the class of absolutely continuous functions etc. In the same way 

(V~) = (V~,) + (V~,) + (V~,). 

By the point spectrum Q of a function F(x) ~ (V) we understand the set of 

those points x for which F(x + o ) - - F ( x - - o ) ~ o .  1 The set Q is at the most 

enumerable and may be empty. By the vectorial sum Q ~ Q~ + Q, of two such 

sets we understand the set of those points x which may be written x ~ x I + x, 

where x~<  Q1 and x 2 ~  Q2. By definition Q is empty if either Q, or Q2 is 

empty. 

The concept of convolution (>>Faltung>>) of two functions plays an important 

r61e in this work. 

t This definition is in accordance with the terminology of Wintner, see W]~TNER [I, 2]. 
It would perhaps be more correct to call Q the point spectrum of the Fourier-Stieltjes trans- 
form of F(x). 
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For every pair of functions F1 (x) and F s (x) belonging to (V) with point spectra 
QI and Q2 there exists a uniquely determined function F(x) belonging to (V) with 
point spectrum Q such that the convolution 

" i (2) 2", ~ F,  = f 2"1 ( x -  ~) d P,(y) ---- F ,  (x -- y) d 2"~ O) 
- - 1 1 0  - - ~  

exists and is equal to F(x) for every x not contained in Ot + OJ. I f  x < Ox + Ol 

then F(x) is defined by 

2"(x) = �89 + o) + F(x--o)] .  

Further Q < Qt + Q2. 

I f  F1 and F: belong to (Ire), then F belongs to (Ire) and Q = QI + Q:. I f  F1 

and 2"2 are d.f.'s, F is also a d.f. 
The convolution of three functions El ,  F2 and F 8 is defined by: Fx * Es * Fs----- 

= Fx * (F~ * Fs). Correspondingly for n functions. The convolution operation is 

easily found to be commutative. I f  F1, F~, . . . ,  F,, belong to (V e) and Q is the 

point  spectrum of their  convolution, then Q- -  Q1 + Q~ + "'" + Q-. 

I f  either of the functions F1 mad F~ in (2) is continuous, 2 '  is also con- 

tinuous. This explains why Q is defined as empty if Q1 or Q2 is empty. I t  is, 

however, possible further  to specialize the continuity properties of 2". I t  is easily 

seen that  if F1 or Fs belongs to (VI) then F < (V1), tha t  if F 1 or F2 belongs 

to (V2) then 2" belongs to (V~) or (V~ + Vs), that  if both Fx and 2"~ belong to 

(V a) then F belongs to (V s) or is constant. 

By (1) and (2) we obtain the following important inequalities: 

~ V(F~ + F,) <_ V(F,) + V(F,) 
(3) ~ V(F, ~ 2",) <-- V(F,) V(F,). 

Finally we introduce that concept of convergence which is especially con- 

venient for the (V)-class. A sequence of functions {F~(x)} belonging to (V) 

is said to converge to a function F ( x ) ( ( V )  if lim F,(x)~2"(x)  at every point 
n ~ O 0  

of continuity of F(x). 

2. Functions of class (T). I f  it is possible to represent a function f(t) of 
the real variable t as the Fourier-Stieltjes t ransform of a function F ( x ) ~  (V), 

oo 

(4) f( t)  = f e" ~ d 2"(x), 
- -  q D  
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fit) by definition belongs to the class iT).* If Fix)< (Ire) we say that fie) be- 
longs to (Te). It is immediately clear that fit)< iT) is a uniformly continuous 

and bounded function: 
o0 

l / ( t ) l  - - - / l a F ( x ) l - -  v ( F )  < ~ .  
- - 0 0  

In  the following we denote a function < iV) and its transform by the same 

letters, capital letters for iV)- and small letters for (T)-functions. Between 

classes iV) and iT) there is a one-to-one correspondence, as the following well- 

known inversion theorem shows: 

oo 

I f  Fix)< iV) and fit) = fe"~dF(x), then 
B O O  

T 

(5) f e-"'--e-,x, 2---~ i t  /it)de, 
- - T  

T 

(6) F(x+o)  F ( x - - o ) = l i m  I fe , ,Xtf( t)de" 
T ~  

--T 

Corresponding to the decomposition F = FI  + Fz + Fs we obtain f = f l  + 
+ fz + fs, f l  being the transform of the absolutely continuous part Fx of F etc. 

The component f l  is called the ordinary, fz the singular and fs the almost periodic 

part of ]: In conformity to this decomposition we put iT)= iT,)§ (T2)+iTs), 
(/'I) being the class of ordinary functions, of iT) etc. Correspondingly (Te)= 
----(re,) + (Te,) + (rp~. 

For later purposes it is desirable to investigate the properties o f / ( t )  for 

large values of e. The regularity of F(x) is here of predominant importance. 

We only consider th~ case where F(x) contains but one component. 

a. F ( x ) <  (V1). Then it follows by the Riemann-Lebesgue theorem that 

lira l / ( t )  l - -  o. 

b. Fix) < (Vs). Denote by a, the jump of Fix) at x=x , ,  (~=o,  + I, + 2, . . .) .  

Then '~  I ~ , 1 - -  V(F)< | and 

* This  nota t ion  is used in BEUBLING [I]. 
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f ( t)  -~ ~, a,d=,'. 

Thus f ( t)  is almost periodic and lira If(t)l > o, provided that f ( t ) ~  o. 

e. F ( x )  < (v,).  Both cases, lira If(t)  l = o and lim If(t) l > o, may occur. On 
t ~  " t ~ + ~ v  

the whole the singular transforms have hitherto been very little known. How- 

ever, [f(t)l is small in mean, this being a consequence of: 

T 

lira I f ~-~ ~ If(t) l ~ e t - -  o. 
- -T  

Later we shall return to cases a--c and investigate them more closely sup- 

posing F(x) to be a d.f. 

The study of the convolution of functions in (V) is considerably facilitated 

by passing over to the transforms. This depends on the following convolution 

theorem: 
I f  F1 and F~ belong to (V), f~ and fs being their transforms, then f~f~ is the 

transform of F 1 ~ F~. Conrersely, i, f f l  and f~ belong to (T). f l f~  also belongs to (T), 
being the transform of F 1 ~ .F~. 

The extension to n functions is immediate. 

When studying the (T)-funetions it is often convenient to introduce the 

metric T(f),  defined by 

(7) Y(f) -- V(F). 

This has been done by BOCH~ES [2] and BZURLZ~rO [I], the latter having obtained 

important results by the comparison of T( f )  with M ( f ) = B o u n d  If(t)I. From 
- - a 0 <  t < a ~  

(3), (7) and the convolution theorem it follows: 

/ r ( f ~  + f , )  --- r ( L )  + r ( A )  (8) 
[ T(AA)-<  T(A) T~f,). 

A very important class of functions, especially with regard to the applica- 

tions, is formed by those eptire functions of exponential type which on the real 

axes belong to the Lebesgue class L( - -  ~ ,  ~).  An entire function H(z) is of 
exponential type a if 

H(~) = O(eOl'J), (a > o, Izl--" ~)- 

The following lemma holdsl: 

i See  for  e x a m p l e  PLAI~C~EREL-P6LYA [I], p. 229. 
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L e m m a  1. I f  H(z), z = x + iy ,  is an entire function of exponential type a, i f  
o o  

H(x) belongs to n ( - -  ~ ,  ~c) and i f  h ( t )=  f e ' t~H(x)dx ,  then h ( t )=  o for Itl _> a. 
- -  0 0  

Finally we may touch upon the conrergence in (T). Consider a sequence of 

functions {f,,(t)} (n ----- I, 2, . . . ) ,  belonging to (T), such tha t  T(fi,) <-- K <  Go for 

every n. Such a sequence may converge to a funct ion not  belonging to (T), for 

instance the sequence {e-nt'}. We quote the following convergence theorem1: 

Let {f~ (t)} be a seque~we of functions belonging to (r)  such that r (f,) <-- K < oo 

for every n. A sub-sequence can always be chosen, com'erging to a func'oion f( t )  

which almost everywhere and at every continuity point is equal to a function g (t) < (T), 

such that r ( g ) - - < K . -  If  {f~(t)} converges to a continuous function f(t),  then 

f(t) < (r)  and r ( f )  --< g .  

3. Minimum extrapolation in (T). Consider a funct ion f ( t )  defined on a set 

e which is made up by a sum of intervals, and suppose f ( t )  to be continuous on 

e. Further ,  suppose tha t  there exists a funct ion g( t )< (T) such tha t  f ( t ) =  g(t) 

on e. Then we say tha t  f(t) belongs to (T) on e and we put  by definition 

(9) Te (f) = Bound T (g), 

g running  through all the funct ions in (T) equal to f on e. By the convergence 

theorem, w 2, i t  follows that ,  if f ( t )  ~ T on e, there is at  least  one funct ion 

fe (t) < T such tha t  

re( f )=  r (f,). 

The funct ion fe (t) is called the minimum extrapolation of f with regard to e (in 

French ~>prolongement minimal>>). La te r  we shall show by examples tha t  a min- 

imum extrapolation need not  be uniquely determined. The concept of minimum 

extrapolat ion has been in t roduced  by BEURLING '~ and is of great  importance in 

many questions. 

Wi th  regard to a later application we shall briefly determine the minimum 

extrapolation of a certain function.  

I 
Theorem 1. I f  f ( t ) = - - i - - t  on the set co([t[--  > T), f ( t )  belongs to (Ti) with 

regard to ~ and 

1 BEURLING Ill, p. 4. 
BEURLII~G [I], p. 4- T h i s  paper  is a s u m m a r y  of an earl ier  work of Beurl ing,  p r e s e n t ~  

to the University of Uppsa la  in 1936. See BEURLING [I], p. I. 
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~ ( f ) = ~ .  I - - .  

2 T  

Wi th o u t  loss of general i ty  we may suppose T ~  I. W e . p u t  

fg( t )  for  i t l - -< I  

(IO) fl(t)={ | ~ `  ]t] ~ I, 

g(t) being chosen so tha t  fl(t) is continuous and belongs to (T). As.fl(t)< 
< L ~ (- -  ao, oo), it is readily seen that  f~ (t) < (T~), i. e. 

Oo 

A (t) = j ~"x F;(x) d~.  

Hence  from (IO) and the Four ier  inversion formula:  

o r  

Hence  

(II)  

where 

( I2)  

. . . .  I f s i n  xt I f e-iXtg(t) dt 
-F' (x) = ~ J - - T -  d t + 2 ~. j  

1 ~I 

F~ (x) = �89 sign z - -  - 

1 1 

fsin z t  ~ f _ , .  ~ j  ~ d t  + 2~ e g(t)dt. 
0 ~1 

~ ;  (x) = i sign x - / / 1  (x), 

1 1 

H,(x)-- --1 f~inxtdt--!  f e - ' " a ( O d t .  
z J  t 2 z d  

o - !  

From (I2) it  follows tha t  Hl(x ) is an entire funct ion of exponential  type  I. 

According to (I I) the problem is now to determine an entire funct ion Hi(x) of 

exponential  type i such that  

r ( f , )  ; 1 4  sign x - -H , ( x ) l dx=  rain. = r ~ ( f ) .  ( i3 )  

I t  is easily found tha t  we may choose Hi(x) to be an odd function, and 

fur ther  tha t  H~(x)=H(x) belongs to L ( - - ~ ,  ~).  Conversely, for  every such 

funct ion //1 (x) the t ransform of ~ sign x - - / / 1  (x) satisfies the conditions on f l  (t). 

Now it evolves tha t  our problem is connected with a theorem of BOHR [I] con- 

cerning exponential  polynomials:  
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I f  99 (x) = ~ a, e':~, ~, Z, being real numbers, 12, I >- I and [99' (x) l <-- I, then 

(i4) 199(x)1 -< 
2 

In  order to show tha t  such a funct ion 99 (x) is bounded by an absolute con- 

s tant  we use an argument  tha t  has been given in lectures by Prof.  Beurting. 

Let  H(x)  be an even entire funct ion of exponential  type  I, belonging to 

L ( - - o %  oo) on the real axes. I f  H l ( x  ) -~ fH(y)dy w e  fur ther  suppose tha t  
0 

(i5) f l�89 - -  H l ( y ) l d y  < oo. 
0 

Now from Lemma I; 

Hence  

and fur ther  

oo 

f e '~z H (x) d x  = o for  I Zl - - ~ .  
- - 0 0  

f 99 (x --  y) H(y)  dy  = o 

oo 

99 (x) ---- f 99 (x - -  y)d  �89 sign y. 
~ 0 0  

By subtrac t ion we obtain  

99 (x) = f 99 (x - -  y) d [�89 sign y - -  H 1 (y)]. 
- - o o  

Par t ia l  in tegrat ion gives with regard to (I5): 

oo 

(I6) 99 (x) = f 99' (x - -  y)[~ sign y - -  H 1 (y)] dy, 
- - 0 0  

o r  

(I 7) 1 99 (x) I ~ f 1�89 sign y -- H 1 (y) I d y.  

According to (I7) all funct ions 99(x) are bounded by an absolute constant.  

remains to be proved, however,  tha t  ~ is the  best  possible constant.  
2 

I t  
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On comparison of (13) and (I7) the equivalence of the two problems follows. 

In both cases the function H i ( x )  has to satisfy the same conditions: to be an 

odd entire function of exponential type I and to make the integral (I5) con- 

vergent and as small as possible. 

There are several proofs of Bohr's theorem. I shall, however, give one more 

proof, the minimum extrapolation being thus determined. 1 

Let us consider the function ~(x) with the period 2~  represented in Fig. 1. 

By the expansion of ~p (x) in a Fourier series it is easily found that ~p (x) meets 

all conditions in Bohr's theorem. I t  is very probable that  ~p(x) is the extremal 

function. Under all circumstances it follows from ~ = 2 

~(x~ 

_if- 

Fig. I. 

z < f [  ~ sign y - -  H 1 (Y) I d y .  ( 1 8 )  - . 

~ 0 O  

We shall now show that it is possible to determine H 1 in such a manner that  

there is equality in (18). Then Theorem I and Bohr's theorem are proved. 

Let ~-----~p in (16) and (17) and x ~ - - .  ~p' (x) being + I with the period 
2 

A s imi l a r  m e t h o d  ha s  been  used by y o n  Sz.  I~AGY-STRAUSZ [l I who  g ive  a proof  of Bohr ' s  
I 

t heo rem u s i n g  t he  m i n i m u m  ex t r apo la t i on  of - - / ~  w i th  regard  to ~t I -- I. However ,  t h e  rSle of 

t h e  m i n i m u m  ex t r apo la t i on  is  no t  exp l i c i t ly  s t a t ed ;  fu r the r ,  s ince our  d e t e r m i n a t i o n  of t he  m i n i m u m  
e x t r apo l a t i on  is  n o t  t he  s a m e  as in t he  ci ted pape r  and  m a y  have  an i n t e r e s t  of i t s  own,  I have  

found  i t  conven ien t  to t r ea t  t he  ques t i on  once more.  
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2 z ,  in order not  to increase the value of the integral  by the step ( i 6 ) - - , ( i 7 ) i t  

is necessary tha t  the variations of sign of �89 sign y -  Hl(y ) occur in accordance 

with Fig. 2. 

Thus we form an odd entire funct ion Hi(z), z ~ - x . +  iy, sat isfying the 

conditions 

(x9) 

~~ Hi (~) = o (r 

2~ Hi(x)  ( L ( - -  r162 ~) ,  

3 ~ 1 8 9  l ( x ) - - o  for x - ~ n  

4 ~ C =  f l �89 sign x - - H ~ ( x ) l d x  < or 

( n = +  I, +_2, + 3 ,  2_-,.), 

We will show tha t  (19) uniquely determines H 1 and tha t  C----- .  
2 

We prefer, however, to consider the funct ion 

(20) G (z) ---- �89 -- H ,  (z ~). 

F rom (19) and  (20) we obtain: 

o G(z )=  O(e~lq), 

o for z----- 1 , 2 , . . .  

2 ~ 1 8 9  ,> z = o ,  

( I ~ Z ~  - - I ,  - - 2 ,  . . .  

3 ~ C=2.flG(xlldx<~. 
0 

By an interpolat ion formula  of VAmRO• [I] w e  obtain f rom (2I): 

(22) G(z) Sinzz(I | ) 
2 z - - ~ - ~ . ( z §  + a  ' 

a being a constant  later to be determined.  But  

oo ( _ _  i ) n g  00 ( _ _  i )  n 

n~Z1 ~ ~ = - log 2 - Z 3 ; ;  
= n = l  

Here we introduce the function 

Qo 
~,(~) = ~,  ( -  ~)-, 

z §  

2 -- 632042 Acta mathematica. 77 
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s,gn y -/-/, (y) 

-�89 

Fig.  2. 

known from the theory of the F-function. From (22) and (23) we thus obtain: 

G(z)----sin~z{fl(z ) _  I + l o g 2 + z z  a}- 

We now observe that  

(24) 
I I 

~(x)- 2 ~  = F ' ( x  + 2 . ) ( x  4- 2,~ + 1)(x  + 2 .  + 2) 
7 ; = 0  

Thus fl(x) 2 x - - O  as x-~o~, and hence from (21:3 ~ ) a +  l o g 2 ~ - o .  

(25) G(~)  - -  sin ,~z  ~(~) _ ~ . 

From (25) it is easily found that  H~(z) has the required properties. 

mains to evaluate 

(26) C = 2 .  ~ ( x )  - 2 zJ s in  ~ x  dx .  
0 

Thus 

I t  only re- 

I t  is easily seen that  the following operations are allowed. 

fl(x)-- ~ > o  for x > o .  Thus 
2 X  

According to (24) 
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+...} = 
0 0 1 2 

- = 2 "  

1 

f{ } + #(x  + i) ~ I 
~ ( X ) - -  2 ~  2(X + I) + ~(X "~- 2) 2 (x + 2) + "-. sin z x d x .  

0 

Observ ing  t ha t  fl(x) + fl(x + I) I ------ we obtain:  
X 

1 0o 

/{21_x I I } fsin ;~x 7c 
C -~ 2" 2 (x + I) + 2 ( x ~  ~ . . . .  sin ~ x d x  ~-- J -x- dx  --~ -'e 

0 0 

Hence  the  t heo rem  is proved.  

4. A uniqueness theorem in (T2 -~ Ts). We shall later consider the problem 

of the  unique de t e rmina t ion  of  a func t ion  in (Tp), knowing  its  values in an  

in te rva l  abou t  the  zero point.  H e r e  we shall  t r e a t  the  case where  f ( t ) ~  (T) is 

known in an infinite in terval  t--< a. W i t h o u t  loss of genera l i ty  we may  suppose 

a = o. I f  F(x) is real,  the  solut ion is immedia te ,  for  then  f ( - -  t )= f(t). 

T h e o r e m  2.1 A function f(t)  < (T2 + Ts) is uniquely determined by its values 

in an infinite interval. This •eed ,ot be true i f  f (t)< (T1). 

P r o o f  o f  T h e o r e m  2. I n  the  p roof  we may  suppose the  in te rva l  in ques- 

t ion to be t --< o. Now suppose t h a t  there  is ac tual ly  ano the r  f unc t ion f l ( t )~ (T  ), 

equal  to f(t) for  t--< o, bu t  not  ident ical  wi th  f(t) for  t > o and be long ing  to 

the  same (T)-class as f ( t ) .  P u t t i n g  f~ ( t )=f( t )  - - f l  (t) we have  f~(t) ~- o for  t--<o, 

f~(t) ~ o for  t > o. W e  now use the  fo l lowing theorem,  the  proof  of which will 

be pos tponed  somewhat .  

T h e o r e m  2 a. I f  a function belongs to (T) and is equal to zero for t < o, it 
is the Fourier-Stieltjes transform of an absolutely continuous function. 

Hence f r o m  Theo rem  2 a f2 ( t )=f ( t )  - - f l ( t )  < (/1). But  if  f(t)  < (T~ + Ts) 
this  also holds r ega rd ing  f~(t) and f ( t ) -- f~(t) .  Thus  f~(t)-~ o, con t ra ry  to hypo- 

thesis. On the  o ther  hand there  are func t ions  be longing  to (T~) which  are zero 

in an infinite interval .  See for  ins tance L e m m a  I. Thus  the t heo rem is p roved .  

P r o o f  o f  T h e o r e m  2a .  Let  f(t) sat isfy  the  condi t ions  of Theorem 2 a .  

By hypothes is  

i BEURLING [I], p. 4, mentions this theorem incidentally without proof, 
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(27) 
where 

(28) 

N o w  we form 

(~9) 

Oa 

f ( t )  = f e 't~ d F(~), 

f ldF(r  v <  ~ .  
~ O 0  

OD 

__ ___I f -tzt 
0 

Evidently G (z) is analytic and regular for y < o. We  suppose from now on that 

this condition is satisfied. But since f ( t ) =  o for t ~ o, we may write (~9) in 

the fo l lowing way: 
oo 

(3 o) G(z) = -~z e-'~t e~ltl f(t) dt. 

Frol-  (27) and (3 o) we obtain: 

, / 
o r  

(3~) 

From (3Q it fol lows: 

o r  

(32) 

According 

such that: 

(33) 

i f (  ly l  o (z) = V~ x - ~)' + y~ d F(f).  

I G ( x + i y ) l d x < - -  IdF(~)] . x - - ~ ) " + y '  

f l a (x + iy)ldx f 
--00 - - ~  

= V < ~ .  

to a theorem of HILLE-TA~ARK~N [I] there exists a function H(x) 

I lira G(x + i y ) =  H(x) almost everywhere, 
y ~ - - 0  

2 ~ f [ H ( x ) [ d x <  V < c r  

X X 

3 ~ lim f G ( x + i y ) d x - ~ f H ( x ) d x .  
y ~ - - O  --oo - - o o  
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From (3 I) we further obtain: 

X r X 

f f f. (34) G (x + i y) d x ---- d F (~) ~ (x -- ~)* + y* 

' ly[  
On account of the well-known properties of the kernel z (x - -~ )*+  y~ we have 

from (33:3 ~ and (34): 
X 

�89 + o) + F(X--o)]=fH(x)dx, 
moo 

or this relation and (33: 2~ show that F ( x ) i s  absolutely continuous. Hence the 

theorem is proved. 

There is an analogous theorem in the unit  circle. 

Theorem 9, b. Let t~ (0) be a function of bounded variation in (o, 2 ~r). I f  the 

Fourier-Stieltjes coefficients 
2 n  

' f e " " ~  ( n = o ,  + I, + 2, + .), c. = ~V~ . . . . .  
i ]  
0 

satisfy the condition c,-----o for n < o, then tt (0) is absolutely continuous. 

The proof is.similar to that  of Theorem 2 a. 

5. Distribution functions and their eharacteristie functions.  Henceforth we 

restrict ourselves to that sub-class of (V) which was denoted by (Vp), and we 

further suppose every function F(x) ~ (Vp) to be so normalized that F ( - -  ~)-----o, 

F ( +  o~)-~ I. The class (Vp) then consists of the set of all d.f. 's, i .e.  those real 

non-decreasing functions which are o for x----~ ~ ,  I for x ~ - +  ~ ,  T he  class 

(Tp) is formed by those functions f(t) which may be represented as the Fourier- 

Stieltjes transform of a function F ( x ) ~  (Vp): 

oo 

(35) f(t) = f e 't* d/~'(x), 
- - o 0  

The function f( t)  is called the characteristic function (c. f.) of F(x) and has the 

following properties: it is 

I ~ uniformly continuous, 

(3 6) 2 ~ bounded :  If( t )  l --<f(o) = f d F ( x )  = i,  

3 ~ hermitian, i. e. f ( - -  t) = f ( t ) .  
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The c.f. 's naturally have all the properties of the (T)-functions but also show 

certain special features. 

I t  is very important with regard to applications, to study the convergence 

of a sequence of c.f. 's. 

A necessary and sufficient condition for the convergence of a sequence {l'~(x)} 

of d.f. 's to a d . f  F(x) is, that the seq~,e~we of the correspo~2di~Tg c.f.'s {f,,(t)} con- 

verges for all values of t to a fi~netiou f(t), continuous a t  t ~ o. The limit f ( t )  is 

then identical with the c.f. of F(x) and {ft,(t)} col~'erges to f ( t )  unijbrml!! in e~'cry 

finite t-interval. 

Under somewhat less general conditions a similar theorem was first proved 

by L~vY [I], pp. I95~197.  In its present form the convergence theorem was proTed 

contemporaneously by L~vr  [2], p. 49, and CRA~I/~R [5], P- 29. See also CRA~R [7], 

P" 77, where a correction is made, and compare the convergence theorem in w 2 

and Theorem 4 this chapter, w 6. 

6. A uniqueness theorem. From the inversion formula in w 2 it follows that 

a d.f.  F(x)  is uniquely determined by its c.f., i.e. if f ( t)  is known for all t. 

We shall here consider the question: Do there exist two c.f. 's equal to each 

other in an interval about the zero point but not identically equal? Gr~EDESKO [iJ 

has given an example of such an occurrence. Since there has been some obscurity 

as to this point, we give some further examples and theorems, starting with the 

following lemma. 1 

Lemma 9.. Let f ( t )  be a~ eve~ real bomMed function which decreases steadily 

to zero as t---,ov and is convex downwards. Then, i f  f ( o ) =  I , f ( t )<(T~,) .  

Examples.  

a. Suppose that  f ( t )  satisfies the conditions of Lemma 2, that  f(+_ I ) >  o 

and that f ' ( •  I) exist. Form the even function (Fig. 3) 

I f(t) for o - < l t l  < I 

f (,) g(t)=[,~(l) +f'(1)(ltl-')f~ (I) 
for Itl--> 

From Lemma 2 it follows that both f ( t )  and g(t)belong to (Tp,). Obviously the 

d.f. 's of f(t) and g(t) are not identical in spite of the fact that  f ( t ) - - -g( t )  for 
Itl-<,. 

l TITCHMARSH [I], p. I70,  
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- I  I 2 

F i g .  3 .  

b. Le t  f(t) be defined as in example a. Form p(t)~-f(t)for ]t{--<: and 

then continue p (t) periodically with the period 2 (Fig. 3). Then p ( t ) <  (Tp~), for 

if we expand p(t) in a Four ier  series, 

1 1 

p(t)~ ~a,~e ~'~t, a~=-~ f e-i'~tp(t)dt -- f cos.~t.f(t)dt,  
- - 1  0 

i t  is easily seen as in the proof of Lemma 2 tha t  an--> o. Fur thermore,  by a 

well-known theorem on Fourier  series 

Hence p(t) is the c.f.  of a purely discontinuous d . f .  with the jump as >--o at  

x = , ~ z .  By the construction, p(t)-~f(t) for I t ] - -  < I, but  the d . f . ' s  are not  

identical. 

In  the examples given above we may for instance choose f(t)-~ e -{t{, the 

c.f .  of the Cauchy distr ibution �89 + I arctg x. 
z 

Remarks .  

I. Examples a and b show tha t  a min imum extrapolat ion need not  be unique. 

Le t  h(t) =f(t) for {t{ --< I Then all the func t ionsf ( t ) ,  g(t) a n d p ( t )  are min imum 

extrapolat ions of h(t) with respect to {t{--< I. 

2. In  examples a and b the derivative at  t = o does not  exist. This is, how- 

ever, by no means necessary. 
t~ 

Let  us for a moment  consider q~(t)-----e 2, the c.f .  of the normal  d . f .  q)(x). 

Does there exist a d . f .  ~ O(x) with the c.f.  equal to q~(t) in an interval  about 
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t =  o? This is an impor tan t  question with regard to the applications to the 

theory of probability. We will show tha t  in this and many other  cases the c. f. 

is uniquely determined by its values in an interval  about t = o. We base our 

a rgument  upon the following lemma. ~ 

L o m m a  3. A 'necessary and sufficient condition for the c.fi f(t) of the d. f .  

F(x) to have a finite derivative f(2k) (o), (k a positive integer), at t-= o, is that 
0O 

- -  oO 

The sufficiency of the condit ion is immediately clear. In  order to show the 

necessity we may wi thout  loss of general i ty suppose k---- I. Then by hypothesis  

f"(o)  exists and is finite. Now 

f(t) § f (  - t) 
I 

2 

t ~ 
- -  �89 f "  (o) -~ lim 

L~O 
ao  

From f ( t ) =  f e " ~ d F ( x )  it  follows: 
- - 0 O  

O0 

f ( t )  + f ( - - t )  f c o s  t xdF(x ) ,  
2 

- -  0O 

o r  

(37) --  ,~f" (o) ----- limtoo / I  --  cost ~ t x d F ( x ) .  
m o o  

From (37) we obtain, with regard to I -  cos tx t2 d F ( x )  > o: 

( I  

- �89  -> 
- - a  

co  

for every a. Hence f x ~ d F ( x ) <  ~ and the lemma is proved. 
- - 0 0  

We now enunciate the following theorem: 

Thoorom 3. Let F(x)  and G(x) be two d.f. 's and f ( t )  and g(t) the corre- 
sponding c. f . '  s, such that 

I ~ g ( t ) = f ( t ) i n  an interval about t =  o, 
0O 

2 ~ O~k = f x k d F ( X , ) <  (X) f o r  l c = O ,  I,  2, 3, - ' '  
- - c a t )  

I L~;VY [I] ,  p .  I 74 .  
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I f  the Stieitjes-Hamburger. problem of moments with regard to {ae} is determined, 

i.e. i f  the series ~, -~  diverges, then F ( x ) -  G (x). 
k~l  a~2~ 

P r o o f .  By the Stieltjes-Hamburger problem o f .momen t s  we mean the 

determination of a non-decreasing function ~ (x) belonging to a given sequence 

of numbers {ek} so that  

(38 ) f x  ~d~p(x)-~ e~, (k = o, I, 2, 3 , . . . ) .  
--00 

The problem is said to be determined if lp(x) is uniquely defined by (38), this, 

I 
being the case, according to CAnLE~A~ [I], if and only if ~ ~ diverges. (Here 

k ~ l  ~2 k 

we naturally suppose that  there exists a solution of the problem.) 

By 2 ~ Theorem 3, f(~)(o) exists for every k and by I ~ g(k)(o)~_f(k)(o) for 

every ~. Thus by Lemma 3 every moment of G(x)exists and from f(~')(o)----i~ak 

it results that  

(39) ak=fx~dF(x)= xkdG(x), ( k = o ,  I, 3, 3 , . . . ) .  

By hypothesis the problem of moments with regard to {ak} is determined. Hence 

according to (39) G(x)~ F(x) and the theorem is proved. 

Theorem 3 especially holds if f(t), (t ----- a + i~), is analytic and regular at 

t ~--o, for if the Taylor series of f(t) about t -~ o has a positive radius of con- 

vergence 0, then from Lemma 3 it is easily seen t h a t f ( t )  is analytic in --  0 ~ �9 < 0, 

i.e. analytic and regular on the whole real axes. Hence, if g(t)~-f(t)in an 

interval about t ~ o, g (t) is also analytic and regular for all real t, and thus 
ts 

g(t)=--f(t). Let us observe the important example f(t)-~e-~, the c.f.  of the 

normal d.f: ~(x). Here f(t) is analytic and regular for t----o, and thus the c.f.  
t~ 

g (t) of a d.f .  G (x) cannot be equal to e-~ in an interval about t--~ o without 

V (x) ~- $ (x). 

Let us finally consider the convergence theorem in w 5 from the point of 

view of this section. I t  is generally necessary and sufficient for the convergence 

of a sequence of d.f. 's  {F~(x)} to a d.f. F(x)that the corresponding c.f. 's {f~(t)} 

converge for all t to a function f(t) continuous at t = o, or if we only consider 

the convergence in an interval about t = o there may be several d.f. 's  with the 
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c . f . ' s  equal to f ( t )  in the interval in question. Wi th  regard to Theorem 3, an 

analysis of the proof of the convergence theorem mentioned above shows tha t  

it  may be replaced, for instance, by the following: 

Theorem 4. A sufficient condition for the conve~yence oj r a sequence of  d. f . 's  

{/~;,(x)} with the c.f. 's {f,~(t)} to a d . f .  F(x) with the c. f f ( t ) i s  that lim f n ( t ) - -  
n ~ O 0  

-~f ( t )  for all t in the general case, or that lira fn ( t ) -~ f ( t )  in an interval about 
n ~ O 0  

t = o, provided that the StielUes-Hamburger problem of  mome~ts with regard to F(x) 

is determined. 

7. On the approach towards 1 of the modulus of a characteristic function. 

For later purposes it  is of impor tance  to consider f ( l )  for large values of t, and 

fur ther  to investigate whether and when If(t0)[ = I for a finite to ~ o. 

We call a d.f .  a lattice distribution if the following condition is satisfied: 

F(x) is a purely discontinuous d . f .  with the jumps si tuated only in a sequence 

of equidis tant  points. For  instance, a purely discontinuous function F(x)  with 

F ( - -  o) --~ ], F ( + o ) = ~  and the jumps I ~,,+--., a t  x =  + n ( , - - - -  I ,  2, 3 , . . . )  is a 

lattice distribution. The most common example is the Bernoulli distr ibution 

having two jumps p and q ( p +  q = I , p > o , q > o )  at  two points x~ and x2. 

The reason of the term ~lattice,, will become more clear in the multi-dimensional 

case. The lattice distributions are most frequently met  with, besides the absolutely 

continuous distributions, in stat ist ical  applications. 

Theorem 5. t I f  and only i f  F(x) is a lattice distribution, there exists a finite 

t o ~ o such that If(to) l= ~. 
This condition is necessary, for if we suppose tha t  t o ~ o and If(to) [ ~--f(o)----- I,  

then f(to)e ~eo = f ( o )  for some real 8 o, or 

; (I --  e i(~ d F  (x) = o. 
- - a O  

On taking real parts we obtain f g ( x ) d F ( x ) ~ - o  where g ( x ) = I - - c o s  (0 o + rex ). 
~ 0 0  

As g(x)>--o and continuous,  g(x) must  be o at  every point  where d F ( x ) >  o. 

But  g ( x ) =  o only for 

(40) X = X o + ~ , .  t-~-' Xo--  to ,V ==o, + I, + 2 ,  _+ . . . .  
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and thus F(x) m~lst be a purely discontinuous function with the jumps 

27/: 
(41) a,>--o f o r x = x  0 + ~  ~ ,  (~=o,+_ I, +.2, +__...), 

and no other discontinuities. Thus F(x) is a lattice distribution. 

sufficient, for if F(x) is a lattice distribution let i t  be The condition is 

defined by (4[). Then 

f ( t )  = ~ a, ,e ' t( '~ 

hence If( t) l  is periodic with the period t 0. Thus If(to)l = f ( o ) ~ - I .  1 

The proof of the following theorem will be delayed until Chapter VII; w I, 

where it is proved in the multi-dimensional ease. By I we denote an arbitrary 

interval of the real axes and by mr(E) the mei~sure of those t-points, belonging 

to ~ for which a certain property E is satisfied. 

T h e o r e m  6 .  

the finite moments 

Let F(x) be a d. f .  with the mean value zero, the e.f. f( t)  and 

eo eo 

. ~ = f  x ' dF(x ) ;  & = f l x l ~ d F ( x ) .  

a~ the inequality For every ~, (o < ~ <-- I), and for every interval I of length el" ~ ,  

V~ 
mz(If(t)l ~ >-- x - ,) <- e,-trg ' 

holds, e 1 and e~ being absolute eonstants. 

We now proceed to the study of I / ( t ) l  for large values of t. Let us first 

recapitulate the results of w 2. 

a. I f  f(t)  < (T~,,), then lim If(t) l --  o. 
t ~ - 1 -  oo 

b. If f(t) < (Tj,,), then f(t) = ~ a , e ' ~ ,  ', a, being the jump of F(x) at x = x , ,  
r 

and ~ a, = I. Then f( t)  is almost periodic, and since f ( o ) =  I, it follows that  

lira If(t) l  = I. 

1 I t  m a y  happen t h a t  I f ( t )  I = I for every t. T h e n  i t  is  eas i ly  seen t h a t  F(x)= E(x-a)  
0 for .T. ~ a ,  
I ~ x >  a a be ing  a constant .  We a l w a y s  exc lude  th i s  case. 
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c. f ( t ) ~  (Tp,). I t  is known t h a t  If( t) l  is small in mean. There are 1, how- 

ever, s ingular t ransforms f ( t )  such tha t  

lira I f ( t )  l > o. 

On the other hand there exist 2 singular t ransforms such tha t  

lira I f ( t )  l = o. 
t ~ q -  a0 

We are especially interested in the question whether  there exists a singular 

t ransform f ( t )  with the property t ha t  

l im I f ( t ) l  = z. 

I have not  found any example of such a funct ion in the l i terature unt i l  lately, 

when a paper by L. SCHWARTZ [I 1 became available in Sweden. Two years ago I 

found another  example, using the following lemmata.  

L o m m a  4 2  Let  F1 (x), F~ (x) . . . .  , Fn (x) . . . .  be a sequenee o f  purdy  discon- 

tinuous d . f . ' s  and suppose that the convolutions Tn (x) = F 1 ~ F~ ~ F s ~ .. .  ~ Fn,  

(n = I, z, 3, �9 �9 .), converge to a d. f . T (x )  as n ~ ~ . Then T (x) is purely discon- 

tinuous or purely singular or absolutely continuous. 

L e m m a  5. 4 Let  F 1 (x), F~ (x), . . . ,  F,, (x) . . . .  be a sequence of  purely diseon- 

tinuous d . f . ' s  and suppose that the convolutions Tn (x) = FI  ~ F~ ~ tes ~ .." ~r Fn,  

(n -~ I , 2, 3 . . . .  ), converge to a d. f . T (x). I f  d~ denotes the maximum jump of  Fn (x), 

the necessary and sufficient condition for  T (x) to be continuous is that 

?t 

IId.=0 

Examplo.  Le t  {$~}, (n = x, 2, 3 . . . .  , ~t~ > 2), be a non-decreasing sequence of 

numbers such tha t  lira ~t,~ = or, and let F,,(x) be a purely discontinuous d. f. with 

I I 
the jump I ~  at. x = o  and the jump ~ at  x = 2  -~, ( n = I , 2 , 3  . . . .  ). The 

corresponding c.f .  f ~ ( t ) i s  obtained from 

I CARLEMAN [2], p. 225, RIESZ [IJ, p. 312, JESSEN-WINTNER [I], p. 6 I .  
I MENCHOFF [I], LITTLEWOOD [I]; m a n y  examples  in  the  Amer ican  J o u r n a l  of Ma thema t i c s  

f rom 1935 and  onwards .  
s JESSEN-WINTNER [I], p. 85. 

' L ~ v v  [3]. 
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Now we suppose that  

(42) 

I If._ ~ .9--  ~ 
f n ( t ) ~ -  I - -  -~a "{- ,~n e t " 

By the convolution theorem iu w 2 the d. f. ~ ,  (x) ~ F1 ~ Fs ~ ' "  ~ F ,  has the c. f. 

ap, Ct) ----- i--~ + Z, 1" 

I t  is easily seen that  ap,(t) converges for all t to a continuous function 

(43) aPCt) = [ - - ~ ,  + 2, I a s  n--.oo. 

By the convergence theorem in w 5 lira W, (x) ---- !F (x) exists and .is a d.f .  By 

Lemma 5 and (42) ~(x)  is continuous, and by Lemma 4 it is either purely 

singular or absolutely continuous. Putt ing t = 2 ~ - 2  m in (43), (m a positive in- 

teger), it is easily found that  

(44) lira I  C2"' 2")1 = x. 

But (44) shows that ~V(x) cannot be absolutely continuous. Hence it is singular 

and its e.f .  has the required property. 

d. Let us finally consider the general case: f ( t )  ~ (Tp). By w I we may write 

(45) F(x)-----blF,(x ) + bzF:(x ) + baFa(x), b,>---o, Z b , - ~  I, i-~- I, 2, 3 ; 
t = 1  

here the functions Ft(x) are d.f. 's, Fl(x) being absolutely continuous etc. Cor- 

respondingly 

(46) f( t)  = b~ f~ (t) + b2f~ It) + ba fa (t). 

I f  ba > o, i .e.  if F(x) has an absolutely continuous component, we obtain 

from (46) and case a: lira If(t)l < I. 
t~+_,o 

I f  b~-----o, i.e. if f ( t ) <  tTl., + Tp~, cases b and c show that  sometimes 

If ( t ) [  = somet imes  li-1 I f ( t ) l  < I. 
t ---. + , o  t ~ + _ , 0  



30 C a r !  G u s t a v  E s s e e n .  

I f  we 

obtain:  

o r  

sum up the results of cases a ~ d ,  combined with Theorem 5, we 

Let F(x) be a d.f. with the c. f f(t). 
I f  F(x) has an absolutely continuous compone~#, then 

n m  i f ( t ) !  < ~. 
t ~ + r  

[ f  F(x) is purely discontinuous, then 

l i m  I f ( t ) l  = ~. 
t ~ + ~  

I f  F(x) is purely singular or iJ" F(x) < (Ve, + Ire,) either 

lim If( t ) [  = I 
t~+_co 

lira ] f ( t ) ]  < I 

~nay  o c c u r .  

I f  lira I f ( t ) [  < I, then there exists a constant e > o such that If( t )[  < e -c for 
t ~ + o o  

I t l > - ~ .  

Chapter  I I .  

Estimation of  the Difference Between Two Distribution Functions by the Be. 

haviour of Their Characteristic Functions in an Interval About the Zero Point. 

I. On f l F ( x ) - - G ( x ) ~ d x .  We have earl ier  found  tha t  two c . f . ' s  may  be 
- -O0  

equal to each o ther  in an interval  about  the zero point  wi thout  the corresponding 

d . f . ' s  being necessarily identical.  I t  will, however,  be shown tha t  they are approx- 

imately equal in the mean. As a measure  of the difference we may consider  

cO 

e (~; G) = f I F(x)  - (; (x) l dx. 

T h e o r e m  1. I f  F(x) and G(x) are two d.f.'s, f(t) and g(t) being the cor- 
responding c.f.'s such that 

f ( t )  = a (t) on i t l <- L,  
then 

ao 

G)=  (x)l dx <_ 

- - aO  
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P r o o f .  

t ion: 

oD 

From f ( t )  - -  q (t) -~ f e itx d (F (x )  - -  G (x)) we obtain  by part ia l  integra- 
- - 0 0  

7. f ( t )  (t) 
(2) - .e = / * '  '~ ( ~ ( x )  - G (x)) dx. 

- - / t  d 

From (2) and the definition of the metric T ( f ) ,  (Chapter I, (7)), we obtain:  

L - - , ~  j 

But  since f ( t )  = g (t) in I t l < L we have f ( t )  --  g (t) - -  - - i t  = o  for  I t l < - L .  

may write: 

(4) f ( t )  - .q (t_)) = ( f ( t )  - -  g (t)) , a (t), 
- - i t  

Hence  we 

I 
where a (t) = 

i t 
- - - -  for  It] >--L and for  the  rest  arbitrary.  W e  now choose 

I 
(5) a ( t )m the minimum extrapolat ion of - -  i--t 

with respect  to It[ > L. From Chapter  I, Theorem i, it  follows: 

(6) T (a (t)) < ~ .  ~ .  
2 15 

Fur ther  

(7) r ( f ( t ) -  g( t ) )= f I a (F(~) - G (~)) I - ,-. 

From (3), (4), (6) and (7) we now obta in:  

:rg I 
e (F, G) ---- T {(f(t) - -  g (t)) a (t)} < T ( f ( t )  - -  g (t)). r (a(t)) < 2 . 2 "  Z '  

and the theorem is proved. This method  has been used by B~.VRLXl~G (loe. cit. 

p. I3) in similar cases. 

R e m a r k .  

Even if f ( t ) ~  g(t)  in an interval  about  t = o, it is possible to make an 

est imation of Q(F, G), provided tha t  fur ther  condit ions are imposed. I confine 

myself  to this indication.  

2. On I F ( x ) - -  G(x)[ .  We  now proceed to the  proof  of a theorem that  is 

fundamenta l  with regard to its applications. 1 

t E s s ~ r l ~  [ i ] ,  p.  3. 
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T h e o r e m  2 a. Let A, T and ~ be arbitrary positive constants, F(x) a non- 

decreasing function, G (x) a real function of bounded variation on the whole real axe,~, 

f ( t )  and g (t) the corresponding Fourier-Stieltjes transforms such that 

~" F ( - ~ ) = a ( - |  F ( + ~ ) = G ( + ~ ) ,  

z ~ O'(x) exists everywhere and IG'(x) l-< a , .  

T 

- - T  

To every number k >  I 

depending on lc, ~eh  that 

g( t ) ldt  = ~. 

there corresponds a finite positive number e(k), only 

(9) IF(~)  - O(x) l  < k ~ + e(k) A --  "2-~ "~" 

We also need a theorem 1, analogous to Th eo rem  2 a, where, however,  G (x) 

is not  supposed to be continuous.  

T h e o r e m  2 b. Let A, T and e be arbitrary positive constants, let F(x)  be a 

non-decreasing, purely discontinuous function and G (x) a real function of bounded 

variation on the whole real axes, f(t) and g(t) the corresponding Fourier-Stieltjes 

transforms such that 

~~ F ( - -~ )=G( - -~ )=o ,  F ( + ~ ) = a ( + ~ ) ,  

2 ~ i f  G(x) isdiseontinuous at x = x , ,  (x, < x,+l, ~ = o ,  + I, +_ 2, +__---), 

there exists a constant L > o mwh that Min. ( x , + l -  x,)~> L, 

3 ~ lG'(x) l<~ A everywhere except when x - ~  x , ,  (v = o, +__ i ,  + 2, +__.-.), 

4 ~ F(x) may be discontinuous only at x = x,,  (~ = o, +_ i, +_ 2, +_ ...), 

T 

- - T  

Then to every number k > x there correspond two finite positive constants el (k) 

and c~ (k), only depending on k, such that 

I F ( x ) -  G(x) l  -< k .  • + c , ( k ) . A ,  ( i i )  
2 ~  2 

provided that T . L ~ e~ (k). 

a ESSEEN [2], p. 7) wi thout  proof. 
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P r o o f  of  T h e o r e m  2a .  

tegrating by parts we obtain 

(I 2) f ( t )  -- .q (t) 
- - i t  

QO 

From f ( t )  -- g (t) = f e 't~ d (F(x) --  G (x)) and in- 

= fe"~(F(x) - -  G(x)) dx. 

Thus f ( t ) -  g(t) is the Fourier transform of F ( x ) -  G(x). 
- - i t  

In  order to understand the theorem better let us first suppose 

o o  

- -  oo 

and let T-----o~ in (8). 

from (I2): 

Hence 

By means of the Fourier inversion formula we obtain 

QO 

F(x) -- G (x) I f e_,~ t f ( t )  -- g (t) 
---- 2--~ J ~- ~t d t. 

- - 0 0  

]F(x ) - -  G(x)l < flJ- f - - g ( t ) l d t =  - -  , 

t 2z# 

Thus c(k). ~ in (9) can be interpreted as a remainder term, corresponding to a 

finite T. 

I t  is sufficient to prove the theorem for A = T = I, for if we put 

Fl  (x) = ~ F , G,(x)  = 74 a , 

f~ (t) and gl(t) being the corresponding transforms, then [G~ ( x ) [ ~  I and 

1 

fl ' '-gl't l A 
- - 1  

Now suppose that  the theorem holds for A = T = I. Then 

o r  

I F,  (x) - ~ ( x )  l <- ~ .  ~ T 2 - ~ ' 2  + c(k), 

3 - -  6 3 2 0 4 2  A c t a  m a t h e m a t i c a .  7 7  
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]F(x)--G(x) I < k .  * +c(k) A - 2 - - ~  "~' 

the desired inequality. Thus in the following we take A = T = t .  

In the proof, which is based on a convolution method, we use two auxiliary 

functions H(x) and h(t) with the following properties: 

I ~ H(x) and h(t) are real even non-negative functions; 

2 ~ f H ( z ) d x =  i;  b =  f l x l / ~ ( x ) a x  < ~ ;  (is) _| _~ 

3* h(t)=fe"'~tt(x)dx; h ( o ) = x ;  h ( t ) = o  for I t l ~  ~; 

o --< h(t) < I for I t l -< ~. 

To obtain an example of such a function we may proceed as follows. Let  

k ( t ) = J x - - l t l  for I t l _ < I  

t o for I t l  -> 
Hence the Fourier transform 

| / s i n  x ~  ' 

'--t? : :  

By means of the convolution theorem of Fourier integrals 

and 

/ s i n X \  4 

at) 

f k(2t--s)]~(s)ds 
h (t) = -| 

oo 

f (k(sl)' as 

are Fourier transforms; it is easily seen that they have the required properties. 

In this connection we quote a theorem by I~GHA~ [I]. 

Lemma 1. I f  e (x) is an assigned positive function tending steadily to zero 
when x---*~, there exists a non-null function h(t), equal to zero outside an assigned 
interval (--1, 1), and having a Fourier transform H(x) satisfying 
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i f  and only i f  
H(x) = O(e-I=l,(Ixl)), (x-~ Jr ar 

f ~(x.) dx 
1 

conv~'go_~. 

The sufficiency is easily proved by considering a function H(x)of the type: 

H(x) = I I  s,n 0 ~ ,  
O~ X 

! 

the quantities On being suitably chosen. 

Z~ 

(I4) 

Fig. 4. 

After these preliminaries we proceed to the proof of Theorem 2 a. 

d =  Max IF(x)-- G(x)i. 
Put  

Without  loss of generality we may suppose that  J = I F ( x ) -  G(x)I for x = o, 

since a translation Xo of x is equivalent to a multiplication of the transform by 

e ~ of modulus I. Further  we may suppose F ( o ) >  C(o). 

Since F(x) is non,decreasing and [ G' (x) [ ----- I it is easily seen from Fig. 4 that  

(I5) F (x ) - -G(x )>  J - - x  for o ~ x - - < J .  

Now consider the integral 
QO 

r (x) = f H ( x  - y) IF(y) - G (y)l dy,  

H(x) and h(t) being defined by (x3). Formally we obtain from (x2), (x3:3 ~ and 

the Parseval formula: 
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(,6) 
co 90 

f I fe-':t f(t)--g(t)h(t)dt. H (x - -  y) [ F(y) - -  G (y)] d y = f ~  j 

The validity of ([6) may be proved in the fol lowing way. I t  is immediately  

clear tha t  ( f ( t ) - -g ( t ) ) .h ( t )  is the Fourier-Stiel t jes  t ransform of V(x). By the 

inversion formula  (5), Chap. I, we have 

1 

I f f ( t )  - -  g(t)  (e_,t = e_.=,)  
V(x) - -  V(x~) = ~ 3  -~-i-it h(t) - -  d t .  

--I 

In  view of (8) and the  Riemann-Lebesgue theorem it is readily seen, t ha t  
1 

! f f ( t ) - -g_(t)  V(xl) -~ o and tha t  2 ~ J - -  i t  h (t) e -"z ,  dt-+ o when x 1 -* oo. Hence  (I6), the 
- -1  

central  formula  of the proof. 

F rom (I5) and (I6) we have 

/(d --  y ) H ( x  y) d y  - -  ; H ( x  - -  y) IF(y) - -  G (y) ldy - 
0 ,,t 

0 1 

- 2 -I fl ++ 
-CO - - I  

But  I F (y) - -  ,G (y) I ~ d .  Hence  

f (d  - -  y) H ( x  - -  y )dy  - -  

co o 

J --CO 

By means of (13:2 ~ this is easily t ransformed to 

d - - X  

f (2 d - -  x - -  y) H(y)  dy  - -  d <-- • 2zr 
- - X  

o r  

(,7) f (2~-x)~(y)d~-~<- • § b. 
- - X  

In  (I7) we put  x = m - d ,  (o < m < i), and obtain 
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(l-m} a 

(,s) a { ( 2 - m ) f H O / ) d v - - I } ~  2~--~- + b .  
- m d  

Given an a rb i t ra ry  number  k > I we can always choose re (k)suf f ic ien t ly  

small and a !k) sufficiently large so tha t  

(1--n~(k)),~{k) 

- m(~)) . I  ~ ( v ) d y - -  : = (I9) (2 I/~r 
o/ 

- m (k) a (k) 

Now two cases may occur:  

i. d < a(~), 
2. a > ~ (k) .  

Hence  f rom (I 8) and  (I 9): 

Thus  

._4 ~ M a x  

d . - x < - - L + b  or d _ < k . - L r  + k . b .  
k - - 2 ~ v  2 ~  

( k - L  + k b ; ,  (~)) --< k .  ---~ + k b + a (k) = k .  ---~ + c (k), 
2 ~  2 ~  2 ~  

c(k) being a number  only depending on k. Hence  the theorem is proved. By 

the  cons t ruc t ion  c (k) -> ~ as k -~ x. 

P r o o f  o f  T h e o r e m  2 b. The  m e th o d  of proof  is similar to t h a t  of 

Theorem 2 a. As before we may take A = T = I and, pu t t ing  

(20) a = ~ax I F ( ~ )  - G (~)I, 

we may  suppose tha t  I F ( o ) - - G ( o ) ] = J .  Several  cases may  occur  in the  be- 

haviour  of  F(x) and  G (x) about  x ---- o. We res t r ic t  ourselves to t h a t  represented  

in Fig.  5; the  others  are t r ea ted  in the  same way. 

F r o m  Fig. 5 i t  is. seen tha t  

(2I) F (x) - -  G (x) --  d - -  x for  o ~ x ~ J  

where • = Min (,d, L/2). As before  

(22) 

ou 1 

f ' f :'" :(')-'(') H ( x  - -  y ) I S ( y )  - -  a (y)] d y  = ~ - -  i t  
--0D --1 
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and hence 

(23) 
O~--Z 

f (2g--x) H~)dy- -g~  e_+b. 2 ~  

Put t ing  x = m. d, 

(24), 

(0<~< I), in (23) we ob~l~l 

( l - m )  c~ 

+ b .  

.,u / . ~ * a  Frx) 

G(x) 

/ . I ! I 
Q, ! ! 

I I 
~ J ) x 

Xv 

F ig .  5. 

Given au arbi t rary number  k )  I we choose re(k) and  a(k) in such  a manne r  

tha t  (x9) holds. Then two cases may  occur. 

x. # - <  a(k). 

L 
I f  n o w  - > a(k), then  d = Min. (g, L/2) > a(k), and hence f rom (I9) and  (24): 

2 

# - Max ~ + kb; ~ (~) or • ~ k. _L2~ + ci (~), 

provided that L > 2 g(k)= c~(k), c1(k ) and cs(k ) only depending on k. This 

proves the theorem, 



Fourier Analysis of Distribution Functions. 39 

Chapter I I I .  

Random Variables. Improvement of the Liapounoff Remainder Term. 

i. Random variables. By a random variable X we understand, popularly 

speaking, a quantity, which may assume certain real values with certain pro- 

babilities. The foundations and definitions of the theory of probability have always 

been subject to discussion and different opinions. In recent years it has been 

at tempted t o  give the theory of probability a more rigorous structure by connec- 

tion with the general theory of sets and axiomatically stated definitions. (KoT.MO- 

OOROF~ [I].) I shall give a brief account of some of the conceptions and defini- 

tions that  have been used; for further information the reader is referred to the 

works of R'OLMOGOROFF and CRAMI~R [5]" 
Consider the k-dimensional euclidean space /~k with the variable point 

x -~  (xl, x~, . . . ,  Xk). By S we denote an arbitrary Borel set in R~. (Only such 

sets are considered here.) A set function P(S)  is called a probability funclion if 

the following conditions are satisfied. 

I. P(S)  is defined for every Borel set S; P ( S ) ~  o. 

2. P ( R k ) =  x. 

3. P(S)  is completely additive, i .e. 

P ( s l  + s ,  + ~8 + ' )  = P(s l )  + P(s , )  + P(ss) + . . . ,  

where 81, 8~, 88 . . . .  are Bore1 sets, no two of which have a common point. 

The probability function P(S) defines the probability distribution of a random 

variable X (r. v.) in Rk, P(S) denoting the probability that  X ( S .  

By S~,. ~ . . . . .  tk we denote the set x~ ~ ~, (i ~ i, 2 . . . . .  , k). Then the distribu- 

tion function F(gl, ~ ,  �9 �9  ~k), corresponding to the r. v. X, is defined by 

P(g~, ~ . . . .  , ~ ) =  P(s~,,~, . . . . .  ~). 

The d. f. F ( ~ ,  g ~ , . . . ,  ~k) is a point function, uniquely defined by P(S). Con- 

versely, by a well-known theorem of Lebesgue, F(~I, g~, . . . ,  gk) determines P(S)  

uniquely. Every d.f .  F ( ~ ,  ~ , . . . ,  ~.~) has the following properties: 

x. In each variable ~, F is a non-decreasing function, continuous to the 

right, and lim F----o. 

2. As all variables ~l -~ + ao, F tends to the limit i. 
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I f  X ~ (X1, X s , . . . ,  Xk) is a r. v. in R~ and Y----(I:1, Y~,. . . ,  Ym)=f(X) 
is a B-measurable vector function, finite and uniquely defined for all points X 

of Rt,  then f(X) is a r. v. in R~,. 

Let  X~ and X I be two r. v.'s in Rt~ and Rt~ with the probability functions 

PI(SI) and Pz (Sz) respectively and consider the combined variable X----(X1, Xl) 

in the product space Rt, Rk, with the probability function P(8).  I f  S denotes 

the set formed by X as X 1 ~ 81 and X l ~ S~, then X1 and X~ ar~ independent if 

~-(S) = i,~ (S~) P~ (S,). 

In the same way the mutual independence of n r. v.'s is defined. 

In this and the following two chapters we only consider probability distri- 

butions in one dimension. 

2. Probability distributions in one dimension. Consider a one-dimensional 

r .v .  X with the d. f. F(x). In a discontinuity point we put 

P(x)  = ~ (F~x + o) + F(~  -- o)), 

thus slightly modifying the definition i n 'w  I. The difference is unimportant, but  

now F(x) belongs to the class (Vp) in Chapter I. 

By a, and ~k we always denote the moment and the absolute moment re- 

spectively of order k: 

O9 

(') a,= f xkdF(z); pk= f Ixl~dF(x).  

k is generally a positive integer but  sometimes we also consider 

The following important in- 

The number 

absolute moments where this need not  be tile case. 

equalities are well known 2: 

Two moments play an especially important r61e in the statistical applications, 

the mean value or the mathematical expection re(X) of X and the dispersion 
~(X): 

ao 

(3) re(X) = f  xdF(x); oJ(X)= f (x- m)' dF(x) = a,-  a~. 
- -  O 0  ~ ~ 0  

I E.  g. HARDY-LITTLEWOOD-P6LYA [I], p .  I57.  
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Let k be a positive integer and flk finite and consider the c.f.  

oo 

(4) f( t)  = f e it~ dF(x). 
--OD 

The derivatives fl,1 (t) obviously exist and are finite for v ---- I, 2, . .., k. For small 

values of t we obtain the expansion 

k 

+ o(Itl ). (5) f ( t )  = + 

I f  flk+,r, (o < ~ < i), is finite, (5) may be replaced by 

k 
~tv . t ]k+ff (5 ')  f ( t )  = I + Z ~.(Z t)" + O" ff ,+dl  

where the modulus of 0 is bounded by a finite qumatity, only depending on k 

and d. For small values of t the following expansion holds: 

/: 

r ' ( i t ) ,  + o(Itlk); (6) l o g f ( t )  = 

the coefficients ~,, are called the semi-invariants of the distribution. 

Let us now consider two independent r. v.'s Xt and X2. The sum X =  X 1 + X, 

is atso a r.v. The connection between the d.f . ' s  of X1, X 2 and X is expressed 

by the addition theorem1: 

Let XI and X~ be two independent r. v.'s with the d.f.'s F1 (x) and 2x2 (x) re. 

speetively and the eorresponding e.f.'s f l  (t) and f~(t). The d . f  F(x) of the r.v. 
X = X 1 + X~ is obtained fi'om 

oo oo  

- -  oO ~ oO 

The e . f  f(t) of ix(t) is expressed by 

f( t)  = f l  (t).f~ (t). 

Concerning the properties of F(x), see Chapter I, w I. The generalization 

of the addition theorem to a sum of any number of independent variables is 

immediate. We also observe the following relations: I f  X~, X2, . . . ,  X,~ are a 

I LEVY [I], p. I86. 
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sequence of independent r .v. 's  and X ~ a~X~ + asX9 + "'" + ~ X ~ ,  where the 

coefficients a~ are constants, then 

t in(X) = a,m(X,) + a ,m(X,)  + ... + ,~ , , (X. ) ;  

(7) ~ - t  o' (~) = ~', r (x,)  + ~; o'  (x,) + ... + ~" a' (x,) .  

3. Improvement of the Liapounoff remainder term. This section is devoted 

to an investigation of the Liapounoff remainder term (see Introduction, (I) and (2)). 

Our aim is the proof of the inequality {6) in the Introduction, which relation 

we shall obtain from a somewhat more general theorem. 

Consider a sequence of independent r .v. 's  X1, X s , . . . ,  X= such that  each 

variable X,  has the d.f .  F,{x), the c.f.  f~(t), the mean value zero, the disper- 

sion o,, the moments ~k,, the absolute moments ilk, and the semi-invariants ),~,, 

(~ ~ 1, 2, 3, �9 ..,  n; ~ ~ 3, 4, . .  �9 or sometimes, and then we only consider absolute 

moments, 2 < / c  ___ 3.) By ~ ( x )  we denote the d.f .  of the variable 

Z=-~ X~ + Xs + "'" -b X=, 
8n 

where sin ~ ~ + ~ + ... + a~', and by f ,  (t) the corresponding c.f .  These notations 

are used throughout the chapter. I t  follows from (7)that  Z ,  has the mean value 

zero and the dispersion I. 

O u r  problem is to study the difference 

�9 '~ (x) - �9 (x), 

�9 (x) being the normal d.f.: 

(8) ~ ( x ) =  i f ~' 
~--~2 ~ e - u  d y 

p 
w i t h t h e  c.f .  e - : .  

Let  us first observe the following relations, consequences of the addition 

theorem: 

(9) I F.  (x) = G (8 .x ) .  F, (8.x) * - . .  * F .  (~. x); 

{:-(,) = nf. :.. 

According to C n A ~ n  [5], P. 70, we introduce the quantities: 
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(io) I 
Bm. = -~ (~, + r  +. . .  + r 

Bk.  r~ ,  

�9 ~ 2 n  - 2 n  

I (),~:i + 7k2 Jr "'" + 7kn), r k . = ~  

( i z) r~, ,  = ~ ../----~ . 

�9 .t ~kn 

I t  is readily observed that  

(I 2) I < ~ m ~ ~/3 < 

I f  all the d.f . 's  F,(x)  are equal with the dispersion a, the absolute moments flk 

and the semi-invariants ~,~, we observe that  qkn and ~k, are independent of n: 

After these preliminaries we may state the following theorem, containing 

the desired improvement of the Liapounoff remainder term. 

Theorem 1. Let Xa, X2, �9 �9 Xn be a sequence of independent r. v.'s such that 

each variable X ,  has the mean value zero and the finite absolute moment ilk,, 

(Y = I ,  2 ,  3 ,  " "  ", n ) ,  o f  given order  k ,  (2 < k -< 3). 

(I4) 

where e(k) is a 

by (IO). 

Then 

IF . (x ) -o (x) l -<  c(k} + ~ - / ,  
\n -  ~- n~ t/ 

finite positive constant only depending on k, and Qk, is defined 

Remarks .  

I. I f  k = 3 we obtain by (I4): 

(~s) I F . ( x )  - q~ (z)  I < C .  Q~" - r 

G being an absolute constant. I t  is possible to show that  C may be chosen = 7.5. 

The calculations are simple but  rather laborious, and I omit them here. I f  all 

the d.f . 's  are equal, (I5) and (I3) give: 

Os') IF . (~)-  a)Cx)l-< c ~.' 
aSV n 
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2. I t  is _interesting tO observe that  the remainder term 0 ( ~ ) i n ( I S )  

generally cannot be improved even if moments of all orders are finite. Consider 

the case, where every d.f .  F,(x) is identical with a d . f .  having the jumps t at 

x = ___ I. I t  is readily observed that  F , (x)  has jumps in the vicinity o f  x = o, 

] ~  (n ---+ oo). We shall return to this question in asymptotically equal to " l~n'X 

the next chapter. 

The proof of Theorem x is based on Theorem 2 a, Chap. II.  Before we 

proceed to the proof, however, we shall record some lemmata concerning the 

expansion of f , ( t ) .  These lemmata are of an elementary nature, being easily 

obtained by expanding each f ,  (t) in a Taylor series about t = o. Concerning 

Lemma 2 a the reader is referred to CnAzl~a [5], PP. 71 and 74; the others a r e  

proved in a similar way. 

Throughout this chapter we denote by ck an unspecified finite positive con- 

stant only depending on k. 

Lemma 1. I f  k is an assigned number, (2 < k ~ 3), ~kl, < ~ for  ~, = x, 2, 3, 

. . . ,  n, Qk, defined by (IO) and 

I t l -  , , 

(z4 ek.)*-2 
then 

(0 - e--i -< ,~--~1 t pe-i-  

Lemma 2. I f  the d. f i ' s  are equal, i l k  is an integer ~ 3, i~+, < ~ for  ~ =  I, % 3, 

. . . ,  n, Q+. defined by (IO) and 

then 

a .  

and 

b. 

V~ 
I t l < r + . = ~ ,  

~Jk s 

+' ~"P,(i t)  t'[ c+ +' 
f .  (t) - -  e -+ - -  - -  e -+ ~ - -  ( I t p  + I t p  (+-')) e -+ ,  

, (,: t) e_+ I +(n) t+- , ) )"  +--+- im-  (ItP+ItP +-+, 
, v = l  n 2 

where ~ (n) only depends on n and lira d (n)= o. 



Fourier AnaljTsis of Distribution Functions. 45 

Here P , ( i  t) = ~ cj,(it)  "+~j is a polynomial of  degree 3 v in (it), the coefficient 
j = l  

cj, being a polynomial in 2an, ~ , . . . ,  2,-j+3,,, and hence according to (13) in- 

dependent o f  n. 

For  example,  if  the  d . f . ' s  ~ ; (x)  are equal, with the  moments  as, a4, . . .  and 

the dispersion a, we obta in  

(16) 

I I a s . Pl(it) = ~ ~(~t) 3, 

I 0  ~ t . ~ o  i ~4 3 ~!( it)  4 + ~i. ~ ~ ~J " (P2( i t )  4! a '  

P r o o f  o f  T h e o r e m  I. The  theorem is an immedia te  consequence of 

Theorem 2 a, Chap. I I ,  and Lemma t, this chap. In  Theorem 2 a, Chap. I I ,  

we pu t  

( I 7 )  

F(x)  = F~ (x), G (x) = �9 (x), 
tt 

f ( t )  = f ~  (t), g (t) = e-~,  

I V.-; 
A ----- Max I ~ '  (X) I ~--- - - - '  r------ , 

(24 ek,,)k-~ 

I t  only remains  to est imate 

(,8) 

From L e m m a  I we have 

T t ~ 

~-~ t d t .  
- - T  

oo 

--< ck [ t]  ~-1 e-~ d t -~ ca . -y~_~ , 
n 2 ~, n 2 

and hence f rom the main theorem 

k-~ + 

1 

c(a) (24 eke) k-2 
2:7/ :  - -  V 2 : r ~  1 

n 2 n2- 

for  every a > I. This  is the desired inequali ty.  
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Chapter IV. 

Asymptotic Expansions in the Case of  Equal Distribution Functions. 

Consider a sequence of independent r .v. 's  X1, X z , . . . ,  X, ,  all having the 

same d.f.  F(x), the e.f .  f(t),  the mean value zero, the finite dispersion ~ ~ o, 

the moments as and the absolute moments ~k, (k = 3, 4 , . . . ) .  By F n ( ~ ) w e  

denote the d.f .  of the variable 

z.=X, + X, + .-. + X. 

with the c.f.  f,(t). These notations are used throughout the chapter. From (7), 

Chapter III ,  it follows that  Z~ has the mean value zero and the dispersion ,. 

As before, the following relations hold: 

F. (x) = (F(a 

In  Theorem 1, Chap. I I I ,  we found that  

O .  , 
o s V~n 

C being an absolute constant, provided that  ~s < ~ .  As was mentioned in the 

Introduction (5) in connection with the Charlier A series, it is sometimes possible 

to obtain an asymptotic expansion of F , ( x ) i n  ~ ( x ) a n d  its derivatives, thus 

lowering the order of magnitude of the remainder term. At the .same time a 

theoretical explanation of the usefulness of the A series is obtained. 

The possibility of such an expansion is conditioned by the behaviour of 

[f(t)l for large values of t. Three cases may occur which together cover all 

possibilities. 

a. t~m| < I. This is the Cram~r condition (C). The condition (C) being 

satisfied, CR.A~R has given an estimation of the remainder term of the Edge- 

worth expansion (5) in the introduction. (See also Theorem I, this chap.) 

The estimation of the remainder term becomes more delicate if (C) is no 

longer satisfied. We devote this chapter to the study of this question. 

* This means the convolution of • functions zV(#l/nx). 
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b. lira ]f(t)] ~ x, but ]f(t)] ~ x for every finite t ~ o. We will show (Theo- 

rem 2) that 

c. I/(to)l = I for a finite t o ~ o. Then by Theorem 5, Chap. I, F(x) is a 

lattice distribution and ly(t)l is periodic, with the period to. Especially ]f(~ to) ]--  I 

for every �9 -~ o, • I, • 2, •  I t  will be shown, that  Fn(x) has discontinuities 

I 
of order of magnitude ~-~. Cram~r's estimation of the remainder term, valid 

in case a., breaks down for k > 3' By adding an expression containing a discon- 

tinuous term, we shall, however, obtain an expansion which makes it possible to 

lower the order of magnitude of the remainder term (Theorems 3 and 4). 

For the different cases of the behaviour of ]f(t)] for large values of t re- 

ference is made to the end of Chap. I. We observe that  (C) is satisfied if F(x)  
has an absolutely continuous component. We should also remark that cases a. 

and c. are most frequently met with in statistical applications, the case b. having 

mainly a theoretical interest. 

The reason for the dominating importance of the behaviour of ]f(t)[ f o r  

large values of t may be explained by the following discussion. The proofs are 

based on Theorem 2, Chap. II.  We have to estimate an integral of the type 

f l /( t) l  (2) x =  

1 

X being suitably chosen. In case a. we obtain If(t)l" < e - ' " ,  (c > o, Itl - ,). 

Hence if ~ is a power of n we have I----O(e-Cln), (c x > o ) ,  In case b. we may 

o oos  o 

to 

f ~ d t  const.v~n ' (r an integer so that  1,t0~ I), 

1 

as is easily confirmed. Now, the larger ~ may be chosen and the smaller I, the 

smaller is the remainder term. Thus case a. is very favourable, ease b. not so 

good and case c. the most unfavourable of all. 

We devote w i of this chap. to Cram~r's estimation of the remainder term 

in the Edgeworth expansion. In w 2 we treat case b., and in ~ 3 and 4 case c., 
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using two different methods. Finally, in w 5, we investigate the asymptotic 

maximum deviation from the normal d. f. 

I, The Edgeworth expansion and Cram~r's estimation of the remainder term. 

We start from the relation 

(3) ( -  it)" e -~  = e"~ d ~ '~  (x), 

where ~{,) denotes the ~th derivative of O. Consider the polynomial P,( i  t) in 
Lemma ~, Chap. I I I ,  and replace each power (it) "+2j by (-- x)'+2J d)(" +~a~ (z). We 

then obtain a linear aggregate of the derivatives of ~(x), symbolically denoted 
by P,  (-- ~): 

(4) .p, (__ ~p) = s (__ i),+,J e4" ~p(,+2j)(x). 
.J=l 

From (3) it is easily found that 
oo 

(5) 

--nO 

For example, from (I6), Chap. I I I :  

(6) 

Theorem 1. Let X t ,  X t ,  " . . ,  X ,  be a sequenee of  independent r. v.'s all havino 

the same d. f .  with the mean value zero, the dispersion o ~ o and the finite absolute 

moment Pk, (k being an integer ~ 3). I f  the eondition 

t im i f ( t ) l  < x 

~ v  (x) = a~Cx) + . ~  n,/2 + o , 
�9 : 1  \ n  2 I 

The proof is to be found in CBAM2R [3], P. 57 and [5], P. 8I. There is, 
however, a slight difference between Cram6r's expansion and (7), (cf. the In- 

n -.--~ r ). 

Pt(--  ~ ) =  31 o' 6as l f ~  ' 
$ 

= IO a~ 0(6) x 
P ' ( - -  ~) 41 o* 6-[0 ~ ()" 

Now we can formulate tJae following theorem: 

(e) 

holds, then 

(~) 
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troduction (5)). By adding one more term to the expansion and applying Lemma 2 b, 

Chap. III ,  instead of Lemma 2a ,  we have replaced the remainder term O t ~  t 

I--\ 

by o ~ .  The proof is analogous to that of Theorem I, Chap. I I I ,  and is 

an immediate consequence of Lemma 2 b, Chap. / I I ,  and Theorem 2 a, Chap. II.  

I f  k =  3, we have from Theorem I and (6): 

�9 (h )  ~ (, - x') e-~ + o , (,~ ~ ~ ) ,  (8) /~; (x) = q) (x) + 6 a s g 2 ~ n 

provided that  the condition (C) is satisfied. In the next section, however, we 

shall obtain (8) under less restrictive hypotheses. 

z. A further improvement of  the Liapounoff remainder term. We  devote 

this section to the proof of the expansion (8) under more general conditions. 

Theorem 2.1 L e t  X1, Xs ,  . . . ,  Xn be a sequence of independent r. v.'s with the 

same d. f .  F(x) ,  the c. f .  f ( t ) ,  the mean value zero, the dispersion a # o, the third 

moment a s and the finite absolute third moment fls. I f  F (x )  is n o t  a lattice distri- 

bution, then 

~ - -  0 I (9) Fn (x) �9 (x) + -8 ( i  - x ' )  c r y  + , ( ,  -~ o~). 
6 o s V 2 ~ r n  

Before we proceed to the proof, which is based on Theorem 2 a, Chap. II ,  

we have to investigate an integral of the type (2). 

Lemma 1. I f  F (x )  is a d . f .  which is not a lattice distribution, , f  f ( t )  is the 

corresponding c. f and ~f ~o an assigned positive number, there exists a positive func- 

tion g(n), so that 
lira ~ (n) = ~o 

and 
(n) 

f (Io) I ~ -  d t  ~- o �9 

to 

proof is immediately clear if lira ]f(t)l < I, for there then exists a 

(cf. the end of Chap. I). 

The 

c o n s t a n t  e > o s u c h  t h a t  I f ( t ) l  < e - c  f o r  I t l - >  ',', 

Putt ing Z ( n ) =  n we obtain 

ESSEE~ [l], p. 14. 

4 - -  632042 A c t a  m a t h e m a t l c a .  77 
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*t 

I<_ d t = o  �9 

t o  

Now suppose tha t  lira I f ( t ) l  = I. Since F ( x )  is not  a lat t ice dis tr ibut ion,  
t ~ + o O  

there  does no t  exist  any t o # o such tha t  If(to)[ = I. Now we define the func- 

t ion ~ (t} by : 
I 

(I I ) I - - -  = ]~lax I f ( ~ )  I. 

Obviously ~ (t) is a cont inuous,  non-decreasing func t ion  for  all  finite values of t. 

Since lira I f ( t ) l  = x we have 

( I2 )  

NOw from (I I):  

03) 

l im ~(t)= + ~ .  

(n)  ' a (n)  

(0  tO 

d t .  

For  a given value of n we dSstinguish between two cases. 

x. *2 (n) <-- Vnn. P u t t i n g  X ( n ) = n  we obtain f ro m  (I3): 

I<_  d t < e - -~ -  log = o �9 
t 

2. ~ (n) _> V ~ .  

to  

Then  f rom (I3) 

,~(n) 

<o 

'i)" I ,7 (z(.) 
t dr.  

We now choose ; t ( n ) =  ~ - l ( V n ) ,  7 - l ( t )  being the inverse funct ion  of ~(t). 

viously lira ~ - l ( t ) =  ~ and  Z(n)~< n. Thus  
t ~ o O  

to 

(a) In  e i ther  case lira ~ ( n ) =  ~ and I =  o �9 This  proves the  lemma. 
n ~ O 0  

Ob- 



Fourier Analysis of Distribution Functions. 51 

(,4) 

P r o o f  o f  T h e o r e m  2. By Lemma 2b,  Chap. III ,  we have 

I " P,(it)v_~ -~1 ,  ~(')~'tl'r + Itl~)~-~ f.(t)-~-~ ~ st<- c. 

V-gn ~., 
for I ti-< T,~. where T3.~---~4#an qaa ~ independent of n. C a constant and 

lim J ( n ) -  o. Further by (5) and (6) P,(it) is the Fourier-Stieltjes transform of 

zl 

6 a 8 V ~  

Now apply Theorem 2 a, Chap. II ,  with 

F (x) = F.  (x), G (.) = �9 (x) + e, ( - j ) ,  
V~ 

f(t) = f.  (t), 

.4 = Max  I G' (x) l  < ~ ,  

(,5) 
" P,  (it) _~- 

g ( t ) = e - ~  + - - e  2, 

T=Z(n)I/'na. where Z(n) is defined by Lemma I with co= 
4 Q 3 n  " O 

Without  loss of generality we may suppose T ~ T3.. 

I t  only remains to estimate 

T - rsn  rsn T 

fif"(t)--a(t)ldt= f + f + f ~. ,  + ~, + .,. 06) ~ = t 
- - T  - - r  - - r 3 n  TSn 

From (I4) it immediately follows that  

Furthermore it is easily seen that  

T 

~, f t + o  

( ,8)  

- -  

@1 

+ 
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according to Lemma I. Hence 

o(,) 
Now the fundamental theorem gives: 

+ ~ (k). A 

for every k > i. Hence the theorem is proved. 

D i s c u s s i o n  of  T h e o r e m s  I a n d  2. Let us first remark that  Theorem 2 

does not hold if F(x) is a lattice distribution. As we shall see in the next sec- 

tion, Fn (x) then has discontinuities in the vicinity of x = 0 of order of magni- 

I 
rude ~=n. Now suppose that  F(x) is not a lattice distribution. If~_+| If(t) l < ' ,  

there are no difficulties and Theorem I gives a satisfactory solution, but if 

lira ] f ( t ) ] =  I it is difficult to improve upon Theorem 2, at least regarding the 
t ~ + o o  

general case. The order of magnitude of the remainder term seems to depend 

on arithmetical properties of the point spectrum of the d. f. 

I f  lira I f ( t ) ] =  I and F(x) is not a lattice distribution, it follows from w 7, 
t ~ •  

Chap~ I, that  F(x) may be a purely singular function. I t  is not to be expected 

that  this ease will occur in practice. A less theoretical case is that  whereF(x) 
is a purely discontinuous function, the discontinuities of which occur in a se- 

quence of points with incommensurable mutual distances. We may consider the 

following example. Let F(x) be a d.f .  With the jumps { at the points x----+_ I, 

+ 1/22. Then F(x) is not a lattice distribution, f(t) = { cos t + �89 cos 1/2 t and 

lim I f ( t ) l  = ~. I f  n is even ,  it  is f o u n d ,  a f t er  s o m e  c a l c u l a t i o n ,  t h a t  F n ( z )  has  
t ~ + ~  

a jump at x = o, asymptotically equal to 2_. -.I Though all moments of F(x) 
are finite, it is not possible to obtain the expansion 

P , ( - - ~ )  P 2 ( - - O ) 0 (  I ) 
(zo) F.  (x)= �9 (x) + V ~  + - - n  + ~ 

In order to obtain an expansion like (20) in this and similar cases, where f(t) 
is almost periodic, (f(t)~- ~,, a, dx, t), it is necessary to add a discontinuous func- 
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tion (cf. the next section), but this function is no doubt very complicated and 

dependent on the nature of the irrationalities in {x~}. 

3. Lat t i ce  d i s t r i b u t i o n s .  F i r s t  m e t h o d .  In order that  the contents of this 

section may be more easily understood, let us first consider the case of the 

symmetrical Bernoulli distribution, F(x)  having the jumps �89 at x = +_ I. Here 

_F(x) is a lattice distribution and f(t) = cos t. Now suppose that  n is an even 
number. Then F,~(x) is purely discontinuous with the discontinuity points 

- -  v (v----o, + 2, + 4, + " "  + n). As is seen in all works concerning the 
V ~ '  . . . . .  

theory of probability, F~(x) has for a bounded discontinuity point x a jump, 

Thus in the vicinity of x = o the jump of ~ ( x )  and the growth of ~(x) over 

2 2 + o . Further  an interval of length ~ n  are both equal to 1 /2~  n 

�89 (F. ( + o) + Fn (-- o)) = �9 (o) -~ �89 Hence the behaviour of Fn (x) and �9 (x) about 

x - - o  may be represented by Figs. 6 and 7, where, however, the term o ( ~ )  

has been neglected. 

"-X 

In Figs. 6 and 7 it is seen that 

(22) ~"n (X) -- (]9 (X) 

for small values of x, where 

Fig. 6. 

(x )  = Ix] - x + �89 
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I r . (~ - }oo  

Fig. 7. 

[x] being the integral par~ of x. Now (2]) and (22) suggest that  we write 

(24) Dr (x) = 1/2 7r---n 

and study the expression 

F ~  (x) - �9 (x)  - z~,, (x ) .  

By the expansion of Qx (x) in a Fourier Series we easily evaluate 

J.( t)  = f e't~dD.(x) 

and find 

(25) ~r = it ~, I e-l(t+,,1,%.,)' 

the summation being performed for every integer �9 ~ o. As we shall later prove 

in the general case 

o(,) F,.(~) ----- a~(x) +/~,~(~) + i ~  ' 

an expansion similar to that of Theorem 2. 

After these preliminaries we proceed to the general case. Let F(x) be a 

lattice distribution, i.e. a purely discontinuous d.f .  with the jumps a,--> o situ- 

ated in 

(z6) X = X o  + , . d ,  ( v = o ,  + i,  + 2 ,  + -..). 

By definition d ( >  o) is the largest number for which (56) holds. For the sake 

of brevity we say that  such a function F (x) belongs to the class (Ld). According 

to w Z, Chap. I, If(t)[ is periodic with the period t 0, where 



(27) 

B y  w  

situated in 

(28) 
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2 z and f ( t  + to) = dto~f(t). t o = -  d 

Chap. I, it follows that  F~(x) is a lattice distribution with the jumps 

I 
x = ~ (n Xo + v~ d + ~,~ d + . - .  + ~,. d), 

V n  

(~, ~,, . . . ,  ~ : o ,  + x, ! 2, + - . . ) .  

Hence it is easily seen that the least non-negative discontinuity point ~, of F ,  (x) 

may be written as 

on (x) ,}' 

, \  j L •  

Fig. 8. 

(29) ~.  = o V ~  [ - ~ -  �9 

In anMogy with (24) let us write 

(30) D .  (x) = o V 2  ~ ~ O, - 

where ~. and Ql(x) are defined by (29) and (23). 
d 

Thus D~(x) is a discontinuous function with the period ~ and the jump 

d x, 
e - u  at a discontinuity point x (Fig. 8). 

o ' V 2  ~ n  

We also put 

(3I)  ~p,~ (x) = Q, ((x -- E-d)OV-n ) , 
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d 
this function being periodic and discontinuous with the period ~ and the 

jump I at a discontinuity point. Thus 

(s2) D .  (x) = - -  ~ (x) e - Y .  
a V 2 ~ n  

The Fourier-Stieltjes transform 
a0 

(33) J,,  (t) = f e 't" d D .  (x) 
- -  00  

is easily evaluated by the expansion of ~0.(x) in a Fourier series: 

i t  ~ ,  e-'to~O"'e_~(t+t~al/~,), ' 
(34) J,, (t) = t o a Vn  ,__~_| iv  

where to is defined by (27) and the summation is performed for every integer 

v # o .  

We may now state the following theorem. 

Theorem 3} Let X , ,  X2 . . . . .  X~ be a sequence of independent r. v.'s with the 

same d. f i  F(x), the mean value zero, the dispersion a # o, the third moment a s and 

the finite absolute third moment fiB. Suppose further that F(x)  < (La). Then, 

(35) F.(~)  = a~(~) + ~" (, - ~ '  + ~, , (~)e-~ + o 
6asV  2 zrn al /~ ~n, 

as n-~ ~o, where ~ .  (x) is defined by (3I). 

R e m a r k s .  

I. We observe that  QI(x) is the same function that  occurs in the Euler 

summation formula. Furthermore we may notice that  D,(x), apart from n, only 

depends on the two parameters a and d and on x0, regarding the determination 

of an initial position. 

2. We found in Theorem 2 that  the expansion (9) holds for every d. f. F(x)  

which is not a lattice distribution. From (35) it is now obvious why Theorem 2 

breaks down if F(x) is a lattice distribution. The expansion (35) contains the 

same terms as (9) and in addition a discontinuous function with jumps of order 

i 
of magnitude ~ in the vicinity of x = o. 

i ESSEEN [2], p. 7, without proof. 
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P r o o f  o f  T h e o r e m  3. By P I ( - - O ) ,  P~(it), T3 ,  and Qa, we denote  the 

same funct ions  and quanti t ies  as in w I. The  quan t i ty  ~ is an unspecified finite 

positive constant .  We  apply Theorem 2 b, Chap. I I ,  pu t t ing:  

(36) 

P, ( -  a)) d : '  

F(x)  = F .  (x), G (x) = �9 (x) + l~ n + aV2zn - -  ~p" (x) e-  ~, 

f( t)  = f , ( t ) ,  
t, Pl (it) t, 

v (t) = ~-~  + ~ e-~ + ~,, (t), 

d 
L A = - - -  

aVe' V~ 

n is f u r t he r  supposed to be so large tha t  

V~ d V~ 
(37) T=n>Ta.=--, and TL-- >c,(k), 

4 Q3. a 

c~(k) being t h e  cons tant  in Theorem 2 b, Chap. I I .  

I t  only remains to est imate 

(38) 

__~ ov~  ~ ,, r-~ 
T 2 2 T 

f+ f+ f + +::. e ~  t 

x ~ Withou t  loss of general i ty  we may suppose ] '3 ,  < ] t o a W n .  W e fu r the r  

observe tha t  IA(t)l = < e -on for  a cons tant  c > o in the  intervals  

r~,, _< I t l -<  ~toor Thus  

e--cn 

,<IV.+,+ 
- - T 3 n  T3n 

or by Lemma 2 b, Chap. I I I ,  i t  is easily found in the usual way tha t  

(39) ~2 = o �9 

O 2 . The es t imat ion of el and e3 is somewhat  more laborious. I t  is immedi- 

ately clear t ha t  
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(4o) 

Here 

N o w  we write  

~toav~ 

=.4+ o(i). 

(4I) 

V~ at. at~ ktQ+t"-2 Vn 
7 2 2 ,-7 

2 2 2 L ate ~J 

Let us especially consider Ik and make the substitution t -~  �9 + k to .  Hence from 

(27) and (34): 

to 
2 

2 

e 'to~."~ ( f ( t ) ) "  + - -  
(t + k to) 

to 
Z I y Ie-#~176 e-~(t+kt~ 

"=-| [dt. 
t + kto 

In  2~' only the term with ~ - ~ -  k gives any considerable contribution to 

the integral. We obtain 

u 

to 
2 

Hence 

( f ( t ) )  ~ __ e, to.o.k e_{O, .~  _ t e " , . o . ~  e -~  ~, , t '  
k to 

t + kto 
dt  + O(e-'~"). 

(42) I k  < I '  - ~ + I i .  + O ( e - ~ ) ,  

where 
to 
2 

to 
2 

d t ,  
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Now 

to 
2 

I '~= f f~o3 t + k to 

2 

2 

1, k < (f( t)) '*- e-~~ 

t~ 
2 

or as in I~ 

Immedia te ly  we obtain 

l ' k= `9 
k . n  

k 2~ n 

Hence from (42): 
9̀.9 

(43) I~ = k . n  

- - d r .  

~toaVn 

f 

Subst i tu t ing (43) in (4I) and performing the summation from k-~ I to k = O ( V - n )  
we obtain 

o (v~,~ 
E --~ 0 , 

and thus  f rom (40) 

3 ~ . I n  the same way 

Summing up the results of I~  ~ we obtain 

`9 I 

+ cl (~) "V~" ~ 

~ �9 (46) 

By Theorem 2 b, Chap. I I ,  (36), (37), (38) and (46) we have 

(47) F,, (x) --  ffJ (x) P I ( - - O )  d ~p,, (x) e - u  < 
V ~  a V 2 ~ n  - ~ - ~ o  

for  every k > I. Hence the theorem is proved. 
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The expansion (35) is similar to the expansion (7) with k-----3, only a dis- 

continuous term being added. By P , ( - - ~ )  and P,(it) we understand the same 

functions as in w I. If  the Cram6r condition (C) is satisfied and F ( x ) h a s  

a finite absolute moment fl~ of order k, (k an integer > 3), then by Theorem I 

(48) 

where 

(49) 

+ 

~-~p,(- ~) 

Is it possible in the lattice distribution case to obtain an expansion analogous 

to (48) with the same order of magnitude of the remainder term? 

We introduce the following functions, occurring in the Euler summation 

formula: 
| s in  2 v z x ;  

O, Cx) = , 

c o s  2 V ~ X  = y ,  ; 

(50)  

c o s  2 V ~ ; X  . 
Q2a (x) --- Z 2 2~-1 (y 7g) 2 X' 

| sin 2vz~x 

These functions are all periodic with the period I. For o < x < I the following 

relations hold: 

x 2 x + I x s x ~ x . . . . . . . .  + _ _ ; . . .  
(5 I )  QI (X)  = - - X  "1- 1 ;  Q2(X)-~-  2 2 I 2 '  Q 3 ( X )  = 6 4 I 2  

The functions Q~, Q s , . . .  are continuous while Q1 has the jump I at every in- 

teger x. Further  

Q'~(x)=--Q2~-I(x); Q~+1(x)=Q~(x); Q2x(o)=12- ~ ,  

where B~ are the Bernoullian numbers; Q2~+1(o)~o for ~ > I. 

We  can now formulate the following theorem. 
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Theorem 4. Let X1, X~ . . . .  , X,~ be a sequence of independent r. v.'s with the 

same d.f .  F(x), the mean value zero, the dispersion a ~ o and the finite absolute 

moment fl~ of order k, (k an integer >-- 3). I f  F ( x ) ~  (Ld), then 

d " ( z - -  - 
(5 2) -~n (X)----- I In ,  k (X) "[- ~ h, .  Q, - --  ~xTx, (/-/,, k(x)) + 

where IIn,~ and Q~ are dNned by (49) and (5o), ~,~ by (29) and where 

+ I for ~, of the form 4 m +  I, 4 m +  2, 
h, 

[ - -  I for v of the form 4 m - - I ,  4 m. 

The proof follows from Theorem 2b, Chap. II ,  and offers no difficulties. 

I t  is analogous to the proof of Theorem 3, this theorem being a special case of 

Theorem 4 with k----3- I confine myself to state the Fourier-Stieltjes trans- 

form g(t) of the right-hand side of (52), (apart from the remainder term). 

k--2 ~ { 
'* k-RP'( i t )  -~ t ~  ' I e-"~ + toaVnZ)t'-~. 

g ( t ) = e - 2  + Z n,/--q-e 2 (t oaVnz)  ~' 
*=1 W-1 2=--~ 

.e -~(t+'o~Vz~a)" I + ~" P , ( i t  a i toaV-nZ! l~ .  
,,=1 n "/2 l J 

Remarks.  

x. In  the expansion (52) there are terms of order of magnitude less than 

o t - ~ _ ~ .  This is due to the fact that both the expression and the proof are 
/ - - /  
~,n 2 1 

more easy to handle in the present form. 

2. By comparison between (48) and (52 ) it is seen how the discontinuities 

enter into the expansion in the lattice distribution case. Obviously the jump 

aN(~) of F~(x) at a discontinuity point ~ is expressed by 

( 5 3 )  

where 

()) = d + o , 

In  the next section we shall obtain (53) more directly with a better remainder term. 

I r 
VRg 
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4. Lattice distributions. Second method. Let  F(x) be a lattice distribution 

with the c. f. f(t). We begin this section by stating an expression for the jump 

of F,,(x) at a discontinuity point ~, using a method that  goes back to LAPLACe. [I] 

and has been applied with success by CHARLI~R [2, 3] and others. Let  us for 

the sake of simplicity suppose that  F(x) has the jumps a,--> o at x = v ,  (v----o, 

+_ x, _+ 2, ___ 3, - . . . ) -  Then 

f(t)---- ~,  a.e ''t. 

Thus 

Owing to 

Hence 

(f(t)) n=" ~ A.e i't, 

where A, denotes the jump of (F(x)) ~* a t  x = v, (F(x))"* being a lattice distribu- 

tion with the only possible discontinuities at x =  v, (v-----o, +_ I, +__ 2, +--3, + . - . ) .  

Hence 

A. = 1-2-2z f (f(t))~ e-~" t d t. 

F,, (x)=(F(aVnx))" ,  A,=a,,(~) is the jump of F~(x) at ~=aV 'n  

(54) a,~ (~) = .4.-- 2~I f (f(t)) n e_,. t d t =  2z~al/n--' j~ /tf(a~n)l" t ""'* e-' oV.*--t dt = 

~ to,1/'n 

_ I f fn(t) e_,~tdt, 
to.V; 

-~toOY-; 
since in this case t o = 2 ~r. There is no difficulty in showing that (54) generally 

holds, F(x) being a lattice distribution with the jumps a '  --> o at x = Xo + ~" d, 

( , , - - -o ,  _+ I, _+ 2 , -  . . . ) .  

Lemma 2. I f  F(x) ~ (La) with the finite dispersion a #  o, then the jump 
an (~) of Fn (x) at a discontinuity point ~ is ex, pressed by 

~t,or 

= I f (55) a.(~) V'~ A(t) e-i~tdt, 

-~tooV; 
2 ~  where t o = d 
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Applying Lemma 2 we can now prove the following theorem, where P,  (-- ~01 

has its usual meaning, only q) being replaced by ~. 

Theorem 5. I f  F ( x ) <  (Ld) with the mean value zero, the dispersion a ~ o 
and the finite absolute moment flk of order k, (k an integer ~ 3), then the jump 
an(~) of F,(x) at a discontinuity point ~ is obtained by 

~ n 2 1  

k--2 t d t,, ( -  ~ (~)) 
(56) a.  (1) = a Vn  ~p (f) + ~ n,,/.2 

as n ~ ~ ,  where 9~ (~) @, (~) I -,~- = = ~ e  - �9 

Compare (53) and (561! 

P r o o f  of  T h e o r e m  5. We apply Lemma 2 and write (55) as: 

~tooV~ 

(571 a,,(~) toaV-'--'-~ f , , ( t ) - - e - ~ - - ~ ' - ~ , ~ e - ~  e- '~ td t  + 

I f [  " ~,~P,(it)-"-] + - - t o  a V n  e-Z'+ 2~--~Tve,=l 2] e - ~ t d t = I I  + I~" 
- [ t ~ r  

Observing that  I fi~(t) l < e -en,  (e a positive constant), for a a l / - n  <-- [ t l ~ ~ aU~, 2 
where a is an assigned positive number, we obtain in the usual way by 

Lemma 2 b, Chap. I ] I :  

(58) 

Further  by (5): 

,, t 
\n~-- ' / 

(59) z ,  = - -  , ; (  
to a V ; ;  e - ~  

~ 0 0  

+ ~e,=l 2~ e - i ~ t d t + ~  .,~-' ---- 

The proof follows from (57), (58) and (59). 

If  F(x) is a lattice distribution it is possible to obtain a very simple ex- 

pression of F•(x). 
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Lomma 3. Let iF(x)< (Ld) with the finite disperdon a # o. Then the dis- 
continuities of F~ (x) are situated in the sequence 

d 
(6o)  ~,  = ~o + " ' a - ~ n n '  (v = o,  + I, _+ 2, + . . .) .  

Let each of the points x~ and x~ be situated midway between two consecutive points 

of the sequence {~,}: 

d ~,, d 
~=~ ' - -~oV-~ . '  x , =  + ~o--~" 

where ~' and ~'* belong to {~.}. Then 

(6i) jF,~(x,) _ t~n (x,)_~ " to a l/~nl f - '  -- e -'z~t f~(t)e ,~,t d . [  - d r '  
2 i s i n  - -  

2 ~  
wh~e ~ = d "  

P r o o f .  As before a~(~) denotes the jump of F ~ (x )a t  x = ~ .  Then by 

Lemma 2 

(62) e;<- ~, ~ ~" to a F:n f~ (t) , ~"e -t~t, d t. 

-�89 

d ~,, d 
If ~ ' =  ~o + vl"~-~n and = ~o + V*'aV--~ we obtain by (6o): 

Z e- i~ t= Z e- i t ( '~  
d . t  

~ ' ~ "  n~.~.3 2i  sin 
2 aV-~  

Inserting this into (62) we obtain the desired result. 

Using Lemma 3 we can prove all the theorems of w 3. Let us for instance 

consider Theorem 3, the notations being unaltered. By (61) it follows: 

I / ( t )e- 'Z ' t -  e-i~'td.t 
(63) F~(x~)--F (x l )~- toa l /n  f~ d r =  

2 i s i n - - -  
-�89 2 a V n  

to crV; x-�89 -r~,, h,, 
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Without loss of generality we may suppose �89 > Ta,~. 

Theorem 3, (o) ,  

(64) 

No w 

, ,  + . 

T3 ?~ 

,~--aI  f (j. (,,) _ g (t)) (65) I2 ~- to V------~ 
--Tan 

where 

As in the  proof  of 

e - i ~ t t  ~ e - i X #  
d r +  

�9 . d . t  
2 ~ sln - - - -  

2 # V ~  

I f  + ,o-~V-~ o(t) 
-? 'Sn 

e - f z ,  t _ e - t x t t  
d t = I ~ + E ,  

�9 . d . t  
2 ~ s , n  2 ~ V ~  

*' P, (i t) e-~.  

But  from the proof  of Theorem 3, (i~ it follows: 

1 2  = �9 (66) 

I 
Using the expansion sin v 

(67) 

+ o(v) for I vl < ~ - - = -  - - -  we obtain:  
I 

v 

~n 

I f  now 

(68) 

2to-aF--~n. -~ J g ( t )  7"t d r +  0 = 
--Tgn 

oo  

/,, ( -  a~) 
o (x) = �9 (x) + 

V~ 
it follows from (5), (67) and Chap. I, (S): 

(69) I~'= G(x2)-- G(x,) + 0(~). 
Summing up the results  of (63)--(69) we have: 

�9 "~ ( x , ) -  P~ ( x , ) =  o ( x 2 ) -  G (x,) + o 

or if x , - ~ - - ~ ,  

(7o) F~ (x~)= G (x,) + o 

5- 632042 A$caz matkemat4~a. 77 
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The expansion (7o) is valid for  every x~ s i tua ted  midway between two consecut ive 

points in {~,}. Since F,,(x) is cons tant  between two discont inui ty  points,  Theo- 

rem 3 now follows f rom (70). 

5. On the asymptotic maximum deviation from a)(x). T h r o u g h o u t  this sec- 

t ion  we assume tha t  F ( x )  is a d is t r ibut ion  funct ion with the  mean value zero, 

the dispersion a # o, the th i rd  moment  a s and the finite absolute th i rd  moment  fiB. 

By (L) we denote  the class of lat t ice dis t r ibut ion funct ions  and by (Ld) the class 

of lat t ice dis t r ibut ion funct ions  with the dis tance d between the equidis tant  

points.  

By combinat ion of Theorems 2 and 3 the following theorem is obtained.  

T h e o r e m  6. I f  a a = o, then 

o, i f F ( x )  < (L) 

lira Max V% I F.(~) --  ~(~)1 = a i f F ( ~ )  < (L~)" 
n~|  -|174 2 aV-2~ 

F ( x )  being subject  to some fu r t h e r  condit ions we can state:  

I f  F(x)  is symmet~qeal, i. e. F ( - -  x) = I - -  F ( X ) ,  and continuous T h e o r e m  7.  

at x = o ,  then 

lira M a x  W n I F , , ( x ) - O ( x ) [ <  I . 
~-|174174 - V ~  

There is equality i f  and only i f  F(x) is the symmetrical Bernoulli distribution 

function, having the jump ~ at x ---- +_- a, where a ks a positive constant. 

P r o o f  o f  T h e o r e m  7- H e re  a s = o .  By Theorem 6 i t  is sufficient to 

t r ea t  the case F ( x ) ~  (La). W e thus  have to find an upper  bound of 

(7~) d 
2 ff V 2 .;~ 

We may suppose on grounds  of homogenei ty  tha t  d = I. Thus  under  the given 

condit ions F(x) has the jump a, >--- o for  x ~- __ (v + �89 (v = o, I, 2, 3, . . . ) .  Hence  

a ,  = 1 a n d  ~ '  = 2 -  y ,  (,, + ~) a , .  

I t  is easily seen tha t  the least possible value of a is equal to ~, F(x) then  being 

the symmetr ica l  Bernoull i  d is t r ibut ion funct ion with the jump ~ at  x = + ~. 

d I 
~enee  - -  < -  and the theorem is proved. 

2 a V 2 ~  - -  V 2 ~  
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R e m a r k s .  

I. I f  F(x) does no t  satisfy the condit ions in Theorem 7, symmetry  and 

cont inu i ty  at  x ~ o ,  it  is readi ly seen f rom examples tha t  (7 I) is no longer  

bounded.  

2. Suppose t ha t  two persons, ~ Pe t e r  and Paul ,  play a game of chance so 

t ha t  the  players may  win or lose cer ta in  sums of money at  every round,  the 

chances of Pau l  being represented  by a purely discont inuous d. f. F(x). Suppose 

fu r t he r  t ha t  F(x) has the mean  value and the  t h i rd  momen t  a s zero, the  

dispersion a ~  o and the finite absolute th i rd  momen t  fl~. Le t  us first assume 

tha t  all the  winnings and losses are measured in the  same mone ta ry  unit .  Then  

T'(x) < (L) and  the d . f .  (F(x)) ~* of Paul ' s  gain or loss a f te r  a large number  n 

of games is approximate ly  normal  with a possible er ror  t e rm of order  of magni- 

I 
rude ~nn" Le t  us now assume (if possible) tha t  the  game is such tha t  some of 

the winnings and losses are measured  in one sort  of mone ta ry  unit ,  some in 

ano ther  and t ha t  the two units  are incommensurable .  Then  F(x)~. (L) and  by 

Theorem 5, (F(x)) n* differs f rom the normal  d. f. wi th  an error  of order  of magni- 

tude  less t h an  in the previous case. Le t  us r e tu rn  to the first case, assuming 

F(x) to be symmetr ica l  and cont inuous  at  x ~ o. F r o m  Theorem 7 i t  follows 

tha t  among the possible games the old game ))pitch and toss~) gives a (F(x)) n* 
which in the long run  most differs f rom the  normal  distr ibution.  

Chapter  V. 

Dependence  o f  the  Remainder  T e r m  on n and x .  

In  the two preceding chapters  we have invest igated the difference between 

the  d . f .  F~(x) of the  normalized sum of a large number  of independen t  r .v . ' s  

and  the  normal  d . f .  @(x) or a sum of q~(x) and its derivatives.  W e  thus  ob- 

ta ined  an e r ror  te rm containing,  besides certain constants ,  only the paramete r  n. 

I t  is, however,  of ten  imp o r t an t  not  only to es t imate  the remainder  term as a 

func t ion  of n bu t  also as a funct ion of x. This  quest ion has earlier  been t r ea ted  

in an in teres t ing  paper  by CRAMER [5], who assumes t h a t  all the  variables have 

the  same d . f .  F ( x )  and t ha t  there  exists a cons tan t  a > o such t h a t  

oo 

f dF(x) < 
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In this chapter we shall consider the case where 

ao  

(0 f I~1 * d P ( ~ )  < | 

for an integer k ~ 2. Then also 

f I~l*dP,,(~)< ~ .  (2) _ | 

Owing to the well-known generalization of the Bienaymd-Tchebycheff inequality 

it follows from (z): 
/ r \  

I - -  . ~ n ( X )  = 0 [ ~ ) f o r  x ~ +  

Hence it is to be expected that  

< ,~(n) 
I F .  (x) - �9 (x) l - ~ + I~1 ~' (~ -~ + ~ )' 

where a (n) is a quantity tending to zero as n-~ ~ ,  provided that certain condi- 

tions are satisfied. In this chapter we shall prove the correctness of this supposi- 

tion. We begin, however, with some remarks concerning the Central Limit 

Theorem of the theory of probability. 

L On the Central Limit Theorem. Let us consider a sequence of independent 

r .v. 's  X1, X2, . . . ,  X~ . . . . .  the variable X~, (~ = I, 2, 3 . . . .  ), having t h e  mean 

value zero and the finite dispersion a,. By F~ (x) we denote the d.f .  of the 

variable 
z . = X ,  + X~ 4-...+ X. 

Sn 

where s ~ - - - ~ o ~ + ~ + . - .  + o~,. As before the mean value of Z,, is zero and 

cO 

(3) f x ' , z ~ - ~ )  = , .  
- - 0 0  

Under certain very general conditions the sequence {Fn(x}} converges to the 

normal d.f .  @(x) (the Central Limit Theorem, see L1NDgBZRO [I]). This may be 

expressed by 

(4) ~ ( . ) =  Max I2,,,(x)--O(x)l; lira J ( n ) = o .  
~ OD < : . r <  Q0 ~ | ~ O 0  
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According to (3) and 
o~ 

f x 'd~(x)= ~ 
( 5 )  _ | 

we also have by the  Bienaym~-Tchebycheff  inequali ty 

a s  x ---> ~ .  

The  relat ions (4) and (6) give two different  es t imat ions of I~,~ ( x ) -  �9 (x)l; in (4) 

the remainder  t e rm depends only on n, in (6) only on x. Is i t  possible to take bo th  

(4) and (6) into considerat ion,  using one inequal i ty  only? This is, as we shall  see, 

very easy, bu t  has, as far  as I know, no t  h i ther to  been explicitly stated. 

Le t  a ~ I be a number  la te r  to be determined.  W e  may wi thout  loss of 

general i ty  suppose tha t  Fn (x) is cont inuous  at  x = + a. Then  

a a a 

- - a  - - ~  - - a  

------ a ~ (F,~(a) - -  �9 (a)) - -  a ~ (Fn ( - -  a) - -  (D (--  a)) - -  2 f x (F,~ (x) - -  �9 (x)) d x + f x '  d �9 (x). 

From (4) i t  follows: 
a 

(7) f x ~ d I " n ( x ) ~ - - 4 a ~ J ( n )  + f x e d ~ ( x )  �9 
- - a  - - a  

From (3), ( 5 ) a n d  (7): 
a 

I~I a -a  Izl->a 

Now the  fol lowing relat ions hold:  

X ( I  - -  F n  (X)) for  x --> a 
( 9 )  f>x'. d ~ > , 

I~1 ->a x sF~(x)  for  x < - - a  

{x ~ ( I - -  4) (x)) fo r  x ----- a 
(~o) f x ~ d �9 (x) >- 

ix f>- a X ~ q) (X) for  X --< - -  a 

aJ- t  - i - - -  
x ~ d �9 (x) --< - -  e 2 

a 
I~l>-a 

From (8), (9) and (IO) we obta in:  
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x ' l F , , ( x )  - -  a)(x)l--< 4a~L/(n) + f x * d a ) ( x )  for JxJ----- a, 
I*l-ar> 

and hence from (4) and (I1): 

a ~ - t  - I - - -  
(~2) (i + x ' ) I F , , ( x ) -  a~(x)l-< e ~ + 5 a '~( ,~) .  a 

This inequality obviously holds not  only for Ixl _> a but  also for all values of x. 

In  ( I2 )  w e  choose a such tha t  the two terms of the r ight-hand side have the 

same order of magni tude  in n. We suppose "o to be so large tha t  J(n)--< ~ f o r  

n > n o. Then, put t ing  

a - - - - V 2 1 ~  )' 

we obtain: 

I 
, / (n)  log z/(n) 

( I3 )  ] ~ ' n ( X ) - -  ~ ( X ) [  <: C .  X '  f o r  n > . 0 ,  I-F 

where C is an absolute constant.  

The inequali ty (I3) gives, toge ther  with (4), the fol lowing theorem. 

T h e o r e m  1. Let  X1,  X~, . . . ,  X,~, . . .  be a sequence of  indepe~dent r. v.'s such 

that the variable X ,  has the mean value zero and the fi,~ite dispersion a,, (~,-~ I, 2, 

3 . . . .  , n . . . .  ). Further, let ~ ; ( x )  de~wte the d . f .  of  the variable 

XI  + X~ + . . .  + Xn 

where s~ = a~ + a] + ... + a~. I f  

J (n) ----- Max I Fn (x) - -  (P (x)[ 
- -  00 < : X  <:: aO 

and J ( n ) ~  ~ for  n > no, there exists an absolute constant C, such that 

! 
[F~ (x) --  ~)(x)[ --< Min / 

i 

for  n > n o and all values of  x. 

(.); 
J (n) l~ A-~)~) j 

c .  :T-x: I 

2. On the remainder term of the asymptotic expansion. In  the remainder  

of this chapter  we consider a sequence of independent  r. v.'s X 1, X~ . . . .  , Xn, . . .  

with the  same d. f .  F(x) ,  the c. f. f( t) ,  the mean value zero, the dispersion a ~  o, 
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the moments ak and the absolute moments ilk. By F~ (x) we denote as usual the 

d.f.  of the variable 

X I +  X~+  . . . +  X~ 

oV~.  

As before 

(~4) 
F .  (~) = (F{ .  ~ x}),,*, 

t n 

The functions P , ( - -q ) )  and P,(it)  are the same as in Chap. IV, w I. 

In Chap. IV, Theorem I, we stated the expansion 

(I5) IF~ (x) -- q)(x) _ ~8 P~(L~--T2.n. (P)l _< const.k_____T, (k an integer --> 3), 
v : l  [ n 2 

provided that  the condition (C) is satisfied. In  the same chapter we found, 

however, that it is generally not possible to obtain anything better than 

(I6) IF~ (x) - ~ (x) l < eonst___., 

without introducing a discontinuous term. Now we shall show that  (I5) always 

holds if [x[ is sufficiently large. At the same time we shall obtain the dependence 

on x of the remainder terms in (I5) and (16). The method of proof ls analogous 

to that  of Theorem 2, Chap. II.  

We begiu by sketching the main features of the proofs. Our problem con- 

sists in the comparison of F ,  (x) with a certain funetion Gn(x) (in the following 

�9 (x) or the terms in the Edgeworth expansion) satisfying the conditions: 

{Gn(x) is real and of bounded variation on the whole real axis, 
(I7) G , ( - - ~ )  ---- o, G , ( +  oo) ---- i. 

Further, let Q(x) and q(t) be two real even functions such that  

o 
~ Q (x) >- o, o _<. q (t) _< ~ , Q ( x ) a x = ~ ,  q ( t ) a t < ~ ;  

(i8) 
2 ~ q(t)---- f d  'x Q(x) dx .  

- -  OO 
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Other  properties of the two funct ions are later  specified. As in the proof, of 

Theorem 2, Chap. I I ,  

f I dr, (I9) i t Q ( i t x - - Z y ) [ G , ( y ) - - F . ( y ) l d y = ~ d  
- - ~  - - 0 0  

g,(t) being the Fourier-Stieltjes t ransform of G,(x), x and ~ two parameters.  

From (I9) we wish to obtain au est imation of [ F s  (y) --  G,  (y) I as a funct ion of 

both n and y, assuming tha t  i t  is already known t h a t  

I F .  (!t) --  a .  ~)I  -< d (n) for all y .  (20) 

We  now put  

(21) 

(b a positive quantity).  

(b) = Max I F .  (.v) - -  G .  (v) l, 
Ivl>b 

I t  is sufficient to t rea t  the case y > o only. Le t  us 

suppose tha t  this maximum occurs for  y = a --> b and tha t  G,  (a) > F ,  (a). ( The 

case Gn(a)< len(a) is t reated in the same way). We wish to demonstrate the 

inequal i ty 

(22) ~,(b) -< cous t . .~ ,  (,,, ,,), 

o(a, n) being a positive funct ion whi6h tends steadily to zero as a and n se- 

parately tend to infinity. Two cases may occur. 

(23) x ~ ,~ (b) -< ~ (~. ,) .  

This is the desired inequali ty.  

2 ~ d (b )  > Q (~. ,,). 

Now we determine a number  ~ > o such tha t  

(24) ~;. (~) - a .  (u) < "~(b) for a - -  ~ ~ U -< a.  
2 

Thus 

(25) Gn.(y) --  F .  (7t) >-- G, (a) ,d(b) Fn (a) = J(b__) for 
2 2 

a - - ~ g y ~ a .  

As in the proof of Theorem 2, Chap. I I ,  we now obtain from (I9), (2o)and (25) 

(26) 

oo *o 

f I I Q ( y ) d y - - 2 d ( n )  Q(y)dy<- ~ " - i t  
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put t ing  

(27) X---~ a - -  -~. 
2 

73 

In  the following the relation (26) is our main inequality. From (26) we generally 

obtain: 

C28) ,~ (b) -< const.  "e (a, n). 

Hence from (23) and (28) the required result follows. 

We first prove the following theorem. 

Theorem 2. I f  Xx, X~, . . . ,  X ,  are a sequence of  independent r. v.'s wi th  

the same d. f .  F(x), the e. f .  f ( t ) ,  the mean value zero, the dispersion a # o and the 

finite absolute moment ~k, (k an in t ,  ger >_ 3), then 

(3~) 

with the e . f .  

(29) F, ,(x) - �9 (x) - , N  n,! -< x + Ix P" n ~ 

/or 

(30) Ixl  ~ V(x + a) (k - -  2) tog n ,  

where d is an assigned number such that o < d < I and e(d,/~) is a finite positive 

eenstant, only depending on d and the moments ff~, 8s . . . . .  ~k. 

Remark.  From (30) it is immediately seen that  (29) may be written 

t + Ix l  ~ ~-2 
n 2 

for Ixl->V(x. ~) ( k -  2) log n, e'(a, #) satisfying the same conditions as e(d, /~). 

We have, however, stated the theorem in the present form for purposes of 

comparison with the expansion (15). 

P r o o f  o f  T h e o r e m  2.  B y  el ,  e~, . . .  we denote a sequence of finite 
positive constants, only depend ing  on d and the moments  /~. The quantit ies 

a, b, ~ etc. are defined by (I7)--(28). Fur ther  we put  

~-s p , ( _ @ )  

~"-1 

t = k - $  �9 t I 

g~(t) =- e -~ + ~ ~ e  --i. 
A . d  n I 
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Our problem is to obtain an est imation of ,/(b) as a funct ion of n and b. 

hypothesis  

(32) b > V(I + d ) (k - -  2) log n 

By 

and we may without  loss of general i ty suppose n to be so large t h a t  

(33) b ~ I. 

From (32) it  is easily seen tha t  there exist two constants  c~ and c~ such tha t  

(34) 

and 

(35) 

for a ~ ~ ' <  y g a.  

a - -  ~ :  a ( !  --  c I d) 

~n (a) - (;~ (y) < c. 
- -  I + a k k-_~2 

n 2 

We now choose 

2 ~2 I 
(36) e (a, n) ----- - - - -  I + a k k-~2 

and obtain two different cases: 

o .  ~ (b) -< Q (,~, , ) .  

T h e n  the theorem is proved. 

2 ~ z (b) > r (a, n). 

Then by (35) and (36) the  inequali ty (24) holds�9 

2e~da 

(37) 

Hence from (26) 

2 ~ r 

2 2 z  - - i t  q d t  �9 
~c tda  ;~c~$a --ao 

2 2 

Here d(n )  obviously is a finite quanti ty.  

to choose 

same time 

(38) 

By Lemma I, Chap. I I ,  i t  i s  possible 

Q(x) and q(t )  such tha t  the condit ions (18) are satisfied and  a t  the 

Q (x) = o for l i l  ----- , ,  

Cl I " 

We now choose ~ = 2 and obtain from ( I 8 ) ,  (37) and (38): 
c l d a  
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(39) 

o0  

2 -- 2 , ~ d l  t q d t = ~ .  

Applying Lemma 2 a, Chap�9 I I I ,  and put t ing 

--Tkn Tk~, ; 

(40) ' =  f + f + - - ' ,  + ' ,  + ~,. 
--oo -- T k n  T k n  

we have by (33) and (38): 

~ <: 

(41) 

'?. 

,._~ (Itl ~ 
'B~ 2 --av 

t, [ c l $ a t \ d t  
+ It l~(~-~))e- iq~---S--]~ I <_ 

cO 

- *-~ ~ I t l k +  ~-~-dl  
d t e_r . _ _  

q( t )  ~ l  <- a~ 
I 

k - - 2  

n 2 

Moreover,  f rom (38) 

o0 

(4 2) ~t + ~8 ~- eT j ~ c ~ a ]  - -  

c8 

Summing  up we obtain 

I d t <  ca 1 

2 

(43) A(b) <-- C,o I < Q(a, n) 
a k k - 2  - -  e n  " 

n 2 

Thus in ei ther  case: 

,~(b) <_ e(& r i <e(r I 
I §  k k - 2 - -  I + b k k-2  

n 2 n 2 

and the theorem is proved. 

Theorem 2 holds for Ix[ >-- V(I  + d ) (k - -  2) log n. We shall now state and 

prove a theorem valid i n  the  remaining interval.  By c~, cs, . . .  we denote  as 

before finite, positive constants  only depending on d and the absolute moments  

~, ~ , . . . ,  ~k. 

T h e o r e m  3. Let  X1, X2 . . . .  , X,, be a sequence of independent r .v. 's  with 

the same d . f  F(x) ,  the mean value zero, the dispersion a # o and the .finite abso- 

lute moment ~ ,  (k an integer >--3). Then 
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(44) IF.(+)-- +C+) +~ P ' ( -  +)1 - ,=I  n-~ l "<- ,,,(,v. ~), + ix l . ) ,_  ~' + V n  (I k--f$ 

for an assigned number d, (o < d < I), and 

(45) Izl-< v(,  + o)(k- 2)log, .  

R e m a r k .  In  view of (45) it is possible to replace (44) by 

r ~tl 

IF , . , (~ ) -  o (x )  l -< Cl(d'ff)(I-- + I~lS) e - ~  + - -  Vn k - - 2  

n%-- 

for Ixl --< V(I + e)(k-- 2) log ,,. 

P r o o f  o f  T h e o r e m  3. The quanti t ies a, b, ~ etc. are defined by ( I7) - -  

(28), G,(x) and its t ransform g,(t) by (3I). The auxiliary funct ions Q(x)and 
q(t) satisfy (I8), and further ,  by Lemma  !, Chap. l I :  

f q(t) ---- o for  Itl >- i 
(46) 

O (x) _< es. e-I~a'/' 

By Theorem I, Chap. I I I ,  we also have 

(47) I F n  (x) - -  Gn (x) [ < d (n) = e, . 
- -  V g  

According to (45) and (47) it is sufficient to prove the theorem for 

(49) 

and 

(5 ~ ) 

(48) x - - < e , - - - < b ~ a - < V ( I  + ~) (k - -  2) log n 

where  n is so large tha t  the  above inequali ty is satisfied and e 5 is a constant  

later  to be determined.  Fur ther  we may suppose tha t  x > o in (44). I t  is readily 

observed tha t  there exist two positive constants  e e and e7 such tha t  

a s 

a t 

G. (a) - -  G~ (y) --< c7 a s e - u  for a - - ~ - - < y - - < a .  
V~ 

We now assume tha t  

(5i) 2 e7 8 - ~  
d ( b ) > - - ~ n n a  e 2, 
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or else the theorem is proved. 

and (18) 
2 eea s 
21~n ,0 

( . >  f Q(y)dy  --  2 e, f 2 - ~ j Q (y) dy  
~ c,~ a s 2 t e a  s 

Put t ing  

(53) 

Then (24) holds and  we obtain f rom (26), (46) 

_< 

--2 

and applying Lemma 2 a, 

in the  usual  way: 

CS aS i ~ / '  2 C 4 
(54) ~ Q (v) d v - V ~  Q (y) dv 

r a s ee a s 

According to (46) 

Chap. III, to the right-hand side of (52), we obtain 

oo 

(5 5) , f ,  Q (v) dy -< cio a sa e -~'/' �9 a,/,. 

~__. C9 . 

We now choose c~ in (48) in such a manner that the following two conditions 

are satisfied: 

(56) _ (Y) >--- �89 
a, 

[ c:o a 3/~ e -c"/'" a,I, <<_ a s e - ~  for a ~ es. 

Hence from (54), (55) and (56) 

2/f_44 at e9 
(57) J ( b )  aS e-- ~ < . - -  k--2 

4 v n  

In view of (57) and the converse of (51) we finally obtain: 

-&' 8 e+ aS e--~ + J(b)--< Max a se 2; ~ n  
n ~ 

which proves the  theorem. 
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I t  is interesting to compare Theorems 2 and 3, this chapter, with Theorems 

I and 4, Chap. IV. Owing to the discontinuous term in the lattice distribution 

case it is to be expected that  the general remainder term will contain a func- 
X2 

e - u  
tion of the type ~ n '  and this is also the case in Theorem 3. As x becomes 

large the predominance of this term vanishes, and we obtain the expansion (29). 

C~ 
As in (29), it is possible to multiply the term -V-:i in (44) by a function 

n 2 

of x, tending to zero as x-->~. In order to do this we may proceed as in the 

proof of Theorem 3. The only difference is that  we have to investigate the 

dependence on a and n of the integral 

0 f - - [ o - !  .-~-) .o. ( t / - . f ~  (0 
j e , v . -  - - i t  q dt .  

--2 

This may be don~ by repeated partial integrations. I eonfine myself to stating 

the theorem for k ~ 3, Theorem 3 giving nothing new in this case, since now 

I I 

n ~ 

Theorem 4. Under the sanle conditions as in Theorem 3 with ~3 finite the 

following inequality holds." 

I F . (x)  - O(x)l < e(~, ~ . ) log  (2 + Ixl) 
- V ~  ~ + l x l  ~ ' 

for  all values of  x, where c (a, fls) is a finite, positive constant only depending on 

a and fls. 

3. On the U n i f o r m  L a w  o f  Great  N u m b e r s .  C o n s i d e r  a r. v. X with the mean 

va lue  zero, the dispersion a # o and the finite fourth  moment ~ .  Let us imagine 

a sequence of independent trials. In the first trial X assumes the value X~ 1) and 

we put 

X( , /=  X/I �9 

In the second trial, consisting of two independent trials, X first assumes the 

value X~ ~) and then X~ 21. We put 
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xl~ / = x ~  + x~21. 

79 

We proceed in the same way: in the n th  trial, consisting of n independent trials, 

X assumes the values X~ ~), X~ n) . . . .  , XI~ ), and we put 

= + + . . .  + 

Then the following theorem holds: 

Theorem 5. 
i l i t y  o f  

I f  ~ is  an assigned arb i t rary  smal l  posi t ive number,  the probab- 

IX(~)I -<V2('  + r ~n logn  

f o r  all n > n o tends to I as no ~ ~ , whi le  the probabi l i ty  o f  

I xr < V 2 ( i  - 1~) o ~t n l o g  . 

f o r  all n > no tends to o as no ~ c~. 

This is a form of the Uniform Law of Great Numbers which was proved 

by C R A ~  [4] on the assumption that  the f i f th  moment is also finite. Theorem 5 

easily follows from Theorems 2 and 3, the proofs of which are the main diffi- 

culty. For the method of passing over from these theorems to Theorem 5 the 

reader is referred to CRAM~R [4]- 

The conditions of Theorem 5 are as general as possible in so far as the 

theorem need not be true if ~ , < ~  for all p < 4 ,  while f i b = ~ .  This is seen 

from examples. 

Concluding Notes. 

We have hitherto considered different forms of the Central Limit Theorem 

and have especially studied the remainder term problem. In order to avoid un- 

necessary complications we have often confined ourselves to the case of equal 

d.f . ' s .  I t  is, however, sometimes possible to escape from this condition; this is 

especially the case for Theorem I, Chap. IV, and the theorems of Chap. V. 

Furthermore, we have supposed the r. v.'s to be mutually independent. Following 

the method of BERNSTEIN [I] (see also CRAIO [t]) we may generalize the theorems 

to hold for a sum of variables dependent in a certain way. There is also a 
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problem of a different kind which we have not touched upon, namely the pro- 

blem of the convergence of frequency functions to the normal frequency func- 

tion q)' (x) = V 2 

Most of the theorems stated are based on Theorem 2, Chap. II,  or on the 

method of proof of this theorem. Par t  I I  of this work is devoted to probability 

distributions in a multi-dimensional space. Now, it has proved impossible to 

extend this method to the multi-dimensional case; we have been obliged to 

proceed in another manner. This new method may also b e  used in proving the 

theorems of Chapters I I I - - V .  Nevertheless, we have hitherto prefer red  the old 

method for two reasons: firstly, it is of interest to vary the methods, secondly, 

the old method is much more simple to use in the one-dimensional case. 

PART II. 

Probability Distributions in More Than One Dimension. 

Chapter VI. 

Random Variables in k Dimensions. 

We have hitherto solely considered probability distributions of one-dimen- 

sional r.v. 's. We now proceed to the case of k-dimensional r .v. 's  (k ~ 2). By 

Rk we always denote a k-dimensional euclidean space. The concept of a r .v.  X 

in Rk was defined in w I, Chap. I I I ,  where we found that the probability distri- 

bution of X is characterized by the probability function (pr. f . )P(E) .  We  further 

defined the distribution function of X, a concept extremely useful in the one- 

dimensional case. In more than one dimension, however, it is preferable to study 

the pr. f. We therefor start  this part  of the work by giving an account of the 

properties of the pr. f. For the proofs of several of the following theorems 

reference is made to JESSEN-WINTNER [ I ]  and CRAMER [5]" 
By definition a p r .  f. P (E)  is a set function, determined for every Borel set 

E in Rk, and such that  

2 ~ P ( n k )  "~ I ,  

3 ~ P ( E )  is a completely additive set function. 



Fourier Analysis of Distribution Functions. 81 

In  the following we solely consider Boret sets. By x ~-(x~, x ~ , . . . ,  xk)we denote 

a variable point in •k, while by f(x) we always mean a B-measurable function. 

The notation for an integral with respect to P(E)  will be 

ff(x) d P (x}, 
E 

the integral being taken in the Lebesgue-Radon sense (e. f. RADO~ [I]). By 

ff(x) dx 
12 

we denote the ordinary Lebesgue integral. 

A set E is called a continuity set of P if P(E ' )=  P(E")  where E '  denotes 

the interior points of E and E "  is the closure of .E. There exists an at the 

most enumerable set of real numbers such that  at least those intervals a~-----x~--b~, 

(i ~ I, 2, . . . ,  k), for which the numbers as, b, do not belong to this set are con- 

tinuity sets of P(E). Such an interval is called a continuity interval. By the 

point slgectrum Q(P) of p1 we understand the set of those points x for which 

P(x) > o. The point spectrum Q is at the most enumerable. I t  is often con- 

venient to represent a probability distribution by a positive mass distribution'of 

total amount I, dispersed all over the space so that  every set E is allotted the 

mass P(E). Hence, in the following, we often speak of the probability mass. 
The point spectrum, for instance, is the set of points, each of which has a 

positive mass. 

A pr. f. P is called continuous or discontinuous according to whether Q(P) 
is empty or not. According to RADO~ [I] every pr. f. P can be written as a sum 

of three components 

(I) P =  alP1 + a~ P~ + asps, 

where P1, P~ and P3 are pr. f.'s and al, a~ and an non-negative numbers with 

the sum I. Here 

P1 is absolutely continuous, i.e. 

P,(E)= f l)(x)dx 
12 

where D (x) is a non-negative point function, the density function, 

P~ is singular, i.e. continuous and such that  there exists a set E of measure 

zero, but yet P , ( E ) =  I, 

P~ is purely .discontinuous, i.e. P~ (Q(P~)) -~ i. 

x Or p e r h a p s  r a t h e r  t he  p o i n t  spec t rum of t he  cha rac t e r i s t i c  func t ion  of P.  

6 -- 632042 Acta math~natica, 77 
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The convolution ( ,Fa l tungQ P of two pr. f.'s Pa and P~ is a very impor tan t  

operation. I t  is defined by 

P (E) = P1 * P,  = f v l  (E --  x) d P,  (x) 
Rk 

where / ~ -  x denotes the set obtained by F~ through the t ranslat ion - - x .  The 

set funct ion P ( E )  is also a pr . f .  and 

P---- P~ + P , =  P,  * P , .  

The vectorial sum A + B of two point  sets A and B is defined as those points 

in Rk which may be represented in at  least one way as the vector sum a + b, 

where a and b are points of A and B respectively. I f  ei ther of A and B is 

empty, A + B is by definition also empty. I f  Q~, Q, and Q are the point  spectra 

of P1, P,. and P =  P1 ~ 1)2 respectively, then  

q = q~ + q. .  

The concept of convolution of two functions is immediately extended to the 

convolution of n functions.  

If {Pn(E)} is a sequence of pr . f . ' s  and P ( E )  is another  pr . f .  and if 

lira P .  (~) = P ( I )  
n~O0 

for every cont inui ty  interval  I of P ( E ) ,  then  we say tha t  Pn(.E) converges to P(E) .  

The characteristic funct ion (c. f.) f ( t l ,  t , . , . . . ,  tk) of P (E)  is defined as the 

Fourier-Radon t ransform of P (E) :  

(2) f ( t l ,  t~, . . ., tk) = f d (" ~'+" ~:+"" +'~ ~k) d P (x). 
Rk 

W e  always assume tha t  tl, t ~ , . . . ,  tk are real numbers. Then by t ~ (ta, . . . ,  tk) 

and x-----(x~ . . . .  , Xk) we may denote two vectors in Rk with the origin at  o = 

(o, o, . . . ,  o) and the components  tx, t2, �9 �9 tk and x~, xo_ . . . .  , xk respectively. 

By ]t] and ]x] we denote the lengths of the v e c t o r s / a n d  x. Then the expression 

t~x~ + t~x 2 + . - .  + tkxk is the scalar product  t x  o f t a n d x .  Hence we may write 

(e') f ( t~ ,  12, . . . ,  tk) = f ( t )  = f e itx d P(x), 
/ok 

md we often use this nota t ion when there is no danger  of error. The funet ion 

"(t) is uniformly bounded and continuous:  

Jf(t) l -< f (o )  = I. 
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According to (I) we obtain 

(3) f ( t )  --~ alA(t)  + a~A(t ) + asfa(t), 

where the functions f i  (t) also are c. f.'s, (i ----- I, 2, 3). By the generalized Riemann- 

Lebesgue theorem it follows: 

(4) lira [A (t) J ---- o. 
Itl~,o 

From (3) and (4) it results: 

I f  P(E)  has an absolutely continuous component, then 

lira If( t ) l  < 
Itl"~| 

According to (2) the c.f.  f ( t )  is determined by P(E).  Conversely, P(E)  is 

determined by the knowledge of f(t).  This is a consequence of the following 

well-known inversion theorem. 

I f  the k-dimensional interval J, defined by xi --< ~ --< x~ + h~., (i ~ I, ~ . . . .  , k), 

is a continuity interval of the p r . f .  P(E)  with the e.f. f( t) ,  then 

T T 

(5) P(J) = r--  lira (2 f | "" .  fI--e-",',i tl I - - e - ' t k h k  i tz 
- - T  - - T  

�9 e-~r t~+~,t,+ ""+~ktk)f(ti . . . .  , tk)d tx . . .  d h.  

By the inversion formula P(E)  is determined for all continuity intervals 

and hence for all Betel sets. In  this work we shall mainly consider circles, 

spheres and hyper spheres instead of intervals. Then it may be of some interest 

to obtain the probability mass of such a region expressed as a functional off( t) .  

k 1 k 

Theorem 1. I f  S, [~ , (x , - -~ , ) "<_  R'} ,  is a sphere in Rk with the centre 
I ! 

= (~, ~ ,  . . . ,  ~k) and the radius R and i f  S is a continuity set of the pr.fi  P(E)  

with the e.f. f(t),  then 

I _Ff. f (6) P ( Z ) = l i m  .. e-'~' tl) f,t)dt~t dtk, 
. - |  j [tJ k/~ " '" 

Itl~a 

where Jkl2 (Z) is the Bessel function of  order k[2 and the vector notation is used. 

P r o o f  of  T h e o r e m  2. We start from the right-hand side Pa(S) of (6) 

with a finite value of a, and from (~) we obtain a$ter some transformations and 

easy evaluations of integrals: 
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where 

and 
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P (s) = f K (u) dP(x), 
Ir k 

y k 

a 

R~/~ f 
Ka(,,) - Jk/  (R s) Jk:  (u s) d s. 

u - ~  o 
2 

By a well-known formula t we have 

l !  if u < R  

lira K(~(u) = if u = R .  
a --..-p oO 

if u > B  

The remainder of the proof is immediately clear. 

I f  the point spectrum Q(P) of the pr.f .  P(E) is not empty, it is sometimes 

of interest to express the probability mass at a point ~ as a functional of f(t). 

Let D be an assigned k-dimensional parallelogram of positive volume with its 

centre at o and let D r  denote that  parallelogram which is obtained f r o m / )  by 

the magnification to the scale T:  I. Then the following theorem holds. 

I f  P(E)  is a pr. f .  with the c. f f ( t )  and ~ = (~1, ~ . . . .  , ~k) is a point in Be, 

which is to be understood as the Borel set consisting of the point ~ alone, then 

(7) P ( ~ ) = l i m  I f r~| D-r , ,  e-i~t f ( t )  dtj dt  2 . . .  dtk. 
Dr 

Here Dr denotes both the volume of  the parallelogram and the region of integration, 

and the vector notation is used. 

The proof is analogous to that of formula (6), Chap. I. 

The connection between the c.f. 's of a sequence of pr. f.'s and the c.f.  of 

their convolution is expressed by the convolution theorem. 

I f  fl(t),f~(t) . . . .  ifn(t) are the c.fl's o f  the pr. fi 's P1, P~, .. ., P~, respectively 

and f( t )  is the c.f .  of the convolution 

1 WATSON [7], p. 4o6. 
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the n 
P = P , + P z + . . . + P . ~ ,  

r~ 

f ( t )  = H f ,  (t). 

Final ly let  us consider the moments of r .v .  X ---- (X~, X,  . . . .  , X~) in R ,  with 

the pr .  f. P(E)  and the c . f .  f(t). We  use the symbolic no ta t ion  

(8) ~ ,  . . . .  ~ ,  . . .  ~ = f ~T' ~ : '  �9 �9 �9 ~ "  d ~(~) ,  
R k 

(9) 
R k 

where ~ ,  ~ ,  . . . ,  ~ are non-negat ive  integers.  H e re  aT'a, n . . .  a~.~ is in te rp re ted  

as -a  symbolic product ,  so t h a t  the following relat ion holds:  

(Io) (a I tt + a~ t~ + ... + ak tk)" ---- f (tl x, + t~ x,  + - "  + tk Xk)" d P (x), 
R k 

(~ a positive integer). The  same applies to (9). I f  r is a positive in teger  and 

the  absolute moments  (9) are finite for  ~ + ~ + ... + ~k --< r, then  we have f rom 

(2), (IO) and the expansion of e ~t= in series:  

f ( t ) =  I + ~(a~ t~ + ~,t ,  + ... + ,~tk)" + o(I t l  ~) 

for  small values of [ t [. W e  also observe tha t  if all fl~, (i --~ I, 2 . . . .  , k), are finite, 

then  all moments  a~,a.~'*.., a~k a n d f i ~ , ~ , . . . ~ k  w i t h v l + v ~ + . - . + v ~  - < r  are 

finite. This follows f rom the inequal i ty  

v~ v~ ~k 

an immedia te  consequence of the H51der inequali ty.  

A special impor tance  is a t tached  to the first moments  or mean  values m / a n d  

the quant i t ies  /,,-S defined by 

( ~ )  ms = f x ,d  V(x),  (i = ~, ~ ,  . . ., ~) ,  
R~ 

(~3) ~ u =  f (x,--m~)(x~--mj)dP(x), ( i , j =  ~,2 . . . .  , ~). 
R k 

We call the  quant i t ies  /~j the translated second order moments. W e fu r the r  pu t  
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(14) 

and 

(15) 
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o: = , , ,  = f (x, - m,)' d P (*) 
R k 

I~i J . 
r t j  ~--- a~aj 

The quantity m~ is the mean value, the quantity a~ the dispersion of the com- 

ponent Xi of X. The quantity r~i is called the correlation coefficient between the 

components X~ and Xj. I t  satisfies the inequality - -  x --< r~j--< I. I f  i ~ j we  

call the p~j's the mixed translated second order moments. 

Consider the quadratic form 

s f(s ,}' (I  6) /~ij U, tgj = ~i  (Xi - -  m ,  d P (X) 

with the determinant 

(17) d--II ~,Jll. 

Obviously the form (I6) is definite positive or semi-definite according as z r  o 

or J----o.  I f  J----o,  it is easily found by the theory of quadratic forms that  

the probability mass is concentrated to a sub-space of Rk. Then the problem is 

reduced to the study of a r .v.  in /~kl with k I < k. Thus we may neglect the 

ease J =  o and always assume the form (16) to be positive definite. 

The subsequent investigations are formally simplified by a certain trans- 

formation. 

Lemma  1, I f  X = (XI,  X z , . . . ,  X~) is a r .v .  in Re with the mean values 

m , = o  and the finite second order moments P.,.i and d - ~ l l p O l [ > o ,  then by a 

linear, non-singular real transformation 

Y~ : aI~ XI  + a2i X~ + "" + a~i Xk,  (i ---~ I, 2 , . . . ,  k), 

it  is possible to obtain a new r.v.  Y = ( Y  l, Y , , . . . ,  Yk) such that 

[ I ~ the mean value of Y~ is zero, (i = I, 2 , . . . ,  k), 

(18) 2 ~ the dispersion of Y~, (i = 1, 2 . . . .  , k), is equal to x, 

3 ~ the mixed moments of  the second order are gero. 
Further 

I la,  ---- g-j. 

I f  J ~  denotes the algebraic complement of  zt  with respect to izl~, then 
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09)  
k ~ j~j  

r~ = - ~  x ,  x j .  
t = 1  i , j=l  

(20) 

P r o o f  of  L e m m a  I. Consider the definite positive quadratic form 

/(. )' Z."i~"'"J = Z "'~' dP(~). 
i , j ~ l  i = 1  Rk 

Since J > o there exists, 

singular real linear transformation 

�9 t 

(21) u i =  ailu'a + ai2u2 + " ' "  + a~:Uk, 

such that 
k k 

(22) 

By a welbknown theorem 

the variables 

(23) 

we obtain from (22) 

according to the theory of quadratic forms, a non- 

y~ ~,,u,,,~ = y~ (u;)'. 

( i =  i, 2 , . . . ,  k), 

i , j=l  . i=1 

II au I ]  | / ~ .  Substituting (2 I) in (20) and introducing 

Y, '= ali X1 + a2iX2 + "'" + ak~ X~, 

(24) ~ (u;)' = ,,; v, dP, (v), 
t = 1  ~ i = 1  

Rk 

where P~(E) is the pr.f .  of the r .v.  Y = ( Y 1 ,  Y~ . . . .  , Y~). 

(i---- I, 2, . . . ,  k), 

From (23) and (24) 

it immediately follows that  the variable Y satisfies the conditions (18). Only the 

relation (I9) remains to be proved. From (23) we obtain 

k k 

(25) y, r~ = Z b, x ,  x~, 
t ~ 1  L j = l  

where the coefficients bij are to be determined. We introduce the matrices 

(26) 
/~kl /zk2 .. �9 /~kk/ 

( bn b12 �9 �9 �9 b ~ ) ,  

b~l bk~ . . .  bkk/ 

al l  al~ . . . a le  t 

\ a k l  ak~ . . .  a ~ k /  

/xoo...oX 

\ o o o  . . .  i /  
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By (~* we denote the transpose of a matr ix  6, by 6 -1 the inverse of 6. Now (22) 

and (2"5) may be wri t ten 

(27) ~ ~ 9~ = 

and 

respectively. Hence from (28) !~* = 92 92 = ~.i ~[ ~ ~b -l .  From (27) we obtain 

9[ ~ ) =  ~-1 and hence iB*-~ ~ 2[ -1 ~ - 1  = ~-1 ,  and the lemma is proved. 

In  the following chapters we shall mainly occupy ourselves with the addit ion 

of independent  r .v. 's .  Le t  X (x) = (X~ I), X~I) , . . . ,  X~ ~)) and X al = (X?), X(2~),..., 

X(k ~)) be two r .v . ' s  in Rk. By the sum X = X (1) + X (2) we unders tand the variable 

x = ( x ? ~  + xi~), x~,) + x(:) . . . .  , x ' : ) +  x~)). 

The following well-known addition theorem holds: 

I f  X (~1 and X (2) are two i n d e p e n d e n t  r .v . 's  in l~k with the pr . f . ' s  P~ (E) 

and P,.(E) respectively and the corresponding c. f . ' s  f i ( t )  and fs(t) ,  then the sum 

X = X I~l + X (~1 has the p r . f i  

P (E) = P,  + P: = f P,  (E  -- x) d P, (~) 
R k 

and the c. f 

f ( t )  -= A (t) 'A(t) .  

The generalization to a sum of n independent  r. v.'s is immediate.  I f  the variables 

have the mean values m~ a) and m~ 21 and  the dispersions a~ 1) and al. ~1, (i : I, 2 , . . . ,  k), 

we also observe: 

(~9) m., = m~" + ,n~' 
and 

(3o) o~ = (4'))' + (~))-', 

where m~ and a~ are the mean values and the dispersions of X. 

In  the one-dimensional case the normal  dis t r ibut ion funct ion $ ( ~ - ~ }  

with the mean value m and the dispersion a has the c .f .  e +'~t-�89176 In  the 

multi-dimensional case the normal  distr ibution is defined in the following way. 

A r .v.  X : (Xx, X2 . . . . .  Xk) in R~ with the mean values mr, (r : I, 2 . . . . .  k), 

and the translated second order moments iz~e, (r, s-~- ~, 2, . . . ,  k), is normally distri. 

buted, i f  the Tr . f .  is absolutely continuous with the density function 
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I e-�89 ~,,x ...... ~k), (3 ~) 1) (~) = ~- 
T~) k[2 V9 

where 
k 

r, S ~ I  

1r 

and d = I I #rsll is the determinant of the quadratic form ~ #,, t, t,. Here At,, is 
r~ $ ~ 1  

the algebraic complement of #r~ with respect to d and d is supposed to be > o. 

The c.f. f ( t )  is expressed by 
k k 

i ~ mrt r - � 8 9  ~ #rslrts 
(32) f( t)  ~- e ,=1 ,,,=1 

I f  d = o, f ( t )  may be considered as the  e . f .  of an improper  normal  distri- 

but ion  with the probabil i ty mass concent ra ted  to a sub-space of/~k.  We neglect  

this  case. 

I f  a r . v .  X = (X1, X2 . . . .  , X,) is normal ly  d is t r ibuted  according to (3 I) let 

us  consider the variable X =  ( X l - - m l ,  X ~ - - m ~ , . . . ,  Xk--m~). The  variable X is 

also normal ly  dis t r ibuted with the mean  values zero and the ordinary second 

moments  #ij. By L e m m a  I it  is possible to form a r .v .  : Y =  (Yx, Y ~ , . . - ,  Y~) 

with the  mean values zero, the  dispersions I and the mixed second order  moments  

zero. I t  is easily seen t ha t  Y has the  f requency func t ion  

(33) I e_�89 v~ +...+ vl).  
9 (Y,, Y*, - . . ,  yk) (2 ~)~/2 

The probabil i ty ~p (a, k) of Y being si tuated within a sphere with its centre  at  

o = (o, o , . . . ,  o) and the radius a, is expressed by 

( 3 5 )  

(34) f f i _x(y, (a, k) . . . . .  e *. ' +"" + v[) d Yx �9 d yk (2 ~)~/' " "  " 
Y~ +"'+'k!t~ <" a2 

I t  is easily found  tha t  

r 

I V2f a a 
i - -  e - � 8 9  d r  - -  + 

I .  3 
~p (a, k) = 

t I + - - + - - - +  e - ~  
2 2 4 ( k -  2)l 

+ . . . +  x . 3 .  ~- : : : ( k - 2  e - ~  
for  k odd, 

for  k even. 
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Chapte r  VII .  

On the Central Limit  Theorem in //k. Estimation of the Remainder T e r m .  

In t roduc t ion �9  Le t  us consider a sequence of independent  r .v . ' s  X (11, X (2), 

�9  X (') in s (k ~ 2). As in the one-dimensional  case i t  is of  g rea t  impor tance  

to the theory  of probabil i ty and its applicat ions to s tudy the  dis t r ibut ion of the  

sum of a large number  of such variables. I f  ~ the  p r . f .  of  the  

variable 
X (~) + X (2) + .. .  + X(") 

(n) X _- 
Vg 

t hen  under  cer ta in  condi t ions 1 P~(E) converges to the normal  pr. f. as n tends 

to infinity. This  is the  Central Limit Theorem in //k. How large is the  er ror  

involved when the process ceases a t  a finite value of n? The  only resul t  h i the r to  

ob ta ined  in this  di rect ion is due to  Jov~.xvsxY [I], who, however,  only gives a 

rough  es t imat ion of the er ror  term. ~ 

Being mainly  in te res ted  in principles we confine ourselves to the case of 

equM dis t r ibut ions;  there  is, however,  no difficulty' in general izing the subsequent  

theorems.  Thus,  consider  a sequence of independen t  r . v . ' s  

( I )  X (1), X (2), . . . ,  X (n) 

in Rk with the same pr. f. Le t  an a rb i t ra ry  variable X=(X~,  X~,..., Xk)of 
the  sequence have the proper t ies :  

x ~ the  mean value of  every componen t  is equal to zero; 

2 ~ the  de te rminan t  J =  HP~J[[ > o where p~j are the  moments  of the  
(2) 

second order ;  

3 ~ the fou r th  moments  are all finite. 

Our problem is to s tudy the  dis t r ibut ion of the  variable 

X (~)+ Xt 2)+... + X (hI 
(3) (-)x = ((-)x,,  ( - ) x , , . . . ,  ( - )xk)=  

1 BERNSTEII~ [I], CRAMI~R ~5], P. I I3 ,  JOURAVSKY ~I] and  others .  
2 Considering the probability of (n)X belonging to a k .d imens iona l  in t e rva l  and  suppos ing  

t h a t  t he  absolute moments of order 2 + d, (o ~ J ~ I), are finite, he ob ta ins  a r ema inde r  t e r m  ---- 

I 
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In order to facilitate the calculation we make a transformation according to 

Lemma I, Chap. VI, of each variable X in the sequence (I), obtaining hereby 

a new r.v.  Y = ( Y 1 ,  Y~, . . . ,  Yk) such that  

I o the dispersion of each component is equal to I, 
(4) 

the mixed moments of the second order are equal to zero, 

the fourth moments are finite. 

:Now form the variable 

(5) (.) r = ( ( . )y1 ,  ( . ) y ~ . . . . ,  

where by Lemma I, Chap. VI, 

(6) 
and 

(z) 

(n) It,) = 
y0) + ym) + ... + y(-) 

V~ 

( " ) Y i - ~ - a l i  (n)Xl + a,~t (n)X~.+ . . .  + aki (n)Xk, ( i ~ -  I ,  2, . . . ,  k), 

k k 

((-) Y,)* = y, ~ (.)x, (-)x~, 
i=l i,j=l 

z/q being the algebraic complement of #,.j with respect to J .  From (6) it follows 

that the probability distribution of (")X is easily obtained if it is known for the 

variable ('):Y. Hence we may confine ourselves to the case that  the conditions (2) 

are identical with the conditions (4). 

N o t a t i o n s. By 1),, (E) we denote the pr. f. of (") Y, by/~, (a) the probability 

of (")Y lying within the sphere 
k 

(8) S:  Z y~ ~ as" 
t~ l  

Further  q~(y)= ~(Yl, Y~,-. . ,  Yk) denotes the density function of the normalized 

normal distribution: 

q~ (Yl, Y2 . . . .  , Yk) -- (2 z)k/2 e 

The normal pr. f. H(E) is expressed by 

By (34), Chap. V[, 

IZ(E) = f ~(y)dy. 
./~' 

lz(s) = ~ (6, ~) = f v (y) dy, 
S 
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W e  wish to est imate the quant i ty  [ P , ( E ) -  II(E)I as a funct ion  of  n. In  

order to do this we have to impose cer tain condit ions on E.  Wi th  regard  to the  

applications it is natura l  to let  E be a k-dimensional interval or a hyper  sphere 

with its centre at  o - - - - (o , . . . ,  o), this case giving part icularly interest ing results  

with application to the Z ~ method. The main problem of this chapter  is the 

est imation of [ P , (S)  - -  I1 (8 )  1 = I~, (a) - W (a, k) l. The fol lowing theorem holds:  

T h e o r e m  1. Let y(1), y m ) , . . . ,  y(-) be a sequence of independent r.v.'s in 

ltk, (k >-- 2), with the same pr. f .  P (E) and e. f .  f(t). Further let an arbitrary vari- 

able Y-----(Y1, Y ~ , . . . ,  Yk) of the sequence satisfy the conditions: 

I ~ the mean value of every component Yi is equal to zero; 

2 ~ the dispersion of every component Yi is equal to I ; 

3 ~ the mixed moments of the second order are equal to zero; 

4 ~ the fourth moments ~ are finite. 

(i = 2 , . . . ,  k .)  

y(t) + ym) + ... + y(,) 
(") Y ---- ((")Y,, ('> Y,,  . . . ,  (") Yk) = }r n 

k 

and tz,, (a) denotes the probability of ~ (('1Y~)~ < a 2, then 
i = 1  

(9) I/*n (a) - -  ~ (a, k) l -< e (k)- ~ / '  
k 

n k + t  

k 

for all a, where c (k) is a finite, positive constant only depending on k, ~4 = ~ ~ and 
i = l  

I f e-.�89 +:'I +"" +v') O(a, k) = (2 z~) km k dy I . . .  dyk. 

Corol la ry .  Let  X (1), X m), . . . ,  X(") be a sequence of independent  r. v.'s satis- 

fy ing  the condit ions (2) and let  (")X be defined by (3). Then from (7) the func- 

t ion /, ,(a) in Theorem i is also the  probabil i ty of 

~--~ A i  ~ ('o X i  (") X j  --< a 2 

i , j = l  

and the inequali ty (9) still holds. W e  fur ther  observe that  ~p (a, k) also may be 

expressed by 
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(xo) 
k ~i.i 

t , j = l  
(2 ,)~/~ V 9  e d x,  . . .  d x~. 

k zfiJ x t a~ < a z E v  
i , j = l  

We briefly sketch the proof of Theorem I. I t  is based on a convolution 

method which is, however, not the same as in the one-dimensional case. As 

before we need some lemmata concerning the behaviour of the c. f. f ~ ( t )  of (~)Y 

about t = o. These are given in w 2. The essential point of the proof is, however, 

an investigation of the value distribution of the modulus of the c.f.  f ( t ) .  This 

question is studied in w I. In w 3 we form an auxiliary function. After these 

preliminaries the proof of Theorem I follows, (w 4). In w 5 we apply the theorem 

to the Z 2 method. In the next and last chapter we study the k-dimensional 

lattice distribution, especially its connection with the general lattice point pro- 

blem for ellipsoids. 

i. On the approach towards 1 of  the modulus of a characteristic function. 

Consider the pr. f. P(E) of the r.v.  X = ( Z l ,  Z ] ,  . . . ,  X/z) in /~k, (k --> 2). 

Throughout this section we assume that  the following conditions hold: 

(II) 
fx, dP(x)=o; fx:dP(x)= i; ~,=fl~,l~dP(~)<~, 

R k  1r -Rk 

f x ~ x s d P ( x ) = o  for r , s =  I, 2 . . . .  , k a n d r # s .  
R k 

(v-~ I, 2, ..., k); 

I f  a variable satisfies the two first and the last condition of (I l ) w e  call it 

n o r m a l i z e d .  By ~8 we denote the quantity 

k 

(i2) 8 ~ = ~  f,. 

Consider the c.f.  

f ( t )  = f ( t ~ ,  t2 . . . .  , tk) = f e '(t' ~' + t, ~ + . . . +  tk ~k) d P (x).  
R k  

The problem of this section is to study the approach of If(t)[ towards I. I t  is, 

however, easier to treat the function 

(I4) g(t) = g  (t~, t, . . . .  , r E ) =  I f ( t ) l ' .  
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Now 
f ( t )  = f e -i('':'' + ~ :  + ""+ tkek) d P(~) 

R k 

and hence 

(IS) g(t) = f ( t ) f ( t ) =  f f cos [ t x ( x~ -  ~,) + ... + t k ( x k -  ~k)] dP(x )dP(~ ) .  
.R k R k 

By S e we denote an arbitrary k-dimensional sphere of radius Q, and by ms~(A) 

the measure of those t-points belonging to S e for which a certain property A 
is satisfied. 

Theorem 2. I f  the pr. f .  P (E) is normalized, fls < ~ and 

I 
0 

6 (~ + VS) k~/' ~ 
(~6) 

then 

(I7) 
$ 

I {3 ~(I + V'2)$}k:2, 

where ~ is an arbitrary number such that 

We begin by proving the following 

Lemma 1. I f  a = (aa, as, . . . ,  ak) is 

k 

O<~- -<I .  

l e l n m  a .  

a point in Rk and 

r = ~ ( t , - - a , ) ' ,  

then under the conditions of  Theorem 2 

1 \ 0 9  1 \ 0 9  

-- r ~ { I - -  6 k'/" fl~/n ( I - -  a (a)) l/n} + ~ km A rS. 

P r o o f  of  L e m m a  z. Expanding cos [tl(xl --  gl) + "'" + tk(Xk-- ~.)] about 

t = a ,  we obtain from (15): 

g (t) = g (a) + (t, - a~) ~ + . . -  + (t~ - -  a~) O.q 
g r  

- -i f f [(t, - a , ) ( . ~ -  ~,) + . . .  + (tk - a~)(xk - -  ~ )1 '  c o s  [ax (x ,  - -  ~,) + 
-R k R k 

+ ... + a .(xk--  ~.)] ae (~)  aP(~) + 

0 ie)!"dP(x)dP(~), + ~  - _ 

~k Re 
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where o < [ 0 [ <  I. By (II) 

f f [( t , -  a,)(~1 - ~,) + ... + (t~- ak)(xk --  ~)]~ d P ( x )  d P ( ~ )  = 2 , " ,  
Rk R k 

and hence 

(x9) o(t)=~(~)+(t~-,, ,)  og o + + ( t ~ - a ~ )  ~ o -  +J~+J, ,  

where 

(20) 

and 

(2,) 

J, = �89 f f [ ( t , -  ~,)(~,-  ~,) + . .-+ (t~- a~)(~,-- ~,)]'. 
R k R k 

�9 [ I  - -  COS ( a  I ( X  1 - -  ~ l )  "{- " " ' + ak(Xk - -  ~k)) ]  d-P(x)  dP (~ )  

off 4 = ~ I(t, - -  a l ) ( X ~ -  ~,) + - . .  + (t~--ak)(Xk--gk)lSdP(x)dP(~). 
�9 R k R k 

We first est imate J~. From Cauehy's inequali ty i t  follows tha t  

r /f I J ~ l  -< ~ I(~,  - ~ , ) '  + " + ( X k - - ~ k ) ' r / ' d P ( x ) d P ( ~ )  �9 

R k .R k 

We now apply the inequality 

I ( z , -  ~,) ' + " + ( x ~ -  ~)~ P -< ~'/' [ 1 ~ , - ; , I  ~ + " + I ~ , -  ~1 ~1 -< 

_< 4 ~'/,[Ix, I ~ + I~,1~ + . . .  + I~1  ~ + I~1~], 

and then  from ( , , )  and (I2): 

(2~) 141-<  ,~ k'/, ~ P. 

The est imation of J~ is somewhat more laborious. 

inequality and obtain 

(23) 

We first apply the Cauchy 

k k R k 

�9 [I - -  cos (al (xl - -  ~1) + " "  + ak (x~ --  ~k))] d P (x) d P (~) = 

=�89 ~" f f + ~,.~. f f =~r'(Ja + J~), 
(x,-~,),+. �9 �9 +(xk-~k)'~Z (~-~,),+. �9 �9 +(xk--~k),>~., 

;~ being a positive number  later  to be determined. Now 

J3 < ~ f f [I cos (a I (x L - -  ~ )  + . . .  + ak (Xk - -  ~k))] d P (x) d P (~) 
R k .R k 

and hence from (I5) 
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(24) Ja -< ~2 (i - -  g (a)). 

In order to estimate J l  we observe the following inequalities: 

8 r / '  ~., --> f f k'/'[lx,--~11~ + ... + Ix~--~d~] dP(x)dV(~)--> 
R k Ir k 

>_ f f [ (x , -  ~1)' + + (x~-  ek)']'/t d P(xl d P(~) >--- 
Rk Rk 

X. f f [(x~- g,)z + . . .  + (xk -- ~k)'] d P(x) d P(~). 
(x~- ~)t + . . .  + (z k _ ~k)t > zt 

B u t  now 

j ,  _~ 2. f f [(x, - gl)' + .  + (xk-  ~,)'] a v(x) dP(g) 
(xt- ~2)2+".. + (xk, ,:k)t > it 

and hence 

(2S) J t  < 16 1~'/' ~s �9 

(26) 

S u m m i n g  up we ob ta in  f r o m  (23), (24) and  (25): 

Jl  < � 8 9  --g(a))  + 1 6 ~ ] .  

W e  now choose  g so t h a t  t he  r i g h t - h a n d  side of (26) becomes  as small  as pos- 

sible. Th i s  occurs  f o r  

and then 

2 k'/'~/' 
( i - -  g (a))'/" 

(27) J1 -< 6 r '  k ' / '~ / '  ( I - -  a(a)) '/'. 

F r o m  (x9) , (22) and  (27) t he  des i red  i nequa l i t y  fol lows,  and t he  l e m m a  is p roved .  

P r o o f  of T h e o r e m  2. 

A. First suppose that 
and that 

(2s) 

where 

g(t) has  a m a x i m u m  fo r  t = a - ~ ( a l ,  a~ . . . . .  ak) 

I g ( a )  > - -  I - - e ,  
[ (I - ~)8 

2 ~ 0 ~ ~ ~ ~ - ,  

I 
$ 

I + V ~  
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Then from Lemma I 

where 
g(t) <- z - - r  2 {t - - 6  k ' / ' ~ ' ~  v'} + ~ k'/ ' f lsr s, 

V r ---- Z (tt - -  a,)'. 
i ~ l  

From (28:2 ~ it fol lows:  

(29) a (t) -< t - Z r ~ + i 2'/' A r ~. 

The funct ion I - - ) ,  r ~ +  ~ kl/~fls r 8 steadily decreases as r increases from o to 

(30) r = Q0 --  2 k l / '~  

Hence  f rom (29) and (3o): 

Z r~ < (3I) a ( t ) < i - -  f o r o - < r - e 0 .  
3 

According to (31) the  set  of t-points about  t = a ,  for  which g(t)>_ I - - ~ ,  is 

s i tuated within a sphere of radius  
r - -  

(32) el = ] / 3 Z .  
I /  ), 

By the choice of Z, 01 < Q0- 

B. Now consider an arb i t rary  sphere S e in Rk of radius 

(33) 0 = � 8 9  0o- -  / / 3 7 ~ k ~ J - 6 (  I q - ~ 2 )  k'/'fl a 

We still assume that  the  condit ion (28:2 ~ ) is satisfied. Then obviously 

_ 1/ I 
e-<�89 eo V2-1"  

Three eases may occur. 

I. There exists a point  a in S e for which g (a)is  maximum and g (a )>-- I - - r .  

According to the choice of Q, S e is entirely s i tuated within a sphere with 

its centre  at  a and of radius Qo. Hence  according to (32 ) the  set of t- 

points in Se, sa t is fying the condi t ion g ( t ) ~  I - - ~ ,  is ent irely s i tua ted  within a 

sphere of radius ]///-~,-- i . e .  

(34) m% {g(t) >-- I - -  e} <-- 

7 -- 6 3 2 0 4 2  Acta mathematica. 7 7  
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2. There is no maximum in S e but  there exists a point  19 in S e such tha t  

g ( p ) - -  I -  ~. I t  is easily seen from Lemma 1 tha t  there must  exist a point  a 

in the neighbourhood of p for  which g(t) is maximum, and from A it  follows 

tha t  a is a t  the most at  the distance 1/3--2- ~ from j0. Owing ,o the choice of 

Q, S e still is s i tuated within a sphere with its centre at  a and of radius 0o. 

The inequali ty (34) is still valid. 

3. There is no point t in S e for which g(t)>-- 1 - - , .  The validity of (34) 

is immediately clear. 

C. Now we make the contradictory assumption to (28: 2~ i. e. 

(35) ~ > ( i -  z ) ~  6 8 k ~  ' 

and consider an arbi t rary sphere S e in Rk of radius (33). Our aim is the proof 

of the inequal i ty 

(36) ms e {g (t) >-- I - -  e} --< K .  ~k/~, 

K being a constant .  The smallest possible value of K on the assumption (35) 

obviously occurs if the left-hand side of (36) is replaced by the volume of Se 

and if 

( I  - Z) 3 
~ =  6 S k ~  

Hence 

(3z) m s  e { g  (t)  > i - ~} < - -  

D. Comparing the 

hand sides are equal for Z = -  

inequalities (34) and (37) and observing tha t  the right- 

I 
s , we obtain the desired result. 

i + 1/-2~ 

Remarks .  

I ~ In  Theorem 2 the quant i ty  ~/8 occurs; later  on, however, we are most 

interested in the fourth  moments,  i. e. the quant i ty  

k 
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~Now 
k ~ / k \~1~ 

,e~ = y ,  ,e~ --< ('~)~ < k'/" / " ' " ' / / "~ ~ l  
i ~ l  i : 1  ~ i : 1  / 

: k'/' ~/'. 

Hence in Theorem 2 we may replace k'/~fl.~ with (k,84) :/' and obtain the result:  

I f  S e is an arbi t rary  k-dimensional sphere of radius 

I # =  s 

6 (~ + VS) (k ~,)'/' 
then (I 7) holds. 

2 ~ Theorem 2 also holds for k---- I. Benee  by a simple t ransformat ion  we 

obtain Theorem 6, Chap. I. 

2. Some lemmata concerning f ,  (t). The notat ions and hypotheses of Theo- 

rem I, the main theorem, remain unal tered in this  section; the  same remark 

holds concerning the symbolic nota t ion  of the moments,  introduced in Chap. VI. 

By f ,  (t) we denote the c. f. of (") Y. Then by the addit ion theorem, Chap. VI, 

(38) f~  (t) - -  f 

I f  t = (tl, t~ . . . .  , tk) is a point in Rk, the quant i ty  r is defined by 

r = V ~  + t] + . - .  + t~.. 

The following lemma is easily proved as in the one-dimensional case. 

L e m m a  2.  

A (t) - e-~- ~ + ~ i  (,~, t, + . -  + ,~ t~)~ e -~  --< e (k) ~ (r' + ,'~) e -~ 

V~ 
for  r <--(k f14) */~' e (k) bein# a .finite constant only depending on k .  

We fur ther  observe t h a t  the funct ion 

r2 i rz 

e - ~  6V~n (a~ t~ + + a~ &)s e -~  

is the Fourier transform of the >)frequency function,> 

I - - e - ~  (39) w(x, ,  x,  . . . .  , xk) -- (2 ~)~/2 (2 Z)~/2 6~-~ V , ~ x  ' 
a i 3 _~e 
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( Q ~ - x l §  Let S be a sphere in Rk with its centre at o = ( o , o , . . . , o )  

and of radius a. With regard to subsequent applications we also notice that  

(4o) f oJ(xa, x , , .  . . , x , ) d x =  e ~ d x = ~ ( a , k ) .  

By S e we denote the sphere of radius 

I 
(41) Q = , 

6(I  + 1/2) (kfl,) '/' 

introduced in Theorem 2. (Compare Remark I, w I). 

possible to prove the following lemma. 

Lomma 3 .  

(41). Then 

This theorem makes it 

Let S e be an arbitrary sphere in R ,  of  radius Q determined by 

f If(t) d d ~e(kl tl �9 . t k  n k l ~ ,  I 

s~ 

e(k) being a constant only depending on k. 

P r o o f  of  L e m m a  3- Dividing up the region of integration in the follow- 

ing way, we obtain from Theorem 2: 

m~ e o -< I / ( t ) P  < ~ -  ~ g .  ~-/, ,  

m% i - -  < [ f ( t ) [ ' <  1 - ~ I  j - < K .  , 

- - - -  _< l/(t)ln < / - - < K  �9 rn~ 0 I 2"] 

K being the constant of the right-hmad side of (17). Hence 

f ( - i   nl' ( i t/t/2 
J =  ]f(t)l  ~dt~ . .  d t ,  < K ~ 1 2-;;i] ~-~I " 

se 
c (~) 

By comparing the series with an integral it is easily found that J<~ nkl2, 

which proves the lemma. 
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3. Construction of an auxi l iary  function. Le t  the funct ion Qa(xl, x~, . . . ,  xk) 

in Rk, (k ~ 2), be defined in the following way: 

{ ~ f o r V x ~ + x ~ + . . . + x ~  <~a 
(43) Qa (Xl, x ~ ,  . . . ,  xk) = , 

for  Vx~ + x] + + x~, > a 

where a is an assigned positive number.  The Four ier  t ransform 

qa (tl, t~, . . . ,  tk) ---- f e Yff'~'+~'+''" + tk'k) qa (xl, x~ . . . .  , x k )dx l  . . .  dx~ 
Rk 

is easily evaluated according to well-known methods.  ~ I t  is found tha t  

(44) qa (t~, t, ,  . . ., tk) = Jkl, (ar), (r ----- V t~ + l ~, + . . .  + tl), 

Jk/2 (z) denot ing the Bessel funct ion of order k/2. Now consider the convolution 

funct ion 

(45) M ( x l ,  x , ,  . . . ,  xe) - -  ~ / ,  ~k qa ( x , - - ~ D . . . ,  Xk--~k) Q, (~ , , . . . ,  ~k) d ~ , , . ,  dgk, 

Rk 

where o < e < a. From (43) i t  is easily seen tha t  

M (x, , x2 . . . . .  xk) _~ { Io f~  V x~ + x~ + " " + x'k <-- a - -  ~ 

(45) for ]/x~ + xl + + x~ > a + 

I i ( x )  l -< i for all x .  

The Fourier  t ransform of M, re(t1, t ~ , . . . ,  tk), is obtained by 

. . ,  = - -  I + 

owing to the fact  tha t  the Fourier  t ransform of a convolution is equal to the 

product  of the t ransforms corresponding to the funct ions i n  the convolution. 

From (46) and (47) we obtain by a simple t ransformat ion:  the  funct ion 

i See for instance BOCHNER [II, w 43. 
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is the Fourier  t ransform of a funct ion = 

/ I  f o r V x ~ + x ~ + . . . + x ' <  _ _  k - - a  

- [  
o for Vx~ + x] + ... + xl >- a + 

the modulus of which is bounded by I for all x. 

In  the same way: the funct ion 

is the Fourier  t ransform of a funct ion = 

_ _ { :  f ~  

for V x~ + :t{ + T xl ->- a 

the modulus of which is bounded by I for all x. 

By r ez, . . .  we denote a sequence of finite positive constants  only depending 

on k. We now use the following well-known properties of the Bessel functions:  

io [Jk/2(z)[ < cl for all positive z iz--~ I - 
(50) 

c, 
2~ [ Jk/2 (z) I -< ~-~ for all positive z 

The relations (48), (49) and (50) imply the validity of 

L e m m a  4. Let  a and ~ be two assigned constants and o <  ~ < a. There 

exists a funct ion H ( x l ,  xs ,  . . . ,  xk, a, ~) = H (0, a, ~) only depending on 

f 2 e = ]~ x ,  + x~ + . . .  + x~ 
such that 

I f o r o < o < - - a  
o I H(q ,  a, , ) =  , and [H(o, a, ,)[--< x 

[ o Sor o ~ a  + ~ 
for  all q. 

Further  the Fourier  transform of  H,  h (tl, t~, . . ., tk, a, r) ----- h (r, a, ~), is only de- 

pendent  on 

r = 1 / t~ + e ~ + ' " + t k  
and 

k - - 1  

Iz 2 
2 ~ Ih(r ,  a , * ) l - - <  c , -  ~ ,  

F 2 
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for all Q, 

and 3 ~ . 

k - - 1  

a T 
3 ~ Ih(r,a, dl<~e, ~ ~ + , '  

~2 r 2 

There also exists a ,function H(Q, a , - - ~ )  such that 

{ ! f o r o < - - q < a - - ~  
o ,) = and [ H e ,  a , - - * ) J  < x 4 H ( q , a , - -  , _ 

o for  Q:> a 

the Fourier transform of  which, h (r, a , -  ~), satisfies the inequalities 2 ~ 

4. P r o o f  of the main theorem. W e  use the  same notation as in the state- 

men t  of Theorem I but  repeat  it here for  the sake of lucidity,  xP~(E) denotes  

the  p r . f .  of the sum 
y(~) + y(2) + .. .  y(~) 

(5 ~) ~) Y = ; 

fn (t) is the eorresponding c . f .  and 

f ( t )  being the  e . f .  of the variable y(,I, (v = I, 2, . . . ,  n). #~(a) is the probabi l i ty  

of ( , ) y  being s i tuated within the  sphere S wi th  its cent re  o - -  (o, o, . . . ,  o) and 

of raAius a. 

i e_I(~.~+.~..~+ ...+~p, 

the normal  f requency  funct ion.  

~p(a, k) ---- f qg(x~,x~ . . . .  , Xk)dxl  . . .  dxk; see (3hap. u  (35). 
8 

co (x, ,  x ,  . . . . .  xk) = ~ (xl ,  x , , . . . ,  x k ) -  

1 i [ O 
+ . . . +  ako~k)Se--�89 .... +x~); 

Fur ther ,  
r = V t ~ +  t ] + . . . +  t~.- Q Vx~ + x] + . . . + x  ~ ~ k -  

e -  ~ i 
6 l ~ n  (~1 t, + . - .  + ak tk) 8 e - T  

is the Four ier  t rans form of ~o(x 1, x 2 , . . . ,  Xk), see Lemma 2. 
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v .  (E) = f ~  (~,, ~, . . . . .  ~ )  d~, d~, . . .  d ~ .  
E 

/-/(Q, a, e), H(Q, a, --s), h(r, a, ~) and h(r,  a, - - , )  are defined in Lemma 4. Finally 

we remark that the function 
r t ~ r ~ 

(52) J ,  (t~ , tj . . . .  , tk) = f ,  (t~, t~ . . . . .  tk) - e - V  + ~ n  (a, t, + . . .  + a~ tk)S e--~ 

is the c. f. of the set fuv0etion P,~ ( E ) -  Un(E).  

By c~, c~, : . .  we denote a sequence of finite positive constants only de- 

pending on k. 

The starting point of the proof is the formula 

f (53) H ( o , a , ~ ) d { P , ( x ) - - U n ( x ) } ~ -  ~r t, ,  . . . ,  t k ) h ( r , a , ~ ) d t ,  . . . d t k ,  

Rk Re 

the validity of which is immediately clear according to the Fourier inversion 

formula. Owing to the properties of H, (Lemma 4: I~ we obtain from (53) 

and (40): 

(54) ~ ( a ) -  ~ (a + ~, k) (2 ~)':" 6 ~ ' Ox~ + ' "  + ~ e , d ~ . . .  axe_< 
ago<a+~ 

, f  ~ ( ~ - ~  Jn( t )  h ( r , a , e ) d t .  
Rk 

Using H ( e , a  , - -~)  in (53) instead of H(Q,a ,~)  we obtain in the same way: 

fl( (55) ,un(a)-- ' l l , ) (a--e,k)  + (2~)~/, 6]/. n a,~-~x I 
a - -  E ' < Q ~ ; a  

Hence from (54) and (55): 

(56) 
where 

O i s - ~ I  
+ "" + ak~-~xk) e ' l dxx  . . .  dxk  >-- 

, f  -> (2 ,~)~ ,~, (t) h (,., a, - ~) d t. 
Rk 

I,,.,,, ( a ) -  ~v Ca, ~)1 ~ Ma,,  (A,, .4,), 

(57) A , = l ~ P ( a  + r , k ) - - g , ( a , k ) l  + 

f I( I I d + ' " + a k f f x x ~ J  e 2 d x t . . . d x k +  
+ (2 ~)~/'~ 6 V ~  ~10 xl 

a<e~a+E 

, f  + ~ ) ~  I'~"(t)h(r,a,')l dt, 
Rk 
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(s8) A , = l ~ , ( a , ~ ) - , C , ( a - , , ~ ) l  + 

+ I I 1" I I  a a \ s _ ~ ' l  
(2~)k/96l/n J l[ lO~xl+'"+akOfxk) e ' [  dxt ' ' 'dxk+ 

, f  +~-~ Ix,,(t)hCr, a,--~)ldt. 
Rk 

The relation (56), .together with (57) and (58), is the main inequality of the sub- 

sequent estimations. 

Without  loss of generality we may make the following assumptions. 

(59) I ~ a < l o g ( 2  +n) ,  

or else we choose e : a/2 and proceed as in the subsequent estimations. 

(60) 2 ~ ~ / ~  < �89 
k - -  

or else Theorem I is true with c(k) 2 

We may confine ourselves to the estimation of A 1, A, being treated in a 

similar way. Now choose 

k 
~k+l  

Hence o .< ~ <: a. I t  is immediately found that  

I I f l ( a  O O\S_~l 

a < Q ' < a + e  

<: r " 

n*+l 

We proceed to the estimation of the last term of A1 and begin by dividing up 

the region of integration: 

I f  I f , f =,,+,,. (63) x = ( 2 ) , ,  I~,,(t) h (r, a, 4 1 ~ , t -  (~ ~),, + (2 ~)~ 

o -< r < (k/~,)8/4 r > ( ~  ~ , ) 8 / ,  



106 Car!-Gustav Esseen. 

A. E s t i m a t i o n  o f  /1. 

follows : 

R k 

t tenee  

By virtue of Lemma 2, Lemma 4:2 ~ and (59) it  

k--1  
r ~ a ,~ 

4- re)e -3  k+t dt l  " '"  dtk <-- e~/'~ 2 zd/2 

k--1 ~ 

(log (2 + . ? ) T  f (  
n 

o 

(64) /1 < cs" ~/'  - -  k 

n k + l  

k_--3 _g ~/, 
+ r e ) r  2 e 3 d r < - - e s . - - T - .  

n k +  l 

o r  

(66) 

(65) (2 ~)' + (2 ~)~ + e,- = I~ + & �9 c,. , 

- -  "<:r <~ - -  1"> - -  
(k fl,7/* ~ V~ ~ Vn 

v~ 

~kl~ f (2~) k [ f ( t , , t ~ , . . . ,  tk lJ ' lh(rV~,a, , ) ldt+c,  .s = 
*1 n k + 1 

r> (k ~.~)Sl~ 

Withou t  

we first obtain:  
k - - 1  

l s  ~ 0 5 "  - k + ~  

n 4 

1 
(k ~4)a/, 

i 
loss of general i ty we may suppose ~ n  > �9 From Lemma 4: 

f If(t,, t, .... , t~)l ~ k+l d t l  . . .  d tk ,  
r 2 

1 

k - 1  k - 1  

I s - < c ~ a  s n *  Ia, where 

f [ f ( t , ,  t . ,  tk) [~ " " ' "  d t l . . . d t k .  

r > ( k / ~ , ) 8 1 ,  

B. E s t i m a t i o n  o f  I , .  This is the main point  of the proof. We  use the 

earlier result  regarding the value distr ibution of ! f ( t ) [ ,  (Theorem 2 and Lemma 3). 

I ,  --< (2 z)* f , . . . ,  h (r, a, e)[ d t + c , .  ~/', 
n k  + 1 
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F rom Lemma 4:3 ~ we obtain in the same way: 

(67) 

a ~ 
I4 --< %. e~-/2 ~,/,/6, where 

= f l a t , ,  r . . . .  , t~) l , ,  . .  

o 
1 r " r > - - - ~  

V -,i 

B:a.  Es t imat ion  of /~ and /~. By D we denote  ~he region between two k- 

dimensional  cubes, the edges of which are parallel with the coordinate axeses. 

Fur the rmore  ~he in ter ior  cube is inscribed in a sphere with its centre  at  

I 
o = (o, o . . . .  , o) and of radius /~-fl~)-~h, while the exter ior  cube is circumscribed 

I 
around a sphere with its centre  at o ~ (o, o , . . . ,  o) and of r a d i u s  l~z~- ~. Then  

(68) 1~ < f I.f(t,, t~, . . . ,  t,)I '~ 
k + l  d t I . . . d t k  = 1 7  . 

D r ~ -  

The in ter ior  cube has  the edge-length 

2 
(69) 2 s = 

By K e we always denote  a cube with the edges parallel with the coordinate 

axeses, which is inscribed in a sphere S e of radius 

I q - -  
3 

6(~ + r 

The  edge-length b of K e is calculated to be 

2 I 

(70) t = : )~  6 (~ + V2)  (2 g,)'/' 

By Lemma  3 we have: 

(7,) f l f ( t , ,  h.) d d <-- c ~ .  t~, . . I" t l . . .  tk 

KQ 

Now consider a sequence of cubes with the i r  centres  a t  o = (o, o , . . . ,  o), 

the i r  edges paral lel  with the coordinate  axeses and the i r  edge-lengths 2 ( s+vb) ,  
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(v == being so determined that s + ( % -  I)b --< I ) O, I ,  2 ,  ~0, ~0 ~---~n < s + rob . t g o ~  

The number of cubes K e without common part which may be situated in the 
space between two cubes of the sequence with the edge-lengths 2 {s-~ v b} and 
2 {s + (v-~ I)b} respectively is less than or equal to 

( s + ( v + i ) b 2  b + I  )it - - 2 ( s + V b b  ),=(, )+_ I 2 ~ + 2 v +  3 

( 8 )l~ 4 k ' 2 i t - ' '  ? ) k - 1  --2~+2v--I < ~+-~- ~ s + v b +  

Hence according to (71) the contribution of this region of integration to 17 is 

Thus 

s + v b  + It-s 
e s .  I ~ e 9 I 

nitl----2 bit-1 k+l nkl2 b~_ 1 (s + v b) 2 
(s + �9 b) T 

2 
e r -~ 

f It--3 15<__ C9 I "o It-3 C9 T 
n,/.~ bit_ t ~,  (s + v b) q -  <-- n,/~: bit y d y 

�9 ~0 0 

o r  

(7z) I~  -~  C'O I �9 
~itl2 Ir 1 It - 1 

bk.~2 n ~  

From (66), (72), (70) and (6I) we finally obtain: 

3k k -1  k 
k--1 k--I I fi4 t ~ 2 k + l  

f q ~ Cll �9 a 2 T~ t k - - l "  k--1 a k--1 
.2 p? 2 

o r  

(73) ! ,  ~ e,t" It 
n k + l  

C11 . ~ /4  
k 

~ k + l  

(Since the dispersions are all I, f14 > I; compare Chap. VI, (I I)). 

B: b. Estimation of I e and I 4. The estimation of I e proceeds in exactly the 
same way as that of /6. Dividing up the region of integration into a sequence 
of cubes, we apply Lemma 3 and find: 
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OD 

els f ~tk_ 1 ~,tl/4 tl~ 
(74) Is <- rlkl2 b k ~ d y  = e!s" ,~k12 b k 

1 y 2 

Hence from (67), (74), (7o) and (6I): 
k--1 k--1 k 

a 2 ~ 2 k+! 

/ 4  ~'~ e l4"  k--I 3 

a ~ "t~ (k-llnl/4 
o r  

3k 

.#4" n'/' f,/' 
~k/2 - -  C'14 " "k 

~k+l  

~4/s" �9 
(75) z ,  _< el , .  

(76) 

The final result of Section B follows from (65), (73) and (75): 

f/.  
f~ ~ C15 k 

•k+l 

(77) 

C o n c l u s i o n .  From (63) , (64) and (76 ) we obtain: 

f,:, 
zr~< e~e. - -T- '  

~zk+l 

and hence from (57), (62), (63) and (77): 

.A 1 ~ e:7 " - - .  

This proves the theorem. 

k 
~k+l  

Remarks. 

I. We have proved Theorem I on the assumption that all the r. v.'s have 

the same probability distribution. If  this is not the case it is necessary to 

modify the proof a little. The main difference consists in the estimation of the 

integral 
I =  f I f ,  ( t )A (t) . . .  y,, (t) ldtx  . . .  dtk. 

% 

Using the inequality of Hiilder in a suitable manner we may estimate I by a 

product of integrals of type 

f l f , ( t ) l " , d t ,  . . .  dt~. 
se 
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The  Lemma 3 is applicable to every such integral.  In  this  way i t  is possible 

to prove all the theorems of Pa r t  I concerning probabil i ty distr ibutions,  for  in- 

stance the inequal i ty  

�9 x Q3,; (Chap. I I I ,  (15)). I n(, , ) -  

2. In  Theorem I we have made the least res t r ic t ive assumptions possible. 

Now suppose tha t  lira I f ( t l ,  t~ . . . . .  tk) l <  I. Then i t  is easily seen tha t  the re- 
It l--oo 

mainder term has the order of magnitude 0 (~) .  Absolute moments of order 

grea ter  t han  4 being supposed to be finite, i t  is also possible to obtain an 

asympto t ic  expansion as in the one-dimensional  case. 

3. In  the one-dimensional  case we have found  t h a t  the  absolute th i rd  mo- 

men t  plays an impol~ant  par t  in the  problem of obtaining the  general  t rue  order  

of magni tude  of the  remainder  term. In  the mult i -dimensional  case the same 

applies to the  four th  moments  (compare the next  chapter).  

4. In  Theorem I we have confined ourselves to the case where ( - Iy  belongs 

to a sphere S With its centre  a t  o -~ (o, o, . . . ,  o). I t  is, indeed, possible to escape 

f rom this res t r ic t ion;  but  the  form of the theorem given here  is especially simple. 

5. Applieation to the •2 method. In  this  section we shall briefly apply 

Theorem I to the so-called Z ~ method;  we confine ourselves to the most  simple 

case which may concretely be i l lus t ra ted by the drawing of balls f rom an urn.  

Le t  an urn  contain a collection of balls, white,  black etc. and let  in all k + I 

different  colours be represented.  Suppose tha t  the probabil i ty  of drawing a white 

ball is Pl, of  drawing a black P2 etc. In  every tr ial  a ball is drawn, its colour is 

no ted  and then i t  is replaced. In  all we suppose tha t  n tr ials  are made, the 

results of which consist  of m~ white, m~. black balls etc. Obviously 

rn~ + m.~ + . - .  + m~-+l = n. 

I f  the drawing were so per formed as to give an exact  represen ta t ion  of the  

dis t r ibut ion of the balls among the different  colours, these numbers  would be 

the  mean values: 

~ l l  : P I  n ,  ~Vn2 : P 2  T/, �9 �9 ", T~r~k+l = p k + l  n .  

Now we ask: W h a t  is the probabil i ty P(Z) of 
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k+l (m: - ~n,) ~ > z~ ? (7s) Z , , ,  

The result  of every tr ial  may be characterized by a k-dimensioI~al r .v .  

X ~  (X~, X 2 , . . . ,  Xk), the component  X~ assuming the value i if a white ball 

is drawn, otherwise the value o etc. The mean value of the  component  X,  is 

equal to io, and the four th  moments  are finite. 

Le t  the results of the n trials be represented by a sequence of variables 

X(1), X (2) . . . .  , X(n) and  form 

X (t) + X (2) + .-" + X (n) --M(n) 
(79) (")X = ((")X,, (" )X~, . . . ,  (")Xk)= 

V~ 

Mm) being a point  in /~k with the coordinates (n~0~, n p 2 , . . . ,  n.pk). 
to show 1 tha t  

~+1 (m: - m,)~ ~ ~_r 7 Z ~, = Z ~(')x~(")x',  

I t  is possible 

where d----I]/~r,II and A , ,  is the algebraic complement of ~ , ,  wi th  respect to 

J .  By the corollary of Theorem I i t  follows: 

O(Pl, pk) 
(8o) P(Z) = I - -  ~(Z, k) + P, . . . . .  , �9 k 1 

n k +  1 

where 0 ( p l ,  p ~ , . . . , P k )  is a finite quant i ty  only depending on Pl ,P~  . . . .  , p~ and 

~ ( z ,  k) . . . .  
i / 

(2 z)~/'~ e-�89 "+x~) d x l  "'" dxk .  

x ? +  �9 �9 �9 + ~  x ~ 

The relat ion (80) answers our question. 

The so-called Z ~ method, applied to this case, consists of tak ing  P(Z) 

= I -  ~p(Z, k); thus  the remainder  term of (8o) is neglected. By our methods 

we have, however, been able to est imate the order of magni tude  of the re- 

mainder.  I hope to have the opportuni ty  of re turn ing  to these questions at  a 

la ter  date. 

PEARSON [I]. 
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Chapter VIII .  

Latt ice Distributions.  Connection with the Lattice Point Problem. 

In the one-dimensional case we have found that it is generally impossible 

to obtain an expansion of the d. f. Fn (x) corresponding to the normalized sum 

of a large number n of independent r. v.'s in a series of continuous functions, 

I 
and with a remainder term of order of magnitude less than ~ n "  I f  every vari- 

able of the sum has the same d. f. and this is of lattice type, then F~ (x) has 

I 
discontinuities of order of magnitude ~--~. in  the multi-dimensional case the situa- 

tion is analogous. In the last chapter we obtained the remainder 0 ~ - ~ .  

The pr. f. being subject to certain conditions, we also remarked that  this estima- 

tion may be improved and that it is possible to obtain an asymptotic expansion, 

provided that absolute moments of order greater than 4 are finite. However, 

as we shall see in this chapter, this is generally not possible even if all moments 

are finite, and we shall show that the remainder term 0{--~-Ik/ is intimately 

\nk+l /  
connected with a certain kind of probability distribution, the lattice distribution. 

We shall compare this remainder with that of the lattice point problem in the 

analytic theory of numbers. 

I. On characteristic functions having the modulus equal to 1 at a sequence 

of points. I t  is to be expected that  the remainder term in Theorem I, Chap. VII ,  

will be of as large order of magnitude as possible when the modulus of the c. f. 

f ( t l ,  t~ . . . .  , tk) is equal to I at a sequence of points different from (o, o, . . . ,  o) 

(cf. the one-dimensional case, Chap. IV). Thus, let us find out when this case 

may occur. For the sake of simplicity we only treat the two-dimensional case. 

Consider a c. f. f ( t l ,  t2) corresponding to a two-dimensional pr. f. P(E) ,  and 

suppose that  there exists a finite point (t~~ t~ ~ # (o, o) such that 

(I) ]f(t~ ~ t~OI)] = X. 

As ' in  the one-dimensional case (Theorem 5, Chap. I) it follows from ( I ) tha t  the 

probability mass necessarily is concentrated to the straight lines 

(2) t~ ~ x l  + t~ ~ z~ - Oo = ~ .  2 ~ ,  (v = o ,  +_ i ,  +_ 2, +_...). 
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I t  is readily observed tha t  only the fol lowing cases may occur: 

a. The probabil i ty mass is concentrated to one single line. W e  neglect  this  

case being of a one-dimensional nature.  

b The probabil i ty mass is concentra ted to at  least  two parallel lines, and 

t~l) t!~ and there is a point  (t~ '), t~ 1)) different from (o, o) and (t~ ~ t~ ~ such tha t  t~,-- ~ ~ t~o~ 

I f ( t~ 1), t(~l)l-----I. Then the probabil i ty mass is also s i tuated in the lines 

( 3 )  tp l  z ,  + 11 - -  e ,  = , , .  2 (,, = o ,  + ,, _+_ 2, + - . . ) ,  

and hence is concentra ted  to the points ( f  intersection of the  families of lines 

(2) and (3), i .e .  is s i tuated in a set of lat t ice points. W e  call such a dis t r ibut ion 

a lattice distr ibution.  
c. The probabil i ty  mass is concentra ted to at  least  two parallel lines, and 

the dis tr ibut ion is not  of lat t ice type. I t  is easily found  tha t  all points (t,, t~). 

for  which I f ( t j ,  t~) I = I, form a set of equidis tant  points  belonging to one single 

s t ra ight  line through (o, o). 

Le t  us consider the  lattice dis tr ibut ions more closely. I t  is convenient  to 

use vectors. Le t  P ( E )  be a lat t ice distr ibution in R~, i .e .  let  there  exist three  

vectors S0, al and a~ (a, not  parallel with a.,) such tha t  the  probabi l i ty  mass is 

concentra ted to the points t 

(4) (X~ p'), X~ ~'}) = ~,u, = ]0 "Jr ~ a I + Y {12, (/.$, 'lg = O, "{- I ,  "]- 2, +__' '" ). 

(x~), x~')) are the rec tangular  components  of the vector  ~.~, having the origin 

at (o,o). Let  the  probabil i ty mass at $~, be a ~ , - - o .  Thus ~ a g , - ~ I .  T h e c .  f. 

of P ( E )  is expressed by ~'" 

(5) . f ( t , ,  t,) =: 7~a a,,, e ' ( ' ,~)  +','~(/)) . 
I~, ~' 

By t = (t,, t~) we denote a vector having the rec tangular  components  (tl, t2) and 

the origin at (o, o). Fur the r  we put  f ( t , ,  t ~ ) = f ( t ) .  Using vector  nota t ion  and 

the concept  of scalar p roduc t  we obtain f rom (4) and (5):' 

(6) f(t) ~- ~ a#, e ;t I*,+,'~",+ *~,) ~- e ;t',, ~ a~, e ;t(~'=,+'a:). 

F r o m  

(7) 

(6) it is readily observed, tha t  the necessary and sufficient condition for 

If(t) l = ' 

' I t  is  a lways  supposed t h a t  al and  a2 are the  g rea tes t  poss ible  of t he i r  k ind .  

8 -- 632042 A c t a  mat,  hematZ.~ra. 77 
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is t h a t  

18) 

where 111 and u~ are determined by 

(9) Ut at = 2 ~ / ,  
111 (I~ = 0 ! 

t = 2~'1111 + N~II~ ,  (-/~1, ~ = 0 ,  _+ I ,  + 2, +__ . . . ) ,  

l | 8 01 ~ 0 ~ .  

Fur the r  If(~ + t) l =  If(~)l for every t sa t isfying (8). The a r e a p  of the parallelo- 

gram of periodicity formed by the vectors uj and u2 is easily calculated. I f  the 

rectangular  components  of al and a, are (a11, al~ ) and (a~t, a~2 ) respectively, then 

(2 

 =11 II a l l  al~ 

From (8) i t  follows tha t  the points (tl, t~) for which If(tl, t , ) ]  = x,f(t~, t,) 
being the c . f .  of a latt ice distr ibution,  also form a set of latt ice points. Le t  us 

f o r  a moment  re turn  to Theorem x, Chap. VII .  The est imation of the remainder  

term O l - ~ ,  (k=2) , i s  mainly based on Theorem 2, Chap. VII .  T h e p u r p o r t  

~]nY~-i 

of this theorem is, roughly speaking, t ha t  the modulus of the c. f. may approach 

the value i only a t  points which do not  lie closer than  a set of lat t ice points. 

The most unfavourable ease with regard to our method of proof is thus  the  

lattice dis tr ibut ion and it is of special interest  to study the remainder  term 

problem in this case. I n  the following two sections we shall see tha t  this  pro- 

blem is connected with the difficult es t imat ion of the remainder  occurring in 

the lattice point  problem of the analytic theory of numbers. 

The preceding results are easily extended to the mult i-dimensional  case. By 

a lattice distribution in Rk we unders tand  a probabili ty dis tr ibut ion P(E), the 

probability mass of which is concentra ted to the latt ice points 

(IO) 30 + Vl 111 + "'" + VkOk, (Vl, V,,, . . . ,  Vk = O, "]- I ,  "t" 2,  +___. " ' ' ) ,  

where 30, al . . . .  , a~ are vectors in Re and the volume of the parallelogram 

formed by the vectors a is # o. I f  a, has the rectangular  components  (a,l ,  a,2, 

. . . ,  a,k), this means tha t  the de terminant  A = I!a , , l l  # o. I f  f ( t ) = f ( t l ,  t~,..., t~.) 
is the e . f .  of P(E), where t ~ (t t, t_o, . . . ,  tk), then there exist vectors ul, u~ . . . .  , liE, 

determined by 
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tltal-=-- 2~ 1 tlka, = o 1 

tl l a k  ~ O J Hkak---~ 2 ~ ' J  

such that every t for which If(t)[ = I is expressed by 

(,,) t=Nxu,+N~u~+...+Nku~, (N, ,N~, . . . ,N~=o,+, , •  +_...), 

and conversely. Furthermore if(* + t)[----I:(~)l for all ~ and every t satisfying (I  I). 

The volume 1o of the /c-dimensional parallelogram of periodicity formed by the 

vectors u is equal to 
(z ~)~ 

(,z) P = - i ~ "  

2. On the probability mass at a diseontinuity point. Let X (x), X(2), . . . ,  X (") 

be a sequence of independent r. v.'s in R~ with the same pr. f. P(E)  and the c. f. 

f ( t l ,  t~ . . . .  , tk). We further  suppose t h a t  P (E)  is a lattice distribution defined 

by (Io). We form the variable 

(~3) (n)X = XCX) + X~2) + . . .  + X(~) 

with the pr. f. Pn (E) and the c.f .  

�9 "'  " ' "  F lJ" 

By Chap. VI P~ (E) is also a lattice distribution with the point spectrum situ- 

ated in 

V ~  ' (~"  ~ '  "" "' ,'k = o, _+ , ,  • z ,  + . . ' ) .  

We wish to express the probability mass q(n)(~,,~, . . . , ~ ) a t  a discontinuity 

point (~1, ~2, . . . ,  ~) of P,~(E) as a functional of fn(tl,  ts, . .  ,, tk). By p we denote 

both the volume of the parallelogram of periodicity, (cf. (12)), and the region of 

integration formed by that parallelogram when it is moved parallel to itself so 

that  the origin and the centre of the parallelogram coincide. By p(Vnn)we 

understand the parallelogram p magnified to the scale V~n: I. 

By a proof  similar to that  of Lemma 2, Chap. IV, we obtain: 
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Lemma 1. 

. f  q(")(~t, ~ , . . . ,  ~*) pn~/2 e-'(~'t'+ +~ktk)f,(tt . . . .  ,tk) d t i . . . d t ~ ,  

p (YT,) 
or by (I2), 

IAI f e--i(~'t,++~ktk)fn(tl fi.)dt, dtk.  
q(") ( ~ , ,  ~ ,  . . . .  , ~k) - (2 ~)~ n~'~ " "  " '  " ' "  

p (Y r,) 

Lemma I may be applied to t h e p r o o f  of 

Theorem 1. Let X ('), X (2) . . . .  , X(") be a sequence of  independent r .v. 's  in 

Rk with the same p r . f  P ( E )  and let P ( E )  be a lattice distribution defined by (Io). 

Let  an arbitrary r .v .  of  the sequence have the properties: 

I ~ the mean values are equal to zero; 

2 ~ the dispersions are equal to x ; 

3 ~ the mixed moments of  the second order are zero; 

4 ~ the fourth  moments are finite. 

Then the probability function Pn (E) of  (")X is also a lattice distribution and 

the probability mass q(,I (~,  ~,. . . . .  , ~) at a discontinuity point  (~,, ~,., . . . ,  ~)  o f  

P,, (E) is expressed by 

"' (2 f~ n )  k/~ e - 2 -  I 0 
6 V n  a : ~  

where 

0 t = ~ + ~ + . . . + ~  and al 

is taken in the symbolic sense, (of. (I o), Chap. VI). 

#\B-~] ( ]  t + " ' + - k a ~ , l  e ~ + 0  ~ , 

+ - - - +  a . s  s 

The proof of Theorem x, which is an immediate consequence of Lemma I, 

this chapter, and Lemma 2, Chap. VII, is similar to that  of the corresponding 

one-dimensional case, (Theorem 5, Chap. IV). 

3. The connection with the lattice point problem. We begin by giving an 

account of the lattice point problem concerning a k-dimensional el]ipsoid. 1 Let 

k - - 2  be an integer and 
k 

(~6) Q = Q ( y ) =  ~ a ~ . y ~ y . .  ( a , .  = a.~). 

1 For  f u r t he r  in fo rmat ion ,  cf. JARI~iK [I] and  [2]. 
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a definite positive quadratic form with the determinant D ~ l t a ~ , [ t .  The form 

Q is called rational if there exists a number a such that  a , ,  ~ abe, ,  where the 

b, , 's  are integers; otherwise Q is irrational. For x > o, B ( x )  ~ Bq(x) denotes the 

number of lattice points (i. e. points in /~k having integers (ml, m~ . . . .  , ms) as 

coordinates) in the closed k-dimensional ellipsoid Q ( y ) ~  x. The volume of this 

ellipsoid is equal to 
~k72 xk/~ 

(I7) V(x)  = V q ( x ) =  

We put 

(~ s) v (x) = PQ (~) = B~  (x) - -  VQ (x), 

where Pq (x) is called the lattice remainder. We also put 

x 

(i 9) R (x) = R e (x) = 7 c 
0 

For all forms Q and all k > 2 the following result holds, (L*NDAU): 

t - -  o 

If  Q is rational and k > 4 the true order of magnitude of P(x )  is known, 

(LANDAU, WALFISZ, JARNiK): 

(21) P(X) O(X k-l) for k > 4, 

for k ~ 2. 

Even if k--<4, estimations similar to (21) are known. Let, for instance, 

k = 2  and consider the circular ease: Q = y~ + y~. Then 

v(~)  = o (~,~), 

(2s) v ( ~ )  = ~ (x'/" log ' / '  x), 

n (x) = o (~'/'). 

methods the exponent ~ in (23) may be diminished a little, for 

better results have been 

By very deep 

example replaced by ~ ,  (NIELAND). Later, slightly 

obtained. The true value is not known. 
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(24) 

I f  Q has the form aty~ + a~Y~ + ": + akyl then, (JARNIX): 

t !  (x) -= 0 (x '/4 log 2 x), k = 2, 

(x) = O (x m log x), k = 3 ,  

(x) .... O (x{-'), k ~ 4. 

The est imation (20) always holds, the est imations 

proved only for special cases and lie very deep. 

(21), (22) and  (24) are 

Finally we remark tha t  the number  o f , in t ege r  solutions (Yl, Y~, . . . ,  Y~) of 

the equation 

(25) .... + v l ,  

(k > 4 ,  m a positive integer), is asymptotical ly equal to 

k ~-1 
(26) eonst, m , (m -~ ~ ) .  

(HARDY, MORD . L). 
Now consider a sequence of independent  r .v . ' s  X I1), X/21 . . . .  , X In) in B~, 

(k -->- 2), all having the same pr. f. P(E) and suppose tha t  P(E) is a lattice distribu- 
tion with the probabili ty mass concentrated in the points 

(27) V!a 1 + V, Ct, + "'" + Vkflk, (Vl, V~,, . . . ,  V k = O ,  ~ I, +. 2, +___'''). 

The vector a, has the rec tangular  components (a, , ,  a,2, . . . ,  a,k), (v - I, 2 , . . . ,  k). 

Fur the r  we suppose t ha t  the de te rminant  

A-- - I l a , , l l  o. 

Let  an arbi t rary r .v .  X of the sequence have the properties: 

I the mean  values are equal to zero; 

2 ~ the dispersions are equal to 1; 

(28) ' .3~ the mixed moments  of the second order are equal to zero; 

4 the  thi rd  moments  are equal to zero; k 

5 ~ the fou r th ,momen t s  f ,  are finite and f14 = ~ ~ -  

We form the variable 
X {1)+ X (2 )+ . . .  + X (n} 

(")X = 

and denote by #n (a) the probability of {n)X belonging to a sphere with its centre 

at  (o, o , . . . ,  o) and of radius a. Fur thermore ,  as usual, 
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I ( e-�89 +~)dx t  dxk .  ~p (a, k) = (2 lr) ~12 . "'" 

�9 ~ + + 4 ~ ~" 

By Theorem i, Chap. VII, 

(29) I/~n (a) -- ap (a, k) l < c. ---V' 
nk+l 

c being a constanL Hpwever, in the case under consideration we may find an 

explicit expression of /~(a), thus making it possible to discuss the remainder 

term in greater detail. 

As before the pr.'f. P, (E)  of (")X is a lattice distribution with the point 

spectrum belonging to 

(30) v~ a~ + v~ % + -.- + ~k ak , (~,  ~ , , . . . ,  ~ = o ,  +_ x, + 2, + . .  ). 

I f  (~1, ~s , . . . ,  ~) is a discontinuity point of P,,(E) and 

(3 I) 0 ' -~-g + g +  "'" + ~ ,  

then by Theorem I and (28:4 ~ ) the probability mass 

pressed by 

~ . .  ~ ) = ( 2  IAI 
p2 

(32) q(-) (~,, , ., evn)k/9, e - ~  + 0 

and /~n(a) is equal to the sum 

(33) 

(34) 

at (~1, ~ ,  . - . ,  ~) is ex- 

~,  q(.)C~,, ~ , . . . ,  ~). 
~,l +....-}-~k < a2 

Consider the quadratic form 

O ( y ) = ( a n  y, + a,1 y, + "'" + a~l y,.)' + ... + (axky, + a2ey~ + ... + a~kyk)'- 

with the determinant 

(35) D = A', 

the coefficients a,~ of which are the components of the vectors a in (30). Let 

the functions .B(x), V(x), P(x)  and R(x)  be defined by (I7)--(I9), Q being the 

form (34). By U(x) we denote the number of integer solutions (Yl, Y~,. . . ,  yk) 

of the equation 
Q(v) = x. 

From (3o) and (34) it is seen that the number of discontinuity points of 

P~(E) lying on the surface of a sphere with its centre at (o, o , . . . ,  o) and of 
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radius O, is equal to U ( e ~ n ) .  Hence from (32)the contribution of the probability 

masses belonging to this surface is equal to 

(36) 

or from (33) 

(z ;@/~ ~ ~ v (o',,) + 
\n-T-  ] 

~'"(") =Z~.. -i (:~,,),-~ e-~ V(r + o \ ,, * l J  

Since B (x) = ~, U (y), we have: 
y - < x  

f B (a' n) k 4 k - ~  a n (o'-) + o (37) ~u. (a) -- (2 z~n) *v" - -  k+'2 

n-~- 

Here we introduce 

B(r  r (e ' , , )  + .P(e',,) ~"/",,'~"d = = + P (e ~ n), 

and obtain after a simple calculation: 

IAI ; e { B(a:~.~G,,)l,. 
t'. (a) - -  ~ (a. ~) = ~ - - - ~  / e -Y a ~'(e', ,)  + o 

t2 :,r n)  " J I 
o , I  "2 

Integrat ing by parts we have: 

(38) 
IAI a-- 

- -  e - ~ -  P (a ~ ,2) + ,,,, (a) - ~p (a. ~) (z ~,,)"/~ 

a 

IAI f ~  o, 
o 

We now use the immediate estimation 

+ o{ 
I 

B (x) = 0 (dye) 
and observe that  

I/ I /  0 2 

e~ -~P@. )de  ~ e lP(d . ) l  
0 0 

a ~ n 

L f ] P(u) l d.,/ d Q  = 2 n 
0 

a 2 

= - R (a ~ ~). 
2 

Hence from (38): 
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(39) . u , , ( a ) -  tp(a, k) ( 2 zn )~ . / . , e  . nt.r, " . _ -,~ , 

where ]0~1 and ]0e[ are bounded by constants  independen t  of a and n ~. The  

radius a occurs in the remainder  te rm of formula  (39). This  is, however,  of no 

impor tance  with regard  to our  purpose, which is to s tudy the order  of magni- 

tude  in n. In  the sequel we suppose tha t  a is bounded.  The relat ions (38) and 

(39) express the connect ion between the discontinui t ies  of g .  (a) and the remainders  

of the lat t ice point  problem. 

As we have ment ioned earlier,  the es t imat ion (2o) is the only one valid in 

the general  case. I f  

- k - + ~  
P(x)  = 0 

then obviously 

R ( x ) = 0  -~-+~ . 

According to this we obtain f rom (39): 

(40) ,u,, (a) - -  ~ (a,  I t ) :  01--~Ik ~,  

or the same order  of magni tude  as in (29). Conversely,  it  is possible to prove 

(2o) by methods  similar tO those of the proof  of Theorem I, Chap. VII .  I con- 

fine myself  to this indicat ion.  Thus  we may say, tha t  Theorem I, Chap. VII ,  

and the est imation (20) are of the same depth. The est imations (2I) and (24) 

lie deeper  but  are only valid in special cases. I f  Q ( y )  in (34) is ra t ional  and 

k .-'> 4, thexl f rom (2~) and (39) we obtain the improvement  

(') 
( 4 t )  #,1 (a)  - ~ (~,, k)  = o ii; " 

Hi the r to  we have only obta ined O-estimations. Is it  not  possible also to get 

~-es t imat ions?  This  d6es no t  follow f rom (39) since the remainder  terms may 

eventual ly compensate  each other.  Consider,  however,  the fol lowing example: 

Q ( y )  has the  form y ~ + y ~ + . . . + y ~ ,  and k ) - 4 .  I f  S,o is a sphere with its centre  

at (o, o . . . .  , o) and of radius Q, having discont inui ty  points of P , ~ ( E )  on its sur- 

1 Since B(x) is not generally zero for x = o we suppose that a ~ n ~ I, or else a trivial change 
in (39) has to be performed. 
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face, then from (25), (25) and (35) the probability mass on S e is asymptotically 

equal to 
k 

(42) const, q2(~-,) e - g  - ----const. Qk- 'e -2  I. 
n k/2 n 

From ( 4 I ) i t  follows that  the remainder term is O ( I )  and from (42) tha t  it 

cannot be improved. Thus, even if all moments are finite, an expansion like 

/~ , ( a )=~p , ( a )+  ~ O ' ( a ) + ~  ' n  

~Pl and ~01 being continuous, is generally impossible. There must enter into the 

expansion a discontinuous function which, however,  is much more complicated 

than in the one-dimensional case. 

To conclude we give an example which well illustrates the connection be- 

tween our remainder term problem in the two-dimensional case and the lattice 

point problem for a circle. Consider the two-dimensional lattice distribution 

having the probability mass } at the points (_  i, + I). Obviously the conditions 

(28) are satisfied. If  n is even, it is easily seen that  the point spectrum of P,(E) 
is situated in 

, , , .  ~ ;  ~,. , (.,,,, ,,~ = o, + I ,  _+ 2, + . . . ) .  

Obviously 

We prefer to use the function 

q (y) - 4 y~ + 4 yl.  

�9 2 Q, (y) - y ;  + y , .  

Hence PQ(x):  PQ,(X/4) , RQ(x)= RQ,(X/4) , where PQ, and /~Q, are the remainders 

of the lattice point problem for a circle (cf. (23)). Then from (39): 

if,, (a) - ~p (a, 2) - 

a 2 

2 e "~- 
~T n 

a~ R ta~ n~ a' PQ'(a4---~n) +Or-~ Q'~--4-I +0~-~. 

where 101 is bounded. Using (23) again we obtain 

According to (23) we have: 
~ 

(43)  ~ , , (a )  - ~ ( a ,  2) 2 - a n a'/' : - - e - 2 ~ n  P Q '  - -  + O-n~l;14' 
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(44) ~*n(a)--~2(a, 2)~- 0 ~-~ , 

or the order of magnitude of Theorem I, Chap. VII.  As was mentioned in 

connection with the circular lattice point problem, it is possible to replace the 

exponent .~ by a somewhat greater number, but then very deep methods must 

be used. For instance, according to the result of NIELA~D, we have 

t 
\ n  8V 

On t h e  other hand it follows from PQ, (x)----D(x '/' log '/` x) (cf. (23)), that  the re- 

0 ( ' )  mainder term of (44) cannot be replaced by -~,  . Thus  in the two-diraensional 

case it  is impossible to attain a better general result than 

I~t~ (a) -- ~ (a, 2) 1 --< const____=, 
n a 

where ~ - - < a < ~ .  

Remark.  We have hitherto exclusively studied the probability of (")X be- 

longing to a sphere about  the origin. I t  must be observed that the remainder 

term is dependent on the region considered. In the two-dimensional case we 

I 
obtained a remainder term of order of magnitude ~ if the region was a circle, 

but  if the region is a square with its centre at the origin and the sides pa- 

raUel with the coordinate axeses, there may occur discontinuities of order of 

I 
magnitude ~n"  This is, for instance, the ease if P (E)  is a lattice distribution 

with the probability mass �88 at ( _  i ,  _+ i). 

Bibliography. 

S. BERNSTEIN, [I] Sur l'extension du th6or~me limite du calcul des probabilit6s aux 
sommes de quantit6s d6pendantes. Math. Ann. 97 (I9z7). 

A. C. BERRY, [I] The accuracy of the Gaussian approximation to the sum of in- 
dependent variates. Trans. Amer. Math. Soc. 49 (x94I). 

A. BEURLING, [I] Sur les int6grales de Fourier absolument convergentes et leur 
application ~ une transformation fonctionnelle. Neuvi~me congr~s des mathdmaticiens 

scandinaves. Helsingfors x938. 



124 Carl-Gustav Esseen. 

S. BOCHNER, [I] Vorlesungen iiber Fouriersche Integrale. Leipzig i93z.  
- - - - ,  [z] A theorem on Fourier-St,cities integrals. Bull. Amer. Math. Soc. 4o ('934)- 
H. BOHR, [I] Ein allgemeiner Satz fiber die Integration eines trigonometrischen 

Polynoms. Prace mat.-fiz. 43 (1935). 
H. BRu~s, [I] Wahrscheinlichkeitsrechnung und KoUektivmasslehre. Leipzig x9o6. 
T. CARLEMAN, [t] Les fonctions quasi analytiques. Collection de monographies sur la 

tll6orie des fonctions, pubii6e sous la direction de M. ]~mile Borel. Paris i956. 
- - - - ,  [2] Sur les dquations intdgrales... Uppsala Universitets ~.rsskrift i923. 
(~. V. L. CHARLIER, [I] Uber das Fehlergesetz. Ark. Mat., Astr. o. Fysik 2 (19o5--o6).  
- - - - ,  [:] Die strenge Form des Bernoullischen Theorems. Ark. Mat., Astr. o. Fysik 

5 (I9~ 
- - - - ,  [3] Contributions to tl:e mathematical theory of statistics 3. Ark. Mat., Aslr. 

o. Fysik 8 (1912--I3) .  
- - - - ,  [4] Contributions to the mathematieal theory of statistics S and 6. Ark. Mat., 

Aslr. o. Fysik 9 ( 1 9 1 3 ~ ' 4 ) .  
C. C. CaAIG, [I] On the eomposition of dependent elementary errors. Ann. Math. 33 

('9.32). 
H. Cm*.M~IL [I] Das Gesetz yon Gauss und die Theorie des Risikos. Skand. Aktuarie- 

tidskr. 6 (, 9 ~ 3). 
- - - - ,  [2] On some classes of series used in mathematical statistics. Sixi~me congr~s 

des mathdmaticiens scandinaves. Copenhague i955. 
- - - - ,  [3] On the composition of elementary errors, x. Skand. Aktuarietidskr. ix (x928). 
- - - - ,  [4] Su un teorema relativo alla legge uniforme de, grand, humeri. Giornale 

dell'Istituto Italiano degli Attuari (I934). 
- - - - ,  [5] Random variables and probability distributions. Cambridge Tracts No. 36 (x937). 
- - - - ,  [6] S u r u n  nouveau thdor~me.limite de la thdorie des Trobabilitds. Aetualit(!s scienti- 

fiques et industrielles No. 735. Paris i938. 
- - - - ,  [7] Entwicklungslinien der Wahrscheinlichkeitsrechnung. Neuvi~me congr~s des 

malhdmaliciens scandinaves. Helsingfors x 938. 
F. Y. EDGEWORTH, [t] The law of error. Cambridge Phil. Trans. 2o (i9o4). 
C.-O. ESSEEN, [I] On the Liapounoff limit of error in the theory of probability. Ark. 

Mat., Astr. o. Fysik 58 A (i94~). 
- - - - ,  [2] Determination of the maximum deviation from the Gauss,an law. Ark. Mat., 

Astr. o. Fysik 29 A (x943). 
B. GNEDENKO, [I] Sur les fonctions caract6ristiques. Bull. de l'Universitd d'F, tat h 

Moscou. A, Vol. i, Fasc. 5 (I937). 
G. H. HARDY--J. E. LITTLEWOOD--G. P~)LYA, [,] Inequalities. Cambridge i934. 
E. HILLE--J.  D. TA~IAaKIN, [,] On the absolute integrability of Fourier transforms. 

Fundamenta Math. 25 (I935). 
A. E. INGHA~I, [,] A note on Fourier transforms. J. London Math. Soc. 9 (I934) 
V. JAaNiK, [I] b~ber Gitterpunkte in mehrdimensionalen Ellipsoiden. Math. Ann. Ioo 

(I928). 



Fourier Analysis of Distribution Functions. 125 

V. JARNiK, [2] Uber die Mittelwerts~itze der Gitterpunktlehre I, II, Math. Z. 33 

(1931). 
B. JESSEN--Lk. WINTNER, [I 1 Distribution functions and the Riemann zeta function. 

Trams. Amer. Math. Soc. 38 (i93~). 
A. JOURAVSKY, []] Sur la tb6or6me limite du calcul des probabilit~s (in Russian). 

Travaux de l']nstitut Physico-Mathdmatique Stekloff. Section Math. I933. 
A. KHINTCHINE, [I] A3ymptotische Gesetze der Wahrscheinlichkeitsrech~tung. Berlin I933. 
A. KOLMOGOROFF, [I] Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin i933. 
P. S. LAPLACE, [I] Thdorie analytique des probabilitds. Oeuvres VII, Paris I847. 
P. LEVY, [i] Calcul des probabilitds. Paris i925. 

, [2] Thdorie de l'addition des variables aldatoires. Monographies des probabilit6s, 
publi6es sous la direction de M. Emile Borel. Fasc. t, Paris 1937 . 

- - - - ,  [3] Sur les s6ries dont les termes sont des variables 6ventuelles ind6pendentes. 
Studia Mathematica 3 (I93I).  

A. LIAPOUNOFF, [t t Sur une proposition de la th6orie des probabilit6s. Bull. Acad. 

Sci. St-Pdtersbourg, (5), 13 (19o~ 
- - - - ,  [2] Nouvelle forme du th6or6me sur la limite de probabilit6. Mdm. Acad. Sci. 

St-Pdtersbourg, (8), i2 ( i9oi) .  
J. W. LINDEBERG, !I] Eine neue Herleitung des Exponentialgesetzes der Wahrschein- 

lichkeitsrechnung. Math. Z. 15 (I92',). 
J. E. LITTLEWOOD, [I] On the Fourier coefficients of functions of bounded variation. 

Quart. J. Math. Oxford Ser. 7 (~936) �9 
D. MENCHOFF, [I] Sur l'unicit~ du ddveloppement trigonom~trique. C. R. Acad. Sci. 

Paris i63 (i9t6).  
B. v. Sz. NhGY--A. STRAUSZ, [I] Uber einen Satz von H. Bobr. Math. u. Naturwiss. 

A,tz. Ungar. Akad. Wiss. 57 (1938). 
K. PEARSON, [I] On deviations from the probable in a correlated system of variables. 

Phil. Mag. 5 ~ (I9OO). 
J. RADON, [I] Theorie und Anwendung der absolut additiven Mengenfunktionen. 

Sitzu~gsber. Akad. Wien I2~ (19t3). 
F. RIESZ, [i] Uber die Fourierkoeffizienten einer stetigen Funktion von beschr~inkter 

Schwankung. Math. Z. 2 (i918). 
L. SCHWARTZ, [I] Sur le module de la fonction caract~ristique du calcul des proba- 

bilit~s. C. R. Acad. Sci. Paris 212 (1941). 
E. C. TITCH~ARSH, [II I~troduction to the theory of Fourier i~tegrals. Oxford I937. 
G. VALIRON, [I] Sur la formule d'interpolation de Lagrange. Bull. Sci. Math. 49 

(1925). 
G. N. WATSON, [I] Theory of Bessel functions. Cambridge i922. 
A. WINTNER, [~] On the addition of independent distributions. Amer. J. Math. 56 

(~934). 
�9 [~] On a class of Fourier transforms. Amer. J. )~lath. 58 (I936). 


