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Introduct ion.  

Lagrange's Problem on Mean Motion. 

1. The  invest igat ions forming  the contents  of the  present  paper  have the i r  

s ta r t ing  point  in the t r ea tmen t  by Lagrange  [I], [2] of the per turba t ions  of the  

large planets. I f  we denote  by Q = Q(t) and ~ = ~(t) e i ther  the  exeentr ic i ty  and 

the  longi tude of the perihelion or the incl inat ion and the longi tude  of the  ascend- 

ing node for  the orbi t  of a planet  a t  the t ime t, we find f rom the differential  

equat ions of the  movement  for  the de te rmina t ion  of these funct ions  in first 

approximat ion  a re la t ion  of the  fo rm 

( i )  e( t )  e t'pl~) = F ( t )  = aoe ~o~ + . . .  + a~, e ~ ,  

where the funct ion F( t )  on the r igh t  is an exponent ia l  polynomial  with complex 

not  vanishing coefficients a o . . . .  , a~, and real mutua l ly  different  exponents  ~o, . . . ,  ~ ' .  

This  exponent ia l  polynomial  is, therefore,  a sum of vectors, each having a cons tant  

length  and tu rn ing  with a cons tan t  angular  velocity.  The number  of terms N §  I 

equals the number  of planets.  The  s tudy of the var ia t ion of the longi tude  of 

the perihel ion or of the  ascending node leads the re fore  to  a s tudy of the varia- 

tion of the argument ~(t) of an exponential polynomial F( t )  of the type described. 
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As shown by Lagrange, the exponential polynomial in question contains in 

most cases a ~3~reponderant term, i .e .  a term whose modulus exceeds the sum 

of the moduli: of the remaining terms. This implies that  F(t) does not come 

arbitrarily near to o, i. e. it satisfies a relation of the form 

I F(t) l => > o .  

Since the argument of F(t) differs for every t by less than ~ ~ from the argument 

of the preponderant term we have 

(3) ~o(t) = et + 0(I), 

where e is the exponent of the preponderant term. The argument 9~(t) is, there- 

fore, in this so-called: Lagrangean case the sum of a secular term et  and a bounded 

remainder. 

W h e n  the polynomial does not contain any preponderant term it will not 

generally satisfy any relation of the form (2) and it may even take the value o. 

In the latter case the continuity of the argument ~(t) can only be maintained, 

if we agree to consider it not rood. 2 ~ but  rood. z, and to change the sign of 

the modulus Q(t), when t passes a zero of F(t) of odd order. In  case of a planet 

this means, that  w e  must allow negative values of the excentrieity and the in- 

clination, and must  consider the line of apsides instead of the perihelion and 

the nodal line instead of the ascending node. This possibility already occurs in 

the trivial case ~V= i, which was also considered by Lagrange. I f  in the said 

case [ao[ > lal[ or ~ao] < [aj], one term is preponderant, and we have the rela- 

tion (3) With c = 2 o  or e = ) . l  respectively. If ,  however, I 01 = I ~  I, the func~on 

F(t) has equidistant zeros, and using the convention regarding ~p(t) we easily find 

that  the relation (3) is again  true, this time with e=�89 + ;t~); the remainder is 

in this case a constant. ~ 

Lagrange's treatment did not  go beyond the two cases mentioned above, and 

he added ([2], w 46) the following remark: *Hers de ces deux cas, il est fort  

difficile et pent ~tre m~me impossible de prononcer, en g6ndr~, sur la nature de 

Fangle ~o~. 

* Denoting by a the common value of [ao[ and ] a l [  and put t ing ao=ad~o end a, 
we have, in fact, 

= a (e i [�89 . l~.-~,) t + 4 I~ , - , , , ) ]  + d [i ( ~ - ~  t + ~ C,, , -  ~ ) ] ) .d  [~ (~,+ a,I t + �89 (~0 + ,,~)], 
so that 

o ( t ) =  2a  cos [�89 t - [ -~(ao '~,)]  and r t+�89 
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2. Having first been made the object of more heuristic considerations 

by various astronomers, this problem was taken up by Bohl [I], who, besides 

treating some other eases where the relation (3) is trivial, in detail studied the 

case N-~  2. 

Suppressing, for the sake of simplicity, the exponential factor e t~t of the 

first term (which means that  ~(t) is diminished by the linear term ~t0t ) we may 

assume the polynomial to be of the form 

(4) F ( t )  = ao + a le i~ ' t+  "'" + a2ve i ~ t .  

One of the trivial cases mentioned is then the one in which the ratio between 

any two of the exponents At, . . . ,  Z~ is rational. In  this case F ( t )  is periodic, 

whence the relation (3) easily follows, the constant e being the ratio between 

the variation of the argument in a period and the length of the period. 

I f  N =  2, the only interesting case is therefore the one in which the ratio 

between the exponents ~, and Z~ is irrational.  In  this ease the course of the 

movement can easily be described by applying the theorem that  the points of 

the s t ra ight  line (x~, x s ) =  (~, t, Z~t) are everywhere densely distributed rood. 2 ~, 

a special (and, for the rest, trivial) case of the general Kronecker approximation 

theorem. I t  then turns out, that  in the non-Lagrangean case the function always 

comes arbitrarily near to o, or even takes the value o. Bohrs main result is 

now, that  in this ease we always have 

(5) = + o ( t ) ,  

i. e. 9(t) is again the sum of a secular term c t  and a remainder, but  the latter 

is now not necessarily bounded; it is even, as shown by Bernstein [I], generally 

unbounded 1. Taking into account a certain uniformity, the method yields a little 

more, namely the existence of the limit s 

(6) c = lira 9(d) - - 9  (7). 

i Regarding the  importance of these results  from an astronomical point  of view, see also 
Bohl [2] and Bernstein [2]. 

For an arbi t rary real function PC,  6) defined when - - ~  <: 7 < 6 < - ~ o o  we denote by  
lira inf p(y, 6) the  least  upper  bound of those numbers  ~- for which there exists a number  

T= T(r~ such that ~(y, d)>r for (6--y)> Tj and, similarly, by lira sup {)(y, 6) the greatest lower bound 

of those numbers r for which there exists a number T= T(r) such that @(7, 6)<r for (d--7)> T. 
If these limits are equal, we denote their common value by lira Q (7, 6). When @ (7, d) is complex- 
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In  the sequel a complex function F ( t )  of the real variable t, which may be 

written in the form F ( t ) = Q ( t ) e ~  (t), where Q(t) and ~(t) are real and continuous, 

and Q(t) has but  isolated zeros (so that  ~ (t) is uniquely determined rood. ~), will 

be said to possess the mean motion c, if the relation (6) is true. Bohl's result 

may then be expressed by saying that  an exponential polynomial (4)always 

possesses a mean motion when N----2. Bohl also gave an expression for the 

mean motion. 

In  order to obtain this result, Bohl made use of a refinement of the special 

case of Kronecker's theorem mentioned above, to the effect that  the points of 

the line (x~, xs)----(~ t, ~ t )  are not  only everywhere densely distributed, but  even 

equidistributed rood. 2 ~. In the form leading to (6) this theorem states that  if 

1(7, J) denotes the sum of the lengths of those sub-intervals of 7 < t < $  in which 

the point (~z t, ~t 2 t) belongs mod. 2 ~ to a (sufficiently regular) set not containing 

equivalent points rood. 2 ~, then the limit 

lira l (7, d) 

exists and is proportional to the area of the set. 

3. As shown by Weyl [l], [2], we have equidistribution also in the case of the 

general Kronecker theorem concerning a straight line (x~,...,xN) -~ (~tl t , . . . ,  ~ t) 

in the m-dimensional space, for which the numbers ~ , . . . ,  ).~ are linearly inde- 

pendent ~. By means of this result he could immediately extend Bohl's investiga- 

tion to the case N ~ 2  under the assumption that  the exponents ~LD..., ~ are 

linearly independent, with the result that  in this case a mean motion always 

exists. This, however, did not mean a complete solution of Lagrange's problem, 

since for N ~  2 the exponents ~ . . . .  , ~tN may be linearly dependent even if two 

of them have an irrational ratio. 

valued,  we wr i t e  l ira Q ( y , d ) ~ a  if  t he re  e x i s t s  to e~ery e ~ o  a n u m b e r  T ~  T(e) s u c h  t h a t  
(~--~) ~ | 

[Q(7, d ) - - a [ ~ e  for (d--7)~T. For  a se t  of  f u n c t i o n s  0(7,  d) t h e  l i m i t s  are  sa id  to ex i s t  un i fo rmly ,  
if, for  an  a r b i t r a r y  e, t h e  s a m e  T - -  T(e) m a y  be  u s e d  for al l  f unc t i ons  of t h e  set.  ~ T h e  s a m e  

notations will  be u sed  in cases  where  t h e  n u m b e r s  y a n d  J are  n o t  a rb i t r a ry ,  b u t  a re  to be chosen  
f rom s o m e  g i ven  s e t  of  real  n u m b e r s .  

I T h e  n u m b e r s  XI, . . . ,  XN are  ca l led  l i nea r ly  i n d e p e n d e n t  if  t h e y  sa t i s fy  no  re la t ion  

hlXl +" �9 �9 § hNX N-~ o 

wi t h  i n t eg ra l  coefficients  h D . . . ,  h N n o t  al l  v an i sh ing .  
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Recently the problem has been treated by Hartman, van Kampen, and 

Wintner [I]; their  method, which is also closely related to that  of Bohl, shows 

that, if the exponents and the moduli of the coefficients are given, the formula 

(5) is valid for almost all sets of values of the arguments of the coefficients, 

Occasioned by this investigation, Weyl  [3] took up his earlier investigation, 

obtaining in the case of linearly independent exponents an expression of the 

mean motion, which for _A r E  2 is identical with that  of Bohl. 

All these results are contained in a later investigation by Weyl  [4'] concerning an 

arbitrary exponential polynomial F(t),  which may now again be of the form (I). 

The method is a fur ther  development of that  of Bohl and depends on a represen- 

tation of the polynomial F(t)  well known from earlier papers by Bohl and 

Esclangon on generalized periodic functions. This expression for F ( t ) i s  obtained 

by introducing an integral base of the exponents Jto, . . . ,  ~v, i. e. a set of linearly 

independent numbers Pl . . . . .  pm such that each ~ has  an expression 

where the coefficients h~k are integers. The polynomial then takes the form 

2V 

F ( t ) =  ~ ,  a , ,et lh-x'  ',+'" �9 +h.,,, ~.,~1 t 

n~O 

and is therefore obtained by considering the fanetion 

N 

G (xl . . . .  , ~ . )  = y~ an e,'Ihnl ~,+" "+h . ,~  ~.1 

n ~ O  

on the straight line (xl . . . . .  x,~) = (tt I t , . . . , / ~ t ) ,  i. e. 

(z) F( t )  = ~(~,~ t , . . . ,  ~ , . t ) .  

The study of the argument of F(t) is thus reduced to a study of the function 

G ( x l , . . . ,  xm), which has the period 2 ~ in all the variables, and an application 

of the Kronecker-Weyl theorem. 

The purpose of Weyl's investigation is to prove the existence of a mean 

motion in all cases. The proof is, however, valid only under the assumption 

that the set of zeros of the function G ( x l , . . . ,  xm) contains no manifold of the 

dimension m -  I, a restriction not noticed by Weyl. We return later (w 25) to 

the meaning of this assumption. Weyl also deduces a simple expression for the 

mean motion. 
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Almost  Periodic Functions of  a Real Yariable. 

4. I t  suggests itself to extend Lagrange's problem from exponential polyno- 

mials to the more general c}ass of almost periodic functions 

F( t )~  ~a ,  dan t 

introduced by Bohr [8], [9]. We briefly recall the fundamental definitions and 

theorems regarding these functions, referring for details to the original papers 

or the monographs by Bohr [I4], Besieoviteh [i], or Favard [I]. 

A set of real numbers is called relatively dense, if, in any interval of a 

certain length l, it is represented by at least one point. Let F(t) be a continuous 

complex function defined for - - ~  < t <  + ~ .  A number z is called a translation 

number of F(t) belonging to a given number ~>o,  and is denoted by z(~)or ~F(~), 

if the inequality 
I F ( t  + z) - -  F(t)l__< 

holds for all t. Together with r the number - -~  is, of course, also a translation 

number of F(t) belonging to ~. The function F(t) is called almost periodic if, 

for any ~>o,  the set of all translation numbers z=~(~)=~e(~)is relatively dense. 

Every almost periodic function is bounded and uniformly continuous, i. e. 

the set of translation numbers belonging to a given ~ > o  contains a neighbourhood 

of the point ~ = o. Further, i t  possesses a mean value 

7 

A set of almost periodic functions is called a uniformity set, if for any ~ > o  

the set of common translation numbers ~=z(~)  of all functions of  the set is 

relatively dense and contains a neighbourhood of the point ~ = o .  For the func- 

t ions of a uniformity set the mean values exist uniformly. 

The sum or the product of two almost periodic functions and the limit of 

a uniformly convergent sequence of almost periodic functions are again almost 

periodic. 

Corresponding to an arbitrary almost periodic function F(t ) there  exists only 

a finite or enumerable set of real numbers An for which the mean value 

a~ = M { F(t) e- '  a~ t} 
t 
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does not vanish. The series 
F(t)  ~ 2a~ e~zn t 

formed with these numbers ~ as exponents and the corresponding numbers a. 

as coefficients is eMled the Four ier  series of the function. We have the Farseval 

formula 
M { I F ( t ) I  2} ----~la.I '. 

t 

Different functions have different Fourier series. 

The Fourier series of the sum or the product of two almost periodic func- 

tions or of the limit of a uniformly convergent sequence of almost periodic func- 

tions are obtained by performing the corresponding operations on the Fourier 

series of these functions. 

The main theorem of the theory is the aptn'oximation theorem. According to 

this theorem the class of almost periodic functions is identical with the class of 

functions which are the limit of a uniformly convergent sequence of exponential 

polynomials 

Fp(t)  = a . 

For a given almost periodic function these exponential polynomials may be chosen 

with exponents among the exponents )~ of the function. 

Besides the ordinary almost periodic functions various classes of generaliza- 

tions have been considered, for which a similar approximation theorem holds, 

the uniform convergence being replaced by weaker notions of convergence. As 

these generalizations are not directly used in the present paper, but are only 

referred to occasionally, we shM1 not go into details regarding this subject. 

5. By a modul M we shall mean a set of real numbers, which, containing 

a number #, also contains all integral multiples of #, and, containing two numbers 

#1 and #2, also contains their sum. The sma21est modul containing the exponents 

Z, of an almost periodic function F ( t )  is called the modul of the function. I t  

was introduced by Bochner [I]. Evidently it consists of all linear combinations 

hi it~ + .-. + h~)~- 

of the exponents 2~ with integral coefficients hi, . . . ,  h,v. 

Between the translation numbers and the exponents of an almost periodic 

function we have the following important connection: A necessary and sufficient 
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cond i t i on  t h a t  a f u n c t i o n  F(t) shou ld  be a lmos t  per iodic  w i th  e x p o n e n t s  f r o m  a 

g iven m o d u l  M,  is t h a t  to  any  e > o  co r r e spond  a finite set  of  n u m b e r s  ~1 , . . . ,  ~-~ 

in  M a n d  a n u m b e r  V > o ,  such  t h a t  every  n u m b e r  �9 s a t i s fy ing  t he  cond i t i ons  

�9 . . r o o d .  2 ~  

is  a 

F r o m  th i s  fo l lows :  I f  F ( t )  is a l m o s t  per iodic ,  and  G(t) deno te s  a f u n c t i o n  

wi th  t he  p r o p e r t y  t h a t  to  a n y  ~ > o co r r e sponds  a n u m b e r  J > o such  t h a t  any  

zF(~) is also a *o(~), t h e n  G(t) is a lso a l m o s t  per iodic ,  and  i ts  e x p o n e n t s  be long  

to  t he  m o d u l  of  F(t). 

As a specia l  case, we m e n t i o n  t h a t  if  2 ' ( 0  is a l m o s t  pe r iod ic  a n d  if c is 

a n u m b e r  w i t h  t he  p r o p e r t y  t h a t  to  any  ~ > o co r r e sponds  a ~ such  t h a t  any  

�9 = ~ F ( d )  satisfies t he  cond i t i on  

mod.  

t h e n  c be longs  to  t he  m o d a l  of  F ( t ) .  F o r  t h e  l a t t e r  c o n d i t i o n  impl ies  t h a t  

]d c * -  x]_--<, a nd  h e n c e  t h a t ,  is a ~(,) of  t he  f u n c t i o n  dct, which  ha s  the  

e x p o n e n t  c. 

6.  T he  a l m o s t  per iod ic  f u n c t i o n  F(t) is periodic with  t he  per iod  p > o if  

and  only  if  i ts  e x p o n e n t s  b e l o n g  to  t he  d i scre te  m o d a l  M = { h ? } , w h e r e  h 

r u n s  t h r o u g h  all  in tegers .  I t  is limitperiodic wi th  l imi t  pe r iod  p ,  wh ich  m e a n s  

t h a t  i t  is t he  l imi t  o f  a u n i f o r m l y  c o n v e r g e n t  sequence  of  pe r iod ic  func t ions ,  

t he  per iods  of  w h i c h  are  i n t e g r a l  mu l t ip l e s  of  p, if  and  on ly  if i ts exponen t s  

be long  to  the  m o d u l  M = { r 2 ~  ~ - ~ ,  where  r runs  t h r o u g h  all  r a t i o n a l  numbers .  

1 See Bohr [8], pp. IO5--II 7. The necessity of the condition is his theorem II  (p. Iio), while 
the sufficiency is a consequence of his theorems I (p. IO5) and B (p. 113). See also Bohr [I3], 
pp. 59--60. 

By a theorem of Bohl and Wennberg the set of numbers �9 satisfying the conditions 
] ~.~v [ ~ ~ . . . .  , I ).~.v [ ~ ~/ (rood. 2n), where 9,1 . . . .  , ~tv are arbitrary real numbers and ~ > o, is 
relatively dense�9 See e.g. Bohr [8], pp. 119--121. 

For later reference We notice that even the set of integers v satisfying the conditions is 
relatively dense; for if $ is chosen sufficiently small, any number v satisfying the conditions 
I~.tz]~< 6 . . . . .  I).~.~1 ~ 6 and 12rev]_-< ~ (rood. 2~) differs at most by d/2n from an integer 
satisfying the former conditions, and the set of numbers v satisfying the latter conditions is rela- 
tively dense. 

l0 - 632042 Acb:t mathematica. 77 
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An almost periodic function F(t)  is said to possess the f inite integral base 

/~1, . . . .  Pro, if these numbers form a finite integral base of the exponents of F(t),  

i .e .  if they are linearly independent and the exponents are contained in the 

modul M ~  {hip  I + . . .  + hm/~}, where the set of coefficients hi, . . . .  hm runs 

through all sets of integers. The theory of these functions was developed by 

Boh] and Eselangon before the general theory of almost periodic functions. 

Every exponential polynomial is of this kind. 

Let F(t) be a function with exponents from M. Allowing terms with the 

coefficient o, we may write its Fourier series in the form 

F(t) ~ Y, a, ...... ,~ ei (~, ~,+. . . +~ ~ t. 

Corresponding to the expression (7) of an exponential polynomial we have in 

the present general case 

(8) F(t)  = G (/~t t . . . . .  l ~  t), 

where G(xj . . . .  , x~) is a continuous function with the period 2 z  in all the 

variables, and with the Fourier series 

G (x I . . . .  , xm) ~ ~ah ...... %,e ~(h,~z+'''+h~ ~,~1. 

This function G (xl . . . .  , xm) will be called the spatial extension of F(t). Con- 

versely, if G (x~ . . . . .  x~) is a continuous function with the period 2 z in all the 

variables, the function (8) is an almost periodic function with exponents from M. 

An admost periodic function F(t)  is said to possess the infinite integral base 

/z~, tz~ . . . .  , if these numbers form an infinite integral base o f  the exponents of 

F(t),  i. e. if they are linearly independent ~ and the exponents are contained in 

t he  modul M =  {hip 1 + h~p j+ . . . } ,  where the sequence of coefficients hi, hz , . . .  

runs through all sequences of integers of which only a finite number are ~= o. 

In  this ease we have a result similar to the preceding one, the spatial extension 

being now a periodic function of an infinite number of variables. 

Finally, an almost periodic function F(t) is said to possess the finite or 

infinite rational base p ~ , . . . ,  p~ or /z~,tz2,..., if these numbers form a rational 

base of the exponents of F(t), i. e. if they are linearly independent and the expo- 

nents are contained in the modul M----{rlp t + . . -+ rm/~}  or M = { r l p l  +rs/z~+ "'" }, 

where the coefficients are now rational numbers of which, in the case of an 

1 T h e  n u m b e r s  i L t ,  P 2 ,  �9 �9 �9 ~ r e  c a l l e d  l i n e a r l y  i n d e p e n d e n t  i f  P l ,  �9 � 9  P m  a r e  l i n e a r l y  i n d e p e n d e n t  

f o r  e v e r y  m .  
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infinite base, only a finite number are ~=o. In  these cases the spatial extension 

is a limit periodic function of a finite or infinite number of variables. 

The above mentioned spatial extensions were used by Bohr [9] to prove the 

approximation theorem. Later  this theorem has been proved more simply. On 

the basis of the approximation theorem, the spatial extensions may be introduced 

very simply, as pointed out by Bochner [I]. In the present paper we shall there- 

fore not presuppose any results regarding the spatial extensions. 

]lean ] lot ions of  Almost  Periodic Funct ions  of  a Real Variable. 

7. I t  was proved by Bohr [I I], [I3] that  if F(t) is an almost periodic function 

satisfying a relation of the form (2), then the argument ~o(t) will be of the form 

(t)  = t 

where ~(t) is again almost periodic. Thus the relation (3) is again true. In  the 

Lagrangean case the almost periodicity of the remainder had previously been 

pointed out by Wintner [2], who had also conjectured the preceding theorem. 

While in the Lagrangean case the mean motion e is always one of the exponents 

Z,, this does not hold good in the ease of an arbitrary almost periodic function; 

yet the mean motion c, and similarly the exponents of ~p(t), always belong to 

the modul of F(t). Applications of this theorem are given in Wintner  [3] (see 

also Stepanoff [I]) and in Wintner  [8], [9]- 

Bohr's proof of the theorem is founded directly on the definition of almost 

periodicity. Another  proof depending on the approximation theorem has been 

given by Jessen [4]; it leads to an expression for the mean motion, an expression 

also found (in an Unessentially different form and by other means) by Hartman 

and Wintner  [ I ] .  I t  was applied in Jessen [4] in the case of an arbitrary almost 

periodic function F(t), to a study of the mean motion of F ( t ) - - a  for different 

values of a not belonging to the closure of the set of values of F(t). This study 

was followed by more general investigations on almost periodic movements by 

Fenchel and Jessen [I] and Fenchel [I]. In the special case where / r ( t ) i s  an 

exponential polynomial it was shown by Bohr and Jessen (see Bohr [x 511 that  the 

mean motion c always belongs not only to the m o d u l  of F(t)  but even to a 

certain finite set, depending only on the exponents of the polynomial. 

An extension of Bohr's theorem to almost periodic functions in a group has 

been given by van Kampen [I]. 
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In Chapter I we give an exposition of the two proofs of Bohr's theorem 

mentioned above, and of the additional results regarding the values of the mean 

motion. 

Analytic Almost Periodic Functions. 

8. I f  the almost periodic function F(t) does not satisfy any relation of the 

form (2), the variation of its argument may be very complicated, and if the 

function has zeros it may even be impossible to fix the argument as a continuous 

function of t. The problem seems, then, only to be of interest in the case o f  

analytic almost periodic functions. We briefly recall the theory of these functions 

as developed in Bohr [Io], referr ing also to the monographs by Besicovitch [I] 

and Favard [I]. 

Let f(o) be a function of the complex variable s-= a + it, which is regular 

in a vertical strip (-- ~ ~ ) a  < a <  fl(_--< + ~) ,  denoted briefly by (a, fl). A (real) 

number ~ is called a translation number of f(s) belonging to a given number 

r > o  and the given strip, and is denoted by ~(r; a,~) or z](~; a,/?), if the in- 

equality 
]f(s + i*) -- f(s)  l <= * 

holds for all s in the strip. The function f(s)  is calle~l almost periodic in (a, ~) 

if, for any r  the set of all translation numbers z ~ ( r ; a , / ~ ) = z / ( ~ ;  a, ff) is 

relatively dense. The function is called almost periodic in [a, fl], if it is almost 

periodic in every reduced strip ( a < ) a 1 < a < f f l ( ~ . ~ ) ,  �9 and it is called almost 

periodic in [a, ~) or (a, ~], if it is almost periodic in every strip ( a < ) a j  < a < f f  

or a<o</~1(<~)  respectively. Using throughout square brackets in this manner 

we have the theorem that  a function f(s) almost periodic in [a,/~] is bounded 

and uniformly continuous in [a,~]. This implies that, if a < a ~ < f l ~ < ~ ,  then the 

almost periodic functions Fo(O=-f(o+it), where al~a=<fll, form a uniformity set. 

The notation (a, fl) will also be used for the interval a < a < ff and square 

brackets will be used in this connection in the same manner as for strips. A 

closed strip or interval a ~ a ~  fl will be denoted briefly by {a, fl} 

The sum or the product of two functions almost periodic in [a, fl], and the 

limit of a sequence of functions almost periodic in [a, ff] which converges uni- 

formly in [a, ~], are again almost periodic in [a, ~]. A function obtained from an 

almost periodic function by replacing s by ks + l, where k is real, is almost 

periodic in the corresponding strip. 
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To an arbitrary function f(s) almost periodic in Is, #] corresponds a Dirichlet 
series 

f ( s )~  Za,,e4~*, a~=M{f (a+i t ) e -~ , (~+")} ,  
t 

with real exponents ~ and complex coefficients a,(@o). This series is merely a 

formal combination of the Fourier series of the functions Fo(t )=f(o  + it), i. e., 

e " of the almost periodic function Fo(t), the ex- in the Fourier series ~a(~ ~) ~(a)t 

ponents ~ )  are independent of a and the coefficients have the form a~)= a. e~n ~ 

where the a~ are independent of a. 

The Dirichlet series of the sum or the product, or of the limit of a uni- 

forinly convergent sequence of almost periodic functions, or of a function obtained 

from an almost periodic function replacing s by ks + l, where k is real, are ob- 

tained by performing the corresponding operations on the Dirichlet series of these 

functions. 

The main theorem of the theory is the approximation theorem, according to 

which the class of functions almost periodic in a strip is, #] is identical with the 

class of functions which are the limit of a sequence of exponential polynomials 

fv(s) = Z a~) 

converging uniformly in Is, fl]. For a given almost periodic function these ex- 

ponential polynomials may be chosen with exponents among the exponents s of 

the function. 

9. The smallest modul containing the exponents of an analytic almost periodic 

function is called the modal of the function. 

The connection between the translation numbers and exponents dea l t  with 

in w 5 in the case of almost periodic functions of a real variable may easily be 

extended to analytic" almost periodic functions. This leads to the  foUowing result: 

A necessary and sufficient condition that  a function f(s) regular in a strip (a, ~) 

should be Mmost periodic in Is, #] with exponents from a given modul M, is 

that to any e > o  and any reduced strip (al, ill) correspond a finite set of numbers 

~1 . . . .  , Z,v in M and a number ~ > o, such that every number �9 satisfying the 

conditions 
_< 

V |  mod. 27r 

is a v(~; ~,,#~). 
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From this follows: I f  f(s) is almost periodic in [a, ~], and g(s) denotes a 

function regular in (a, ~) with the property that  to any 5 > o  and any reduced 

strip (al, ~i) correspond a d > o  and a reduced strip (a2, ~2) such that  any ~:(d; a s, f2) 

is also a z#(5; a~, ill), then g(s) is also almost periodic in [a,~], and its exponents 

belong to the modul of f(~'). 

We find further:  I f  f(s) is almost periodic in [a, ~], and c a number with 

the property that  to any 5 > 0  correspond a d > o  and a reduced strip (al, ill) such 

that  any ~:(d; al, fll) satisfies the condition 

then c belongs to the modul of f(s). 

10. I t  has been proved by Bohr [i2] that, if the quotient h(~')~-f(8)/g(s) of 

two functions almost periodic in [a, ~] is regular in (a, ~), then it is also almost 

periodic in [a, ~]. To every ~ > o and every reduced strip (ax, ~t) correspond, in 

fact, a d > o  and a reduced strip (al,~2), such that  any common ~(d; az,~z ) of 

f(s) and g(s) is a zh (5; at, ~1). This shows, in addition, that  if the exponents of 

f(s) and 9(8) all belong to a modul M, then the exponents of h(s)wi l l  also 

belong to M. 

By a similar argument it  may be proved that  if f(s) is n lmost periodic in 

[a, {~], and has only zeros of even order, then an arbitrary branch g(s)~ }/)~) 
of the square root of f(s) is also almost periodic in [a, ~]. To every ~ > o and 

every reduced strip (al, ~1) correspond, in fact, a d '>o and a reduced strip (az,~2), 

such that  for any ~ : ( d ;  az,~z) we have either 

Ig(s+i~)-g(s)[<=~ o r  Ig(s+iz)+gts)[<-_5 
i n  the strip (at, ~j) and the number 2 �9 is, therefore, in both cases a ~g (2 5; a 1, ~l). 

This also implies that, i~ the exponents of f(s) belong to a given modul M, then 

the exponents of g(s) belong to the modul obtained from M by dividing all 

numbers by 2. We shall ,  however, need the more precise result that there exists 

a number/~ in M such that, if we replace f(s) by f~ (8)=f(s)e~,,  then the ex- 

ponents of an arbitrary branch 01(s)~ P:fl(s) of the square root of fl(s) belong 

to M itself. 

In order to see this we merely take p ~ - - 2  ~, where ~ is a Dirichlet ex- 

ponent of g(s). Then the constant term a of the Dirichlet series of 9~(s) is =~o. 

Now the constant term of the Dirichlet series of g~(s +iz)+g~(~.) is 2a; hence 

the inequality 
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I g~ (s + i ~) + g~ (s} I --< 

cannot be satisfied in a strip (a~, fl~) if ~ < 2 la l .  Thus, corresponding to an 

< 2 ] a  ] and a reduced strip (ax, ~), there exist a J and a reduced strip (a2,/~), 

such that for any x=v/ , (d ;  a~,~.~) we have 

I g, (.~ + i ~) - g~ (.~) I =< 

in the strip (al,~),  i. e. v is also a ~g,(~; a~,fl~). This shows that  the exponents 

of gx(s) belong to M. 

11. The almost periodic function f ( s )  is periodic in (a, ~) with the period ip ,  

where p > o ,  if and only if its exponents belong to the modul M = l h - 2 ~ ] ~ ,  
L / �9 ) 

- - 8  
where h runs through all integers. The substitution e p = z  shows that the 

Dirichlet (or Laurent) series is in this case absolutely convergent, and represents 

the function. The function is limit periodic in In, ~] with the limit period ip ,  

which means that  it is the limit of a sequence of periodic functions whose pe- 

riods are integral multiples of ip, converging uniformly in In, ~], if and only if 

its exponents belong to the modul M =  ~ ~-~-, where r runs through all rational 

numbers. 

An almost periodic function f ( s )  will be. said to possess the finite or infinite, 

integral or rational ~ base / z j , . . . ,  $~ or ~ ,  ~ , . . . ,  if these numbers form a base 

of this kind for the exponents of f(s),  i. e. (see w 6) i f  they are linearly indepen- 

dent and the exponents are contained in ~he corresponding modul M =  {h~/~ + 

+ .-. + h m ~ } ,  { h ~  + h , m  + "-},  {,-~,  + " + r m ~ , } ,  or { r ~ ,  + , ' ,~ ,  + .- .}. 
Let f ( s )  be a function almost periodic in [a, ~] having a finite integral base 

Stj , . . . ,  ~ .  Allowing terms with the coefficient o, we may write its Dirichlet 

series in the form 

f ( s )  ~ ~ ah ...... h,~ e ch' ~' +"" +h'~ ~,,,) ,. 

For an arbitrary s in (a, ~) the function f ( s  + i~) has, therefore, considered as a 

function of the real variable ~, the Fourier series 

f ( s  + i~) ~ :~ah ...... hm elh'~"+'"+hm~ml8 dC~,~,+'- '+hm..,l~. 
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Denot ing  its spatial  extension by g(s; x l , . . . ,  xm), we have 

f ( s  + iv)  = g ( s ; / * , *  . . . .  , ~ , ) .  

The funct ion  g(s ;  x ~ , . . . ,  x,~) is easily seen to be an analyt ic  a lmost  periodic 

funct ion of s in [a, fl] for  a rb i t ra ry  values of x l , . . . , x m ,  but  need no t  be an 

analyt ic  func t ion  of the  variables x L . . . .  , xm. The  formula  

g (s; xl, . . . ,  xm) ~ 2~ ah ...... h~ e (h' ~'+''" + h~ ~m), e ~ (a, ~,+... + hm ~),  

which for  a given s gives the  Four i e r  series of g(s ;  x 1 . . . .  , x,n), considered as a 

funct ion of x~, . . . ,  xm, will fo r  fixed values of x~, . . . ,  xm give the  Dir ichle t  series 

of the funct ion,  considered as a func t ion  of s. 

Similar  resul ts  hold in the case of an infinite in tegra l  base or a finite or 

infinite ra t iona l  base. 

W h a t  will be needed concerning the  spat ial  extensions in the  case of 

anMytic a lmost  periodic funct ions  will be developed as easy consequences of  the  

approximat ion  theorem.  

Distributi.on Problems for Almost  Periodic Functions.  

12. The var ia t ion  of the a rgumen t  of an almost  periodic func t ion  f ( s )  on 

vert ical  lines is closely connected  with the  d is t r ibut ion  of the zeros of the func- 

t ion in vert ical  strips. This  problem, or r a t h e r  the  problem of the dis t r ibut ion 

of the a-points for  an a rb i t ra ry  a, was first t r ea t ed  in the case of the Riemann 

zeta func t ion  by methods  similar  to those applied in the case of Lagrange ' s  

problem, though  wi thout  reference to the actual  connect ion with problems of  

mean motion. Historical ly,  these invest igat ions are at  the  origin of the theory  

of a lmost  periodic functions.  

As is well known,  the zeta func t ion  ~(s) is a funct ion  of the complex variable 

s ~  a + i t  defined in the  whole plane and regular ,  except  a t  the poin t  s ~ - I ,  

where i t  has a simple pole. I n  the  half-plane a >  I, i t  is given by the  two equi- 

valent  absolutely convergen t  representa t ions  

| I ~ I 

where in the second, the Euler  product ,  p~ runs  th rough  the sequence of primes 

2, 3, 5 . . . . .  F rom this represen ta t ion  as a product  i t  immediate ly  follows t h a t  

~(s) has no zeros in the  half-plane a >  I. 
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As shown by Riemann, the zeta function satisfies a simple functional equa- 

tion connecting the values of the function at the points S and I--s .  These points 

lie symmetrically with respect to s ~-�89 and the function is therefore usually 

considered in the half-plane a ~ ~ only. The famous, unproved Riemann hypo- 

thesis concerning the zeros of ~(s) states that  all zeros belonging to this half- 

plane a >_-- ~ are situated on the boundary line a = 1 itself, i. e. ~ (s) is different 

from zero, not only in the half-plane a >  t, but even in the larger half-plane o>  �89 

On account of the Euler product it is convenient, instead of the function 

(s) itself, to consider the function log ~ (s). In the half-plane o > I a regular 

branch of this function is given by the expression 
oo 

(9) log  ~ (8) = ~ - l og  (i - p,70, 
n = l  

1 ~ By log ~(s) in the where in each term on the right - - log  ( I - - z ) = z  + ~z '+  .... 

half-plane a > ~ we shall mean the analytic continuation of this branch in the 

domain obtained from this half-plane by omitting the segment �89 < a ~ I, t = o, 

and all segments �89 t-~to, where %§ ire denote the zeros (if any) of ~(s) 
i n  a~ il ,~. 

13. By means of the expression (9) the closure M(o) of the range of values 

of log ~(s) on a vertical line with given abscissa a > I was studied in detail by 

Bohr [2], [3]. 

From (9) we find 

(I o) log  ~ (o + i t) = ~ - log  (i - pV ~ e - '  log ~,,,). 

Thus, log ~ (a+ i t) is an infinite sum of vectors, each of which describes periodically 

a certain closed curve. Now, on account of the unique representation of an 

integer as a product of powers of primes, the numbers log p,  are linearly inde- 

pendent. I t  follows therefore if we apply Kronecker's theorem to the partial 

sums of the series (io), and afterwards pass to  the limit, that  the closure of the 

range of values o f  log~(a + it) is identical with the range of values of the 

function 

~; (~,, ~ ,  .) = y~ - log  (i - ~-~  r �9 " ~ R  1'  

n = l  

t In some of the papers quoted below, the  function is considered only for t>o, which m e a n s  

tha t  the  actual  resul ts  are  m o r e  prec i s e  than  those quoted. For the sake of uniformity,  we have 

paid  no  a t t e n t i o n  to th is  ditterence, which is un impor tan t  from the point  of view of method. 
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where the terms describe, independently of each other, the above mentioned 

curves. The set M(a) may therefore be described as the vectorial sum of these 

curves. 

From this representation of M(a) and the simple fact that  the curves a r e  

convex, the following result concerning the shape of the set M(a) was obtained: 

that  M(a) is for each a > I either a closed domain bounded by a single convex 

curve A (a), or a closed ring-shaped domain bounded by two convex curves A(a) 

and B(a), where B(~) lies inside A(a). Some results regarding the variation of 

these curves with a were also obtained. 

I t  was further proved that  the set M(o) is identical with the set of values 

actually taken by log ~ (s) in points arbitrarily near to the line with the abscissa a. 

This means that  the range of' values of log ~(s) in a vertical strip al < a < ~, 

where I < a l < ~ <  + ~ ,  is identical with the sum of the corresponding sets M(a). 
Quite similar results had been obtained previously by Bohr [I] for the deri- 

vative ~'(s)/~(s) of the function log ~(s); only in this latter case the situation is 

simplified by the fact that  the convex curves to be added turn out to be circles. 

The sum is therefore either the closed surface of a circle or a closed concentric 

circular ring. In this case it was possible by simple computations to prove the 

existence of a constant ~o > 1, such that  for o~a o we have the case of the circle, 

and for a >  a o the case of the circular ring. A numerical calculation of a 0 was 

given by Burrau [I]. Recently it was shown by Bohr and Jessen [4] that  a similar 

situation (only with a different constant a o) holds for the function log ~(s). 1 

14~. The corresponding problems in the case � 8 9  I, which are more difficult 

on account of the divergence of the Euler product, were treated by Bohr [5], the 

method in question having first been applied to a study of the function ~r(s) on 

vertical lines by Bohr and Courant [I]. 

Regarding the values on a vertical line it was proved that,  if ~ < a ~ I ,  the 

values of log ~ (a + i t) are everywhere densely distributed in the whole plane. 

In order to prove this, it was first proved that though the formula (Io)does 

not hold if ~ < a ~ i, it is true that  for any large m the partial sum 

�9 ~(t)----- .~  --  log (~ --l)~ae -tl~ 

I For the  problem of  the  addit ion of  c o n v e x  curves,  and for further resul ts  regarding the  
curves  A(a) and B(a) w e  refer a lso  to Bohr and Jessen  [I], H s v i l a n d  [2], Jessen  and W i n t n e r [ I ] ,  
Kerschner  and Win tn er  [2], and Kerscl~uer [I], [2], [3]. 
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approaches log ~(a :4-it) for most t in the sense that  if L~(T) denotes the sum 

of the lengths of those sub-intervals of - - T < t < T  in which 

Ilog ~(~ + i t ) -  F~(t)l < ~, 

then 
lira inf L~(T} 
r~| 2 T  

is nearly I when m is large (for any given e>o). 

On the other hand, if ~ < a < ~ ,  the closure of the range of values of F~(t), 

which is identical with the range of values of the function 

G ~ ( x ,  . . . .  , x . )  = y ,  - -  l og  (~ - - p r  ~ e ' ~ ) ,  

is easil~ seen to converge towards the whole plane when m - ~ .  

These two facts are, however, not sufficient to prove that  log ~(a+it)comes 
arbitrarily near to any given value a, since the values of t for which F,~(t) is 

near to a migh~ all be among those for which F,~(t) does not approach log ~(a+it). 
This difficulty was overcome by means of the Kronecker-Weyl theorem, which, 

together with certain results concerning the distribution of the values of the 

functions G,~(xl,..., x.~), shows that  if l,(T) denotes the sum of the lengths of 

those sub-intervals of ~ T < t < T in which 

(I2) I F,~(t)- al < *, 

then 
lim inf l,(T) 

T ~ Q v  2 T  

is not small when m is large, so that  there exist values of t for which both 

relations (I I) and (I2) hold. 

Regarding the values actually taken by log~(s ) in  a vertical strip (a l, a~}, 

where ~ < ~r~ < a~ < x, the application of the Kronecker-Weyl theorem made it 

possible not only to prove that  all values are taken in the strip, but even to 

consider the frequency with which they are taken. I t  was, in fact, proved that  

if, for an arbitrary a, we denote by Na(aD a~; T) the number of a-points ~ of 

log ~(a) in the rectangle al < a < a~, -- T < t < T, t h e n  

lira inf Na(al,a~; T) > o. 
:r~| 2 T  

( i i )  

Except when there is an explicit statement to the contrary, multipl e a-points are counted 
according to their order of multiplicity. 
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This result implies, of course, that  if Ma(a~,as; T)denotes the number of 

a-points of ~(s) itself in the same rectangle, then we have also 

lim inf M.(a,, a~; T) > o 
T ~ r  2T  

provided a ~= o. In 

according to which 

conjunction with the theorem 

lim M~ T) 
T ~  2 T  = 0 ,  

of Bohr and Landau [x], 

this result showed that, independently of the truth or untruth of the Riemann 

,hypothesis, the number o plays an exceptional part for the function ~(s) in the 

half-plane a > �89 

15. Through these results, the possibilities of the method were, however, 

by no means fully utilized. More precise results were announced by Bohr [7] and 

proved in detail by Bohr and Jessen [I], [2], [3]. 

Regurding the distribution of the values of log ~(s) on vertical lines, it was 

proved that there exists for every a > }  a continuous function D(z) of the complex 

variable z----u + iv, such that if l(T) denotes the sum of the lengths of those 

sub-intervals of --  T < t < T in which log ~ (a + i t) belongs to a given rectangle 

R (u~ < u < u~, vl < v < v~), then the limit 

~(R) = lira t i t )  

exists, and is equal to the integral of D(z) over the rectangle R: 

1/2 ~'2 

ffD( )d.dv. 
U! ?)l 

In the case � 8 9  a_--< I, it was proved that  D(z)> o for all z. 

Regarding the distribution of the values in a vertical strip (a~, a2), where 

�89 < a~ < as, it was proved that  the limit 

N~ (ol, o~; T) 
Ha(a,, as) = lim 

T--ao 2 T  

exists and is a continuous function of a, and a s for any fixed a. This limit may 

be called the relative frequency with which the function log ~(s) takes the value 

a in the strip (a. a~). 
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As follows from its representation, the function ~(s) is almost periodic in 

[I, + ~ )  and so is, too, the function log~(s), while a certain generalized almost 

periodicity is present for -~ < a ~ I, owing to the approximation property of the 

partial sums referred to above. This almost periodicity makes the regularity of 

the distribution less surprising, but was not used in the proofs, which are based 

directly on the definition. 

16. A simplification of the preceding method was used by Jessen [i] to 

discuss the distribution of the values of an arbitrary almost periodic function 

f (s)  with an infinite Dirichlet series and linearly independent exponents. In this 

case the series is absolutely convergent in the strip of almost periodicity, and 

therefore represents the function, so that  the discussion may again be based on 

the explicit representation 

f(s) = ~, a.e~',, * 

without direct use of the almost periodic character. 

Instead of discussing first the partial sums of this series by means of the 

Kronecker-Weyl theorem, and then passing to the limit, the series is here dis- 

cussed directly, the necessary theory of measure and integration in infinitely 

many dimensions having first been developed. The results are analogous to those 

obtained for the function log ~(s), with the addition of a certain uniformity, 

which is also present for log C(s) in the half-plane a >  I. Thus it is proved 

regarding the a-points of f(s)  in a strip (al, a~), inside the strip of almost periodi- 

city, tha t  the limit 

(I4) H~(a~,o~.) = lira N.  (at, a2; 7. ~) 
( ~ - 7 )  ~ ~ ~ - -  7 

exists, where Na (al, a~; ~,, ~) denotes the number of a-points of f(s)  in the rectangle 

al< a<a , ,  7 < t <  8. This limit is again a continuous function of a 1 and a~. 

17. The distribution of the values of an arbitrary real-valued almost periodic 

function F(t)  of a real variable was studied by Wintner  [~], [4], [5] by applying 

the moment method of the calculus of probability. I t  was shown by Haviland [i] 

that  this method is also valid if F(t) is complex-valued. The result is, briefly 

stated, that  if F ( t ) ~  U(t) + i V(t) is an arbitrary almost periodic function and 

if t(T) denotes the measure of the set in - - T <  t < T in which I~'(t) belongs to 

a given rectangle B ( u  I < u < u : ,  v l< ~< v~) in the z = u + i v - p l a n e ,  then the limit 
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(I5) 90(R) == lim l(T) 
7"~| 2 T  

exists for all rectangles the sides of which do not lie on a certain enumer~ble 

number of lines, and this function 90 (R), which is called the asymptotic distribution 

function of F(t), is determined by the moment condition 

+oo +r 

foe all pairs of non-negative integers n and m. I t  was shown by Bohr [i I] that 

the limit (rS) need not exist for all rectangles. 

In the special case of linearly independent exponents as considered by 

Wintner  [5], [6] it was essential to work not only with moments but also with 

Fourier transforms. I t  was shown by Bochner and Jessen [l] that  the whole 

problem might be treated without recourse to the moment theory, considering 

only Fourier transforms, a method which also holds in the case of generalized 

almost periodic functions. The moment condition is then replaced by the con- 

dition 
+ r  + c o  

(,,) f f +'*"*,+ d,,.,. + ( , I  = M 

for all pairs of real numbers x and y. 

A systematic exposition of the whole subject, including a new treatment of 

the functions l o g , ( a +  it) has been given by Jessen and Wintner  [I]. The ex- 

pression (x3) of the distribution function of the function log ~(a + it) by means 

of a continuous density D(z) is here obtained by using formula (x6). The method 

leads to an explicit expression of the density D(z) showing, among other things, 

that D(z) possesses continuous partial derivatives of arbitrarily high order with 

respect to the coordinates u and v. A similar result had previously been obtained 

by Wintner  [6] in the case of functions with linearly independent exponents, t 

18. The method mentioned in w I6 was developed further  by Jessen [3] 

employing the method of Fourier transforms. I t  is here proved, among other 

things, that the relative frequency (14) is expressible in the form 
a~ 

Ha (o,, = f  (o) d o, 
o! 

J For further results we also refer to Kerschner and Wintrier Ill, [3], van Kampen and 
Wintner [I], van Kampen [2], [3], Hartmau,  van Kampen,  and Wintner  [2], and Havi land [3]. 
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where the function E~ (a) (for which an explicit expression is obtained) is a con- 

tinuous function of a and a. This function may be called the relative frequency 

with which the function f(s) takes the value a in the neighbourhood of the ver- 

tical line with the abscissa a. 

The assumption that  the Dirichlet series of f(s) contains an infinite number 

of terms is here replaced by the weaker assumption that  it  contains at least 

five terms. 

Mean Motions and Zeros of Analytic Almost Periodic Functions. 

19. The distribution of the zeros of an arbitrary function f(s), almost 

periodic in a strip [a, #], in vertical strips has been treated by Jessen [2] 1 by 

establishing a formula analogous to the gensen formula 

(,7) , f  r log IF(,'e;~ dO---- log IE(o)l + log I , , I  
0 ~I 

for a function F(z) regular in a circle Izl<r, and having the zeros zl . . . .  , z, (4=o) 

in this circle. The method was also used for a study of the variation of the 

argument on such vertical lines on which the function does not come arbitrarily 

near to o; an application of this has been given in Jessen [5]. Later it was shown 

by Hartman [,] tha t  the method can also be used for a study of the variation 

of the argument on such vertical lines on which the function comes arbitrarily 

near to, or takes, the value o. 

From a formal point of view, the method is very simple, and may be briefly 

described as follows. 

Setting aside the difficulties arising from the zeros, we consider the function 

logf(s)  = log If(8)l + i a rgf(s) .  

According to the Cauchy-Riemann differential equations we then have 

(,s) d a r g f ( a + i t ) =  d d-7 ~ log I f (a + i*)l. 

i Some results  of a more elementary nature  had been obtained previously by Favard [ I ] .  
The dis t r ibut ion of the  zeros of exponent ia l  polynomials (and of more general classes of functions) 
has been studied by Tamarkin  [I], [2], [3], Wilder [I], P61ya [I], Schwengeler [i], and Rit t  [I]. 
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Now, if it exists, the mean motion e(a) of the function f (a  + it) is evidently 

equal to the mean value 

M I d  a r g f ( a  + it)} , t ~ '" 

and hence by (I8) equal to 

log  I f ( a  + i t )  l �9 

Interchanging in this expression the differentiation and the formation of the 

mean value, we arrive at the following determination of the mean motion: 

Corresponding to the function f(s) we form the function 

(I9) ~0(a) = M {log [f(a + it)l}. 
t 

Then the mean motion e(a) of the function f (a  + it) is determined as the deri- 

vative 

(20) c (~) = ~'  (~). 

The connection with the distribution of the zeros is, from a formal point 

of view, equally simple. 

Denoting for a < aj < a~ < fl by N(a~, ~; 7, ~) the number of zeros of f(s) in 

the rectangle al < a  < ~, 7 < t < d, we define the relative frequency of zeros of  

f(s) in the strip (a,, a~) as the limit 

N(a, ,  as; 7, ~) H(a 1, a~) = lim 

provided this limit exists. 

Now the number N(al, a~; 7,~) is, apart from a factor I/2~r, equal to the 

variation of the argument of f(s) along the boundary of the rectangle. Setting 

aside the contributions from the horizontal sides, we therefore find that, apart 

from the factor i/2z~, it is equal to the difference between the variations of the 

argument along the vertical sides, both being described in the same direction. 

The relative frequency H(a~,a~) is, therefore, simply the difference c(a2)--e(aa) 
between the mean motions on the two lines a=a~ and a=a~ multiplied by i /2z,  
so that  by (20) 

I - t r (2 i) H (~1, a~) = ~ (90 , a ~ ) -  t (~,~) .  
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The left-hand side being as a matter of course always >_--o, a remarkable 

consequence of this formula is that  9~'(a) is an increasing function, or, what 

amounts to the same, that  ~(a) is convex3 

20. The question now arises as to how far the results obtained by these 

formal considerations are actually true. The following answer is given in the 

papers quoted above: 

The mean value (I9) really exists for all a in the interval (a, ~), though the, 

function log If(a + i t) l is not necessarily almost periodic, and ~ (a) is a continuous, 

convex function. This function is not necessarily differentiable; but if it is 

dit~erentiable at the point a, the mean motion c(a) exists and is given by (2o), 

and if it is differentiable at the points a~ and a2, the relative frequency H(al, a2) 
exists and is given by (2I). 

The function ~(a) is called the Jensen function corresponding tof(s) ,  and the 

formula (2I) is called the Jensen formula for almost periodic functions. In the 

case of a periodic function with the period ip in a half-pla~e a < fl, converging 

for a - - * -  ~ towards a constant g= o, it reduces itself to the usual Jensen for- 
2~ 

mula (17) by means of the substitution e ~-~-~ z. 

A convex function being differehtiable everywhere except in a finite or 

enumerable set of points, these results show in particular, that  the mean motion 

c(a) and the relative frequency H(a,,a~) generally exist. 

The following result is an easy consequence of the Jensen formula: A 

necessary and sufficient condition that  the function f(s) has no zeros in a strip 

(a0, ~o) is that  the Jensen function ~ (a) is linear in the interval (a 0, ~0). Since 

the function does not come arbitrarily near to o on a vertical line in such a 

strip, this implies, by Bohr's theorem (w 7), that  the constant value of ~'(a) in 

a linearity interval of ~(a) always belongs to the modal of the function. 

21. In Chapter I I  we give a detailed exposition of the investigations just 

described. 

Instead of operating for every a with one continuous branch of the argument 

of the function f (a  + it) determined rood. ~, we find it convenient to intro- 

duce two arguments, viz. a left  argument a r g - f ( a  + it), and a right argument 

a rg+f (o  + it), both of which are determined rood. 2~. These arguments are 

i Excep t  when  there  is an explici t  s t a t ement  to the  contrary,  these expressions are used in 
the  wide sense (i. e. including funct ions  having  in tervals  of constancy or l inear i ty  respectively). 

11 - 632042 A c ~  ma•ematica. 77 
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Characterized by being continuous except for those values of t for which f ( a +  it) 

is zero, and discontinuous with a jump of - - p z  or p z  respectively, when a + i t  

is a zero of the order p. In describing the line a + i t  this corresponds to en- 

circling the zeros to the left or the right respectively. In the discontinuity points 

we define the two arguments by the mean value of the limits from both sides. 

Obviously the mean value � 8 9  a r g + f ( a +  it)) gives the previous 

determination of the argument as a continuous function determined mad. ~r. 

Corresponding to these two arguments we consider the four quantities 

and 

_c~-(a)[ liminf a rg - . f (o  + i ~ ) - - a r g - . f ( a +  i t)  
a-(o)  j =  sup ~ 7 

C + (a) [ _ liminf arz + .f(a + i,~) --  arz + . f(a -; i 7) 
a+(o)J - sup ~ - ~  ' 

which we call the lower and upper, left and right mean motions of f ( a  + it). I f  

~ - ( o ) = e - ( a )  or ~+ (a) = 5+ (a), that is to say, if the limit in question exists, we 

call it simply the left or right mean motion, and denote it by c-(a) or c+(a). If, 

as previously, we define the mean motion c(a) as the limit 

e(a)-~- lira arff f (o  + id) -- a r ~ f ( a  4 it) 

where a r g f ( a  + it) denotes a continuous branch of the  argument determined 

mad. ~, provided this limit exists, it is obvious that  the existence of the left 

and right mean motions t - (a)  and c+(a) implies the existence of e(a) and that 

c(a) = ~ (c-~o) + c+<a)). 

Being convex the gensen function ~(a) possesses for every value of a a left 

derivative qD'(a--o) and a right derivative q)'(a+ o). As a main result we p rove  

for every a the relations 

j : (a) ~ < : (o) < o) (22) ~ '  (a - -  o) ~ V -  (a) ..~ ./ ~_ (a) .l = ( J =q~t(a--~-  . 

This implies, of course, that if 9o(o)is differentiable at the poin~ a both e-(a) 

and c+(a), and hence also c(a), exist and are equal to ~'(a), so that  (22) is a 

generalization of (20). 
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Regarding the zeros in a strip (a <)o l  < a < 0.,(<//) we consider the .two 

quautities 

_~H(al, a~)~ ,. inf N(ai, a2; 7,~) 
- -  ~ n m s u p  ~ ~ 7 ' 

which we call the lower and upper relative fi'eque~cies of zeros in the strip (a 1, a~). 

We also find a number of inequalities connecting these two frequencies and 

the four mean motions. I f  r (a) is differentiable at the points al and a~, these 

inequalit ies are reduced to the Jensen formula. 

22. In  Chapter I I I  we give a detailed discussion of the distribution of the 

values of so-called almost periodic sequences, a n d  in Chapter IV we study a 

special class of analytic almost periodic functions connected with such sequences. 

The results obtained are a necessary preparation for later constructions of analytic 

almost periodic functions with prescribed properties, and have, in fact, their 

origin in earlier constructions of this kind, which will be referred to below. 

23. In  Chapter V we answer the question as to which sets of six numbers 

can occur as left and right derivatives of the Jensen function and as lower and 

upper, left and right mean motions~ for a given" value of a, of a function f(s) 
with exponents from a given modul M. 

in  the special case where M is discrete, so that  the question is about 

periodic functions, it is easily proved that  the left and right mean motions c--(a) 

and c + (a) always exist and are determined by the relations 

(23) and 

in which both derivatives ~' (o -- o) and ~' (a + o) belong to ~f. If, conversely, 

d -  and d + are given numbers belonging to M, and d - ~ d  +, there exists a 

function with exponents from M, such that  for the given value of a we have 

~' (a -- o) = d -  and ~' (a + o) = d +. 

From existing examples (Jessen [2] and Hartman [I])it follows that  the mean 

motions e-(o) and c+(a) do not exist in all eases. We now prove that  in the 

ease of an everywhere dense modul M, the above relations (22)are the best 

possible in the sense that  if six given real numbers satisfy the relations 

d - < c - <  - < 6 + <  + 6- = = d  , 
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then there exists an almost periodic function with exponents from M, for which 

these numbers for the given value of a are equal to the corresponding numbers 

in the relations (22). 

We also prove a theorem concerning the case where the function has no 

zeros on the vertical line with the abscissa o. 

24. Iu  Chapter VI  we consider the problem as to which functions ~ (a)can 

occur as the Jensen function of almost periodic functions f ( s )  with exponents 

from a given modul M. Necessary conditions for the occurrence of a function 

(a) are, by the results already mentioned, that  ~(~) is convex and that  the value 

of ~'(a) in any linearity interval of ~(o) belongs to M. 

In  the special case where M consists of all integral multiples of a number 
2 ~  
- - ,  so that  the question is about periodic functions with the period ip, the 
P 

answer can easily be given by means of Weierstrass' product theorem, when, 
2g  - - 8  

by the transformation e p ~ z ,  we map the strip in question on a circular ring 

a ~ I ~ 1 ~  b. The functions ~ (o) possible are here all stretchwise linear convex 

functions ~ (~) for which the values of ~' (a) in the linearity intervals belong to M. 
2 ~  

In the case where M consists of all rational multiples of a number - - ,  so that 
P 

the question is about limit periodic functions with the limit period ip, the problem 

has been solved by Bueh [i], [2]. In this case the necessary conditions mentioned 

above are also sufficient, that  is to say that  the possible functions ~(o) are in 

this case all convex functions ~(o) for which the value of ~'(a) in any linearity 

interval of ~(o) belongs to M. We now give a solution of the problem for func- 

tions with an arbitrary finite or infinite, integral or rational base, i. e. for all 

m oduls of the form 2~f~--- {h 1/z I + - . .  + hm ~m }, {hi/z~ -b h,/z~ + . . -  }, {r 1/z 1% ... -b rm pro}, 

or {rip 1 + rs/z s +---}. The results immediately lead to a characterization of all 

functions which occur at all as the Jensen function of an almost periodic func- 

tion. Contrary to what might have been expected, these are not all convex func- 

tions. The exact characterization is the following: 

A function ~(a) in the interval a ~ a < f l  is the Jensen function of a function 

f(s)  almost periodic in [a, ~?] if and only if it is convex and there correspond to 

every reduced interval (a ~ )  % < a < ~?o ( ~  ~?) a finite set of linearly independent 

numbers / ~ 1 , - . . , / ~  and a positive number k, such that if aj and a2, where 

a o < a ~ a s ~ f l 0 ,  belong to different linearity intervals of ~(a), then the difference 

~ ' (~ ) - -~ ' ( a l )  is of the form 
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~' (~) - ~ '  (al) = r l  ~1 + ' '  + , ' ~ ,  

where the coefficients rl . . . .  , r~ are rational numbers, and 

~ '  (a,) - ~ '  Ca,) _- ~. 

Vr:  +.--  +r~, 

25. The existence of a left  and a r ight mean motion t-(a) and c + (a) deter- 

mined by the relations (23) and the stretchwise linearity of the Jensen function 

in the. case of periodic functions naturally leads to the question whether more 

general classes of almost periodic functions exist for which results of a similar 

precision hold. 

This problem is treated in Chapter VII ,  where it is proved that the rela- 

tions (23) hold for all almost periodic functions f(s)  with a finite integral base 

P l , . - . , / ~ =  for which the spatial extension g(s; x~ . . . . .  x,~) is analytic, not only 

in s, but in  all the variables s, x, . . . .  , xm. From the relations (23) it follows, 

of course, that the mean motion c(a) exists, and is given by  

(24)  c (a) = �89 ( ~ ' c a  - o)  + ~ ' ( a  + o)) .  

To the functions with a finite integrul base and an analytic spatial extension 

belong in particular all exponential polynomials. As every exponential polynomial 

F(t) of the real variable t may be written in the form f(i t) ,  where f(s) is an 

exponential polynomial of s, t he  preceding result contains a complete solution 

of Lagr~nge's problem to the eifect that  the mean motion exists in all cases. 

This result together with the expression (24) for the mean motion has been stated 

without proof in Jessen [6]. 

For functions with a finite integral base and an analytic spatial extension 

it will also be proved that  the Jensen function is stretchwise dit~erentiable. For  

an exponential polynomial this implies: since the zeros all belong to a finite ver- 

tical strip, that the number of non-dit~erentiability points is finite. 

The proofs of these general theorems depend on a further elaboration of the 

Bohl-Weyl method. 

Functions with a finite integral base and an analytic spatial extension were 

also considered by Har tman [I], who showed~ among other things, that  in the 

case of an exponential polynomial the mean motion c(a) exists for all a not 

belonging to a certain finite set. This exceptional set is exactly the set of those 

values of a for which Weyl 's  proof (w 3) of the existence of the mean motion 

fails for the function f (a  + it), because the set of zeros of its spatial extension 
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g(a; x l , . . . ,  xm) contains a manifold of the dimension m - - I .  I t  is easily shown 

that  this exceptional set is identical with the set of non-differentiability points 

of the Jensen function, 

Analogous results are obtained in the case of functigns with an infinite 

inte~oTal base, the necessary consideration of analytic functions of an infinite 

number of variables involving no difficulties. To the functions with an infinite 

integral base and an analytic spatial extension belong in particular all ordinary 

Dirichlet series 

fCs) --- 

in the half-plane [a, + Qo) where the function is Mmost periodic. 

The connection between the variation of the argument and the distribution 

of t he  zeros implies that  the relations (53) hold for all a if and only if the re la  

tire frequency of zeros exists for every strip (~x, a~) and is determined by the 

formula 

/ / ( ~ ,  o~) ---- ~ ( ~ ' ( o j  - o) - ~'(~,  + o)). 

Thus the Jensen formula is valid in this more precise form, not only for periodic 

functions, but also for all exponential polynomials and ordinary Dirichlet series. 

The study of almost periodic functions with a finite integral base and an 

analytic spatial extension will be continued by Tornehave in another paper, in 

connection with an extension of the Jensen formula to analytic functions of a 

finite number of variables (see Tornehave III). 

26. To the functions with a (finite or infinite) integral base and an analytic 

spatial extension belong all functions f(s) with linearly independent exponents. 

The result mentioned in w I8, together with the Jensen formula, shows that if 

the Dirichlet series contains at least five terms, and if the exponents are linearly 

independent, the Jensen function ~a(o) of the function f ( s ) - -a  is twice diffe- 

rentiable with the second derivative 

~ (~) ~ ~o (o). 

In particular, the mean motion of f (o  + i t ) -  a exists for all a and ~. 

A similar result holds in case of the zeta function in the half-plane ~ > I. 

We mention that  the whole theory may he extended to generalized almost periodic 

functions, and that, in particular, results analogous to the preceding ones hold 

in case of the zeta function in the strip �89 < a ~ I also. 
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C H A P T E R  I. 

Mean Motions  o f  Almost  Per iodic  Funct ions  o f  a Real  Variable.  

27. For an arbi t rary  continuous funct ion ~'(t), which does no t  take the 

value o, we denote by arg F(t) an arbi t rary continuous branch of the a rgument  

of F(t),  defined rood. 2 z by the condit ion E ( t ) =  [E( t )[d  ~F(t). 

I f  the continuous funct ion F( t )  takes the value o i t  need no t  be possible to 

define the a r g u m e n t  as a continuous funct ion.  We  shall consider only the case 

of funct ions having but  isolated zeros. Such a funct ion ~'(t) is .said to possess 

a continuous a rgument  if i t  may be wri t ten  in the form F(t)-----@(t)d'P (t), where 

q~(t) is continuous.  In  every interval  in which F( t )  has no zeros we have then 

either Q(t)=lF(t ) l  or Q(t)------IF(t)l. The a rgument  ~(t)= a r g F ( t )  is now only 

determined rood. z. I f  F(t) is regular  for all values of t, it  evidently possesses 

a continuous argument .  

I f  - - ~ < ? < d < + ~  the difference 

arg F (~) -- arg r (7) 

is independent  of the choice of the branch of the argument .  The funct ion F( t )  

is said to possess the mean motion 

c ~- lira arg F(r  ar~ F(7) ' 

if this l imit  exists. 

In  this chapter  we shaU confine ourselves to functions which do not  come 

arbitrari ly near  to o, i .e.  which satisfy a re la t ion of the form 

(I) I F(t)  I _-> k > o 

for all t. Regarding this case we shall prove the following theorem of Bohr 

[II], [13]. 

Theorem 1. Let F(t) be an arbitrary almost periodic function which does not 

come arbitrarily near to o. The~ F(t) possesses a mean motion c and, i f  we put 

arg P ( t )  = c t  + 

the remainder ~p(t), too, is an almost periodic fi~etion. 

The mean motion e and the exponents of ~(t) all belong to the modul of the 

function F(t). 
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28. F i rs t  we shall  repeat  Bohr ' s  proof  in a slightly simplified form.  

The  func t ion  F(t) being un i formly  continuous,  the  condi t ion (I) evidently 

implies t ha t  a r g F ( t )  is al~so uni formly  continuous.  Hence  there  corresponds to 

every  positive number  z a number  K~, such tha t  for  ] l [  ~ ~ and all t 

l arg F(t  + l) - arg F ( t )  l < K~. 

For  an a rb i t ra ry  positive e < z we denote  by v =  z(~) an a rb i t ra ry  positive 

t rans la t ion  number  of F(t) belonging to ~ : 2 k sin t ~ .  Then  the difference 

a rg  F(t + z ) -  arg  F(t) is evident ly  for  every t rood. 2 z numerical ly _<--e. Hence  

there  exis ts  an in teger  n~ independent  of t such t h a t  for  all t 

(z) I a rg  F ( t  + ~) - -  argF(t)--n~2z[ ~e.  

Now, for  - - ~  < 7 < 6 <  + ~ ,  we have 6=7+hz+l,  where h is a non-negat ive  

in t ege r  and o ~ l < z. Thus  

[arg  F (  7 + z) --  arg F(~,) - -  n~ 2 ~ I =< 

[a rg  F ( 7  + 2 z ) - -  a r g F (  7 + z) -- n~ 2zr < 

[ a r g F ( 7 + h z ) - - a r g F ( 7 + ( h - -  I ) z )  - -  n~ 2 ~ l ~ ~ 

[arg F(6) - arg F( r  + h~)[ _-< K~, 
and consequent ly  

] a rg  F(6)  - -  arg F(7) -- hn~ 2 ~l ~ h~ ~- g~, 
so t ha t  

I I argF(6)--argF(7)--6--Tn~2~ N h ~ +  K~+[n~12z~-  + C~, 6--7~ 

where C~ ---~ K~ + [ n~ [ 2 z .  Hence  

[a rgF(6)- -ar~:F(r )  n~ 3~[<~+ C~ 
I 6- -7  �9 [ =~ 6--7 

As z may be chosen arbi t rar i ly  large, this  inequal i ty  implies the existence 

of the  mean mot ion 

c =  lira a r g F ( 6 ) - - a r g F ( 7 )  ' 
(a-  :) - ~ 6 - -  7 

a n d  i t  a l so  s h o w s  t h a t  

n~2~ I < C 
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o r  

(3) I,~ - .. ~,~I =< ~. 

By w 5, this relation shows that c belongs to the modul of F(t). 
Now, putting a r g F ( t ) =  et + ~p(t), we find from (2) that  

lc~+ ~(t + ~)-~(t)--n~2z l-<_ ~, 

and combining this with (3), we find 

(4) [ ~0 (t + z) --  lp (t) I ~ 2 ~. 

This shows that ~0 ( t ) is  almost periodic and, by w 5, that  the exponents of ~(t) 

belong to the modul of F(t). 

This completes the proof of the theorem. 

29. For later application we add the following remark. 

I f  �9 ---- ~(~/) is a translation number of F(t) belonging to ,/---- 2 k sin ~ ~, it 

follows from (I) that  for all t 

I51 llo  IF(  + ,)i- log i I =< < 

Thus the function log IF(t)[  is almost periodic and its exponents belong to the 

modul of F(t). 
I t  therefore follows from Theorem I that  the function 

log F ( t )  = log I F(t) I + i arg F(t) 
has the representation 

log F(t)  = i c t + H(t), 

where H(t)= log IF(t)[ + iV(t  ) is an almost periodic function with exponents 

from the modul of F(t). 
From (4) and (5) it follows that  every translation number of F( t )  belonging 

to V = zk sin ] e is a translation number of H(t) belonging to 3 ~. Thus there 

corresponds to every ~ > o a number d > o depending on k, but  not otherwise 

on F(t), such that  every ~ , (d ) i s  a ~B(e). 

30. In  the special case where F(t) is periodic with the period p > o  the mean 

motion e is evidently determined by the expression 

arg F (a -k p) --  arg F (a) 
(6) e ~- , 

P 
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where a may be arbi t rar i ly  chosen. The condit ion (I) is in this case satisfied if 

only F( t )  does not  take the value o. 

For  la ter  appl icat ion we shall prove tha t  if F( t )  is an exponent ia l  polynomial  

with the  period p, then  the  mean mot ion lies between the smallest and the  

largest  exponent  (or is equal ~o one of these), t h a t  is to say, if  

h~ ih 5 :r t 

F(t)  : ~_~ abe P , ah, #: o, ah.=~ o, 
h=hl 

then 

(7) hi 2_~ ~ c ~ h~ :z~r. p - p 

In  order  to see this, let  us consider the func t ion  

he 

h=ht 

of the complex variable z. I t  follows f rom (6) t ha t  c =  h 2 z ,  where h2~rdeno tes  
p 

the variat ion of the a rgument  of f ( z )  along the uni t  circle ] z l =  I. Now by 

Cauchy's  theorem we have h = h~ + ~r, where ~ denotes  the number  of zeros of 

f ( z )  in o < [ z [ <  I. As o < ~ < h . ~ - - h x ,  this implies tha t  h l < h < h ~ ,  and thus  

the  re la t ion (7)- 

31. The preceding proof  of Theorem I is,  apar t  f rom the last par t  of the 

theorem, based direct ly on the definition of almost  periodicity.  W e  shall  now 

repeat  a proof  by Jessen [4] based on the approximat ion  theorem and leading to 

a more precise resul t  concerning the  value of the mean  mot ion c. 

We  shall first give an account  of almost  periodic funct ions  F(t )  with a finite 

in tegral  base #1 . . . .  , #,n, i. e. (see w 6) for  which the exponents  belong to the 

modul  M - -  {hit q + ..- + hm,um}, where the numbers  #1, �9 �9 gm are l inearly in- 

dependent  and the set of coefficients he, . . . ,  hm runs th rough  all sets of integers.  

Denot ing  the inner  p roduc t  x l y  ~ + . . .  + xmym of two vectors x-- - - (x  1 . . . .  , Xm) 

and y = (Yl . . . .  , ym) in the m.dimensional  space Rm by x y ,  and pu t t ing  

gt = (/~i . . . .  , / ~ ) ,  we have M = {h/t}, where h = (hi, �9 �9 hm) runs  th rough  all 

vectors of Rm with in tegra l  coordinates.  

In  the discussion an essential  par t  is played by Kronecker's theorem, according 

to which the set of points x = t t t = ( # ~ t , . . . , # m t ) , - - ~  < t < + ~ ,  is rood. ~ r  

everywhere  dense in Rm when /~1 , . . . ,  #m are l inearly independent .  By means of 
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this theorem we shall now deduce the so-called spatial extension of a function 

F(t) with exponents from 21/. 

Allowing terms with the coefficient o, we may write the Fourier series of 

F(t) in the form 
F(t )  ~ ~ah  r 

Let us now consider a sequence of exponential polynomials of the form 

Fp(t) -~ Z a ~  ) ei"~ t 

(where for every p only a finite number of the coefficients a~) are 4 o )  converging 

uniformly towards F(t)  as p - * ~ .  For each function Fp(t) we form the function 

(8) ep (x )  = :~ a~ ) e ' ' ~ ,  

where ~c runs through R~. Then Gp(x) is an exponential polynomial of x l , . . . ,  xm 

with the period 2 ~ in each variable, and 

Fp (t) = V~, (U t). 

I t  follows therefore from Kronecker's theorem that for all p and q 

upper bound I F v ( t ) -  Fq(t) ] = upper bound I Gp(x ) --  Gq(x)I. 
t a~ 

Thus Gp (x) converges uniformly towards a limit G (x), which is also a continuous 

function in R~ with the period 2 z~ in each of the variables x l , . . . ,  x~,, and we 

obviously have 

(9) F (t) ---- G (tut). 

This function G(x), which is evidently uniquely determined by being con- 

tinuous, by having the period 2 z in each of the variables x l , . . . ,  xm, and by 

satisfying (9), is called the spatial extension of  F(t) .  I t  follows from (8) that  its 

Fourier series is 
G(x)  ~ ~ a h e  ~hx. 

If, conversely, G(x) denotes an arbitrary continuous function in R~ with 

the period 2 ~ in each of the variables x l , . . . ,  x,a, the function F( t )de termined 

by (9) will be an Mmost periodic function with exponents from the modal M, 

since the preceding considerations may also be carried through in the opposite 

direction. W e  notice that  the Fourier series of F(t)  is obtained from that of G(x) 

by replacing x by ~t. 
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Every exponential polynomial 
~r 

possesses a finite integral base / ~ , , . . . , / ~ ,  the modul of F(t) being, in fact, of 

the form M---- {hip * + . - .  + h~pm} = {h/*}. 

32. We now turn to the second proof  of Theorem , and shall first show 

that it is sufficient to prove the theorem in the special c u e  where the function 

F(t) is an exponential polynomial. 

Let us, then, assume that  the theorem has already been proved in this case. 

For an arbitrary ~ < �89 we choose, corresponding to the given almost periodic 

function F(t), an exponential polynomial F*(t) with exponents among the ex- 

ponents of F(t), such that for all t 

Then for all t 

I F ( t )  - -  F *  (t) l _~ k s in ~. 

I F*(t)l _-_ k-~ sin ~ > o, 

and the theorem may therefore be applied to F*(t). Furthermore, we have for 

suitably chosen branches of the arguments for all t 

[ arg F(t) -- srg F* (t)[ ~< ,. 

As, according to our assumption, the. function F *  (t) possesses a mean motion, 

this inequality implies that  F(t) has also a mean motion, viz. the same mean 

motion as F*(t). Denoting it by e, and putting 

a rgF( t )  = ct + %0(t) mad s r g F * ( t )  = c t  + %0*(t), 

we therefore have for all t 

1%0(t) -%0*(t)I---- ,. 

The function %0* (t) being, by our assumption, almost periodic, this implies, as 

may be chosen arbitrarily small, that  %0(t) is also almost periodic. 

From the determination of e as the mean motion of F*(t) it follows that  c 

belongs to the modul of F *  (t) and hence also to the modul of F(t). As the 

exponents of qJ*(t) belong to the modul of F*( t )  and hence also to the modul 

of F(t), the same will be the case for the exponents of %0(t). 
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38. Let  F(t) be an exponential  polynomial 

N 

F ( t ) =  Z a, ei~n t, 
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satisfies for all x the relation 

(xo) IG(x)l> k>o. 

For  an arbi t rary continuous branch of the a rgument  a r t  G(ac)the difference 

a r g G ( . . . , x ~ 4 -  2 z  . . . .  ) - - a r g G ( . . . , x t , . . . )  

is for every l.an integral  multiple of 2 z, which is evidently independent  of x.  

I f  we denote i t  by h~2z and put  h = (hi, . . ,, hm) and 

(I I) arg G (x) = h x + Z (x) 

the funct ion g (ac) has, therefore,  the period 2 z in each of the variables xl . . . .  , xm. 

Hence it immediately follows tha t  

arg F (t) = a r g  G (~ t) = h ~ t + Z (~ t), 
o r  

arg F( t )  = c t + 

where e = h/~ belongs to M and ~0 (t) = Z (/~ t) is an almost  periodic function with 

exponents  f rom M. 

As M may be chosen as the modul of the funct ion F( t )  this implies the 

theorem in the case of exponential  polynomials .  

34:. As has been shown by Bohr and Jessen (see Bohr [I5] ), we may f rom 

the preceding proof easily deduce a more precise result  regarding the mean 

motion e. We  shall prove tha t  the lat t ice point h occurring in the expression 

e----h/~ belongs to the convex closure of the set of latt ice points h (~) . . . .  , h (~r} 

occurring in the expressions Z~=h(1) /~ , . . . ,  ZN-----h(~')9 of the exponents.  

n ~ l  

and let its exponents be contained in the modul  M={h~/z~ +. . .  + h ~ p m } - - { h p } .  

Assuming ~t 1 ---- h (1)/~, . . . ,  Jt~, = hP0/t ,  we have 

N 

F(O = .. e "C"l 

From (I) i t  follows by Kronecker 's  theorem tha t  the spatial  extension 

/V 

G (X) = Z an e i h(n) ac 
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I f  m-~I ,  so tha t  M has the form M-----{hp}, where p =~o and h runs th rough  

all integers1 and F ( t )  is periodic with the period 2 z ,  the s ta tement  is t ha t  c lies 

between the smallest and the largest of the exponents (or is equal to one of them), 

but  this  has already been proved in w 3o. 

In  the general  case where m > x, we have to prove tha t  for every vector 

a -= (al, . . . ,  am) ~= (o, . . . ,  o) the inequalities 

(I2) min {h{~a} ~ h a  ~ max {hO'la} 
n n 

hold. For  reasons of cont inui ty  i t  is sufficient to consider vectors a with rat ional  

coordinates, and since the terms are homogeneous we may even assume all 

coordinates to be integers. 

For  such a vector a the funct ion 
N 

B ( t )  = 

is an exponential  polynomial whose exponents are the integers h(n la  (or some of 

these integers, since they  need not  be mutual ly  different, and some terms there- 

fore may cancel each other). Fur thermore  it follows from (IO) tha t  ] H ( t ) [  ~ ]c 

for  all t, and from (II) t h a t  H ( t )  has the mean motion h a .  The relation (I2) 

therefore follows from the validity in the case m ~ - i .  

Pu t t ing  in (I2) a=-fz ,  we find tha t  the mean motion c lies between the 

smallest and the largest exponent (or is equal to one of them) also in the case 

of an arbi t rary  exponential  polynomial.  The convex closure in question containing 

only a finite number  of lattice points h,  i t  follows from the result  that ,  for given 

exponents Zl, . . . .  ~ , ,  there is only a finite number of possible values of the mean 

motion c. 

35. A lattice point h belonging to the convex closure of a set of lattice 

points h (~ l , . . . ,  h( ~ may be writ ten in the form 

h -~- rl h (1) + "'" + r~vh (~'), 

where the coefficients r I . . . .  , r,v are non-negative rat ional  numbers with the sum I. 

Thus, i t  follows f rom w 34 that ,  when F ( t )  is an exponential  polynomial with 

the exponents ~t I . . . .  , ~t,v, the mean motion c has the form 

c = - r  1 ]~1 + "'" + r~, ]r 
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where the coefficients have these properties.  On the o ther  hand  it  will easily be 

seen tha t  if a number  c of this fo rm belongs to the smallest  modul  conta in ing  

the numbers  A x . . . .  , As, then, for  any choice of the base /~1, �9 �9 it  is of the  

form c = h/~, where h is a point  with in tegral  coordinates  belonging to the 

corresponding convex closure. 

36. Le t  F( t )  denote  once more  an arb i t rary  almost  periodic funct ion  which 

does not  come arbi t rar i ly  near  to  o. I f  F ( t )  has the Four ie r  series 

F ( t )  ~ ~ a ~  e~'n t, 

i t  follows from Theorem I t h a t  the mean  mot ion  e may for  a sufficiently l a rg e  

2/ be wri t ten  in the  fo rm 

(13) c = h l Z l  + "'" + h~'Z~, 

where the  coefficients h~, . . . ,  h~v are integers.  Applying this resul t  to the  func- 

t ion F ( t ) e  --~z,t, which has the exponents  )~m--Jt~ and the  mean  mot ion  c--Jt~, 

we find t ha t  there  even exists a representa t ion  of the form (1"3) , for  which ~he 

coefficients h ~ , . . . ,  h,v are in tegers  with the  sum I. 

On the o ther  hand,  i t  follows f rom w 32 t h a t  in the ease of an a rb i t ra ry  

F ( t )  the  mean  mot ion  o equals the mean mot ion  of an exponent ia l  polynomial  

F * ( t )  with exponents  among the exponents  of F(t ) .  To g e th e r  with w 35 this 

shows t ha t  for  a sufficiently large hr the  mean mot ion  e has the  form 

c = r l ) ~ l  + . . .  + r~.2~, 

where the  coefficients r~, . . . ,  rlv are non-negat ive ra t ional  numbers  wi th  the  sum 1. 

W e  have thus  proved the fol lowing theorem.  

T h e o r e m  2. The mean motion e o f  an almost periodic  func t ion  

F (t) ~ Z an e i a~ t 

wi th  given exponents ~ ,  which  does not come arbi t rar i ly  near to o, may  f o r  a 

suf f icient ly  large N be wr i t t en  both in  the f o rm  

where the coefficieuts ht . . . .  , h~- are integers w i th  the sum I, and  in  the f o r m  

c ~ r i ~i + "'" + r.~-~.~-, 

where the coefficients rj . . . .  , r,v are non-negative rational numbers  w i t h  the sum I 
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W e  not ice  t ha t  this resul t  is no t  the  best possible, i. e. a number  c expres- 

sible in both  of these forms is not  necessarily the mean mot ion of an almost 

periodic funct ion  with the  exponents  A~. To see this, we consider the  exponents  

21~---/~1, A 2 - - - 2 / ~ j ,  2 ~ . ~ ,  A~-~--3~u~, 

where pj aud P2 are arb i t rary  l inearly independent  numbers. The number  c----o 

is then  expressible in both  forms (viz. as - -  2A l - -  A~ + 3 As § A4 and ]21 • ~ ~  + 

+ oA 8 + oA~) but  it  is not  the mean mot ion  of any exponent ia l  polynomial  

F(t )  -~- al eit~t + a~e -2it ' , t  + aseite~t + a4e -3i~"-t 

which does no t  come arbi t rar i ly  near  to o. For  when t varies, a~e~',t+aee - ~ , t  

and a s d m t +  a4e - 3 i m t  describe cyclic curves, the  second of which is symmetr ic  

with respect  to the origin. Since the  spatial  extension 

G(xl,x~)--~ ale i~, + a~.e -~-~, + asd  ~: + a4 e-3iz~- 

is =4 = o, these curves canno t  have any point  in common, and one must  therefore  

sur round the  other.  Hence  the corresponding funct ion  a~eCmt+ a~e -~'~.",t or 

aae~.'t+ a4e -3 imt  does not  take the  value o, and it  determines the mean mot ion 

of F(t) ,  which is therefore  equal to one of the exponents  A1, A~, As, or A a. 

C H A P T E R  II .  

T h e  J e n s e n  F u n c t i o n  o f  an Ana ly t i c  A lmost  Per iod ic  Func t ion .  

Preliminary Description of the Variation of the Argument and the 
Distribution of the Zeros. 

37. Le t  f (s)  denote  an arb i t rary  funct ion of the complex variable s = a + i t ,  

which is regular  in an open domain G and is not  identical ly zero. The funct ion  

arg.f(s)  is then  defined rood. 2 z ,  by the condi t ion f ( s ) = - [ f ( s ) [ e  ~arg/(~), for  all s 

in G, with the exception of the zeros of f(s) .  

Let  L denote  a s t ra igh t  line (or segment) belonging to G; we suppose L to 

be or ien ta ted  so t ha t  we may dis t inguish between a lef t  and a r igh t  side of L. 

We  then  define the lef t  a rgument  a r g - f ( s )  of f ( s )  on L as an a rb i t ra ry  branch 

of the a rgument ,  which is cont inuous except  at t h e  zeros of f ( s )  on L, while it  

is discontinuous with a jump of - -p~r ,  when .,' passes, in the positive direction 
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of L, a' .zero of f(s) of  the  order  p. Similarly we define the r igh t  a rgument  

axg+ f(s) of f(s) on L as an a rb i t ra ry  b ranch  of the argument ,  which is con- 

t inuous  except  in the  zeros of f (s)  on L,  while i t  is d iscont inuous with a jump of 

§  when s passes, in the positive d i rec t ion of L,  a zero of f(s) of the  order  p. 

In  a d iscont inui ty  point  we use as value the mean value of the  limits f rom the  

two sides; the two funct ions  axg - f ( s )  and a rg+f(s )  are then  defined for  a l l  s on L. 

Both  are, of course, only de te rmined  rood. 2 z.  I f  f(s) has no zeros on L,  each 

of the  funct ions  is ident ical  with a cont inuous  branch  of a r g f ( s )  on the  line. 

I f  s 1 and s~ are points on L, so tha t  the  direct ion f rom sl to s~ coincides 

with the  positive direct ion of L, the  differences 

a x g - f ( s , )  - -  a r g - f ( s , )  and arg  + f(s,)  -- arg  + f(s,) 

a r e  independent  of the choice of the branches  of the  a r g u m e n t s  and axe called 

the  var ia t ion  of the  a rgument  of f(s) f rom s 1 to s, a long the lef t  or r igh t  side of L. 

Obviously they sat isfy the inequal i ty  

a rg - f ( s~)  - -  a x g - f ( s , )  ~ arg + f(s~) -- arg  + f(sl). 

38. Le t  again G be an open domain  in the  complex s-plane; let  0 be a 

bounded open sub-set of G, whose boundary  also belongs to G, and let  A be a 

closed sub-set of 0. Let,  fur ther ,  a set of funct ions  g(s) be given, regular  and 

uni formly  bounded in G, and not  having  zero as a l imit  funct ion,  i. e. f rom which 

there  c a n  be ex t rac ted  no sequence converging uni formly  to zero in every bounded 

Closed sub-set of G. We  shall make use of the fol lowing (well-known) s ta tements :  1 

(a) There  exists a number  N, such t h a t  the number  of zeros in 0 of every 

funct ion  g(s) of the set is ~ N. 

(b) For  every number  r > o  there  exists a constant  m ~ m ( r ) > o  such t h a t  

for  every funct ion  g(s) of the  set we h a v e  I g(s) I >---- m at  M1 points  s of A having 

a dis tance :> r f rom all zeros of g(s) in 0. 

(c) There  exists a cons tant  1 ~  o with the fol lowing proper ty :  I f  for  an 

a rb i t ra ry  funct ion  of the  set we denote  by s~ . . . .  , s~-, (where N * =  < N) the  zeros 

of g(s) in O, then  the funct ion  
g (s) g*(s)= 

II (s- s,) 
n ~ l  

satisfies in A the inequal i ty  Ig*(s) l ~  k. 

1 For  proofs of (a) and (b) see e .g .  the  proofs  of  the  qu i te  analogous  s t a t emen t s  in  Bohr  and 
Jessen  [2], pp .  I 8 - - I 9 ;  (c) and ((t) are easy consequences of (a) and (b). 

12 - 632042 Act~ mathematica. 77 
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(d) For every number 1 > o there exists a constant v----v(l)>o such that the 

variation of the argument of every function g(s) of the set along the left or right 

side of any straight segment of length ~ 1 belonging to .4 is ~ v. 

39.  Now let - - ~  ~ a < a o < a ~ < ~ t < ~ 0 < ~  < + a o  and let d denote a positive 

number smaller than the differences a l - - a  o and ~o--~1. We then choose for the 

open set G the vertical strip (ao, ~o), for the open sub-set 0 of G the rectangle 

a~--  d < ~ < flL + d, - -  ~ - -  d < t < �89 + d, and for the closed sub-set A of 0 the rectangle 

Let  f ( s )  be a function almost periodic in the strip [g, ~] and not identically 

zero. We may then apply the above theorem on the set of all f u n e t i o n s f ( s + i t * ) ,  

- - ~ < t * < + Q v .  These functions are, in fact, uniformly bounded in G, and 

as for every oo in the interval (rq/~) there exists a constant h > o, such that  

I f (~o+i t ) [  >_---h for a relatively dense set of values of t, they do not have zero as 

a limit function. 

More generally, if f l  (s), f2(s), . . .  is a sequence of functions almost periodic 

in [~t, fl] and converging uniformly in [a, fl] to a limit function fo(s), and if none 

of the functions f~(s), n : o, x, 2 , . . .  is identically zero, then the theorem may 

be applied to the set of all functions f ~ ( s + i t * ) ,  n----o, x, 2 , . . . , - - ~ v  < t * <  +o r .  

These functions are in fact uniformly bounded in G, and as there exists a 

constant h > o  and a bounded closed sub-set R of G such that  for every function 

f ,  (s + i t*) of the set the inequality I f ,  (s + i t*) [ ~ h is satisfied for some point of R, 

they do not have zero as a limit function. 

We therefore have the following theorem. 

T h e o r e m  3. Let  --  :~ _--<a<ao<a,<~<~o<fl_--  < + av, and let d denote a positive 

number smaller than the two differences a , -  ao and ~o--~i. Let, further, f ( s )  be a 

.funotion almost periodic in [a, ~] and not identically zero. Then the following state- 

ments are valid (see Fig. i): 

(i) There exists a number N, such that the number of zeros of f ( s )  in any 

rectangle a~ -- d < a< fl~ + d, t* - -  �89 -- d < t < t* + �89 + d is < N. 

(ii) For every number r > o there exists a constant m ~-re(r) > o such that 

If(s) I ~ m at all points s in the closed strip {a 1, ~}  having a distance >--_r from all 

zeros o f f ( s )  in the strip (ao, rio). 

(iii) There exists a constant k > o with the following property: I f ,  for an ar- 

bitrary t*, we denote by s 1 . . . . .  s.~. (where N*  < N)  the zeros of f (s )  in the rectangle 

a t - - d < o < ~ t  + d, t*- -~  - - d < t < t *  + ~ +d,  then the function 
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, I 

+ . . . . . . .  

F i g .  I .  

. . . .  

. . . .  

. . . .  

D' d ,I 

f(s) f *  (s) = ,v. 

II (s -  s.) 
~,=ffi l 

sati.~fies in the rectangle a I ~ a <--_ ill, t*--  �89 <~ t <~ t* + �89 the inequality I f*  (s) J :> k. 
(iv) For every number l > o there exists a constant v = v(1) > o such that the 

variation of the argument o f f (s )  along the left or ~ight side of any straight segment 

of length <~ 1 belonging to the sb'ip {al, ~x} is <= v. 

I f  a sequence of functions ]'1 (s), f~  (s), . . . almost periodic in [a, {i] e~nverges 

umformly in [a ,~]  to a limit function fo(s), and i f  none of the fundio~.s f,,(s), 
n = o ,  I ,  2 , . . .  is identically zero, the preceding statements are valid for the fundions 

f~(s),  n = o ,  I ,  2 , . . . ,  with constants N, re(r), k and v(l) independent of n. 

The Mean Motions and Frequencies of  Zeros. 

40. We consider again a function f(s),  almost periodic in a strip Is, p] and 
not identically zero. The left and right arguments of f(s) on a vertical line 
s ~ a + i t ,  - - o r < t <  +co,  orientated after increasing values of t, will be denoted 

by a r g - f ( a  + i t) and arg+f(o + i t). 
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I f  - -  ov < ~ < J < + ~ the variations 

arg--f(a + i ~ ) - - a r g - f ( a  + iN) and a rg+f (a  + i d ) -  a rg+f (a  + iN) 

of the argument from a + i N to a + i(l along the  left and right side of the line 

are, considered as functions of a, continuous from the left and right respectively. 

We have 

a r g - f ( a  + i~) --  a r g - f ( a  + iN) < a rg+f (a  + i~) --  arg+ f ( a  + iy). 

and 

The four quantities 

- ( ~ ) ~  lira inf  
e -  (~)!  = sup 

( # - - ~ , ) ~  | 

c + (a) ~ liminf 
+ (~)J = sup 

a r g - f ( a  + i J) --  arg- . f (a  t i N) 

~- -N 

arg+.f(a + i•) -- a rg+f (o  + iN) 

are called the lower and upper, left and right mean motions of f (s)  on the line 

s = a +  it ,  - - ~  < t < + ~ ,  or, more briefly, of the function f ( a  + it). From 

Theorem 3 (iv) it immediately follows that  they are finite for every a and even 

bounded in {a, fl]. Furthermore {0+:(o)/ ~-(~) =< (o) ~ --< e+ (~). 

I f  _c-(a) -~ e -  (a) or #+ (a) = 5 + (a), i.e. if the limit 

t -(a) ~- lim arz- . f (a  + i~) - -  arg--f(a + i 7) 

o r  

e + (a) = lira a rg+f (a  + i J ) - -  a rg+ f ( a  + iN) 
(a-7)~ | (? --  N 

exists, it  is called the  left o!" right mean motion of f ( a  + it) respectively. 

Denoting by a r g f ( a  + it) the argument of f ( a  + it) in the sense of w 2 7, 

we have a r g f ( a  + itS--= a r g - f ( a  + it) -~ a rg+f ( a  + it) if f ( a  + it) has no zeros; 

otherwise we have a r g f ( a +  it) = �89  + it) + arg+f (a  + it)). Thus if the 

mean motions c-(a) and c + (a) both exist, the mean motion 

c(a)~-- lira a r g f ( a  + i J ) - -  arg.f(a  + iy) 

of f ( a  + it) in the sense of w 2 7 also exists and is determined by 

e (.) = �89 (~- {.) + r (a)). 
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For  a < a t < a . ~ < ~  and - - o c < 7 - ~ d < + o o  we denote  by N(a t ,a~;y,d) the 

number  of zeros of f(s) in the rectangle at<a<az,  7 < t < &  The two quant i t ies  

_/,-/(at, a~)~ = liminf N(a 1, ag; 7, d) 
~(~,, .~) ! sup ~ - r 

are called the lower and upper relative frequencies of zen'os of f(s) in the  strip (at, a~). 

From Theorem 3 (i) it follows tha t  they are always finite. Obviously 

/-/(a,, as) < R (at, ~). 

I f  /-/(at, a2) : H(a~,a~), i .e .  if the  limit 

H(a l ,  as) ----- lira N(al ,  a~; y, ~) (~-~) ~ ~ (~ - -  y 

exists, it  is called the relative frequency of zeros of f(s) in the str ip (a~, a2). 

We  notice tha t  on account  of Theorem 3 it does not  make any difference 

in the  preceding definitions if we restr ic t  7 and ~ to an arbi t rary  relat ively dense 

set of numbers.  

41. W e  m a y  now easily prove the fol lowing theorem. 

T h e o r e m  4. For any fienction f(s) almost periodic in [a, fl] and not identically 

zero the mean motions and relative frequencies of zeros are for an arbitrary strip 

(a~, a,); where a < a~ < as <fl,  connected by the inequalities 

2~ / ~ (_+_ (~,~__++(~,~) ] 

To prove this we make use of the remark at the end of w 4o by res t r ic t ing 

7 and + to values for  which f(s) has no zeros on the segments  a t ~ a ~ at+, t----y 

and ITI<~IT~_~g2, t----~, For  such values of 7 and + we have by Cauchy 's  theorem 

applied to the rectangle  a l ( a ( a 2 ,  7 < t < ~  

(~) N(~,, ~; r, ~)= 

[(arg-.f(a~ q- i~)--  a r g -  f(a,, + i7) ) -- (arg+ f ( a ,  + i ~ ) -  a rg+f ( a ,  § iy)) + R (a~, a~; 7, (I)], 
27~ 

where the remainder  R(a~,ae; 7, ~) is the contr ibut ion to the variat ion of the 

a rgument  from the horizontal  sides of the rectangle.  By Theorem 3 (iv) this term 

is bounded for  all y and ~i and the theorem is therefore  an immediate  conse- 

quence of (1). 
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42. For l~ter use we formulate the following immediate consequences of 

Theorem 4. 
If  c+(az) exists, we have for every az>al  the relations 

/--/(a~, a,) --  ~ ( f - ( ~ ) - - e + ( a t ) )  and ./~(a~,as)= 2-J~z~(6-(a~)--e+(a~)). 

If e-(at) exists, we have for every at<a~ the relations 

H(at,a,)-----~(e'-(a..)--6+(a,)) and H(al ,  a . ) =  2-~(e'-(e~)--.c+(a,)). 

I f  two of the quantities e + (at), e-(a|), and H(a~, at) exist, then the third slso exists, 

�9 and we have t h e  relation 

a,) = : L  (~(a.) - e + ~,a|)). H(a,, 

The  Jensen  Funct ion .  

48. The more detailed study of the mean motions and the frequencies of 
zeros depends on the Jensen function, the existence of which is proved by the 
following theorem. 

Theorem 5. For any function/(s)  almost periodic in [a, ~] and not identically 
zero the mean value 

9(.)  = M{loff i f ( .  + it)i } 
t 

exists uniformly in [a, ~], i.e. the function 
d 

~ ( a ; ~ , e )  = t] I _ ~ f l o g ] f ( f f  + i t ) J d t  

7 

eontz.rges for (4--7)'--, 00 uniformly in [a, ~] towards a h;mit function 9(a). 

If, for r e > o ,  we put 

I f  IS)[m = max { i f (s) ] ,  m} 

the function 9(0) is aL~o determined as the limit of the mean t'alue 

M {log ]f(o + it)I,m} 
t 

as m--. o, the convergence ~2ing again unifm'm in [a, ~]. 
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The function SO(a) is called the Jensen function of f(s). Since SO(e; 7, d) is 

continuous, it follows from the theorem that  S0(a) is continuous. 

We  repeat  the proof given in Jessen I2]. 

Let  {a1,~1 } be a closed subinterval  of (a,/~). For a given m > o  the function 

l o g [ f ( e  + it)[~ is for every ~ in (a,~) an almost periodic function of the real 

variable t. Further, for a 1 ~ ~ ~ ~1 these functions form a uniformity set. Thus 

the mean value 
J 

~{log[f(a*it)[,~}= lira ~ f loglf(,,+iOl.dt 
7 

exists uniformly in {al, P~}. As l o g l f ( e + i t ) l , , > - - _ l o g l f ( , ~ +  i t ) l  it is therefore 
sufficient to prove that  for any 6 > o  there exists an m, such that  for a l ~ e = < ~  

and (d--r) > I  we have 
d 

, f  (2) (o<_-)~__r loglf(a + i t ) lmdt - -so( . ; r ,a)<= ~, 
./ 

or (what amounts to the same thing) 

d 

(3) (o _-<) f (log If(e + i t ) l ~ - - l o g l f ( #  + i t)[)dt  < ~(~ _ ~,). 
7 

For (2)implies the first part  of the theorem, and if we make (d--y)-~  ~ it 

fol lows from (2) that  ~or ~ < # < #~ 

(4) (o -<) M {log I f (a  + i t) I,~} - -  SO (a) < ,, 
t 

which implies the second part  of the theorem. That m may be chosen in aecord- 

ance  with the said condition is proved by means of Theorem 3 in the following 

manner. 

Let  a < a o < a l < ~ t < / ~ o < / ~  , and let d denote a positive number smaller than 

the differences ax--a  0 and /~o--fft. To every r >  o there exists by Theorem 3 (ii) 

a constant m ~ m ( r ) > o ,  which may of course be chosen < I, such that  If(s)l~m, 
or If(s)[,n=[f(s)[, for all s i u  the strip {at, if1} having a distance ~ r  from all 

zeros of f(s) in (ao,~0/. Hence on choosing r < d  there exists by Theorem 3 (i) a 

number N independent of r, such that  in every integral 

t* '+~ 

J =  f (log If(a + i t ) l ,~ - - log l f ( e  + i t) l)dt ,  
, 1 
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where a 1 =< a < fix, the in tegrand is positive in at  most  N sub-intervals of 

t * - - t ~ < t < t * +  ~ having a total  length < N z r .  Hav ing  chosen m <  i we have 

in these intervals 

log I f (a + i t)IN -- log ]f(a + i t) ] ~ -- l o g -  [f(a + i t) ].' 

Hence by Theorem 3 (iii) there exists a constant  k independent  of r such tha t  

denot ing by s 1 ~ a ,  + i t 1 , . . . ,  s ~ . = a ~ - ,  + it,v, (where N*_--< N) the zeros of 

f(s) in the rectangle a t - - d < a < f l , + d ,  t * - - } - - d < t < t * + ~ + d  w e  have f o r  

t * - - ~ < t < t *  + ~ 

l og[ f ( c r+ i t ) i , , - - l og[ f (a+ i t ) [<- log -k -~ , l og - [ s - - s . [<- - log -k - -  ~ l o g - [  t - - t , [ .  

Thus, for every integral  J ,  we have the est imate 
~Vr 

(o __<) J__<- log-k,  f l og-I u I d,,, 

where the quant i ty  on the r ight  converges to o as r--~ o (since N and k are 

independent  of r). We now choose r such tha t  this quant i ty  is ~ ~,. Then for 

the corresponding m ~ m ( r ) ,  the inequal i ty  (3) i s  satisfied for a t ~ a < f i t  and 

(~--y)  > I. For, the largest integer  < (8--7) being denoted by A, the integral  

on the left  in (3) is <=A +I<=2A integrals  J and hence <�89 

This completes the proof of tbe theorem. 

44. By means of the inequali ty (4) we shall now prove the following theorem. 

T h e o r e m  6. The Jensen function 9(a) o f f ( s )  depends continuously on f(s) in 
the following sense: I f  f l  (s), f ,  (s), . . . are a sequence of functions almost periodic in 
[a, fl] and converging uniformly in [a, fl] to a limit function fo(s), and i f  none o f t  he 
functions f~ (s), n = o ,  I, 2, . . . is identically zero, then the Jensen function 9~ (a) of 
f , (s)  converges for n ~  co uniformly in Is, flJ towards the densen funetion 9o(a) of fo(S). 

Let {a~,fl~} be a closed sub-interval of (a, fl.). We  apply the proof of Theorem 5 

simultaneously to all functions f ,  (s), n = o, I, 2 . . . . .  choosing (as Theorem 3 

permits) the numbers m-~- re(r), 2( and k independent~ of n. We thereby f in&that  

for  any e > o there exists a positive number  m <  i such tha t  in {a,, fl~} simultaneously 

for  all n=o ,  I, 2, . . .  

(o < ) M  {log If. (a + i t)[=} -- 9-(q) < * .  
t 

' By l o g - x  we denote for x > o  the function l o g - x =  rain ( l og  x,  o}.  The function - - l o g - x  is 
non.negative and decreasing; further, if  x . = x , . . .  X:v,, we have - - l o g - x  < - - l o g - x ,  . . . .  " l o g - x v  , .  
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For  this fixed value of m we obviously have 

M { l o g  Ifo(a + it)[~} = lim M { l o g l f , ( a  + it)Ira } 

uniformly in {~, 1~1}. Thus in the  interval  {al,/71} we have 

I ~o(- ) -  ~(-)I--< 3~ 

for  all sufficiently large n; which p r o v e s  the  theorem. 
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The Connection between the Jensen Function and the Mean Motions and 

Frequencies of Zeros. 

45. W e  shall now prove the fol lowing theorem. 

Theorem 7. ~br  any function f(s) almost periodic in in, ~] and ,or identically 
zero the eorrespondh~g Jensen function ~(a) is convex in (a, ~), a,d the four mem~ 
motions satL~fy ]'or every a in (f~, ~) the inequalities 

= _  = (~)J = _ 

~'urther, the two frequencies of zeros satisfy for every strip (al, a~.), where c~ <al <a~ < ~, 
the inequalities 

O) + <= H(al, 
i < + 

I t  is sufficient to prove the convexity of ~(a) and the two inequalit ies 

(5) ~ ' ( ~ - o )  _-< , - ' - ( 4  a n d  ~+(-)  -<_ ~ ' ( , ,  + o) 

for then t h e  rest  of the theorem follows from w 40 and Theorem 4. Moreover,  

it is sufficient to prove the convexity of 9v(a) and the inequalit ies (5) in any 

reduced interval  (at, 3~). Now, on account  of the  a lmos tpe r iod i c i t y  there exist, 

corresponding to a 1 and //1, a number  m > o  and a relatively dense set of real 

numbers  such tha t  [f(s) l >= m on every horizontal  segment  a 1 < a ~ #1, t = t 0, 

where to belongs to this set, Denot ing  by K the (finite) upper  bound of I f ' ( s ) [  

in the strip {%, ~,}, we have on any of these segments the inequali ty 

[dlo~.f(s)[ [f'(s}[ K 
ds i = l f ( s )  N --'m 
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When at<ot<o2<~t  , and y and d belong to the set in question, we there- 

fore have the relation (I), where the remainder term R(oi, o~; 7, 0) satisfies the 

inequality 
2 K  

We now consider the function 

90 fo; r, o)= o 
"t 

For an arbitrary value of o for which f ( s )@o on the vertical segment s-----o+it, 
~, ~ t _---< 0, this function is differentiable with the derivative 

(6) 90' (u; 7, 0) ----- a r g f ( o  + icl) - -  a r g f ( 6  + i7) .  

For in a neighbourhood of the segment we have 

log f ( s ) =  log If(s) l  + i argf(s )  

and therefore by the Cauehy-Riemann differential equations 

d d 
- -  log l / (o  + it)l = ~ a r g f ( o  + it). do 

For given values of ~, and J there are at most a finite number of exceptional 

values of o, and, fo r  these values, the right side of (5) has limits from the left 

and the right, viz. 

a r g - f ( o  + ic l ) - -ar~- . f (o  + i7) and arff+f(~ + i d ) - - a r g +  f(~ + i7). 
0 - - ?  0- -  7 

Hence the function 90 (o; 7, 0) is differentiable f rom the left and the right at these 

points o, and for all o we have for its left and right derivatives 90' ( r  7, J) 

and 90'(o + o; ?, 0) the expressions 

90'(o -- o; 7, 0) = a r g - f ( o  + i~) --  arff--./(o + i 7) and 

(7) 
arg + f lo  + iO) --  ar~+.f(o + it) 

90"(o+o;r,0)= �9 o - r  " 

The relation. (I) therefore takes the form 

O; ~, 0) + )" (o'i) o'~ ; ~1) (~))) 
0 7 
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where the remainder  r(az, a2; 3', J) satisfies the inequality 

l , " ( . , , a , ; r , ~ ) l  < ~ 2 K  
- -  J "--3 m Ca, - at). 

In order to utilize this connection between the function ~0Ca; 3', d) and the 

number  N(ax, a~; y, d), we introduce instead of ~(a; V, ~) the function 

~l (a ;  r, J) = ~ ( a ;  r, a) + a - r  m 

Then the l u t  result may also be written in the form 

~r(a, ,  at; 7', a) I t �9 

where the new remainder rl(a~,as; l ,d) satisfies the inequalities 

I 4 K  
d - -  3' m ( a t - - a ' ) - - - - < r ' ( a J ' a ' ;  3"~)----< ~  

As N(al, a,; 3', d ) >  o, it follows from the last inequality that  

~; (a, + o; r ,  J) < ~ (~, - o; ~, ~), 

and hence tha t  901(a; ~, d) is a convex function. 

The proof may now be completed in few words. By Theorem 5 we have 

uniformly in (al, ~1) the relation 

~(a)---- lim ~,(a;  3',d). 

The function ~(a) is therefore convex. Hence for every a in (% ~1) 

F ' ( a - -  o) _--< lira inf ~ ( a - - o ;  ~,, d)~-- lim inf u  ~,, d) 
(~--,*)--, 0. (a--r )  ~ | 

s n d  

lira sup 9r (a + o; 3', d) = lim sup 9~ (a + o; l, a) _--< 9o' (a + o). 
( ~ - - r ) ~  ** (~--y) ~ | 

Oombining this with (1), we find the inequalities (5). 

This completes the proof of the theorem. 

46. From Theorem 7 follows tha t  if ~ (a) is dii~erentiable at the point a, 

then the left  and r ight  mean motions e-(a) and e + (a) of f(a+it) both exist and 

have the common value 

~ -  (a) = ~+ Ca) = ~ '  (a). 
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I f  9(a) is differentiable at  the points a~ and a~, then  the  relative frequency H(at,a.,) 

of zeros of f(s) in the strip (a~, a_~) exists and has the value 

H ( ~ ,  ~) = _L_ (9'(~) _ 9 , (~ , ) ) .  
2 ~  

This formula  is called the  Jensen ,formula for almost  periodic functions.  

As an immediate  consequence of Theorem 7 we have the formula  

_~I (9' (* + o) - 9 ' (a  - -  o)) = l i ra / - / (~ - -  e, ~ + ,), 
2 ;  rf ~ 0  

which shows tha t  the funct ion 9(a) is differentiable at the  point a if and only if 

l i m H ( a - - e , a +  e ) = o .  
~ 0  

Strips without Zeros. Periodic Functions. 

47. For a function f(s) almost periodic in a strip [a, f], the vertical sub-strips 

(a < )  a o < ~  < fo (~fl) in which the function has  no zeros have a particular interest. 

Concerning such strips we shall prove the following theorem. 

Theorem 8. A function f(s) almost periodic in [a, f] and not identieally zero 

has no zeros in the sub-strip (a~)Cto<a<~o(<~), i f  and only i f  its Jensen funetion 

9(a) is linear in the interval (do, flu). 

In this ease we have Jbr every reduced strip (do<)a~ =< a < fit ( <  flu) that 

(8) lower bound If(s) l > o; 

moreover an arbitrary branch of log f(s)  in (uo, rio) has the form 

(9) log f ( s )  = ca + St(*), 

where c denotes the constant value of 9'(a) i~t the interval (do, flu) and g(s) is almost 

periodic in [do, flu]- 

The constant e and the exponents of g(s) all belonq to the modul off(s). 

I f  f (s)  has no zeros in the  strip (a o, ~o) we have H (do, t~o)= o. Hence,  by 

' (~o  - o ) ,  Theorem 7, we h a v e  9 (do + o ) =  9 '  which implies tha t  9(~) is l inear in 

the  interval  (do, rio). 
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I f  f(s)  has a zero So=a o + i t  o in the strip (ao,/~o), we choose a a and as such 

tha t  a o < a I < a o < a, < rio. Fur ther ,  we choose a positive number r smaller than  

the differences ao--aL and a~--ao such tha t  If(s)l H o on the circle ]S--Sol = r .  

Le t  m denote the lower bound of If(s)l on this circle. Then there exists, by 

Rouchd's theorem, for any positive e < m and any ~=.~(~;  al, a,. ) at least  one 

zero of f ( s ) i n  the circle I s -  (s o + i z)l < r. As the t ranslat ion numbers are 

relatively dense, this implies tha t  /-/(a~, a s ) >  o. Hence, by Theorem 7, We have 

~'(a  I --o)<~0'(a2-i-O), which shows tha t  ~0(a) is no t  l inear in the interval (ao, &). 

This completes the proof of the first part  of the theorem. 

We now assume tha t  f(s) has no zeros in the strip (ao,/~o). The re la t ion (8) 

then follows immediately from Theorem 3 (ii) applied for  a number  r smaller 

than  the  differences a l ~ a  o and /?o-ill. Thus,  the funct ion F~(t)=f(a+i t )  satisfies, 

for every a in the interval  (%, ~o), the conditions of Theorem I, and we therefore 

find, employing w 29, tha t  

l o g f ( a  + i t ) = i c t  + H~(t), 

where, by Theorem 7, the mean motion c is equal to 9'(a), and H~(t) is almost  

periodic. Thus we have the representat ion (9) with 

~(a + i t )  = H ~ ( t ) -  ca. 

Moreover, i t  follows from the remark at  the end of w 29 that ,  for any ~ > o  

and any reduced strip ( a o < ) ~ <  a < f l : ( <  flo), there exists a ~ > o  such tha t  any 

�9 y($; ~,fl~) is a ~ ( e )  for all a in (a~,/~), and therefore a ~(~; a,, s  This implies 

tha t  g(s) is almost  periodic in [%, ~0]. 

The last  part  of the theorem follows immediately from Theorem :: 

The Jensen formula  may  be wri t ten in the form 

N(al,  a2; 7, ~) = : 2 ~  (~' (a~) - ~ '  (a~))(~ - r) + o(~ - z). 

I t  is easily seen tha t  the remainder  is bounded if a~ and a o belong to l inearity 

intervals of 9(a). 

48. Let  (a o, ~o) be a strip wi thout  zeros, and suppose tha t  ~o<fl .  Then, 

a o having been chosen in the interval (ao, ~o), the quantit ies c + (ao)= 9'(ao) and 

H(ao, flo)=O both exist. Thus, by w 42, the quant i ty  c-(~o ) also exists, and we have 

~ ( a o ,  ~o) = 2 ~  (~ -  ~o) - c § (-~), 
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so t ha t  c-(rio)----c+ (~o)= 9'(So) or, 9 (a) being l inear in the interval  (so, ~o), 

c -  (rio) = ~' (to - o). 

Similarly, if a < ao, the quant i ty  c + (%) exists, and 

c+ (-o) = ~"(% + o). 

Thus, if  two strips wi thout  zeros have a common border line a = ao, the 

mean motions c-(ao) and c + (~o) both exist and are determined by 

(tO) C--(~rO)=~O'(~o--O ) and c+ (ao) ---- 9 '  (ao + o). 

In  the special case where the zeros of f ( s )a re  s i tua ted  on vertical lines 

which do not  accumulate  in the interior of the strip (a, r), the Jensen funct ion 

is stre~chwise linear, with points of non-differentiabili ty in the abscissae of the 

zeros of f(s). In  this case the relations (IO) hold for all so. Consequently the  

relative frequency H(~I, ~ )  always exists and is determined by the  formula  

(if) I I I 

H ( a , ,  (T,) = ~ ( 9  (,7, - - o ) -  9 (~, + o)). 

This part icular  dis tr ibut ion of the zeros occurs when f ( s ) i s  periodic with the 

period ip,  where p > o, i. e when the exponents are contained in the  discrete 

modul M =  h p �9 Thus, in this  case, the Jensen funct ion 9(~) is s tretchwise 

linear, and the values of r  (a) in the l ineari ty intervals are integral  multiples 

of 2 ~ .  In  this case the left  and r ight  mean motions c-(a) and e + (a) and the 
P 

relative frequency of zeros are, of course, determined by the expressions 

~ -  (~)  = arg-.f(a + ia + ip) -- a r g - . f ( a  + is) 

P 

c + (a) = a r g + f ( a  + ia + i p ) -  arg+ f ( a  + is)  

and 

(I 2) H (a~, a..) = 

P 

N(al,  a~; a, a + p )  

where a may be arbitrari ly chosen except in the last  expression, where we must  

assume f ( s )  ~ o on the segment  ~l < ~ < a2, t ---- a. Similarly, we have for the 

Jensen funct ion the expression 
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a + p  

~0 {a) = ~ log [f{a + i t) I d t, 
ft 

where a may be arbi t rar i ly  chosen. 

From (I I) and  (I 2) i t  immediately follows t h a t  the  jump 90' (no + o)--~0'(ao--O) 
2 ~  

of ~0'(a) at  a ver tex  of ~0(a) is equal to ho-~--, where ho denotes  the number  of 

zeros of f (s)  on a segment  a = no, a < t < a + p. 

I n  the par t icu lar  case where 
h - - $  

f ( s ) = ~ a h e  v , ao@o, 
h = 0  

so t ha t  f (s)  is periodic in ( - -  co, ~) and f ( s )  --> ao when a § - -  Qo, the  abscissae of 

the  zeros may be a r ranged  in an increasing sequence al, a 2 , . . . .  Then  ~0(a) 

is l inear  in ( - -no,  a,) and since 90 (a)-* log laol  when a - * - - ~  we see t h a t  

g0(a) = log I aol for  a < a,. Deno t ing  by h~ the  number  of zeros of f(s) on a seg- 

ment  a = a,, a < t < a + p, we therefore  have,  for  every a </~, the expression 

 (o)--log laol+ h , (o-  o,,). 
on  -~ a 

2 ,~ 
- - 8  

By the  subst i tu t ion e '  = z this  fo rmula  is seen to be equivalent  with the  

usual  Jensen  formula  (w 19) for  a funct ion  F I z  ) with ~ ' ( o ) 4 o  regular  in a circle 

Functions whose Exponents are Bounded Above or Below. 

49. Le t  f(.~) once more be almost  periodic in [a, ~], and not  identically zero, 

and le t  us now assume tha t  its exponents  have a finite upper  bound 1/. I n  this  

case the func t ion  may, according to Bohr  [Io], be cont inued in the  half-plane 

(a, + ~ )  and will be almost  periodic in In, + ~].  Regard ing  the  behaviour  of 

f (s)  fo r  a-~ + ~ two different  cases should be dist inguished.  

I) I f  1/ is i tself an exponent ,  we have f(s)=eASg(s), where g(s) f o r a ~  + 
converges uni formly  in t towards a cons tan t  A # o ,  viz. the coefficient of e A' in 

the Dir ichle t  series of  f(s). This  implies the existence of a half-plane a > a 0, in 

which f (s)  has no zeros. 

2) I f  1/ is no t  an exponent ,  we have f(s)=-e~Sg(s), where g(s) for  a ~  + 

converges uni formly in t towards o. In  this case there  exists no half-plane a > a  0 

wi thou t  zeros of f(s). 
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In  the first case, the Jensen funct ion ~(a) is linear for a>ao. Furthermore,  

in the half-plane a >  ao, we have l o g f ( s ) =  A s  + log g(s), and hence 

Since 

~v (o) = M {log I/(~ + it) I } = / 1 .  + M {log 19 (- + it) I}. 
t t 

M{log ~.q(a + it)l} ~ log ]A I when a - ~ + z c ,  
t 

this implies t ha t  r  + l o g ] A  I for a > o o. Thus the derivative ~0'(o) has 

for  a > a o the constant  value /1. 

In  the second case, the Jensen function r is not  l inear in any interval 

a>ao. As fur thermore  ~ ( a ) - - / 1 a  + M{log  Ig(a + it)[}, where now 
t 

M { l o g l g ( a + i t ) [ } ~ - - ~  when a - ~ + z c ,  
t 

i t  is seen tha t  the r ight  derivative 90'(a + o) is < A for all a. 

Thus we have proved the following theorem. 

Theorem 9. I f  among the exponents of the function .f(s) there is a largest one, 

say A ,  then, denoting by A the corresponding coef.fieie~d, we have for all sufficiently 

large a 
~(~) = / 1 ~  + log {A{, 

Thus e + (a) <= .4 for all a and 6 + (a)=/1  for all sufficiently large a. 

I f  the exponents have a finite upper bound /1, which is ,or itself an exponent, 

we have for a ~  + 
qD (~) - / 1 a  - ~  - ~ . 

Thus ~+ (a) < /1 for all a. 

We do not  know whether  in the second case the relation lira 6+(a)</1  ever 

O c c u r s .  

There is, of course, a corresponding theorem for functions whose exponents 

are bounded below, dealing with the behaviour for a - ~ - - ~ c .  

We emphasize as a consequence of these theorems tha t  a lower or upper, 

left  or r ight  mean motion of an almost periodic funct ion f (s )  on a vertical line 

can neither  be smaller nor  larger than  all exponents of the function.  
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C H A P T E R  III. 

On the Dis tr ibut ion  o f  the Values  o f  Real  Almost  Per iodic  Sequences .  

Ahnost  Per iodic  Sequences. 

50. In the sequel we shall in a number of cases construct analytic almost 

periodic functions f{s) with certain prescribed properties. These constructions are 

all founded on results concerning the distribution of the values of real almost 

periodic sequences. These results being of a rather complete nature, we have 

found it convenient to collect them in a separate chapter, together with the 

analogous results regarding real almost periodic functions, which have been in- 

cluded in order to round off the exposition. 

A complex functi6n U(k) defined for all integers k =  . . . ,  --2, - -I ,  o, I, 2 , . .  
will briefly be called a sequence. An integer ~. is called a lra~slation number of 

U(k) belonging to a given number e > o ,  and is denoted by z(e) or zv(e), if the 

inequality 

I V(k + ~.)-- U(k)l < ~  

holds for all k. The sequence U(k) is called almost periodic if, for any e > o, the 

set of all translation numbers u----r.(~)=uv(~) is relatively dense. 

Almost periodic sequences have been investigated by Walther  [I] and Seynche [I]. 

They form a special case of yon Neumann's [I] general theory of almost periodic 

functions in a group. 

Every almost periodic sequence is bounded and possesses a mean value 

J 

M i U ( k ) } =  lim x 
k (,~-:,/~ ~ - r  ~' u(k). 

7 

The sum or the product o f  two almost periodic sequences and the limit of a 

uniformly convergent sequence of almost periodic sequences are again almost 

periodic. 

To an arbitrary almost periodic sequence U(k) corresponds a Fourier series 

U(k)-i~a,,d',,~ ~, a,,~-M{U(k)e-'a,,k}, 
k 

where, of course, the exponents ~, are only determined rood. 2 z. Different 

sequences have different Fourier series. 
i 3 -  632042 Acts ma$hematica. 77 
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The Four ie r  series of  the sum or  the  product  of two almost  periodic se- 

quences or of the l imit  of a un i formly  conve.rgent sequence of almost  periodic 

sequences are obtained by per forming  the corresponding operat ions on the Four ie r  

series of these sequences. 

The main theorem is the approximat ion  theorem. According to this theorem 

the class of almost  periodic sequences is ident ical  with the class of sequences 

which are the  l imit  of a sequence of exponent ia l  polynomials 

~1 

converging uni formly  for  all in tegers  k. For  a given almost  periodic sequence 

t h e s e  exponent ia l  polynomials  may be chosen with exponents  among  the exponents  

4, of the sequence. 

,51. A necessary and sufficient condit ion tha t  a sequence U(k) should be 

almost  periodic with exponents  f rom a given modul  M conta in ing  the number  2 ~, 

is t ha t  to any e ~ o  correspond a finite set of numbers  2 1 , . . . , ~ - i n  M a n d  a 

number  ~ > o ,  such tha t  every in teger  x sa t i s fy ing  the condit ions 

�9 . . r o o d .  2 

i s  a ~,u(~).~ 
From this follows: I f  U(k) is almost  periodic wi th  exponents  f rom a given 

modul  M conta in ing  the num b er  2 ~, and if c is a number  with the proper ty  that ,  

for  some ~ ~ o, all x = xu(~) satisfy the condi t ion 

e X ~ O  mo(]. 2~,  
then  e belongs to M. 

52. The almost periodic sequence U(k) is periodic with the  ( in tegra l )per iod  

if and only if its exponents belong to the discrete modul ~ ~ / h 2 ~ ,  p ~ o ,  

where h runs th rough  all integers.  The  Four ie r  series is then  a finite sum. The  

sequence is l imit periodic, which means  t h a t  i t  is the  l imit  of a un i formly  con- 

vergent  sequence of periodic sequences, if  and only if its exponents  belong to 

the modul  M =  {r2~},  where r runs t h rough  all ra t ional  numbers.  

As previously mentioned (see the footnote on p. 145) the set of integers z satisfying t h e  

conditions ~t~ z~ ~ ~/ . . . . .  ~,~ x.~r ~ ~ (rood. 2~), w h e r e  ~ ~ o and ~ . . . . . .  )'X a r e  a r b i t r a r y  r e a l  numbers, 
is relatively dense. 
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In  the sequel results will be obtained regarding almost periodic sequences 

with exponents from a quite arbitrary modul containing the number 2 ~. These 

results will be obtained by a reduction to two special types of moduls which will 

now be considered. 

We first consider an arbitrary everywhere dense modul M containing the 

number 2 ~, and consisting of rational multiples of 2 ~. Such a modul may be 

written in the form /~f-~ lira ~h,~2---z[, where pl, p~ is a sequence of positive 

integers such tha t  Pm+t is, for every m, a proper multiple of pro, 'and hm runs 

through all integers. (We may for example take I~,P~,. �9 �9 as a strictly increasing 

sub-sequence of the sequence ql, q2, . . . ,  where qm is the largest divisor of m! 

for which 2 z  belongs to M.) If, conversely, such a sequence p~, p~ . . . .  is given, 
q~ 

M =  lira ~hm2--~-~[ is a modul of the type considered. I t  is easy to see that  a 
~ |  ( - p~  

limit periodic sequence U(k) has its exponents in M if and only if it is the limit 

of a uniformly convergent sequence of periodic sequences, having the periods 

P l , ~ , . . . -  We express this by saying that  U(k) is limit periodic with respect 

to the periods Pl, P ~ , . . . .  

Next we consider the case of a modul M :  {g2z+hT},  where 712~ is irra- 

tional, and the coefficients g and h run through all integers. Let U(k) be an 

almost periodic sequence with exponents from _71/. The exponents being determined 

only rood. 2 z, i t s  Fourier series may be written in the form 

U (k) ~ 2ah e ~I~7k. 

Using that  the points t = yk, where k runs through all integers, are everywhere 

densely distributed rood. 2 z, we conclude, by an argument quite similar to that  

applied in w 3 I, that  U(k) may be written in the form 

(1) 

where /~'(t) is a uniquely 

Its Fourier series is 

U - k) ,  

determined continuous function with the period 2 z. 

F ( t )  ~ Za , d h' 

if ,  conversely, F(t) denotes an arbitrary continuous function with the period 2 ~, 

the sequence U(k) determined by (1) will be an almost periodic sequence with 

exponents from M. 
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Asymptotic Distribution Functions. 

53. When speaking of an increasing function y ~ St(a) in an interval 

(-- ~ < ) a  < a <~(=<  +~c),  we shall be interested only in the two functions 

g ( a - - o )  and g(a~-o),  determined as the limits f rom the left  and the right,  and 

shall  in a point of discont inui ty  consider the funct ion many-valued, ascribing to 

i t  all values in the closed interval  St(a--o)<y~g(a+ o). The notat ions r  

and ~ ' ( a + o ) f o r  the lef t  and r ight  derivatives of a convex funct ion r  are in 

accordance with this convention, when, correspondingly, the der ivat ive/ t  ( a )=  ~'(a) 

is considered many-valued in the points where the function is not  differentiable. 

An increasing funct ion st(a) in the interval --~v < a <  + ~ is called a distri- 
bution function, if it  satisfies the condit ions 

lira St ((r) ---- o and lim St(a) = I. 

We shall here consider only the simple case where there is a finite interval {a, ~} 

such tha t  g ( a ) = o  for  a < a  and g ( a ) =  I for a > f l .  

For  an arbi t rary set E of integers  we denote by n(E,7, d) the number  of 

elements of E belonging to the interval  7 =< x < 5. The two quanti t ies  

_Q (E) [ = l iminf n (E, 7, J) 
sup 5 - 7  

are called the lower a,d upper relative fi'equencies of the set E. I f  q (E)~---~(E), 

i. e. if  the l imit  

Q ( E ) =  lim n(E'7'~) 

exists, it  is called the relative fi'equency of E. 

I f  E is periodic, r (E) evidently exists, and is equal to the number  of elements 

of E in a period divided by the length of the perio& 

Similarly, if A denotes a measurable set on the line --  ~ < t < + ~ ,  and 

if m(A,7,~) denotes the measure of the part  of A belonging to the interval  

7 < x < d, the quanti t ies  

~_" (A)) _= l iminf m (A, 7, 5) 
r ( A ) j  sup a - 7  (a--y) ~ | 
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are called the lower and upper relaHve measures of A, and if _r(A)~-r i.e. if 

the limit 

,'(A) = lira m (A,~, ~) 

exists, it is called the relative r~easure of A. 

If  A is periodic, r(A) evidently exists, and is equal to the measure of the 

part  of A belonging to a period divided by the l en~h  of the period. 

For later application we state the theorem on equidistribution rood. 2 z  of 

the numbers ~,k, where 7/2 z is irrational, and k runs through all integers. I t  

says that, if A is periodic with the period 2 z, and Jordan measurable, then the 

set E of all integers k for which t - - r k  belongs to A has a relative frequency 

e(E), which is equal to the relative measure r(A) of A. 

54. A real sequence U(k) is said to possess an asymptotic distribution .func- 
tion, if there exists a distribution function tz(a) such that, for every a, 

o) __< _-< [ 

where E - ( a )  and E + (~) denote the sets of those integers k for which U(k)< a 
and U(k)<= a respectively. The function /~(a) is then uniquely determined, and 

for every continuity point of /z(a) the relative frequencies of E - ( a )  and E+(a) 
both exist, and are equal to /~(a). 

Similarly, a real measurable function F(t) defined for - - ~  < t < + ~ is 

said to possess an asymptotic distribution function, if there exists .a distribution 

function /~(a) such that, for every a, 

+ o), ~(a--o)  <= r_ (A-ia)) <= [ r ] 

where A-(a) and A + (a) denote the sets of those points t for which E( t )<a  and 

F(t) <: a respectively. 

We shall only consider the case of bounded functions U(k) or F(t). The 

asymptotic distribution function t~(a) is then, when it exists, of the special type 

mentioned above. In fact, if the values of U(k) or F(t) all belong to the interval 

{a, fl}, we have / z ( a )=o  for a < a  and /~(a)= I for a>fl .  
I t  is easily proved that  a bounded function U(k)or F(t)possesses an asymp-  

totic distribution function /~(a) if and only if 
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(2) < for <a_. 

o r  

(3) ~(A+(a,)) _< r_(A-(a..)) for a,<a.. 

respectively. 

Asymptotic Distribution Functions of Real Almost Periodic Sequences. 

55. In our considerations the following theorem due to Wintner [7] is of 

fundamental importance. 

Theorem 10. Any real almost periodic sequence U(k) possesses an asymptotic 
distribution ~r p (a). 

Wintner 's  proof of this theorem depends on the moment method mentioned 

in w I7, and leads to a characterization of the distribution function by means 

of moments. We shall only need the existence of the distribution function, which 

may be proved quite elementarily as follows. 

The sequence U(k) being bounded, it is sufficient to prove that condition (2) 

is satisfied. Let  g(a) denote the continuous function which is I in the interval 

a l i a 1  and o in the interval a ~ a ~ ,  and is linear in the interval a ~ H a ~ a 2 .  

Then •(U(k)) is evidently again almost periodic and possesses therefore a mean 

value for which we have 

~(E+(al)) ~ M{z(U(k))} and M{z(U(k))} ~ q(E-(a~)). 
k k 

This implies condition (2). 

I f  U(k) is periodic, the relative frequencies of the sets E - ( a )  and E + (a) 

exist for all a, and we have 

Q (E-(a)) -~--, (a --  o) and Q (E + (a)) ----/~ (a § o). 

56. By the same argument, it may be proved that any real almost periodic 

function E(t) possesses an asymptotic distribution function ~(a), a theorem which 

is also due to Wintner [I], [4], i5]. Here condition (3)has  to be proved; this 

condition follows with the same choice of g(a) from the relations 

M{z(F( )I and M{z(F(t))} <= r(A-(a~)). 
t t 
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If  F(t) is periodic, the relative measures of the sets A-(a) and A+(a) exist 

for all a, and we have 

r ( A - C a ~ ) = , ( a - - o )  and  , ' (A+~a~)=,(a + o). 

Since A-(a) is open and A+(a)--is closed, this implies that  both sets are Jordan 

measurable for all values of a for which #(a) is continuous. 

As pointed out by Wintner,  the asymptotic distribution function # (a) of an 

almost periodic function is strictly increasing in the interval {a, ~}, where a and 

denote the lower and upper bounds of F(t). In fact, if a ~ a I < as =</~, and 

denotes a positive number < �89 (a s --al) ,  there exists, by the continuity of F(t), 
an interval I t - - t o l  < c? in which al + ~ <F(t)<a~--r. For an arbitrary ~=~F(~) 

we therefore have a,<F(t)<a~ in the interval ] t + ~ - - t o [ < ~ .  The set of these 

numbers ~ being relatively dense, we see that  the two sets A-(as) and A + (a,) differ 

by a set of positive lower frequency, whence it follows that t'(A+(a~))< r(A-(a~)), 
and thus that  # (a~ --  o) < # (as 4- o). 

Conversely, an arbitrary distribution function #(a) for which there exists an 

interval {a,#} such that  # ( a ) = o  for a < ~  and # ( a ) =  I for a> /~ ,  and #(a) is 

strictly increasing in the interval {a, ~}, is the asymptotic distribution function 

of a real almost periodic function F(t). We may even choose F ( t ) a s  a periodic 

function with a prescribed period p. In order to see this, we consider the in- 

verse function a=H (y) of y ~ # ( a ) ,  which is continuous for o < y < I ,  and hence 

also in o ~ y ~ I ,  when we put H ( o ) = a  and H(I)-~ff.  The function F( t )def ined 

in o_<_ t~ �89 by F(t)=H(t/~p) is now extended to an even function F(t)  with 

the period p, defined for all t; this function will then also be continuous and 

evidently possesses the asymptotic distribution function #(a). 

57. For later  application we notice that  if F(t)  is a real continuous func- 

tion with the period 2~r, and if ?/~rr is irrational, then the almost periodic 

sequence U ( k ) =  $'(~,k) (see w 52) has the same asymptotic distribution function 

~(a) as F(t). 
This follows immediately from the equidistribution of the numbers ?k rood. 

2 rr, which shows that, for all values of a for which the sets A-(a)  and A + (a) 

are Jordan measurable, the relative frequencies of the sets E-(a) and E + (a) 

exist and are determined by 

(E-~,at) = r (A-(a l )  = ~ ( a - -  o) and  e ( E +  (ai) = r (A § (a~) = ~ ( a  + o). 
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58. We now return to the consideration of almost periodic sequences and 

shall first prove the following theorem. 

Theorem 11. The asymptotic distribution fi ,  netion u(a) of a real almost periodic 

sequence U(k) is constant in an i,~#erval (ao, flo), i f  and only i f  U(k) does not take 

any value from this interval. 

In this case the constant value of t~(a) in the interval (a,  flo) is a rational 

number r. 

I f  the exponents of U(k) belong to a given modul M containing the number ~ ,  

the number 2 ~ r  also belongs to M. 

I f  U(k) does not take any value from the interval (ao, flo), the two sets 

E + (ao) and E -  (rio) are identical. Hence _Q (E + (ao)) ~ 0 (E-fflo)), and therefore 

/~(ao + o)=/~(flo--o),  ~vhieh shows that p(o)is  constant in the interval (ao, flo ). 

I f  U(k) takes a value a o from the interval (ao, rio), i. e. if there exists an 

integer k o such that  U(ko)=ao, we choose a t and q~ such that  a o < a l < a o < % < ~ o .  

The almost periodicity then implies the existence of a relatively dense set of 

numbers k for which al<U(k)<a~. The two sets E - ( a ~ ) a n d  E +  (a~) dither there- 

fore by a relatively dense set, from which it follows that 0(E+(a~))< 0_(E-(a2) ) 

and hence that  /~ (a~ -- o) < t t (a~ + o), which shows that /~ (a) is not constant in 

the interval (% rio). 

We now assume that  U(k) does not take any value from the interval (ao, ~o). 

I f  we choose ~ < ~ o -  ~o it is then obvious that  any x =xv,(~) must be a period 

for the set E+(ao). Now E - ( a ) ~ - E + ( a o )  for every a in the interval (ao,/~o). 

Hence l~(a)~-o(E-((r)) must be a rational n u m b e r  having t h e  denominator z. 

This rational number being denoted by r, we have therefore for every ~----x~(~) 

2~rx~- -o  rood. 2~V. 

I f  the exponents of U(k) belong to a given modul Mconta in ing  the number 2 g, 

this shows (see w 5I) that  2 g r  belongs to M. 

59. We shall now give a complete characterization of those distr ibution 

functions p(a) which may occur as the asymptotic distribution function of a real 

almost periodic sequence U(k) with exponents from a given modul M containing 

the number 2 ~. By Theorem Ix, a necessary condition is that  the values of 

p(a) in the constancy intervals, multiplied by 2 g, belong to M. 

I f  M is discrete and hence of the form 11/~-{h~-~/ ,  
[ \ 

where i~ is a positive 

integer, and h runs through all integers, so that  the question is about periodic 
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sequences U(k) with the period p, the answer is obvious. The distribution func- 

tions which may occur are then all step-functions whose values in the constancy 

intervals, multiplied by 2 z, belong to M. The points of discontinuity are deter- 

mined by the finite set of values taken by U(k). 

The only case of interest is therefore the one in which M is everywhere 

dense. Regarding this case we shall prove the following theorem. 

Theorem 12. A distribution function I~ (a) is the asymptotic distribution function 

of  a real almost periodic sequence with exponents fi'om a given everywhere de,se 

modul M containing the number 2 z ,  i f  and only i f  there exists an interval {a, ~} 

such that ~ ( a ) = o  for a < a  and I~(a)= I for a > [~ and the values of I~(a) i~ the 

constancy intervals are all rational and, multiplied by 2 ~, belong to M. 

The necessity of the conditions has already been proved, and we therefore 

have to prove their  sufficiency. We begin by reducing the problem to some 

special cases. 

(i) I f  the rational multiples of 2 z belonging to M form an everywhere dense 

modul, we may replace M by this sub-modul, which (see w 5 2) is of the form 
f. 

lira| (h,~ ~ / ,  where Pl, P2, ..  �9 is a sequence of positive integers such that  p~+x 

is for every m a proper multiple of pro, and h~ runs through all integers. 

(ii) I f  the rational multiples of 2 z belonging to M form a discrete modul, 

this sub-modul has the form { h ~ } .  A dis~ibution function ~u(a) satisfying the 

conditions of the theorem may then be written in the form 

(4) /~ (a) : ~ (/~1 (a) + . . .  +/~p (a)), 

where each of the functions ~l(a),. . . ,~up(a) also satisfies the said conditions, 

but has no constancy intervals besides those where it is o or I. Hence these 

functions satisfy the conditions of the theorem corresponding to the modul ob- 

tained from M by multiplying all elements by p. Now it is easily proved that 

a sequence U (k) is almost periodic with exponents from M if and only if each 

of the sequences 

Ul(k ) = V(I  -~ k p ) ,  . . ., Up(k)  2-- U ( p  + k p )  

is almost periodic with exponents from this new modul. On the other hand, 

the asymptotic distribution function ~(a) of U(k) is determined by (4), when 

~l(a) , . . . , /@(a)  denote the asymptotic distribution functions of Ul(k ) , . . . ,  Ur(k). 



20~ Borge Jessen and Hans Tornehave. 

This implies that we may replace M by the new modul, which amounts  to as- 

suming ~ I .  As M is by assumption everywhere dense, it contains a number 7 

such that  },/2 z is irrational, and we may therefore finally replace M by the sub- 

modul {g2~ + hT} , where g and h run through all integers. 

60. We first consider the case M----lira ~ h m 2 ~ t .  That U ( k ) i s  almost 
t p ~ l  

periodic with exponents from M then means (see w 52) tha t  U(I)  is limit periodic 

with respect to the periods Pl, P2 . . . . .  The following construction is an adapta- 

tion from Buch [I], [2]. 

Let  a----H(y) denote the inverse function of y-----~t(a). I t  is defined for 

o~y=<I ,  and its discontinuity points, multiplied by 2 z, belong to M. For  every 

m we consider the p ,  intervals 

i . .qm: q . - - I  < y  < q,~, q .  := I, . . ., p . ,  
p. ,  p,n 

into which the interval o < y ~ < i  may be divided, and the p .  classes of residues 

rood. p . ,  into which the set of all integers k may be divided. Between these 

intervals and classes of residues we establish for each m a one-to-one correspond- 

ence in such a manner that if Em, q. denotes the class of residues corresponding 

to the interval I.. .q,.,  the classes of residues Era+l, q~+~ corresponding to the 

sub-intervals I .+l,q~+ 1 of I . , q  m are just  those which are contained in .E, . .q. .  

Together with the intervals Ira, q. we consider the intervals 

. ( q . - - I +  o)<a<_--ttfq'--o) �9 
J'> q" : t P,,, = t P~ 

Denoting by 6~ the maximum of the length of d,,,,q.,,, we evidently have ~ . -~o  
a s  ~ --> Qo. 

Now every integer k belongs to a definite sequence of classes of residues 

F1, q, ~E : .  q~ ~ ..- To this sequence corresponds a definite sequence of intervals 

/1, q, ~/2.  q,~..-  and hence a sequence J1, q :~J2,  q,~_~ converging towards a 

definite point U(k). We shall now prove that the sequence U (k) thus defined 

satisfies the conditions of the theorem. 

We first notice that, as U(k) belongs to J",qm when k belongs to I'.:,.,q., 

we have 
I u (k + - u (k )  l _-< 

for all k, when x is an arbitrary multiple of p , .  Thus U(I)  is almost periodic 

with exponents from M. 
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I f ,  fur ther ,  for an arbi trary a, 

r,n ~____~I < ~t ((7- o) < r~ and s,n --__~I < tt (a + o) < s"--AL, 
p,n p.t p,n P,,~ 

where r,,~ and s~ are integers, then  

qm < rm qm<=rm 

and consequently 

and 
qm < sm qm ~ Sm 

r ~ - ,  _< e (E-(a)) < ~(E-(a))  _-< ' '~ pm p,* 
and s,.--x __< (~(E+(a)) __<~(E+(a) ) ~ s.~. 

p.~ p,~ 

This shows tha t  the relative frequencies Q(E-(a)) and e(E+(a)) both exist and 

are determined by 

( E -  I~)) = ~ (~ - -  o) and e (E+ (a)) = ~ (a + o), 

so tha t  U(k) possesses the asymptotic  distr ibution funct ion tt(a). 

61. We next  consider the case M~{g  2 z.+ h T}. Tha t  U(k) is almost  periodic 

with exponents from M then means (see w 52) tha t  U(k)=F(},k), where F(t) is 

a continuous funct ion wi th  the period 2 7r. 

The funct ion y - ~  ~t(a) be ing  strictly increasing in the interval where i t  is 

not  o or I, itss inverse funct ion a=H(y)  is continuous in the interval o < y  < x. 

Le t  F(t) denote the continuous even funct ion with the periad 2zr for which 

F(t)-=H(t/z) in the interval o < t < z .  Then F(t) has the asymptotic  distr ibution 

funct ion ~t(a) and, by w 57, the sequence U(k)-~ F(7k) therefore also has the 

asymptotic  distr ibution funct ion ~t(a). 

The sets A-(a) and A + (a) being here Jo rdan  measurable for all a, it  follows 

from w 57 tha t  the relative frequencies of the sets E-(a) and E+(a )  exist for 

all a, and are determined by 

~(.~;-(,~)) = : ~ ( , ~ - o )  a~d e(E+C,,~)=~( ,~  + o). 
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Detailed Discussion of  the Distribution for a Given Abscissa. 1 

62. Let  M denote once more an arbitrary modal containing the number 2~, 

and let a be an arbitrary number. We shall then give a complete characterization 

of those sets of six numbers which may occur as the six numbers in the inequa- 

lities 

< ~ ~(E+ (~))~ _< ~(E+ (~)) __< ~(~ + o), ~ ( ~ -  o) < Q CE-(~}) = [ ~(E-(~})  J - 

corresponding to an almost periodic sequence U(k) with exponents from M. 

I f  M is discrete, and hence of the form = (  -p--j, so that  the question 

is about periodic sequences U(k) with the period p, the answer is obvious. In 

this case p ( a - - o )  and g(a + o) are integral multiples of I ,  and the relative 
P 

frequencies r  and r both exist and are, as has alreaAy been men- 

tioned, equal to ?t(a--o) and p ( a + o )  respectively. If, conversely, f - a n d  f +  are 

given integral multiples of I_, for which o < f - < f +  =<I, there exists a periodic 
P 

sequence U(k) with the period p, for which 

#(E-(a))-~tt(a--o).---f- and r +. 

As pointed out in ~t~ 60 and 61, the sequences U(k) there constructed also 
have the property that the relative frequencies q(E-(o)) and o(E*(o)) exist for 

every a and are equal to ?t ( a -  o) and p (a + o). 

In the case of the analogous problem for real almost periodic functions F(t) 
of a real variable, Where we are concerned with the inequalities 

< < { :('4+ , } < (a§ + o), 

it was shown by Bohr [lI] by an example that  the relative measures r(A-(a)) 

and r (A § (a)) need not exist. By a further elaboration of the method there applied ~ 

we shall now prove the following theorem. 

' The results of this section are used only in Chapter V. 
Bohr's example is a limit periodic function. In extending the construction to functions 

with exponents from an arbitrary everywhere dense modul we provide an answer to a desideratum 
mentioned by van Kampen [3]. 
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Theorem 13. i~br arbitrary ,~umbers satisfying the conditioq~s 

and for an arbitrary ao, there exists a real almost periodic sequeme U (k) with ex- 

ponents from a given everywhere dense modul M containing the number 2 ~, for 

wMeh these numbers are eclual to the corresponding numbers in Ne inequalities 

# (a~ -- ~ <~ o ( E -  (a~ < { : (E + (a~ } < ~ ( E + (a~ <= # (a~ + - (E-  (o0)) 

i f  and only i f  either 

(a) o < f -  a.d f + < I ,  

(b) o = f - = c - = e -  and f +<I ,  

(c) o <  f -  and ,_e §  + = f + = I ,  

or (d) o = f - = e - = 8 -  and e + = ~ , + = f + = I .  

The necessity of the conditions is obvious, for if, for an almost periodic 

sequence U(k), we have /x(~ 0 -  o)-~ o, the set /i:-(ao) is by Theorem I I empty, 

and hence ~(E-(ao))=~(E-(ao)):o; and similarly, if # ( a o + o ) = I ,  the set E+(ao) 

is the set of all integers, and hence 0(E + (oo)) = ~ (E + (oo))= I. 

In our proof of the sufficiency of the conditions we shall restrict ourselves 

to case (a). Cases (b) and (c) are treated in a quite analogous way, only more 

simply, and case (d) is trivial. We may suppose without loss of generality that  

the modul M is of one of the two types lira ~h,~2z~ or {g2~+h?} considered 
m ~ (  pmJ 

above; for any everywhere dense modul M contains a modul of one of these forms. 

Finally we may suppose that  s o =  o. 

6a. W e  first consider the case M =  lira l h .  2~r~. That U(k) is a!most 

periodic with exponents from M then means (see w 52) that  U (k) is limit periodic 

with respect to the periods Pl, P~ . . . . .  

For every positive integer n we choose rational numbers with denominators 

among the numbers pm 

(5) o < s :  < ~': < - ~ r :  - I <  ~: ( e :  j < + < I S ,  , 
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such tha t  the  sequences {s~T}, {r,~}, and {_r + } are strictly increasing and converge 

towards  f - ,  e -  and _e + respectively,  whereas the sequences {,r~-}, {r and {s, +} 

are strictly decreasing and converge towards  ~-,  ~+ and f +  respectively. I f  

~ - < _ e  +, we choose r~- < r  +, which implies P,: < L  + for all n. I f  ~ - ~ c + ,  we 

obviously have r~ > r + for  all n. 

As we shall now prove, i t  is then possible for  every n to choose among the 

numbers  pm a common denomina tor  qn of the  numbers  (5), as well as periodic 

sets of integers 

(6) sr R:  - + 

- I ,R:J  = s .  

having the period q~ and the corresponding numbers  (5) as relative frequencies,  

such tha t  the sequences {S:-}, {R~-}, and {R +} are strictly increasing, whereas 

the sequences {k~}, {R~+}, and {S +} are strictly decreasing, such that ,  further ,  

(7) ~ R ~ -  according as e~- % "+ ~-n, 

and, finally, such that  for  every n the  fol lowing condit ions are~satisfied: 

(i) The number  q~+l is a multiple of  q~ and q~+l > 3. 
qn 

(ii) In the interval  1 --~q,, <= k < i q,, we have 

S~-+l ----- R_~+x = R~- a n d  8++ ,  = R,,+i--+ -~- R + .  

(iii) In  the interval  l q~ ~ k < ~q,, we have 

R_ +I = -/LT. 

(iv) In  the interval  - - ~ q .  ~ k < - - } q .  we have 

= R : .  

64. We shall prove this by induction. 

The definition of ql and the sets S]-, R~, R + , / f ~ ,  R +, and S + in accordance 

with the condit ions presents no difficulties. W e  may e .g .  for  qt choose an ar- 

bi t rary common denominator  of the numbers  sT-, ~-'7-, r+, r~-, r and s +, t a k e n  

among the numbers  Pro, and for  the  sets S]-, RT-~, R +, RT*~, B +, and S + we may 

choose the sets determined by the inequali t ies o ~ k <  q la  rood. qa, where a 

denotes  sT, _rT", _r +, ~-, ~+, and s + respectively. 
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Now, suppose tha t  we have defined q,, and the sets S,7, R n, R + R~-, R + 

and S + and let for the present qn+l denote an arbi t rary common denominator  
n ~ 

- - r+ ~'- ~++a, and '+ chosen among the numbers of the numbers %+v ~-'n+l~ - n + l  ~ ~n+l '  6n+ l '  

p~ and sat isfying condit ion (i). 

The sets S~- n , R,7, R~ +, -~n, /~+, and S, + are periodic with the period q,, and 

thus  consist of classes of residues rood. q .... Considered as periodic sets with the 

period qn+~ they consist of qn+~s,7, qn+~!',7, q ,+ l r  + q~+x~,  '~+ q,,+l r,,,  and qn+l s, + 

classes of residues rood. qn+l respectively. 

Fig. 2 il lustrates the si tuat ion in the two cases possible: ~,,~'- < t,,'+ and ~ 7 >  L +. 

The small squares represent the qn+~ classes of residues mod. q,+l arranged in 

q. columns and q~+l rows in such a way tha t  each column consti tutes a class 
qTt  

n ~  - -  - - 4 -  + of residues rood. qn, and tha t  each of the sets S~, R~-, R + /r R,~, and S,, 

consists of all columns to the left  of a certain vertical line. These lines are 

indicated by a thick stroke and marked  with the nota t ion  of the set in question. 

Further ,  we suppose (as we may) tha t  the first row contains all classes of resi- 

dues rood. q,~+~ represented in the interval  - - l q , < k < ~  q,, the second row those 

represented in the interval  ~ < 3 �9 ~ q , =  k <~ q,, and the th i rd  row those represented in 

the interval  --~ q._--< k <--�89 

The sets S~+1, R~-+v R + /~n-+l, = +  + _ _~+~, R,+  v and 8,~+1 have to be periodic with the 

period qn+l, i. e. they  have to consist of qn+1Sn+ 1, qn+l _rn--+l, q,~+~L++l, q-+1~',7+. 
q,~+x,t',++~, and qn+~s,++l classes of residues rood. q,,+l respectively. Thus we have 

to select the classes of residues rood. q,+l  to be added to the sets S~, R~-, and R +, 

or subtracted from the sets R~, R+,,, and S + in order to form the corresponding 

__ + + R~-+~, R + and Sn+ v The number  of these clksses is sets S,T+I, RL1,  R,+I, ~+1, 

. +  _ _  r + q,,+l (s-~+~ - -  sT), q"+a (~-'n+ 1 --  !'~-), q,,+l (Zn+l -n ), 
(s) 

_ _  + q"+' (f': - -  "f;+x), qn+l (;f: In+l) , and q,~+~ (s, + s,,+,) 

respectively. The classes chosen are indicated in Fig. 2 by thick horizontal  

strokes connecting the squares in question with the vertical lines indicat ing the 

sets to which the classes have to be added, or from which they have to be sub- 

tracted. 

In  the first row we add to S~ all the classes belonging to R j n -  S~-~, and 
+ _ _  + subtract  from S, + all classes belonging to S,~ R , .  No other changes are made 

in the first row. By this we evidently obtain t ha t  condit ion (ii) is satisfied. In  

the second row we add to R [  the classes belonging to /~7--_h~j, and, if ~,~ >! '2 ,  
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we also add to R + the classes belonging to R ~ - -  R, +. By this we obtain that 

condition (iii) is satisfied. In the third row we subtract from /~+ the classes 

belonging to R- ,+-  R +, and, if ~ - >  _r +, we also subtract from ~ tbe classes 

belonging t o  / t~ - - -R  +. By this we obtain that condition (iv) is satisfied. 

The numbers of classes in the first three rows to be added to or subtracted 

from the various sets are independent of q,+l and therefore certainly less than 
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the numbers (8) which are at our disposal, provided qn+l is chosen sufficiently 

large. 

The remaining numbers of classes to be added or subtracted are chosen in 

the last q n + l _ 3  rows. The classes in these rows, arranged lexieographieally 
q~ 

according to column- and row-numbers, a r e  denoted by al, a 2 , . . . ,  a~ (where 

N =  qn+~--3 q~)- To S~- we then add the number of classes still missing, begin- 

ning with the first element of the sequence a~, a~, . . . ,  a~- not belonging to S~n, 

and proceeding successively until the required number has been reached. In j u s t  

the same way we select the classes which are still to be added to ~ and R +. 

By the choice of the classes to be subtracted from S + we begin with the last 

element of the sequence al, a ~ , . . . ,  a,v belonging to S +, and move backwards 

successively until the required n u m b e r  has been reached. In just  the same way 

we select the classes which are still to be subtracted from R+ and -R~-. 

I t  now only remains to secure that  the sets constructed satisfy the cortditions 

corresponding to (6) and (7), viz. 

R 
- - n + l l c R +  c (9) 

and 

(,o) - - - -  c R + R.+I ~ _.+1 according as '~'.-+1% r+ - ~ l + l  " 

Since r~+1% r+-n+l according as r,7 % -r+, it is obvious that  these conditions 

are satisfied in the first three rows. Now let A c B  denote any one of the rela- 

�9 tions included in (9) or (IO). For the corresponding relative frequencies a and b 

we then have a<b. The condition of having A c B  is obviously that  the number 

of classes in the first three rows belonging to B but  not to A does not  exceed the 

difference between the total number of classes in B a n d A ,  which is q,+l(b--a). 
This is evidently true for all possible pairs A, B provided q,+l is chosen suffi- 

ciently large. 

65. We now choose a strictly decreasing sequence $~, d ~ , . . ,  of positive 

numbers converging towards o, and, denoting by S~0 the empty set and by So+ 

the set of all integers, we put 

I 
- - ~  in the set S ~ - - S ~  1 

Lr(s _~- o in the set lim (S+--S~:) 
+ _ _  + ~. in the set S._  1 S . .  

1 4 -  632042 A c t a  mathematica. 77 
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We shall then prove tha t  the sequence U (k) satisfies the conditions of the 

theorem. 

That  U(k) is almost periodic with exponents from M is obvious, since for 

every n all integral  multiples of qn are t ransla t ion numbers of U(k) belonging 

to 2 &+1. 

The asymptotic  distr ibution funct ion /~(a) of U(k) is determined by 

u(a) = 

o for a < - - d ,  

s~ for --  6 . <  a < -- 3.+, 

[ i :  for for a0"+~<a<&>d~. 

Hence 
l* (-- o) --= lim s~- --  f - and ~ ( + o ) = l i m . % + - - - - - f  +. 

The sets E - ( o )  and E+(o)  axe determined by 

E - ( o ) = l i m S , T  and E + ( o ) - - l i m S  +. 

On account  of condition (i) the sequence {q,,} is strictly increasing. 

therefore implies t ha t  in the interval  --.q,,_~k<'~q.1 < we have 

and s 2  = G + = n-: S~= R;= R: 

for all m > n, and hence 

lira 8~  = lira ~ = R~ 

Since q,-~ ~,  this shows tha t  

(I I) E -  (o) = lim R :  

and hence 

for all n. 

(I3) 

and lira 8 + = lim-R m + -= R+. 

and E + (o) = lira R,,* 

Condition (ii) 

R ;  ~ E -  (o) = R-: and R.+ ~ ~: + (o) = P--,,+ 

Moreover, i t  is seen tha t  in the interval  i --~ q,, < ]c < have �9 _ -~- ~ q n  w e  

R_: = E - ( o )  a~d E * (o) = ~.+. 
From (II)  and conditions (iii) and (iv) i t  fu r ther  follows tha t  in the intervals 

~q~<k<~-q. and - - ~ q . < k <  1 = = --~q,, we have 

0 4 )  E - ( o ) = ~ , 7  and G + = E + ( o )  

respectively. 
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From the relat ions (I2) i t  follows tha t  fo r  every n we have 

,_'~- --_< 0(E-(o)) ~(E-(o))  ~ ~ -  and 

Hence  
_0 ( E - ( o ) )  _>--lira t'~- ~ -  _e-, 

(I5) 
# ( E  + (o)) ~ l i m  _r + = _e +, 

Moreover,  i t  follows f rom the validi ty 

" i - q . =  < k < l q .  t ha t  

n ( E -  (o), 1 
: t',7 and 

q~ 

r + ~ 0 (E + (o)) ~ ~ (E  + (o)) ~ ,r +. 

~ ( E -  Co~) ~ lira ~T = ~-, 

~ ( E +  (o)) ~ l im ~+ - -  ~+. 

o f  the relat ions (13) in the  interval  

n (E  + (o), - -  �89 q~, �89 q~) 
q. 

r . +  

and f rom the val idi ty of the relat ions (I4) in the  intervals  �89 k< ~q~ and 

- -  .@ q. ~ k < --�89 q.- respectively tha t  

8 n (E - (o ) ,  -~ q,,, ~ q,,) n (E  + (o), - -g  q,, --~ q,) 
---- ' ~  and = r +. 

- n  q,~ g,, 

Since qn-* ~ ,  we conclude f rom this t h a t  

(16) 
e ( E -  (o)) __< 5-, ~ (E + (o)) a e+, 

( E -  (o)) >= ~-, e (E + (o)) =< e+. 

From (xS) and (I6) i t  finally follows tha t  

~, ( E -  (o)) = r ~ ( E -  (o)) - -  e - ,  0 (E*  (o)) = r § ~ (E + (o)) = ~ +. 

66. W e  nex t  consider the  case M={g2z+hT}. Th a t  U(k)is almost  periodic 

with exponents  f rom M then  means (see w 52) tha t  U ( k ) = F ( T k ) ,  @here F(t) is 

a cont inuous func t ion  wi th  the  per iod 2 z. 

The cons t ruc t ion  of such a sequence U(k), sat isfying the condit ions of the  

theorem,  will be carr ied out  in close analogy to the  preceding construct ion.  I n  

order  to make this analogy as clear as possible we shall, for  an arb i t rary  positive 

in teger  p, call the set of integers  k sat isfying an inequal i ty  

where v is an integer,  a cl:~,s rood. p. There  exist p such classes, corresponding 

to the p intervals  

< ~ rood. 2 ~r. 
P P 
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The limits of these intervals being different from the points 7 k, it is obvious 

that  the classes rood. ~, taken together, form the set of all integers k. I f  {/is a 

multiple of p, each class rood. p consists of q/p classes rood. q. 

From the equidistributiou of the numbers 7k rood. 2~  it follows that  any 

class mod. p has the relative frequency I/p. 
For every positive integer n we choose rational numbers 

such that the sequences {s~-}, {t~}, and {t~} are strictly increasing and converge 

towards f - ,  t:-, and e + respectively, whereas the sequences {~},  {r and {s, +} 

are strictly decreasing and converge towards ~-, ~+, and f +  respectively. I f  

~ - <  ~+, we choose r ~ - < t  -+, which implies r ~ < t  "+ for all ~t. I f  ~ -~_e  +, we 

obviously have r~->~_;+ for all n. I 

As we shall now prove, it is then possible for every n to choose a common 

denominator p, of the numbers (I7) and two positive integers qn and p*, as well 

as sets of integers 

consisting of classes rood. p.  and having the corresponding numbers (I7) as relative 

frequencies, such that  the sequences {S~-}, {J~ }, and {R~ +} are strictly increasing, 

whereas the sequences {~-,~}, {R~+}, and {S +} are strictly decreasing, such that, 

further, 

~ - C R +  according as r~_rn+,  n :::D - - n  

and, finally, such that  for every ~ the following conditions are satisfied: 

(i) The number p~ is a multiple of p ,  and the number p,,+l a multiple of 
JOn+l  _ 

p~* such that  2-~,.> 3. 

(ii) qn > q,~-l." 

1 T h u s  t h e  n u m b e r s  s n , r  n ,  + r n ' r ~ + ' a n d  + r n ,  s n a r e  c h o s e n  j u s t  a s  i n  t h e  p r e c e d i n g  c~tse, 

e x c e p t  t h a t  n o w  t h e r e  i s  n o  r e s t r i c t i o n  o n  t h e i r  d e n o m i n a t o r s .  

T h i s  c o n d i t i o n  m u s t  b e  l e f t  o u t ,  w h e n  n = I ,  s i n c e  qn--x  d o e s  n o t  t h e n  e x i s t .  
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1 1 ,~ (R z, - � 8 9  q., ~ q.) . (R: ,  ' ---~. q,,, ~q.) 
q. <-r~-+ v q. .+1, 

(iii) 
_ _  1 ,, (n-:,  ~ q., t q.) ,, (R:, - ~  q., -~. q.) 

- + > r~-+l, < r_.+ 1. q. q. 

(iv) The numbers  of the  interval s --<__ k --~. q. < ~ q. belong to different classes 

rood. p*. 

(v) In  the  interval  --�89 k <�89 q, we have 

sV§247 n 7 and S L , =  ~+ - - ~ +  
- -  - -  n + l - -  n " 

(vi) In  t h e  interval  �89 < s q . = k < ~ q ,  we have 

(vii) In  the  interval  --]q,,<=k < - -~ q .  we have 

5-+ = R  +. 
~ n + l  - - n  

67. W e  shall prove t h i s  by induction.  

The definition of Pl and the sets SV, R]-~, R +, RT-, :R~ +, and S + in accordance 

with the  condit ions presents  no difficulties. W e  may e .g .  for pt  choose an 

arbi trary common denominator  of the  numbers  s~-, t'7-, '_r +, 't~ -, ~+, and s +, and for  

the sets 87-, _R~-~, R+, ~7-, R+,  and S + we may choose the  sets determined by the 

inequalit ies ~ }, k [ < rr a rood. 2 ~r, where a denotes  C ,  r~-, .r +, ~7-, ~+, and s + respect- 

ively. 

No w suppose tha t  we have defined q,-x, p*- l ,  and p ,  as well as the sets 

sty, RT~,_ R~+,_ ~7, R~+, and S+'.. 
We then begin by choosing q. such tha t  condit ions ( i t )and (ii i)are satisfied. 

Since 
_ _  - - +  _ _ .  - +  - +  

q(~R~-n)=C~-< t'n+ 1, q ( R n ) - - ' r  n > r . +  v 

e ( ) i~ )=  ~ 7 > e 7 +  ~, e(R.+) = ,  '+ < , +  
- n  - r n + l '  

th is  will be the  case,  if only g. is chosen sufficiently large. 

Nex t  we choose p* in accordance with condit ion (i) such tha t  condit ion (iv) 

is satisfied. This  is evidently possible. 

The sets 8~, ~R-~ ~ ,  R +__~, R, ,R, , , -  + and Sn+ consist  of classes rood. p ,  and hence 

also of classes rood. p,*. Denot ing for  the present by p~+l an arbi trary common 

For n ~ t t h e  n u m b e r s  q n - t  and  Pn--l* do no t  exis t .  
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denominator of the numbers sn-+t, rn-+v _r.++t, rn-+v r.++t, and s~++t satisfying condition 

(i), the situation may again be illustrated by Fig. 2, where the small squares now 

represent the pn+1 classes rood. pn+1 arranged in p~ columns and P"§ p~ rows in 

such a way that  each column constitutes a class rood. p~ and that  each of the 

sets S~, R~,~, R~ +, B~-, B+, and S. + consists of all columns to the left of a certain 

vertical line. In  consequence of condition (iv) we may further suppose that  all 

classes rood. p,,+l containing a number in the interval - - �89  k <�89 a r e  placed 

in the first row, that  those containing a number in the interval ~q.<--_k<~q~ 
are placed in the second row, and that  those containing a number in the interval 

--~q~<=k<--~q~ ar~ placed in the third row. 

The number p~+l and the sets S.~ v R-+:, R + 1/~.+t , - +  -.+1, R~+ t, and 8.~:1 may now 

be defined by the same procedure as was applied in w 64, and thus we obtain 
! 

that  conditions (v), (vi) and (vii) are satisfied. 

68. Denoting by 8~- the empty set and by So + the set of all integers,  and 

placing s~-~ o and so+ = I, we now consider the two sets 

(i8) limS~-=-~(S~---S,~_,) and S 0 + ~ l l m S + - ~ ( S . + l - - S + ) .  

Each of the sets 8~---S~_ 1 and S + _ I -  S + consists of certain classes rood. p~ 

I r k - ,  2---~1 < ~ rood. 2~, 
P.I P. 

each of which, in its turn, corresponds to an interval 

(I9) It--~2--~[ < ~ rood. 2~. 
I ~- I P,. 

The sums of the intervals (I9) thus corresponding to the sets (I8)will be denoted 

by A and B. These sets A and B are evidently disjunct open sets with the 

period 2 ~, and their relative meaaures are 

- - - - . : ) - - -  t - f §  (20) ~(A) = ~(,. -,~_~)=/ and , ' ( a ) =  

An integer k belongs to lira 8~- if and only if ~,k belongs to A, and to 8+--l ira 8 + 

if and only if ~,k belongs to B. 
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We now define a real function F(t) with the period 2zr as follows: If  t 

belongs to one of the intervals (x9) constituting A + B, and if d denotes the 

shortest distance from t to the limits of the interval, we put F ( t ) = - - d  or F ( t ) = d  

according as the interval belongs to A or B. I f  t does not belong to A +  B, we 

put F(t)= o. Then F(t) is evidently a continuous function, and we shall now 

prove that  the corresponding sequence U(k)=F(~,k) satisfies the conditions of 

the theorem. 

By w 57, the sequence U(k) has the same asymptotic distribution function p(a) 

as F(t). The sets A-(o) and A+(o) in which F(t)< o and F(t)<=o respectively 

are, however, the sets A and the complementary set of B. Using (2o), we there- 

fore find 
g(--o)=r(A-(o))=f-  and It(+o)-=r(A+(o))=f +. 

The sets E - ( o )  and E + (o) are determined as the sets of all integers k for 

which F(~ ,k)<o  and F(~,k)<=o respectively, i. e. for which 7k belongs to the set 

A and the complementary set of B respectively. Hence 

E - ( o ) = l i m S ~  and E + ( o ) = l i m  S +. 

On account of condition (ii) the sequence {q.} is strictly increasing. Condition (v) 

therefore implies that  in the interval --�89 < k < �89 q. we have 

S~-=R-=R- 

for all m > n, and hence 

lim s~- = lira ~ ---- R 7 

Since q.-~ oc, this shows that  

(2 I) E -  (o) = lira J~_~- 

and hence 

(22) 

for all n. 

(23) 

and s.+ = ~+ = ~+ 

and lim 8 + = lim R+ =/t,.-+ 

and E * (o) -~ lira R + 

R 7 = E - ( o )  = ~ and R~ = E + (o) c R2 
Moreover, it is seen that  in the interval 1 < --~q.= k <~q. we. have 

R~- = E - (o) and E + (o) --//,-- - + . 

From (2x) and conditions (vi) and (vii) it further follows that  in the intervals 
~ q . < k <  s ~q. and --~q.~k<--~q. we have 

(24) E- (o )  = R 7  and R~+ = ~'+(o) 

respectively. 
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As in w 65, it follows, from the relations (22), that 

Q(E-(o))=>.e-, ~(E-(o))__<~-, g(E+(o))__>e +, ~(E+(o))__<~+. 

Moreover, it follows from (23) , (24) , and condition (iii), that  

--~ n (E+ (o), --�89 q., �89 > r + l ,  n(g- (o ) ,  ~'q"' ]q") <r; -+~ ,  
q,, q. 

n ( g -  (o), �89 q. ,  ~ q.) n ( g  + (o), - ~ q.,  - �89 q.) 
> ~.'-+ v < "+ ~n+l" q. g. 

Since q.---*~, we conclude from this that  

~_(E-(o))_--<C, ~(E-(o;)>o-,  e(E+(o~)_--<r ~(Z+(o))_-->~+. 

Thus it is proved that 

~_(.E-(o>)=C, ~(.~-(o~)=e-, _~(E+(o})=~ +, ~(E+(o})=e+, 

which completes the proof of the theorem. 

69. I f  the real almost periodic sequence U (k) does not take the value a, 

i. e. i f  U(k)=~a for all k, the two sets E - ( a )  and E+(~)  are identical and may 

be briefly denoted by E(~). Our considerations are then restricted to the four 

quantities 
# (o - o) __< e_ (~(~)) --<~ (E(~)) __< ~,(r + o). 

Regarding this ease we shall prove the following theorem. 

Theorem 14. For arbitrary numbers sati.~ying the inequalities 

f -  =< _e -< g =< f +, 

and for an arbitrary as, there exists a real almost periodic sequenee U(k) with 

exponents from a given everywhere dense modul M containing the number 2 ~, which 

does not take the value as, and for which these numbers are equal to the corresponding 

numbers in the inequalities 

t~ (Oo- o) <= ~(E(oO)) <= ~(~(Oo)) <= t,(,,o + o), 

i f  and only i f  either 

(a) o < f -  and f +  < I, 

(b) o = f - =  e = g and f +  < I ,  

or (e) o < f -  a n d  e = a - - - - f +  = I. 
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The necessity of the conditions is obvious. I n  the proof  of the sufficiency 

we shall re'strict ourselves to case (a), the two other cases being simpler. We 

may suppose without  loss of  generality tha t  the modul M is of one of the types 

lira l h ~ 2 ~  or {g2~ + h7}, and t h a t  a 0 = o .  
m ~ |  t pmJ 

70. We first consider the case  M-----m_.| I h~2--~pm J ~' 

Following the procedure of w 63 we choose, for every positive integer n, 

rational n u m b e r s  with denominators among the numbers pro, 

( 2 5 )  o < 8 :  < < < 

such that  the sequences {s~-} and {_rn} are strictly increasing and converge towards 

f -  anti _e respectively, whereas the sequences {en} and {s + } are strictly decreasing 

and converge towards e and f +  respectively. 

For every n it is then possible to choose among the numbers p= a common 

denominator  q~ of the numbers (25), as well as periodic sets of integers 

having the period q. and the corresponding numbers (25) as relative frequencies, 

such t h a t  the sequences {S~n } and {R.} are strictly increasing, whereas the se- 

quenees {B.} and {S + } are strictly decreasing, and, further,  such that  for every 

n the following conditions are satisfied: 

(i) The number q.+l is a multiple of q. and q .+x>  2. 
q. 

(ii) In  :~he interval o ~  k<q,, we have 

S~.+t = R.+I --=-//.+1 = 8.+ 1+ = R._ 

(iii) In  the interval --q._--< k < o we have 

S'~n+l = Rn+a=R.+ l  + __ = S ; : + l  

The proof that  these conditions may all be satisfied is quite analogous to the 

proof in w 64. 

We now define U(k) as in w 65. Then U(/c) is again almost periodic with 

exponents from M, and satisfies the conditions 

t~(--o)----f-  and / z ( + o ) = f  +. 
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Further, the sets E - ( o )  and E + (o) are again determined by 

E - ( o ) = l i m ~  and E +(o) - - l i r aS+ .  

On account of (i) the sequence {q.} is strictly increasing. From (it) and (iii) it 

therefore follows that  in the intervals o ~ k < q. and -- q . ~  k < o we have 

S~-~=8+=R,, and S~-~S+=.R,, 

respectively for all m > o, and hence that  in these intervals 

E - ( o ) ~ E + ( o ) ~ R ,  and E - ( o ) ~ E + ( o ) ~ / t , ,  

respectively. Since q,,-* ~ ,  this shows that E -  (o) = E + (o), i. e. U (k) does not 

take the value o. Introducing the notation /!7(o), we have therefore in the inter- 

vals o~k<q,  and ~ q . ~ k ( o  

E ( o ) = R , ,  and E ( o ) = R .  

respectively, which implies that 

for all ~. From these properties of E(o) it follows that  

e (E Co)) ---- e and Q(E(o) ) -~ .  

71. We next consider the case M - - - - { g 2 ~ +  h7}. 

Following the procedure of w 66 we choose, for every positive integer n, 

rational numbers 

(26) o < s,, < r, < r, < s, 

such that the sequences {s~-} and {t'n} are strictly increasing and converge towards 

f -  and e respectively, whereas the sequences {r.} and {s +} are strictly decreasing 

and converge towards ~ and f +  respectively. 

I t  is then possible for every ~l to choose a common denominator p.  of the  

numbers (26) and two positive integers q. and ~n,~, as well as sets of integers 

consisting of classes mod. p.  and having the corresponding numbers (26) as rela- 

tive frequencies, such that  the sequences {8~.} and {_R.} are strictly increasing, 

whereas the sequences {R.} and {S+/ are strictly decreasing, and, further, such 

that for every J~ the following conditions are satisfied: 



(i) 

p'~ such that P~+__2 > 2. 

(ii) 

(iii} n(_R~,o, q.) < t',,+~ 
q~ 

(iv) The numbers of the interval --  q,, < k < q~ 

rood. p,~. 

(v) In  the interval o < k < q,, we have 

The 
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The number pn* is a multiple of pn and the number P~+l a multiple of 

q. > q.- l .  

and ~(R~, --q~,o) > ~,~+1. 
q~ 

belong to different classes 

~ §  = R , + ,  = ~ , , §  = S;,++l = R,,. 

(vi) In the interval - - q .  < k < o  we have 

S : §  = R n§ = ~ , + ,  = S~++, = E , .  

proof that  these conditions may all be satisfied is quite analogous to the 

proof in w 67. 

We now define U(k) as in w 58. Then U(k) is almost periodic with exponents 

from M and satisfies the conditions 

g ( - - o ) = - f -  and ,u(+ o)----/+. 

The sets E - ( o )  and E + (o) are again determined by 

E -  (o) = lira S :  and ~ + (o) = t i m  S : .  

On account of (ii) the sequence {q~} is strictly increasing. From (v) and (vi) it 

therefore follows that  in the intervals o N k < qn and - - q . ~  k < o we have 

S 7 ~ 8  + - = R  a and 8 7 - ~ S  + = R ~  

respectively for all m > n, and hence that  in these intervals 

E -  (o) = ~ + ( o ) =  R .  a n d  E -  (o) = ~ + (o) = ~. 

respectively. Since q~-* ~ ,  this shows that  E - ( o ) ~ - 8  + (o), i .e .  U(k) does not 

take the value o. In t roducing the notation E(o), we have therefore in the 

intervals o < k < q, and --q~ < k < o 

E ( o ) = R .  and E ( o ) = R .  
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respectively, which implies that  

R,,~ E ( o ) ~  R~ 

for all n. From these properties of E(o) together with (iii) it follows that 

Q(E~o))---- c and ~(E~o)) = ~. 

This completes the proof of the theorem. 

72. By means of Theorem I3 we can easily prove an analogous theorem on 

real almost periodic functions F(t), vlz. that for arbitrary numbers satisfying the 

conditions 

(z7) f - = < ~ - ~  =<~+ =<_/§ 

and for an arbitrary ao, there exists a real almost periodic function F(t)  with 

exponents from a given everywhere dense modul M, for which these numbers 

are equal to the corresponding numbers in the inequalities 

~ _r (a+ (~ )  } _< ~ (a§ --< ,(~o + o), (28) ,"(~o- o)_-< ~(A-i~o~) _-< [ ~ (A-I~o~) 

if and only if either 

(a) o < f -  and f +  < I ,  

(b) o ~ f - - - - - e - - - - - ~ -  and f + <  I, 

(c) 0 < f - -  and e + = ~+ ~ - - f + =  I, 

or (d) o = f - - - ~  e-----~-  and _e + = ~+ = f + =  I. 

The necessity of the conditions is again obvious. In the proof of the suf- 

ficiency we may suppose that M contains the number 2 g, since otherwise we 

the desired function F ( t ) b y  F ( 2 - ~  t), where 74=0 is a number of M, may replace 

at the same time multiplying the elements of M by 2_~. 
Y 

The above conditions being the same as in Theorem I3 there exists a real 

almost periodic sequence U(/c) with exponents from M, for which the numbers 

(27) are equal to the corresponding numbers  in the inequalities 

{-q(E +r176 ---< q(E+r ----< ~(~o + o). (29) /z(a o -- o) < g(EX-(ao )) ~ .e(E-(ao))] 
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The function F(t) which is ---- U(k) when t ~  k and -~ao when t ~ k  § ~ and is 

linear in all intervals k<t<__k+�89 and k + ~ t < ~ k + I ,  is then (by ~ 5 and 51) 

also almost periodic with exponents from M, and for this function F(t)  the 

numbers in the inequalities (28) are easily seen to be equal to the corresponding 

numbers in the inequalities (29) for the sequence U(k). 
If  the real almost periodic function F(t) takes the value a 0 only in an 

enumerable set (or, more generally, in a set of relative measure o) we have 

r_(A-(ao)) = ~_'(A+(a0)) and ~(A-(ao) ) =~(A+(ao)). 

Using Theorem I4 we find that  for arbitrary numbers satisfying the conditions 

f-<--_e<:~=f+, 

and for an arbitrary no, there exists a real almost periodic function F(t)  with 

exponents from a given everywhere dense modul M containing the number 2 ~r, 

which takes the value a o only in an enumerable set, and for which these numbers 

are equal to the numbers 

/,(no--O), ~'(A-(ao))= J_'(A+(ao)), ~(A-~ao))=~(A+(ao)), p(Oo+O), 

if and only if either 

(a) o < f -  a n d f + < ~ ,  

(b) o ~ - f - = _ e - - - - ~  a n d f  + <  I, 

or (c) o < f -  and e : g = f + =  t. 

C HAPT E R  IV. 

Analyt ic  Almost  Periodic  Funct ions  Connected wi th  Almost  Periodic  
Sequences.  

73. The application of the results of the preceding chapter to analytic almost 

periodic functions will depend on the consideration of functions f(s) almost periodic 

i n  I--or,  + ~ ]  possessing on each line t ~  k, where k is an integer, one simple 

zero Sk---- U (k) + ik  belonging to a fiuite vertical strip, but otherwise different 

from zero. The zeros of such a function f(s) are therefore determined by a 

bounded sequence U(k). 
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From these conditions it follows that  the Jensen function 9(~) of the function 

is linear in the intervals (-- 2 ,  g) and (t3, + ~),  where ~ and /~ denote the lower 

and upper bounds of U(k), and further that  9'(a~)--9'(al)-~-2~ for a~<~ and 

~ > f l ,  since the relative frequency H(at, 02) of zeros is then I. 

We begin by proving the following theorem. 

Theorem 15. The poi~ts sk=U(k)+ik, where U(k) is a veal bounded sequence, 
are the zeros of a function f(s) almost periodic i~2 [-- o0, + ~] i f  a~M o,dy *f U(k) 
is almost periodic. 

They are the zeros of a fu~etion f(s) almost periodic in I--o c, + do] with 
exponents from a given modul M i f  and only i f  M contains the number 2 ~ and the 
expo~ent,r of U(k) belong to Jll. 

1,br a 9iven seque~2ce U(k) the corresponding function f(s) ~,a# be chosen such 
that its densen function 9(~r) is eonsta~st ):or a <  lower bound U(k). 

The proof is, in the main, an adaptation from Buch [I], [2]. 

74. We first prove that  the conditions are necessary. Let, therefore, f(,,) be 

a function of our class with the zeros Sk= U(k)+ik. We shall then prove that  

U(k) is almost periodic. 

According to our assumption the zeros belong to a finite strip {g, fl}. For 

an arbitrary positive r <  ~ there exists by Theorem 3 (ii) a number m>  o, such 

that  If(s)[--> m in the part of the strip {a- - I ,  f l+  I} which does not belong to 

the circles Is--ski  <~. From Roueh6's theorem it therefore follows that, if , is 

a translation number of f(s) belonging to rn and the strip ( a - - l ,  f l+  I), the 

function f (s+iz)  possesses a zero in each of these circles. Thus ,differs  by less 

than r from a translation number z of U(k) belonging to r. This proves that  

U(k) is ahnost periodic. 

I f  the exponents of f(s) belong to a given modul M, this modul must contain 

the number 2z~, since qD'(a~)--9'(al)=2z~ when ~1<~ and a~>~. Further, since 

an arbitrary integral translation number x of f(s) belonging to m and the strip 

(a-- I, fl+ I) is a translation number of U(k) belonging to ,, it follows from w167 9 

and 5I that  the exponents of U(k) belong to M. 

75. Next we prove that  the conditions are sufficient. Let, therefore, U(k) 
be a real almost periodic sequence. We shall then prove the existence of a 

function f(s) a/most periodic in [ - - ~ ,  +ovJ with the zeros ak= U(k)-vik. Since 

U(k) is almost periodic, it is bounded, say a _ - -  < U(k)<ft. 



Mean Motions and Zeros of Almost Periodic Functions. 223 

The infinite product  

(x) f~(~) = I I (~  - ~'-'~)'/~) 
k 

is for an arbi t rary  q > o uniformly absolutely convergent in every bounded 

domain in the s-plane. Since I -  e s'lq has a double zero at s = o and no fur ther  

zeros in the strip (--V~qz, P~qz), it  is seen that ,  when V q z > ~ - a ,  the funct ion 

fq(s) has double zeros at  the points sk, and has no fur ther  zeros in the strip 

( ~ -  ~ ~, ~, + v'q ~). 
We shall now prove that fq(s) is almost periodic in [--oo, + oc]. Let x denote 

a translation number of U(k) belonging to a given ~ > o. Introducing s +iz in 

(1) instead of s, and at the same time replacing k by k + x, we obtain 

fq (s + i x) ---- IF[ ( I  - -  e ( s + i "  - -  sk + x ) ' l q )  = H (I  - -  e (s - - S k - - " k } i l q ) ,  

k k 

where for the sake of brevity we have put  8k+,--(Sk'4-iX)= U(k-i-x)--  U(k)=at. ,  

so t ha t  [~k[ < 6  for all k. Hence 1 

fq (s + i x) - -  fq (s) = ~,  (e ('-`,-',)'lq --  e('-s,),lq) K, (s), 
l 

where 

K,(.~) = H ( ' -  ~/,-,~-.e/q) I I  ( ' -  e-,e/~). 
k < l  k > l  

Since 8k-{'$k'~-Sk+u--iX, each of these factors Kz(s) is a product  of the form 

I I '  ( ~ - r  q!,/q), 
k 

where each s~ lies on the segment  a ~ a < ~, t =  k, and where the  dot  indicates 

tha t  one factor  is missing. This implies, however, tha t  for every finite strip (a 1, ~,) 

there exists a constant  K, independent  of ~ and x, such tha t  

[ Kt~s) [ < K 

in the strip (a t, ~1) for all l. In  the strip (a D ~i) we therefore have 

I f~  (* + i . ) - f .  (*)1 --< K y ,  I e( ' - ' ,  -',~'/q - -  r  I =< L ~, 
I 

i By the fo rmula  

k k 1 k < l  k > l  

val id  for a r b i t r a r y  conve rgen t  p roduc ts .  
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where L is independent of ~ and x. Thus x is a translation number of fq(s) 
belonging to Le  and the strip (al, ~), and this proves that fq(s) is almost periodic 

in [ - - ~ ,  + ~ ] .  

I f  the exponents of U(k) belong to a given modul M containing the number 

2z,  it follows from the preceding proof, if we use ~ 9 and 5I, that  the ex- 

ponents of f~(s) belong to M. 1 

76. We now consider the sequence of functions fq(s), where q----Q + I, 

Q+2 . . . . .  the number Q > o  being chosen such that  V Q z > f l - t ~ .  Each of the 
functions 
(2) fq+, (s) 

fq(s) 

is then (w IO) almost periodic and 4=o in the strip [ ~ -  q l /~ ,  a +]/q~r] and has 

therefore, by Theorem 8, in this ship the form 

(3) fq+l (s) _~ e% '+gq('), 
fq(s) 

where Ca denotes a constant and gq(s) is almost.periodic in [ f l - J / q ~ ,  a +l/q~r]. 

f t  is therefore possible to choose an exponential polynomial hq(S) such that  

in the strip ( f l - - ] / ( q - - I ) z .  a + V ( q - - I ) z ) .  

We now consider the sequence of partial products of the infinite product 

_ , _  

fQ+ ' ( s ) I I  f . (s)  e % ',q(~l. 
q=Q+l 

For every finite strip (a~, fl~) containing the strip (c~, fl) these partial products are, 

from a certain stage, regular and almost periodic in (a~, f13) and have double zeros 

at the points sk but otherwise no zeros in the strip (a~, {/~). Moreover, the sequence 

L Ill f-tet, by w 5[ the re  correspond to the  given ~ number s  ).~,. " ' , ) 'N in M and an ~/, such 

t h a t  any in teger  ~. sa t i s fy ing  the  condi t ions  [)~zx[ --< 71 . . . . .  [ ) .3 .z[_-  < ~/ (rood. 2n )  is a ZU(~) and 

hence a T fq(L~; a~,fll)- Now, if J is suff icient ly small ,  any real number  v sa t i s fy ing  the  condi t ions  

I ~ , ~ 1 -  -<~ . . . . .  I~..,.~l---< d, and [ 2 n v [  < d (rood. 2~)  will  differ a t  most  by d/2,~ from an in teger  x 

sa t i s fy ing  the  previous  condi t ions .  On account  o n  the  un i form con t inu i ty  offq(s)in (al, fl~)(which 

is a consequence  of the  a lmost  periodici ty)  we may  therefore  choose d such  t h a t  any r sa t i s fy ing  
ttle l a t t e r  condi t ions  is a V$q(2L~; ~z,~gl). Since M conta ins  2 n  th is  shows,  by w 9, t ha t  the  

exponents  of fq(s) belong to M. 
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is uniformly convergent in (al, ~1). The limit function p(s) is therefore regular in 

the whole plane and almost periodic in [ - - ~ ,  + o~], and has double zeros at the 

points sk, but  no further zeros. An arbitrary b r a n c h / ( s )  ~ p ~  of the square 

root of p(s) is therefore (w Io) almost periodic in [--r § ~ ]  and has the zeros sk. 

More generally we may put f(s)-~V-pp(s)e ~ ,  where ~ is an arbitrary real 

number. 

I f  the exponents of U(k) belong to a given modul M containing the number 

2~, the exponents of the functions fq (s) will, as has already been mentioned, 

also belong to M. The modul M then also contains the exponents of the func- 

tions (z) and therefore also the constants cq and the exponents of the functions 

gq(s) occurring in (3)- I t  is therefore possible to choose the exponential polyno- 

mials hq(s) with exponents from M. The modul M then also contains the exponents 

of p(s). We may therefore (w IO) choose the number ~ in M such that  the 

exp()nents of f(s)~-Vp-p(s} e~  also belong to M. 

Finally we may choose f(s) such that  its Jensen function ~ (a) is constant 

for a < lower bound U(k). For, if this property is not obtained by the first 

choice of/~, we replace f(s) by f(s)e -c~, where c denotes the constant value of 

r for 0 <  lower bound U(k). 

This completes the proof of the theorem. 

77. Now let f(s) denote an arbitrary function almost periodic in [ - - ~ ,  + r162 ], 

possessing on each line t-~k, where k is an integer, one simple zero sk= U(k)+ik 
belonging to a finite vertical strip, but  otherwise different from zero, and sup- 

pose that  r is constant, i. e. ~'(a)~--o, for a < a ~ -  lower bound U(k). Then 

~'(a) ~ 2 ~ for a > ~ ~ upper bound U(k). Hence the increasing function 

2 r (") 

satisfies the conditions te(a)----o for a<a and ~(a)~-I for a>f l ,  and is therefore 

a distribution function. 

For an arbitrary a we denote by /~-(a) and E+Ia) the sets of those values 

of k for which U(k)~.a and U(k)'<a respectively. Then, if a , < a  and az> fl are 

chosen such that  ol<a<a~, the lower and upper relative frequencies of zeros of 

f(s) in the strips (02, o) and (a, a.,) are determined by 

= q ( E -  o) = ( E -  (.)), 

1 5 -  632042 Ac~a maChematica. 77 
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On the other hand, since, by w 46, c + (al) and e (a~ )ex i s t  and are equal to o and 

2 z  respectively, it follows from w 42 that 

g ( . , , . )  ~ - -  ----- - -  ('- (a), H (a,,  a) ---- - -  5 -  (a), 
2 ~ "  2 , " r  

Hence 

H(~, ~..) = ~ (2 ~ - c+ (~)), ~ ( . , . ~ )  = - ~  ( 2 .  - ~,+ (.)). 

I I 
- - ~ - ( o )  = Q (~-co)), - - ,=-(o)  = .,(E-(~)), 
2 ,-"r - - -  2 ~  

2 T O -  - 2 7 ~  

This implies by Theorem 7 that 

' '(,, o) < ( E - - ( , , ) )  </-Q(E+('~))/--<_ ~(~+~,~)) < ' '(,~ 2~;~  - = e  = ~ ( E - ~ ) ) !  = ~  +o ) ,  

which shows that /z (a) ---- ~ ~' (a) is the asymptotic distribution function of U(k) 

Thus we have proved the following theorem. 

T h e o r e m  16. I f  a function f(s) almost periodic in [ - - ~ ,  + ~[  has the zeros 

s~ ~- U (k) + i k, belonging to a finite vertical strip, and i f  its Jensen .function qo (a) 

is constant for a < lower bound U(k), then the sequence U(k) has the asymptotic 
I , 

distribution fnnction ~(a) -~ - ~  F (a). 

For an arbitrary a the lower and upper, left and right mean motions of f(s), 
I 

multiplied by - -  ar~ equal to the lower and upper relative frequencies of the sets 

E - (a )  and E + (a) of those values of k for which U(k) < a aml U(k) <= a respect- 

ively, i. e. 

I I , _ _ (  ~ 
- - , . - ( o ) =  q(~:-(o)), - -  ~- (o) = ~  (E ~o)), 
2 ~ "  - -  2 ~  

! ~+ (~) = Q(E+ (o)), ~ c +  (o) = ~(J~+ (a)). 
2 e r  - - -  2 I r  



Mean Motions and Zeros o f  Almost Periodic Functions. 227 

CHAPTER V. 

D e t a i l e d  D i s c u s s i o n  o f  t h e  M e a n  M o t i o n s  o n  a G i v e n  V e r t i c a l  L i n e .  

78. By Theorem 7 we have for an  arbitrary funct ion f (s)  almost periodic in 

a s t r ip  [a, ~] and not  identically zero, and for an arbi t rary a in the interval  (a, ~), 

the inequalit ies 

qD' (a-- ~ -~ c-:"(a) ~ { c-+ (a) } ~ ~+ (a) ~ qD' (a + -(a) 

connecting the left  and r igh t  derivatives of the Jensen funct ion and the four  

mean motions a t  the point  a. 

I f  f (s)  is periodic with the period ip, t ha t  is to say, if  its exponents belong 

to the discrete modul  M : { h ? } ,  the mean motions c - ( a o ) a n d  e+ (ao) exist, 

according to w 48, for  an arbi t rary  a o and are equal to ~p'(a 0 -  o) and ~ ' ( % +  o), 

which in this  case belong to M. Conversely, if d -  and d + are given numbers in 

M such t h a t  d-__< d +, and a0 is a given number,  there exists a periodic funct ion 

f (s)  with the period ip, for which c-(ao)=~'(ao--O)-~d- and c+(ao): ~'(ao +o) = d +. 
I f  d -  = d + : d we may take f(s) ----ed'; if d -  < d + we may take f (s)  = e d-- ('-~o) + 

~- e,l + (s-ao).l 

For  functions f (s)  with exponents  from an everywhere dense modul  M we 

shall now prove the following theorem. 

T h e o r e m  17. For arbitrary numbers satisfying the relations 

and for an arbitrary ao, there exists a function f(s) almost periodic in [ - -~ ,  + ~ ] 
with exponents from a given everywhere dense modul M, for which these numbers 
are equal to the corresponding numbers in the inequalities 

{ ,-~+ (~o) ~ < ~+ (~o) < ~' (~o + o )  (2) ~' (~o - o) < ,.-(~o) < ~- (~o)J = = 

1 For since all zeros of f(s) have the abscissa ~o, the function qp(a) is linear for ~----<~o 
and a-->_ a o. For a ~ ~o the first term is preponderant; hence 7 / ( a ) ~  d-- for a ~ a o, and therefore 
r For a ~ o  the second term is preponderant; hence ~P(a)-~d+ for a ) ~ o ,  and therefore 
~' (ao + o) = d+. 
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I f  the exponents of an almost periodic function f(s) belong to a given 

modul M, the exponents of the function fl(s)=f(ks), where k > o, will belong 

to the modul obtained from M by multiplying all numbers by k. Further, when 

multiplied by It, the numbers in the inequalities (2) will be equal to the corre- 

sponding numbers formed for the function f~ (s) and the value kao. We may 

therefore in the proof of the theorem suppose that  M contains the number 2z.  

When this condition is satisfied, and the exponents of f(s)belong to M, the 

exponents of the function fl(s)-~e~"~k'*f(k~s), where k~ and k~> 0 are integers, 

will also belong to M, and the numbers in the inequalities (2) will, after multi- 

plication by kg. and the addition of 2 zk~, be equal to the corresponding numbers 

formed for the function fl(s) and the value k~ao. We may therefore in the proof 

of the theorem suppose that 

o < d -  and d+<2n : .  

In  this case there exists by Theorem [3 a real almost periodic sequence 

U(k) with exponents from M, for which the numbers (I), divided by 2z ,  are 

equal to the corresponding numbers in the inequalities 

(.~) (~o - o) < 0 ( ~ - ( ~ a )  < [ -Q (E  + (~o)) | < ~ (E  + (=0)) < , (=0 + o). 
= -  = ~ ( E - ( ~ o ~ ) J =  = 

By Theorem I~ there exists a function f(s) almost periodic in [--oo, + oo] 

with exponents from M, which has the zeros U(k)+ik, and for which the Jensen 

function ~(a) is constant for a <  lower bound U(k). This function f(s) satisfies 

the conditions of the theorem, since by Theorem 15 the numbers (3) are equal 

to the corresponding numbers in the inequalities (2), divided by 2z.  

79. If  the almost periodic function f(s) has no zeros on the vertical line 

with the abscissa a the left and right arguments a r g - f ( ~  + i t ) a n d  a rg* f ( a  +it) 
are identical. Hence the two lower mean motions ~_;-(a) and _e + (~) are equal and 

may be denoted briefly by c(a), and the two upper mean motions 5-(a) and 6 + (a) 

are equal and may be denoted briefly by e(a). Our considerations are then 

restricted to the four quantities 

~'  (,, - o) _-< :.(,,) _-< ~(,,) < ~'(,~ + o). 

By means of Theorem I4 we find the following theorem regarding this case 
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Theorem 18. For arbitrary numbers satisfying the relations 

d-<=~<e<=d +, 

and for an arbitrary ao, there exists a function f(s) almost 17eriodic in [--e~, + ~] 

with exponents from a gwen everywhere dense modul M, which has no zeros on the 

vertical line with the abscissa ao, and for which these numbers are equal to the 

corresponding numbers in the inequalities 

o) _-< _- < e(Oo) _-< + o).  

This theorem shows that  even if the function f(ao+ it) has no zeros it need 

not have a mean motion. 

C H A P T E R  VI. 

D e t a i l e d  S t u d y  o f  the  J e n s e n  F u n c t i o n .  

Periodic  and Limit  Periodic Functions.  

80. We shall now consider the problem as to what conditions a function 

~(a) in a given interval (a,~) must satisfy to be the Jensen function of a funct ion  

f(s) almost periodic in Is, fl] with exponents from a given modul M. We shall 

give a solution of this problem for functions with an arbitrary finite or infinite, 

integral or rational base, i. e. for all moduls of the form M = { h l p l  + " "  +h~/~m}, 

{h,p, + hs/~z+ ""}, {rs + "'" + r./~=}, or {,',/~, + rz/~z+ ""}. 

We  shall first prove an auxiliary theorem. 

Theorem 19. Let M denote an arbitrary modul, and qg(a) a function in the 

interval (a, ~), which may be written in the form 

l l f f i l  

where each 9~(a) is the densen function of a function f~(s) almost periodic in [a, ff] 

with exponents from M, and where in any reduced interval (~ < ) a l  ~ a ~ ~ i (<  if) 

the functions ~ (a) all vanish from a certain stage. Then, also ~ (a) is the Jensen 

function of a function f(s) almost periodic in [a, #] with exponents fi'om the modul M. 
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According to our assumption there exist a number N and a sequence of 

intervals (a,, ~.), n ~ - N + I ,  N + 2 ,  . . . ,  converging increasingly towards (a,~), such 

that  ~ , ( a ) ~ o  in the interval (a~,~). In  (a~+1,~-+1)we choose a sub-interval 
(.~, ~-). 

By Theorem 8 we have in the strip (a~,~,), where n>N, the representation 

f .  (~) = ~ .  (,), 

where g.(s) is almost periodic in [a., fl.] with exponents from M. Since log ~f~ (s)] 

is the real part of'g~(s), it follows from the definition of the Jensen function 

that  the constant term of the Dirichlet series of g.(s) is purely imaginary. We 

may therefore choose an exponential polynomial ha(s) with exponents from M, 

and likewise with a purely imaginary constant term, such that  

I 
I .f- (~) e - ~ .  (') - ~ I < ,,.-~ 

in the strip (a,_:, ft,-x). The function f,,(s) e-an (*) then also possesses the Jensen 

function ~,(a). Moreover, the infinite product 

X | 

f(8) = I I  f -  (~) I I  f-(~) ~- h. (.i 
4 = 1  n ~ + ]  

is uniformly convergent in [a, ~]. The function f(s) is therefore almost periodic in 

[a, fl] with exponents from M and has, by Theorem 5, the Jensen function ~(a). 

81. In the particular case where M is the discrete modul M---- P j ,  so 

that  we are dealing with periodic functions with the period ip, the solution of 

our problem is easy. 

Necessary conditions of a function ~(a) in the interval (a, ~) being the Jensen 

function of a periodic function f(s) with the period ip are, by w 48, that  ~ (a) 

is convex and stretchwise linear and that  the values of ~ ' ( a ) i n  the liv.~arity 

intervals belong to M. 

These conditions are, however, also sufficient. In  proving this we may, by 

Theorem I9, restrict ourselves to t h e  case where ~v(a) is either linear or is com- 

posed of two linear pieces. I f  ~(a) is linear, say q~(a)-~ca+ d, where c belongs 

to M, it is the Jensen function of the function f ( s ) ~  e r which has the 

period ip. If r  is not linear, say ff(a)=cl(a--ao)+ d for 0"___~0"0 and ff(a)~- 

c ~ ( a - - % ) + d  for a ~ a o ,  where c~ and r belong' to M a n d  r it is the 

Jensen function of the function e~,(s-~+a+ e~(,--~+d, which also has the period ip. 
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82. In the case where M consists of all rational multiples of a given number, 

so that  we are dealing with limit periodic functions, the solution of our problem 

is given by the following theorem of Buch [I], [2]. 

Theorem 20. A function ~ (a) in the interval (a, #) is the Jensen function of a 

function f(s) almost periodie in [a,#] with exponents from the modul M = { r ~ } ,  

i. e. of a limit periodic function with the limit period ip, i f  and only i f  it satisfies 
the following conditions: 

(i) It  is convex in the interval (a, fl). 

(ii) The value of q~' (a) in any linearity interval of ~(a) belongs to M. 

The necessity of the conditions follows from Theorems 7 and 8. To prove 

their sufficiency we may, by Theorem 19, restrict ourselves to the case where 

~(a) is linear in two intervals (a, a~) and (~1, ~), and it is then no restrictiQn to 

suppose that  a ~ - - ~  and ~ = % ~ .  

If  ~(a) is linear, say ~ ( a ) ~  ca + d, the function f ( s ) =  e c'+~ is a solution. 

I f  ~(a) is not linear we denote by c 1 and c_~ the values of ~'(a) in the intervals 

( - - ~ ,  ~1) and (#1,§ ~) .  Then c1<c2. Without  loss of generality we may suppose 

that  c 1 ~ o  since otherwise we replace the desired f u n c t i o n f ( s ) b y f ( s ) e  -(',~. 

Further  we may suppose that  c ~ = 2 ~  since otherwise we replace f ( s ) b y  f / 2 ~  s~, 
c~ / 

2 ~  
at the same time multiplying the elements of M by - - .  We then simply have 

C2 

I , 
_~I= {r 2 ~}; furthermore, the function ~ ( a ) ~  ~ (a) is a distribution function, 

for which ~ ( a ) = o  for ~ < a  1 and # ( a ) = I  for a > ~ l ,  and the values of ~(a) in 

the constancy intervals are all rational. 

By Theorem I2 there exists a real almost periodic sequence U(k) with expo- 

nents from M, that is to say a limit periodic sequence U(k), with the asymptotic 

distribution function ~(a). By Theorem I5 there exists a function f (s)almost  
periodic in [ - - ~ ,  + ~ ]  with exponents from M and with the zeros U(k)+ik ,  
whose Jensen function W(a) is constant for a <  a 1. We may assume ~(a) to be 

equal to ~(a) for a < a 1 since otherwise we multiply f(s) by a properly chosen 

constant. The func t ion  f(s) then has the Jensen function ~ (a); for by Theorem I6 
I , 

we have g ( a )=  ~ W  (a), and two convex functions are identical when they are 

equal for one value of a and their derivatives are identical. 
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Functions with a Finite Integral Base. 

83. We shall first give an account of analytic almost periodic functions 

f(s) with a finite integral ba se#~ , . . . , / ~m,  i. e. with exponents from the modu] 

M =  {hip1+. . .  + ] ~ / ~ } ,  where the numbers p j , . . . , / ~  are linearly independent, 

and the set of coefficients h i , . . . ,  h~ runs through all sets of integers. Denoting, 

as in w 3I, the inner product z l y  t + . . - +  x, nym of two vectors x = ( x l , . . . ,  x,~) 

and y - ~ ( y ~ , . . . ,  y,n) in the m-dimensional space B= by x y ,  and putting 

= (/~, . . . ,  p,~), we have M ~  {htu}, where h ~ (hi, . . . ,  hm) runs through all 

vectors of Rm with integral coordinates. The null-vector ( o , . . . ,  o) will be 

denoted by 0. 

Let f (s )  be a function almost periodic in [a, fl] with exponents from M. 

We shall then deduce a representation of f (s)  analogous to the spatial extension 

considered in w 5I in the case of functions of a real variable. We  arrive at this 

representation by considerations similar to those in w 3I. Allowing terms with 

the coefficient o, we may write the Dirichlet series of f(s) in the form 

f ( s )  ~ z a,, e h ~'. 

Let us now consider a sequence of exponential polynomials of the form 

fp(s) = .,:a,, ea~ "" 

(where for every p only a finite number of the coefficients a~) are ~ o) con- 

verging uniformly towards f (s)  in [a, fl] as p - ,  ~ .  For each function fp(s) we form 

the function 
gp(s; x) = y, aIpl e~t,~ eh~'~, 

h 

where x runs through R,~. In each of the variables x~, . . . ,  x,~ it has the period 

2 ~. F u r t h e r  f~(~) = g~(~; 0) and  

~ ( s  + i~;  x )  = gp(s; x + ~ ) ,  
so that  in particular 

(i) f~(~ + i~) = g~(~; ~ ) .  

As fp(s) converges uniformly towards f (s)  in [a, fi], the function fp(s + i~) 

converges uniformly towards f ( s  + iz) for s in [a, fl] and all ~t; from (I) it follows 

1 i .e . ,  of course, in any domain  ( u < ) a t < a < , S s ( < f l ) ,  - - o c  < ~ < ~ - o o  in  t he  (s,~)-spaee. 
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therefore, by Kroneeker's theorem, that  gv(s; ~c) converges uniformly towards a 

certain limit function g(s;~c) for s in [a,~] and all x. This limit function g(s;~) 

is evidently uniformly continuous for s in Is, fl] and all ~v. In each of t h e  

variables x~ . . . .  , x,~ it has the period 2 ~r. For every ~ it is, considered as a 

function of s, almost periodic in Is, #], and its Dirichlet series is 

g (s; m) ~ ~a~e ~h~ ea~ ~. 

We moreover find f ( s ) = g  (s; 0) and 

(2) 

so that  in particular 

g (s + x) = g ( s ;  x + tt ), 

f (s  + i z ) = g ( s ;  tt~). 

This relation shows that  the function g(s; m) is for every fixed s, considered 

as a function of m, the spatial exte,sion of the function f ( s  + i~) considered as 

a function of ~. 

I t  further shows that  for every �9 the function g (s; tt~) has the same Jensen 

function r as f(s). By Kroneeker's theorem and Theorem 6 this implies that, 

for every m, the function g (s; x) has the Jensen function r (a), so that  in par- 

t ieular  any strip (a',ff) containing a zero of one of the functions g(s; ~c) also 

contains a zero of f(s). 
In  introducing the function g(s; m) we have actually introduced one real 

variable more than necessary, since o n  account of (2) we have 

g(a + it;  ~c) = g(a; x +ttt), 

which shows how g(s; x) is expressed by means of g(a; x). I t  would, however, 

be inconvenient to work only with the function g(a; ac). 

84. We emphasize that  the spatial extension g(s; x ) n e e d  not always be 

regular in the variables x l , . . . ,  x~. This  is shown by the following example, 

where m---- 2. 

Let  the integer a > I and o < b < I be values corresponding to a non- 

differentiable Weierstrass function 

H(~) = ~  b"r ""~. 
n = l  

Denoting by ~t an irrational number  and by [y], where y is an arbitrary real 

number, the largest integer =< y, we will consider the function 
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f(s) = /.~ b" d an g--[anp])s. 
~1~1 

Since o < a'~  -- [a~/~] < x for all n, the series is absolutely convergent for all 

and represents therefore an almost periodic function in [--oc,  § ov] with 

exponents from the modul M =  {hl/x + h2}. For the spatial extension we find 

g(s; x ) = g ( s ;  xl, x~)~-~ ~_jb'*ei('~,-[an~'t~,)e (a%-[~n~'])~. 

Hence 

g (o; xl, o) ~ ~ b" e 'a'~, = H (xl), 
~ t = l  

which shows that g(s; x) is not regular in x~. 

85. The solution of our problem is given in the case of functions with a 

finite integral base by the following theorem. 

Theorem 9.1. A function qD(a) in the interval (a, ~) is the Jensen function of a 

fitnction f(s) almost periodic in [a, fl] with the .finite integral base p,, . . . ,  ~t,,, where 

m>--_2, i. e. with exponents from the modul M ~ { h ,  kq + ' '  + hmum}, i f  and only i f  

it satisfies the following conditions." 

(i) I t  is convex in the interval (a, fl). 

(ii) The value of 9'(a) in any linearity interval of 9(r belongs to M 

(iii) Any reduced interval ( a < ) a ~ < a < f l j ( < f l )  contains at most a finite number 

of linearity intervals of q~ (a). 

86. The necessity of conditions (i) and (ii) follows from Theorems 7 and 8. 

The necessity of (iii) will be established by proving that, if f ( s ) i s  a function 

almost periodic in [a, fl] with exponents from M, any reduced strip (ax, fla) contains 

at most a finite number of strips without zeros of f(s). In the proof we shall 

use the spatial extension g(s; x) of the function f ( s  + iv), introduced in w 83. 

For an arbitrary point x o in R,, we choose a rectangle S(xo) in the s-plane 

with sides parallel to the real and imaginary axes and containing the segment 

a t <  a < / ~ ,  t -~o,  such that  g(s; xo)=Vo and hence that 

i g (s ; Xo) ] > (some) k = k (Xo) > o 

on the boundary of S(xo). ~ex t  we choose an open interval I(xo) in R,~ con 

taining Xo, such that i g(s; x ) -  g(s; Xo)]< k on the boundary of S(xo) when x 

belongs to I(ar By Rouchd's theorem the functions g(s; x) have then, for ac 
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belonging to I(x0), all the same number p = p(x0) of zeros in S (~v0), and the set 

of p points formed by these zeros depend s continuously on x. I f  the abscissae 

of the zeros are a ~ ( x ) ~ . . . ~ a p ( x ) ,  each of the functions al(~c), . . . ,  a p ( x ) i s  

therefore a continuous function of x. This shows that  the set K(x0)consis t ing 

of all values of these abscissae is composed of at most p intervals. 

By Borel's covering theorem the space //~ is rood. 2 ~ covered by a finite 

number of the intervals I(xo) , The sum K of the corresponding sets K(~vo) is 

therefore composed of a finite number of intervals. 

Now the abscissa a of any zero a + i t  of f (s)  in (al, fll ) belongs to K; for 

f ( a  + i t ) ~ g  (a; ~ t), and 9 t belongs rood.  2 z to one of the covering intervals I(xo), 

so that  a belongs to the corresponding set K(~c0). On the other hand any point 

of K belonging to (a~, ~) is either itself the abscissa of a zero of f ( s ) o r  an 

accumulation point for abscissae of zeros; for by w 8 3 any strip (a', ~') containing 

a zero of one of the functions g(s; ~c) contains a zero of f (s) .  Since K is com- 

posed of a finite number of intervals this implies that  the strip (a~, ~) contains 

only a finite number of strips without zeros of f(s).  

87. To prove the sufficiency of conditions (i)--(iii) we may, by Theorem I9, 

restrict ourselves to the case where ~(a) is either linear in (a, ~)or linear i n t w o  

intervals (a, al) and (fit, ~), but not in any sub-interval of (al, ~1). When this latter 

condition is satisfied we may suppose that  a = - - ~  and f i x  + Qc. 

I f  q~(a) is linear, say ~v(a) = co + d, the function f(s) = e c`+d is a solution. 

I f  ~(a) is not linear we denote by c 1 and c~ the values of ~' (a) in the intervals 

( - - ~ ,  al) and (~1,+ ~) .  Without  loss of generality we may suppose that  c~ = o, 

since otherwise we replace the desired f u n c t i o n f ( s ) b y f ( s ) e  -~,~. Further we may 

suppose that  c.~ 2~,  since otherwise we replace f ( s ) b y  f(2-cZ ) -- s , at the same 

time multiplying the elements of M by 2 z .  The modal M then contains the 
r 
_ 2 L  number 2z ;  furthermore, the function /~ (a ) -  2z~ ' (a )  is a distribution function, 

for which g ( a ) =  o for a < a~ and g(a)----I for a >fl~, and which is not constant 

in any sub-interval of (a 1, fit)- 

The existence of a function f (s)  almost periodic in [-- ~ ,  + ~ ] with exponents 

from 1]/ and with the gensen function ~(a) is now established by applying 

Theorems i2, I5, and I6 as in w 82. 
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F u n c t i o n s  w i th  an Inf ini te  I n t e g r a l  Base .  

88. The preceding results may wi thout  difficulty be extended to almost  

periodic funct ions  f(.~) with an infinite integral  base ~1, ~z, �9 �9 i. e. with ex- 

ponents  from the  modul  M ~  {hip1 + h t ~  + ' " } ,  where the  numbers ~1, ~z . . . .  

are l inearly independent ,  and the sequence of coefficients hi, h2, . . . .  runs  through 

all sequences of integers of which only a finite number  are 4: o. D e n o t i n g  the  

inner  product  xi yl + xs Ys + "'" o f  two vectors x ~ (xl, xz, �9 �9 .) and y ~ ~1, Y~, �9 �9 -) 

in the infinite-dimensional space B~, the first of which has only a finite number  

of coordinates 4: o, by x y ,  and put t ing  1~ ~- (~1, ~2 . . . .  ), we have M ~  {h~}, 

where h ~ (hi, hz . . . .  ) runs th rough  all vectors with integral  coordinates of which 

only a finite nu'mber are 4: o. 

89. In  the  space / ~  we use the  fol lowing well-known definitions of an 

interval, a l imit  point, cont inui ty,  etc., developed in detail  in Bohr [9] (see also 

Bochner [I] and Jessen [3]). 

An (open) interval  is the set of points ~e = (x~, x, . . . .  ) defined by a finite 

number  of inequalit ies a~< x, ~ b~, while the remaining coordinates are unrestr icted.  

A sequence of points ae (~1 = (x~ ~), x ~ ) , . . . )  is said to converge towards the  l imit  

point  a~ ~-(x~, 0~z . . . .  ) if  any interval  conta in ing a~ contains all except a finite 

number  of the points or (~). Evident ly  a~c~)-oa~ ff and only i f  x~)-ox~ for  every i. 

The terms closed set, open set, everywhere dense set, etc., are to be understood 

in accordance with this  definition. A set is called bounded if  i t  is contained in 

a set defined by a set of inequali t ies a~ ~ x~ ~ b~, where i ~ I, ~ . . . ,  and all a 

and b~ are finite. We  have the Borel covering theorem, s ta t ing  tha t  if  a closed 

and bounded set in / ~  is covered by a system of intervals i t  is covered by a 

finite number  of these intervals. 

A function F(x) is called cont inuous if  F ( x  (')) ~ F(x) whenever x('*)~x. 
This is equivalent  to saying t h a t  to every point  x and every ~ ~ o there corre- 

sponds an interval I conta in ing ~v, such tha t  I F ( y ) -  F ( ~ ) [ ~  ~ for all points 

y in I.  The funct ion J~'(~) is called uni formly  continuous if  to every ~ ~ o  

there corresponds an interval  I conta in ing the point  0~-(o ,  o . . . .  ), such tha t  

I F(y)--F(~)] ~ whenever y--x----(yl--x~, ~/s--xz, �9 �9 .) belongs to I .  A con t inuous  

funct ion defined in a closed and bounded set is always uni formly  continuous.  

I f  a funct ion F(~v) defined in the  whole of R ,  is continuous and  periodic 

in each variable x, with a given period p,, i t  satisfies the condit ion 
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F(x~ + h~pl, x~ + h2p~ . . . .  ) -~ F ( x l ,  x~, . . .) 

for any sequence Of integers hi, h~,. .  :; being uniformly continuous in the set 

o ~ x i ~ p i ,  i =  i, 2 , . . . ,  the funct ion is uniformly continuous in B~. 

Of essential importance in the t rea tment  of almost periodic funct ions with 

exponents from the moduI M =  {hl/~j + h2/zs + ""} = {h~} is an extension of 

Kroneeker 's  theorem to the space B~, which states tha t  the set of points 

x ~ l ~ t - ~ ( I z ~ t ,  Iz~t, . , .), - - ~  < t <  + ~ ,  is rood. 2~r everywhere dense in /r when 

/z~,/z 2 . . . .  are linearly independent.  This follows immediately from the theorem 

in the case of a finite number  of linearly independent  numbers.  

The definitions of continuity,  etc. m a y  also be applied to funct ions g(s; ~c) 

of a complex variable s describing a strip (a, #) and the real variables xl, x2 . . . .  , 

since g (s; x) may be considered as a funct ion of the real variables a, t, xl, x s , . . . .  

90. Le t  f ( s )  be a funct ion almost periodic in In, fl] with exponents from M. 

Allowing. terms with the coefficient o, we may write its Dirichlet  series in the 

form 
f (s) ~ 2~ ahe ~ t,s. 

Let  us now consider a sequence of exponential  polynomials of the form 

(where for every p only a finite n u m b e r  of the coefficients a~) are =~o) converging 

uniformly towards f ( s )  in [a, fl] as p - ~  For each funct ion fp(s) we form the 

funct ion 
gl, (s ; ~c) =- 2~ a~, p) e i h ~ e h ~, ~, 

where x runs through R~. This funct ion actually depends on only a finite number  

of the variables x~, x , , . . . ,  and has the period 2~r in each of the variables. 

Fur ther  fp  (s) ~- gp (s; @) and 

e (s + x ) =  gp(s; x + 
so tha t  in part icular  

As f~(s) converges uniformly towards f ( s )  in In, fl], t h e  funct ion f~,(s + i , )  

converges uniformly towards f ( s + i , )  for s in [a, fl] and all x; f rom (3)i t  follows 

therefore,  by Kronecker 's  theorem, t ha t  gp(s; x )  converges uniformly towards a 

certain l imit  funct ion g (s ; x) for s in In, fl] and all x .  This l imit  funct ion g (s ; ~c) 
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is evidently uniformly continuous for s in [a, #] and all x .  I t  is periodic with 

the period 2 g in each of the variables xl, x~, . . .. For  every x i t  is, considered 

as a function of s, almost periodic in [a, fl], and its Dirichlet  series is 

g(s; x) ~ ~ah d h~ ca~ ~. 

We moreover find f ( s ) =  g(s; 0) and 

g(~ + i~; x) =g(s ;  x + ~ ) ,  
so tha t  in part icular  

f(s + i~) =g(s ;  ~ ) .  

The funct ion g (s; x) is therefore for every fixed s called the spatial extension 

of the funct ion f ( s + i ~ ) ,  considered as a funct ion of ~. As in w 83~ it is shown 

that ,  for every x ,  the funct ion p (s; x)  has the same Jensen  funct ion ~ (a )a s  f(6.), 

and hence tha t  any strip (d,  fl') containing a zero of one of the funct ions g(s; x) 
also contains a zero of f(s). 

91. The solution of the present case of our problem is given by the following 

theorem. 

Theorem 22. A function q~ (a) in the interval (a, #) is the Jensen function of 
a function f(s) almost periodic in [a, fl] with the infinite integral base ~ ,  ~2 , . . . ,  
i. e. with exponents from the modul M-~{hlpt-Fh~g2+ ... }, ~f and only i f  it satisfies 
the following conditions: 

(i) I t  is convex in the interval (a, fl). 

(ii) The value of ~'(o) in any linearity interval of r belongs to M. 

(iii) Any reduced interval (a<)al<a<fll  (<fl) contains at most a finite number 
of linearity intervals of q~ (a). 

The proof is quite analogous to tha t  of Theorem 2I, the only difference being 

tha t  Rm is here replaced by R~. 

Further Results Concerning Functions with a Finite Integral Base. 

92. As a preliminary to the s tudy of funct ions with a finite or infinite 

ra t ional  base we shall  s tudy in greater  detail  the case of functions with a finite 

in tegral  base P l , . . . ,  P~, i. e. of funct ions with exponents from the modul  

M =  {4~1 +"" + h ~ } .  
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Let  f(s) be a function almost periodic in [a, #] with exponents from M and 

not  identically zero. Le t  a~ and o~, where a~ < a~, belong t o  different l inearity 

intervals of its Jensen function ~(a). We shall then  consider the difference 

- 

which is evidently positive and belongs to M. Denot ing by 

(4)  "" = < t_~ =< t_l  = < t o ~  tl  = < t2 = < " "  

the ordinates of the zeros of f(s) in the strip (al, a~), each one being written so 

often as the number  of zeros with this ordinate indicates, and by -Ar(~ ', d) the 

number  of these ordinates contained in the interval 7 < t < d, we have the 

expression 
N (r, '~) 

q~' (a~) --  ~'(a,) = 2 ~ lira 

93. Our considerat ions  will be based on the spatial extension g(s; x ) o f  
the funct ion f ( s  + iT). By w 83 the funct ion g(s;  x) has for every x in /~,n, 

considered as a funct ion of s, the same Jensen  funct ion g0(a) as f(s) ,  and h a s  

therefore in particular no zeros on the l i ne s  a~--al and a ~ a~. 

We shall now consider the set O of those points x for which the funct ion 

g(s; x) possesses at  least one zero on the segment a1<a<a~, t ~ o .  I f  g(s; ac) 
has p zeros on this segment  the point ac will be considered a p-fold point  of C. 

The set C has, of course, the period 2r~ in each of the variables x l , . . . ,  xm. 

Since f(a + i t )=g(a;  ~t) the ordinates (4) are jus t  those values of t for which 

the point  I.~t belongs to if, each being wri t ten as often as the multiplici ty of 

the point indicates. 

In  order to examine this set C let us write an arbi t rary point  ar of /~,~ in 

the form 
x = y  + Dt, 

where y ~ ( o ,  y~ . . . . .  y,,) is a point of the (m--I)-dimensional sub-space xl-~-o of 

R,~, and then use y and t as coordinates in R,~ along with x ~ , . . . ,  xm. Since 

g (a + i t; y ) = g  (a; y + ~ t) the ordinates o f  the zeros of g (s; y) in the strip (a~, a~) 

are jus t  those values of t for which the point at-----y + ~ t  belongs to C, the 

number  of zeros with a given ordinate being equal to the mult ipl ici ty of the point.  

For  every x* -~ y*  -t- ~ t*, where y* ~-(o, y~, . . . ,  y*), we choose a rectangle 

at ~ a ~ a.2, I t ~ t* I ~ ~ = ~ (~c*) in which g (s ; y*) possesses no zero outside the 
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segment o l < a < a , ,  t=t* .  On its boundary we then have [#(s; y*) l~k-- - -k(x*)>o.  

Next, i n  the sub-spa~e x~ = o, we choose an interval J(y*)  containing y*, such 

that I t ( s ;  y ) - - g ( s ;  y * ) l <  k on the boundary of the rectangle when y belongs 

to J(y*) .  Let p = p ( x * ) ( ~ o )  denote the number of zeros of g(s; y * ) o n  the 

segment a ~ < a < a , ,  t----t*; then, by Rouch6's theorem, the function g(s; y) 

has p zeros in the rectangle when y belongs to J(y*) .  I f  their ordinates are 

vt(y) ~ . - - ~  vp(y), each of the functions v1(Y), �9 �9 Vp(y) is a continuous function 

of y in J(y*) .  

Hence, if U(x*) denotes the neighbourhood of the point x* consisting of 

all points ~ v - - y  + ~ t for which y belongs to J(y*)  and I t - - t * l <  7, the part 

of the set C contained in U(x*) consists of the p ~p(~v*) continuous (m--  i)- 

dimensional surface elements t = v I (y), . . . ,  t -~ vp(y). 

94. By Borel's covering theorem, the space Rm is rood. 2 z covered by a 

finite number o f  the neighbourhoods U(x*). For  two overlapping neighbourhoods 

the surface elements having points in their common part will uniquely combine 

so as to form larger surface elements. Thus the set C divides into components 

obtained by continuation of the surface elements, each component being deter- 

mined by an equation t -~  t(y), where t(y) is a continuous function defined for 

all y.  To y = 0 corresponds the line x ~ 9 t, on which the set C contains the 

points determined by the values (4). Thus C divides into an infinite number of 

components 

..., c_:, co, c,, c, .... , 

where Cj is determined by an equation t----tj(y) such that  t~.(0)= tj, and where, 

for all y, 

�9 -.<_-- t_,(y) < t_,(y) < t0(y) < tl(y) < t,(y) <=... 

Fig. 3 illush~tes the situation in the case m = 2. 

95. By the translation 2 ~h ,  where h = (hi, . . . ,  hm) is a vector with integral 

coordinates, the component Co is taken into a component Ct, where i - ~  i(h). 

By the same translation the component C~ must then for every j be taken into 

t h e  component C~+,. Evidently i (h' + h")---- i(h')  + i(h:'). The function i(h) is 

therefore a linear transformation of the  m-dimensional lattice G of vectors h into 

a certain arithmetical progression . . . , -  d, o, d , . . . .  In the case illustrated in 

Fig. 3 we have d = 2 .  
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x= 

f-2~ 

I " . .  ~ ""~' 

i " - . .  I 

" '-  d """ I 

Fig. 3. 

If  we denote by G~ the part of G in which i ( h ) ~ - n d ,  it fol lows that Go 

is a lattice, and that G, is derived from Go by the translation n 2 ~ h  (1), where 

h (1)~ (h~ 't, . . . ,  h~/) denotes an arbitrary vector in G,. This again implies that the 

lattice Go is (m--1)-dimensional.  Let h (2) = (h~2),..., n,n),.~(2) . . ,  h(m) = (h~) , . .  ., h~)) 

denote a base of Go. Then h ( l l , . . . ,  h (ml form a base of G. 

Since the component Co is taken into itself by the translations 2 z h ( ~ ) , . . . ,  

2 z h  (~) it possesses a parametric representation 

x = z~ h (2) + . . .  + r , ,  h(")  + H ( z ~ ,  . . . ,  z m ) y ,  

where z 2 , . . . ,  z~ are real variables, a n d  H ( z ~ , . . . ,  z,n) is a continuous function 

with the period 2 z in each of the variables z 2 , . . . ,  zm. For the component C,(~ 

we find the representation 

~c "~ n 2 z h (1) § z 2 h (~) + . . .  + zm h (m) + H (z~ . . . .  , z , , )  ~. 

1 6 -  632042 Acta mathematica. 77 
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96. Le t  K denote the maximum of [H(z2 . . . .  , z~)[. I t  then follows from 

the preceding result  tha t  I tnd-- t '~d[  <= K,  where t~,l denotes- the  value of t for 

which the point y t belongs to the plane 

x = 2 z n h  (~) + z~h(2)+ . . .  + z m h  (~'). 

o r  

Eliminat ing the parameters z~ . . . .  , z=, we find for this plane the equation 

I z~ h?)...h~") I 
~ 2 ~ n  

hi" h~') . . . hl ~) 

where 2 = ( ~ , , . . . ,  2m) denotes the vector whose coordinates are the complements 

of the elements of the first co lumn of the de te rminant  on the left, divided by 

the value of the de terminant  on the right,  which is either + I or --~. 

Hence the point  of intersection with the line x = i t  t is determined by 

and we have, therefore,  

for  all n. 

By (4) this implies t ha t  

so tha t  we find 

2 : ;~n  

J 2 ~ n j < K  

x ( ~ , , o ) = d ( a - 7 )  at-A + o(~), 
2 ~  

~ ' ( < . ) - ~ ' ( o , )  = _ ~  lira lv(~,~)  = da~,.  
cz-:.}-- ~ ~ - - 7  

Pu t t ing  for the sake of brevity d2 ~ r . ~  (vj . . . .  , vm) we finally find 

(s) 

Since 2 has integral  coordinates the coordinates of r are also integers, and the 

representation (5) shows therefore,  once more, tha t  qD'(a~)--qp'(al) belongs to 11[. 

For  la ter  application we notice tha t  each of the components C~ lies between 

two planes ortbogonal  to the vector r = (v, . . . . .  v~). 
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97. Denoting the length Vx~ + . . .  + x~ of a vector x = ( x l , . . . ,  x~) in Rm 

by Ilxll, we shall now assume that  g(~: x ) ~ o  in the interval ~ t<a<a~ for all 

x belonging to a system of spheres 

where N is a positive integer, a < ~ a positive number, x* ~-(x~*,.. . ,  x~) a 

point of R~, and h = (ht . . . .  , h~) runs through all vectors of R~ with integral 
a 

coordinates. Thus these spheres all have the common radius ~ and their centres 

form a lattice with the edge-length ~ .  

I t  will be shown that  under this assumption the vector r occurring in (5) 

satisfies a relation 
v ~  

where b > o  depends only on a a n d t h e  d i rec t ionof  ~ ( i .e .  on a and ~-~-~1)' 

and is therefore independent of N, the function f(s) in question, and the 

values a~ and ~2. Denoting the angle between two vectors x = (x~, . . . ,  x~) and 

y ~ (y~ , . . . ,  y,)  different from the null-vector, by [x, y], we have 

cos [x, y] 
x y  

II ~ II II Y I1' 
o ____ Ix,  y] _-< ~. 

A statement equivalent to the preceding one is, therefore, that  the vector v 

satisfies a relation 

(7) [,,, t,l =< ~ = - o, 

where # > o depends only on a and the direction of 9. 

98. For an arbitrary vector h~(h l , . . . ,  hm) with integral coordinates we 

denote the sphere (6) by Sh. When Sh is translated in the direction of tt it 
a 

describes a tube Th consisting of all points x having a distance < _~ from the 

half-line 
2~h 

x---- x * +  --if-- + ~t, t_>_o. 
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We shall now consider the set U obtained by taking first the tube T O corre- 

sponding to the sphere So, next  joining to this tube all tubes Th for which 

the corresponding sphere Sn has a point in To, then joining to the set thus 

obtained all tubes Th for which the corresponding sphere Sh has a point in this 

set, and so on. In  other words, the set U is the set in Rm which is passed 

through when we let first the sphere So move in the direction of ~, next let 

every sphere Sh which it hits move along with it, then in the same manner ever)" 

sphere Sh hit by these, and so on. 

Fig. 4 illustrates the situation in the case m =  2, N----4. 

We shall now prove tha t  the set U contains a cone 

(8) Ix - ~*, t,] < o, 

where 0 > o depends only on a and the direction of V. 
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For this purpose we denote by z/(t), for an arbitrary t = o ,  the radius of 

the largest sphere which has the centre x* + / ~ t  and is contained in U. Then 
a r 

z/(t) is an increasing function of t, and J ( t )  ~ ~ for all t. Let  S~ denote the 

a 
sphere which is concentric with Sh and has the radius ~-~- By Kroneeker's 

theorem there exists a number / > o  depending only on a and the direction of ~, 

and such that any segment 
l 

x =  Xo + o <  t <  nu 

has at least one point in common with some sphere 8'n. Thus, if the point oe o 

belongs to U, the sphere 
/~l a 

also belongs to  U. The function z/(t) therefore satisfies the condition 

1 =j(~)> a 

i t  
which, together with the relation z / ( t )~  ~V' shows fJaat z / ( t )~]-~ Ilullt for all 

a 

t ~ o .  This means that  U contains the.cone (8) when 0 =  arc sin~-l-, o<0<-~-~. 

99. We shall now prove that  the relation (7)holds for this value of 6. 

For this purpose we notice that  in the coordinates y = ( o ,  Y2 . . . .  , y,n) ~nd t 

introduced in w 93 the cone (8) is determined by nn inequnllty 

t > t(y), 

where t(y) is a continuous function of y. Together with this function we con- 

sider the function t = tj(y) which determines the component Ca of the set C. 

Evidently we may choose j such that the centre oe* of the sphere So belongs to 

the part A of / ~  determined by the inequality t > tj(y). 
The assumption made in w 97 means that the set C does not contain any 

point of the spheres Sn. That  ~e* belongs to A implies therefore first that  So, 

and hence the whole tube To, belongs to A, next that  every sphere S~ having 

a point in To, and hence tl~e corresponding tubes Th, belong to A, and so on. 

Thus the whole set U and a fortiori the  cone (8) belong to A. We therefore have 

(y) __< t(y) 
for all y. 
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On the other hand, by w 96, the component Cj lies between two planes 

orthogonal to the vector r. Thus there exists a plane orthogonal to v containing 

no point of the cone (8). Since v gt > o and hence Iv, gtt < .~ ~r this implies the 

relation (7)- 

100. The preceding results will suffice as preliminaries to the treatment of 

functions with a finite rational base. In  studying functions with an infinite 

rational base we shall need some more properties of the vector v-~  (vl, . . . .  Vm). 

Denoting by mo ~ m a positive integer, we consider together with /?m the 

space Rmo of vectors x ' ~  ( x l , . . . ,  x,~). For em arbitrary vector x-----(xl , . . . ,  Xm) 
of B~ the corresponding vector x'--~ ( x l , . . . ,  X~o) is called the projection of x 

upon R,~. Using without change for vectors of B,~ the previous notations for 

inner products, lengths, and angles of vectors, the inequalities 

where N is a positive integer, a<z r  a positive number, x* '  a point of Rmo, and 

h '  runs through all vectors of Rm with integral coordinates, define a system of 

spheres in R,~. All points x of R~ whose projections x '  upon Rmo belong to 

one of these spheres form a cylinder in R~, and the inequalities (9) may therefore 

also be said to define a system of cylinders in Rm. 

We shall now assume that g(o; ~ ) ~  o in the interval o~ < o < o s  for all x 

belonging to this system of cylinders. I t  will then be shown that the m -  mo 

last coordinates ~m+l , . . . ,  ~m of the vector v are equal to o and that  its projec- 

tion v '----(vl , . . . ,  ~,~) satisfies the relation 

II ,,' II ITt,' II =>b' 

where b > o depends only on a and the direction of the projection V' -~ (/~l, . . . ,  pro0) 

of V = ( ~ I , . - . ,  u~), and is therefore independent of / ~ + 1 , .  ;. ,/z~, as well as 

of N, the function f(s) in question, a~d the values ol and a~. 

The number b is here simply the number determined, according to w 97, 

by a and the direction of V' if m is replaced by too. 
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101. The proof is closely analogous to the proof of ~ 98~99,  the only 

differences being the following: 

Instead of the spheres Sh we consider the cylinders determined by the 

inequalities (9). The set U is therefore replaced by a set, which must contain 

all  points x for which the projection x '  belongs to the cone 

Ix' -- x*', ~'] < 0 

in R ~ ,  where 0 is the number determined, according to w 98, by a and the 

direction of lz', if m is replaced by ~o. The set of these points x may be called 

a wedge in ~n .  

There exists a plane orthogonal to v containing no point of this wedge. 

This implies that  the m - - m  o last coordinates ~ + 1  . . . . .  ~m are all o, and further, 

that, since vlz > o, the projection v' satisfies the relation 

__< o. 

This establishes the desired result. 

F u n c t i o n s  w i t h  a F i n i t e  R a t i o n a l  B a s e .  

102. We now turn to the study of almost periodic functions f(8) with a 

finite rational base P l , . . . ,  pro, i. e. with exponents from the modul M-----{r~/~l + 

§ .-. + r=/~}, where the numbers Pl, �9 � 9  are linearly independent, and the 

set of coefficients r~, . . . ,  r• runs through all sets of rational numbers. Using the 

vectorial notation, we have M ~  {rp}, where p ~ ~u I . . . .  ,/zm), and r ~ (rl, . . . ,  rm) 

runs through all vectors with rational coordinates. 

Let f ( s )  be a function almost periodic in [a, ~] with exponents from M. 

Allowing terms with the coefficient o, we may write its Dirichlet series in the 
form 

/ ( s )  ~ 

Let us now consider a sequence of exponential polynomials of the form 
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Ip) are :4=o) converging (where for every p only a finite number  of the coefficients a 

uniformly towards f ( s )  in [a, fl] as p - +  ~ .  For  each funct ion fn(s) we form the 

funct ion 
g ,  (s; x )  ---- :~ a'~'> e ~ ' "  e " ~ ' ,  

where x runs  through Rm. In each of the variables x~ . . . .  , x,~ this  funct ion has 

the period 2 ~ z\~, where N ,  denotes a common denominator  of the coordinates 

of those vectors ~" for which a~ ) g= o. Moreover 

(IO) f , ( s  + iz) = g p ( s ;  ~ ) .  

As fp(s) converges uniformly towards f(8) in [a, fl], the funct ion fp(s  + i~) 

converges uniformly towards f ( s + i x )  for  s in [a, fl] and all ~. Since any two of 

the funct ions gp (s; x) have a common period 2 z N in all the variables x l , .  �9 x+, 

it  follows therefore from (Io), if we use Kronecker 's  theorem, tha t  gp(s; x)  con- 

verges uniformly towards a certain l imit  funct ion g (s; x) for  s in [a, fl] and all x .  

We have then  obviously 

f ( s  + i~) = g(s; y~). 

103. The solution of the present case of our problem is given by the following 

theorem. 

Theorem 23. A fitnction q9 (a) in the interval (a, fl) is the Jensen funct ion oJ 
a function f (s )  almost periodic in [a, fl] with the f inite rational base l~1, . . . ,  tL,,, i. e. 

with exponents f rom the modul M =  {r~ ix I + ... + r,~ ttm}, i f  and only i f  i t  sati8fies 

the following conditions: 

(i) I t  is convex in the interval (el, fl). 

(ii) The value of  9'(a) in any linearity interval o f  q9 (a) belongs to M. 

(iii) To any reduced interval (a < )  a o < a < fl0 ( <  fl) corresponds a .number k >  o 

such that i f  a I and a~, where ao<a  ~ < a+<~0, belong to &fferent lineari 0 intervals 

of  qD (a), and the element qg'(a~)- q~'(aa) of  M has the representalion 

we have the inequality 

qp' (~,) - q~' (~,) = ,., ~,, + . . .  + ,.,, ~ , , ,  

r (a.~) - r (a,) >__ k. 

Vr~ + - - . +  r~ 

For  m = I  this theorem reduces to Theorem 2o, since in this case condition 

(iii) is implied by (i) and (ii). 
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104:. The necessity of conditions (i) and (ii) follows from Theorems 7 and 8. 

The necessity of condition (iii) will be established by means of the results of 

w167 92--99- 
Let  f ( s )  be a funct ion almost  periodic in [a, fl] with exponents from M, 

which is not  identically zero. Using the notat ions of w 1oz, we shall consider 

the functions 

q)p(x) =: min Igp(,'; ~)1 
a o ~ a ~  

and 
q) (x) ~- rain ]g (a; ae) I . 

~o~ ~o 

Obviously q~p(x) converges uniformly towards ~ (x )  in Rm as p-* ~o. Fur the r  q~p(x) 

is periodic with the period z Z Np in each of the variables x~ . . . .  , x,~, and ~ (x )  

is not  identically zero since 

q ) ( / ~ ) =  rain Ig(a;  fry)l----- min I f ( a +  i~)[. 

Hence there exist a positive number  ~2 and a system of spheres 

(xx) I I x -  ( x * +  2  Nh)ll ___< aN, 

where N is a positive integer,  a < g  a positive number,  x*  a point of R,~, and 

h runs through all vectors of R,~ with integral  coordinates, such tha t  

for all x belonging to these spheres. 

For  arbi trary values of a 1 and a s for whichao<a~<a~<flo, and which belong 

to different l inearity intervals of ~(a), we may now choose a number  p sat isfying 

the following conditions: 

(a) The lines a-~al and a ~ a  2 belong to strips without  zeros of the funct ion 

fp(s), and fp(s) has the same mean motion as f ( s )  on these lines (cf. w 32). This 

means tha t  a~ and a s belong to l inearity intervals of the Jensen funct ion ~p(a) 

of .]~(s), and tha t  
i p p p 

= a n d  = 

(b) For  all x belonging to the spheres (Ix) we have ~p(ae)>o, which means 

tha t  gp (a; x)~= o for all a in the interval a 0 < a < rio. 

By the definition of Np the numbers ~ . . . .  , and hence also the numbers 
K 
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/z I .U~n Np N '  " " "' ~ form an integral  base for the funct ion fp (s). The spatial  exten- 

sion of" fp(s  + i~) corresponding to this base is by ( i o ) t h e  funct ion gp(s; xNpN) ,  

with the period 2 z in each of the variables x~ . . . .  , x~. By condit ion (a) we have 

t t ~' (a .)-  ~, (~,)= ~ ( ~ ) -  ~p (~,) 

and by condit ion (b) we have gp(a; x N p N ) ~ o  for all a in the  interval ao<a<~o 

and all x belonging to the spheres 

x -  N - - - ~ . +  l v ~ / l l = - ~ - p , "  

I t  follows therefore  f rom ~ 96---97 tha t  

r (~ - ~ (~') = ~ ~v~ ~ = " + + '~ ~ '  

where the vector  ~ =  (~j , . . . ,  ~ )  has integral  coordinates and satisfies the condition 

Np~v >b,  

where b > o  denotes a constant  depending only on a and the direction of -.V~ N '  

i. e. the direction of ~. Pu t t i ng  

we therefore  have r = and hence N p N  

r ~  > b 
I lr l l  I1~11 = ' 

which proves condit ion (iii) with k = b If 9 I]- 

105. To prove the sufficiency of condit ions ( i)--( i i i )we may, by Theorem 19, 

restr ict  ourselves to the case where ~(a) is ei ther linear in (a, ~) or linear in two 

intervals (a, al) and (#1, #) bu t  not  in (a, #). 

I f  ~(a) is linear, say ~0(a)= ca + d, the funct ion f ( s ) =  e c'+d is a solution. 

I f  ~o(a) is l inear in (a, al) and (ill, #) but  not  in (a, fl) condit ion (iii) takes the 



Mean Motions and Zeros of Almost Periodic Functions. 251 

following form: There exists a number 0 > o such that if ~x and ~2, where 

a < ax < a~ < fl, belong to different linearity intervals of ~ (a), and the element 

~ ' ( a 2 ) -  ~v'(al) has the representation 

~ ' ( o . , ) -  ~ ' ( o . , ) =  r , ~ ,  + . . .  + ,..,~,.,, = . , .~,  
then 

Corresponding to this 0 we now introduce another rational base ~1 , . . . ,  )~ 

of the modul M, consisting of the positive elements 

~l -~ r(tl gt . . . .  , )~ -~ r(m) tt 

of M, where the vectors r " ) , . . . ,  r I~) are chosen such that the cone 

belongs to the part of R~ determined by the parametric representation 

( 1 3 )  X :== ~( I )  z I " ~ - " ' '  "~- r (m)  ~'l~t, Zl>O . . . . .  g ~ > O .  

I f  then a~ and as, where a < a x < a 2 < ~ ,  belong to different linearity intervals 

of ~v(a), and the element ~'(a~)--~'(a,) of M by means of the new base has the 

representation 
~'(, , ,)-  ~' ( , ,~ )=  q~z,+ .-. + q,, ~ ,  

we have the inequalities 

qx > 0 ,  . . . ,q ,a>O. 

This result may also be expressed as follows: If  for an arbitrary a belonging 

to a linearity interval of ~(a) the element ~ ' ( a / o f  M has the representation 

(x4) ~' (o) = q~(o) zx + . . .  + q.(o)  z . ,  

then the functions q t (o ) , . . . ,  q~(o), so far defined only in the linearity intervals 

of ~(a), are inceeasing functions of a, each of which assumes different values in 

different linearity intervals. 

106. The representation (I4) will now be extended to a representation of 

~v'(a) valid for all a in (a, ~) by means of increasing functions q l ( a ) , . . . ,  q,n(a). 

For a value a 0 not belonging to the linearity intervals of ~(a), let us con- 

sider the largest closed interval {a', ~/'} containing a 0 but  not containing points 
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of any linearity interval of ~(a); we then define ql(ao) . . . . .  q,,(ao) such that the 

two (m ~L 1)-dimensional vectors 

{9'(ao) - -  9 ' ( a '  - -  o), q, (ao) - -  ql (a'  - -  o) . . . .  , qm(ao) - -  qm(a" - -  O)} 
and 

{q~'(fl '+o)--~'(a'--o), qt(~" + o ) - - q ,  ( a ' - - o ) ,  . . . ,  qm(fl" + o ) - - q m ( d - - o ) t  

are proportional. The relation (I4) is then valid for all a. 

If  a ' = ~ ,  the functions ql(a) . . . . .  qm(a) will all be continuous or all discon- 

tinuous at the point a 0 according as ~'(a) is continuous or discontinuous at %. 

If  a ' <  fl', we must have ~'(fl' + o ) - - ~ ' ( a ' - - o ) >  o, and the vector 

(qt (~' + o) - -  at (a' - -  o)) r (~) + . "  + (q,,, ((3' + o) - -  q,n (a' -- o)) r '~) 

is therefore not the null-vector; being the limit of vectors belonging to the cone 

(I2), it belongs itself to this cone, and hence to the part of B~ determined by 

(I3),  i. e. we have 

q,(,8' + o) - - q , ( a ' - - o ) > 0 , . . . ,  qm(fl' + o ) -  qm(a'-- o )>  o. 

This implies that  none of the functions q ~ ( a ) , . . . ,  q,,,(a) has any other constancy 

intervals than the constancy intervals of r  

107. By int%oTation of (I4) we arrive at a representation 

( . )  = ( . )  + . . '  * ( .) ,  

where the functions ~l(a), . .., tin(a) are convex functions having the same linearity 

intervals as ~(a). Further, the values of ~(a)  in the liuearity intervals belong 

to the modul Ml-~ {qtltz}, where qt runs through all rational numbers. Hence, 

by Theorem 2o, there exists for each 1 a function 9~ (s) almost periodic in [a, ~] 
2 ~  

with exponents from Mz, i.. e. a limit periodic function with the limit period ~ ,  

having the Jensen function r The product 

f ( s ) = f l ( s ) . . . f , , ( s )  

is then almost periodic in I~, ~] with exponents from 2l/, and has the Jensen 

function ~(a). 

This completes the proof of the theorem. 
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Funct ions  wi th  an Infinite  Rational  Base.  

108. Finally we turn  to the s tudy of almost periodic funct ions f (s)with 
an infinite ra t ional  base p~, / ~ , . . . ,  i. e. with exponents f rom the modul  

M - ~  {r I Pl + r~/~t + " "  }, where the numbers  Pl, P~, �9 �9 �9 are l inearly independent,  

and t h e  sequence of coefficients rl, r., . . . .  runs th rough  all sequences of ra t ional  

numbers  of which only a finite number  are ~e o. 

U s i n g  in the infinite-dimensional space R,o the vectorial nota t ion introduced 

in w 88 we have M ~ { r / ~ } ,  where t ~ ( p j ,  t~2, . . . ) ,  and r ~ - ( r l ,  r ~ , . . . )  runs 

th rough  all vectors of R~ with ra t ional  coordinates, of which only a finite number  

are # o, 

Let  f (s )  be a funct ion almost  periodic in [a, fl] with exponents from M. 

Allowing terms with the coefficient o we may wri te  its Dirichlet  ser ies  in the 

form 
f ( s )  ~ ~a~. e, t ,8.  

Let  us now consider a sequence of exponential  polynomials of the form 

fp( ) = z 

where for every p only a finite number  of the coefficients a(~ p) are # o )  converging 

uniformly towards f(s) in [a, fl] as p-* av. For  each funct ion f~(s) we consider the 

funct ion 
(s;  x )  = e e 

where x runs th rough  R~. This function actually depends only on a finite number  

of the variables x~, x2 . . . .  and has in each of these variables the period 2zNT~, 

where Np denotes a common denominator  of the coordinates of those vectors r 

for which a~ } =4 = o. Fur ther  

fp(s § i~)~-gp(s; tt,). 

As fp(S) converges uniformly towards f (s) in  [a, fl], the funct ion fp(s + i~) 

converges uniformly towards f (s+i , )  for s in [a, fl] and all ~. Since any two of 

the functions gp(s; x) have a common period 2 zcN in all the variables x~, x , , . . . ,  

i t  follows therefore, by Kronecker 's  theorem, tha t  gj,(s; x) converges uniformly 

towards a certain l imit  funct ion g(s;  x) for s in [a, fl] and all x.  We have then  

obviously 
f(s  + i~)=g(s; y~). 
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109. The solution of the present case of our problem is given by the following 

theorem. 

Theorem 24. A function 9(a) in the interval (a, ~) is the densen function o f  

a function f (s)  almost periodic in [a, ~] with the infinite rational base Pa, # s , . . . ,  

i. e. with exponents from the modul M =  {rau~ +r21~, " + .. .},  i f  and only i f  i t  satisfies 

the following conditions: 

(i) I t  is convex in the interval (a, .O). 

(ii) The value of  9'(a) in any linearity interval of  9(a) belongs to M. 

(iii) To any reduced interval (a <) a o < a < ~o( < fl) there correspond a positive 

integer m o and a number k > o  such that i f  al and a v where ao < al < as < flo, belong 

to different linearity intervals of  qD(a), then the difference qD'(az)- q~'(al) belongs to 

the modul M , ~ =  {rl/,1+ .-. § rm/~o} with the finite rational base pj, . . . ,  Pro, and 

~f its representation is 

9 '  (as) - -  9 '  (a,) = r,  .u t + . . .  + r,,,o 

we have the inequality 
(o,) - 9 '  (.1) >= k. 

2 
VrI  + "-  + r,~ 

110. The necessity of conditions (i) and (ii) follows from Theorems 7 and 8. 

The necessity of condition (iii) will be established by means of the results of 

I O O - - I O I .  

Let f ( s )  be a function almost periodic in [a,~] with exponents from M, and 
not identically zero. Using the notations of w Io8, we consider the functions 

(~p(X) ~ m i n [  gp (a; x)[ 
ao~ a~- ~o 

and 
( x ) =  rain I g(~';x) l. 

~-<a=<~ 

Obviously Op(x) converges uniformly towards ~ (x) i n  R~ as p-~ ~ .  Moreover 

Op(x) actually depends on only a finite number of the variables xx, x 2 , . . ,  and 

has in each of these variables the period 2 ~ Np, and O(x) is not identically zero, 

since 
0 ( ~ ) =  rain I g ( ~ ; ~ * ) l =  rain l f ( ~ +  i*)l. 

Hence there exist a positive integer m o and a positive number ~ such that  

(x) > ----7 
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for all points ~ = (xa, x t , . . . )  in Ro~ for which the corresponding point x ' ~ -  

-~ ( x l , . . . ,  xm) in Rm, which is called the projection of x on Rm, belongs to 

a system of spheres 

I1 '- + 2 Nh')ll < aN, 

where N is a positive integer, a < g  a positive number, ~e*' a point of Bin, and 

h '  runs through all vectors of Bmo with integral coordinates. 

For arbitrary values of al and a~ for which ao<a~<as<~o, and which belong 

to different linearity intervals of 9(a), we may now choose a number p satisfying 

~he following conditions: 

(a) The lines a=a t and a---~ belong to strips without zeros of the function 

fp(s), and fp(s) has the same mean motion as f(s) on these lines (of. w 32). This 

means that  a I and a~ belong to linearity intervals of the Jensen function ~r(a) 

of .f~(s), and that  
v t t f ~p(a~) = q~ (a,) and ~(a~) = q~ (a,). 

(b) For all x for which the projection x '  belongs to the spheres (I 5) we have 

�9 , ( x ) >  o, which means that  gp(a; x)=4= o for all a in the interval a 0 < a < ~ 0 .  

Let  m > m  0 b e  chosen such that gp(s;'x) is actually a function of the variables 

s and x 1 . . . .  , x,~ alone. By an argument analogous to that of w Io4, only using 

the results of w Ioo instead of those of w 97, we find that 

r 

' = + " '"  N p N  5 p N  

where the vector v' ~ (~ l , . . . ,  ~ )  has integral coordinates and satisfies the con- 

dition 

NpN 

where b>o denotes a constant depending only on a and the direction of ~ , ,  

i .e. the direction of ~', and thus in particular not on rn. Hence qY(a~)--qD'(al) be- 

longs to the modul M,~0-~ {r 1 ~1 + "" + rm ~ ~  I, and putting 
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- - -  and hence 

r '  ~t' 

II r' II II !1 >-- g'' 

which proves condit ion (iii) with k-----b ]] it' H. 

111. To prove the sufficiency of condit ions (i)--(iii) we may by Theorem ~9 

restr ict  ourselves to the case where r is ei ther linear in (a, f l)or l inear in two 

intervals (a, a,) and (fl~, fl), but  not  in (a, t~). 

I f  ~(a) is linear, say 99(a )=ca  + d, the func t ion  f ( s ) =  e "~+'t is a solution. 

I f  ~(a) is l inear in (a, aj) and (fl,,fl) but  not  in (a, ~) we may by condition (iii) 

choose a positive integer  m such that  the  difference qD'(a~.)~'(a~), where a~ and 

a~ belong to arbi trary l inearity intervals of ~(a), belongs to the modal  M,, = 

{r~u~+ ... +rm~tm}, and by condit ion (ii) we may assume that  m has been chosen 

so large that  the value of ~'(a) for some linearity interval of ~(a) also belongs 

to M~. The funct ion $,(a) then satisfies conditions (i)--(iii) of Theorem 23 with 

respect  to the modal  3I~ and is therefore the Jensen function of a funct ion f ( s )  

almost periodic in [a, fl] with exponents from ilia. 

Funct ions  with Arbi trary  E x p o n e n t s .  

112. For all moduls of the forms . 3 l = { h l ~ +  ... +hmgm}, {hl~h+h_,g~+ ""}, 

{rl/xl + - -  + r~um}, or {r~gl + r~/x.~+ -.. } we have now characterized those func- 

tions ~(a) which may occur as the J:ensen funct ion of an analytic almost periodic 

funct ion with exponents from the modal  in question. Our last Theorem makes 

it possible also to characterize those funct ions ~(a) which may occur as the 

Jensen funct ion of an analytic almost periodic funct ion with arbi trary exponents.  

The result  is given by the following theorem. 

Theorem 25. A fi~netion qD (a) i ,  the interval (a, f~) is the Jensen function oj 

a J i~,.ction f ( s )  almost periodic in [a, fl] ~f aJld only i f  it satisfies the followil~g corn 

ditio~s: 

(i) I t  is cow, vex in the i~2terval (a, fl). 

(ii) For  any reduced i~terval (a < ) a  o < a < rio(< fl) there exist a .fi~ite set of  

linearly independent ~umbers Fti, �9 �9 u,. a~d a number k > o ,  such that ira1 a~Td (r~, 

where ao<a l <a.z <rio, belong to d~iffere~# lineari 0 inter~'als of  9~(a), then the difference 

(@ - (o,) of  the 
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where the coefficients rl . . . . .  r,~ are rational numbers and 

V ~  + . . . +  r~ 

The necessity of the conditions follows immediately from Theorem 24, since 

any almost periodic function possesses an infinite rational base. 

In order to prove the sufficiency of the conditions we first notice that  if a 

set of positive numbers has a finite rational base tq . . . .  , / z ,  such that  for all 
a 

numbers a~---r~/tl + .-. + r~pm-----rtt of the set the ratio ~ exceeds a positive 

constant, then it has this property with respect to any finite rational base 

~ t , . . . ,  ~t of the set. To see this we consider the set of all numbers 

r~tt x + ... + r~ ~t~ + qlJta + "'" + qtg~ 

with arbitrary rational coefficients. This set contains both a finite rational base 

obtained by enlarging the set /U t , . . - , /~  and a finite rational base obtained by 

enlarging the set ~ , . . . ,  gl, and these two bases must contain the same number 

of elements. I t  is therefore sufficient to consider the ease where l = m .  Now if 

in this case r~/x~ + . . .  + r~ /xm=r / t  anct q~ ga + " "  +qm )~m=q/t are the expressions 

of the same number a of the set, the vectors r and q are connected by a linear 

I[ r I[ therefore exceeds a positive constant. This proves substitution, and the ratio I ~  

the above statement. 

I f  now xt, u~,. . ,  denotes an infinite rational base for the values of qg'(a) 

in the linearity intervals of ~0 (a) it follows from condition ( i i ) tha t  the values 

~0'(a) belonging to the linearity intervals contained in a reduced interval 

( a < ) a o < a < ~ o ( < f l )  have the finite rational base x l , . . . ,  Xmo for some mo. Hence 

with respect to the base u~, x ~ , . . ,  the function ~0(a) satisfies the conditions of 

Theorem 24 and is therefore the Jensen function of a function f(s)  almost 

periodic in [a, fl]. 

113. A consequence of Theorem 25 is the existence of convex functions 

q~(a) which are not the Jensen function of an analytic almost periodic function. 

I t  is sufficient to consider a convex function ~0(a) having in a reduced interval 

an infinity of linearity intervals for which the corresponding values of ~'(a) are 

linearly independent. 
1 7  - -  6 3 2 0 4 2  Acta mathematiea. 7 7  
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114. As is easily seen, the preceding theorems admit of the following uni- 

form formulation. 

Denoting by M an arbitrary modul of one of the forms {ht# t + - - -+h~#m},  

m>2 ,  {hl /h+h,#.o+.- .} ,  {rt#t~-. . .+r~/xm}, or {rl# l+ r~#_ .+ . - - } ,  or the modul 

of all real numbers, a function 9~(a) in the interval (a, (/) is the Jensen function 

of a function f(s) almost periodic in [a,~] with exponents from M if and only 

if it satisfies the following conditions. 

(i) I t  is convex in the interval (a, ~). 

(ii) The value of ~0'(a) in any linearity interval of 9o (a) belongs to M. 

(iii) For any reduced interval ( a < ) a  o < a <~o(<#)  there exist a finite set of 

linearly independent numbers ~1, : . . ,  $t and a number k>o ,  such that if at and a~, 

where a o < a t < a2 < ~o, belong to different linearity intervals Of 90(a), then the 

difference ~ ' ( a~ ) -  90'(al).is' of the form 

~ ' ( @ -  ~'(<, ,)  = q,  ~, + . . . .  +_ q ,x , ,  

where the coefficients q l , . - . ,  q~ are rational numbers and 

,p' (,~_.) - ~ '  (,,,) >_ ~.. 

Vq,~ + - - - +  q7 

I t  is natural to ask whether this theorem remains true for an arbitrary 

eve rywheredense  modul 'M.  The necessity of the conditions is obvious in all 

cases, and in some cases other than those considered above the sufficiency may 

be proved by similar arguments, for instance in the case of all >>mixed~> moduls, 

i .e .  moduls of the type { g l # t + - . -  +9~um} or { g l # t + g ~ # ~ +  " ' ' } ,  where the 

numbers #i are linearly independent while some of the coefficients gt run through 

all integers and the rest through all rational numbers. We do not know whether 

the conditions are sufficient in all cases. 
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CHAPTER VII. 

Analytic Almost Periodic Functions with Integral Base and Analytic 
Spatial Extension. 

F u n c t i o n s  w i t h  a F i n i t e  I n t e g r a l  Base .  

115. Le t  f ( s )  be a func t ion  almost  periodic in [a, #] wi th  a finite in tegra l  

base ?e I . . . .  , pm and let  g (s; x)  -~ g (s; x I . . . .  , xm) denote  the corresponding spat ial  

extension in t roduced  i n w  83. W e  shall now consider the  case where this  func- 

t ion  g (s; x)  is a regular  func t ion  no t  only of the  complex variable s fo r  given 

values of the real variables x D . . . ,  xm but  of all t h e  variables s, x l , . . . ,  x~.  1 

T h i s  proper ty  is easily seen to  be independent  of the par t icu lar  choice of the  

base, but  this is no t  impor t an t  for  the  fol lowing considerat ions which are founded  

on a definite choice of the  base. W e  express  the  said proper ty  briefly by saying 

t ha t  f (s) has an analytic spatial extension, 

We shall now prove the  fol lowing theorem.  

T h e o r e m  26. Let  f ( s )  be a function almost periodic in [a, fl] wi th  a finite in- 

tegral base and an analytic spatial extension, amd not identically zero. Then the 

mean motions t - ( a )  and c + (a) exist for  every a in (a, fl) and are determined by 

(!) c - (a)  = qD' ( a - - o )  and c+ (a) ~- qD' (a § o). 

Furth~" the frequency H (al, a:) o f  zeros exists for  every strip (as, as), where a < al < a~ < #, 

and is determi~ed by 

I t 

(2) / I ( ~ i ,  ,~)  = T ; ~ ( ~  (~, - o) - (,,, + o)). 

I n  every reduced i,~terval (a < ) a  L < a < #1 (< fl) there exist at most a finite number 

of  values of  a for  which 99(a) is not d~fferentiable. 

By a r emark  in w 4o this  theorem implies t h a t  the  mean mot ion  c(a) of the 

func t ion  f ( a + i t ) ,  according to the definit ion in w 2 7, exists for  every a in (a, fl) 

and  is de termined  by t h e  mean derivat ive 

t /  
c (~) --- ~ (~'  (~ - o) + ~ ~ + o)). 

i Since x D ..., x m are real variables the regularity in all the variables s, xl, �9 xm means 
more than regularity in each of the variables s, xl , . . . ,  x m for fixed values of the remaining 
variables. 
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116. The proof is based on the Kronecker-Weyl theorem, according to which 

the points of the line x = t t t = ~ u t t , . . . ,  p~t), - - ~ v < t < + ~ ,  in Rm are not only 

everywhere densely distributed rood. 2 7r when p t , . . . ,  #m are linearly independent, 

but even equidistributed rood. 2 zr. We shall use this theorem in the following 

form:  Let P ( x ) = P { x l , . . . ,  xm) denote a function in /~m with the period 2zr in 

each of the variables, which is integrable in the Riemann sense and for which 

the function P(i t t )  of the real variable t is also integrable in the Riemann sense. 

Then the mean value 
d 

lira t f M{P(y t ) }  (~-','1- ~* ~ ., P (It t) d t 

r 
exists and is equa l  to the mean value 

0 o 

We begin the proof with the remark that  the existence of the left mean 

motion e-(a) for a given value of a is equivalent to the existence of a mean 

value of the stretchwise continuous function a r g - f ( a  + i (t + ~))--arg--f(a + i (t-- !3), 

and that when it exists t - (o)  is equal to this mean value: 

c-(a) = M { a r g - f ( o  + i( t  + �89 -- a r g - f ( a  + i(t  -- 1))}- 
t 

This follows from Theorem 3 (iv), which shows that, except for a bounded 

remainder, the quantity 

f Iarg-f(a + i( t  + ~ ) ) -  a r g - f ( a  + i ( t -  !))] at  =-f +farg-/~, + i t )d r  

is equal to a r g - f ( a  + i d ) -  a r g - f ( a  + i~,). Similarly 

e + (a)= M{arg+f (a  + i(t + 1)) _ a rg+f (o  + i ( t -  ~'~)}, 
t 

where the two sides exist simultaneously. 

Let  us now consider the spatial extension g (s; x) and for an arbitrary x in 

B~ denote by a - ( a ;  ~c) and a + (o; x) the variation of the argument of g(s; x) 

along the left or right side of the straight segment from a - - i  1 to a + i!.. Since 

f ( s  + i ~ ) =  g(s; ?t~) the preceding relations then take the form 

c - ( a ) =  M { a - ( a ;  l~tt)} and e+(a)= l]l{a+(o; /tt)}, 
t t 

where in both eases the two sides exist simultaneously. 
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From w 38 it follows tha t  a-(a; x) and a + (a; ~c) are bounded for a in [a, fl] 

and all x.  I t  will be shown below tha t  for an arbi t rary  a they are Riemann 

integrable  funct ions of x .  I f  we assume this for  the moment  it at  once follows 

from the Kronecker-Weyl  theorem that  the mean motions c-(a) and c + (a) both 

exist and are given by 

(3) c-(a)=M{a-(a; x)} and c+(a)=M{a+(a; x.)}. 
X 

From these expressions we easily arrive at the  expressions (I). For  the funct ions 

a - ( a ;  x) and a + (a; ~c) are for  any fixed x,  considered as funct ions  of a, con- 

t inuous from the left  and r ight  respectively;  it t he re fo re  follows from (3) (by the 

theorem on bounded convergence) tha t  c-(a) and c + (a) are cont inuous from the 

left  and r ight  respectively, and since both are equal to ~'(a) at  the  points  where 

~(a) is differentiable, this implies the  relations (I). The existence of H(a~,a~) 
and the relation (2) is an immediate  consequence of (I), on account  of w 42. 

117. Still arguing on the basis of the Riemann  integrabi l i ty  of the functions 

a - ( a ;  x) and a+(a ;  x) we deduce from (I) and (3) the relat ion 

~'(a + o)  - ~' (~ - o)  = M { a §  (a; x ) }  - -  M { a -  (a; x ) }  = M { a §  (a; x )  - -  a -  (a; x ) } .  

But  
a +  (~; x )  - a -  (a;  x )  = 2 ~ .  (a; x ) ,  

where n(a;  x) denotes the  number  of zeros of g (s; x)  on the segment  s = a + i t ,  

- - ~ - < t < !  = = 2, a zero at an end-point of the interval being counted wi th only half 

of its order 1. The funct ion n(a; x) is therefore also Riemann integrab]e, and 

we have 

(4) ~ '  (a + o) - -  ~ ' (a  - -  o) = 2 z M  {n(a; x)}, 

which shows tha t  ~(a) is differentiable at  the point  a if and only if 

~ { . ( a ;  x)} = o .  
X 

The theorem will therefore  be proved if we prove first tha t  for  every a in 

the interval  (a, ~) the funct ions  a-(a; x) and a + (a; x)  are Riemann integrable,  

and secondly tha t  in every reduced interval  (a,,fl,) the  mean value M{n(a; x)} 

is positive only for  a finite number  of values of a. 

i Thus  n ( ~ ; x )  is  not  necessari ly  an integer. 
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118. In  order to prove the Riemann integrabil i ty of a,(a; x) and a + (a; x) 

for a given a i t  is sufficient to prove the Riemann integTability Of n(a;  x). 

To make this  clear we use the theorem tha t  a funct ion is Riemann integrable 

if and only if i t  is bounded and is discontinuous only in a (Lebesgue) null-set. 

Since in our case the funct ions  are known to be bounded it is sufficient to prove 

t h a t  if n(a;  x) is discontinuous only in a null-set the funct ions a-(a;x)and 
a + (a; x) are also discontinuous only in null-sets. Here  we may neglect the  s e t  

of points x for which g (s; x) has a zero at  one of the end-points of the segment  

s-~a+it, - - } ' < t < : ~ ,  i. e. for  which ei ther  g(a--i~; x)-~o or g(a+i~; x)~o. 
For  the funct ion 9(So; x) is for every fixed s o an analyt ic  funct ion of xl . . . .  , x,~ 

and not  identically zero, since this would imply f(so§ for all ~, 

which is impossible; hence g(so; x)=o only in a null-set, For  a point x for 

which g(a--i~; x)*o and g(a§ x)~o i t  is, however, obvious tha t  the conti- 

nui ty  of n(a; ~c) implies the cont inui ty  of a-(a; x) and a+(a ;  x). 

Thus it now only remains to be proved first tha t  for every a in the interval  

(a, fl) the funct ion n(a;  x) is discontinuous only in a null-set, and secondly tha t  

in every reduced interval  (al, fl~) the mean value M { n ( a ;  x)} is positive only for 
X 

a finite number  of values of a. 

119. For  a given reduced interval  (al, ~1) and an arbi trary point x o in R~ 

we choose a rectangle  

8 ( X o ) : a ~ - - ~ < a ~ t ~ + ~ , _ -  - - ~ - - ~ < t  < ! =  = : + ~ ,  

where o < ~ = ~ (Xo) < rain (a~ --  a, f l - -  fl~), on the boundary of which g (s; x0) is 

q= o, and therefore has a positive lower bound k ~ k (Xo). Next  we choose an 

open interval  I(xo) in R~ conta ining x 0 such tha t  I g(s; x)--g(s; Xo) I ~]r on the  

boundary of S(xo) when ~c belongs to I(~vo): By Rouchd's theorem the functions 

g(s; x) have then for all x belonging to I(xo) the same number  p-~p(Xo)(~o) 
of zeros in S(xo). Let  

(5) s~ + A,(x)s,~- '  + ... + a,,(x) 

denote the polynomial having these zeros, so tha t  the coefficients A~ (x),.,., Ap(x) 
are the elementary symmetric  functions of the zeros. Since g (s; x) is regular  in 

all the variables s, x~ . . . . .  x~ the funct ions A1(x), . . . ,  Ap(x) are then,  according 

to Weierstrass '  'Vorbereitungssatz ' ,  regular  funct ions of x~ . . . .  , x~ in l(ar ~ 

i The 'Vorbereitungssatz' deals only  with the neighbourhood of a zero. The above statement 
is, however, an easy consequence. To prove the functions A ~ ( x ) , . . . ,  Ap(x) to be regular in the 
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We  now put  s = a + i t  in the polynomial  (5) and develop with respect  to t; 

af ter  division by i n it then  takes the form 

(6) t p + B t ( a ;  ~e)t ~--~ + . . .  + Bp(a;  x) ,  

where the eoeffieients B~ (a; x), . . . ,  Bp(a; x) are polynomials of a whose coefficients 

are regular  funct ions of x l , . . . ,  x~ in I(x0). Thus the number  n(a ;  x) is for  every 

a in (al, ffl) and every x in l(~e0) determined as the number  of zeros of the 

polynomial  (6) in the interval - - ~ t _ _ < ~ ,  a zero at an end-point  of the interval 

being counted with only hal f  of its order. 

By mul t ip ly ing (6) with the conjugate  polynomial  

t P + B , ( a ; x )  t p - ' + .  + B p ( a ; x )  

we arrive at  a p o l y n o m i a l  

+ e (o; + . . .  + co. (o; x ) ,  

where the coefficients C~(a; x ) , . . . ,  C2p(a; x) .  are polynomials of a whose coeffi- 

cients are real regular  funct ions  of xt . . . .  , x,~ in  I(x0). Thus the number  n(a;  ~) 

is half  the number  of zeros of this polynomial  in the interval  _ ! <  t ~  ~ = ~, a zero 

at an end-point of the interval  being counted with only half  of its order. 

120. We now apply the fol lowing lemma, which is an easy consequence of 

S turm's  theorem:  

For  every positive integer  n and every interval tl =< t ~  t 2 there exist a finite 

number  of polynomials  P l ( a  I . . . .  , a n ) , . . . ,  P q ( a l , . . . ,  an) with real coefficients 

such tha t  the number  of zeros of a real polynomial  

Q(t) = t" + al tn- l  + " " " + an 

in the interval tl-------t ~ t~, where a zero at an end-point  is to be counted 

with only half  of its order, depends only on the signs sign P1 (al . . . .  , a n ) , . . . ,  

sign P q ( a l , . . . ,  an) of the values of these polynomials.  By the sign of a real 

number  ~ we mean + I ,  o, or - - i  according as ~ > o ,  ~ = o ,  or ~ < o .  ~ 

neighbourhood of a given point x* of l(x o) we need only apply the lheorem lo each of the zeros 
of g(s; x*) in S(xo). Our statement may also be proved directly by an immediate extension of the 
usual proof (see e. g. Osgood[I]) of the  'Vorbereitungssatz'. 

1 Sturm's theorem gives, in fact, a definite procedure for the determination of this number; 
this  procedure consists of the  following steps: (i) Decision as to whether t I or t~ are roots of Q(t) 
and of what order, and division of Q(t) by the corresponding powers  of t--t1 and t--t2. (ii)Deter- 
mination of the number of zeros of the quotient R(t) in t Z < t < t2, multiple zeros being counted 
only once, by means of Sturm's chain formed from the functions R(t) and R'(t). (iii) Determina- 
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On  a p p l y i n g  th is  I e m m a  we see t h a t  t h e r e  ex i s t  a f inite n u m b e r  of  f u n c t i o n s  

(7) x ) , . . . ,  x), 

each  of  wh ich  is a p o l y n o m i a l  in a whose  coef f ic ien ts  a re  rea l  r e g u l a r  f u n c t i o n s  

of  xl . . . . .  x~  in  I (aeo), such  t h a t  f o r  an  a r b i t r a r y  a in (al, ill) a n d  a n  a r b i t r a r y  

m in I(Xo) t h e  n u m b e r  n(a; x) d e p e n d s  on ly  on the  s igns  of  t h e  va lues  of  t he se  

func t ions .  T h i s  m e a n s  t h a t  t h e r e  ex is t s  a f u n c t i o n  W(Vl . . . .  , ~t) def ined  f o r  t h e  

3 ~ c o m b i n a t i o n s  of  1 s igns  ~ . . . .  , Vt, such  t h a t  

(8) n((r; a v ) ~  t/s (s ign D~(~; a ~ ) , . . . ,  s ign  Dt(~; x)) 

f o r  al l  a in (a l, fl~) a n d  al l  x in I ( xo ) .  

E v i d e n t l y  we  m a y  a s s u m e  t h a t  n o n e  of  t h e  f u n c t i o n s  (7) is i den t i ca l ly  zero 

in  a a n d  x .  

121. I n  o r d e r  to  c o m p l e t e  t he  p r o o f  of  t h e  t h e o r e m  i t  is now,  by Bore l ' s  

c o v e r i n g  t h e o r e m ,  suf f i c ien t  to  p r o v e  first  t ha t ,  f o r  eve ry  a in (az,~l), t he  sub-se t  

o f  I (x0 )  in wh ich  n ( a ;  x )  is d i s c o n t i n u o u s  is a nul l -set ,  a n d  second ly  t h a t  t he  

i n t e g r a l  

(9) x ) a , , . . .  
] (~o) 

is pos i t ive  on ly  f o r  a f ini te  n u m b e r  of  va lues  of  a in (al, ~1). 

T h e  f i rs t  of  t he se  s t a t e m e n t s  is an  i m m e d i a t e  c o n s e q u e n c e  of  (8) s ince  f o r  a 

g iven  ~ in (al,~z) each  of  t h e  f u n c t i o n s  s ign  D j ( a ;  x )  is d i s c o n t i n u o u s  on ly  in a 

nul l-set ,  t he  f unc t i on  D j ( a ;  x )  be ing  a r e g u l a r  f u n c t i o n  of  x~ . . . . .  x~ in l ( x o )  

a n d  t h e r e f o r e  e i t h e r  i den t i ca l l y  zero o r  zero on ly  in  a nul l -set .  

I n  o rde r  to  p r o v e  t h e  second  s t a t e m e n t  we h a v e  to  p r o v e  t h a t  f o r  each  se t  

of  s igns  ~, . . . .  , ~Tt f o r  wh ich  W(~h . . . .  , ~71)> o t he  m e a s u r e  of  t he  se t  of  p o i n t s  

in I ( x 0 )  def ined by t h e  r e l a t i o n s  

( I o) s ign  D l (a; x )  ---- B1, �9 �9  s ign  Di (g; x )  ---- ~]t 

is pos i t i ve  on ly  f o r  a f ini te  n u m b e r  of  va lues  of  ~ in (al, ill)- 

tion of the number of zeros of R(t) in t I ~ t < t s of multiplicity >_--2 by means of Sturm's chain 
formed from the functions Rl (t) and R~ (t), where R~ (t) is the greatest common divisor of R (t) 
and R'(t). (iv) Determination of the number of zeros of R(t) in t~<t<t2 of multiplicity >--3, >----4, 
etc. by repetition of this process. - -  This procedure involves only rational calculations and the 
determination of the signs of the values of polynomials at the points t z and t2, and there are 
altogether only a finite number of possibilities for its course; which shows the truth of our lemma. 
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I f  all ~ =t = o the set is empty for all o in (a~, ~), for otherwise there would, 

on account of the continuity of th~ functions D~(a; x), exist a sub-interval 

(a*, ~*) of (a I, ~1) and a sub-interval I*  of I(Xo) such that the equations (Io) 

would be satisfied for all o in (a*,~*) and all x in I* ;  hence the integral (9) 

would be positive for all ~ in (a*, ~*), which is impossible since on account of 

(4) it is positive at most for an enumerable number of values o. 

I t  is therefore sufficient to prove that  for each j the measure of the set of 

points in I(ar defined by the relation sign Dj(o; ~c)-~ o, i. e. b y  the relation 

Dt(r a~)~o,  is positive only for a finite number of values of o. This, however, 

is clear. For the r e l a t ion  DI (o', ar ---- o is for a given value of o satisfied in a 

set in I(a~0) of positive measure only i f  Di(o; x) is identically zero in a~ for this 

value of o, and as D~(o; x) is a polynomial in o that  may happen for at most 

as many values of o as the degree indicates. 

This completes the proof of the theorem. ~ 

129.. An arbitrary exponential polynomial 
N 

(II) f(s) = ~ a~#~' .  
~t~O 

possesses a finite integral base p~ . . . .  , pro- Let 

be the expressions of the exponents by means of the base. The spatial extension 

is then 
N 

g (~; x )  = y ,  a~ e ~ Ih. 1 ~,+ "" *hn.~ ~1 e~  ', 
'n~0 

which i s  evidently a r egu l a r  function of all the variables s, x D . . . ,  x~. The 

preceding theorem is therefore applicable, a n d  gives in particular the following 

solution of Lagrange's problem. 

An immedia te  consequence of Theorem 26 is t h a t  if N(g;  y, d) denotes the number  of zeros 
o f f ( s )  on the  segment  s ~ q ~ - i t ,  7<~t<Td, then the  l imit  

lim N ( g ;  T, d) 

existe for every ~ in (a, ~) and is equal  to 

o)-  

See in th is  connection Kac, van Kampen,  and Win tne r  Ix]. 



266 Borge Jessen and Hans Tornehave. 

Theorem 27. An arbitrary exponential polynomial 
~v 

n = O  

of the real variable t possesses a mean motio~ e determined by the expression 

c = 1 ( ~ 0 ,  o, + ~'(+o:,), 

where ~(a) is the Jensen fi~nction of 

f (s) = ~,  an e ~ ~. 
n ~ O  

In  the special case mentioned in w I, where _N= I and l a o l =  [a~ I, so that 

none of the terms in F ( t ) i s  preponderant, the theorem again gives Lagrange's 

expression c = �89 o + Zl) for the mean motion. 1 ~ 

Regarding the general properties of the Jensen function ~o(a) of an ex- 

ponential polynomial (I I) we notice that  if the notations are chosen such that. 

Zo < " "  < Z,v, then, by Theorem 9 (and the corresponding theorem for functions 

whose exponents are bounded below), we have ~ ( a ) =  ~0a + log l aol for all a < 

(some) a o and ~o (a) = Z.~-a + log I a ,l for all a > (some) flo. I t  follows therefore 

from Theorems 2I and 26 that in the whole interval ( - - ~ ,  + ~)  the function 

99 (a) possesses only a finite number of linearity intervals and a finite number of 

points of non-differentiability. 

A more precise resu l t regard ing  the linearity intervals follows from Theorems 

2 and 8, which show that  the values of ~0' (a) in these intervals belong to the 

finite set of numbers which may be written both in the form ho). o + ...  + h~.Z~ 

with integral coefficients hn with the sum ~ and in the form roZ o + . - - +  r~-Z~- 

with non-negative rational coefficients r~ with the sum ~. 

1 For in th i s  case the  funct ion f(s) has  no zeros outs ide  the  l ine a = o  so t h a t  q0(a) is l inear  
for a < o and a > o. If, for ins tance,  we assume ~.o < 2t t he  first  t e rm is p reponde ran t  for a < o, 
whereas  the  second is p reponde ran t  for a > o. Hence  ~o'(a)----~-0 for a < o and ~o'(a, ~=  ~-t for a > o ,  
so t h a t  ~ p ' ( - - o ) = ) .  0 and  q 0 ' ( + o ) = 2 , .  Thus  c =  ~(~.oq-~l~,. 

The  r emainder  ~(t)  in t h e  formula  arg F(t)=ctq-~(t) has  been s tud ied  by  Wi n t ne r  [IO 1 
who has  proved tha t ,  if  the  exponen t s  and t h e  modul i  of t he  coefficients are given,  t hen  ~ ' ( t )  is 
a lmos t  periodic in Besicovi tch 's  general ized sense for a lmos t  all  sets  of values of t he  a rgumen t s  
of t he  coefficients.  Our me thod  easi ly shows t h a t  t he  difference ~ ( t q - . ~ ) - - ~ ( t - - ~ )  is a lmost  periodic 
in  Weyl ' s  general ized sense in all cases. By a s imple  t r ans fo rmat ion  we obta in  the  more  general  
resu l t  t h a t  ~(t+k)--~(t--k) is a lmos t  periodic in Weyl ' s  sense for an a rb i t ra ry  k. On the  o ther  
hand,  i t  may  be shown wi thou t  diff icul ty t h a t  

d 

(d-9~| j - - ~ . I  fl~(tq-k.~ktP(t--k~_~,(t) I d t - ~  as k - o .  

Hence,  also ~'(t) is a lmos t  per iodic  in  Wey l ' s  sense. 
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123. An extensive class of almost periodic functions with a finite integral 

base and an analytic spatial extension is given in the following theorem. 

Theorem 28. I f  the almost periodic function 

/ (s) ~ ~ a .  e~ ."  

possesses a finite integral base I z l , . .  ., tz~ of  negative numbers such that in the ex- 

pressions 

of  the exponents the integral coefficients hnt are all non-negative, then f ( s )  has an 

analytic spatial extension. 

Since the exponents )~ are all ~ o the function f ( s )  may according to 

Bohr [Io], if it is almost periodic in [a, fl], be continued in the half-plane (a, + ~) ,  

and is almost periodic in [a, +:r  For a - ~ + ~  it converges uniformly in t 

towards the constant term of the Dirichlet series. A sequence of exponential 

polynomials 
fp (s) = ~ a~ ) e ~,,' 

(where for every p only a finite number of the coefficients a~ I are ~= o) con- 

verging uniformly towards f ( s )  in [a, ~] will also converge uniformly in [a, + oo ), 

and the sequence 

g~(s; xl, . xm) ~ ~ a  (p) e t(hnl~'+" "+h'mxm) e ~'~ 

will converge uniformly towards the spatial extension g(s; xl, �9 �9 xm) for s in 

[a, + ~ )  a n d  all xl . . . .  , x~. 

Now the function 

hp(s; z~, . .  Zm) = y. a lp ) z~ ,~ . . . z ' ,~  e~," 

is for every fixed s a polynomial of the complex variables z l , . . . ,  zm and we 

therefore find by the maximum modulus principle that  for arbitrary p and q 

upper bound Ig --g l= upper bound Ih --h l 

Hence hp(s;z 1 , . . . , z ~ )  converges uniformly for s in [~, + ~ )  and I z x l ~  I , . . ,  

I z ~  ] ~ I t o w a r d s  a limit function h (s; ~1 . . . .  , z~ )  regular for a > a a n d  ] z l  ~ < I,  
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For  every d > o we have  

gp (s; x . . . . ,  x . ) =  hp(s - -~;  e",~ r  . . . .  r e'~,.). 

Since the  numbers  # t , . . . , / z m  are nega t ive  this  implies  t h a t  for  a > a + d and  

all x l , . . . ,  xm 

g (s; x , , . . . ,  x+) = h (s- -  J; ~ ,a  r % . . . .  e ~  + e'~).  

Hence  g( s ;  x~, . . . ,x~) is r egu la r  fo r  a > a + J and  all x,, . .-., x,~. As r > o is 

a rb i t r a ry  the  t heo rem  is hereby  proved.  ~ 

F u n c U o n s  w i t h  an In f in i t e  I n t e g r a l  Base .  

124. In  order  to ex tend  the  p reced ing  resul ts  to funct ions  wi th  an infinite 

in tegra l  base,  we m u s t  first  to the  defini t ions of  w 89 (of cont inui ty  etc. of  func- 

t ions  of  an  infinite n u m b e r  of  variables)  add  a definit ion o f  regular i ty .  

A func t ion  F(~r ~ F(x+, x~, . . . )  defined in an  in te rva l  in R~ (or the  whole 

of  / ~ )  is called a regula r  func t ion  of all  the var iables  x~, x~ . . . .  if  i t  is conti- 

nuous  and  i f  for  every m it  is a r egu la r  func t ion  of x l , . . . ,  xm for  a rb i t r a ry  

fixed values of  x~+~, xm+~, . . .. Similar ly  a func t ion  g ( s ;  x ) ~  g ( s ;  :v~, x2, . . . )  o f  

a complex  var iable  ~ descr ib ing  a s t r ip  (a, 8) and  the  rea l  variables  xt,  x t , . . .  

is called r egu la r  in all the  var iables  s, x~, x z . . . .  i f  it is con t inuous  and  if  fo r  

every m i t  is r egu la r  in the  var iables  s, x ~ , . . . ,  x~ fo r  a rb i t r a ry  fixed values  of  

Xm+l, Xm+2, . . . .  

Concern ing  this  no t ion  of regular i ty ,  which, t h o u g h  very weak, is sufficient  

for  our  purpose,  we not ice  t h a t  i t  is no t  i nva r i an t  even unde r  very s imple  l inear  

t r ans fo rma t ions .  This  is seen f r o m  the  fo l lowing  example .  

1 The power series of h(s;z~ . . . .  ,zm)," considered as a function of z~ . . . .  ,zm for a fixed s in 
(r162 Qo), is obtained from the expression of hp(s; xl , . . . ,  am) by a formal passage to the limit, and 
therefore, for I z t [ < l ,  . . . .  [r  we h a v e  

h(s; zl . . . . .  z,~)= ~ a , z ~ " l . . .  z%m e~ s, 

where the series is absolutely convergent. If we put 

z, = d" J, . . . .  zm = e ~ ,  

where d ~ o, this shows that the Dirichlet series of f ( s )  is absolutely convergent for r ~ a + d,. 
and hence, since d ) o  is arbitrary, for o ~> ~. 
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Le t  the  in teger  a > I and o < b < 1 be values corresponding to a non-dif,  

fe rent iable  Weiers t rass  funct ion 

The func t ion  

= x , , . . . ) =  y .  b. e'~ 

is then  evident ly  a regular  func t ion  of x 1, x z , . . . ,  but  by the subst i tu t ion 

x l ~ y l ,  x n ~ - y l  +Y~ for  n >  I 

we obtain the funct ion  F(yl, Ya + Yz, Yl + Ys, �9 �9 .), which is no regular  funct ion 

of Yl, Y ~ , . . .  since for  Y2 = Y s  . . . . .  o it reduces to F(yl, Yl, Yl, . . .)=H(Y~). 

125. Le t  f (~)  be a funct ion  almost  periodic in [a,/?] with an infinite in tegra l  

base /~, / ~ , . . . ,  and le t  g(s; x ) = g ( s ;  x~, x ~ , . . . ) b e  the spatial  extens ion 

in t roduced in w 9o. I f  this func t ion  g(s; x) is a regular  func t ion  of all the  

variables s, xl~ x~ . . . .  we will say tha t  f(s) has an analyt ic  spatial  extension with 

respect  to the  base /~, t ~ z , . . . .  

This  does no t  imply t h a t  with respect  to any o ther  infinite in tegral  base 

the spatial  extension is also analytic,  as is seen from the example 

/(8) = y ,  b" 

where a and  b are chosen as in w 124, and where / ~ , / ~  . . . .  are l inearly inde- 

pendent  numbers  such tha t  the sequence a"/~n is bounded. The series is then  

uni formly  convergent  in [ - - ~ ,  + ~ ], so tha t  f(s) is a lmost  periodic in [ - - ~ ,  + ao ]; 

f u r t he r  f(s) has the infinite in tegra l  base t~, p~, . . . and the corresponding spatial  

extension is 
o0 

g(.v; X) = Zbnejanx" eant~" ", 

which is a regular  funct ion  of all the  variables s, x ,  x ~ , . . . .  But  f(s) has also 

the infinite in tegral  base ~x, ) ~ , . . . ,  where 

/ ~ L ~ x ,  /~,~=~1+~,~ for  n >  I, 

and with respect  to this base the spatial  extension is g(s; y~, Ya+Y2, Y~+Ys,...), 
which for  s = o and y~ -~ y~ . . . . .  o reduces to g(o;  y~, y~, Yl, �9 �9 .) ~- H(yx), and 

is therefore  not  a regular  func t ion  of all the  variables s, ya, y ~ , . . . .  
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This dependence on the base is not important for our considerations, which 

are founded on a definite choice of the base. 

We shall now prove the following theorem. 

Theorem 29. Let f ( s )  be a fu~2ctiou almost periodic in [a, ~] with a~ infinite 

integral base and analytic spatial extension with respect to some such base, and ~wt 

identically zero. Then the mean motions c-(a) a~d c + (a) exist for  every a in (a, fl) 

and are determined by 

c -  (a) ~- qv' (a --  o) and c + (a) = qv' (or 4- o). 

�9 "urther the frequency H (a,, as) of  zeros exists for every strip (a 1, a~.), where 

a < al < as < ~, and is determined by 

H(a, ,  a~_)= I ( , qD (as --  o)-- ~' (a~ + o)). 

In  every reduced interval (a < ) a  I < a < ~1 (< fl) there exist at most a finite number 

of  values of  a for  which 9v(a) is not differentiable. 

126. The proof is directly analogous to the proof of Theorem 26, and is 

based on the theory of measure and integration in infinitely many dimensions 

as developed in Sessen [3]. We shall now proceed to give a summary of the 

parts of this theory which we require. 

The theory deals with measure and integration in the space / ~  considered 

rood. 1, which we denote by Q~. Thus a point of Q~ is actually a class of points 

in R~ which are equivalent rood. 1. The notation ac----(x~, x~ , . . . )  for a point in 

R~ will also be used for the corresponding point of Q~. By an interval I in 

Q~ we mean, of course, the set of points a c =  (xl, x~ . . . .  ) for which a finite 

number of the coordinates belong rood. I to given intervals of lengths ~ I, 

while the remaining coordinates are unrestricted. The product of t he  lengths of 

these intervals is called the measure m (I) of the interval. 

For an arbitrary set A in Q~ we now consider all coverings of A with a 

(finite or) enumerable number of intervals I and we determine for each such 

covering the sum of the measures of the covering intervals. The lower bound 

of the set of these sums, which is evidently ~ I, is called the exterior Lebesgue 

measure me(A) of A, while the interior Lebesgue measure m~(A) is defined as 

m~ ( A ) ~  I --me(Qo,--A). I f  both are equal the set is called measurable in the Lebesgue 

sense with the measure r e ( A ) =  m e ( A ) =  mi(A). I t  is easily proved that  intervals 

are measurable sets  and that  their measure is equal to that  already defined. 
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This measure has all the general properties of the  usual Lebesgue measure. 

The integral based on it, for which we shall use the notation 

f F(x) m (d 
A 

has therefore all the general properties of the usual Lebesgue integral. 

Denoting by Q~ and Q,,~ the spaces with ( x l , . . . ,  xn) and (xn+1, x,+2,...) 
as variable points, and by ~n~ and m,, ~ the corresponding measures, we have in 

analogy with Fubini's theorem 

f m = f , .  .... (a o) f (a QJ, 
qr Qn, r On 

where the inner integral on the right exists except in a null-set of Q,, ~o. 
The usual definition of the Riemann integral based on divisions into a finite 

number of intervals and formation of the corresponding lower and upper sums 

is immediately extended to Q~, and we have the theorem that  a function F(x) 
in Q~ is Riemann integrable if and only if it is bounded and continuous except 

in a null-set. The Kronecker-Weyl theorem is immediately extended to Q~. I t  

says that  if F(x) is Riemann integrable in Q~, and if ~----(/~, ~ , . . . ) i s  a point 

of R~ with linearly independent coordinates, such that  the function F(~t )o f  
the real variable t is also Riemann integrable, then the mean value M{F(yt)} 

t 
exists and is equal to the integral of F(x) over Q~: 

M{F(~t)} = f F(x) m(d q~). 
t Q~ 

127. On the basis of this theory the extension of the proof of Theorem 26 

to the present case requires only a few remarks. 

Let /~1, ~2, �9 �9 �9 be an infinite integral base of the function f(s) with respect 

to which it has an analytic spatial extension g (s; x). This function is periodic 

with the period 2 z in all the variables xl, x ~ , . . . ,  while the preceding theory 

deals with functions with the period I in all the v~riables. We therefore apply 

throughout the substitution x-----2 z y. The mean values with respect to x of 

the various functions considered are then defined as the integrals over Q~ of the 

corresponding functions of y.  This is the only change required in w167 I I5 - - I I7 .  

In extending w II8 we shall need the theorem that  if F(x) is regular in 

all the variables xl, x ~ , . . ,  and has the period I in all the variables, then it 
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is either identically zero or zero only in a null-set. To see this we notice tha t  

since F(x )  is continuous the set of points where F ( x ) ~ - o  is a closed set in 

Q~ and therefore necessarily measurable. Suppose that  its measure is positive. 

I t  then follows from the extension of Fubini's theorem mentioned in w ~26 that ,  

for every n, there exist values of x~+l, x~+~, . . ,  for which F(x),  considered as 

a function of x l , . . . ,  xn, is zero in a set of positive measure. As F(ar is regular 

in x ~ , . . . ,  x~ this implies tha t  F(~v) is identically zero in x~, . . . ,  x~ for the 

values of X~+z, x~+~, . . ,  in question. Thus it is possible for an arbitrary p o i n t  

x ---- (x~, x~, . . . )  and an arbitrary ~ by a change of the coordinates x,+l, x~. 2 . . . .  

to arrive at a point ~r for which F(a~("))=o. Since ac(")-~x as n~v this 

implies that  F ( x )  is identically zero. 

This result-is immediately extended to the case where F(~r is defined only 

in an interval; this case is needed later in the proof. 

In w 119 the only point requiring a change is that  where Weierstrass' 'Vor- 

bereitungssatz' is applied. He re  we have to prove that  when for a given point 

xo in / ~  the rectangle 8(a~0) in the #:plane and the interval l(xo) in / ~  have 

been chosen, then the elementary symmetric functions A I ( x ) , . . . ,  A~(ac) of the 

zeros of g (s; x) in S(xo) are regular functions o f  all the variables xl, x2 . . . .  in 

I(xo). That they are continuous is evident since the set of zeros depends con- 

tinuously on ar and that  they are regular functions of x~ . . . .  , xn for given values 

of x~+~, x.+~ . . . .  is also clear, since g(s; x) is for these values of x~+l, xn+s, . . .  

a regular function of the variables s, x~, . . . . .  xn. 

In ~ I2O--X2x no new arguments are required. 

128. We shall now prove the following theorem, which is an immediate 

extension of Theorem 28. 

Theorem 30. I f  the almost periodic fu~ctio~ 

possesses an infinite integral base ?tl, l~2, . . ,  of negative ,umbers such that in the 
expressions 

~n = h~ 1 l~1 + h ,  2 Iz,. + .'. 

of the exponents the integral coefficients h,t are all  non.~egative, the~ f(s) has with 
respect to this 5ase an analytic spatia~ extension. 
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As in the case of a finite base, the funct ion f (s)  may, if  i t  is almost  periodic 

in [a, ~l, be continued in the halbplane (a, + ~ ), and is almost  periodic in [a, + ~ ). 

A sequence of exponential  polynomials 

fp (s) = ~ a~) ea-n ' 

(where for every p only a finite number  of the coefficients a~) are ~ o) converging 

uniformly towards f ( s )  in [a, fl] will also converge uniformly in [a, + ~ ) ,  and the 

sequence 
gp(s" xl, xs, . .)-~ ~a(P)e~(h,,l~,+hn~.~,+'")ean" 

will converge uniformly towards the  spatial  extension g(s; xl,  x s , . . . )  for s in 

[c~, + av) and all xl, x_, , . . . .  

Now the funct ion 

h (s; , , ,  , ,  . . . .  ) =  

is for every fixed s a polynomial of the complex variables zl, z , , . . .  (depending 

actual ly on a finite number  of the variables only); by the maximum modulus 

principle we therefore find tha t  for arbi t rary p and q 

upper bound I gp- -  gq I = upper bound I hp--  hql. 
oq,. ..... Iz, l~- I, I~1~1 .... 

Hence hp(s; Zl, z s , . . . )  converges uniformly for s in [a, + ~ )  and I* ,1 < I, 

IZsI __--< I , . . .  towards a l imit  funct ion h(s; zl, zs . . . .  ), which is continuous 1 and 

regular  in s, zl . . . .  ,*m. for a > a  and Iz, l <  I . . . .  , I z m l <  I for given values of 

~m+l~  Zrn+2 ~ . . . .  

For  every ~ > o we have 

9p(s; x,, x,  . . . .  ) =  h,,(s--,~; r e",ae%...). 

Since the numbers ~1, ,u s . . . .  are negative this implies tha t  for a >  a + ~ and all 

X l ,  Xs, . . . 

g (s; xl, x~, . . .) = h (s --  ~; ~ , ~  e ix,, e ~  e'X,, . . .). 

This shows tha t  g ( s ; x ~ , x s , . . . )  is regular  for a > a + d  and all xl, x ~ , . . . .  As 

> o is arbitrary the proof is hereby complete. 

' I n  t h e  u s u a l  sense ,  L e. h(s(n);z~n), z~ n) . . . .  ) 4  h ( s ;  z t ,  z ,  . . . .  ) i f  s(n) --+ S a n d  z~ n ) ~  z t for  a l l  i. 

18 - 632042 Acta mathematica. 77 
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129. For  an ordinary Di~qchlet series 

~ an ~ e--(logn), 
f ( , )  = . ,  = 

possessing a half-plane of convergence (and hence also a half-plane of absolute 

convergence) the abscissa a of uniform convergence is defined as the lower bound 

of all numbers a 1 for which the series is uniformly convergent in the half-plane 

(al, + ~). According to a theorem of Bohr [4], this abscissa a is also the lower 

bound of all numbers a~ for which f(s) is regular and bounded in the half-plane 

(a~, + ~) .  Thus the function f(s) is almost periodic in [a, + ~) ,  but not in any 

larger half-plane, and its Dirichlet series in the sense of the theory of almost 

periodic functions is the above series, or rather this series after the omission of 

terms with the coefficient o. 

In this case the function h a s  the infinite integral base - - log  Pl, - - l o g p z , . . . ,  

where pl, p~ . . . .  denote the prime numbers, and the conditions of Theorem 3o 

are evidently satisfied for this base. Thus f(s) has an analytic spatial extension 

with respect to this base t. Theorem 29 is therefore applicable. 

Regarding the general properties of the Jensen function 9(a) in this case 

we notice that  if n o is the smallest value of n for which an 4 =o, we have, by 

Theorem 9, that  9(a) = - -  (log no)a+log ]a,o] for all ~ >  (some) ao. Hence ~(a) is 

a decreasing function and possesses, by Theorems 22 and 29, on every half-line 

a > a t (>  a) only a finite number of linearity intervals and a finite number of 

points of non-differentiability. 

A more precise result regarding the linearity intervals follows from Theo- 

rems 2 and 8, which show that  the value of 9'(a) in a linearity interval is ex- 

pressible in the form k~ (-- logpt ) + kz (--logpz) + "" both with integral coefficients 

kl, k2 . . . .  and with non-negative rational coefficients. Since on account of the 

linear independence of the numbers - - l o g V l , - - l o g p ~ , . . .  the two expressions 

must be identical, we find that  the value must be one of the numbers - - l og3 ,  

n = I, 2 , . . . .  We notice that  the corresponding coefficient a~ need not be 

* o, so that  the value of 9'(a) is not necessarily one of the proper exponents 

of f(s). 
We may collect our results on ordinary Dirichlet series in the following 

theorem. 

i A closer study of an unessentially different form of this spatial extension has been given 
by Bohr [5]- 
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Theorem 31. For an ordinary Dirichlet series 

f(s) ~, a,, ~" - -  a n , ,  =t = O ,  

with the uniform convergence abscissa a, the Jensen function ~ (a) possesses on every 

half-line a > a  1 (>a )  only a finite number of  linearity intervals and a finite number 

o f  points of  non-differentiability. The values of  qD' (a) in the linearity intervals belong 

to the set of  numbers - - l o g n ,  n ~ n o. For a >  (some)ao we have 

(a) = -  Oog no) a + log I a.~ I. 

For an arbitrary a >  a the mean motions t - (a)  and c+(a) both e~s t  and are 

determined by 
e--- (a) = qD' (a -- o) and c + (a) --qo' (~ + o). 

For an arbitrary s t~p (al, as), where a < a ~ < a j <  + oo, the relative fi'eque.ncy H(r 

of  zeros exists and i s  determined by 

I ? 

H Ca. a.) = 7g~ (9' (a, - -  o ) - -  , f  (a, + o)). 
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