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Introduction.

Lagrange’s Problem on Mean Motion.

1. The investigations forming the contents of the present paper have their
starting point in the treatment by Lagrange [}, (2] of the perturbations of the
large planets. If we denote by ¢=r¢(t) and @ = @(f) either the excentricity and
the longitude of the perihelion or the inclination and the longitude of the ascend-
ing node for -the orbit of a planet at the time ¢, we find from the differential
equations of the movement for the determination of these functions in first
approximation a relation of the form

(1) o(t) '8 = F(f) = qpethot + .- + ay e“Nt’

where the function F'(t) on the right is an exponential polynomial with complex
not vanishing coefficients g, ..., ay and real mutually different exponents 4,,.. ., ix.
This exponential polynomial is, therefore, a sum of vectors, each having a constant
length and turning with a constant angular velocity. The number of terms N+ 1
equals the number of planets. The study of the variation of the longitude of
the perihelion or of the ascending node leads therefore to a study of the varia-
tion of the argument @ (t) of an exponential polynomial F(t) of the type described.
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As shown by Lagrange, the exponential polynomial in question contains in
most cases a preponderant term, i.e. a term whose modulus exceeds the sum
of the moduli' of theé remaining terms. This implies that F(¢) does not come
arbitrarily near to o, i. e. it satisfies a relation of the form

(2) |F)l= k> o.

Since the argument of F'(¢) differs for every ¢ by less than {7 from the argument
of the preponderant term we have

(3) p(t)=ct+ 0(1),

where ¢ is the exponent of the preponderant term. The argument ¢(?) is, there-
fore, in this so-called- Lagrangean case the sum of a secular term ¢t and a bounded
remainder.

When the polynomial does not contain any preponderant term it will not
generally satisfy any relation of the form (2) and it may even take the value o.
In the latter case the continuity of the argument ¢(f) can only be maintained,
if we agree to consider it not mod. 27z but mod. =, and to change the sign of
the modulus ¢(f), when ¢ passes a zero of F(f) of odd order. In case of a planet
this means, that we must allow negative values of the excentricity and the in-
clination, and must consider the line of apsides instead of the perihelion and
the nodal line instead of the ascending node. This possibility already occurs in
the trivial case N =1, which was also considered by Lagrange. If in the said
case |a,| >|a,| or |a,] <]a,], one term is preponderant, and we have the rela-
tion (3) with ¢=4, or ¢= A, respectively. If, however, |a,] =|a,|, the function
F () has equidistant zeros, and using the convention regarding ¢(t) we easily find
that the relation (3) is again true, this time with ¢=1}(4, + 4,); the remainder is
in this case a constant.!

Lagrange’s treatment did not go beyond the two cases mentioned above, and
he added ([2], § 46) the following remark: »>Hors de ces deux cas, il est fort
difficile et peut étre méme impossible de prononcer, en général, sur la nature de
Pangle @».

! Denoting by a the common value of |a,] and |a,| and putting 6,=aei% and a, =aein
weé have, in fact,

F#) = aleiliot +-a) f ¢ildst+a))
= q(etd B—2) 2+ (20— a)] + ¢ (=2 t+ f e —a]) i [§ (ot 2 t+ fao + )],

8o that . .
el=2acos[}(A,—2,) t+}(@,—a,)] and @)=}, +4,) t+ (. +a,).
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2. Having first been made the object of more heuristic considerations
by various astronomers, this problem was taken up by Bohl [1], who, besides
treating some other cases where the relation (3) is trivial, in detail studied the
case N=2.

Suppressing, for the sake of simplicity, the exponential factor ¢/%! of the
first term (which means that ¢(t) is diminished by the linear term A,t) we may
agsume the polynomial to be of the form

(4) F(t) = a, + a, Mty . 4 an ANt

One of the trivial cases mentioned is then the one in which the ratio between
any two of the exponents 1, ... Ay is rational. In this case F (t) is periodic,
whence the relation (3) easily follows, the constant ¢ being the ratio between
the variation of the argument in a period and the length of the period.

If N=2, the only interesting case is therefore the one in which the ratio
between the exponents 1, and A; is ¢rrational. In this case the course of the
movement can easily be described by applying the theorem that the points of
the straight line (x,, z,) = (4,¢, 45t) are everywhere densely distributed mod. 2 =,
a special (and, for the rest, trivial) case of the general Kronecker approximation
theorem. It then turns out, that in the non-Lagrangean case the function always
comes arbitrarily near to o, or even takes the value 0. Bohl's main result is
now, that in this case we always have

(5) ) =ct+ oft),

i.e. p(t) is again the sum of a secular term ¢t and a remainder, but the latter
is now not necessarily bounded; it is even, as shown by Bernstein [1], generally
unbounded!. Taking into account a certain uniformity, the method yields a little
more, namely the existence of the limit®

e 20—l
©) c‘wgl)]-l»w d—y

! ‘Regarding the importance of these results from an astronomical point of view, see also
Bohl [2] and Bernstein [2}. .
? For an arbitrary real function ¢(y, d) defined when —® <y <J< +® we denote by

(d}im) inf p(y,d) the least upper bound of those numbers r for which there exists' a number
-«

T=T(r} such that o(y, 8)>r for (§—y)> T, and, similarly, by((lyim)sup o (y, d) the greatest lower bound
= ®

of those numbers + for which there exists a number T= T(r) such that o(y, d)<r for (§—~y)>T.
If these limits are equal, we denote their common value by(d lil)n o(y, §). When o(y, d) is complex-
—-7 —
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In the sequel a complex function F(f} of the real variable ¢, which may be
written in the form F(t)==¢(t)e'?", where ¢(t) and ¢(f) are real and continuous,
and ¢() has but isolated zeros (so that ¢(t) is uniquely determined mod. 7), will
be said to possess the mean motion ¢, if the relation (6) is true. Bohl’s result
may then be expressed by saying that an exponential polynomial (4) always
possesses a mean motion when N =2. Bohl also gave an expression for the
mean motion.

In order to obtain this result, Bohl made use of a refinement of the special
case of Kronecker's theorem mentioned above, to the effect that the points of
the line (z),z;) = (2,1, %,¢) are not only everywhere densely distributed, but even
equidistributed mod. 27 In the form leading to (6) this theorem states that if
l(y, 6) denotes the sum of the lengths of those sub-intervals of y<{<d in which
the point (4,% 45¢) belongs mod. 2w to a (sufficiently regular) set not containing
equivalent points mod. 2 7, then the limit

lim Ly d)
==l —7

exists and is proportional to the area of the set.

8. As shown by Weyl [1], [2], we have equidistribution also in the case of the
general Kronecker theorem concerning a straight line (x,,...,an) = (A;¢ ...,An?)
in the m-dimensional space, for which the numbers 4,, ..., Ax are linearly inde-
pendent’. By means of this result he could immediately extend Bohl's investiga-
tion to the case N>2 under the assumption that the exponents 1, ..., Ay are
linearly independent, with the result that in this case a mean motion always
exists. This, however, did not mean a complete solution of Lagrange's problem,
since for N >2 the exponents A, ..., Ax may be linearly dependent even if two
of them have an irrational ratio.

valued, we write(d lim ¢o(y, d)=a if there exists to every £ >0 a number 7= T'(¢) such that
- -]

—)—
Io(y, d)—a|<e for (6—3)>T. For a set of functions g(y,d) the limits are said to exist uniformly,
if, for an arbitrary ¢, the same I'= T'(¢) may be used for all functions of the set. — The same

notations will be used in cases where the numbers ¥ and J are not arbitrary, but are to be chosen
from some given set of real numbers.

! The numbers 4,,..., Ay are called linearly independent if they satisfy no relation
Wi+ --+hydy=o0

with integral coetficients k,, ..., ky not all vanishing.
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Recently the problem has been treated by Hartman, van Kampen, and
Wintner (1]; their method, which is also closely related to that of Bohl, shows
that, if the exponents and the moduli of the coefficients are given, the formula
(5) is valid for almost all sets of values of the arguments of the coefficients.
Occasioned by this investigation, Weyl [3] took up his earlier investigation,
obtaining in the case of linearly independent exponents an expression of the
mean motion, which for N=2 is identical with that of Bohl.

All these results are contained in a later investigation by Weyl [4] concerning an
arbitrary exponential polynomial F'(f), which may now again be of the form (1).
The method is a further development of that of Bohl and depends on a represen-
tation of the polynomial F(f) well known from earlier papers by Bohl and
Esclangon on generalized periodic funections. This expression for F({) is obtained
by introducing an ¢nfegral base of the exponents A, ..., Ay, i. e. a set of linearly
independent numbers u,, . . ., pn such that each 2, has an expression

An=hnarpty + - + bnm tm,
where the coefficients %, are integers. The polynomial then takes the form
N
F(t)= Z An et 1 tat: - Fhypy py)t
n=0
and is therefore obtained by considering the function
N
G (xl’ . xm) = 2 On e"("nl 2t Ry, Tyy)
n=0

on the straight line (z,, . . ., xm) = (u,t, . . ., unt), i. e.

(7) F(t)=6(pt, . . ., pmd).
The study of the argument of F'(f) is thus reduced to a study of the function
G (y, . . ., #m), which has the period 27 in all the variables, and an application

of the Kronecker-Weyl theorem.

The purpose of Weyl's investigation is to prove the existence of a mean
motion in all cases. The proof is, however, valid only under the assumption
that the set of zeros of the function G (xy, ..., #w) contains no manifold of the
dimension m — I, a restriction not noticed by Weyl. We return later (§ 25) to
the meaning of this assumption. Weyl also deduces a simple expression for the
mean motion.
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Almost Periodic Functions of a Real Variable.

4. It suggests itself to extend Lagrange's problem from exponential polyno-
mials to the more general class of almost periodic functions

F({)~Zanéint

introduced by Bohr (8], [9]. We briefly recall the fundamental definitions and
theorems regarding these functions, referring for details to the original papers
or the monographs by Bohr [14], Besicovitch [1], or Favard [1].

A set of real numbers is called relatively dense, if, in any interval of a
certain length [, it is represented by at least one point. Let F(t) be a continuous
complex function defined for —o <f{<+ . A number 7 is called a translation
number of F(t) belonging to a given number £>o0, and is denoted by z(s) or zr(e),
if the inequality

|F(t+7)— Fi)| < e

holds for all £. Together with ¢ the number — ¢ is, of course, also a translation
number of F(f) belonging to e&. The function F(t) is called almost periodic if,
for any ¢>>0, the set of all translation numbers z=1(¢)=1r(¢) is relatively dense.
Every almost periodic function is bounded and uniformly continuous, i. e.
the set of translation numbers belonging to a given £>>0 contains a neighbourhood
of the point r=o0. Further, it possesses a mean value
3

; 1
MI{F(H = 1l — | F(H) dt.
t{ ()} (.;_lﬁwa—y? (t)

A set of almost periodic functions is called a wuniformity set, if for any e>o
the set of common translation numbers z==7(¢) of all functions of the set is
relatively dense ahd contains a neighbourhood of the point z=o0. For the fune-
tions of a uniformity set the mean values exist uniformly.

The sum or the product of two almost periodic functions and the limit of
a uniformly convergent sequence of almost periodic functions are again almost
periodic. ‘

Corresponding to an arbitrary almost periodic function F(f) there exists only
a finite or enumerable set of real numbers A, for which the mean value

an=M{F(t)e "t}

t
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does not vanish. The series
F(t)~ Za,ént

formed with these numbers A, as exponents and the corresponding numbers a,
as coefficients is called the Fourier series of the function. We have the Parseval

formula
M FOF) = 3l

Different functions have different Fourier series.

The Fourier series of the sum or the product of two almost periodic func-
tions or of the limit of a uniformly convergent sequence of almost periodic func-
tions are obtained by performing the corresponding operations on the Fourier
series of these functions.

The main theorem of the theory is the approximation theorem. According to
this theorem the class of almost periodic functions is identical with the class of
functions which are the limit of a uniformly convergent sequence of exponential
polynomials

» o,
Fp(t)= DaPe™
n=1

For a given almost periodic function these exponential polynomials may be chosen
with exponents among the exponents i, of the function.

Besides the ordinary almost periodic functions various classes of generaliza-
tions have been considered, for which a similar approximation theorem holds,
the uniform convergence being replaced by weaker notions of convergence. As
these generalizations are not directly used in the present paper, but are only
referred to occasionally, we shall not go into details regarding this subject.

d. By a modul M we shall mean a set of real numbers, which, containing
a number u, also contains all integral multiples of u, and, containing two numbers
@, and u,, also contains their sum. The smallest modul containing the exponents
A, of an almost periodic function F(f) is called the modul of the function. It
was introduced by Bochner [1]. Evidently it consists of all linear combinations

hody + -+ hydy

of the exponents A, with integral coefficients &, . . ., hx.
Between the translation numbers and the exponents of an almost periodic
function we have the following important connection: A necessary and sufficient
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condition that a function F(t) should be almost periodic with exponents frcm a
given modul M, is that to any >0 correspond a finite set of numbers 4,, ..., ix
in M and a number %>>0, such that every number 7 satisfying the conditions

[42] =9
. mod. 27
lixe]l =g

is a zr(e).!

From this follows: If F(f) is almost periodic, and G(t) denotes a function
with the property that to any &> o corresponds a number d > 0 such that any
7r(6) is also a zg(e), then G(¢) is also almost periodic, and its exponents belong
to the modul of F(¢).

As a special case, we mention that if F(f) is almost periodic and if ¢ is
a number with the property that to any ¢ > o corresponds a ¢ such that any

= 1p(d) satisfies the condition

lez|<e mod. 27,

then ¢ belongs to the modul of F(f). For the latter condition implies that
leé*— 1| <¢ and hence that = is a v(e) of the function ¢!, which has the
exponent c.

6. The almost periodic function F'(f) is periodic with the period p > o if
and only if its exponents belong to the discrete modul M = {thf }, where h

runs through all integers. It is limit periodic with limit period p, which means
that it is the limit of a uniformly convergent sequence of periodic functions,
the periods of which are integral multiples of p, if and only if its exponents

[ 2=

belong to the modul M= lr—;}, where r runs through all rational numbers.

! See Bohr [8], pp. 105—117. The necessity of the condition is his theorem II (p. 110}, while
the sufficiency is a consequence of his theorems I (p. 105) and B (p. 113). See also Bohr [13],
PP. 59—060.

By a theorem of Bohl and Wennberg the set of numbers t satisfying the conditions
{iel=9 .., |aiyt] = 4 (mod. 27), where 4,,..., Ay are arbitrary real numbers and 5 > o, is
relatively dense. See e.g. Bohr [8], pp. 119—121.

For later reference we notice that even the set of imfegers t satisfying the conditions is
relatively dense; for if J is chosen sufficiently small, any number t satisfying the conditions
|).1r| £4d,..5 iyt =6 and |2n7]l £ 6 (mod. 2m) differs at most by d/2m from an integer
satisfying the former conditions, and the set of numbers T satisfying the latter conditions is rela-
tively dense.

10 — 632042 Acta mathematica. 77
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An almost periodic function F(t) is said to possess lhe finite integral base
By, - - - Bm, if these numbers form a finite integral base of the exponents of F(t),
i. e. if they are linearly independent and the exponents are contained in the
modul M= {h,u, + -+ hnum}, where the set of coefficients &, ..., hy runs
through all sets of integers. The theory of these functions was developed by
Bohl and Esclangon before the general theory of almost periodic functions.
Every exponential polynomial is of this kind.

Let F(t) be a function with exponents from M. Allowing terms with the
coefficient 0, we may write its Fourier series in the form

F(t) ~3 @hy, ... by e hpt: - hyg gt

Corresponding to the expression (7) of an exponential polynomial we have in
the present general case

(8) F()=Gu,t, ... und)

where G(z;, ..., zm) is a continuous function with the period 2z in all the
variables, and with the Fourier series

G (xl' c xm) ~ zah,,. ) _,;,"‘ei(""'+"'+"m’m).

This function G(z,, ..., #w) Will be called the spatial extension of F(f). Con-
versely, if G(x,, ..., xn) is a continuous function with the period 2= in all the
variables, the function (8) is an almost periodic function with exponents from M.

An almost periodic function F(f) is said to possess the infinite integral base
My, Ug, - . ., if these numbers form an infinite integral base of the exponents of
F(t), i. e. if they are linearly independent' and the exponents are contained in
the modul M ={h,u, + hyu,+ ---}, where the sequence of coefficients A,, h,, ...
runs through all sequences of integers of which only a finite number are = o.
In this case we have a result similar to the preceding one, the spatial extension
being now a periodic function of an infinite number of variables.

Finally, an almost periodic function F(f) is said to possess the finite or
infinite rational base u,, ..., um or p,, u,, . .., if these numbers form a rational
base of the exponents of F(¢f), i. e. if they are linearly independent and the expo-
nents are contained in the modul M={ru,+ - +rnum} or M={ru, +rous+ -},
where the coefficients are now rational numbers of which, in the case of an

! The numbers y,, g, . . . are called linearly independent if g, . . ., {4, are linearly independent
for every m.
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infinite base, only a finite number are s#=0. In these cases the spatial extension
is a limit periodic function of a finite or infinite number of variables.

The above mentioned spatial extensions were used by Bohr [9] to prove the
approximation theorem. Later this theorem has been proved more simply. On
the basis of the approximation theorem, the spatial extensions may be introduced
very simply, as pointed out by Bochner [1]. In the present paper we shall there-
fore not presuppose any results regarding the spatial extemsions.

Mean Motions of Almost Periodic Functions of a Real Variable.

7. It was proved by Bohr [11], {13] that if F'(¢) is an almost periodic function
satisfying a relation of the form (2), then the argument () will be of the form

p(t)=ct + y(t),

where (f) is again almost periodic. Thus the relation (3) is again true. In the
Lagrangean case the almost periodicity of the remainder had previously been
pointed out by Wintner [2], who had also conjectured the preceding theorem.
While in the Lagrangean case the mean motion ¢ is always one of the exponents
A, this does not hold good in the case of an arbitrary almost periodic function;
yet the mean motion ¢, and similarly the exponents of (t), always belong to
the modul of F(i{). Applications of this theorem are given in Wintner [3] (see
also Stepanoff [1]) and in Wintner (8], [9].

Bohr's proof of the theorem is founded directly on the definition of almost
periodicity. Another proof depending on the approximation theorem has been
given by Jessen [4]; it leads to an expression for the mean motion, an expression
also found (in an unessentially different form and by other means) by Hartman
and Wintner [1]. It was applied in Jessen [4] in the case of an arbitrary almost
periodic function F(f), to a study of the mean motion of F(t)— a for different
values of @ not belonging to the closure of the set of values of F(¢). This study
was followed by more general investigations on almost periodic movements by
Fenchel and Jessen (1] and Fenchel [1]. In the special case where F(t) is an
exponential polynomial it was shown by Bohr and Jessen (see Bohr [15]) that the
mean motion ¢ always belongs not only to the modul of F(t) but even to a
certain finite set, depending only on the exponents of the polynomial.

An extension of Bohr's theorem to almost periodic functions in a group has
been given by van Kampen [1].
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In Chapter I we give an exposition of the two proofs of Bohr’s theorem
mentioned above, and of the additional results regarding the values of the mean
motion.

Analytic Almost Periodic Funetions.

8. If the almost periodic function F(f) does not satisfy any relation of the
form (2), the variation of its argument may be very complicated, and if the
function has zeros it may even be impossible to fix the argument as a continuous
function of .  The problem seems, then, only to be of interest in the case of
analytic almost periodic functions. We briefly recall the theory of these functions
as developed in Bohr [10], referring also to the monographs by Besicovitch [1]
and Favard [1].

Let f(s) be a function of the complex variable s= ¢ + ¢¢, which is regular
in a vertical strip (— ® =)e <¢<g(= + =), denoted briefly by (e, §). A (real)
number v is called a translation number of f(s) belonging to a given number
¢>0 and the given strip, and is denoted by z(e; e, 8) or 7(e; e, ), if the in-
equality

| /(s +it)—fls)| e

holds for all s in the strip. The function f(s) is called almost periodic in (e, )
if, for any ¢>o0, the set of all translation numbers i=r(e; a,f)=1(¢; a,8) is
relatively dense. The function is called almost periodic in [e, f], if it is almost
periodic in every reduced strip (¢ <)e; <o <pB, (<), and it is called almost
periodic in [e, §) or (e, 8], if it is almost periodic in every strip (e <)o, <o <f
or ¢ <o<pf (<p) respectively. Using throughout square brackets in this manner
we have the theorem that a function f(s) almost periodic in [e, 8 is bounded
and uniformly continuous in [, ). This implies that, if ¢ <e;<g,<g, then the
almost periodic functions F,(t)=f(c+17t), where ¢;=<d=<p,, form a uniformity set.

The notation (e, 8) will also be used for the interval ¢ < ¢ <<f and square
brackets will be used in this connection in the sime manner as for strips. A
closed strip or interval « <o =p8 will be denoted briefly by {e,8}

The sum or the product of two functions almost periodic in [e, 8], and the
limit of a sequence of functions almost periodic in [, | which converges uni-
formly in [e, 8], are again almost periodic in [e, §]. A function obtained from an
almost periodic function by replacing s by ks + I/, where % is real, is almost
periodic in the corresponding strip.
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To an arbitrary function f(s) almost periodic in [, §] corresponds a Dirichlet

series . -
Fl8)~ Za, ens, tn=M{flo+it)e—inlorin}
t

with real exponents 4, and complex coefficients a,(==0). This series is merely a
formal combination of the Fourier series of the functions F,(f)=f(c + ¢¢), i. e.,

in the Fourier series Zal e“i’a)t of the almost periodic function F,(f), the ex-
ponents A% are independent of ¢ and the coefficients have the form a{= g, e °,
where the a, are independent of o.

The Dirichlet series of the sum or the product, or of the limit of a uni-
formly convergent sequence of almost periodic functions, or of a function obtained
from an almost periodic function replacing s by ks + I, where k is real, are ob-
tained by performing the corresponding operations on the Dirichlet series of these
functions.

The main theorem of the theory is the approzimation theorem, according to
which the class of functions almost periodic in a strip [e, 8] is identical with the
class of functions which are the limit of a sequence of exponential polynomials

1\'1, (
iy
j;)(s) = Z a(ﬂl)) e n
n=1

converging uniformly in [e,8]. For a given almost periodic function these ex-
ponential polynomials may be chosen with exponents among the exponents i, of
the function.

9. The smallest modul containing the exponents of an analytic almost periodic
function is called the modul of the function.

The connection between the translation numbers and exponents dealt with
in § 5 in the case of almost periodic functions of a real variable may easily be
extended to analytic almost periodic functions. This leads to the following result:
A necessary and sufficient condition that a function f(s) regular in a strip (e, §)
should be almost periodic in [e, §] with exponents from a given modul M, is
that to any ¢>o0 and any reduced strip (e,,3,) correspond a finite set of numbers

Ay, ..., Ay in M and a number 7> o0, such that every number 7 satisfying the
conditions

7] = ’7]

- - mod. 27

|inz] = 17]

is a wr(e; ay, B)).
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From this follows: If f(s) is almost periodic in [e, 8], and g(s) denotes a
function regular in (e,8) with the property that to any ¢>o0 and any reduced
strip (e;, 8,) correspond a 6>>0 and a reduced strip (a,, 5;) such that any z;(d; a5, )
is also a 7,(¢; @, B,), then g(s) is also almost periodic in [e, ], and its exponents
belong to the modul of f(s).

We find further: If f(s) is almost periodic in [a, 8], and ¢ a number with
the property that to any £>0 correspond a §>0 and a reduced strip (e,, 8,) such
that any 7;(d; a,, 8,) satisfies the condition

ler] < ¢ mod. 27,

then ¢ belongs to the modul of f(s).

10. It has been proved by Bohr [12] that, if the quotient A(s) = f(s)/g(s) of
two functions almost periodic in [e, 8] is regular in (e, §), then it is also almost
periodic in [e,8]. To every >0 and every reduced strip (e,, §,) correspond, in
fact, a d>0 and a reduced strip (a,, §,), such that any common 7(d; ay, 3,) of
f(s) and g(s) is a =4 (¢; @;, ). This shows, in addition, that if the exponents of
Sf(s) and g(s) all belong to a modul M, then the expoments of h(s) will also
belong to M.

By a similar argument it may be proved that if f(s) is almost periodic in
[e,8], and has only zeros of even order, then an arbitrary branch g(s)= V[{s)
of the square root of f(s) is also almost periodic in [e, 8. To every ¢ >0 and
every reduced strip (e, 8,) correspond, in fact, a >0 and a reduced strip (as, 5),
such that for any ©=(d; a,,8,) we have either

lg(s+ir)—gls)l<e or |gls+iv)+gls)|<se

in the strip (a;,8,) and the number 27 is, therefore, in both cases a z;(2 ¢; ;, 8,).
This also implies that, if the exponents of f(s) belong to a given modul M, then
the exponents of g(s) belong to the modul obtained from M by dividing all
numbers by 2. We shall, however, need the more precise result that there exists
a number g in M such that, if we replace f(s) by fi(s)=sf(s)e**, then the ex-
ponents of an arbitrary branch g,(s) = VJ,(s) of the square root of f;(s) belong
to M itself.

In order to see this we merely take p=—22, where 1 is a Dirichlet ex-
ponent of g(s). Then the constant term a of the Dirichlet series of g,(s) is #+o.
Now the constant term of the Dirichlet series of g,(s + ¢7) + g,(s) is 2a; hence
the inequality
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|vgx(3 + 7:") + 91(5'” =e

cannot be satisfied in a strip (a, 8) if ¢ < 2|a|. Thus, corresponding to an
e<2|al and a reduced strip (o, 8,), there exist a d and a reduced strip (as, S.),
such that for any == 1,(d; @, 8,) we have

lo:(s +i0)—gi(s)| = ¢

in the strip (e, B)), i. e. 7 is also a 14 (¢; @;, 8;). This shows that the exponents
of g,(s) belong to M.

11. The almost periodic function f(s) is periodic in (e, 8) with the period ¢p,
zm|
» )
where h runs through all integers. The substitation e? ‘= shows that the
Dirichlet (or Laurent) series is in this case absolutely convergent, and represents
the function. The function is limit periodic in [e, §] with the limit period ¢p,
which means that it is the limit of a sequence of periodic functions whose pe-
riods are integral multiples of ¢p, converging uniformly in [e, 8], if and only if

where p>o, if and only if its exponents belong to the modul M ={

2z

its exponents belong to the modul M = {1'2—ﬂ'}, where » runs through all rational
numbers. P

An almost periodic function f(s) will be-said to possess the finite or infinite,
integral or rational base u,, ..., ptm Or u, ny, . . ., if these numbers form a base
of this kind for the exponents of f(s), i. e. (see § 6) if they are linearly indepen-
dent and the exponents are contained in the corresponding modul M = {h,u, +
ot hmpmby by thops + -}, {ripy o A rmpa}, or {rop Hreps + o0}

Let f(s) be a function almost periodic in [«, 3] having a finite integral base
;- m. Allowing terms with the coefficient o, we may write its Dirichlet
series in the form

S&)~ Zan, .. b, emmt thmbig) s

For an arbitrary s in (a, 8) the function f(s + ¢7) has, therefore, considered as a
function of the real variable z, the Fourier series

Fls+40)~ San, ... n, et Hhmune gilypt +hgpp)e,
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Denoting its s_patial extension by g(s; z,, ..., Zm), we have

fls+it)=9g(s; py7, ..., um).
The function g{s; x;, ..., xm) is easily seen to be an analytic almost periodic
function of s in [e, 8] for arbitrary values of x,,...,Zm, but need not be an
analytic function of the variables z,, ..., #n. The formula

g(s’ g, .. xm) ~ Eah,, ey et thypp)e oflhyzite - +hy :rm)’

which for a given s gives the Fourier series of g(s; ,, ..., Zm), considered as a
function of x, ..., xm, will for fixed values of z,, ..., ¥ give the Dirichlet series
of the function, considered as a function of s.

Similar results hold in the case of an infinite integral base or a finite or
infinite rational base,.

What will be needed concerning the spatial extensions in the case of
analytic almost periodic functions will be developed as easy consequences of the

approximation theorem.

Distribution Problems for Almost Periodic Functions.

12. The variation of the argument of an almost periodic function f(s) on
vertical lines is closely connected with the distribution of the zeros of the func-
tion in vertical strips. This problem, or rather the problem of the distribution
of the a-points for an arbitrary a, was first treated in the case of the Riemann
zeta function by methods similar to those applied in the case of Lagrange’s
problem, though without reference to the actual conmnection with problems of
mean motion. Historically, these investigations are at the origin of the theory
of almost periodic functions.

As is well known, the zeta function {(s) is a function of the complex variable
s=¢ + ¢t defined in the whole plane and regular, except at the point s=1,
where it has a simple pole. In the half-plane ¢>1, it is given by the two equi-
valent absolutely convergent representations

C(*S):S é: HI_Ipn—s’

a=1

where in the second, the Euler product, p, runs through the sequence of primes
2,35, .... From this representation as a product it immediately follows that
(s) has no zeros in the half-plane ¢>1.
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As shown by Riemann, the zeta function satisfies a simple functional equa-
tion connecting the values of the function at the points s and 1—s. These points
lie symmetrically with respect to s=13, and the function is therefore usually
considered in the half-plane 0 =} only. The famous, unproved Riemann hypo-
thesis concerning the zeros of ((s) states that all zeros belonging to this half-
plane o=} are situated on the boundary line o =1 itself, i. e. {(s) is different
from zero, not only in the half-plane ¢>>1, but even in the larger half-plane ¢>}.

On account of the Kuler product it is convenient, instead of the function
G(s) itself, to consider the function log {(s). In the half-plane ¢> 1 a regular
branch of this function is given by the expression

®©

(9) log {(s) = D) —log(r—p;*),

n=1
where in each term on the right —log (1 —2z)=2z+ 12%+---. By log {(s) in the
half-plane ¢ >} we shall mean the analytic continuation of this branch in the
domain obtained from this half-plane by omitting the segment } <o =1, t=0,
and all segments § <o<o, t=t, where g,+ ¢, denote the zeros (if any) of ¢(s)

ing>1it

13. By means of the expression (g) the closure M (o) of the range of values
of log{(s) on a vertical line with given abscissa 6> 1 was studied in detail by
Bobr [2], (3].

From (g) we find

(10) log §{o + it)= 3| —log(1 —p; o e1emal),
n=1

Thus, log {{¢+7f) is an infinite sum of vectors, each of which describes periodically
a certain closed curve. Now, on account of the unique representation of an
integer as a product of powers of primes, the numbers log p. are linearly inde-
pendent. It follows therefore if we apply Kronecker’s theorem to the partial
sums of the series (10), and afterwards pass to the limit, that the closure of the
range of values of log((o+ 7t) is identical with the range of values of the
function

o

G(w]s xs, . ) = 2 ——log(l _..pz'de[z")’

n==1

! In some of the papers quoted below, the function is considered only for {>o0, which means
that the actual results are more precise than those quoted. For the sake of uniformity, we have
paid no attention to this difference, which is unimportant from the point of view of method.
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where the terms describe, independently of each other, the above mentioned
curves. The set M (o) may therefore be described as the vectorial sum of these
curves.

From this representation of M(s) and the simple fact that the curves are -
convex, the following result concerning the shape of the set M (o) was obtained:
that M (o) is for each o> 1 either a closed domain bounded by a single convex
curve A (o), or a closed ring-shaped domain bounded by two convex curves A (o)
and B(c), where B(o) lies inside A(s). Some results regarding the variation of
these curves with o were also obtained.

It was further proved that the set M (o) is identical with the set of values
actually taken by log {(s) in points arbitrarily near to the line with the abscissa g.
This means that the range of values of log {(s) in a vertical strip ¢, < 0 < g,,
where 1<0,<0,< + ®, is identical with the sum of the corresponding sets M (o).

Quite similar results had been obtained previously by Bohr (1] for the deri-
vative {'(s)/{(s) of the function log {(s); only in this latter case the situation is
simplified by the fact that the convex curves to be added turn out to be circles.
The sum is therefore either the closed surface of a circle or a closed concentric
circular ring. In this case it was possible by simple computations to prove the
existence of a constant g,>1, such that for 6=0, we have the case of the circle,
and for o3>0, the case of the circular ring. A numerical calculation of ¢, was
given by Burrau [1]. Recently it was shown by Bohr and Jessen (4] that a similar
situation (only with a different constant ¢,) holds for the function log {(s).* -

14. The corresponding problems in the case $<<o=1, which are more difficult
on account of the divergence of the Euler product, were treated by Bobr [6], the
method in question having first been applied to a study of the function {(s) on
vertical lines by Bohr and Courant [1].

Regarding the values on a vertical line it was proved that, if {<o=1, the
values of log (o + 7¢t) are everywhere densely distributed in the whole plane.

In order to prove this, it was first proved that though the formula (10) does
not hold if } <o =<1, it is true that for any large m the partial sum

Fn(t)= D) —log(1 —p; e 16mi)

n=1

! For the problem of the addition of convex curves, and for further results regarding the
curves 4(¢) and B(c) we refer also to Bohr and Jessen [1], Haviland [2], Jessen and Wintner (1],
Kerschner and Wintner {2}, and Kerschner (1], [2], [3].
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approaches log {(c + ¢f) for most ¢ in the sense that if L.(7) denotes the sum
of the lengths of those sub-intervals of —T'<{< T in which

(11) llogl(o + 2t) — Fult)| < e,
then

lim infllﬂ

T'— ® 2T

is nearly 1 when m is large (for any given £>0).
On the other hand, if 1<o=1, the closure of the range of values of F(¢),
which is identical with the range of values of the function

m

Gm(xy, .. ., 2m) = D) —log (1 — p; ¢ %),
n=1
is easily seen to converge towards the whole plane when m-—oo.

These two facts are, however, not sufficient to prove that log {{o+7{) comes
arbitrarily near to any given value a, since the values of ¢ for which F,,.(bt) is
near to a might all be among those for which F,(t) does not approach log {(o+7¢).
This difficulty was overcome by means of the Kronecker-Weyl theorem, which,
together with certain results concerning the distribution of the values of the
functions Gul(x,, ..., ), shows that if I,(T) denotes the sum of the lengths of
those sub-intervals of — I'<#<T in which

(12) | Fu(t) —a] < &,
then
lim inf l-'@
T— o 2T

is not small when m is large, so that there exist values of ¢ for which both
relations (11) and (12) hold.

Regarding the values actually taken by log{(s) in a vertical strip (g, @3,
where i <o, <o¢,< 1, the application of the Kronecker-Weyl theorem made it
possible not only to prove that all values are taken in the strip, but even to
consider the frequency with which they are taken. It was, in fact, proved that
if, for an arbitrary a, we denote by N,(o, 0,; T) the number of a-points’ of
log {{0) in the rectangle ¢, <6<gq, — T <t< T, then

lim inf Naloy,05; T)
T > 2 T

! Except when there is an explicit statement to the contrary, multiple a-points are counted
according to their order of multiplicity.

> 0.
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This result implies, of course, that if M,(g,, 6,; T) denotes the number of
a-points of {(s) itself in the same rectangle, then we have also
lim inf Mo, 0,; T) ~ 0
T— @ 2 T
provided @ +o. In conjunction with the theorem of Bohr and Landau [1},
according to which
lim Mylon0; T) _ o,
T 2 T
this result showed that, independently of the truth or untruth of the Riemann
.hypothesis, the number o plays an exceptional part for the function {(s) in the
half-plane 6> 1.

15. Through these results, the possibilities of the method were, however,
by no means fully utilized. More precise results were announced by Bohr 7] and
proved in detail by Bohr and Jessen (1], [2], [3].

Regarding the distribution of the values of log {(s) on vertical lines, it was
proved that there exists for every ¢>1 a continuous function D(z) of the complex
variable z=wu + Zv, such that if I(7T) denotes the sum of the lengths of those
sub-intervals of —I'<¢< T in which log {(o + ¢t) belongs to a given rectangle
R(u, < u <uy, v,;<v<vy), then the limit

¢ (R)= lim Ur)

row2T

exists, and is equal to the integral of D(z) over the rectangle R:

up vy
(13) ¢(R)=ffD(z)dudv.
U Yy
In the case } <¢ =1, it was proved that D(z)>o for all 2.
Regarding the distribution of the values in a vertical strip (o,, 0,), where
} <<, <o, it was proved that the limit

. Nalojos; T)
Haloy, o) = lim ==
exists and is a continuous function of o, and o, for any fixed a. This limit may
be called the relative frequency with which the function log {(s) takes the value
a in the strip (o, 0,).



Mean Motions and Zeros.of Almost Periodic Functions. 157

As follows from its representation, the function {(s) is almost periodic in
(1, + ©) and so is, too, the function log{(s), while a certain generalized almost
periodicity is present for $ <o =1, owing to the approxzimation property of the
partial sums referred to above. This almost periodicity makes the regularity of
the distribution less surprising, but was not used in the proofs, which are based
directly on the definition.

16. A simplification of the preceding method was used by Jessen (1] to
discuss the distribution of the values of an arbitrary almost periodic function
JS(s) with an infinite Dirichlet series and linearly independent exponents. In this
case the series is absolutely convergent in the strip of almost periodicity, and
therefore represents the function, so that the discussion may again be based on
the explicit represeutation

J(s)= D aneln*
n=1
without direct use of the almost periodic character.

Instead of discussing first the partial sums of this series by means of the
Kronecker-Weyl theorem, and then passing to the limit, the series is here dis-
cussed directly, the necessary theory of measure and integration in infinitely
many dimensions having first been developed. The results are analogous to those
obtained for the function log {(s), with the addition of a certain uniformity,
which is also present for log {(s) in the half-plane ¢ > 1. Thus it is proved
regarding the a-points of f(s) in a strip (0,, 6,), inside the strip of almost periodi-
city, that the limit
(14) H.(0,, 0,) —(J_l;)lf w p
exists, where N,(g;, 6; 7, 6) denotes the number of a-points of f(s) in the rectangle
6,<0<a, y<t<d. This limit is again a continuous function of o; and o,.

17. The distribution of the values of an arbitrary real-valued almost periodic
function F(f) of a real variable was studied by Wintner [1], (4], [5] by applying
the moment method of the calculus of probability. Tt was shown by Haviland [1]
that this method is also valid if F(t) is complex-valued. The result is, briefly
stated, that if F({{)=U{f) +:V(t) is an arbitrary almost periodic function and
if I{T) denotes the measure of the set in — 7 <t< T in which ¥{¢} belongs to
a given rectangle R(u, <u <wu,, v,<<v<1v,) in the z=u+iv-plane, then the limit
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i)
(15) ¢ (R) = lim —
exists for all rectangles the sides of which do not lie on a certain enumerable
number of lines, and this function ¢ (R), which is called the asymptotic distribution
function of F(f), is determined by the moment condition

+o +o
f fu"vv"‘du,qu(R) = J:f{U(t)" |40

for all pairs of non-negative integers n and m. It was shown by Bohr [11] that

the limit (15) need not exist for all rectangles.

In the special case of linearly independent exponents as considered by
Wintner (5], [6] it was essential to work not only with moments but also with
Fourier transforms. It was shown by Bochner and Jessen [1] that the whole
problem might be treated without recourse to the moment theory, considering
only Fourier transforms, a method which also holds in the case of generalized
almost periodic functions. The moment condition is then replaced by the con-

dition
+® +®
e} [ [eertrmd,. p(R) = Mie=voryvo
—_— — ’ t

for all pairs of real numbers z and y.

A systematic exposition of the whole subject, including a new treatment of
the functions log((c + ¢¢) has been given by Jessen and Wintner [1). The ex-
pression (13) of the distribution function of the function log{ (o + ¢#) by means
of a continuous density D(z) is here obtained by using formula (16). The method
leads to an explicit expression of the density D (z) showing, among other things,
that D(z) possesses continuous partial derivatives of arbitrarily high order with
respect to the coordinates » and v. A similar result had previously been obtained
by Wintner [6] in the case of functions with linearly independent exponents.

18. The method mentioned in § 16 was developed further by Jessen [3]
employing the method of Fourier transforms. It is here proved, among other
things, that the relative frequency (14) is expressible in the form

Hi(o,, 0) = [ Ealo)do,

1

! For further results we also refer to Kerschner and Wintner (1], (3], van Kampen and
Wintner {1], van Kampen [2), (3}, Hartman, van Kampen, and Wintner [2), and Haviland [3).
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where the function Eq(o) (for which an explicit expression is obtained) is a con-
tinuous function of ¢ and ¢. This function may be called the relative frequency
with which the function f(s) takes the value a in the neighbourhood of the ver-
tical line with the abscissa ¢. , '

The assumption that the Dirichlet series of f(s) contains an infinite number
of terms is here replaced by the weaker assumption that it contains at least
five terms.

- Mean Motions and Zeros of Analytic Almost Periodic Funections.

19. The distribution of the zeros of an arbitrary function f(s), almost
periodic in a strip [e, 8], in vertical strips has been treated by Jessen [2]' by
establishing a formula analogous to the Jensen formula

2
X 9] 46 = S r
(17) znfloglF(uz )| 40 loglF(o)I-i—leongvl
0 =
for a function F(z) regular in a circle |z|<r, and having the zeros z,, . . ., 2, (4=0)

in this circle. The method was also used for a study of the variation of the
argument on such vertical lines on which the function does not come arbitrarily
near to 0; an application of this has been given in Jessen [5]. Later it was shown
by Hartman [1] that the method can also be used for a study of the variation
of the argument on such vertical lines on which the function comes arbitrarily
near to, or takes, the value o.

From a formal point of view, the method is very simple, and may be briefiy
described as follows.

Setting aside the difficulties arising from the zeros, we consider the function

log f(s) = log | f(s)]| + i arg £15).

According to the Cauchy-Riemann differential equations we then have

d . d .
(18) («i—tmgf(a+zt)—%log|f(o+zt)l.

! Some results of a more elementary nature had been obtained previously by Favard [1].
The distribution of the zeros of exponential polynemials (and of more general classes of functions)
has been studied by Tamarkin {1], [2], [3], Wilder [1], Pélya [1], Schwengeler [1], and Ritt[1].
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Now, if it exists, the mean motion c(g) of the function f(o + ¢¢) is evidently
equal to the mean value

M{Ed—t arg f{o + 2't)},-

and hence by (18) equal to

Interchanging in this expression the differentiation and the formation of the
mean value, we arrive at the following determination of the mean motion:
Corresponding to the function f(s) we form the function

(19) qv(o)={'l{log|f(0 + 79|}

Then the mean motion ¢(o) of the function f(o + ¢{) is determined as the deri-

vative
(20) ¢(o) = ¢ (o).

The connection with the distribution of the zeros is, from a formal point
of view, equally simple.

Denoting for ¢ <o, <o0,<g by N(o, 0,; 7,0) the number of zeros of f(s) in
the rectangle ¢, <o <o, y<t<d, we define the relative frequency of zeros of
f{s) in the strip (0,,0,) as the limit

Hio,0) = lim Tsird,
provided this limit exists.

Now the number N (o,,0,;y,0) is, apart from a factor 1/z =, equal to the
variation of the argument of f(s) along the boundary of the rectangle. Setting
aside the contributions from the horizontal sides, we therefore find that, apart
from the factor 1/2m, it is equal to the difference between the variations of the
argument along the vertical sides, both being described in the same direction.
The relative frequency H(o,,0,) is, therefore, simply the difference c(oy) — ¢ (o)
between the mean motions on the two lines 0=0, and 6=0, multiplied by 1/27,
so that by (20)

I ’ [
(21) H{sy,0,)= 2‘7;(9’ o)—¢@ (ay).



Mean Motions and Zeros of Almost Periodic Functions. 161

The left-hand side being as a matter of course always = o, a remarkable
consequence of this formula is that ¢'(s) is an increasing function, er, what
amounts to the same, that ¢ (o) is convex.!

20. The question now arises as to how far the results obtained by these
formal considerations are actually true. The following answer is given in the
papers quoted above:

The mean value (19} really exists for all o in the interval (e, §), though the:
function log | /(s + %) is not necessarily almost periodic, and ¢(o) is a continuous,
convex function. This function is not necessarily differentiable; but if it is
differentiable at the point o, the mean motion c¢(o) exists and is given by (20),
and if it is differentiable at the points o, and o,, the relative frequency H (g, 6,)
exists and is given by (21).

The function @(o) is called the Jensen function corresponding to f(s), and the
formula (21) is called the Jensen formula for almost periodic functions. In the
case of a periodic function with the period ¢p in a half-plane 0 <8, converging

for 0 = — o towards a constant == 0, it reduces itself to the usual Jensen for-
2n

mula (17) by means of the substitution e?  =2z.

A convex function being differentiable everywhere except in a finite or
enumerable set of points, these results show in particular, that the mean motion
¢(o) and the relative frequency H({c,,0;) generally exist.

The following result is an easy consequence of the Jensen formula: A
necessary and sufficient condition that the function f(s) has no zeros in a strip
(g, B,) is that the Jenmsen function ¢(g) is linear in the interval (a,, §,). Since
the fuuction does not come arbitrarily near to o on a vertical line in such a
strip, this implies, by Bohr's theorem (§ 7), that the constant value of ¢’(0) in
a linearity interval of (o) always belongs to the modul of the function.

21. In Chapter II we give a detailed exposition of the investigations just
deseribed.

Instead of operating for every ¢ with one continuous branch of the argument
of the function f(o¢ + 7f) determined mod. 7, we find it convenient to intro-
duce two arguments, viz. a left argument arg™ f(o + 1), and a right argument
arg® fo + 2t), both of which are determined mod.2n. These arguments are

! Except when there is an explicit statement to the contrary, these expressions are used in
the wide sense (i. e. including functions having intervals of constancy or linearity respectively).
11 — 632042 Acta mathematica. 77
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characterized by being continuous except for those values of ¢ for which f(a++¢¢)
is zero, and discontinuous with a jump of —p~ or psm respectively, when o +:¢
is a zero of the order p. In describing the line o + s¢ this corresponds to en-
circling the zeros to the left or the right respectively. In the discontinuity points
we define the two arguments by the mean value of the limits from both sides.
Obviously the mean value l{arg— f(6 + {0 + arg® flo + ¢?) gives the previous
determination of the argument as a continuous function determined mod. 7.
Corresponding to these two arguments we consider the four quantities

¢~ (o) _ liminf arg— f(o + 70) —arg~ f(o + <y)
¢ (o)} s d—vy

and \
et (o)) _ liminf aret f(o+ ¢d) —arg* flo + z'y)’
et (o)} sup d—7

(J.—::) -

which we call the lower and upper, left and right mean motions of f(o+ 4¢). If
¢c—(0)==¢"(6) or ¢*{0)=2c"*(0), that is to say, if the limit in question exists, we
call it simply the left or right mean motion, and denote it by ¢—(a) or ¢*(s). If,
as previously, we define the mean motion ¢(o) as the limit

ol) = lim 2% flo+id) ~arg flo+ ¢y)
(I~ 6—7

where arg f (o + ¢f) denotes a continuous branch of the argument determined
mod. 7z, provided this limit exists, it is obvious that the existence of the left
and right mean motions ¢ (0) and c*(6) implies the existence of c(o) and that

¢(o)=1(c—(0) + ¢t (a).

Being convex the Jensen function (o) possesses for every value of ¢ a left
derivative ¢’(¢ —o0) and a right derivative ¢'(¢ +0). As a main result we prove
for every ¢ the relations

=

(22) g (0—0)< ¢ (o)

iA

Y]
Q

fetio)
e

)
This implies, of course, that if ¢ (o) is differentiable at the point ¢ both ¢~ (o)

and ¢*(0), and hence also c¢(o), exist and are equal to ¢’(0), so that (22) is a
generalization of (20).

}§E+(0)§¢'(a+o).
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Regarding the zeros in a strip (¢ <)a, < 6 < 0,{< ) we consider the two

quantities
H oy, 03) | _ i inf N(q,, 65; 7, 9)
H( J lmsup 5. "
(on o)) 4ok

which we call the lower and wpper relative frequencies of zeros in the strip (g, 65).
We also find a number of inequalities coumecting these two frequencies and
the four mean motions. If @(o) is differentiable at the points o, and o, these
inequalities are reduced to the Jensen formula.

22. In Chapter 1II we give a detailed discussion of the distribution of the
values of so-called almost periodic sequences, and in Chapter IV we study a
special class of analytic almost periodic functions connected with such sequences.
The results obtained are a necessary preparation for later constructions of analytic
almost periodic functions with prescribed properties, and have, in fact, their
origin in earlier constructions of this kind, which will be referred to below.

23. In Chapter V we answer the question as to which sets of six numbers
can occur as left and right derivatives of the Jensen function and as lower and
upper, left and right mean motions, for a given value of o, of a function f(s)
with exponents from a given modul M.

In the special case where M is discrete, so that the question is about
periodic functions, it is easily proved that the left and right mean motions ¢—(o)
and c*(0) always exist and are determined by the relations

(23) ¢ (@)=¢'(6—o0) and c¢*(6)=¢ (c+0),

in which both derivatives ¢’ (0 —0) and ¢’ (¢ + o) belong to M. If, conversely,
d— and d* are given numbers belonging to M, and d— =d*, there exists a
function with exponents from M, such that for the given value of ¢ we have
@' (0—0)=d~ and ¢'(c+0)=d".

From existing examples (Jessen [2] and Hartman [1]) it follows that the mean
motions ¢ (6) and ¢*(s) do not exist in all cases. We now prove that in the
case of an everywhere dense modul M, the above relations (22) are the best
possible in the sense that if six given real numbers satisfy the relations
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then there exists an almost periodic function with exponents from M, for which
these numbers for the given value of o are equal to the corresponding numbers
in the relations (22).

We also prove a theorem concerning the case where the function has no
zeros on the vertical line with the abscissa o.

24. In Chapter VI we consider the problem as to which fanctions ¢ (o) can
occur as the Jensen function of almost periodic functions f(s) with exponents
from a given modul M. Necessary conditions for the occurrence of a function
@(0) are, by the results already mentioned, that @(o) is convex and that the value
of @’(0) in any linearity interval of g(o) belongs to M.

In the special case where M consists of all integral multiples of a number

%’ so that the question is about periodic functions with the period zp, the

answer can easily be given by means of Weierstrass’ product theorem, when,

2n
—8

by the transformation e? =z, we map the strip in question on a circular ring
a<|z| <b. The functions ¢(o) possible are here all stretchwise linear convex
functions @(0) for which the values of @’(c) in the linearity intervals belong to M.

In the case where M consists of all rational multiples of a number 2—p7f» 8o that

the question is about limit periodic functions with the limit period 7p, the problem
has been solved by Buch [1], [2]. In this case the necessary conditions mentioned
above are also sufficient, that is to say that the possible functions ¢(s) are in
this case all convex functions ¢(o) for which the value of ¢'(6) in any linearity
interval of @(g) belongs to M. We now give a solution of the problem for fune-
tions with an arbitrary finite or infinite, integral or rational base, i. e. for all
moduls of the form M={h u,+ - +hnpn}, (b, +heps+ -}, {rip+ - +Tmpm},
or {rypu, + rous +---}. The results immediately lead to a characterization of all
functions which occur at all as the Jensen function of an almost periodic fune-
tion. Contrary to what might have been expected, these are not all convex func-
tions. The exact characterization is the following:

A function @(g) in the interval a<6<@ is the Jensen function of a function
S(s) almost periodic in [a, 8] if and only if it is convex and there correspond to
every reduced interval (¢ <)a,< 0 <g,(<p) a finite set of linearly independent
numbers u,, ..., un and a positive number %, such that if o, and o, where
2y <0,<0,<f,, belong to different linearity intervals of ¢ (o), then the difference
@' (0,)— @' (0,) is of the form
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¢’(‘72)_W, (o) =rim + -+ rupm,

where the coefficients 7, . . ., 7m are rational numbers, and

@' (o) — ¢’ (o) —

Vrit - +ra

25. The existence of a left and a right mean motion ¢—(g) and c* (o) deter-
mined by the relations (23) and the stretchwise linearity of the Jensen function
in the. case of periodic functions naturally leads to the question whether more
general classes of almost periodic functions exist for which results of a similar
precision hold.

This problem is treated in Chapter VII, where it is proved that the rela-
tions (23) hold for all almost periodic functions f(s) with a finite integral base
i, . - ., um for which the spatial extension g(s; x,, . . ., Zm) is analytic, not only
in s, but in all the variables s, x,, ..., zn. From the relations (23) it follows,
of course, that the mean motion ¢(o) exists, and is given by

(24) c(o)=1%(@ 6—0)+ ¢'(d + 0).

To the functions with a finite integral base and an analytic spatial extension
belong in particular all exponential polynomials. As every exponential polynomial
F(t) of the real variable ¢t may be written in the form f(it), where f(s) is an
exponential polynomial of s, the preceding result contains a complete solution
of Lagrange's problem to the effect that the mean motion exists in all cases.
This result together with the expression (24) for the mean motion has been stated
without proof in Jessen [6).

For functions with a finite integral base and an analytic spatial extension
it will also be proved that the Jensen function is stretchwise differentiable. For
an exponential polynomial this implies, since the zeros all belong to a finite ver-
tical strip, that the number of non-differentiability points is finite.

The proofs of these general theorems depend on a further elaboration of the
Bohl-Weyl method.

Functions with a finite integral base and an analytic spatial extension were
also considered by Hartman [1], who showed, among other things, that in the
case of an exponential polynomial the mean motion c(s) exists for all ¢ not
belonging to a certain finite set. This exceptional set is exactly the set of those
values of ¢ for which Weyl's proof (§ 3) of the existence of the mean motion
fails for the function f(o + ¢f), because the set of zeros of its spatial extension
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glo; z,, . . ., za) contains a manifold of the dimension m — 1. It is easily shown
that this exceptional set is identical with the set of non-differentiability points
of the Jensen function.

 Anidlogous results are obtained in the case of functipns with an infinite
integral base, the necessary consideration of analytic functions of an infinite
number of variables involving no difficulties. To the functions with an infinite
integral base and an analytic spatial extension belong in particular all ordinary
Dirichlet series

in the half-plane [o, + o) where the function is almost periodic.

The connection between the variation of the argument and the distribution
of the zeros implies that the relations (23) hold for all o if and ouly if the rela_
tive frequency of zeros exists for every strip (o, 0;) and is determined by the
formula

H(s,,0,) = — (¢’ (6, — 0) — ¢’ (6, + 0).

I
2w
Thus the Jensen formula is valid in this more precise form, not only for periodic
functions, but also for all exponential polynomials and ordinary Dirichlet series.

The study of almost periodic functions with a finite integral base and an
analytic spatial extension will be continued by Tornehave in another paper, in
connection with an extension of the Jensen formula to analytic functions of a
finite number of variables (see Tornehave [1]).

26. To the functions with a (finite or infinite) integral base and an analytic
spatial extension belong all functions f(s) with linearly independent exponents.
The result mentioned in § 18, together with the Jensen formula, shows that if
the Dirichlet series contains at least five terms, and if the exponents are linearly
independent, the Jensen function @.(6) of the function f(s)—a is twice diffe-
rentiable with the second derivative

@a(0) = Eaql0).

In particular, the mean motion of f(o + ¢#) — a exists for all a and o.

A gimilar result holds in case of the zeta function in the half-plane ¢ > 1.
We mention that the whole theory may be extended to generalized almost periodic
functions, and that, in particular, results analogous to the preceding ones hold
in case of the zeta function in the strip } <o =1 also.
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CHAPTER 1.

Mean Motions of Almost Periodic Functions of a Real Variable.

%7. For an arbitrary continuous function F(f), which does not take the
value 0, we denote by arg F(f) an arbitrary continuous branch of the argument
of F(t), defined mod. 2z by the condition F(t)=|F (f)]|e'>ef®.

If the continuous function F(f) takes the value o it need not be possible to
define the argument as a continuous function. We shall consider only the case
of functions having but isolated zeros. Such a function F(f) is said to possess
a continuous argument if it may be written in the form F(t)=¢(t)e'?®, where
@(¢) is continuous. In every interval in which F'(f) has no zeros we have then
either o(t)=|F(¢)] or e()=—|F()]. The argument ¢(¢) = arg F(t) is now only
determined mod. #. If F(f) is regular for all values of ¢, it evidently possesses
a continuous argument.

If —w<y<d< + o the difference

arg F(0) — arg F (y)
is independent of the choice of the branch of the argument. The function F'(t)
is said to possess the mean motion
arg F(d) — arg F(y)

c= lim )
(d‘——y)—»m: d_}’

if this limit exists.

In this chapter we shall confine ourselves to functions which do not come
arbitrarily near to o, i.e. which satisfy a relation of the form

(1) |Fit)| =z k>0

for all £ Regarding this case we shall prove the following theorem of Bohr
[11], [r3].

Theorem 1. Let F(t) be an arbitrary almost periodic function which does not
come arbitrarily near to o. Then F(t) possesses a mean motion ¢ and, if we put
arg F(t) =ct + w(t),

the remainder W(t), too, s an almost periodic function.

The mean motion ¢ and the expoments of (t) all belong to the modul of the
Sunction F(2).
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28. First we shall repeat Bohr's proof in a slightly simplified form.

The funection F(f) being uniformly continuous, the condition (1) evidently
implies that arg F(t) is also uniformly continuous. Hence there corresponds to
every positive number ¢z a number K., such that for |I| <7 and all ¢

larg F(t+ 1) — arg F(t)| = K..

For an arbitrary positive ¢ <z we denote by 7=1(n) an arbitrary positive
translation number of F'(f) belonging to # = 2k sin . Then the difference
arg F(t + 1) —arg F(f) is evidently for every ¢ mod. 2 x numerically =e¢. Hence
there exists an integer n, independent of ¢ such that for all ¢
(2) |arg F(t + 1) —arg F(t) —n. 2 n| < e.

Now, for —» <y<d<+ o, we have d=y+he+!, where h is a non-negative
integer and o <!<t. Thus

larg F(y +2) —arg F'(y) —n. 27| S ¢

larg Fly + 27) —arg F(y +7) —n.2zn| = ¢

larg F(y + he) —arg F(y + h— 1) —n. 2| = ¢
|arg F'(d) — arg Fy + h7)| = K.,
and consequently
|arg F(0) —arg Fly) — hn.2n| < he + K.,
so that

v e
§he+K,+|n,|2n§~7Zs+ Cr,

arg F(6) —arg F(y) — 6:711,27:

where C. =K, +|n.|22. Hence

C.

P
<7 —
='r+d—-y

arg F(d) —arg Fly) mn.2n
d—y T

As 7 may be chosen arbitrarily large, this inequality implies the existence
of the mean motion

e— lim 2% F(§)—argF (7),
=9+ éd—y

and it also shows that
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or
(3) ler—nc2m| < e

By § s, this relation shows that ¢ belongs to the modul of F(t).
Now, putting arg F(f) = ¢t + y(t), we find from (2) that

lez+ Yt + o) — W) —n.2n]| e,
and combining this with (3), we find
(4) [ (t+ ) -] =z2e
This shows that 1 (f) is almost periodic and, by § 5, that the exponents of ()

belong to the modul of F'(f).
This completes the proof of the theorem.

29. For later application we add the following remark.
If ©=1(y) is a translation number of F(f) belonging to n=2ksinie, it
follows from (1) that for all ¢

(5) log | F(t + )| —log | F()l[ =7 <.

Thus the function log | F(#)] is almost periodic and its exponents belong to the
modul of F(¢).

It therefore follows from Theorem 1 that the function

log F(f) = log | F(#)| + ¢ arg F(¢)
has the representation
log F{t)=idct + H(2),

where H(t)=1log|F ()] + sw(f) is an almost periodic function with exponents
from the modul of F(t).

From (4) and (5) it follows that every translation number of F'(f) belonging
to n=2ksin}e is a translation number of H(f) belonging to 3¢ Thus there
corresponds to every &>>0 a number ¢ >0 depending on k%, but not otherwise
on F(t), such that every zr(d) is a za(e).

30. In the special case where F(f) is pertodic with the period p>o0 the mean
motion ¢ is evidently determined by the expression

(6) ¢ = arg F(a + p) — arg F'(a) ’
p
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where @ may be arbitrarily chosen. The condition (1) is in this case satisfied if
only F(f) does not take the value o.

For later application we shall prove that if () is an exponential polynomial
with the period p, then the mean motion lies between the smallest and the
largest exponent (or is equal to one of these), that is to say, if

PR 4

I
b ih ¢
I’(t) “—:Z a,c P s [l)l,#:O, a;.2+ o,
h=h,

then

In order to see this, let us consider the function

flz)= Z a2

h=t,
of the complex variable z. It follows from (6) that czhi}:—r » where h 27 denotes

the variation of the argument of f(2) along the unit circle |[z] = 1. Now by
Cauchy’s theorem we have h =h, + #», where = denotes the number of zeros of
fl@) in o<|zf<1. As o=n=<h,—h, this implies that h, <h =<h,, and thus
the relation (7).

31. The preceding proof of Theorem 1 is, apart from the last part of the
theorem, based directly on the definition of almost periodicity. We shall now
repeat a proof by Jessen [4] based on the approximation theorem and leading to
a more precise result concerning the value of the mean motion c¢.

We shall first give an account of almost periodic functions F'(¢) with a finite
integral base u,, ..., 4, i.e. (see § 6) for which the exporents belong to the
wodul M= {h pu, + -+ hnun}, where the numbers u,, ..., un are linearly in-
dependent and the set of coefficients %,, . .., hn runs through all sets of integers.
Denoting the inner product z, 4, + - + Tmym of two vectors & ={(x,, ..., Tnm)
and ¥ = (y;, . . ., yn) in the m-dimensional space Rn by xy, and putting
f={y, ... un), we have M = {hu}, where h=(h,, ..., hn) runs through all
vectors of R, with integral coordinates.

In the discussion an essential part is played by Kronecker’s theorem, according
to which the set of points @ =ut=(u,t, ..., unt), —© <t<+oc, is mod. 27
everywhere dense in R, when g, ..., un are linearly independent. By means of
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this theorem we shall now deduce the so-called spatial extension of a function
F(?) with exponents from M.
Allowing terms with the coefficient o, we may write the Fourier series of
F(t) in the form
F(t)~ Sap ehnt,

Let us now consider a sequence of exponential polynomials of the form
Fy(t)= Zap ert

(where for every p only a finite number of the coefficients al) are =0) converging
uniformly towards F'(f) as p—~o. For each function Fy(f) we form the function

(8) Gplor) = Salp) ¢ihe,

where & runs through R,. Then Gp(x)is an exponential polynomial of zy, ..., zn
with the period 27 in each variable, and

Fy(t) = Gplunt).

It follows therefore from Kronecker's theorem that for all p and ¢
upper bound | F(t) — F, ()| = upper bound | G,(x) — G, (ax)|.
11 x

Thus Gy(a) converges uniformly towards a limit G (), which is also a continuous
function in Rn» with the period 2z in each of the variables x;, . . ., ¥n, and we
obviously have

(9) F(t) = G(ut).

This fanction G(a), which is evidently uniquely determined by being con-
tinuous, by having the period 2 7w in each of the variables zy, . . ., ¥n, and by
satisfying (9), is called the spatial extension of F(t). It follows from (8) that its
Fourier series is

G(x)~ Sane'h>,

If, conversely, G{a) denotes an arbitrary continuous function in R, with
the period zm in each of the variables z,, . . ., m, the function F'(f) determined
by () will be an almost periodic function with exponents from the modul 3,
since the preceding considerations may also be carried through in the opposite
direction. We notice that the Fourier series of F (f) is obtained from that of G (x)
by replacing @ by ut.
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Every exponential polynomial

N
F(t) = D\ anetnt

n=1

possesses a finite integral base y,, ..., um, the modul of F(¢) being, in fact, of
the form M = {h,u, + - + hmun} = {hu}.

32. We now turn to the second proof of Theorem 1 and shall first show
that it is sufficient to prove the theorem in the special case where the function
F(¢) is an exponential polynomial.

Let us, then, assume that the theorem has already been proved in this case.
For an arbitrary ¢ <{m we choose, corresponding to the given almost periodic
function F(t), an exponential polynomial F*(f) with exponents among the ex-
ponents of F'(t), such that for all ¢

| F(t) — F*(t)| < k sin s.
Then for all ¢
| F*(t)] = k— ksine > o,

and the theorem may therefore be applied to F*(¢). Furthermore, we have for
suitably chosen branches of the arguments for all ¢

| arg F(f) — arg F*(¢)| < «.

As, according to our assumption, the. function F*(f) possesses a mean motion,
this inequality implies that F(f) has also a mean motion, viz. the same mean
motion as F*(f). Denoting it by ¢, and putting

arg F(t)=ct+ y(t) and arg F*(f)=-ct + Y*(t),

we therefore have for all ¢

) —y*@)| =

The function y*(t) being, by our assumption, almost periodic, this implies, as ¢
may be chosen arbitrarily small, that v(¢) is also almost periodic.

From the determination of ¢ as the mean motion of F*(f) it follows that ¢
belongs to the modul of F*(f) and hence also to the modul of F'(f). As the
exponents of 1*(f) belong to the modul of F*(f) and hence also to the modul
of F(t), the same will be the case for the exponents of (¢).
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33. Let F(f) be an exponential polynomial
N

F(t)= D anétt,
n=1

and let its exponents be contained in the modul M={h u,+ - -+ hnpun}={hp}.
Assuming A, =hWyu, ..., Axy=h™u, we have

‘N
F() =3 ane™ s,
n=1

From (1) it follows by Kronecker's theorem that the spatial extension

G (x) = i ane W™ e
satisfies for all & the relation =
(10) |G@)| =%k >o0.
For an arbitrary continuous branch of the argument arg G (a) the difference
arg G(. ...z +27m,...)—arg G(.. ., 2, ...)

is for every l-an integral multiple of 2, which is evidently independent of 2.
If we denote it by k27 and put A= (h,, . . ., hn) and

(11) arg G (x) = hx + x(x)

the function y(a) has, therefore, the period 2 = in each of the variables xy, . . ., Zm.
Hence it immediately follows that
arg F(f) =arg G(ut)=hpt + (),
or
arg F(f)=ct + y(t),

where ¢ = hyu belongs to M and (f) = y(pt) is an almost periodic function with
exponents from M.

As M may be chosen as the modul of the function F'(f) this implies the
theorem in the case of exponential polynomials.

34. As has been shown by Bohr and Jessen (see Bohr [15]), we may from
the preceding proof easily deduce a more precise result regarding the mean
motion ¢. We shall prove that the lattice point 2 occurring in the expression
¢=hp belongs to the convex closure of the set of lattice points AV, . .., Ry
occurring in the expressions 4, =h®y, ..., Axy=h"yu of the exponents.
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If m=1, so that M has the form M={hu}, where u=o0 and h runs through

all integers, and F'(t) is periodic with the period 27?, the statement is that ¢ lies

between the smallest and the largest of the exponents (or is equal to one of them),
but this has already been proved in § 30.

In the general case where m > 1, we have to prove that for every vector
a={a, ... am) = (0, ..., 0) the inequalities

(12) min {h™ a} < he < max {h a}
n n

hold. For reasons of continuity it is sufficient to consider vectors & with rational
coordinates, and since the terms are homogeneous we may even assume all
coordinates to be integers.

For such a vector e the function

N

H(t)=G(at) = 3 ane*™ et

n=1

is an exponential polynomial whose exponents are the integers A" a (or some of
these integers, since they need not be mutually different, and some terms there-
fore may cancel each other). Furthermore it follows from (10) that |H(f)| = %
for all ¢, and from (11) that H(f) has the mean motion hea. The relation (12)
therefore follows from the validity in the case m=1.

Putting in (12) @a=p, we find that the mean motion ¢ lies between the
smallest and the largest exponent (or is equal to one of them) also in the case
of an arbitrary exponential polynomial. The convex closure in question containing
only a finite number of lattice points A, it follows from the result that, for given
exponents Ay, . . ., Ay, there is only a finite number of possible values of the mean
motion e.

35. A lattice point h belonging to the convex closure of a set of lattice
points A", .. . A™ may be written in the form

h=r BV -+ ryh®

where the coefficients r,, . . ., ry are non-negative rational numbers with the sum 1.
Thus, it follows from § 34 that, when F'(f) is an exponential polynomial with
the exponents i, ..., Ay, the mean motion ¢ has the form

c=r1].1 + - 4 erN,
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where the coefficients have these properties. On the other hand it will easily be
seen that if a number ¢ of this form belongs to the smallest modul containing
the numbers 4, ..., Ay, then, for any choice of the base u,, ..., #m, it is of the
form c¢= hy, where R is a point with integral coordinates belonging to the
corresponding convex closure.

36. Let F(f) denote once more an arbitrary almost periodic function which
does not come arbitrarily near to o. If F(f) has the Fourier series
F(t) ~ Ean eiln t,

it follows from Theorem 1 that the mean motion ¢ may for a sufficiently large
N be written in the form

(13) C=h111+"'+h1\'11\7,

where the coefficients 4, . . ., Ay are integers. Ap;\ﬂying this result to the fune-
tion F'(t)e~*4! which has the exponents A,— i, and the mean motion ¢ — 4,
we find that there even exists a representation of the form (1‘3), for which the
coefficients h,, . . ., hy are integers with the sum 1.

On the other hand, it follows from § 32 that in the case of an arbitrary
F(t) the mean motion ¢ equals the mean motion of an exponential polynomial
F*(t) with exponents among the exponents of F(f). Together with § 35 this
shows that for a sufficiently large N the mean motion ¢ has the form

c=rh + -+ ryiw,

where the coefficients 1, . . ., ¥ are non-negative rational numbers with the sum 1.
We have thus proved the following theorem.

Theorem 2. The mean motion ¢ of an almost periodic function
F(t)~ Zaneint

with given exponents An, which does not come arbitrarily near to o, may for a
sufficiently large N be written both in the form

c=h A + -+ hxix,
where the coefficients hy, . . ., hx are integers with the sum 1, and in the form
e=1rd + -+ radx,

where the coefficients r,, ... rx are non-negalive rational numbers with the sum 1
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We notice that this result is not the best possible, i. e. a number ¢ expres-
sible in both of these forms is not necessarily the mean motion of an almost
periodic function with the exponents 4,. To see this, we consider the exponents

h=u,, dh=—2p, Wh=p,, A=—3U,

where y, and u, are arbitrary linearly independent numbers. The number ¢=o0
is then expressible in both forms (viz. as — 24, —A; + 34; + 4, and 34, + %4, +
+ 02, + 04,) but it is not the mean motion of any exponential polynomial

F(t) =a, et + age-—2i‘u,! + a3€i“3t+ [l46_3i’u'-'1

which does not come arbitrarily near to o. For when ¢ varies, a,e¢™!+a,e= 21!
and azei*2t+ g,e~3#t describe cyclic curves, the second of which is symmetric

with respect to the origin. Since the spatial extension
G(xhxs) =a, ea + a‘_,e—“fx + ageif: 4 048—3""2

is == 0, these curves cannot have any point in common, and one must therefore
surround the other. Hence the corresponding function a,é'™!+ a,e 2?4t or
aze'“t + g, e~ 3t does not take the value o, and it determines the mean motion
of F(t), which is therefore equal to one of the exponents 1,, 4y, 45, or 4,

CHAPTER II.

The Jensen Function of an Analytic Almost Periodic Function.

Preliminary Description of the Variation of the Argument and the
Distribution of the Zeros.

37. Let f(s) denote an arbitrary function of the complex variable s=¢+7:1,
which is regular in an open domain G and is not identically zero. The function
arg f(s) is then defined mod. 27, by the condition f(s)=]f(s)]e¢*8/®, for all s
in G, with the exception of the zeros of f(s).

Let L denote a straight line (or segment) belonging to G; we suppose L to
be orientated so that we may distinguish between a left and a right side of L.
We then definc the left argument arg™ f(s) of f(s) on L as an arbitrary branch
of the argument, which is continuous except at the zeros of f(s) on L, while it
is discontinuous with a jump of — pn=, when & passes, in the positive direction
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of L, azero of f(s) of the order p. Similarly we define the right argument
arg® f(s) of f(s) on L as an arbitrary branch of the argument, which is con-
tinuous except in the zeros of f(s) on L, while it is discontinuous with a jump of
+pm, when s passes, in the positive direction of L, a zero of f(s) of the order p.
In a discontinuity point we use as value the mean value of the limits from the
two sides; the two functions arg™f(s) and arg™ f(s) are then defined for all s on L.
Both are, of course, only determined mod. 27z. If f(s) has no zeros on L, each
of the functions is identical with a continuous branch of arg f(s) on the line.

If s, and s, are points on L, so that the direction from s, to s, coincides
with the positive direction of L, the differences

arg™— f(s,) —arg™ f(s;) and arg* fls,) —arg® f(s))
are independent of the choice of the branches of the arguments and are called

the variation of the argument of f(s) from s, to s, along the left or right side of L.
Obviously they satisfy the inequality

arg™ f(sy) — arg™ f(s) =< arg™ fls,) — arg* f(s,).

38. Let again G be an open domain in the complex s-plane; let O be a
bounded open sub-set of G, whose boundary also belongs to G, and let 4 be a
closed sub-set of O. Let, further, a set of functions g(s) be given, regular and
uniformly bounded in G, and not having zero as a limit function, i. e. from which
there can be extracted no sequence converging uniformly to zero in every bounded
closed sub-set of G. We shall make use of the following (well-known) statements:!

(a) There exists a number N, such that the number of zeros in O of every
function g(s) of the set is =< N.

(b) For every number » >0 there exists a constant m=m(r) > o such that
for every function g(s) of the set we have |g(s)]= m at all points s of A having
a distance =1 from all zeros of g(s) in O.

(¢) There exists a constant #> o0 with the following property: If for an

arbitrary function of the set we denote by s, ..., sxe (where N*¥*=< N) the zeros
of ¢g(s) in O, then the function
s
g*(s)— th()
I (s—sx)
n=1

satisfies in A the inequality |g*(s)|= %.

! For proofs of (a) and@l (b) see e.g. the proofs of the quite analogous statements in Bohr and
Jessen {2}, pp. 18—19; (¢) and (d) are easy consequences of (a) and {(b).
12 — 632042 Acta mathematica. 17
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(d) For every number !> o there exists a constant v=v(l)>o0 such that the
variation of the argument of every function g(s) of the set along the left or right
side of any straight segment of length <1 belonging to 4 is <.

39. Now let —® =e<eqi<e,<f<B,<B= -+, and let d denote a positive
number smaller than the differences a,—«a, and 8,—8,. We then choose for the
open set G the vertical strip (a,, &), for the open sub-set O of G the rectangle
a—d<o<P +d, —3{—d<i<i+d, and for the closed sub-set 4 of O the rectangle
o So=p, —t=t=i '

Let f(s) be a function almost periodic in the strip [e, 8] and not identically
zero. We may then apply the above theorem on the set of all functions f(s+¢¢¥),
—ow <{*<+w. These functions are, in fact, uniformly bounded in &, and
as for every o, in the interval (o, §) there exists a constant % >0, such that
| flop+2t)| =h for a relatively dense set of values of ¢, they do not have zero as
a limit function.

More generally, if f,(s), f;(s), . . . is a sequence of functions almost periodic
in [e, 8] and converging uniformly in [a, 8] to a limit function f,(s), and if none
of the functions f,(s), »=o0,1,2, ... is identically zero, then the theorem may
be applied to the set of all functions f,(s+2¢*), n=0,1,2, ..., —% <{*< + .
These fanctions are in fact uniformly bounded in &, and as there exists a
constant k>0 and a bounded closed sub-set B of G such that for every function
fa(s+2t*) of the set the inequality | /i (s+2¢*)| = & is satisfied for some point of R,
they do not have zero as a limit function.

We therefore have the following theorem.

Theorem 3. Let —x =a<g,<a;<B,<By<f=+ ©, and let d denote a positive
number smaller than the two differences a,— a, and 8,—f8,. Let, further, f(s) be a
JSunction almost periodic in [a, 8] and not identically zero. Then the following state-
ments are valid (see Fig. 1):

(i) There exists a number N, such that the number of zeros of f(s) in any
rectangle e, —d<o<B, +d, t*—i—d<t<t*+}+d s =N.

(ii) For every mumber r > o there exists a constant m = m(r) > o such that
|f(s)|=m at all points s in the closed strip {e,, 8,} having a distance =r from all
zeros of f(s) in the strip (a,, 8,).

(iii) There exists a constant k> o with the following property: If, for an ar-
bitrary t*, we denote by s,, ..., sy« (where N*<N) the zeros of f(s) 2n the rectangle
o, —d<o<P +d, t*—i~—d<t<t*+1{+d, then the function
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satisfies in the rectangle ¢, <0 =p, t*—~}<t<t*+} the inequality | f*(s)| = k.

(iv) For every mumber 1> o0 there exists a constant v=1v(l)> 0 such that the
variation of the argument of f(s) along the left or right side of any straight segment
of length <1 belonging to the strip {a,, 8,} 18 <.

If a sequence of functions fi(s), fo(s), . .. almost periodic in [a,f] converges
uniformly in |a, 8] to a limit function fy(s), and if nome of the functions f.(s),
n=0, 1, 2, ... 18 tdentically zero, the preceding statements are valid for the functions

fuls), n=0,1,2,..., with constants N, m(r), k and v(l) independent of n.

The Mean Motions and Frequencies of Zeros.

40. We consider again a function f(s), almost periodic in a strip [a, f] and
not identically zero. The left and right arguments of f(s) on a vertical line
s==g+1¢l, — <{< + o, orientated after increasin‘g values of 7, will be denoted
by arg— f(¢ + ¢1) and arg* flo + ¢1).
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If —o <y<d<+ ® the variations
arg— flo + 20) —arg—flo+iy) and arg* f(o+:0)—arg* flo+<y)

of the argument from o + 7y to ¢ + ¢4 along the left and right side of the line
are, considered as functions of o, continuous from the left and right respectively.
We have

arg” flo +¢8)—arg~ flo + 19} < arg* flo + 2 8) —arg* f(o + i9).

The four quantities

¢ (a)} — qiinf arg—flo + id) —arg™ flo + ¢7)
é~ (o) ,,-_.,,SBE d—y

and

sup d—y

are called the lower and upper, left and right mean motions of f(s) on the line
s=0+ 14t —o <t<+x, or, more briefly, of the function f(o + 7). From
Theorem 3 (iv) it immediately follows that they are finite for every ¢ and even
bounded in {¢, 8. Furthermore

1If ¢ (a)=¢"(0) or ¢t (0)=¢* (0), i. e. if the limit

arg~ f(o + 78) — arg— flo + ¢y)

¢ {o)= lim
) (d—p)— = 6—y
or
+ '8) — arot ;
)= lim *E flo+28) —arg* flo + ¢p)
@—y)— = d—vy

exists, it is called the left or right mean motion of f(o + ¢1) respectively.

Denoting by arg f(o + Z¢) the argument of f (¢ + ¢¢) in the sense of § 27,
we have arg f(o + ¢ty=arg—f(o + ¢¢) = arg* f(o + ¢¢) if f(0 + ¢¢) has no zeros;
otherwise we have arg f(0+¢¢)=31(arg—f(oc + 7f) + arg* f(o + ¢#). Thus if the
mean motions ¢~ (o) and c* (o) both exist, the mean motion

¢l0)—= Ilim arg f(c + ¢8) — arg flo + 77)
—y)—w» i—y

of f(o +¢t) in the sense of § 27 also exists and is determined by
e(o)= Y (@ + ¢t (0).
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For ¢ <o0,<0,<f and —%x <y<d<+® we denote by N(o,, q,; 7, 6) the
number of zeros of f(s) in the rectangle 0,<0< g, y<t<d. The two quantities

H(ala 02)} —_ hmmf N(Gh O3 7s d)

Hlo,0)) ,_sup =7

are called the lower and upper relative frequencies of zeros of f(s) in the strip (o, 0y).
From Theorem 3 (i) it follows that they are always finite. Obviously

E(oh 62) é H (011 02) .
If H(o,,0,) = Ho,,0,), i.e. if the limit

. N(oy,05; 7, 6)
Hlo,0,) = lim 0257
( 1 2) (d’——y)—» » 6 _ 7
exists, it is called the relative frequency of zeros of f(s) in the strip (o,, ).
We notice that on account of Theorem 3 it does not make any difference
in the preceding definitions if we restrict y and d to an arbitrary relatively dense
set of numbers.

41. We may now easily prove the following theorem.

Theorem 4. For any function f(s) almost periodic in [, 8] and not identically
zero the mean motions and relative frequencies of zeros are for an arbitrary strip
(o1, 0); where a <o, <0,<B, connected by the inequalities

1 e—ate)|
;‘7;(('_(02)— o)) = E_(Gn ‘72) = = H("n o)) =

I
o (e (op—ct (@)

I

(e o—c (@),

To prove this we make use of the remark at the end of § 40 by restricting
7 and ¢ to values for which f(s) has no zeros on the segments 0, <0=g,, t=y
and 6,=06=0,, t=0. For such values of y and J we have by Cauchy’s theorem
applied to the rectangle o, <o <oy, y<t<d

(1) N{o,,057,0)=

(arg— flo,+10)—arg™ flo, +19) — (arg™ flo, +id)—arg* flo, +iy) + R{a,, 05; 7, 0)],

Pyt

where the remainder R(o,,0,;7;d) is the contribution to the variation of the
argument from the horizontal sides of the rectangle. By Theorem 3 (iv) this term
is bounded for all y and J, and the theorem is therefore an immediate conse-
quence of (1).
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42. For later use we formulate the following immediate consequences of

Theorem 4.
If ¢*(0,) exists, we have for every ¢,>0, the relations

H(o,, 0,)= 2_17';((’—(0'2) —c¥ (o)) and -E(au o) = z_ly‘t(c-— (o) —¢* (5y).

If ¢ (o,) exists, we have for every o,<a, the relations
1 — 1
H(oy,0,)= ;‘;‘(c_("s)“é+ (0)) and H(g,,05) = 2_“(0—(‘7:) —¢*(oy).

If two of the quantities ¢* (s,), ¢—(c,), and H(s,,0,) exist, then the third also exists,
-and we have the relation

H{o,0)=

P (e (o9 — ¢t (ay).
The Jensen Funection.

48. The more detailed study of the mean motions and the frequencies of
zeros depends on the Jensen function, the existence of which is proved by the
following theorem.

Theorem 6. For any function f(s) almost periodic in [a, 8] and not identically

zero the mean value
(o) = M{log |flo+ )]}

exists ungformly in [a, 8], i.e. the function
é
@lo;y,d)= ;,—i—yfloﬂf(a +it)]dt

converges for (8 —y)— o uniformly in (e, 8] towards a limit function @(a).
If, for m > o, we put
| /() ln = max {|f(s}], m}

the function @(o) ¢s also determined as the limit of the mean value
Mlog|flo + it)lu}

as m— o, the convergence being again uniform in [a, f)].
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The function ¢@(o) is called the Jensen function of f(s). Since @(o;y,d) is
continuous, it follows from the theorem that ¢(o) is continuous.

We repeat the proof given in Jessen [2].

Let {a,,8,} be a closed sub-interval of («,8). For a given m>o0 the function
log|floc+¢t)|n is for every ¢ in (e¢,8) an almost periodic function of the real
variable f. Further, for o, = o < 8, these functions form a uniformity set. Thus
the mean value

M{log|f(a+it)|,,.}= 11§n - flog|f +it)|mdt
?—-@

exists uniformly in {e;,8,}. As log|flo+¢t)|a=log|f(o + ¢¢)| it is therefore

sufficient to prove that for any £>>0 there exists an m, such that fore, <o =g,
and (6 —y)>1 we have

)
(2) (oé)gl:;floglf(o+z't)|mdt——¢(a;y,d)§s,

r (what amounts to the same thing)

[

(3) (0=) [ (log| o+ itlu—loglfe + in)dt = (@ — ).
T

For (2} implies the first part of the theorem, and if we make (§ —9y) > o it
follows from (2) that for o, <o <8,

(4) o=\M loglf + it} —plo) = ¢,

which implies the second part of the theorem. That m may be chosen in accord-
ance with the said condition is proved by means of Theorem 3 in the following
manner.

Let e< e <a,<B,<f,<pB, and let d denote a positive number smaller than
the differences a,— ¢, and §,—f,. To every r>o there exists by Theorem 3 (ii)
a constant m=m(r)>0, which may of course be chosen <1, such that | f{(s)| =m,
or |f(s)lmn=]/f(s)|, for all s in the strip {e,,8,} having a distance = from all
zeros of f(s) in (a,, B). Hence on choosing r< d there exists by Theorem 3 (i) a
number N independent of r, such that in every integral

tet+d
J = [(log|fle + it)ln—log| flo + iD)) dt

to—1
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where o, = o0 < f,, the integrand is positive in at most N sub-intervals of
t*—1 <t<t*+ | having a total length =< N 2. Having chosen m <1 we have
in these intervals

log|flo+ if)|n—log|flo + 2t} < —log™|flo + :t)].
Hence by Theorem 3 (iii) there exists a constant % independent of r such that
denoting by s, =0, +¢t, ..., sns=0ye + itye (where N* < N) the zeros of
f(s) in the rectangle ¢, —d<o<g, +d, t*F—1+—d<t<t*+}+ d we have for
t*r—i<t<t*+1

Ne Ne®
log | f(o+it)|n—log|f(o+it)|<=—~log™ k— X log™|s—sa|< —log=k— Dlog—|t—t]|.
n=1 n=1

Thus, for every integral J, we have the estimate

Nr
o=)J=—log k-N2r ——Nflog‘lu[du,

—¥r
where the quautity on the right converges to o as r - o (since N and k are
independent of 7). We now choose » such that this quantity is =< }&. Then for
the corresponding m = m(r), the inequality (3) is satisfied for ¢, =0 =g, and
(6 —y)>1. For, the largest integer =< (d—y) being denoted by 4, the integral
on the left in (3) is <4 +1=<24 integrals J and hence <}e2(d—y)=2c(d—y)

This completes the proof of the theorem.

44. By means of the inequality (4) we shall now prove the following theorem.

Theorem 6. The Jensen function @lo) of f(s) depends continuously on fls) in

the following sense: If fi(s), fa(s), . . . are a sequence of functions almost periodic in
le, 8] and converging uniformly in [, 8) to a limit function f,(s), and if none of the
Sunctions f,(s), n=o0, 1, 2, . . . is identically zero, then the Jensen function @.(o) of

Ja(s) converges for n— oo uniformly in [, 8] towards the Jensen function @,(0) of f,(s).

Let {e,,8,} be a closed sub-interval of (¢, 5). We abply the proof of Theorem 3
simultaneously to all functions f,(s), =0, 1, 2,..., choosing (as Theorem 3
permits) the numbers m =m(r), N and % independent of ». We thereby find-that
for any ¢ > o there exists a positive number m << 1 such thatin {«,, 8,} simultaneously
for all m==0,1,2,...

(05) 1 {log | alo + ifla} — gale) S o

! By log™x we denote for x>0 the function log™ z==min {log x,0}. The function —log™z is
non-negative and decreasing; further, if *=2x,...Zye, We have —log"x < —log™ @, — -+ —108™ X ys.
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For this fixed value of m we obviously have
M log| folo + if)|n} = lim M {log|fa(o + it} ln}
uniformly in {¢, 3,}. Thus in the interval {«,,8,} we have

}0o(0) — @ala)| < 3¢

for all sufficiently large #; which proves the theorem.

The Connection between the Jensen Function and the Mean Motions and
Frequencies of Zeros.

45. We shall now prove the following theorem.

Theorem 7. Ior any function f(s) almost pervodic on |a, 8] and not identically
zero the corresponding Jensen function ¢(o) is convex in (e, 8), and the four mean
motions satisfy for every o in (e, B) the inequalities

(

9'lo—o)< (o) = {ri Ea)l =)= g'(o+0)

"~ (o) J

Further, the two frequencies of zeros satisfy for every strip (o,, 6,), where a <0,<0,<g,
the inequalities

“I_(‘P’("f'())_ 9),(0'1 +0) = H(oy,0,) = ~-(‘J'n"z) = L

27 Zn(q) (0s+0) — @' (6,—~0)).

It is sufficient to prove the convexity of @(c) and the two inequalities
(s) plo—0)=c¢(0) and &* (o)< ¢ (0 +0)

for then the rest of the theorem follows from § 40 and Theorem 4. Moreover,
it is sufficient to prove the convexity of ¢(o) and the inequalities (5) in any
reduced interval (e, 3,). Now, on account of the almost periodicity there exist,
corresponding to ¢, and 8, a number m >0 and a relatively dense set of real
numbers such that |f(s)] = m on every horizontal segment o, <o <8, t =1,
where #, belongs to this set. Denoting by K the (finite) upper bound of |/’ (s)|
in the strip {e,,3,}, we have on any of these segments the inequality

dlog 1] _| 0] - K.
ds f(s) m

A
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When ¢ <0,<0,<@, and y and J belong to the set in question, we there-
fore have the relation (1), where the remainder term R (o, 0,;7,d) satisfies the
inequality
2K,
| B oy, 00 7, 8)| = = oy — o).

We now consider the function

é
9057,8)= 5= [loglrlo+inlat,
I3

For an arbitrary value of o for which f(s)0 on the vertical segment s=0+ ¢,
y =t = d, this function is differentiable with the derivative

_argflo+18) —arg flo +iy)
= =

(6) ¢ (07, 6)

For in a neighbourhood of the segment we have

log f(s) =1log | f(s)] + ¢ arg £ (s)

and therefore by the Cauchy-Riemann différential equations
L3 log |f(o+z't)|=—d— arg f(o + 2¢).
do dt

For given values of y and J there are at most a finite number of exceptional
values of o, and, for these values, the right side of (6) has limits from the left
and the right, viz.

arg~ flo + i0) —arg—flo + iy) arg® flo + 78) —arg™* flo + iy)
. and .
d—y d—y
Hence the function ¢(o;y,d) is differentiable from- the left and the right at these
points ¢, and for all ¢ we have for its left and right derivatives ¢’ (¢ — 0;7, d)
and ¢’ (¢ + 0;7, d) the expressions '

arg— flo + 28) —arg— flo + 17) and
d—y

¢ (0—o0;7,d) =
(7)
_arg* flo +id)—arg® flo +7y)
= =

¢’ (0 +0;7,9)
The relation. (1) therefore takes the form

Nloy,00;7,8) 1, , .
*——:,':?7—7—)=;7r(¢(0'3‘—0;}’,(’)—¢(01+0;}’,d)+T(01,az;7)6))1
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where the remainder r(o0,,0,; 7, 0) satisfies the inequality

: 1 2K
I"(Gn"z;%d)l—d S m —(0; — a)).

In order to utilize this connection between the function ¢(s; 7, d) and the
number N(o,,0;; 7, d), we introduce instead of ¢(o;7,d) the function
1 K

.—y m °

Pilo; 7,8 =g(0;7,0) + 5
Then the last result may also be written in the form

N(o,, 04; 7, 9)

("—}' =2l—n(¢'l(at_°; 7! d)—q"l(“x + 0; 7! d) + 1'1(0'1,61; 7, d)):

where the new remainder r,(s,,0,; 7,d) satisfies the inequalities

1 4K
- d"_:_’;‘%(”z—ax) =nlo,05 7)o

As N(o,,0;; 7,8) = o, it follows from the last imequality that

¢1(61+0 71 ) ?1(0‘2_0 v d)v

and hence that @, (o; 7,d) is a convex function.
The proof may now be completed in few words. By Theorem 5 we have
uniformly in (e, 8,) the relation

plo)= lim ¢,(g;7,9)
(—g)—=

The function g(o) is therefore convex. Hence for every ¢ in (e, )

p'lo—o)= hm)mf pi{lc—o0;7,0)= },lm)lnf ¢ (c—o0;7,0)
and !
};m)sxupq)( o +o0; y,d)—llmsup¢1( +0;7,8)=¢ (c+o0).
—y)— {B—p)—
Combining this with (7), we find the inequalities (5).

This completes the proof of the theorem.

46. From Theorem 7 follows that if @(o) is differentiable at the point o,
then the left and right mean motions ¢~ (o) and ¢* (0) of f(o+7¢) both exist and
have the common value

() = c* (o) = ¢' (o).
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If (o) is differentiable at the points ¢, and o,, then the relative frequency H (q,,0,)
of zeros of f(s) in the strip (o,, 6.) exists and has the value

Ho,,0,)= ’21‘7; (Q)'(G,) — ¢’(¢71))-

This formula is called the Jensen formula for almost periodic functions.
As an immediate consequence of Theorem 7 we have the formula

;—:;(tp'(a +0 —¢@6—0)=1im H(eg—¢ 0 + &),

e~ 0
which shows that the function @(o) is differentiable at the point o if and only if

lim Hoc—e¢ 0+ &) =o0.

e—0

Strips without Zeros. Periodie Functions.

47. For a function f(s) almost periodic in a strip [¢, 8}, the vertical sub-strips
(e=)ey<6<3(=p) in which the function has no zeros have a particular interest.
Concerning such strips we shall prove the following theorem.

Theorem 8. A4 function f(s) almost periodic in [a, 8] and not identically zero
has no zeros in the sub-strip (¢<)a,<o<B,(<8), ¢f and only if its Jensen function
@(0) 28 linear in the interval (a,, 8).

In this case we have for every reduced strip (a,<)a, <o = 8,(< 8, that

(8) lower bound | f(s)| > o;

qEo=ph

moreover an arbitrary branch of log f(s) in («,, B) has the form

(9) log f(s)=-¢cs + g(s),

where ¢ denotes the constant value of @' () in the interval (ay,8,) and g(s) is almost
periodic in [ag B,
The constant ¢ and the exponents of g(s) all belong to the modul of fls).

If f(s) has no zeros in the strip (a, 8,) we have H (a,,3,)=o0. Hence, by
Theorem 7, we have ¢'(a, + 0)= ¢’(8, —0), which implies that ¢(¢) is linear in
the interval (e, 8,).
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If f(s) has a zero sy=o0,+t, in the strip (a,, ), we choose o, and o; such
that ¢y < 0,<g,<0,<f, Further, we choose a positive number » smaller than
the differences o, — g, and o, — g, such that | f(s)| == o on the circle |s— s,| =7
Let m denote the lower bound of |f(s)| on this circle. Then there exists, by
Rouché’s theorem, for any positive ¢ <m and any 7 =-<(e; 0,, 0;) at least one
zero of f(s) in the ecircle |s—(s, + ¢7)| <7. As the translation numbers are
relatively dense, this implies that H (0,, 0;) > 0. Hence, by Theorem 7, we have
¢’ (6, —0)<¢'(03+0), which shows that ¢ (o) is not linear in the interval (e, ).

This completes the proof of the first part of the theorem.

We now assume that f(s) has no zeros in the strip (o, §,). The relation (8)
then follows immediately from Theorem 3 (ii) applied for a number r smaller
than the differences ¢,—a, and §,— @,. Thus, the function F,(f)=f(c + 1) satisfies,
for every ¢ in the interval (a,, 8,), the conditions of Theorem 1, and we therefore
find, employing § 29, that

log flo+it)=ict + H,(t),

where, by Theorem 7, the mean motion ¢ is equal to ¢'(o), and H,(f) is almost
periodic. Thus we have the representation (9) with

glo +7t) = H,(t) — co.

Moreover, it follows from the remark at the end of § 29 that, for any ¢ >o0
and any reduced strip (¢,<)e, <o <B,(<pB,), there exists a d >0 such that any
% (0; e, 8) is a wx,(e) for all o in (e, B,), and therefore a 7,(¢; @, 8;). This implies
that g(s) is almost periodic in [eq, 3,

The last part of the theorem follows immediately from Theorem 1.

The Jensen formula may be written in the form

Ny, 03; 9, 8) = L((p'(«rz) — @' @) (6 —9) +0(d —7).
27

It is easily seen that the remainder is bounded if o, and o, belong to linearity
intervals of g{o).

48. Let (¢ B,) be a strip without zeros, and suppose that 8, <3 Then,
0, having been chosen in the interval (e,, 3,), the quantities ¢* (o,) = ¢’ (0,) and
H (6y, 85)=0 both exist. Thus, by § 42, the quantity ¢—(8,) also exists, and we have
1
H oy, B0) = ——{c= 8y — ¢* (ap),

27
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so that ¢ (8) =¢* (o,) = ¢’ (0,) or, @ (o) being linear in the interval (e, §,),
() = ¢’ (B — o).

Similarly, if ¢ < a,, the quantity ¢* (¢,) exists, and
¢* (ao) = ¢’ (ay + 0).

Thus, if two strips without zeros have a common border line ¢ = g,, the
mean motions ¢ (g,) and ¢t (o,) both exist and are determined by

(10) ¢ (0p) =@’ (6,—0) and ¢*(g,)=9'(g, + O).

In the special case where the zeros of f(s) are situated on vertical lines
which do not accumulate in the interior of the strip (e, ), the Jensen function
is stretchwise linear, with points of non-differentiability in the abscissae of the
zeros of f(s). In this case the relations (10) hold for all ,. Consequently the
relative frequency H (o, 0,) always exists and is determined by the formula

(11) H(a,,a,)=2—I7—t(q)'(a,—0)—q)'(61+0)).

This particular distribution of the zeros occurs when f(s) is periodic with the
period Zp, where p > o0, i. e when the exponents are contained in the discrete

modul M ={hg§~t } Thus, in this case, the Jensen function ¢(o) is stretchwise
linear, and the values of ¢'(o) in the linearity intervals are integral multiples
of 27:-5 In this case the left and right mean motions ¢—(¢) and c¢* (o) and the

relative frequency of zeros are, of course, determined by the expressions

(o) = arg” flo +ta + 1p) —arg— flo + ia),

r

+(o) = arg® floc + ca+ tp) — arg™® flo + ia),
P

c

and

Nlo,,0,; a,
(12) H(o,,05) = “ a,paa+p),

where a may be arbitrarily chosen except in the last expression, where we must
assume f(s)==0 on the segment 0,< 0 <o, t=a. Similarly, we have for the
Jensen function the expression



Mean Motions and Zeros of Almost Periodic Functions. 191

atp
#0)=3 [ log|fla +inlas
a
where ¢ may be arbitrarily chosen.
From (11) and (12) it immediately follows that the jump ¢’ (o, +0)—¢’ (6,—0)

of ¢'(0) at a vertex of @(s) is equal to hoz—;—t, where h, denotes the number of

zeros of f(s) on a segment c=o0,, a<t<a+p.
In the particular case where

so that f(s) is periodic in (— », 8) and f(s) > a, when o > — o, the abscissae of

the zeros may be arranged in an increasing sequence 6,,0,,.... Then ¢(o)

is linear in (—,0,) and since ¢ (o) ~log|a,| when o >— o we see that

¢(0) =1log | ay| for 0 <g,. Denoting by h. the number of zeros of f(s) on a seg-

ment 6 =o0,, a =t <a -+ p, we therefore have, for every ¢ <@, the expression
W(O’) = log |a0|+ Zhn (0 —a.).

=0
27

By the substitution ¢? ‘=z this formula is seen to be equivalent with the
usual Jensen formula (§ 19) for a function F(z) with F(o)=4=0 regular.in a circle
fzl <e.

Functions whose Exponents are Bounded Above or Below.

49. Let f(s) once more be almost periodic in [e, 8], and not identically zero,
and let us now assume that its exponents have a finite upper bound 4. In this
case the function may, according to Bohr [10], be continued in the half-plane
(¢, + ©) and will be almost periodic in [e, + ®]. Regarding the behaviour of
f(s) for o~ + o two different cases should be distinguished.

1) If A is itself an exponent, we have f(s)=e4%g(s), where g(s) for 6— +
converges uniformly in ¢ towards a constant A 30, viz. the coefficient of e4® in
the Dirichlet series of f(s). This implies the existence of a half-plane ¢ > g,, in
which f(s) has no zeros.

2) If A4 is not an exponent, we have f(s)=e?g(s), where g(s) for o~ +
converges uniformly in ¢ towards o. In this case there exists no half-plane ¢>0¢,
without zeros of f(s).
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In the first case, the Jensen function ¢(o) is linear for 0>¢,. Furthermore,
in the half-plane o> g, we have log f(s)= 4s + log g(s), and hence

9)(0)=151{log|f(v+ i)} =Ado+ M {log lglo + 29|}

Since
M{log|glo +28)|]} >log|A| when o¢—+x,
t

this implies that @{o) = 4o + log|A|] for ¢ >0, Thus the derivative ¢’(0) has
for ¢ > g, the constant value 4.

In the second case, the Jensen function @(o) is not linear in any interval
6> g, As furthermore ¢(o)= Ao + Jtll{log lg(o+i¢)|}, where now

Mllog |g(o +¢t)]}>— when o—+ 0,
t

it is seen that the right derivative ¢'(¢ + 0) is < .7 for all o.
Thus we have proved the following theorem.

Theorem 9. If among the exponents of the function f(s) there is a largest one,
say A, then, denoting by A the corresponding coefficient, we have for all sufficiently

large o
@plo)=Ac+log|A4]|.

Thus ¢+ (o) = A for all o and ¢*(0)= A for all sufficiently large o.
If the exponents have a finite upper bound A, which is not dtself an exponent,

we have for o + ®©
plo)— A6 +—,
Thus &*(0) < A for all o.

We do not know whether in the second case the relation lim ¢t {o)<<.Z ever
occurs. e

There is, of course, a corresponding theorem for functions whose exponents
are bounded below, dealing with the behaviour for ¢ - —oc.

We emphasize as a consequence of these theorems that a lower or upper,
left or right mean motion of an almost periodic function f(s) on a vertical line

can neither be smaller nor larger than all exponents of the funection.
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CHAPTER IIL
On the Distribution of the Values of Real Almost Periodic Sequences.
Almost Periodie Sequences.

50. In the sequel we shall in a number of cases construct analytic almost
periodic functions f(s) with certain prescribed properties. These constructions are
all founded on results concerning the distribution of the values of real almost
periodic sequences. These results being of a rather complete nature, we have
found it convenient to collect them in a separate chapter, together with the
analogous results regarding real almost periodic functions, which have been in-
cluded in order to round off the exposition.

A complex function U (k) defined for all integers k= ..., —2, —1,0, 1, 2, ..
will briefly be called a sequence. An integer x is called a translation number of
U(k) belonging to a given number ¢> 0, and is denoted by x(c) or xy(e), if the
inequality

JUER+x—Uk))<e

holds for all k. The sequence U (k) is called almost periodic if, for any £>o0, the
set of all translation numbers x = x () = xr(¢) is relatively dense.

Almost periodic sequences have been investigated by Walther [1] and Seynche [1].
They form a special case of von Neumann's [1] general theory of almost periodic
functions in a group.

Every almost periodic sequence is bounded and possesses a mean value
L2
MUk} = lim —— D UR).
AU (k) gl 6_’,2 (&)
The sum or the product of two almost periodic sequences and the limit of a
uniformly convergent sequence of almost periodic sequences are again almeost
periodic.

To an arbitrary almost periodic sequence U (k) corresponds a Fourier series
Uk)~Za,ent, a,= M{U(k) ek,
k

where, of course, the exponents 1, are only determined mod. 2. Different
sequences have different Fourier series.
13~ 632042 Acta mathematica. 71
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The Fourier series of the sum or the product of two almost periodic se-
quences or of the limit of a uniformly convergent sequence of almost periodic
sequences are obtained by performing the corresponding operations on the Fourier
series of these sequences.

The main theorem is the approximation theorem. According to this theorem
the class of almost periodic sequences is identical with the class of sequences
which are the limit of a sequence of exponential polynomials

;P g
1, k

p
Up(k)z Z a;”) e
n=1

converging uniformly for all integers £. For a given almost periodic sequence
these exponential polynomials may be chosen with exponents among the exponents
A, of the sequence.

51. A necessary and sufficient condition that a sequence U (k) should be
almost periodic with exponents from a given modul M containing the number 2z,
is that to any e¢>o0 correspond a finite set of numbers ,,..., dx in M and a
number 7>o0, such that every integer x satisfying the conditions

I
.. mod. 2 7
[ixx] =g

is a xyle).t

From this follows: If U(k) is almost periodic with exponents from a given
modul M containing the number 27, and if ¢ is a number with the property that,
for some &> o0, all x =xy(¢) satisfy the condition

cx=0 mod. 27,
then ¢ belongs to M.

52. The almost periodic sequence U (k) is periodic with the (integral) period
» >0, if and only if its exponents belong to the discrete modul M == h%’ ,

where h runs through all integers. The Fourier series is then a finite sum. The
sequence is limit periodic, which means that it is the limit of a uniformly con-
vergent sequence of periodic sequences, if and only if its exponents belong to
the modul M ={r2x}, where » runs through all rational numbers.

' As previously mentioned (see the footnote on p. 145) the set of integers x satisfying the
conditions |A, x| =4, ..., |Ayx]| = 5 (moed. 27), where >0 and 4,,.. ., Ay are arbitrary real numbers,
is relatively dense.
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In the sequel results will be obtained regarding almost periodic sequences
with exponents from a quite arbitrary modul containing the number 2w. These
results will be obtained by a reduction to two special types of moduls which will
now be considered.

We first consider an arbitrary -everywhere dense modul M containing the
number 27, and consisting of rational multiples of 2. Such a modul may be

written in the form M = lim {hm%’f}, where p;, ps. . . . is a sequence of positive

m-—x m
integers such that pum4y is, for every m, a proper multiple of pm, and ks, runs
through all integers. (We may for example take p,, ps, . . . as a strictly increasing
sub-sequence of the sequence ¢, qs, ..., where ¢gn is the largest divisor of m!

for which qu belongs to M.) If, conversely, such a sequence p,, p,, ... is given,
m

M = lim [hmzj—t} is a modul of the type considered. It is easy to see that a

m—® Pm
limit periodic sequence U(k) has its exponents in M if and only if it is the limit
of a uniformly convergent sequence of periodic sequences, having the periods
Py Psy ... . We express this by saying that U (k) is limit periodic with respect
to the periods p,, ps, ... .

Next we consider the case of a modul M ={g2n+hy}, where y/2x is irra-
tional, and the coefficients g and h run through all integers. Let U (k) be an
almost periodic sequence with exponents from M. The exponents being determined
only mod. 2z, its. Fourier series may be written in the form

U k)~ Zanehrk,

Using that the points { = y%, where & runs through all integers, are everywhere
densely distributed mod. 2, we conclude, by an argument quite similar to that
applied in § 31, that U(k) may be written in the form

(1) Uk) = F(y k),

where F'(f) is a uniquely determined continuous function with the period 2.
Its Fourier series is

F(t) ~2Zan ¢t

If, conversely, I'(f) denotes an arbitrary continuous function with the period 2 «,
the sequence U (k) determined by (1) will be an almost periodic sequence with
exponents from M.
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Asymptotic Distribution Functions.

33. When speaking of an increasing function y = u(s) in an interval
(— o Z)a<o<B(= +x), we shall be interested only in the two functions
u(e—o) and u(o+0), determined as the limits from the left and the right, and
shall in a point of discbntinuity consider the function many-valued, ascribing to
it all values in the closed interval u{s—o)<y=<u(s+0). The notations ¢'(¢—0)
and ¢'(o+0) for the left and right derivatives of a convex function ¢ (o) are in
accordance with this convention, when, correspondingly, the derivative u (o) = ¢’(o)
is considered many-valued in the points where the function is not differentiable.

An increasing function u(s) in the interval — o <o< + w.is called a d¥stre-
bution jfunction, if it satisfies the conditions

lim u(o)=0 and lim p(o)=1.
og—>— G—+ %

We shall here consider only the simple case where there is a finite interval {«, 8}
such that p({o)=o0 for c <« and uf(o)=1 for 6> 8.

For an arbitrary set K of integers we denote by n{E,y,d) the number of
elements of F belonging to the interval y =2z < 4. The two quantities

Q(E)]~=li inf 2u(E,y,d)
2(B)f = e iy

are called the lower and upper relative frequencies of the set E. If ¢ (E)=po(E),
i. e, if the limit

. n(E,y9)
E)= lim —2&7
e(E) (G—)—= O—¥

exists, it is called the relative frequency of E.

If E is periodic, ¢(E) evidently exists, and is equal to the number of elements
of K in a period divided by the length of the period.

Similarly, if A denotes a measurable set on the line —o <¢{<<+o, and
if m(4,y,d) denotes the measure of the part of 4 belonging to the interval
y =z < d, the quantities

(4
(4

T

N _ . inf m(d,7,0)
)J’:hmsup d—y
({F—p) >

~
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are called the lower and upper relative measures of A, and if r(4)=~#(4), i.e. if
the limit
r(4)= lim m{4.y,9)
G- O—7
exists, it is called the relative measure of A.

1f A is periodic, 7(4) evidently exists, and is equal to the measure of the
part of A belonging to a period divided by the length of the period.

For later application we state the theorem on equidistribution mod. 27 of
the numbers yk, where y/27 is irrational, and %k runs through all integers. It
says that, if 4 is periodic with the period 2, and Jordan measurable, then the
set E of all integers k£ for which ¢= y% belongs to 4 has a relative frequency
o(E), which is equal to the relative measure r(4) of 4.

54. A real sequence U(k) is said to possess an asymplotic distribution func-
tion, if there exists a distribution function u(s) such that, for every o,

[L(O'—O)ég( (0))<[9 o)

l o E-@) } o(E* () = ulo +0),

where E—(¢) and E*(c) denote the sets of those integers k& for which U(k)<o
and U (k) <o respectively. The function (o) is then uniquely determined, and
for every continnity point of u(s) the relative frequencies of £ (o) and E*(o)
both exist, and are equal to u(o).

Similarly, a real measurable function F(f) defined for — @ <¢<+ oo is
said to possess an asymptotic distribution function, if there exists -a distribution
function u(s) such that, for every o,

plo—o)=r(d—(0) <“ T

=\ (4-) }§¢"(A+(a)) Zulo+ o),

where A= (o) and A+ (o) denote the sets of those points ¢ for which F'(f)<c and
F(t) < o respectively.

We shall only consider the case of bounded functions U (%) or F(t). The
asymptotic distribution function u(¢) is then, when it exists, of the special type
mentioned above. In fact, if the values of U (k) or F(t) all belong to the interval
{e, 8}, we have u(c)=o0 for 6 <« and uf{e)=1 for ¢ > 4.

It is easily proved that a bounded function U (k) or F'(¢) possesses an asymp--
totic distribution function u(o) if and only if
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(2) ¢(Eto)) = o(E—(a)) for ¢, <o,
or

(3) F(A* o) = r(4™ (o) for ¢, <a,
respectively.

Asymptotic Distribution Functions of Real Almost Periodic Sequences.

55. In our considerations the following theorem due to Wintner [7] is of

fundamental importance.

Theorem 10. Any real almost periodic sequence U (k) possesses an asymptotic
distribution function u(c).

Wintner's proof of this theorem depends on the moment method mentioned
in § 17, and leads to a characterization of the distribution function by means
of moments. We shall only need the existence of the distribution function, which
may be proved quite elementarily as follows.

The sequence U (k) being bounded, it is sufficient to prove that condition (2)
is satisfied. Let z(o) denote the continuous function which is 1 in the interval
0=o0,; and o0 in the interval o = 0,, and is linear in the interval ¢, < ¢ = g,.
Then x(U %) is evidently again almost periodic and possesses therefore a mean
value for which we have

o(Eto) = J)EI{x(U(k))} and Jltl{x(U(/c))} = o(E~(0y).

This implies condition (2).
If U(k) is periodic, the relative frequencies of the sets E—(o) and E+ (o)
exist for all o, and we have

o(E—(@)=u(c—o) and o(E*©®)=u(o-+ o).

86. By the same argument, it may be proved that any real almost periodic
function F(f) possesses an asymptotic distribution function u(o), a theorem which
is also due to Wintner (1], (4], [5]. Here condition (3} has to be proved; this
condition follows with the same choice of y(o) from the relations

F(A*(al))él:l[ {x(F®)} and le{x(F(t))}ér(A*(a,)).
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If F(t) is periodic, the relative measures of the sets A—(0) and A+ (o) exist
for all ¢, and we have

r(A—@)=pnlc—o) and r(4+(©)=ulc+ o)

Since A~ (o) is open and A+ (6) is closed, this implies that both sets are Jordan
measurable for all values of ¢ for which u(s) is continuous.

As pointed out by Wintner, the asymptotic distribution function u (o) of an
almost periodic function is strictly increasing in the interval {a, 8}, where & and
B denote the lower and upper bounds of F(f). In fact, if e <0, <0,=<§, and ¢
denotes a positive number < }(o, — 0,), there exists, by the continuity of F(3),
an interval |t —{,| <4 in which ¢, + ¢ < F(f)<<oy,—eé. For an arbitrary z=1p(e)
we therefore have ¢, < F() <o, in the interval |¢ + v —f,|<d. The set of these
numbers 7 being relatively dense, we see that the two sets A~ (0,) and A+ (o,) differ
by a set of positive lower frequency, whence it follows that r(4*(s,) < r(4~(0y),
and thus that u(o, — o) < u{o; + 0).

Conversely, an arbitrary distribution function u(s) for which there exists an
interval {e, 8} such that u{o)=o0 for ¢ <« and p(o)=1 for ¢ > g, and u(o) is
strictly increasing in the interval {e, 8}, is the asymptotic distribution function
of a real almost periodic function F(f). We may even choose F(t) as a periodic
function with a prescribed period p. In order to see this, we consider the in-
-verse function ¢=H(y) of y=u(0), which is continuous for o<y<1, and hence
also in 0<y=<1, when we put H(o)=c¢ and H(1)=8. The function F(f) defined
ino=<t=ip by F(t)=H(t/1p) is now extended to an even function F(t) with
the period p, defined for all ¢; this function will then also be continuous and
evidently possesses the asymptotic distribution function u(o).

57. For later application we notice that if F(t) is a real continuous funec-
tion with the period 2=, and if y/2~ is irrational, then the almost periodic
sequence U (k)= F(yk) (see § 52) has the same asymptotic distribution function
n(o) as F(2).

This follows immediately from the equidistribution of the numbers y% mod.
27, which shows that, for all values of ¢ for which the sets A—(¢) and A (o)
are Jordan measurable, the relative frequencies of the sets E~(¢) and E* (o)
exist and are determined by

e(E~@)=r(4d—@)=u(c—o) and o(E*(©)=r(d*©0)=uloc+ o).
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58. We now return to the consideration of almost periodic sequences and
shall first prove the following theorem.

Theorem 11. The asympiotic distribution function u(c) of a real almost periodic
sequence U(k) is constant in an interval (ag, 8), if and only if U(k) does not take
any value from this enterval.

In this case the constant value of u{s) in the interval (e, 8,) is a rational
number r.

If the exponents of U(k) belong to a given modul M containing the number 2 r,
the number 271 also belongs to M.

If U(k) does not take any value from the interval (e, S,), the two sets
E*{e) and E~(8) are identical. Hence ¢(E*(ap) = ¢(E~(8,), and therefore
uley + 0) = u(8,—o), which shows that u(o) is constant in the interval (e, 5).

If U(k) takes a value o, from the interval (a,, ), i.e. if there exists an
integer k, such that U (k,)=ad,, we choose o, and o, such that ¢,<o,<6,<o,<g,.
The almost periodicity then implies the existence of a relatively dense set of
numbers % for which o, < U (k)<o,. The two sets E—(s,) and E* (,) differ there-
fore by a relatively dense set, from which it follows that ¢(E*(0)) < ¢(E—(gy)
and hence that u(o, —0) <u(o, + 0), which shows that u(s) is not constant in
the interval (e, 8,).

We now assume that U (%) does not take any value from the interval (a,, 3,)-
If we choose & < g, —a, it is then obvious that any x =xy(¢) must be a period
for the set E+(a,). Now E—(s)=E+*(a,) for every o in the interval (a,, S).
Hence u(o) =¢{E— (o)) must be a rational number having the dengminator x.
This rational number being denoted by r, we have therefore for every x=xyle)

2rnrx=0 mod. 2x.
If the exponents of U (%) belong to a given modul M containing the number 2 7,

this shows (see § 51) that 2zr belongs to M.

59. We shall now give a complete characterization of those distribution.
functions pu(o) which may occur as the asymptotic distribution function of a real
almost periodic sequence U (k) with exponents from a given modul M containing
the number 27z. By Theorem 11, a necessary condition is that the values of
@ (o) in the constancy intervals, multiplied by 2z, belong to M.

If M is discrete and hence of the form M ={h2?n }, where p is a positive

integer, and % runs through all integers, so that the question is about periodic
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sequences U (k) with the period p, the answer is obvious. The distribution func-
tions which may occur are then all step-functions whose values in the constancy
intervals, multiplied by 2 7, belong to M. The points of discontinuity are deter-
mined by the finite set of values taken by U(k).

The only case of interest is therefore the one in which M is everywhere
dense. Regarding this case we shall prove the following theorem.

Theorem 12. A distribution function p(o) is the asymptotic distribution function
of a real almost periodic sequence with expoments from a given everywhere dense
modul M containing the number 2 m, if and only 1'f there exists an interval {e, 8}
such that u(e)=o0 for c<a and ulo)=1 for o> f and the values of u(o) in the
constancy intervals are all rational and, multiplied by 2, belong to M.

The necessity of the conditions has already been proved, and we therefore
have to prove their sufficiency. We begin by reducing the problem to some
special cases.

(i) If the rational multiples of 27 belonging to M form an everywhere dense
modul, we may replace M by this sub-modul, which (see § 52) is of the form
"}imwj hmzpl}, where p,, ps, .. . i8 a sequence of positive integers such that pm,

is for every m a proper multiple of pm, and hy, runs through all integers.
(ii) If the rational multiples of 2s belonging to M form a discrete modul,

this sub-modul has the form {h% } A distribution function u(o) satisfying the

conditions of the theorem may then be written in the form

(4) u(o) =§,(u;(0> + ot pplo)),

where each of the functions u,(0), ..., up(c) also satisfies the said conditions,
but has no constancy intervals besides those where it is o or 1. Hence these
functions satisfy the conditions of the theorem corresponding to the modul ob-
tained from M by multiplying all elements by p. Now it is easily proved that
a sequence U (k) is almost periodic with exponents from M if and only if each
of the sequences

Uk)=U(1 + kp), ... Uplkl)=U(p + kp)

is almost periodic with exponents from this new modul. On the other hand,
the asymptotic distribution function u(o) of U(k) is determined by (4), when
#:(0), . . ., up(o) denote the asymptotic distribution functions of U,(%), ..., Up(k).



202 Borge Jessen and Hans Tornehave.

This implies that we may replace M by the new modul, which amounts to as-
suming p=-1. As M is by assumption everywhere dense, it contains a number y
such that /27 is irrational, and we may therefore finally replace M by the sub-
modul {g2n + hy}, where g and h run through all integers.

60. We first consider the case M = lim {hm %t} That U (k) is almost

m-—> m
periodic with exponents from M then means (see § 52) that U (k) is limit periodic
with respect to the periods p,, ps,.... The following construction is an adapta-
tion from Buch [1], [2].
Let 0= H(y) denote the inverse function of y=u (o). It is defined for
o=y=1, and its discontinuity points, multiplied by 2w, belong to M. For every
m we consider the p, intervals

I, g, =y é-q—ﬂ’ m=1,..., Pn,

into which the interval o=y =1 may be divided, and the p, classes of residues
mod. pm, into which the set of all integers & may be divided. Between these
intervals and classes of residues we establish for each m a one-to-one correspond-
ence in such a manner that if E, ,, denotes the class of residues corresponding
to the interval In ,,, the classes of residues En.1,4,,, corresponding to the
sub-intervals Imi1,q,,, Of In,, are just those which are contained in E, ,.
Together with the intervals In o, we consider the intervals

I, gy H(g'"——~I + o) éaéﬂ(q—m—o)-
24 Pn
Denoting by d, the maximum of the length of Jn o,, Wwe evidently have dn—o0
as m —> o.

Now every integer % belongs to a definite sequence of classes of residues
Ky, g, 2 k3,4, > - . To this sequence corresponds a definite sequence of intervals
I 4,213, 4,>--- and hence a sequence Jy, 4 2542 - converging towards a
definite point U (k). We shall now prove that the sequence U (k) thus defined
satisfies the conditions of the theorem.

We first notice that, as U(k) belongs to Jy 4, when % belongs to Fn,,,,
we have '

U+ %) — Uk)| < 0n
for all %, when x is an arbitrary multiple of pm. Thus U (k) is almost periodic
with exponents from M.
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If, further, for an arbitrary o,

’rm%l<,u(a~o)__§ﬁ and "< ulo+o) <,

Pm DPm P y

where 1 and sm are integers, then

D En g E0)= 3, En,q, and 3 Em g, < E*(0)= 3 En,q,

Im=<Tm Im=rm I <5 ImStm
and consequently

Tm—1 Sm—1

< o(E~ ) <e(F—©@)< " and

Pm Pm Pm

ée(Eﬂw)gz(Eﬂa»g;ﬂ.

This shows that the relative frequencies ¢ (E—(0)) and ¢(E* (0)) both exist and
are determined by

o(E—@)=pnlc—o) and o(Et(@)=uls+ o),
so that U (k) possesses the asymptotic distribution function w(g).

61. We next consider the case M=={g2n+hy}. That U (k) is almost periodic
with exponents from M then means (see § 52) that U(k)=F(yk), where F(¢) is
a continuous function with the period 27.

The function y = u(o) being strictly increasing in the interval where it is
not o or 1, its inverse function o= H(y) is continuous in the interval o<y <1.
Let F(f) denote the continuous even function with the period 27z for which
F(t)=H (t/n) in the interval o<t{<zw. Then F(f) has the asymptotic distribution
function u(o) and, by § 57, the sequence U (k)= F(yk) therefore also has the
asymptotic distribution function u(o).

The sets A~ (¢) and A" () being here Jordan measurable for all g, it follows
from § 57 that the relative frequencies of the sets E~ (o) and E* (o) exist for
all o, and are determined by

elE~@)=ulc —0o) and e¢{E*(@)=uls+ o)
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Detailed Discussion of the Distribution for a Given Absecissa.!

62. Let M denote once more an arbitrary modul containing the number 27,
and let ¢ be an arbitrary number. We shall then give a complete characterization
of those sets of six numbers which may occur as the six numbers in the inequa-
lities
e(E* ()

nlo—o)<e(E-(0)= { S (E- )

} <o(Et©@) = uls+o0),
corresponding to an almost periodic sequence U (k) with exponents from M.

27t

If M is discrete, and hence of the form M ={h—p—}, so that the question

is about periodic sequences U (k) with the period p, the answer is obvious. In

this case p(oc—o0) and u(o + o) are integral maultiples of Il’, and the relative

frequencies ¢(E—(0)) and ¢ (E* (o)) both exist and are, as has already been men-
tioned, equal to u(e—o0) and u(o+0) respectively. If, conversely, f/— and f* are

given integral multiples of fo’ for which o=<f~ =< f* =1, there exists a periodic
sequence U (k) with the period p, for which
0(E—@)=pulc—o)=f— and o(E*(@)=ulo+0)=f".

As pointed out in §§ 60 and 61, the sequences U (k) there constructed also
have the property that the relative frequencies ¢(E—(6)) and ¢(E *(0) exist for
every ¢ and are equal to u(oc — o) and u(s + o).

In the case of the analogous problem for real almost periodic functions F (t)
of a real variable, where we are concerned with the inequalities

r(4* )

A~ @) }é 7(A* ) < ulo + o),

ple—o)= z‘(A—(a))é{
it was shown by Bohr [11] by an example that the relative measures r (4~ (0))
and r(A*(0)) need not exist. By a further elaboration of the method there applied®
we shall now prove the following theorem.

! The results of this section are used only in Chapter V.

* Bohr's example is a limit periodic function. In extending the construction to functions
with exponents from an arbitrary everywhere dense modul we provide an answer to a desideratum
mentioned by van Kampen [3).
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53

Theorem 13. For arbitrary numbers satisfying the conditions

+

e—é{' }éé* =f+

£

A

and for an arbitrary o,, there exists a real almost periodic sequence U (k) with ex-
ponents from a given everywhere dense modul M containing the number 2 n, for
which these numbers are equal to the corresponding numbers in the inequalities

e (E* (@)

tio,—0) = e(E~(op) = {e (- (@)

} <o(E*(0) = ulo, + o),

if and only if either

(a) o< f— and f* <1,

The necessity of the conditions is obvious, for if, for an almost periodic
sequence U (k), we have u(o,— 0) =0, the set E—(g,) is by Theorem 11 empty,
and hence ¢(E—(o))=¢(E~(0,)=0; and similarly, if u{g,+0)=1, the set E+ (a,)
is the set of all integers, and hence ¢{E* (ap) = ¢(E * (09} = 1.

In our proof of the sufficiency of the conditions we shall restrict ourselves
to case (a). Cases (b) and (c) are treated in a quite analogous way, only more
simply, and case (d) is trivial. We may suppose without loss of generality that

the modul M is of one of the two types lim {hmgpﬂr} or {g27+hy} considered
m

m-—x

above; for any everywhere dense modul M contains a modul of one of these forms.
Finally we may suppose that ¢,= o.

63. We first consider the case M = lim {hmzp—n}. That U(k) is almost

m—> @

periodic with exponents from M then means (see § 52) that U (k) is limit periodic
with respect to the periods py, ps, ... .

For every positive integer » we choose rational numbers with denominators
among the numbers pm

(5) o<s;<o_-;<{

+

n ~ 4 +
_}<r:<sn<l,
n
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such that the sequences {s;}, {r;}, and {r]} are strictly increasing and converge
towards f—, ¢~ and e* respectively, whereas the sequences {7, }, {#}}, and {s}}
are strictly decreasing and converge towards e¢—, ¢t and f* respectively. If
€~ <e*, we choose 7 <r;, which implies #; <y} for all n. If ¢— = ¢, we
obviously have 7, > ¢} for all »n.

As we shall now prove, it is then possible for every » to choose among the
numbers pn a common denominator g» of the numbers (5), as well as periodic
sets of integers
(6) S-<R;c< {{ch Ri < S

)
having the period ¢» and the corresponding numbers (5) as relative frequencies,
such that the sequences {S;}, {R;}, and {R}} are strictly increasing, whereas

the sequences {R;}, {R7}, and {S;} are strictly decreasing, such that, further,

(7) R-SR; according as 7, S 1],
and, finally, such that for every » the following conditions are satisfied:

(i} The number g¢.+; is a multiple of ¢» and %il > 3.

3

(ii) In the interval —1g. <% <1¢n. we have

— = R~ = R— + = R+ = R+
Sn+1_B-n+1—En and Sn+1— Y41 n "

(iii) In the interval 1gn <k < $qn» we have
B ., =R,
(iv) In the interval —2¢. < k <—3}¢n we have

R+ — R+
Rn+1 ’"‘En'

64. We shall prove this by induction.

The definition of ¢, and the sets Sy, By, B}, I—iT, 1—2-,*, and S} in accordance
with the conditions presents no difficulties. We may e.g. for ¢, choose an ar-
bitrary common denominator of the numbers s7, o7, i, 77, 77, and s}, taken
among the numbers p,, and for the sets ST, B, B}, R, B, and S} we may
choose the sets determined by the inequalities o < k< q,a mod. ¢;, where a
denotes s77, 77, r¥, 77, ¥F, and s} respectively.
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Now, suppose that we have defined ¢, and the sets S~

n?

and S, and let for the present g..; denote an arbitrary common denominator

R-, R+ R~ R,

n

of the numbers Spyr Tmrr Trars
pn and satisfying condition (i).
The sets S, , B;, R}, E;, R}, and S} are periodic with the period g,, and

thus consist of classes of residues mod. ¢,. Considered as periodic sets with the

= 7+ .+
Frvp Ty and st chosen among the numbers

period Qn+1 they consist of qu+18,, Qni1t,, Qni1 T,T, Qn17,, Quit '7’;:-, and Qn+i1 S:'
classes of residues mod. gqni; respectively.
- Fig. 2 illustrates the situation in the two cases possible: 7, <y} and #; >}

-n "

The small squares represent the ¢n;1 classes of residues mod. gni: arranged in
Qn41
qn

of residues mod. ¢a, and that each of the sets S

n?

¢ columns and rows in such a way that each column constitutes a class

R;a E:v I_{;z_v E:ﬁ and S;—
consists of all columns to the left of a certain vertical line. These lines are
indicated by a thick stroke and marked with the notation of the set in question.
Further, we suppose (as we may) that the first row contains all classes of resi-
dues mod. ¢ni1 represented in the interval —}¢,=k<1¢,, the second row those
represented in the interval {¢.=<kt<#$q,, and the third row those represented in
the interval —$¢, =kt <—1q..
The sets 8., R, R+ , R

n+1 =41’ =n+1 TPu4D

D+ +
B} o and S} "

period gny1, 1. e. they have to comsist of gnis Spyp T+1Th 0 Qi1 Ty Quar Ty,

have to be periodic with the

qrt177, 5 and guys sf{ﬂ classes of residues mod. gnt+1 respectively. Thus we have
to select the classes of residues mod. gn41 to be added to the sets S;-, B, and B}

n) N
or subtracted from the sets R, RF, and S} in order to form the corresponding

sets S, B, RF , Ry, BY ,, and S, . The number of these classes is
®) Qni1 (877“ —s7), Qn+1 (’-’774.1 — 1), Qn+1 (Z',TH — ),
8

qn+1 (7‘; — ’I_‘;_H), Qn+1 (I_,T ——’)-‘:'+1), and Qn+1(8: — S.,_,*'+1)

respectively. The classes chosen are indicated in Fig. 2 by thick horizontal
strokes connecting the squares in question with the vertical lines indicating the
sets to which the classes have to be added, or from which they have to be sub-
tracted.

In the first row we add to S, all the classes belonging to R — S, and
subtract from S all classes belonging to SJ—E;L. No other changes are made
in the first row. By this we evidently obtain that condition (ii) is satisfied. In
the second row we add to B the classes belonging to R-—R., and, if 7 >17,
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oy < Pk
S £x . 22 zraF
a‘
4’ e
— — | — — a,
-n_> ._'u+
S %5 r 2 zr Al
a4
Q, -

Fig. 2.

we also add to B the classes belonging to R —R}. By this we obtain that
condition (iii) is satisfied. In the third row we subtract from R; the classes

belonging to E;‘ —RY, and, if 77 >r}, we also subtract from E; the classes
belonging to R —R;}. By this we obtain that condition (iv) is satisfied.
The numbers of classes in the first three rows to be added to or subtracted

~ from the various sets are independent of gni1 and therefore certainly less than
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the numbers (8) which are at our disposal, provided gni: is chosen sufficiently
large.

The remaining numbers of classes to be added or subtracted are chosen in

the last q—:lil—-y, rows. The classes in these rows, arranged lexicographically
n

according to column- and row-numbers, are denoted by a,,ay, ..., an (where
N=(qu+1—3¢s). To S, we then add the number of classes still missing, begin-
ning with the first element of the sequence a,, a,, . . ., ay not belonging to S,
and proceeding successively until the required number has been reached. In just
the same way we select the classes which are still to be added to R~ and R,
By the choice of the classes to be subtracted from S} we begin with the last
element of the sequence ay, a,, ..., ay belonging to S}, and move backwards
successively until the required number-has been reached. In just the same way
we select the classes which are still to be subtracted from R} and R

It now only remains to secure that the sets constructed satisfy the conditions
corresponding to (6) and (7), viz.

R+ _
— L0 + +
(9) S;—HC En+lc {*__- CRn+lc Sn+1
n+1
and
n— < + . J—
(10) Ryt1S Byya according as 7 St .

Since 7, 1 = 1':[ 41 according as 7, S 7, it is obvious that these conditions
are satisfied in the first three rows. Now let 4= B denote any one of the rela-
_tions included in (9) or (10). For the corresponding relative frequencies a and b
we then have a<<b. The condition of having 4 < B is obviously that the number
of classes in the first three rows belonging to B but not to 4 does not exceed the
difference between the total number of classes in B and A, which is gn41(b —a).
This is evidently true for all possible pairs A, B provided g,;: is chosen suffi-
ciently large.

65. We now choose a strictly decreasing sequence &, d;, ... of positive
numbers converging towards o, and, denoting by S, the empty set and by S;
the set of all integers, we put

[ —du in the set S7—S

n—1

1

U(k) =1 ©O in the set lim (S:{——S"_)
l dn in the set S} —S;.

14 — 632042 Acta mathematica. 17
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We shall then prove that the sequence U (k) satisfies the conditions of the
theorem.

That U(%) is almost periodic with exponents from M is obvious, since for
every » all integral multiples of ¢, are translation numbers of U (%) belonging
to 2 dn+1.

The asymptotic distribution function u(o) of U (k) is determined by
o for o <—4,
sy for —dn<o<—dnu1
plo)=1"

st for duy1<<o <74

1 for >4,
Hence

u(—o)=lims =f" and p(+o0)=lims5 =f".
The sets £~ {0) and E£*+(0) are determined by
E—(0)=1im 8; and FE*(o)=1limS}.

On account of condition (i) the sequence {g.} is strictly increasing. Condition (ii)
therefore implies that in the interval —!g.=<# < lgq. we have

S =R-=R; and S}=R};=R}
for all m >, and hence
lim §; =limR; =R and lim S} =lim R} = R;.

Sinee ¢, + o, this shows that

(1) E—(0)=limR- and E*(o)=Ilim R}
and hence
(12) R-< E—(o)c B~ and R‘< E+(0)< R}

for all ». Moreover, it is seen that in the interval —}g¢, =<k < }¢. we have
(13) R-=E— (o) and Et(o)= 1-2;‘.

From (11) and conditions (iii) and (iv) it further follows that in the intervals
J=k<3¢, and —§¢. =k <—3}q. we have

(14) E—(0)=R; and R‘=E+(o)

respectively.
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From the relations (12) it follows that for every » we have

1T e(E-0O)Se(E-©0)=7; and rf <¢(E*©)=g(E*©)=F}.

e(E-O)zlimiy=¢",  e(E-©O)=lmi =é,
o(E* ©) =limr} =¢*, e(E* () =lim7t=¢+.

Moreover, it follows from the validity of the relations (13) in the interval
_§Qn§k< %qn that

n(E=©0), —1qn $9s) _ i~ and (E*©0), —$an $as) _ 7
an an

and from the validity of the relations (i4) in the intervals }¢. <%k < $g¢, and

— 8¢, = k <—1%¢. respectively that

n(E—(0), } (]1_:» %qn) =7 and n(E+(©), —§ ¢, —} )
Gn " '

=¥,
*n

Since ¢, ~ o©, we conclude from this that

e(E-O)=¢,  e(Bt0)zet,
(16) :
e(E—o)=ze, o(E+©) = et

From (15) and (16) it finally follows that
e(E-0)=¢", p(E-©)=é", g(EvO)=¢*, g(E*©O)=¢"

66. We next consider the case M={g2x+hy}. That U(k) is almost periodic
with exponents from M then means (see § 52) that U (k)= F(yk), where F(¢) is
a continuous function with the period 2.

The construction of such a sequence U (), satisfying the conditions of the
theorem, will be carried out in close analogy to the preceding comstruction. In
order to make this analogy as clear as possible we shall, for an arbitrary positive
integer p, call the set of integers % satisfying an inequality

< = mod. 2,

where » is an integer, a class mod. p. There exist p such classes, corresponding
to the p intervals

< - mod. 2.
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The limits of these intervals being different from the points y%, it is obvious
that the classes mod. p, taken together, form the set of all integers k. If ¢ isa
multiple of p, each class mod. p consists of ¢/p classes mod. q.

From the equidistribution of the numbers y% mod. 2 it follows that any
class mod. p has the relative frequenecy 1/p.

For every positive integer n we choose rational numbers

-+
(17) o<s;<g~;<{ ’i}<1":<s:<l,
n

- =

such that the sequences {s

1 {r. ), and {r7} are strictly increasing and converge

towards f—, ¢~, and ¢* respectively, whereas the sequences {7}, {#}}, and {s}}
are strictly decreasing and converge towards ¢—, é+, and f* respectively. If
e~ <e¢t, we choose 7, <r}, which implies 7~ <} for all »n. If e~ =¢*, we
obviously have 7 >  for all ».!

As we shall now prove, it is then possible for every » to choose a common
denominator p, of the numbers (17) and two positive integers ¢. and p;, as well
as sets of integers
iag|
Ry

B+ +
< Rn < Sn

S;‘cﬁ;c{

consisting of classes mod. p, and having the corresponding numbers (17) as relative
frequencies, such that the sequences {S;}, {£}, and {B}} are strictly increasing,
whereas the sequences {ﬁ;}, {I—t';‘}, and {87} are strictly decreasing, such that,
further,

— < R+ : Fe<C
R SRt according as i, S,

and, finally, such that for every » the following conditions are satisfied:

(i) The number p; is a multiple of p, and the number p,.: a multiple of

% such that 221> 5.

Pn

(11) gn > Qn——l-fg

! Thus the numbers s, 7, , r: yThs ?,:' , and 8: are chosen just as in the preceding case,
except that now there is no restriction on their denominators.

* This condition must be left out, when n =1, since ¢,_, does not then exist.
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n (En—, —% Qna%qn) L n (R:: —§qa, %qn) .
— <, >Ft
) n n+1 In w41
(iii) B
»Bodgnie) A s 1 St @ .
Qn nt1 n n+l1

(iv) The numbers of the interval —$¢, <k <$g. belong to different classes
mod. p.

(v) In the interval —}¢.=<% <lgq, we have

~,=R- =R- and S} =R} =R’

n+1" =n+l n+1 n+1

(vi) In the interval 1g¢.<k<$q, we have

R- =R

—=n+1- Vn

(vii) In the interval —$¢,<% <—}g. we have

D+ — R+
'Rﬂ-l-l_Eﬂ'

67. We shall prove this by induction.

The definition of p, and the sets ST, R", R, R, R}, and Sy in accordance
with the conditions presents no difficulties. We may e.g. for p, choose an
arbitrary common denominator of the numbers s7, +, ri, 77, 7, and s}, and for
the sets S+, B, Bf, R, R, and S; we may choose the sets determined by the
inequalities |yk| < 7 a mod. 2w, where a denotes s, 17, i, 77, 7, and s; respect-
ively.

Now suppose that we have defined ¢n—1, prn—1, and p, as well as the sets
R, RY, B, BY,and 870

We then begin by choosing ¢, such that conditions (ii) and (iii) are satisfied.
Since

S_.

n?

¢B)=r <1 o(B)=Fr >}

n '-n+1’ n+1?
e (R;:): N P o(Bf)= rh <

this will be the case, if only ¢, is chosen sufficiently large.

Next we choose p; in accordance with condition (i) such that condition (iv)
is satisfied. This is evidently possible.

The sets S, R, B, R, R+, and S consist of classes mod. p, and hence

also of classes mod. p;. Denoting for the present by pn+: an arbitrary common

! For n=1 the numbers ¢, , and pj_, do not exist.
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+
denominator of the numbers s, 17y, 7.1, 7oy 7,1 a0d s, satisfying condition

(i), the situation may again be illustrated by Fig. 2, where the small squares now

. +1 .
represent the pni; classes mod. pn+; arranged in p; columns and i >3 rows in
n

such a way that each column constitutes a class mod. p% and that each of the
sets S, R, R+, R, R}

nt—n’=— B

vertical line. In consequence of condition (iv) we may further suppose that all

and S; consists of all columns to the left of a certain

classes mod. p,+1 containing a number in the interval —}¢.=<% <}g¢. are placed
in the first row, that those containing a number in the interval }¢. <% <$q.
are placed in the second row, and that those containing a number in the interval
—$¢.< %k <—1}q. aré placed in the third row.

The number pn4q and the sets S=,, B, B* . B~ R

wir Baep Bion B B, and 8%, may now
be defined by the same procedure as was applied in § 64, and thus we obtain

that conditions (v), (vi) and (vii) are satisfied.

68. Denoting by S;” the empty set and by S the set of all integers, and
placing s; =0 and s =1, we now consider the two sets

(18) lim 8= ¥ (S —8_-,) and 8§ — th+=2 S, — 8.

1 n=1

AL

Each of the sets S, — S, and S} — 8§} consists of certain classes mod. p,

each of which, in its tarn, correspondé to an interval

(19) ’t-—v—— <X mod. 2 7.

The sums of the intervals (19) thus corresponding to the sets (18) will be denoted
by A and B. These sets A and B are evidently disjunct open sets with the
period 27, and their relative measures are

(20) r{4) = i(s;—s;‘_,)=f— and »(B Z( d s =1—f*

An integer k belongs to lim S~ if and only if y% belongs to 4, and to S;—lim S}
if and only if y% belongs to B.
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We now define a real function F(f) with the period 2= as follows: If ¢
belongs to one of the intervals (19) conmstituting 4 + B, and if 0 denotes the
shortest distance from ¢ to the limits of the interval, we put F(f)=—¢ or F(t)=¢
according as the interval belongs to 4 or B. If ¢t does not belong to A+ B, we
put F(t)=o0. Then F(f} is evidently a continuous function, and we shall now
prove that the corresponding sequence U (k)= F(yk) satisfies the conditions of
the theorem.

By § 57, the sequence U (%) has the same asymptotic distribution function u (o)
as F(f). The sets A—(0) and A+ (0) in which F(t) < o and F(f) = o respectively
are, however, the sets A and the complementary set of B. Using (20), we there-
fore find

p(—o)=rd—©)=f" and u(+o)=r(dt@)=f*.

The sets E—(0o) and E *(0) are determined as the sets of all integers % for
which F(yk)<o and F(yk)<o respectively, i. e. for which y% belongs to the set
A and the complementary set of B respectively. Hence

E—{0)=1lm S, and E*(0)=1lim S}.

On account of condition (ii) the sequence {g.} is strictly increasing. Condition (v)
therefore implies that in the interval —}¢,. <%k <}¢. we have

Sy=R,=R; and S;=R}=R:
for all m > n, and hence
lim Sy =HmR- =R~ and lim 8} =LmR}=R;.

Since ¢,~ oo, this shows that

(21) E—(0)=1limR; and E*(o)=limR}
and hence
(22) R-< E—(o)= Ry and Ric E+(0)< R}

for all ». Moreover, it is seen that in the interval —}¢,=< %k <1¢. we have
(23) R-=E—(o) and E+(o) =R;‘.

From (21) and conditions (vi) and (vii) it further follows that in the intervals
tgn=<k<$q. and —$g.= %k <—1}q, we have

(24) E—(o)= E; and Bf=E+(o)

respectively.
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As in § 65, it follows, from the relations (22), that
e(E~0)=¢, e(E-()=é-, e(E*0)=ze*, o(E*O)=sér.
Moreover, it follows from (23), (24), and condition (iii), that

n (E—(©0), —3qa 1¢a) n(E*©), =+ g 3¢) _

0 < T’T+17 q" > r:—*—l’
n(E—©), $¢n §ga) _ . n(E+©), —3gn —3qa) _ .
@ > Taip o < Tiir

Since g, —®, we conclude from this that

e(E-o)=e~, e(E-0)zé™, o(E*0)=¢*, eo(EtO)zet.
Thus it is proved that

e(E-)=¢", e(E~©0)=¢", e(E*©)=¢*, eo(E*O)=2¢",
which completes the proof of the theorem.

69. If the real almost periodic sequence U (k) does not take the value o,
i.e. if U(k)=o for all %, the two sets E—(s) and E* (o) are identical and may
be briefly denoted by E(s). Our considerations are then restricted to the four

quantities _
n(o—o)<¢(Ew@)=e¢(EW0)=p(s+ o).

Regarding this case we shall prove the following theorem.

Theorem 14. For arbitrary numbers satisfying the inequalities
f T=eseé g.f +7

and for an arbitrary o, there exists a real almost periodic sequence U (k) with
exponents from a given everywhere dense modul M containing the number 2 rt, which
does not take the value o, and for which these numbers are equal to the corresponding
numbers in the inequalities

# (g, —0) = ¢(E(0y) = o(E(0p) = p(o, + 0),
if and only if either

(a) o<f~ and ft<1,
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The necessity of the conditions is obvious. In the proof of the sufficiency
we shall restrict ourselves to case (a), the two other cases being simpler. We
may suppose without loss of generality that the modul M is of one of the types
lim {hmz-l-t} or {g2n+ hy}, and that ¢,=o.

m—o p-m

70. We first consider the case M = lim {h,,.z—n}

m—® Pm
Following the procedure of § 63 we choose, for every positive integer =,
rational numbers with denominators among the numbers pm,

(25) O< s <m<Ta<sf <1,

such that the sequences {s;} and {rn} are strictly increasing and converge towards
S~ and ¢ respectively, whereas the sequences {7,} and {s}} are strictly decreasing
and converge towards ¢ and f* respectively.

For every = it is then possible to choose among the numbers p, a common
denominator g, of the numbers (25), as well as periodic sets of integers

S8-<=R,c R.< 87

having the period ¢.» and the corresponding numbers (25) as relative frequencies,
such that. the sequences {S;} and {R,} are strictly increasing, whereas the se-
quences {R,} and {S}} are strictly decreasing, and, further, such that for every

n the following conditions are satisfied:

(i) The number ¢u+: is a multiple of ¢, and %—ﬂ> 2.

n

(ii) In the interval o < k<gq, we have

S =E,.+1=En+1=S+ =I_?'n

n+1 n+1

(iii) In the interval —¢,< %k <o we have

S, =£n+1=§n+1 = S,TH:I—{n-

n+1
The proof that these conditions may all be satisfied is quite analogous to the
proof in § 64.
We now define U(k) as in § 65. Then U (k) is again almost periodic with
exponents from M, and satisfies the conditions

u(—o)=f= and u(+o)=f*.
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Further, the sets £—(0) and E* (o) are again determined by
E~(0)=1im S, and E*(0)=1limS}.

On account of (i) the sequence {g.} is strictly increasing. From (ii) and (iii) it
therefore follows that in the intervals 0 =% < g, and —¢.< %k <0 we have

8;=8r=R, and S;=05;=R.,
respectively for all m >0, and hence that in these intervals
E-(0)=E*(0)=R, and E—(0)=E*(0)=R,

respectively. Since ¢,— o, this shows that E—(0)= E *(0), i. e. U (k) does not
take the value 0. Introducing the notation E(0), we have therefore in the inter-
vals o=k <gq, and —g.=k <o

E(o)=R, and E(o)=R,
respectively, which implies that
R.<E(o)< R,

for all n. From these properties of E (o) it follows that

e(E©)=¢ and o(E()=e¢

71. We next consider the case M = {g2nr + hy}.
Following the procedure of § 66 we choose, for every positive integer #,

rational numbers

(26) 0< sy <1 <Ta<s} <1,

such that the sequences {s_’} and {r.} are strictly increasing and converge towards
S~ and ¢ respectively, whereas the sequences {7.} and {s}} are strictly decreasing
and converge towards ¢ and f* respectively.

It is then possible for every » to choose a common denominator p, of the.
numbers (26) and two positive integers ¢. and p», as well as sets of integers

S;< Boc Ro= 8}

consisting of classes mod. p, and having the corresponding numbers (26) as rela-
tive frequencies, such that the sequences {S;} and {R,} are strictly increasing,
whereas the sequences {R,} and {S}} are strictly decreasing, and, further, such
that for every » the following conditions are satisfied:
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(i} The number p2 is a multiple of p, and the number pp+1 a multiple of

p4 such that 2242 > 5.

Dn

(ii) dn = Qn—.

(iii) n (@nq’ o, qﬂ) < a1 and n (Rnyq— Gny 0)

> 7_'n+1-

(iv) The numbers of the interval —g¢, <k <g, belong to different classes
mod. p;.

(v) In the interval 0 <k < g, we have

SyT+1 = RIH—I = EH—I =S¥

— n+1

E"'
(vi) In the interval —q, < k<0 we have
Sii1=LBniy= Rug1= Sto= R..

The proof that these conditions may all be satisfied is quite analogous to the
proof in § 67.

We now define U(k) as in § 68. Then U (k) is almost periodic with exponents
from M and satisfies the conditions

u(—o)=f~ and u(+o)=f".
The sets E—(o) and E *(0) are again determined by
E-(0)=1lim 87 and E*(0)=lim 8.

On account of (ii) the sequence {g.} is strictly increasing. From (v) and (vi) it
therefore follows that in the intervals o<k < ¢, and —¢.=< k <o we have

Sz=8+=R, and S =8}=R,
respectively for all m > », and hence that in these intervals
E~{(o)=E*(0)=R, and E—(0)=E*(0)=R.

respectively. Since g¢,— o, this shows that E—(0o)= E*(0), i. e. U{k) does not
take the value o. Introducing the notation E(0), we have therefore in the
intervals 0<%t <q, and —¢, =k <o

E()=R, and E(o)=R.
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respectively, which implies that
R,c E(o)< R,

for all ». From these properties of E(0) together with (iii) it follows that

e(E©)=¢ and e(E@©)=2é.

This completes the proof of the theorem.

72. By means of Theorem 13 we can easily prove an analogous theorem on
real almost periodic functions F'(f), viz. that for arbitrary numbers satisfying the

conditions
,+

(27) f*gg—g{’i_}gﬁgfh

e

and for an arbitrary o, there exists a real almost periodic function F(t) with
exponents from a given everywhere dense modul M, for which these numbers
are equal to the corresponding numbers in the inequalities

(4% (oy)

(28) ulo,— o) = r{d—gy) = { (A= (o0)

=R

} < #(4d*6p) = ulo, + 0),

if and only if either

The necessity of the conditions is again obvious. In the proof of the suf-
ficiency we may suppose that M contains the number 27, since otherwise we

may replace the desired function F'(t) by F (Ef t), where y =0 is a number of M,

at the same time multiplying the elements of M by 2—7?

The above conditions being the same as in Theorem 13 there exists a real
almost periodic sequence U (k) with exponents from M, for which the numbers
(27) are equal to the corresponding numbers in the inequalities

(E * (o)

(29) 1oy —0) < o(E—(0p) = {%(E*(a )

}é@(E“(Go)) < ulo, + 0).
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The function I'{f) which is = U (k) when t=1% and =g, when {=% + } and is
linear in all intervals 2 <¢=<%+} and k+1=<¢=<k+1, is then (by §§ 5 and s51)
also almost periodic with exponents from M, and for this function F(t) the
numbers in the inequalities (28) are easily seen to be equal to the corresponding
numbers in the inequalities (29) for the sequence U (k).

If the real almost periodic function F(¢) takes the value g, only in an
enumerable set (or, more generally, in a set of relative measure o) we have

r{A—@0p) =1r(d*0y) and 7(A(0p)=7(4+(ay).

Using Theorem 14 we find that for arbitrary numbers satisfying the conditions

fT=EesésfH,

and for an arbitrary o, there exists a real almost periodic function F(f) with
exponents from a given everywhere dense modul M containing the number 2,
which takes the value g, only in an enumerable set, and for which these numbers
are equal to the numbers

1(oy—o0), r(d=(0y) = r(d*(0y), 7(Ad loy)=7(A"(ay), plo, + 0),
if and only if either
(@) o<t f—~ and f*+ <1,
b)) o=f"=¢=¢ and f* <1,

or cjo<f~and e=é=f*=1.

o

CHAPTER 1IV.

Analytic Almost Periodic Functions Connected with Almost Periodic
Sequences.

73. The application of the results of the preceding chapter to analytic almost
periodic functions will depend on the consideration of functions f(s) almost periodic
in [—o, + o] possessing on each line t=£%, where %k is an integer, one simple
zero sp= U(k) + ¢k belonging to a finite vertical strip, but otherwise different
from zero. The zeros of such a function f(s) are therefore determined by a
bounded sequence U (k).
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From these conditions it follows that the Jensen function ¢(o) of the function
is linear in the intervals (— o, «) and (3, + x ), where ¢ and 8 denote the lower
and upper bounds of U (%), and further that ¢’(o,) — ¢'(0;) =27 for o,<e and
0,>3, since the relative frequency H (s, 0,) of zeros is then 1.

We begin by proving the following theorem.

Theorem 15. The points sp=U(k)+1¢k, where U(k) 7s a real bounded sequence,
are the zeros of a jfunction f(s) almost periodic in [— o, + ®| f and only if U{k)
is almost periodic.

They are the zeros of a function f(s) almost periodic in [— o, + ®] with
exponents from a given modul M if and only if M contains the number 2x and the
exponents of U (k) belong to M.

For a given sequence U(k) the corresponding function f(s) may be chosen such
that its Jensen function (o) is constant for o< lower bound U(k).

The proof is, in the main, an adaptation from Buch [1], [2].

74, We first prove that the conditions are necessary. Let, therefore, f(s) be
a function of our class with the zeros sy = U(k)+7k We shall then prove that
U(k) is almost periodic.

According to our assumption the zeros belong to a finite strip {e,3}. For
an arbitrary positive ¢ <1 there exists by Theorem 3 (ii) a number m> o, such
that | f(s)] = m in the part of the strip {« —1, 8+ 1} which does not belong to
the circles |s — si| <e. From Rouché's theorem it therefore follows that, if 7 is
a translation number of f(s) belonging to m and the strip (e — 1,8+ 1), the
function f(s+7¢7) possesses a zero in each of these circles. Thus z differs by less
than ¢ from a translation number » of U(%) belonging to e. This proves that
U (%) is almost periodic.

If the exponents of f(s) belong to a given modul M, this modul must contain
the number 27, since ¢’(s,) —¢'(0,) =27 when o,<e¢ and ¢,>p. Further, since
an arbitrary integral translation number x of f(s) belonging to m and the strip
(e—1, 8+1) is a translation number of U (k) belonging to ¢, it follows from §§ ¢
and 51 that the exponents of U(k) belong to M.

75. Next we prove that the conditions are sufficient. Let, therefore, U (k)
be a real almost periodic sequence. We shall then prove the existence of a
function f{s) almost periodic in [— o, -+ ] with the zeros sp=U(k)+7% Since
U (%) is almost periodic, it is bounded, say e < U (k) < 8.



Mean Motions and Zeros of Almost Periodic Functions. 223

The infinite product

(1 Fule) =T (1— o=
k

is for an arbitrary ¢ > o uniformly absolutely convergent in every bounded
domain in the s-plane. Since 1 — &7 has a double zero at s=o0 and no further
zeros in the strip (—Vqn, Vqn), it is seen that, when V_q_7t>ﬂ—a, the function
fo(s) has double zeros at the points s;, and has no further zeros in the strip
8—Vqm, «+Vgan).

We shall now prove that f,(s) is almost periodic in [, + ®]. Let x denote
a translation number of U (%) belonging to a given &> 0. Introducing s + ¢x in
(1) instead of s, and at the same time replacing % by % + x, we obtain

Sols+ix) =[] (1—eleri*=m+ae) = T (1 — el —o—2"9),
k k

where for the sake of brevity we have put s+ — (st+ix)= U(k+x)— U(k) =&,
so that || <& for all 2. Hence'

Sols + ix) — fols) = 2 (et—a—e®a — ole—#%9) K (s),

11

K, (S‘) = H (I — g(s—sk_“k)'/q) 1‘[ (I _ e(“‘k)’/q)_

k<l k>1

where

Since sp+é&r=s1+»— ¢x, each of these factors K(s) is a product of the form

I et

k
where each st lies on the segment e« <o <p,t=*%, and where the dot indicates

that one factor is missing. This implies, however, that for every finite strip (o, 8,)
there exists a constant K, independent of ¢ and x, such that

| Kifs)| = K
in the strip (e, 8,) for all I. In the strip (¢, ;) we therefore have

I‘fq (3+ ix)-——fq (8) I é KZ ' e(s—sl — il 6(8— 81)2/9| é Le’
11

! By the formula

a1 o= @8[] o [] 8
k k 4

k<l k>1

valid for arbitrary convergent produects,



224 Borge Jessen and Hans Tornehave.

where L is independent of ¢ and x. Thus x is a translation number of f,(s)
belonging to L& and the strip (a;, 8,), and this proves that f;(s) is almost periodic
in [—o, +®].

If the exponents of U (k) belong to a given modul M containing the number
2m, it follows from the preceding proof, if we use 8§ o and 51, that the ex-
ponents of f,{s) belong to 3.}

76. We now consider the sequence of functions f,(s), where q= @ + 1,

@+2, ..., the number @ >0 being chosen such that V @ x>pg—«. Each of the
functions

(2) fq+1(8)

Sals)

is then (§ 10) almost periodic and =0 in the strip [8—Vgn, « +Vgn] and has
therefore, by Theorem 8, in this strip the form

Ja+1(8)

9T — e‘.q‘g+gq(s)’
where ¢; denotes a constant and g,(s) is almost periodic in [8 —Vgmx, a +V qn].

It is therefore possible to choose an exponential polynomial %,(s) such that

Satr(s)

I
— et — < —

Jals)

in the strip @—V(g—1)z. « +V(¢—1)n).
We now consider the sequence of partial products of the infinite product

fq+1 (-9)
Sals)

For every finite strip (e,, 8,) containing the strip («, 3) these partial products are,

%% x-—-hq(s)'

Jo+1(s) ﬁ

7=Q+1

from a certain stage, regular and almost periodic in (e,, 8,) and have double zeros

at the points s; but otherwise no zeros in the strip (@, 8,). Moreover, the sequence

' In fact, by § 51 there correspond to the given £ numbers 4,,...,Ay in M and an 7, such
thut any integer x satisfying the conditions |, x| =4,..., |iyx2|= 9 (mod. 27 is a ;) and
hence a qu (L&; «,, 8,). Now, if & is sufficiently small, any real number t satisfying the conditions
lizl=4,.., Azl =4, and |227| < 4 (mod. 27) will differ at most by /27 from an integer x
satisfying the previous conditions. On account on the uniform continuity offq (8) in (et;, 8,) (which
is a consequence of the almost periodicity) we may therefore choose § such that any t satisfying
the latter conditions is a ‘l'fq<2LE;(!,,ﬂ‘). Since M contains 27 this shows, by § 9, that the

exponents of fq(s) belong to M.
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is uniformly convergent in (¢, 8;). The limit function p(s) is-therefore regular in
the whole plane and almost periodic in [—%, + |, and has double zeros at the
points sz, but no further zeros. An arbitrary branch f{s) = Vpls) of the square
root of p(s) is therefore (§ 10) almost periodic in [—oo, + o] and has the zeros s.

More generally we may put f(s)=Vp(s)e**, where u is an arbitrary real
number,

If the exponents of U(k) belong to a given modul M containing the number
27, the exponents of the functions f,(s) will, as has already been mentioned,
also belong to M. The modul M then also contains the exponents of the funec-
tions (2) and therefore also the constants ¢, and the exponents of the functions
gqls) oceurring in (3). It is therefore possible to choose the exponential polyno-
mials A, (s} with exponents from M. The modul M then also contains the exponents
of p(s). We may therefore (§ 10) choose the number u in M such that the
exponents of f(s)= Vp(s)e** also belong to M.

Finally we may choose f(s) such that its Jensen function ¢ (o) is constant
for ¢ < lower bound U (k). For, if this property is not obtained by the first
choice of u, we replace f(s) by f(s)e—°%, where ¢ denotes the constant value of
¢’ (6) for o< lower bound U (k).

This completes the proof of the theorem.

77. Now let f(s) denote an arbitrary function almost periodic in [—, + ®},
possessing on each line t{=F%, where £ is an integer, one simple zero sy== U (k) ++k
belonging to a finite vertical strip, but otherwise different from zero, and sup-
pose that ¢(o) is constant, i. e. ¢'(6)=o0, for ¢ <= lower bound U(k). Then
¢'(6)=2m for ¢ > 8= upper bound U (k). Hence the increasing function

wlo)=;-¢(0)

satisfies the conditions u{s)=o0 for o< e and u(o)=1 for ¢ >p, and is therefore
a distribution function.

For an arbitrary o we denote by E—(o) and E + (o) the sets of those values
of k£ for which U(k)<<o and U(k)=o respectively. Then, if o,<e and ¢,>p are
chosen such that ¢;<o0<o,, the lower and upper relative frequencies of zeros of
Sf(s) in the strips (oy, 0) and (o, 0;) are determined by

E(GI) G) = Q_ (E‘ (G))a
H(o,0,) =1—0(E* @),

15 — 632042 Acta mathematica. 77

E(le 0) = Z) (E* (0)))
H(s,a,) =1—0(E*(0).
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On the other hand, since, by § 46, ¢* (0,) and ¢ (o,) exist and are equal to 0 and
27 respectively, it follows from § 42 that

1 - 1

Q(Uh 0') = EC_ (0)’ H(O’l, 0) = ;; o (0)7
1 — 1
_}_1(0‘50'2)=;r(2”—-6+(0))» H(O’,O'Q)ZZI:‘(ZH—(‘+(G)).
Hence
) =eE0),  =i"(0) = JE~W),
Lot = + ¢ N
50" (0) = e(E* (o), 56" (0) = elE ).

This implies by Theorem 7 that
1, . fe
- — < <J=
> glo—o)se(E (0))-_:15

which shows that u(o) = ,—’I;q)' (o) is the asymptotic distribution function of U (k)

Thus we have proved the following theorem.

Theorem 16. If a jfunction f(s) almost periodic in [—,+ o[ has the zeros
sp=U(k) + ik, belonging to a finite vertical strip, and if its Jensen function @(o)
7s constant for o < lower bound U (k), then the sequence U (k) has the asymptotic

distribution function u(c) = ;—nw'(a).
For an arbitrary o the lower and upper, left and right mean motions of fls),
multiplied by i’ are equal to the lower and upper relative frequencies of the sets

E~(6) and E+* (o) of those values of k for which U (k) <o and U(k) =< o respect-
wely, 1. e.

7
S
l
oy
=
i
<
I
5
)
I

—é (E_ \0>),

— ¢t (o) =e(E~ ), 2—6* (o) =2 (&£ (o).
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CHAPTER V.
Detailed Discussion of the Mean Motions on a Given Vertical Line.

78. By Theorem 7 we have for an arbitrary function f(s) almost periodic in
a strip [e, 8] and not identically zero, and for an arbitrary o in the interval (e, g),
the inequalities

'Q

R | ETT
O'

connecting the left and right derivatives of the Jensen function and the four
mean motions at the point o.

1f f(s) is periodic with the period 7p, that is to say, if its exponents belong

QI

to the discrete modul M ={h27;t}, the mean motions ¢~ (o,) and ¢* (g;) exist,

according to § 48, for an arbitrary g, and are equal to ¢’(s,— 0) and ¢'{(g,+0),
which in this case belong to M. Conversely, if d— and d* are given numbers in
M such that d— = d*, and o, is a given number, there exists a periodic function
S (s) with the period zp, for which ¢~ (0,)=¢"(0,—0)=d— and c¢*(o,)=¢ (g, +0)=d*.
If d=d*=d we may take f(s) =¢%*; if d~ < d* we may take f(s) =¢ ¢-% +
+ et e—ai) 1

For functions f(s) with exponents from an everywhere dense modul M we
shall now prove the following theorem.

Theorem 17. For arbitrary numbers satisfying the relations

Q+

(1) d-=¢ _{ }§5+§d+,

4

and for an arbitrary o,, there exists a function f(s) almost periodic in [—o, + o]
with exponents from a given everywhere dense modul M, for which these numbers
are equal to the corresponding numbers in the inequalities

'\’\

(2) @ {0y — 0) = ¢ (o) = { } < ¢t (o)) = ¢ (0, + O).

0|

! For since all zeros of f(s) have the abscissa ¢, the fubnction ¢(g) is linear for ¢ =g,
and ¢ = g,. For ¢ < g, the first term is preponderant; hence ¢’ (¢) = d— for ¢ < ¢,, and therefore
¢’ (6,—0)=d—. For 6>, the second term is preponderant; hence ¢’(6)=d+ for ¢>>6,; and therefore
¢ (6, +0o)=d+.
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If the exponents of an almost periodic function f(s) belong to a given
modul M, the exponents of the function f;(s) = f(ks), where k¥ > o, will belong
to the modul obtained from M by multiplying all numbers by % Further, when
multiplied by %, the numbers in the inequalities (2) will be equal to the corre-
sponding numbers formed for the function f;(s) and the value kg, We may
therefore in the proof of the theorem suppose that M contains the number 2.

When this condition is satisfied, and the exponents of f(s) belong to M, the
exponents of the function f,(s) = e*7%*f(k,s), where %, and k,> o are integers,
will also belong to M, and the numbers in the inequalities (2) will, after multi-
plication by %, and the addition of 2 x#%,, be equal to the corresponding numbers
formed for the function f,(s) and the value k;0,, We may therefore in the proof
of the theorem suppose that

o<d™ and dt<2m.

In this case there exists by Theorem 13 a real almost periodic sequence
U (k) with exponents from M, for which the numbers (1), divided by 2=, are
equal to the corresponding numbers in the inequalities

3) oy —0) < o(E~(ay) = {

By Theorem 15 there exists a funection f(s) almost periodic in [—o, + ]
with exponents from M, which has the zeros IV (k)+ 7%, and for which the Jensen
function (o) is constant for ¢ < lower bound U(k). This function f(s) satisfies
the conditions of the theorem, since by Theorem 16 the numbers (3) are equal
to the corresponding numbers in the inequalities (2), divided by 2n.

79. If the almost periodic function f(s) has no zeros on the vertical line
with the abscissa ¢ the left and right arguments arg— f (o +¢¢t) and arg™ f(o +7t)
are identical. Hence the two lower mean motions ¢~ (o) and ¢* (o) are equal and
may be denoted briefly by ¢(s), and the two upper mean motions ¢—(s) and ¢* (o)
are equal and may be denoted briefly by é(s). Our considerations are then

restricted to the four quantities
@ (c—0) = clo) < élo) = ¢'(0 + 0).

By means of Theorem 14 we find the following theorem regarding this case
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Theorem 18. For arbitrary numbers satisfying the relations
d-=c¢=é=dt,

and for an arbitrary o, there exists a function f(s) almost periodic in [—x, + =]
with exponents from a grven everywhere dense modul M, which has no zeros on the
verttcal line with the abscissa o, and for which these numbers are equal to the
corresponding numbers in the inequalities

@’ (6o~ 0) = ¢loy) = ¢loy) = ¢ (0, + O).

This theorem shows that even if the function f(o,+:¢) has no zeros it need
not have a mean motion.

CHAPTER VI.

Detailed Study of the Jensen Function.

Periodic and Limit Periodic Functions.

80. We shall now consider the problem as to what conditions a function
¢(o) in a given interval (¢,8) must satisfy to be the Jensen function of a function.
Sf(s) almost periodic in [z, ] with exponents from a given modul M. We shall
give a solution of this problem for functions with an arbitrary finite or infinite,
integral or rational base, i. e. for all moduls of the form M={h,u,+ - - + hmtn},
{hyoy + hgpat -}, {romy + - + rmpm}, or {rypy +repet -}

We shall first prove an auxiliary theorem.

Theorem 19. Let M denote an arbitrary modul, and (o) a function in the
interval (e, B), which may be written in the form

9)(0') = 2 @Pn (0');
n=1
where each @.(o) is the Jensen function of a function f,(s) almost pericdic in [a, §]
with exponents from M, and where in any reduced interval (¢ <), <o = g,(< )
the functions @.(0) all vanish from a certain stage. Then, also ¢(o) is the Jensen
function of a function f(s) almost periodic in [a, 8] with exponents from the modul M.
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According to our assumption there exist a number N and a sequence of
intervals (a,, 8,), n=N+1, N+2, ..., converging increasingly towards (e, §), such
that @.(0)=o0 in the interval (as,8:). In (@w+1, f¥+1) We choose a sub-interval
(@, Bx).

By Theorem 8 we have in the strip (as, 8.), where n> N, the representation

Jols) = e,

where g,(s) is almost periodic in [as, fs] With exponents from M. Since log | f.(s)]
is the real part of- g,(s), it follows from the definition of the Jensen function
that the constant term of the Dirichlet series of g.(s) is purely imaginary. We
may therefore choose an exponential polynomial k.(s) with exponents from M,
and likewise with a purely imaginary constant term, such that

| fols)etnt — 1] < =5

in the strip (@n—1, fn—1). The function f.(s) e *»(¥ then also possesses the Jensen
function @.(c¢). Moreover, the infinite product

N ®
FO=T[A6 T flo)ene
n=1 a=N+1
is uniformly convergent in [e, 8. The function f(s) is therefore almost periodic in
le, 8] with exponents from M and has, by Theorem 6, the Jensen function ¢ (o).

81. In the particular case where M is the discrete modul M ={h2;1f }, 80

that we are dealing with periodic functions with the period ¢p, the solution of
our problem is easy.

Necessary conditions of a function @(o) in the interval (o, §) being the Jensen
function of a periodic function f(s) with the period ¢p are, by § 48, that ¢ (o)
is convex and stretchwise linear and that the values of ¢’(0) in the liv-arity
intervals belong to M.

These conditions are, however, also sufficient. In proving this we may, by
Theorem 19, restrict ourselves to the case where (o) is either linear or is com-
posed of two linear pieces. If ¢(o0) is linear, say ¢(0)=co + d, where ¢ belongs
to M, it is the Jensen function of the function f(s) = e*+9, which has the
period ¢p. If @(o) is not linear, say @(o) =c¢,(0c —o,) + d for 0 <0, and @(o)=
=¢y(0c—0p) +d for o= co', where ¢, and ¢, belong to M and ¢, < ¢, it is the
Jensen function of the function e4(*—%+d4 galé—al+d which also has the period ip.
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82. In the case where M consists of all rational multiples of a given number,
so that we are dealing with limit periodic functions, the solution of our problem
is given by the following theorem of Buch [1], [2].

Theorem 20. A function @(o) in the interval (a, f) us the Jensen function of a

function f(s) almost periodic in (e, 8] with exponents from the modul M = {1%:5 },

i.e. of a limst periodic function with the limit period <p, if and only if it satisfies
the following conditions:

(i) It ¢s convex in the interval (e, B).

(ii) The value of @' (o) in any linearity interval of ¢(o) belongs to M.

The necessity of the conditions follows from Theorems 7 and 8. To prove
their sufficiency we may, by Theorem 19, restrict ourselves to the case where
@(o) is linear in two intervals (e, ¢;) and (8, §), and it is then no restriction to
suppose that ¢ =-—w and f=+ .

If @(o) is linear, say ¢ (o) =co + d, the function f(s)=e***? is a solution.
If @(o) is not linear we denote by ¢, and c, the values of ¢'(s) in the intervals
(—»,a,) and (8,,+ ). Then ¢;<c,, Without loss of generality we may suppose
that ¢, = o since otherwise we replace the desired function f(s) by f(s)e %

Further we may suppose that ¢,=2 7 since otherwise we replace f(s) by f (zc_n s),
2

27
Cy

2

M={r2na}; furthermore, the function M(G)Zz_ly_v ¢ (0) is a distribution function,

at the same time multiplying the elements of M by - We then simply have

for which u(o)=o0 for ¢ <e, and u(o)=1 for ¢ > g,, and the values of u(o) in
the constancy intervals are all rational.

By Theorem 12 there exists a real almost periodic sequence U (k) with expo-
nents from M, that is to say a limit periodic sequence U (k), with the asymptotic
distribution function p(o). By Theorem 15 there exists a function f(s) almost
periodic in [—o, +®] with exponents from M and with the zeros U(k)+ ¢k,
whose Jensen function (o) is constant for ¢ < «,. We may assume (o) to be
equal to ¢@(o) for ¢ < e, since otherwise we multiply f(s) by a properly -chosen
constant. The function f(s) then has the Jensen function ¢(o); for by Theorem 16

we have u(o) = Z—I;tw' (6), and two convex functions are identical when they are

equal for one value of ¢ and their derivatives are identical.
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Functions with a Finite Integral Base.

83. We shall first give an account of analytic almost periodic functions
f(s) with a finite integral base.y,, . . ., #m, i. . with exponents from the modul
M ={hp,+ -+ hwpun}, where the numbers p,, . .., un are linearly independent,
and the set of coefficients A, ..., kn runs through all sets of integers. Denoting,
as in § 31, the inner product z,y, + - + Zmym of two vectors x =(z,, ..., Zm)
and ¥=(y,, ..., yn) in the m-dimensional space R, by «y, and putting
@ =(uy, ..., pum), we have M= {hyu}, where h=(h,, ..., hn) runs through all
vectors of R, with integral coordinates. The null-vector (0,...,0) will be
denoted by 0.

Let f(s) be a function almost periodic in [e, 8] with exponents from M.
We shall then deduce a representation of f(s) analogous to the spatial extension
considered in § 31 in the case of functions of a real variable. We arrive at this
representation by considerations similar to those in § 31. Allowing terms with
the coefficient 0, we may write the Dirichlet series of f(s) in the form

f(s)~ Zanerers
Let us now consider a sequence of exponential polynomials of the form
Jo(s)=ZSap er st

(where for every p only a finite number of the coefficients a) are 4 o) con-
verging uniformly towards f(s) in [e, 8] as p—>c. For each function f,(s) we form

the function
gols; @) = Zafp = nms

where & runs through R,. In each of the variables z,, ..., n it has the period
27. Further f,(s) = gp(s;0) and

go(s + iz;2) = gp(s; o + po),
so that in particular

(1) Jols +77) = gy(s; p).

As fp(s) converges uniformly towards f(s) in |a, 8], the function f,(s + 27)
converges uniformly towards f(s + ¢7) for s in [e, 8] and all z*; from (1) it follows

! i.e., of course, in any domsin (a<)a,<6<g,(<8), —« <t<+® in the (3 r)space.
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therefore, by Kronecker's theorem, that g,(s; a) converges uniformly towards a
certain limit function ¢(s; o) for s in [e, 8] and all 2. This limit fanction g(s;a)
is evidently uniformly coutinuous for s in [, 8] and all @. In each of the
variables z;, ..., s it has the period 2m. For every a it is, considered as a
function of s, almost periodic in [e, 8], and its Dirichlet series is

g (s; %) ~ Sapeh® hus,

We moreover find f{s)=g(s; 0) and

(2) gls+it;a)=g(s;%+ p1),

so that in particular

fls +in)=g(s; ua).

This relation shows that the function g(s; o) is for every fixed s, considered
as a function of &, the spatial extension of the function f(s + ¢7) considered as
a function of «.

It further shows that for every ¢ the function g(s; p¢7) has the same Jensen
function ¢(o) as f(s). By Kronecker's theorem and Theorem 6 this implies that,
for every a, the function g(¢; o) has the Jensen function ¢(s), so that in par-
ticular any strip (¢’, ) containing a zero of one of the functions g(s; ) also
contains a zero of f(s).

In introducing the function g¢(s; «) we have actually introduced one real
variable more than necessary, since on account of (2) we have

glo+t; x)=glo; &+ pi),

which shows how g(s; x) is expressed by means of g(s; ). It would, however,
be inconvenient to work only with the function ¢(o; x).

84. We emphasize that the spatial extension g(s; &) need not always be
regular in the variables «;, ..., #m. This is shown by the following example,
where m =2,

Let the integer a>1 and o<b< 1 be values corresponding to a non-
differentiable Weierstrass function

H(§)=2 b eio" s,
n=1
Denoting by u an irrational number and by [y}, where y is an arbitrary real
number, the largest integer =y, we will consider the function
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S =3, b e u—tae

Since o< a"u —[a"u] <1 for all n, the series is absolutely convergent for all
$ and represents therefore an almost periodic function in [— o, + o] with
exponents from the modul M = {h,u + h;}. For the spatial extension we find

(-]
q(s; ) =g(s; @y, @) = D) href 0" n— ol gla™— [ ude,
n=1
Hence

g(0; 2, 0)= Fbme'*"n = H(x)),
n=1

which shows that g(s; ) is not regular in z,.

85. The solution of our problem is given in the case of functions with a
finite integral base by the following theorem.

Theorem 21. A function @(o) in the interval (a,8) is the Jensen function of a
JSunction f(s) almost periodic in |a, 8] with the finite integral base p,, . . ., um, where
m= 2, ¢.e. with exponents from the modul M={h,pu, + - + hmun}, if and only if
vl satisfies the following conditions:

(i) It is convex in the interval ().

(ii) The value of ¢'(a) in any linearity interval of @(o) belongs to M

(iii) Any reduced interval (e<)a,<a<pf,(<f) contains at most a finite number
of linearity intervals of (o).

86. The necessity of conditions (i) and (ii) follows from Theorems 7 and 8.
The necessity of (iii) will be established by proving that, if f(s) is a function
almost periodic in [e, ] with exponents from M, any reduced strip (e,, 8,) contains
at most a finite number of strips without zeros of f(s). In the proof we shall
use the spatial extension g(s; a¢) of the function f(s + ¢7), introduced in § 83.

For an arbitrary point &, in R, we choose a rectangle S(a,) in the s-plane
with sides parallel to the real and imaginary axes and containing the segment
@, <o<@, t=o0, such that g(s; x,) 0 and hence that

lg(s; )| = (some) k= k(x,) >0

on the boundary of S(x,). Next we choose an open interval I(ax,) in Ry, con
taining a,, such that [g(s; &) — g(s; @,)] < k¥ on the boundary of S(ax,) when x
belongs to I(a,). By Rouché’s theorem the functions g(s; ) have then, for x
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belonging to I (a,), all the same number p = p(a,) of zeros in S(x,), and the set
of p points formed by these zeros depends continuously on a. If the abscissae
of the zeros are o ,(x) = - =opy(x), each of the functions o,(x), ..., op(x) is
therefore a continuous function of x. This shows that the set K (a,) consisting
of all values of these abscissae is composed of at most p intervals.

By Borel's covering theorem the space R, is mod. 2~ covered by a finite
number of the intervals I(x,). The sum K of the corresponding sets K (a,) is
therefore composed of a finite number of intervals.

Now the abscissa ¢ of any zero ¢ + ¢t of f(s) in (e, 8,) belongs to K; for
Sflo+2t)=g(o; ut), and put belongs mod. 27 to one of the covering intervals I(x,),
so that ¢ belongs to the corresponding set K (ac,). On the other hand any point
of K belonging to («,,B,) is either itself the abscissa of a zero of f(s) or an
accumulation point for abscissae of zeros; for by § 83 any strip (¢, ') containing
a zero of one of the functions ¢ (s; ) contains a zero of f(s). Since K is com-
posed of a finite number of intervals this implies that the strip (e;, §,) contains
only a finite number of strips without zeros of f(s).

87. To prove the sufficiency of conditions (i)}—(iii) we may, by Theorem 109,
restrict ourselves to the case where @(o) is either linear in (e, ) or linear in'two
intervals (o, @,) and (8, 8), but not in any sub-interval of (¢, 8,). When this latter
condition is satisfied we may suppose that ¢ =-—o and =+ ».

If @(o) is linear, say ¢@(o) =co + d, the function f(s) = e°**¢ is a solution.
If @(o) is not linear we denote by ¢, and c, the values of ¢’(0) in the intervals
(—o,a) and (8,,+ ). Without loss of generality we may suppose that ¢, = o,
since otherwise we replace the desired function f(s) by f(s)e— % Further we may

suppose that ¢, = 27, since otherwise we replace f(s) by f (zc_n s), at the same
2
time multiplying the elements of M by 277r The modul M then contains the
3

number 27; furthermore, the function u(o) =517r¢p' (0) is a distribution function,

for which u(o)=o0 for 0 <e, and u(o)=1 for ¢ >p8,, and which is not constant
in any sub-interval of (e, ;).

The existence of a function f(s) almost periodic in [—®, + ©| with exponents
from M and with the Jensen function ¢ (o) is now established by applying
Theorems 12, 15, and 16 as in § 82.
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Functions with an Infinite Integral Base.

88. The preceding results may without difficulty be extended to almost

periodic functions f(s) with an infinite integral base u,, y,, . .., i. e. with ex-
ponents from the modul M = {h, u, + hyus + ---}, where the numbers u,, u,, . . .
are linearly independent, and the sequence of coefficients k,, hs, . . . runs through

all sequences of integers of which only a finite number are +o0. Denoting the
inner product z,y, +x3y;+ -+ of two vectors & =(x,,z,,...) and ¥y=(y;, ¥s,.-.)
in the infinite-dimensional space R., the first of which has only a finite number
of coordinates + o, by a¥, and putting u = (u,, u4,, . . .), we have M = {hu},
where h = (ky, ks, . . .) runs through all vectors with integral coordinates of which
only a finite number are =+ o. ‘

89. In the space R, we use the following well-known definitions of an
interval, a limit point, continuity, etc., developed in detail in Bohr [g] (see also
Bochner (1] and Jessen [3]).

An (open) interval is the set of points & =(z,, z,, . ..) defined by a finite
number of inequalities a;<x;<b;, while the remaining coordinates are unrestricted.
A sequence of points ™ = (x{ 2z, . ..) is said to converge towards the limit
point &= (z,, x5, ...) if any interval containing & contains all except a finite
number of the points &™. Evidently a™ - if and only if z{®—uz; for every 7.
The terms closed set, open set, everywhere dense set, etc., are to be understood
in accordance with this definition. A set is called bounded if it is contained in
a set defined by a set of inequalities a; < x; < b;, where ¢ =1, 2,..., and all a
and b; are finite. We have the Borel covering theorem, stating that if a closed
and bounded set in R, is covered by a system of intervals it is covered by a
finite number of these intervals.

A function F(x) is called continuous if F(x™)— F(x) whenever x™ - x.
This is equivalent to saying that to every point & and every & > o there corre-
sponds an interval I containing @, such that |F(y) — F(x)| <& for all points
v in I. The function F(x) is called uniformly continuous if to every e >o
there corresponds an interval I containing the point 0=(0, 0, .. .), such that
| F(y)—F (x)] <¢ whenever y—ax=(y,—2,, y;—,, . . .) belongs to I. A continuous
function defined in a closed and bounded set is always uniformly continuous.

If a function F(a) defined in the whole of R, is continuous and periodic
in each variable x; with a given period p,, it satisfies the condition
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Fx, + hypy, g + hoy, .. )= F(x, x5, . . .)

for any sequence of integers hy, A, ..:; being uniformly continuous in the set
O=xi=p, t=1, 2, ... the function is uniformly continuous in R,.

Of essential importance in the treatment of almost periodic functions with
exponents from the modul M = {h,pu, + hyu, +---} = {hpu} is an extension of
Kronecker's theorem to the space R, which states that the set of points
x=pt={(ut, pyt, ...), —0 <t<+ o, is mod. 27z everywhere dense in R, when
fty, Y, . . . are linearly independent. This follows immediately from the theorem
in the case of a finite number of linearly independent numbers.

The definitions of continuity, etc. may also be applied to functions g(s; a)
of a complex variable s describing a strip (¢, ) and the real variables z,;, xs, . . .,

since g(s; #) may be considered as a function of the real variables o, t, 2, 2y, . . ..

90. Let f(s) be a function almost periodic in [e, §] with exponents from J.
Allowing- terms with the coefficient 0, we may write its Dirichlet series in the

form
f(8)~ Zaperps,

Let us now consider a sequence of exponential polynomials of the form
Jols) = Zalp) ghps

(where for every p only a finite number of the coefficients al?! are #-0) converging
uniformly towards f(s) in [e, 8] as p~> o For each function f,(s) we form the
funection

gpls; x) = Zalp e'h= ehrs

where o runs through R,. This function actually depends on only a finite number
of the variables x,, x,, ..., and has the period 27 in each of the variables.
Further f,(s)= gp(s; 0) and

gpls +iv; ) = gp(s; X+ p7),
so that in partieular

(3) fols + 27) = gp(s; 7).

As fp(s) converges uniformly towards f(s) in [a, 8], the function f,(s+ i7)
converges uniformly towards f(s+77) for s in [e, §] and all 7; from (3) it follows
therefore, by Kronecker's theorem, that g,(s; &) converges uniformly towards a
certain limit function g¢(s; o) for s in [a, 8] and all @. This limit function g(s; x)
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is evidently uniformly continuous for s in [a, §] and all . It is periodic with
the period 27 in each of the variables x;, z,, . . .. For every @ it is, considered
as a function of s, almost periodic in [e, §], and its Dirichlet series is

gls; @) ~Zaneh=ehrs.
We moreover find f(s)=g(s; 0) and

g(s+ir; @) =g(s; @+ p),
so that in particular
Sfls+it)=gls; pa).

The function g (s; x) is therefore for every fixed s called the spatial extension
of the function f(s+77), considered as a function of z. As in § 83, it is shown
that, for every 2, the function g{s; «) has the same Jensen function ¢ (o) as f{s),
and hence that any strip (¢’, #) containing a zero of one of the functions ¢(s; x)
also contains a zero of f(s).

91. The solution of the present case of our problem is given by the following
theorem.

Theorem 22. A function ¢(o} in the interval (a, 8) is the Jensen function of
a function f(s) almost periodic in (e, f] with the infinite integral base p,, ps, . . .,
t. e. with exponents from the modul M={h,pu,+hyu,+ ---1, if and only if it satisfies
the following conditions:

(i) It 4s convex in the interval (a, B).

(if) The value of ¢’ (o) in any linearity interval of (o) belongs to M.

(ili) Any reduced interval (a<)e,<o<<@,(<f) contains at most a finite number
of linearity intervals of (o).

The proof is quite analogous to that of Theorem 21, the only difference being
that R, is here replaced by R..

Further Results Concerning Functions with a Finite Integral Base.

92. As a preliminary to the study of functions with a finite or infinite
rational base we shall study in greater detail the case of functions with a finite
integral base u,, ..., um, i. e. of functions with exponents from the modul
M=\{hu, + -+ hnun}.
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Let f(s) be a function almost periodic in [e, 8] with exponents from M and
not identically zero. Let o, and o¢,, where ¢, < g,, belong to different linearity
intervals of its Jensen function (o). We shall then consider the difference

¢’ (02) — ¢’ (@),
which is evidently positive and belongs to M. Denoting by
(4) St SShEhShs

the ordinates of the zeros of f(s) in the strip (o), 6), each one being written so
often as the number of zeros with this ordinate indicates, and by N(y, d) the
number of these ordinates contained in the inferval y < ¢ < d, we have the
expression

, vy . Ny Jd)
¢ (0s) —¢'(o) = 27r(d_171)13w T=,

93. Our -considerations will be based on the spatial extension ¢(s; ) of
the function f(s+¢7). By § 83 the function g(s; 2) has for every & in Rpn,
considered as a function of s, the same Jensen function ¢ (o) as f(s), and has
therefore in particular no zeros on the lines o0=g¢, and o=o0,.

We shall now consider the set C of those points @ for which the function
g(s; &) possesses at least one zero on the segment o, <o <<ay, t=0. If g(s; x)
has p zeros on this segment the point a will be considered a p-fold point of C.
The set C has, of course, the period 2s in each of the variables x,, .. ., Zm.
Since f(o +¢t)=g(o; ut) the ordinates (4) are just those values of ¢{ for which
the point gt belongs to C, each being written as often as the multiplicity of
the point indicates.

In order to examine this set ' let us write an arbitrary point & of Rn in

the form

x=y + ut,
where ¥=(0, ¥,, . . ., Ym) is a point of the (m—1)-dimensional sub-space z,=o0 of
R, and then use ¥ and ¢ as coordinates in R, along with z,, ..., xm. Since

glo+it; y)=g(o; y+put) the ordinates of the zeros of g(s; ¥) in the strip (oy, 03)
are just those values of ¢ for which the point & = y + ut belongs to C, the
number of zeros with a given ordinate being equal to the multiplicity of the point.

For every x* =y* + ut*, where y*=(0, 3, . . ., ym), We choose a rectangle
6,<0 =0, |t—t*]| < p=1n(x*) in which g(s; ¥*) possesses no zero outside the
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segment 0, <0 <<0,, {=t*. On its boundary we then have |g(s; y*)|=k=k (x*)>o0.
Next, in the sub-space x, =0, we choose an interval J(¢*) containing y*, such
that |g(s; ¥) —g(s; ¥*)| <% on the boundary of the rectangle when ¥ belongs
to J(y*). Let p =p(a*)(= o) denote the number of zeros of g(s; y*) on the
segment ¢, <o <o, t={*; then, by Rouché’s theorem, the function g¢(s; %)
has p zeros in the rectangle when ¥y belongs to J(y*). If their ordinates are
v,(¢¥) =--- =< vp(y), each of the functions v,(y), . . ., v»(¥y) is a continuous function
of y in J(y*).

Hence, if U(x*) denotes the neighbourhood of the point @* consisting of
all points & =y + pt for which ¥ belongs to J(y*) and [t — t*| < 7, the part
of the set C contained in U{x*) consists of the p = p(x*) continuous (m — 1)-
dimensional surface elements t=1,(¥), .. ., ¢ = t,(¥).

94. By Borel's covering theorem, the space Rn is mod. 2n covered by a
finite number of the neighbourhoods U(x*). For two overlapping neighbourhoods
the surface elements having points in their common part will uniquely combine
so as to form larger surface elements. Thus the set C divides into components
obtained by continuation of the surface elements, each component being deter-
mined by an equation ¢=t(y), where {{y) is a continuous fanction defined for
all y. To ¥ =0 corresponds the line &= ut, on which the set C contains the
points determined by the values (4). Thus C divides into an infinite number of
components

i Oy Oy, Cy, Cy Cy .y

where C; is determined by an equnation ¢= {;(y) such that ¢(0) = ¢, and where,
for all y,

Sttt W=ty =ty <ty =

Fig. 3 illustrates the situation in the case m=2.

95. By the translation 2ah, where h=(h,, ..., ha) is a vector with integral
coordinates, the component C, is taken into a component C;, where z=1:(h).
By the same translation the component C; must then for every j be taken into
the component Cji;. Evidently (R’ + h”) =i (R’) + ¢<(h”). The function 7 (h) is
therefore a linear transformation of the m-dimensional lattice G of vectors A into
a certain arithmetical progression ..., —d, 0,d,.... In the case illustrated in
Fig. 3 we have d=2,
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Xy

g,~

Xy

Fig. 3.

If we denote by G, the part of G in which ¢(h) =nd, it follows that G,
is a lattice, and that G, is derived from G, by the translation n27h", where
hW= (A", ..., ) denotes an arbitrary vector in G,. This again implies that the
lattice G, is (m— 1)-dimensional. Let A®=(h®, .. AY), . . . *h™ = (™, . Km™)
denote a base of G, Then AY, ... A™ form a base of G.

Since the component C, is taken into itself by the translations 2xh®, .. |
27wh!™ it possesses a parametric representation

=2z, hM + -+ 2, A™ + H{z,, . . ., 2n) y,

where 2,, ..., 2m are real variables, and Hl(e,, .. ., zm) is a continuous function
with the period 2= in each of the variables 2,, .. ., zn. For the component Chq

we find the representation

x=n2ahV 4+ 2, RO+ - + zn R+ Hzy, . . ., zm) .
16 — 632042 Acta mathematica. 17
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96. Let K denote the maximum of |H{(z,, ..., zs)|- It then follows from
the preceding result that |t,s— fna| = K, where #,« denotes -the value of ¢ for
which the point ut belongs to the plane

€ = Zﬂ’ﬂh(l) +2'2h(2)+ oo+ th(m).

Eliminating the parameters z,, ..., zm, we find for this plane the equation
x, hY . .. B BY R® . R
N e L
am B2 ... R R B2 R
or
AX=27Nn,
where 2= (4, ..., An) denotes the vector whose coordinates are the complements

of the elements of the first column of the determinant on the left, divided by
the value of the determinant on the right, which is either +1 or —1.
Hence the point of intersection with the line a = ut is determined by

2Tn

tha = _).?f ’
and we have, therefore,

2ntn

ip

=K

fnd_

for all n.
By (4) this implies that

Ny, 8) =d(d —7)% + 0(1),

so that we find

, , . Ny
o,)—@ o) =2z lim ——— =diu
¢ ( -) ¢ ( l) (d'-—-:')—-—z 6 _ 7 !
Putting for the sake of brevity di=1»=(», ..., va) we finally find
(5) 9)’(02)—¢’(‘71)=”H="1ﬂ1+"'+1’m.um-

Since 4 has integral coordinates the coordinates of » are also integers, and the
representation (5) shows therefore, once more, that ¢'(s,)— ¢’(0,) belongs to M.

For later application we notice that each of the components C;lies between
two planes orthogonal to the vector »r = (v, .. ., vm).
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97. Denoting the length Vi + - + an of a vector x=(zy, . . ., ¥m) in Rn
by ||x||, we shall now assume that g(s: a) % 0 in the interval ¢,<o<g, for all
x belonging to a system of spheres

oo <5

where N is a positive integer, @ << 7 a positive number, x* = (2}, ..., zm) a
point of Rn, and A =(h,, ..., hn) runs through all vectors of R, with integral

coordinates. Thus these spheres all have the common radius 1% and their centres

form a lattice with the edge-length ZT:;

It will be shown that under this assumption the vector » occurring in (5)
satisfies a relation

_rp
floll el =
where b > 0 depends only on a and the direction of p (i- e. on a and "::")’

and is therefore independent of N, the function f(s) in question, and the
values o, and o;. Denoting the angle between two vectors @ =(x,, . . ., zm) and
Y=y, ..., yn) different from the null-vector, by [x, y¥], we have

wos [ Yl = oS musm

A statement equivalent to the preceding one is, therefore, that the vector »
satisfies a relation

(7) p,ul=in—46,

where 6 > 0 depends only on a and the direction of u.

98. For an arbitrary vector h={(h,, .. ., hn) with integral coordinates we
denote the sphere (6) by S,.. When S; is translated in the direction of p it

describes a tube 77 consisting of all points a having a distance < % from the
half-line

x = w*+—1‘N—h+ut t=o.
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Xy

We shall now consider the set U obtained by taking first the tube T, corre-
sponding to the sphere Sy, next joining to this tube all tubes T for which
the corresponding sphere S, has a point in T, then joining to the set thus
obtained all tubes 7 for which the corresponding sphere Sy has a point in this
set, and so on. In other words, the set U is the set in R, which is passed
through when we let first the sphere So move in the direction of g, next let
every sphere S which it hits move along with it, then in the same manner every
sphere &, hit by these, and so on.

Fig. 4 illustrates the situation in the case m=2, N=4.

We shall now prove that the set U contains a cone
(8) [ — x*, u] <6,

where 6 > 0 depends only on « and the direction of u.
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For this purpose we denote by /(f), for an arbitrary ¢{= o0, the radius of
the largest sphere which has the centre x* + pt and is contained in U. Then

() is an increasing function of ¢, and #(f) = l% for all t. Let S, denote the

sphere which is concentric with S, and has the radius 5%,- By Kronecker’s

theorem there exists a number >0 depending only on a and the direction of u,
and such that any segment

{
=0+ pl, o< t<g—7—=>
o Tull¥
has at least one point in common with some sphere Sr. Thus, if the point a,
belongs to U, the sphere
a

<IN

~ el
2= (0 + i)
also belongs to U. The function (¢} therefore satisfies the condition

l a
4(t+ —“)zdt + 2.
Tully) =20+ 35
which, together with the relation (f)= % shows that 4(f)= zﬁi lellt for all

t=o0. This means that U contains the.cone (8) when 6 = arc sin o< @<}

2
2!’

99. We shall now prove that the relation (7) bolds for this value of 6.
For this purpose we notice that in the coordinates ¥ =(0, ¥, ..., ym) and ¢
introduced in § 93 the cone (8) is determined by an inequality

t> t(y),

where t(y) is a continuous function of y. Together with this function we con-
sider the function ¢=1;(y) which determines the component C; of the set C.
Evidently we may choose j such that the centre a* of the sphere So belongs to
the part 4 of R, determined by the inequality ¢ > t;j(y).

The assumption made in § 97 means that the set C does not contain any
point of the spheres Si. That a* belongs to 4 implies therefore first that So,
and hence the whole tube T, belongs to A, next that every sphere S; having
a point in To, and hence the corresponding tubes T, belong to A, and so on.
Thus the whole set U and a fortior: the cone (8) belong to A. We therefore have

t(y) = ty)
for all .
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On the other hand, by § 96, the component C; lies between two planes
orthogonal to the vector ». Thus there exists a plane orthogonal to » containing
no point of the cone (8). Since vu > 0 and hence {v,u] < } & this implies the
relation (7).

100. The preceding results will suffice as preliminaries to the treatment of
functions with a finite rational base. In studying functions with an infinite
rational base we shall need some more properties of the vector v = (..., vn).

Denoting by m, <m a positive integer, we consider together with R, the
space Rm, of vectors &' = (x,, . . ., m,). For an arbitrary vector & =(x,, .. ., xm)
of Ry the corresponding vector & =(z,, ..., Zm,) is called the projection of a
upon Ry, Using without change for vectors of Ra, the previous notations for
inner products, lengths, and angles of vectors, the inequalities

' . 2xh’ a
(9) “w—-(m*+ ¥ )"<_ﬁ’
where N is a positive integer, a<<m a positive number, *' a point of Rp,, and
I runs through all vectors of R, with integral coordinates, define a system of
spheres in Ry, All points & of R, whose projections o’ upon R, belong to
one of these spheres form a cylinder in Bn, and the inequalities (g} may therefore
also be said to define a system of cylinders in Rn.

We shall now assume that g(s; &) == 0 in the interval o, <o <o, for all x
belonging to this system of cylinders. It will then be shown that the m — m,
last coordinates ¥m,+1, . . ., ¥n of the vector v are equal to o and that its projeec-
tion v = (v, ..., vm,) satisfies the relation

LA =>b
(E NS e

where b > o depends only on @ and the direction of the projection ' = (u,, . .., ttw,)
of w={(u,, ..., un), and is therefore independent of gm+1, . : ., um, as well as
of N, the function f(s) in question, and the values g, and o,.

The number b is here simply the number determined, according to § 97,
by a and the direction of ' if m is replaced by m,.
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101. The proof is closely analogous to the proof of §§ 98-—g9, the only
differences being the following:

Instead of the spheres S; we consider the cylinders determined by the
inequalities (9). The set U is therefore replaced by a set, which must contain
all points @ for which the projection a’ belongs to the cone

[m’ - x*,’ l"'] <0

in R, where 6 is the number determined, according to § 98, by a and the
direction of w’, if m is replaced by m, The set of these points a may be called
a wedge in R.

There exists a plane orthogonal to » containing no point of this wedge.
This implies that the m—m, last coordinates vm,+1, . . ., ¥m are all 0, and further,
that, since v > o, the projection v’ satisfies the relation

P, uw)=tn—6.

This establishes the desired result.

Functions with a Finite Rational Base.

102. We now turn to the study of almost periodic functions f(s) with a
finite rational base u,, .. ., um, i. e. with exponents from the modul M = {r, u, +
+ -+ rmpm}, where the numbers g, ..., un are linearly independent, and the
set of coefficients r,, . . ., 7, runs through all sets of rational numbers. Using the
vectorial notation, we have M= {ru}, where p = (u,, ..., m), and » = (r,, . . ., 7'm)
runs through all vectors with rational coordinates.

Let f(s) be a function almost periodic in [, 8] with exponents from IM.
Allowing terms with the coefficient 0, we may write its Dirichlet series in the
form

f(8)~ Za, erre,
Let us now consider a sequence of exponential polynomials of the form

JSo(s) = Zalp) gres
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(where for every p only a finite number of the coefficients a/P) are +0) converging
uniformly towards f(s) in [, 8] as p— . For each function f,(s) we form the

function
Gols; x) = Sap ére m,

where & runs through E,. In each of the variables z, . . ., 2, this funetion has
the period 27 Np, where N, denotes a common denominator of the coordinates
of those vectors 9 for which a4 0. Moreover

(10) Sols +it)=gp(s: o).

As fy(s) converges uniformly towards f(s) in [e, 8], the function fp(s + 7 7)
converges uniformly towards f(s+77) for ¢ in [a, 8] and all z. Since any two of
the functions g, (s; o) have a common period 2z N in all the variables zy, . . ., Zm,
it follows therefore from (10), if we use Kronecker's theorem, that g, (s; &) con-
verges uniformly towards a certain limit function g(s; ) for « in [e, 8] and all a.
We have then obviously

fls+ir)=ygls; p7).

103. The solution of the present case of our problem is given by the following
theorem.

Theorem 23. 4 function @(o) in the interval (a, B) is the Jensen function of
a function f(s) almost periodic in [a, 8] with the finite rational base u,, . . ., tm, . €.
with exponents from the modul M= {ryu, + - + rm in}, of and only if it satisfies
the following conditions:

(i) It 4s convex in the interval (e, B).

(ii) The value of @' (6) in any linearity interval of @ (o) belongs to M.

(iii) To any reduced interval (e <)e, <o <B,(< f) corresponds a number k> o
such that if o, and o, where ay<g, <a,<f,, belong to different linearity intervals
of @lo), and the element ¢'(0,) — ¢ (0,) of M has the representation

@ (0) — @' (6) = 1yt + - + T'm m,
we have the inequality
glo) —g'le) - o

For m=1 this theorem reduces to Theorem 20, since in this case condition
(iii) is implied by (i) and (ii).
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104. The necessity of conditions (i) and (ii) follows from Theorems 7 and 8.
The necessity of condition (iii) will be established by means of the results of
§§ 92—o90.

Let f(s) be a function almost periodic in [a, 8] with exponents from M,
which is not identically zero. Using the notations of § 102, we shall consider
the functions

@) (o) = min |g,(o; )|

=0 fo
and

@ (x) = min |g(o; )|
a,s0=f,
Obviously @,(x) converges uniformly towards @(x) in R, as p—> . Further @,(ax)
is periodic with the period 27 N, in each of the variables z,, . . ., z», and @(x)
is not identically zero since

@(ur)= min |glo; p7)|= min |flo + 77)|.

= o= p, M= 0= Py
Hence there exist a positive number 5 and a system of spheres
(11) e — (x*+ 22 Nh)|| < aN,

where N is a positive integer, a <m a positive number, «* a point of R,, and
h runs through all vectors of R, with integral coordinates, such that

for all & belonging to these spheres.

For arbitrary values of ¢, and o, for which ¢,<0,<0,<f,, and which belong
to different linearity intervals of ¢(c), we may now choose a number p satisfying
the following conditions:

(a) The lines 0=0, and o=0, belong to strips without zeros of the function
fo(s), and fp(s) has the same mean motion as f(s) on these lines (cf. § 32). This
means that o, and o, belong to linearity intervals of the Jensen function gj,(0)
of fp{s), and that

@plo) = ‘P’ (6,) and 9’1’0(02) = ¢' (03).

(b) For all & belonging to the spheres (11) we have ®,(x)>0, which means
that gp(o; )+ 0 for all o in the interval e,< o< g,

By the definition of N, the numbers l%’ SR ’f\’ﬂ and hence also the numbers
p 14
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o e
N, N N, N

sion of fy(s + ¢7) corresponding to this base is by (10) the function gy (s; & Ny N),

form an integral base for the function fp(s). The spatial exten-

with the period 2 in each of the variables x,, ..., xn. By condition (a) we have
@' (0,) — ¢ (o) = @p(0s) — @ploy)

and by condition (b) we have g,(c; 2 Ny N)=#=o0 for all o in the interval a,<o <§,
and all o belonging to the spheres

“w_( a* +27rh)
N, N N,

It follows therefore from §§ 96—¢g7 that

< 2.
=%

’ o — _ll_ — Wy o ] Um ,
@ (02) 14 (0'1) val\v ¥y Np.zv + +ymNpN
where the vector »=(»,, ..., xm) has integral coordinates and satisfies the condition
u
v
Ny N =1
B
11| 55
where >0 denotes a coustant depending only on a and the direction of _VMN’
~'p

i. e. the direction of u. Putting
¢,(0'2) —@'lo)=rp + +impn=rp

and hence

we therefore have = N: N
ru b

=
e fl el

which proves condition (iii) with £ =125 || u]||.

105. To prove the sufficiency of conditions (i)—(iii) we may, by Theorem 19,
restrict ourselves to the case where (o) is either linear in (e, 8) or linear in two
intervals (e, @,) and (,, ) but not in (e, B).

If @(o) is linear, say @(o)=co + d, the function f(s) = e**** is a solution.
If @(o) is linear in (e, e,) and (8,8) but not in (a, §) condition (iii) takes the
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following form: There exists a number 6 > o such that if o, and o, where
e <0, <0,<p, belong to different linearity intervals of @ (o), and the element
¢’ (0;) — @’ (0,) has the representation

9”("2) - 90'(01) =Tyt rmn =1y,
then
[7’, "’] = % w—0.

Corresponding to this 6 we now introduce another rational base 4y, ..., im
of the modul M, consisting of the positive elements

M=rVu, ..., m=2r"y
of M, where the vectors ¥, ..., »™ are chosen such that the cone
(12) [wa M]é%n'—o

belongs to the part of R, determined by the parametric representation
(13) =Yz + -+ Mz, 2z >o0... zn>o0.

If then o, and o;, where a<o0,<0,<@, belong to different linearity intervals
of @(0), and the element ¢’(0;5)—¢'(s,) of M by means of the new base has the
representation

¢ (o)) — @' (o)) = 1+ - + gm Am,

we have the inequalities
4G >0,... qu>o0.

This result may also be expressed as follows: If for an arbitrary o belonging
to a linearity interval of (o) the element ¢’(c) of M has the representation

(14) @' (0) = q,(0) 4y + - + ¢u(6) A,

then the functions ¢,(c), . . ., gm(0), s0 far defined only in the linearity intervals
of (o), are increasing functions of o, each of which assumes different values in
different linearity intervals.

106. The representation (14) will now be extended to a representation of
¢’ (0) valid for all ¢ in (o, 8) by means of increasing functions ¢,(0), . . ., gn(0).
For a value ¢, not belonging to the linearity intervals of ¢(o), let us con-
sider the largest closed interval {¢’,§’} containing o, but not containing points
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of any linearity interval of @(s); we then define ¢,(0,), . . ., am(0,) such that the

two (m + 1)-dimensional vectors

{9”(00) - 97’(‘1’ —0), q(0) — ¢: (¢ — o), . - - qm(0y) — gm(e¢’ — O)}
and

lg' (8 +o)—g'(¢'—0), ,(8 +0)—q,(¢’—0), . . ., (8 +0)—gn(c'—0)}

are proportional. The relation (14) is then valid for all o.

If ¢'=4¢/, the functions q,(0), . . ., gn(s) will all be continuous or all discon-
tinuous at the point ¢, according as ¢’(s) is continuous or discontinuous at o,.
If ¢'<g’, we must have ¢'(8 + 0)— ¢'(e’— 0) > 0, and the vector

@@ +0)—q @ —o)rt+ -+ (gn(F + 0 — gmic’ — o) ™

is therefore not the null-vector; being the limit of vectors belonging to the cone
(12), it belongs itself to this cone, and hence to the part of R, determined by
(13), i. e. we have

n(@ +0)—qla—0)>0,... gu(f + 0) — gu(c'—0)>o0.

This implies that none of the functions ¢,(c), . . ., gm(0) has any other constancy
intervals than the constancy intervals of ¢'(o).

107. By integration of (14) we arrive at a representation

@0) =@, (o) + - + gnlo),

where the functions ¢, (0), . . ., (o) are convex functions having the same linearity
intervals as ¢(o). Further, the values of ¢:(o) in the linearity intervals belong
to the modul M;={q, A}, where g, runs through all rational numbers. Hence,

by Theorem 20, there exists for each ! a function f;(s) almost periodic in [e, §]
27
i

b

with exponents from M, i.e. a limit periodic function with the limit period

having the Jensen function ¢;(s). The product

fl) =1 . fmls)

is then almost periodic in [, 8] with exponents from M, and has the Jensen
function ¢ (o).
This completes the proof of the theorem.
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Functions with an Infinite Rational Base.

108. Finally we turn to the study of almost periodic functions f(s) with

an infinite rational base u,, u; . .. i. e. with exponents from the modul
M= {ryu, + ryu, + -}, where the numbers yu,, u,, . . . are linearly independent,
and the sequence of coefficients ry, 75, . . . runs through all sequences of rational

numbers of which only a finite number are +o.

Using in the infinite-dimensional space R, the vectorial notation introduced
in § 88 we have M = {pru}, where pu=(u;, ps, . ..), and 2 =(r, 75 ...) runs
through all vectors of R, with rational coordinates, of which only a finite number
are == o.

Let f(s) be a function almost periodic in [e, 8] with exponents from M.
Allowing terms with the coefficient o we may write its Dirichlet series in the
form

fls)~Za,eres,

Let us now consider a sequence of exponential polynomials of the form
o) = Zap eres

where for every p only a finite number of the coefficients a?) are =+0) converging

uniformly towards f(s) in [, 8] as p—>o. For each function f,(s) we consider the
function
Op(s; &) = ZalP v ek,

where o runs through R,. This function actually depends only on a finite number
of the variables x,, z,, . . . and has in each of these variables the period 2 7w Ny,
where N, denotes a common denominator of the coordinates of those vectors »
for which a!P) % 0. Further

Jols +47)=gp(s; po).

As f,(s) converges uniformly towards f(s) in [e, 8], the function fp{s + 77)
converges uniformly towards f(s+¢%) for s in [, 8] and all 7. Since any two of
the functions g,(s; ) have a common period 2 # N in all the variables x;, x,, . .
it follows therefore, by Kronecker’s theorem, that g,(s; ) converges uniformly
towards a certain limit function g(s; a) for s in [«, ] and all . We have then
obviously

A}

Sls+ir)=g(s; p).
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109. The solution of the present case of our problem is given by the following
theorem.

Theorem 24. A function ¢(o) in the interval (a, §) vs the Jensen function of
a function f(s) almost periodic in |, 8] with the infinite rational base p,, ps, . . .,
t. e. with exponents from the modul M= {r pu,+ryu, + -}, if and only if it satisfies
the following conditions:

(i) It is convex in the interval (e, B).

(ii) The value of ¢'(0) in any linearity interval of (o) belongs to M.

(iii) To any reduced interval (@ <)a, < ¢ < B,(< B) there correspond a positive
integer my, and a number k>0 such that if o, and a;, where a,<o,<oy3<p,, belong
to different linearity intervals of (o), then the difference @'(0s) — ¢’ (6,) belongs to
the modul Mp, = {rypuy+ -+ + *m, tm,} with the finite rational base u,, . . ., pm, and
if its representation is

q”(a'z) - ¢'(0") =ru ot T tm,
we have the inequality
vlo) —gle)
Vri+- - +ra,

110. The necessity of conditions (i) and (ii) follows from Theorems 7 and 8.
The necessity of condition (iii) will be established by means of the results of
§§ 1oo—1o1.

Let f(s) be a function almost periodic in [e, 8] with exponents from M, and
not identically zero. Using the notations of § 108, we consider the functions

@p(x) = min |gy(o; )|

o=
and

® (x) = min | g(o; o).
=0=fo
Obviously @,(x) converges uniformly towards @(x) in R, as p— . Moreover
@, (x) actually depends on only a finite number of the variables z,, z,, . . . and
has in each of these variables the period 2 7 Ny, and @ (x) is not identically zero,
since
@{u7)= min |g(o; p7)|= min |flo + i7)].
G=0=f, =g=f

Hence there exist a positive integer m, and a positive number 5 such that

D=1
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for all points @ =(z,, a,, ...) in R, for which the corresponding point x' =
= (2, ..., Zm,) in Rm, which is called the projection of & on Rn,, belongs to
a system of spheres

(15) |’ — (@* + 22 NW)|| < aN,

where N is a positive integer, a<<x a positive number, &* a point of Ry, and
R’ runs through all vectors of Rp, with integral coordinates.

For arbitrary values of o, and o, for which ;<0 <0,<g,, and which belong
to different linearity intervals of @(o), we may now choose a number p satisfying
the following conditions:

(a) The lines 0=0, and o=o0, belong to strips without zeros of the function
Jf»(8), and f5(s) bas the same mean motion as f(s) on these lines (cf. § 32). This
means that ¢, and o, belong to linearity intervals of the Jensen function ¢, (o)
of f»(s), and that

Pploy) = 9’, (0) and gyplo,) = ‘P' (05).

(b) For all a¢ for which the projection x’ belongs to the spheres (15) we have
@, (x¢) > o, which means that g,(0; @) & o for all ¢ in the interval a,<o <g,.

Let m>m, be chosen such that gp(s; a) is actually a function of the variables
s and x,, . . ., Zm alone. By an argument analogous to that of § 104, only using
the results of § 100 instead of those of § 97, we find that

o) — o {g) =y —PL .. B g B
¢ los) — 9’ o) =, N,,N+ Fom =V NN
where the vector v" = (v, .. ., ¥m,) has integral coordinates and satisfies the con-
dition
, o
»
N
o e
1 | st

where b>0 denotes a constant depending only on & and the direction of l—\f‘—l\—,,
?

i. e. the direction of p’, and thus in particular not on m. Hence ¢’ (s,)—¢’(q,) be-

longs to the modul Mp,= {r,u,+ - +#m, tm,}, and putting

¢’ (02) - ¢, (Gl) =Tyt Tt g e, = 7 y—,
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?

, )
we have 7 = —— and hence

Lol
T 2= )
[l f} Hlee”

which proves condition (iii) with 2=25] s ||.

111. To prove the sufficiency of conditions (i)—{iii) we may by Theorem 19
restrict ourselves to the case where ¢ (o) is either linear in (a, 8) or linear in two
intervals (e, ¢,) and (8, §), but not in (e, ).

If @(o) is linear, say ¢(o) =co + d, the function f(s)=¢"**" is a solution.
If (o) is linear in (e, e,) and (8,,8) but not in (o, 8) we may by condition (iii)
choose a positive integer m such that the difference ¢'(0:,)—¢’(s,), where o, and
o, belong to arbitrary linearity intervals of ¢(g), belongs to the modul M, =
Irig,+ - +rmun}, and by condition (ii) we may assume that m has been chosen
so large that the value of ¢'(s) for some linearity interval of (o) also belongs
to Mm. The function ¢(c) then satisfies conditions (i}—(iii) of Theorem 23 with
respect to the modul M, and is therefore the Jensen funection of a function f(s)
almost periodic in [, 8] with exponents from M.

Functions with Arbitrary Exponents.

112. For all moduls of the forms M={h,u + - +hmpn}, {hio;+honts+ -},
{riwg+ - + rmum}, or {r,u, + 7,4+ -} we have now characterized those func-
tions ¢ (o) which may occur as the Jensen function of an analytic almost periodic
function with exponents from the modul in question. Our last Theorem makes
it possible also to characterize those functions ¢(s) which may occur as the
Jensen function of an analytic almost periodic funetion with arbitrary exponents.
The result is given by the following theorem.

Theorem 25. A function ¢(o) in the interval (a,3) is the Jensen function or
a function f(s) almost periodic in [a, 8] if and only if it satisfies the following con-
ditions:

(i) It is convex in the interval (e, f).

({i) For any reduced interval (@ <)a, <o < 8,(<.8) there exist a finite set of
linearly independent numbers p,, . . ., um and a number k>0, such that if o, and o,,-
where a,<a,<0,<p,, belong to difierent linearity intervals of ¢(a), then the difference

@' (o)) — @' (0,) is of the form
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9"("2) - 9"("1) =1yt t rmlim,

where the coefficients 1y, . . ., rm are rational numbers and

o) —glo). ,

The necesgity of the conditions follows immediately from Theorem 24, since
any almost perjodic function possesses an infinite rational base.

In order to prove the sufficiency of the conditions we first notice that if a
set of positive numbers has a finite rational base u,, . .., um such that for all

numbers a==r u, + - + rpun =1y of the set the ratio ﬂg_ll exceeds a positive

constant, then it has this property with respect to any finite rational base
Ay, ..., A of the set. To see this we consider the set of all numbers

Tl ot rpn + Ayt QA

with arbitrary rational coefficients. This set contains both a finite rational base
obtained by enlarging the set u,, ..., um and a finite rational base obtained by
enlarging the set 1,, ..., 4, and these two bases must contain the same number
of elements. It is therefore sufficient to consider the case where /=m. Now if
in this case » pu,+  +rm up=rp and ¢4, + - +qu An=q 4 are the expressions
of the same number a of the set, the vectors 7 and ¢ are connected by a linear

el

substitution, and the ratio m therefore exceeds a positive constant. This proves
the above statement.

If now x,,%, ... denotes an infinite rational base for the values of ¢’ (o)
in the linearity intervals of ¢ (o) it follows from condition (ii) that the values
¢’ (o) belonging to the linearity intervals contained in a reduced interval
(@<) eqy<<a<B,(<p) have the finite rational base x,, ..., ¥m, for some m,. Hence
with respect to the base x,, x5, . . . the function (o) satisfies the conditions of
Theorem 24 and is therefore the Jensen function of a function f(s) almost
periodic in [e, g|.

113. A consequence of Theorem 25 is the existence of convex functions
@ (0) which are not the Jensen function of an analytic almost periodic function.
It is sufficient to consider a convex function ¢(o¢) having in a reduced interval
an infinity of linearity intervals for which the corresponding values of ¢’(o) are
linearly independent.
17 — 632042 Acta mathematica. 77
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114, As is easily seen, the preceding theorems admit of the following uni-
form formulation.

Denoting by M an arbitrary modul of one of the forms {h;u,+ -~ + hm um},
m=2, {hyu+hsps+ -}, i+ +rmpum}, or {r,u, +r9us + -}, or the modul
of all real numbers, a function ¢(o) in the interval (o, 8} is the Jensen function
of a function f(s) almost periodic in [e, 8] with exponents from M if and only
if it satisfies the following conditions.

(i) It is convex in the interval (e, 8).

(ii) The value of ¢'(s) in any linearity interval of ¢(s) belongs to M.

(iii) For any reduced interval (¢<)e, < ¢ <8,(<f) there exist a finite set of
linearly independent numbers 4, :.., 4 and a number k>0, such that if o, and o,,
where ¢, <o, <0, <@, belong to different linearity intervals of ¢(s), then the
difference ¢'(s,) — @'(a,) .is" of the form

‘P’(Ue)_q"(ol) =q, A+ -+ qh,

where the coefficients gy, ..., ¢/ are rational numbers and

w'(a,)—w'(an}; r
Vai+--+aqi

It is natural to ask whether this theorem remains true for an arbitrary
everywhere - dense modul M. The necessity of the conditions is obvious in all
cases, and in some cases other than those considered above the sufficiency may
be proved by similar arguments, for instance in the case of all »mixed» moduls,
i. e, moduls of the type {g,u, + - - - + gm um} or {g,u, + gsus + - - -}, where the
numbers g; are linearly independent while some of the coefficients g; run through
all integers and the rest through all rational numbers. We do not know whether
the conditions are sufficient in all cases.
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CHAPTER VII.

Analytic Almost Periodic Functions with Integral Base and Analytic
Spatial Extension.

Funections with a Finite Integral Base.

115. Let f(s) be a function almost periodic in [e, 8] with a finite integral
base 4, ..., um and let g(s; ®)=g(s; z,, ..., zm) denote the corresponding spatial
extension introduced in § 83. We shall now consider the case where this func-
tion ¢(s; ) is a regular function not only of the complex variable s for given
values of the real variables z,, ..., xn but of all the variables s, x,, . . ., Zm.!
This property is easily seen to be indépendent of the particular choice of the
base, but this is not important for the following considerations which are founded
on a definite choice of the base. We express the said property briefly by saying
that f (s) has an analytic spatial extension.

We shall now prove the following theorem.

Theorem 26. Let f(s) be a function almost periodic in [a, 8] with a finite in-
tegral base and an analytic spatial extension, and not identically zero. Then the
mean motions ¢ (o) and c* (o) exist for every o in (a, ) and are determined by

(1) ¢ (0)=¢'(c—0) and c*(0)=g¢'(c+0).

Further the frequency H (0,, 0,) of zeros exists for every strip (o, 0,), where & <6, <06, <§,
and ts determined by

(2) H(o,,00) = 5~ (0, — 0)— ¢’ (@, + ).
In every reduced interval (@ <)e, <o <B,(<pf) there exist at most a finite number
of values of o for which @(c) s not differentiable.

By a remark in § 40 this theorem implies that the mean motion c¢(o) of the
function f(o+¢t), according to the definition in § 27, exists for every o in (e, §)
and is determined by the mean derivative

clo)=4p' o—0 + ¢ o +0).

! Since x,,..., oy, are real variables the regularity in all the variables 8, x,,..., &y means

more than regularity in each of the variables s, x,,..., ), for fixed values of the remaining
variables.
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116. The proof is based on the Kronecker-Weyl theorem, according to which
the points of the line ®=pt=(u,t, ..., umt), —% <t< +o, in Ry are not only
everywhere densely distributed mod. 2 & when u,, . . ., um are linearly independent,
but even equidistributed mod. 2. We shall use this theorem in the following
form: Let P(x)= P(z,, ..., zn) denote a function in R, with the period 2= in
each of the variables, which is integrable in the Riemann sense and for which
the function P(ut) of the real variable ¢ is also integrable in the Riemann sense.
Then the mean value

]f[{P((lt)}— lim ———fP nt)d

—» 7) =

exists and is equal to the mean value

I 27
I
(2n.)mf'“fp(xh s ey xm) dxl e Adxm.
0

0

M{P(x)} =

We begin the proof with the remark that the existence of the left mean
motion ¢~ (s) for a given value of o is equivalent to the existence of a mean
value of the stretchwise continuous function arg=f(c+:¢{t+4)—arg— flo+1(¢—1),
and that when it exists ¢~ (o) is equal to this mean value:

c“(a)=ltn{arg“f(a +it+d) —arg—flo + ¢t — D)}

This follows from Theorem 3 (iv), which shows that, except for a bounded
remainder, the quantity

Fl 1+%‘J+%
f[a,rg"f(o + it +d)—arg flo+ i(t-—z}))]dtr——f +farg“f(a +2t)dt
! 1= -4

is equal to arg—f(o + {d) —arg— f(o + 7y). Similarly
¢t (o) = M{arg™ flo + it + §)) —arg* flo + ((t —H)I,
t
where the two sides exist simultaneously.
Let us now consider the spatial extension g(s; x) and for an arbitrary @ in
R,, denote by a—(o; ) and a*(g; ) the variation of the argument of g(s; )

along the left or right side of the straight segment from o—74to o +73. Since
Sls +it)=g(s; u7) the preceding relations then take the form

¢~ (0)=M{a"(o; pt)} and c*(o)=M{a*(o; ni)},

where in both cases the two sides exist simultaneously.
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From § 38 it follows that a—(o; «) and a* (0; @) are bounded for ¢ in [a, J]

and all . It will be shown below that for an arbitrary ¢ they are Riemann
integrable functions of . If we assume this for the moment it at once follows
from the Kronecker-Weyl theorem that the mean motions ¢~ (o) and c¢* (o) both
exist and are given by
(3) ¢~ (o) =M{a(o; x)} and c*(o)=M{a*(o; )}
From these expressions we easily arrive at the expressions (1). For the functions
a{(o; ) and a*(o; o) are for any fixed o, considered as functions of o, con-
tinuous from the left and right respectively; it therefore follows from (3) (by the
theorem on bounded convergence) that ¢~ (o) and c* (¢) are continuous from the
left and right respectively, and since both are equal to ¢'(c) at the points where
@(o) is differentiable, this implies the relations (1). The existence of H(o,, d,)
and the relation (2) is an immediate consequence of (1), on account of § 42.

117. Still arguing on the basis of the Riemann integrability of the functions
a (o; x) and a*(o; x) we deduce from (1) and (3) the relation

¢ lo+0)—¢'lo—0)= Miat(o; x)} — M{a(o; x)} = M{a*(o; x) — a(0; ®)}.

x a ax
But
at(o; ) —a(0; ) =27n(o; x),

where n(g; &) denotes the number of zeros of g(s; ®) on the segment s=o+1¢,

—1=t=4} a zero at an end-point of the interval being counted with only half
of its order’. The function #=(s; a) is therefore also Riemann integrable, and
we have

(4) @ (o0+0)—¢'(c—o0)=2aMin(o; x)},

x

which shows that ¢(o) is differentiable at the point ¢ if and only if
M{n(o; x)} =o.

x

The theorem will therefore be proved if we prove first that for every ¢ in
the interval («,8) the functions a—(s; x) and a* (¢; &) are Riemann integrable,
and secondly that in every reduced interval (e, 8,) the mean value M {n{o; x)}
is positive only for a finite number of values of o.

! Thus n(o;a) is not necessarily an integer.
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118. In order to prove the Riemann integrability of a—(o; o) and a* (o; )
for a given o it is sufficient to prove the Riemann integrability of = (o; x).

To make this clear we use the theorem that a function is Riemann integrable
if and only if it is bounded and is discontinuous only in a (Lebesgue) nullset.
Since in our case the functions are known to be bounded it is sufficient to prove
that if #(o; ) is discontinuous only in a null-set the functions a—(s; x) and
a*(o; x) are also discontinuous only in null-sets. Here we may neglect the set
of points a for which ¢(s; ) has a zero at one of the end-points of the segment
s=¢g+it, —3=<t=<} i e for which either g(c—¢%; ®)=o0 or glo+7}; a)=o0.
For the function g(sy; &) is for every fixed s, an analytic fanction of z,, . . ., Zm
and not identically zero, since this would imply f(s,+ ¢7)=g(sy;uz)=0 for all =,
which is impossible; hence g(s,; )=o0 only in a nullset. For a point a for
which g{o—<¢%; a}+0 and g(o +¢3; @) =o0 it is, however, obvious that the conti-
nuity of n(s; @) implies the continuity of a—(c; x) and a™* (¢; ®).

Thus it now only remains to be proved first that for every o in the interval
(¢, 8) the function #(o; ) is discontinuous only in a null-set, and secondly that
in every reduced interval (e,, §,) the mean value M {n(s; o)} is positive only for
a finite number of values of o. ¥

119. For a given reduced interval (e, §;) and an arbitrary point a, in Rn
we choose a rectangle

S(xy): oy —e<o=<f,+e —t—e=t

A
fiA
1=

+ ¢,

where 0 <é¢=¢(®,) < min(e,—e, 8—48,), on the boundary of which g(s; ,) is
+ 0, and therefore has a positive lower bound % = k(x,). Next we choose an
open interval I(x,) in Rn containing @, such that |g(s; a})—g(s; x,)| <% on the
boundary of S(x,) when x belongs to I(x,). By Rouché's theorem the functions
g(s; 2) have then for all & belonging to I (a,) the same number p =p () (= 0)
of zeros in S(x,). Let

(5) P+ A ()Pt + -+ A,y ()

denote the polynomial having these zeros, so that the coefficients 4,(x),. .., 4,(x)
are the elementary symmetric functions of the zeros. Since g(s; @) is regular in
all the variables s, 2, . . ., zn the functions A4,(x), ..., 4,(a) are then, according
to Weierstrass’ ‘Vorbereitungssatz’, regular functions of zy, ..., xm in I(x,).}

! The ‘Vorbereitungssatz’ deals only with the neighbourhood of a zero. The above statement
is, however, an easy consequence. To prove the functions 4,(x), ..., Ap(ax) to be regular in the
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We now put s=¢++¢¢ in the polynomial (5) and develop with respect to ;
after division by /" it then takes the form

(6) t? + By (g; ) tP1 +--- + By(o; x),
where the coefficients B, (o; @), . . ., Bp(o; &) are polynomials of ¢ whose coefficients
are regular functions of z,,..., zm in I(x,). Thus the number »(s; o) is for every

¢ in (e;,8,) and every « in I(x,) determined as the number of zeros of the
polynomial (6) in the interval —1=<t¢=<}, a zero at an end-point.of the interval
being counted with only half of its order.

By multiplying (6) with the conjugate polynomial

t? + B, (o; x)tP~! + - + Bylo; x)
we arrive at a polynomial-
27 + Cy(o; @) 2771 + ... + Caplo; ),

where the coefficients C,(o; @), ..., Cap(0; o) are polynomials of ¢ whose coeffi-
cients are real regular functions of x,, ..., zw in I(x,). Thus the number z(c; @)
is half the number of zeros of this polynomial in the interval —}=¢=1, a zero

at an end-point of the interval being counted with only half of its order.

120. We now apply the following lemma, which is an easy consequence of
Sturm’s theorem: ‘

For every positive integer » and every interval ¢, <{=t{, there exist a finite
number of polynomials P,(a,, ..., an), ..., Pylay, ..., a) with real coefficients
such that the number of zeros of a real polynomial

QU =1t"+ a,t" '+ + ay
in the interval ¢, =t = 1{, where a zero at an end-point is to be counted
with only half of its order, depends only on the signs sign P, (ay, . . -, @u), - - -,

sign Py(a,, . . ., an) of the values of these polynomials. By the sign of a real
number § we mean +1, 0, or — 1 according as §>0, §=o0, or §<o.!

neighbourhood of a given point &* of I(ir,) we need only apply the theorem to each of the zeros
of g(s;x*) in S(ax,). Our statement may also be proved directly by an immediate extension of the
usual proof {see e. g. Osgood[1]) of the ‘Vorbereitungssatz’.

! Sturm's theorem gives, in fact, a definite procedure for the determination of this number;
this procedure consists of the following steps: (i) Decision as to whether ¢, or f, are roots of Q(f)
and of what order, and division of Q(f) by the corresponding powers of ¢—#, and {—t,. (ii) Deter-
mination of the number of zeros of the quotient R(f) in ¢, < { < {,, multiple zeros being counted
only once, by means of Sturm’s chain formed from the functions R(f) and R’(f). (iii) Determina-
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On applying this lemma we see that there exist a finite number of functions
(7) Dl(a;x)i"‘) D[(G;x),

each of which is a polynomial in ¢ whose coefficients are real regular functions
of z,,...,2m in I (2,), such that for an arbitrary o in (a,, #,) and an arbitrary
2 in I(ax,) the number u(c; x) depends only on the signs of the values of these
functions. This means that there exists a function ¥ (s, ..., 7) defined for the
3' combinations of ! signs 7, ..., 7, such that

(8) n(o; 22) = ¥ (sign D, (o; @), . . ., sign D;(o; )

for all o in (a,, 8,) and all & in I(x,).
Evidently we may assume that none of the functions (7) is identically zero
in ¢ and .

121. In order to complete the proof of the theorem it is now, by Borel's
covering theorem, sufficient to prove first that, for every ¢ in (a,, 8,), the sub-set
of I(a,) in which %(c; a) is discontinuous is a null-set, and secondly that the
integral
{9) (f)n(o;x) dz, . .. dxnm

I ()
is positive only for a finite number of values of ¢ in (ay, 8,).

The first of these statements is an immediate consequence of (8) since for a
given o in (a;,8,) each of the functions sign D;(s; x) is discontinuous only in a
null-set, the function Dj;(c; ) being a regular function of z;, ..., zm in I(a,)
and therefore either identically zero or zero omly in a null-set.

In order to prove the second statement we have to prove that for each set
of signs 7, ..., 7 for which ¥(n, ..., m) >0 the measure of the set of points
in I(x,) defined by the relations

(10) sign D,(¢; &) =14, . . ., sign Di(o; ) =1

is positive only for a finite number of values of ¢ in (e, 8,).

tion of the number of zeros of B(f) in #, <! < {, of multiplicity =2 by means of Sturm's chain
formed from the functions R, () and R (f), where R, ({) is the greatest common divisor of R (f)
and R'(f). (iv) Determination of the number of zeros of R(f) in ¢, <t<t, of multiplicity =3, =4,
ete. by repetition of this process. — This procedure involves only rational calculations and the
determination of the signs of the values of polynomials at the points ¢, and Z,, and there are
altogether only a finite number of possibilities for its course; which shows the truth of our lemma.
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If all n; + o the set is empty for all ¢ in (¢, 8,), for otherwise there would,
on account of the continuity of the functions Dj(s; o), exist a sub-interval
(e*, 8*) of (e,, 8,) and a sub-interval I* of I(x,) such that the equations (10)
‘would be satisfied for all ¢ in (e*, §*) and all 2 in I*; hence the integral (9)
would be positive for all ¢ in (a*, 8*), which is impossible since on account of
(4) it is positive at most for an enumerable number of values o.

It is therefore sufficient to prove that for each jvthe measure of the set of
points in I(ax,) defined by the relation sign Dj(o; %) =o0, i. e. by the relation
Dy(o; @)= o, is positive only for a finite number of values of o. This, however,
is clear. For the relation Dj(o: @) =o0 is for a given value of o satisfied in a
set in I(ac,) of positive measure only if Dj(o; «) is identically zero in 2 for this
value of o, and as Dj(o; @) is a polynomial in o that may happen for at most
as many values of o as the degree indicates.

This completes the proof of the theorem.’

122. An arbitrary exponential polynomial

N

(11) )= Danehn’.
=0

possesses a finite integral base gu,, ..., um. Let

An== hnlﬂl +-+ hnm!‘»m

be the expressions of the exponents by means of the base. The spatial extension
is then

N
96 %) = S aneilhnr ot 7 gin,
st .
which is evidently a regular function of all the variables s, z,, ..., Zm- The
preceding theorem is therefore applicable, and gives in particular the following
solution of Lagrange’s problem.

! An immediate éonseq_uence of Theorem 26 is that if N(o; y, ) denotes the number of zeros
of f(s) on the segment 8=¢ +i¢, y <t<4, then the limit

Ns;y, d)
i N16:%, 9
@-p—w O=7
exists for every ¢ in («, 8) and is equal to
1 ’ —_— ? —
s (#'@+0)—¢'(6—0)).

See in this connection Kae, van Kampen, and Wintner [1].



266 Borge Jessen and Hans Tornehave.
Theorem 27. An arbitrary exponential polynomial

N
F(t) = Zanei;"nt

n=0
of the real variable t possesses a mean motion ¢ determined by the expression
c=13(g—0 + ¢ (+0),
where @ (o) is the Jensen function of N
f(s)= D anétn.
n=0

In the special case mentioned in § 1, where N =1 and |a,|=]a,}, so that
none of the terms in F(f) is preponderant, the theorem again gives Lagrange's
expression ¢ =} (4, + 4,) for the mean motion.! ®

Regarding the general properties of the Jensen function ¢@(o) of an ex-
ponential polynomial (11) we notice that if the notations are chosen such that
Ay <+ <Ay, then, by Theorem g (and the corresponding theorem for functious
whose exponents are bounded below), we have @ (o) = 4,0 + log | a,] for all o <
(some) ¢, and @(o)=A4xoc + log |ax| for all ¢ > (some) 8, It follows therefore
from Theorems 21 and 26 that in the whole interval (— oo, + o) the function
@ (0) possesses only a finite number of linearity intervals and a finite number of
points of non-differentiability.

A more precise result regarding the linearity intervals follows from Theorems
2 and 8, which show that the values of ¢’(s) in these intervals belong to the
finite set of uwumbers which may be written both in the form hgoiy + - - + hxdx
with integral coefficients h, with the sum 1 and in the form r 4, +--- + rydx
with non-negative rational -coefficients 7, with the sum 1.

! For in this case the function f(s) bas no zeros outside the line 6=0 so that @ (o) is linear
for ¢ <o and ¢ >o. If, for instance, we assume Ai,< i, the first term is preponderant for ¢ <o,
whereas the second is preponderant for ¢ > 0. Hence ¢'(6) =4, for 6 <0 and ¢'(6)= 1, for 6>o0,
so that ¢’ {—0)=4, and ¢'(+0)=121,. Thus ¢ =14+,

? The remainder % (f) in the formula arg F{f)=ct+ y/f) has been studied by Wintner {10}
who has proved that, if the exponents and the moduli of the coefficients are given, then ¥'(f) is
almost periodic in Besicovitch's generalized sense for almost all sets of values of the arguments
of the coefficients. Our method easily shows that the difference ¥ (#+ })— w{t — 1) is almost periodic
in Weyl's generalized semse in all cases. By a simple transformation we obtain the more general
result that y({+k)— p(t—k) is almost periodic in Weyl's sense for an arbitrary k. On the other
hand, it may be shown without difficulty that

J
- 1 y(i+k—viE—k _,
lim su -—f|—————-——~— Hldt—o as k —o.
o 6~y . 2k v

Hence, also ¥’ (f) is almost periodic in Weyl's sense.
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123. An extensive class of almost periodic functions with a finite integral
base and an analytic spatial extension is given in the following theorem.

Theorem 28. If the almost periodic function
f(8)~Zanen®

possesses a finite integral base i, . . ., um of negative numbers such that in the ex-
Pressions
z'nzhnl!-'q"i‘ A hnm,urm

of the exponents the integral coefficients hyn are all non-negative, then f(s) has an
analytic spatial exlension,

Since the exponents A, are all =< o the function f(s) may according to
Bohr [10], if it is almost periodic in [e, 8], be continued in the half-plane (a, + =),
and is almost periodic in [@, +®). For o~ + ® it converges uniformly in ¢
towards the constant term of the Dirichlet series. A sequence of exponential

polynomials
Jo(s) = Zal¥ etn®

(where for every p only a finite number of the coefficients al® are = o} con-
verging uniformly towards f(s) in [e, 8] will also converge uniformly in [, + ),
and the sequence

Op (85 2y, . .., Tm) = ZalP) e tnrzt Fhym ) ghn s
will converge uniformly towards the spatial extension g(s; xy, . . ., Zm) for s in

e, + ) and all z,, ..., Zn.
Now the function

hp(s; 2y, . .., 2m) = ZalP g1 -gtnm en?

is for every fixed s a polynomial of the complex variables z,..., zn and we
therefore find by the maximum modulus principle that for arbitrary p and ¢

upper bound g, — g,| = upper bound |hp — h}.

P lal=1,.. . lg,l=s1

Hence hy(s; 2y, . . ., 2w) converges umiformly for s in [a, +®) and [#|=1,. .
}2m] <1 towards a limit function h(s; z,, ..., 2n) regular for ¢ >e and |z, <,
ol <1
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For every 6 >0 we have
Op(8; 2y, ...y Tm) =hpls —3; e em, . .. e*md ¢%m),

Since the numbers g, ..., um are negative this implies that for ¢ >« + d and
all z,,...,2n

gis; 2y ..., xm)=h(s—0; emdein, . . e#m? ei7m).

Hence g¢(s; «,, ...,2m) is regular for c>ac+d and all z,, ..., Zw. As >0 is
arbitrary the theorem is hereby proved.’

Functions with an Infinite Integral Base.

124. In order to extend the preceding results to functions with an infinite
integral base, we must first to the definitions of § 89 (of continuity ete. of func-
tions of an infinite number of variables) add a definition of regularity.

A function F(a)= F(x,, x,, ...) defined in an interval in R, (or the whole
of R,) is called a regular function of all the variables z,, x,, . . . if it is conti-
nuous and if for every m it is a regular function of zi,..., om for arbitrary
fixed values of Zm+1, ZTm+3, . . .. Similarly a function g(s; x)=g(s; z;, z,, . . .) of
a complex variable s describing a strip (o,8) and the real variables x,, z,, .
is called regular in all the variables s, x;, z,, . . . if it is continuous and if for
every m it is regular in the variables 8, Xy, . . ., Tm for arbitrary fixed values of
Tm+1; Tm+2, - . ,

Concerning this notion of regularity, which, though very weak, is sufficient
for our purpose, we notice that it is not invariant even under very simple linear
transformations. This is seen from the following example. k

! The power series of h(s;z,,..., zm), considered as a function of z,,...,7y, for a fixed 8 in
(¢, 4+ w), is obtained from the expression of hp(s;xy,..., m) by & formal passage to the limit, and
therefore, for |z, | <1,..., |zn| <1, we have

.
h@2y,..52y)=Fa,z*1. . z:‘"'m e*nt
where the series is absolutely convergent. If we put
2, =69, oy =e'mI,

where §>o0, this shows that the Dirichlet series of f(s) is absolutely convergent for ¢ > a + J,.
and hence, since § >0 is arbitrary, for ¢ > a.
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Let the integer @>'1 and 0 <b <1 he values corresponding to a non-dif-

ferentiable Weilerstrass function
@®©
H(p = 3 b e,
n=1

The function
- ]
F(:E) =F(x1, Xgy o« ) = Z i eia":r”
n=1

is then evidently a regular function of z;, @, . . ., but by the substitution

Zy = Y1y xn=?/1+yn for n>1

we obtain the function F(y,, y; + ¥s ¥ + ¥s, . . .), which is no regular function
of y,, ¥s, . . . since for y, =y, =---=0 it reduces to F(y,, y;, ¥, . . .) = Hy,).

125. Let f(s) be a function almost periodic in [e, §] with an infinite integral

base #;, @, ..., and let g(s; &)= g(s; z,, 3 ...] be the spatial extension
introduced in § go. If this function g(s; ) is a regular function of all the
variables s, x,; @y, . . . we will say that f(s) has an analytic spatial extension with

respect to the base u,, u,, . . .
This does not imply that with respect to any other infinite integral base
the spatial extension is also analytic, as is seen from the example

w
Fl=3 e,
n=1

where o and b are chosen as in § 124, and where u,, u,, .. . are linearly inde-
pendent numbers such that the sequence a”pu, is bounded. The series is then
uniformly convergent in [—o,+ ], so that f(s) is almost periodic in [—o,+® ];
further f(s) has the infinite integral base u,, u,, . . . and the corresponding spatial
extension is

®
g(_g; x) = an ey, ea”uns’

n=1
which is a regular function of all the variables s, x,, 5, . . .. But f(s) has also
the infinite integral base 1, 4,4, . . ., where

pi=12, n=»~k+12 for n>1,

and with respect to this base the spatial extension is g(s; y;, 1+ ¥s #1+¥s, - - ),
which for s =0 and y, = y;="--=o0 reduces to g(0; ¥, ¥, %1, - - -) = H(y,), and
is therefore not a regular function of all the variables s, ¥, ¥s, . . ..
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This dependence on the base is not important for our considerations, which
are founded on a definite choice of the base.
We shall now prove the following theorem.

Theorem 29. Let f(s) be a function almost periodic in [a, 8] with an infinite
integral base and analytic spatial extension with respect to some such base, and not
tdentically zero. Then the mean motions ¢~ (o) and c* (o) exist for every ¢ in (e, f)
and are determined by

¢c (o) =¢'(c—0) and c*(o)=¢ (o + o).

Further the frequency H (o), o) of zeros exists for cvery strip (o,, 6), twhere
a <o, <0, <, and s determined by

Hoy, o)) = Zl—n((])' (0;—0)—¢ (0, + 0)).

In every reduced interval (¢ <)a, <o <B,(< ) there exist at most a finite number
of values of o for which @(o) is not differentiable.

126. The proof is directly analogous to the proof of Theorem 26, and is
based on the theory of measure and integration in infinitely many dimensions
as developed in Jessen [3]. We shall now proceed to give a summary of the
parts of this theory which we require.

The theory deals with measure and integration in the space R, considered
mod. 1, which we denote by .. Thus a point of ¢, is actually a class of points
in R, which are equivalent mod. 1. The notation = (z,, ,,...) for a point in
R, will also be used for the corresponding point of Q.. By an interval I in
Qo we mean, of course, the set of points & = (z;, s, . ..) for which a finite
number of the coordinates belong mod. 1 to given intervals of lengths = 1,
while the remaining coordinates are unrestricted. The product of the lengths of
these intervals is called the measure m(I) of the interval.

For an arbitrary set 4 in Q. we now consider all coverings of A with a
(finite or) enumerable number of intervals I and we determine for each such
covering the sum of the measures of the covering intervals. The lower bound
of the set of these sums, which is evidently =1, is called the exterior Lebesgue
measure m.(4) of A, while the interior Lebesgue measure m;(4) is defined as
m;(A)=1—m,(Q.—A). If both are equal the set is called measurable in the Lebesgue
sense with the measure m(4)=m,(4)=m;(4). It is easily proved that intervals
are measurable sets and that their measure is equal to that already defined.
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This measure has all the general properties of the usual Lebesgue measure.
The integral based on it, for which we shall use the notation

fF m(d Qu)

has therefore all the general properties of the usual Lebesgue integral.

Denoting by @, and @, . the spaces with (x, ..., ) and (Znt1, Zns2, - - -)
as variable points; and by m, and my, . the corresponding measures, we have in
analogy with Fubini's theorem

fl' x)m(d Q) = fm,,wdQ,.wfI' ) mn (d Qn),

where the inner integral on the right exists except in a null-set of @n o

The usual definition of the Riemann integral based on divisions into a finite
number of intervals and formation of the corresponding lower and upper sums
is  immediately extended to ., and we have the theorem that a function F'(ax)
in @, is Riemann integrable if and only if it is bounded and continuous except
in a null-set. The Kronecker-Weyl theorem is immediately extended to Q.. It
says that if F(a) is Riemann integrable in €,, and if u = (u,, g, . . .) is a point
of R, with linearly independent coordinates, such that the function F(ut) of
the real variable ¢ is also Riemann integrable, then the mean value M {F(ut)}
exists and is equal to the integral of F(x) over Q.:

fF ) m (d Qu).

127. On the basis of this theory the extension of the proof of Theorem 26
to the present case requires only a few remarks.

Let u,, 45, . . . be an infinite integral base of the function f(s) with respect
to which it has an analytic spatial extension g(s; a). This function is periodic
with the period 2s in all the variables z,, z,, . . ., while the preceding theory
deals with functions with the period 1 in all the variables. We therefore apply
throughout the substitution ¢ =2my. The mean values with respect to x of
the various functions considered are then defined as the integrals over @ of the
corresponding functions of ¥. This is the only change required in §§ 116—117.

In extending § 118 we shall need the theorem that if F(ax) is regular in
all the variables x,, ,,... and has the period 1 in all the variables, then it
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is either identically zero or zero only in a nullset. To see this we notice that
since F(x) is continuous the set of points where F(x)=o0 is a closed set in
Q. and therefore necessarily mea.surable. Suppose that its measure is positive.
It then follows from the extension of Fubini's theorem mentioned in § 26 that,
for every =, there exist values of Zn+1, Zn+s, . . . for which F(a), considered as
a function of x,, ..., Za, is zero in a set of positive measure. As F(a) is regular
in ;... 2, this implies that F(x) is identically zero in z,,..., xn for the
values of %n+1, Tn+s, . . . in question. Thus it is possible for an arbitrary point
2 =(x,, x5, . ..) and an arbitrary n by a change of the coordinates Zn+1, Zn-9,. ..
to arrive at a point 2™ for which F(x™)=o0. Since x'"—+xr as n—o this
implies that F(x) is identically zero.

This result-is immediately extended to the case where F(a) is defined only
in an interval; this case is needed later in the proof.

In § 119 the only point requiring a change is that where Weierstrass’ ‘Vor-
bereitungssatz’ is applied. Here we have to prove that when for a given point
*, in R, the rectangle S(ax,) in the s.plane and the interval I(x,) in R, have
been chosen, then the elementary symmetric functions A (), ..., Ap(ax) of the
zeros of g(s; &) in S(ax,) are regular functions of all the variables x,, a,, ... in
I(a,). That they are continuous is evident since the set of zeros depends con-
tinuously on &; and that they are regular functions of z,, .. ., xa for given values
of Zni1, Tnta, ... i8 also clear, since g(s; ) is for these values of xn+i1, Tnie, ...
a regular function of the variables s, x,,..., Zn.

In §§ 120—121 no new arguments are required.

128, We shall now prove the following theorem, which is an immediate
extension of Theorem 28.

Theorem 30. If the almost periodic function
f(s)~ Sanen®

possesses an tnfinite integral base w,, u,, . . . of negative numbers such that in the
expressions

ln=hnlﬂl+hn2ﬂg + -

of the exponents the integral coefficients hny are all non-negative, then f(s) has with
respect to this base an analytic spatial extension.
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As in the case of a finite base, the function f(s) may, if it is almost periodic
in [a, 8], be continued in the half-plane (a,+ ), and is almost periodic in [a, + ®).
A sequence of exponential polynomials

Sfpls) = ZalP eint

(where for every p only a finite number of the coefficients al) are = 0) converging
uniformly towards f(s) in [e, 8] will also converge uniformly in [a,+ %), and the
sequence

9» ('5'§ Lyy Xgy . . ) = E“g’) ¢ ltn1 Tthng ort o) ghn s

will converge uniformly towards the spatial extemsion g(s; x,, 2, ...) for s in
e, + ) and all z,, x,,. ...
Now the function

< —_— i A,
hp(s; 2y, 25, .. )= ZaP g'n12Mn2. . etn®

is for every fixed s a polynomial of the complex variables z,, z,, ... (depending
actually on a finite number of the variables only); by the maximum modulus
principle we therefore find that for arbitrary p and ¢

upper bound | g, — g¢| = upper bound |k, — h].
Xy, Xy oo 1z1=1, |al=,...

Hence hy(s; 2y, 25, . ..) converges uniformly for s in [a, + ) and |z, |=1,
lzz] =1, ... towards a limit function h(s;z,¢,, ...), which is continuous' and
regular in s, 2, ..., 2n for 6>a and |,|<1,..., |em| <1 for given values of

Zm+1y Em+2, - « ..

For every d >0 we have
Ools; @), @y, .. ) =hp(s— 8; emdein gudgln )

Since the numbers u,, u,;, ... are negative this implies that for 6 >a +4 and all
Ly, Tay - -
glsixy, @y, .. )=h(s—d; euden gndgin ),

This shows that g(s; z,, @, . . .) is regular for 0 >« + J and all ©;, 2, . ... As
d >0 is arbitrary the proof is hereby complete.

! In the usual sense, i.e. h(s(n); z(lﬂ), z(;l), ) h(8; 2,2, ...) if sn)—g and z(i")—» 2, for all 4.
18 — 632042 Acia mathematica. 77
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129. For an ordinary Dirichlet sertes

fls) = nz=|l Z_:' — ﬂ2=la” o— (logn)s

possessing a half-plane of convergence (and hence also a half-plane of absolute
convergence) the abscissa o of uniform convergence is defined as the lower bound
of all numbers «, for which the series is uniformly convergent in the half-plane
(er;, + ). According to a theorem of Bohr [4], this abscissa « is also the lower
bound of all numbers o, for which f(s) is regular and bounded in the half-plane
(25, + ®). Thus the function f(s) is almost periodic in [@, + ), but not in any
larger half-plane, and its Dirichlet series in the sense of the theory of almost
periodic functions is the above series, or rather this series after the owmission of
terms with the coefficient o.

In this case the function has the infinite integral base —log p,, —log p,, ...,
where p,, py, ... denote the prime numbers, and the conditions of Theorem 30
are evidently satisfied for this base. Thus f(s) has an analytic spatial extension
with respect to this base!. Theorem 29 is therefore applicable.

Regarding the general properties of the Jensen function (o) in this case
we notice that if m, is the smallest value of n for which a, +o0, we have, by
Theorem 9, that @(o) =— (log ny)o+log | an,| for all o> (some) g, Hence g(o)is
a decreasing function and possesses, by Theorems 22 and 29, on every half-line
0>a,(>a) only a finite number of linearity intervals and a finite number of
points of non-differentiability.

A more precise result regarding the linearity intervals follows from Theo-
rems 2 and 8, which show that the value of ¢'(s) in a linearity interval is ex-
pressible in the form %, (—logp,) + k;(—logp,)+ --- both with integral coefficients
ki, k5, ... and with non-negative rational coefficients. Since on account of the
linear independence of the numbers —logp,, —logp,, ... the two expressions
must be identical, we find that the value must be one of the numbers — log #,
n=1,2,.... We notice that the corresponding coefficient a, need not be
+o0, so that the value of ¢'(s) is not necessarily one of the proper exponents
of f(s).

We may collect our results on ordinary Dirichlet series in the following
theorem.

! A closer study of an unessentially different form of this spatial extension has been given
by Bohr 5].
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Theorem 31. For an ordinary Dirichlet series

f(s)':Zv%, an, =+ 0,
n=nq
with the uniform convergence abscissa a, the Jensen function (o) possesses on every
half-line 6>a,(>a) only a finite number of linearity intervals and a finite number
of points of non-differentiability. The values of ¢’ (a) in the linearity intervals belong
to the set of numbers —logn, n=n, For ¢ > (some) o, we have

9 (6) =— (log mp) o + log | an,|.

For an arbilrary o> a the mean motions ¢~ (o) and c* (o) both exist and are
determened by
¢ (o)=¢ (6—0) and ct(0)=¢ (o + 0).
For an arbitrary strip (o, 6,), where e <o, <0,< + ©, the relative frequency H (a,, 0,)

of zeros exists and is determined by

H(ol) az) = ;I; (Q’(o'g —0)— 9),(01 + 0)).
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