

By

J. F. STEFFENSEN
 of Copenhagen.

1. In a former paper ${ }^{1}$ I have considered a class of polynomials, the poweroids, which may be defined by the relation

$$
\begin{equation*}
x^{\bar{v}}=x\left(\frac{D}{\theta}\right)^{v} x^{v-1} \tag{I}
\end{equation*}
$$

θ denoting the operator

$$
\begin{equation*}
\theta=\varphi(D)=\sum_{v=1}^{\infty} k_{v} D^{v} \quad\left(k_{1} \neq 0\right) \tag{2}
\end{equation*}
$$

The function $\varphi(t)$ is assumed to be analytical at the origin, and expansions in powers of D or any other theta-symbol are only permitted when the operation is applied to a polynomial.

A consideration of the form (I) leads to an examination of the polynomials

$$
\begin{equation*}
R_{\nu}^{[\lambda]}(x)=\left(\frac{D}{\theta}\right)^{2} x^{v} \tag{3}
\end{equation*}
$$

where v is the degree of the polynomial, while λ can be any real or complex number.

These polynomials contain as particular cases several polynomials which have already proved useful in analysis. Thus, the Nörlund polynomials $B_{v}^{[x]}(x)$ and $\mathcal{G}_{\nu}^{[\lambda]}(x)$, which again include the Bernoulli and Euler polynomials, are obtained for $\theta=\triangle$ and $\theta=\left(1+\frac{\Delta}{2}\right) D$ respectively, see P. (105) and P. (118), and for $\theta=e^{\triangle} D$ the polynomial

[^0]\[

$$
\begin{aligned}
G_{v}(\lambda, x) & =e^{-\lambda \Delta} x^{v} \\
& =\sum_{s=0}^{v}(-1)^{s} \frac{\lambda^{s}}{s!} \Delta^{s} x^{v}
\end{aligned}
$$
\]

or P. (71), results. The poweroid x^{7}, expressed by the polynomials (3), is written

$$
\begin{equation*}
\left.x^{\top}\right]=x R_{v-1}^{[v]}(x) . \tag{4}
\end{equation*}
$$

From (3) we obtain at once the two important relations

$$
\begin{align*}
& D R_{v}^{[\lambda]}(x)=\nu R_{v-1}^{[\lambda]}(x) \tag{5}\\
& \theta R_{v}^{[\lambda]}(x)=\nu R_{v-1}^{[\lambda-1]}(x) . \tag{6}
\end{align*}
$$

From these follow the expansions in powers and in poweroids

$$
\begin{align*}
& R_{v}^{[\lambda]}(x+y)=\sum_{s=0}^{\nu}\binom{v}{s} x^{\varepsilon} R_{v-s}^{[\lambda]}(y) \tag{7}\\
& R_{v}^{[\lambda]}(x+y)=\sum_{s=0}^{\nu}\binom{\nu}{s} x^{\bar{s}]} R_{\nu-s}^{[\lambda-s]}(y) \tag{8}
\end{align*}
$$

and, if we write

$$
\begin{equation*}
R_{v}^{[\mathrm{j}]} \equiv R_{\nu}^{[\mathrm{X}]}(\mathrm{o}) \tag{9}
\end{equation*}
$$

in particular

$$
\begin{align*}
& R_{v}^{[\lambda]}(x)=\sum_{s=0}^{\nu}\binom{\nu}{s} x^{s} R_{v-s}^{[\alpha]}, \tag{io}\\
& R_{v}^{[\lambda]}(x)=\sum_{s=0}^{\nu}\binom{\nu}{s} x^{\overline{4}} R_{\nu-s}^{[\lambda-s]} . \tag{II}
\end{align*}
$$

We shall presently occupy ourselves with the question of determining the coefficients $R_{v}^{[2]}$, which can be done in several ways, but first we propose to find the generating function of the polynomials $R_{\nu}^{[x]}(x)$. This is obtained by P. (37), or

$$
\begin{equation*}
\Phi(t) e^{x t}=\sum_{v=0}^{\infty} \frac{t^{v}}{v!} \Phi(D) x^{\nu} \tag{12}
\end{equation*}
$$

which is valid if $\Phi(t)$ is analytical at the origin. In this formula we mas, owing to the assumptions we have made about $\varphi(t)$, put

$$
\begin{equation*}
\Phi(t)=\left(\frac{t}{\varphi(t)}\right)^{\lambda} \tag{I3}
\end{equation*}
$$

On the Polynomials $R_{v}^{[i]}(x), N_{v}^{i x]}(x)$ and $M_{v}^{[i]}(x)$.
$\varphi(t)$ being the function defined by (2)

$$
\begin{equation*}
\varphi(t)=\sum_{v=1}^{\infty} k_{v} t^{v} \quad\left(k_{1} \neq 0\right) \tag{14}
\end{equation*}
$$

We thus obtain from (12), by (3), the generating function of $R_{v}^{[1]}(x)$

$$
\begin{equation*}
\left(\frac{t}{p(t)}\right)^{\dot{x}} e^{x t}=\sum_{v=0}^{\infty} \frac{t^{v}}{v!} R_{v}^{[\alpha]}(x) \tag{15}
\end{equation*}
$$

In particular, for $x=0$, we have the generating function of $R_{v}^{[x]}$

$$
\begin{equation*}
\left(\frac{t}{\varphi(t)}\right)^{2}=\sum_{v=0}^{\infty} \frac{t^{v}}{v!} R_{v}^{[\bar{\beta}]} \tag{16}
\end{equation*}
$$

These coefficients deserve to be considered separately on account of their application to certain summation problems. Thus, if we put

$$
\varphi(t)=(\mathrm{I}+t)^{\frac{1}{\tilde{h}^{n}}}-\mathrm{I}
$$

we have $R_{v}^{[1]}=\nu!A_{v}$, the Λ_{v} being the coefficients in Lubbock's summation formula. ${ }^{1}$ If λ is any positive integer, we get the coefficients in the corresponding formula for repeated summation of any order.
2. In certain cases $\varphi(t)$ is such a simple function that $R_{v}^{[\lambda]}(x)$ can be obtained directly from (3) by expanding $\left(\frac{D}{\theta}\right)^{2}$. But here we are chiefly concerned with the general case where $\varphi(t)$ is only known by its expansion (14), so that the main problem is to express $R_{v}^{[i]}$, and hence $R_{v}^{[i]}(x)$, by the coefficients k_{v}. This may be done in several ways.

The first one that occurs is to derive a recurrence formula from (16), using as initial value

$$
\begin{equation*}
R_{0}^{[\lambda]}=k_{1}^{-\lambda} \tag{17}
\end{equation*}
$$

which is obtained directly from (I6) for $t=0$. We take the logarithm on both sides of (16) and differentiate, the result being

$$
\frac{\lambda}{t}-\lambda \frac{\varphi^{\prime}(t)}{\varphi(t)}=\frac{\sum_{v=1}^{\infty} \frac{t^{v-1}}{(\nu-1)!} R_{v}^{[\lambda]}}{\sum_{v=0}^{\infty} \frac{t^{v}}{v!} R_{v}^{[\lambda]}}
$$

[^1]whence
$$
\left[\lambda \frac{\varphi(t)}{t}-\lambda \varphi^{\prime}(t)\right] \sum_{v=0}^{\infty} \frac{t^{\nu}}{\nu!} R_{v}^{[\lambda]}=\varphi(t) \sum_{v=1}^{\infty} \frac{t^{\nu-1}}{(\nu-\mathrm{I})!} R_{\nu}^{[\lambda]}
$$

By (14) this may be written

$$
-\lambda \sum_{s=1}^{\infty} s k_{z+1} t^{*} \cdot \sum_{v=0}^{\infty} \frac{t^{v}}{v!} R_{v}^{[\lambda]}=\sum_{z=1}^{\infty} k_{s} t^{s} \cdot \sum_{v=0}^{\infty} \frac{t^{\nu}}{v!} R_{v+1}^{[\hat{\beta}]}
$$

and if we now compare the coefficients of t^{r} on both sides, we find the required recurrence formula

$$
\begin{equation*}
\sum_{\nu=0}^{r} k_{r-v+1} \frac{r \lambda+\nu(\mathrm{I}-\lambda)}{\nu!} R_{v}^{[\lambda]}=0 \tag{18}
\end{equation*}
$$

with the initial value (17).
3. A direct expression for $R_{\boldsymbol{v}}^{[\lambda]}$ is obtained as follows. In order to expand the left-hand side of (16) we write

$$
\begin{aligned}
\left(\frac{t}{\varphi(t)}\right)^{\lambda} & =\left(\frac{\varphi(t)}{t}\right)^{-\lambda} \\
& =\left(k_{1}+\sum_{v=1}^{\infty} k_{v+1} t^{v}\right)^{-\lambda}
\end{aligned}
$$

If, now, we put

$$
\begin{equation*}
\Psi=\sum_{v=1}^{\infty} k_{v+1} t^{v} \tag{19}
\end{equation*}
$$

and expand in powers of Ψ, we find

$$
\begin{equation*}
\left(\frac{t}{\varphi(t)}\right)^{\lambda}=\sum_{n=0}^{\infty}\binom{-\lambda}{n} k_{1}^{-n-\lambda} \Psi^{n} \tag{20}
\end{equation*}
$$

Next, we put

$$
\begin{equation*}
\Psi^{p n}=\sum_{v=n}^{\infty} a_{v}^{(n)} t^{\nu} \tag{2I}
\end{equation*}
$$

where the coefficients $a_{v}^{(n)}$, which are independent of λ, satisfy the recurrence formula

$$
\begin{equation*}
\sum_{v=0}^{r} k_{r-v+2}[n r-v(n+1)] a_{\nu+n}^{(n)}=0 \tag{22}
\end{equation*}
$$

with the initial value

$$
\begin{equation*}
a_{n}^{(n)}=k_{2}^{n} \tag{23}
\end{equation*}
$$

resulting from (21) and (19). We may derive (22) in the same way as (18), but it is easier to observe that (22) is really (18) with a change of notation. For, comparing (16), written in the form

$$
\left(\sum_{v=1}^{\infty} k_{v} t^{v-1}\right)^{-i}=\sum_{v=0}^{\infty} \frac{t^{v}}{v!} R_{v}^{[\lambda]}
$$

with (21) written in the form

$$
\left(\sum_{v=1}^{\infty} k_{v+1} t^{v-1}\right)^{n}=\sum_{v=0}^{\infty} a_{v+n}^{(n)} t^{v}
$$

it is seen at once that, if

$$
k_{v}, \quad \lambda, \quad R_{v}^{[\lambda]}
$$

are replaced respectively by

$$
k_{v+1}, \quad-n, \quad \nu!a_{\nu+n}^{(n)}
$$

then (18) is changed into (22).
If, now, we regard the coefficients $a_{v}^{(n)}$ as known and insert (21) in (20), we have

$$
\left(\frac{t}{\varphi(t)}\right)^{\lambda}=\sum_{n=0}^{\infty}\binom{-\lambda}{n} k_{1}^{-n-\lambda} \sum_{v=n}^{\infty} a_{\nu}^{(n)} t^{v}
$$

or, arranging in powers of t, taking into account that $a_{v}^{(n)}=0$ for $n<v$,

$$
\left(\frac{t}{\varphi(t)}\right)^{\lambda}=\sum_{v=0}^{\infty} t^{v} \sum_{n=0}^{v}\binom{-\lambda}{n} k_{1}^{-n-\lambda} a_{v}^{(n)}
$$

so that comparison with (16) shows that

$$
\begin{equation*}
R_{\nu}^{[\lambda]}=\nu!\sum_{n=0}^{\nu}(-1)^{n} \frac{\lambda^{!-n)}}{n!} k_{1}^{-n-i} a_{v}^{(n)} \tag{24}
\end{equation*}
$$

where $\lambda^{(-n)}=\lambda(\lambda+1) \cdots(\lambda+n-1), \lambda^{(0)}=1$.
It is seen that if $k_{1}=I$, as is frequently the case, then $R_{v}^{[i]}$ is a polynomial in λ of degree ν.
4. A direct expression for $a_{v}^{(n)}$ is obtained from (21) by expanding the polynomial
viz.

$$
\left(k_{2} t+k_{3} t^{2}+\cdots+k_{v+1} t^{v}\right)^{n}
$$

$$
\begin{equation*}
a_{v}^{(n)}=n!\sum \frac{k_{2}^{\alpha} k_{s}^{\beta} k_{4}^{\gamma} \ldots}{\alpha!\beta!\gamma!\ldots} \tag{25}
\end{equation*}
$$

where the summation extends to all positive integers $\alpha, \beta, \gamma \ldots$ for which simultaneously
and

$$
\begin{equation*}
\alpha+\beta+\gamma+\cdots=n \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
\alpha+2 \beta+3 \gamma+\cdots=\nu \tag{27}
\end{equation*}
$$

We state below a few special results, found by (25) and checked by (22)
$a_{n}^{(n)}=k_{2}^{n}$.
$a_{n+1}^{(n)}=n k_{3} k_{3}^{n-1}$.
$a_{n+2}^{(n)}=n k_{4} k_{2}^{n-}+\binom{n}{2} k_{3}^{2} k_{2}^{n-2}$.
$a_{n+3}^{(n)}=n k_{5} k_{z}^{n-1}+n^{(2)} k_{4} k_{3} k_{u}^{n-2}+\binom{n}{3} k_{3}^{3} k_{z}^{n-3}$.
$a_{n+4}^{(n)}=n k_{6} k_{2}^{n-1}+\binom{n}{2}\left(2 k_{5} k_{3}+k_{4}^{2}\right) k_{2}^{n-2}+\frac{n^{(3)}}{2} k_{4} k_{3}^{2} k_{z}^{n-3}+\binom{n}{4} k_{3}^{4} k_{z}^{n-4}$.
$a_{n+5}^{(n)}=n k_{7} k_{2}^{n-1}+n^{(2)}\left(k_{6} k_{3}+k_{5} k_{4}\right) k_{\underline{z}}^{n-2}+\frac{n^{(3)}}{2}\left(k_{5} k_{3}+k_{4}^{2}\right) k_{3} k_{z}^{n-3}+$

$$
\begin{array}{r}
+\frac{n^{(4)}}{6} k_{4} k_{3}^{3} k_{2}^{n-4}+\binom{n}{5} k_{3}^{3} k_{2}^{n-5} \\
a_{n+6}^{(n)}=n k_{3} k_{2}^{n-1}+\binom{n}{2}\left(2 k_{7} k_{3}+2 k_{6} k_{4}+k_{3}^{2}\right) k_{3}^{n-2}+\binom{n}{3}\left(3 k_{6} k_{3}^{2}+6 k_{5} k_{4} k_{3}+k_{4}^{3}\right) k_{2}^{n-3}+ \\
\\
+\binom{n}{4}\left(4 k_{5} k_{3}^{3}+6 k_{4}^{2} k_{3}^{2}\right) k_{3}^{n-4}+5\binom{n}{5} k_{4} k_{3}^{4} k_{3}^{n-5}+\binom{n}{6} k_{3}^{e} k_{3}^{n-6}
\end{array}
$$

We further have, by (21) and (19)

$$
\begin{array}{ll}
a_{0}^{(0)}=1, & a_{v}^{(0)}=0 \quad(v>0) \\
a_{0}^{(1)}=0, & a_{v}^{(1)}=k_{r+1} \quad(v>0) \tag{29}
\end{array}
$$

In the expression (24) for $R_{v}^{[1]}$ we want $a_{v}^{(0)}, a_{v}^{(1)}, a_{v}^{(2)}, \ldots a_{v}^{(\nu)}$. These may be written down as far as $\nu=8$ by the formulas given above. The results are, leaving out $a_{\nu}^{(0)}$ and $a_{\nu}^{(1)}$, given by (28) and (29),
$\nu=2 . \quad a_{2}^{(2)}=k_{2}^{2}$.
$\nu=3 . \quad a_{3}^{(2)}=2 k_{3} k_{2} . \quad a_{3}^{(3)}=k_{2}^{\mathrm{s}}$.
$\nu=4 . \quad a_{4}^{(2)}=2 k_{4} k_{3}+k_{3}^{2} . \quad a_{4}^{(3)}=3 k_{3} k_{2}^{2} . \quad a_{4}^{(4)}=k_{2}^{4}$.
$\nu=5 . \quad a_{3}^{(2)}=2 k_{5} k_{2}+2 k_{4} k_{3} . \quad a_{5}^{(3)}=3 k_{4} k_{9}+3 k_{3}^{2} k_{2}$.

$$
a_{5}^{(4)}=4 k_{9} k_{2}^{3} . \quad a_{5}^{(5)}=k_{2}^{5}
$$

$$
\begin{array}{ll}
\nu=6 . & a_{8}^{(2)}=2 k_{6} k_{2}+k_{4}^{2}+2 k_{5} k_{3} . \quad a_{6}^{(3)}=3 k_{5} k_{2}^{2}+6 k_{4} k_{3} k_{2}+k_{8}^{3} . \\
& a_{6}^{(4)}=4 k_{4} k_{2}^{3}+6 k_{3}^{2} k_{2}^{2} . \quad a_{8}^{(5)}=5 k_{3} k_{2}^{4} . \quad a_{8}^{(6)}=k_{2}^{6} . \\
\nu=7 . & a_{7}^{(2)}=2 k_{7} k_{2}+2 k_{5} k_{4}+2 k_{6} k_{3} . \quad a_{7}^{(3)}=3 k_{6} k_{2}^{2}+3 k_{4} k_{3}^{2}+3 k_{4}^{2} k_{9}+6 k_{5} k_{3} k_{9} . \\
& a_{8}^{(4)}=4 k_{5} k_{3}^{3}+12 k_{4} k_{3} k_{2}^{2}+4 k_{3}^{3} k_{2} . \quad a_{7}^{(5)}=5 k_{4} k_{2}^{4}+10 k_{3}^{2} k_{2}^{3} . \\
& a_{7}^{(6)}=6 k_{3} k_{2}^{5} . \quad a_{7}^{(7)}=k_{2}^{7} . \\
\nu=8 . & a_{8}^{(2)}=2 k_{8} k_{2}+2 k_{7} k_{3}+2 k_{6} k_{4}+k_{5}^{2} . \\
& a_{8}^{(3)}=3 k_{7} k_{2}^{2}+6 k_{6} k_{3} k_{2}+6 k_{5} k_{4} k_{2}+3 k_{5} k_{3}^{2}+3 k_{4}^{2} k_{3} . \\
& a_{8}^{(4)}=4 k_{6} k_{2}^{3}+12 k_{5} k_{3} k_{2}^{2}+12 k_{4} k_{3}^{9} k_{2}+6 k_{4}^{2} k_{2}^{2}+k_{3}^{4} . \\
& a_{8}^{(5)}=5 k_{5} k_{2}^{4}+20 k_{4} k_{3} k_{2}^{3}+10 k_{3}^{3} k_{2}^{2} . \\
& a_{8}^{(8)}=6 k_{4} k_{2}^{5}+15 k_{3}^{2} k_{2}^{4} . \quad a_{8}^{(7)}=7 k_{3} k_{2}^{3} . \quad a_{8}^{(8)}=k_{2}^{8} .
\end{array}
$$

By means of these results, $R_{v}^{[2]}$ may be immediately written down by (24), and thereafter $R_{\nu}^{[\lambda]}(x)$ by (IO) or, in terms of poweroids, by (II).

In the particular case where $\lambda=-1$ we have directly by (16) and (Io)

$$
\begin{equation*}
R_{r}^{[-1]}=\nu!k_{r+1}, \quad R_{v}^{[-1]}(x)=\nu!\sum_{s=0}^{v} k_{v-s+1} \frac{x^{s}}{s!} \tag{30}
\end{equation*}
$$

b. A formula of some generality, a sort of binomial theorem for the R-polynomials, is obtained as follows. We replace, in (3), λ by $\lambda+\mu$, and x by $x+y$, writing the result in the form

$$
R_{v}^{[2+\mu]}(x+y)=\left(\frac{D}{\theta}\right)^{2}\left(\frac{D}{\theta}\right)^{\mu}(x+y)^{v}
$$

Here, it evidently does not matter whether $\left(\frac{D}{\theta}\right)$ acts on x or on y. We may, therefore, let $\left(\frac{D}{\theta}\right)^{i}$ act on x, and $\left(\frac{D}{\theta}\right)^{\mu}$ on y. Expanding $(x+y)^{\nu}$ by the binomial theorem and performing the two operations, we find, by (3),

$$
\begin{equation*}
R_{\nu}^{[i+\mu]}(x+y)=\sum_{s=0}^{v}\binom{\nu}{s} R_{s}^{[i]}(x) R_{v-s}^{[\mu]}(y) \tag{31}
\end{equation*}
$$

which is the binomial theorem for our polynomials.
Several particular cases of this formula are of interest. Thus, observing that, by (3)

$$
\begin{equation*}
R_{v}^{[0]}(x)=x^{\nu} \tag{32}
\end{equation*}
$$

we obtain, putting $\mu=-\lambda$ in (31),

$$
\begin{equation*}
(x+y)^{v}=\sum_{s=0}^{v}\binom{v}{s} R_{s}^{[\hat{\lambda}]}(x) R_{v \cdots s}^{[-\hat{\alpha}]}(y) \tag{33}
\end{equation*}
$$

and from this, for $y=0$,

$$
\begin{equation*}
x^{v}=\sum_{s=0}^{v}\binom{v}{s} R_{s}^{[\lambda]}(x) R_{\nu-s}^{i-i]} \tag{34}
\end{equation*}
$$

This may be looked upon either as the expansion of x^{ν} in R-polynomials, or as a recurrence formula for $R_{v}^{[2]}(x)$. In the latter case we have as initial value

$$
\begin{equation*}
R_{0}^{[i]}(x)=k_{1}^{-i} \tag{35}
\end{equation*}
$$

resulting from (15) for $t=0$.
Next, putting $\mu=0$ in (31), we have, by (32),

$$
\begin{equation*}
R_{\nu}^{[\lambda]}(x+y)=\sum_{s=0}^{v}\binom{v}{s} R_{s}^{[\lambda]}(x) y^{v-s} \tag{36}
\end{equation*}
$$

which is really only the Maclaurin expansion in y.
Putting $y=-x$ in (36) we find

$$
\begin{equation*}
R_{v}^{[i]}=\sum_{s=0}^{v}(-\mathrm{I})^{v-s}\binom{\nu}{s} x^{r-s} R_{*}^{[\gamma]}(x) \tag{37}
\end{equation*}
$$

another recurrence formula for $R_{v}^{[\lambda]}(x)$, which may also be obtained from (7).
We further note that, putting $y=0$ in (31), we have

$$
\begin{equation*}
R_{v}^{[i+\mu]}(x)=\sum_{s=0}^{v}\binom{v}{s} R_{s}^{[\dot{\beta}]}(x) R_{v \rightarrow s}^{[\mu]} \tag{38}
\end{equation*}
$$

and putting $x=0$ in this

$$
\begin{equation*}
R_{v}^{[\lambda+\mu]}=\sum_{s=0}^{\nu}\binom{\nu}{s} R_{s}^{[\lambda]} R_{v-s}^{[\mu]} \tag{39}
\end{equation*}
$$

or the binomial theorem for the R-coefficients.
These binomial theorems are evidently generalizations of corresponding theorems by Nörlund ${ }^{1}$ (in the case where the intervals of differencing are identical).
6. The R-polynomials may be generalized considerably without losing their essential properties. We may, in fact, in (3) replace D by any theta-symbol, provided that x^{ν} is replaced by the corresponding poweroid. Let, therefore, θ

[^2]and θ_{I} be any two theta-symbols, $x^{\overline{7}}$ and $x_{I}^{\overline{7}}$ the corresponding poweroids; we write then, instead of (3),
\[

$$
\begin{equation*}
N_{v}^{[i]}(x)=\left(\frac{\theta}{\theta_{\mathrm{I}}}\right)^{2} x^{\overline{\mathrm{l}}} \tag{40}
\end{equation*}
$$

\]

It is seen at once that the N-polynomials satisfy the two fundamental relations

$$
\begin{gather*}
\theta N_{v}^{[\lambda]}(x)=\nu N_{v-1}^{[\lambda]}(x) \tag{4I}\\
\theta_{\mathrm{I}} N_{v}^{[\lambda]}(x)=\boldsymbol{v} N_{v-1}^{[2-1]}(x), \tag{42}
\end{gather*}
$$

corresponding to (5) and (6).
From these polynomials we obtain the R-polynomials by choosing $\theta=D$ $x^{\eta}=x^{\nu}$, but the N-polynomials contain many other interesting polynomials. Thus, for instance, if $\theta={\underset{\omega}{\omega}}, x^{\bar{\eta}}=x_{\omega}^{(r)}$, where $x_{\omega}^{(r)}$ is the factorial

$$
\begin{equation*}
x_{\omega}^{(\nu)}=x(x-\omega) \ldots(x-\nu \omega+\omega), \quad x_{\omega}^{(0)}=\mathrm{I} \tag{43}
\end{equation*}
$$

and $\theta_{\mathrm{I}}=\Delta$, we obtain the polynomial

$$
\begin{equation*}
x_{\omega \hat{k}}^{v}=\left(\frac{\Delta}{\omega}\right)^{\lambda} x_{\omega}^{(\nu)} . \tag{44}
\end{equation*}
$$

I have on a former occasion ${ }^{1}$ dealt with this polynomial in the case where λ is a non-negative integer, n. In that case, the polynomial is completely determined by satisfying the two relations (41) and (42), or

$$
\begin{aligned}
& \Delta x_{\omega n}^{v}=\nu x_{\omega n}^{\nu-1}, \\
& \Delta x_{\omega n}^{v}=\nu x_{\omega, n-1}^{\nu-1},
\end{aligned}
$$

besides the initial conditions $x_{\omega n}^{0}=I$ and $x_{\omega 0}^{v}=x_{\omega}^{(\imath)}$. This proves that it can be represented in the convenient form (44), where λ may, however, be any real or complex number.

For $\omega \rightarrow 0$ we obtain from (44) $x_{0 \lambda}^{\nu}=B_{\nu}^{[\lambda]}(x)$.
Related to (44) is the corresponding "central» polynomial

$$
x_{\omega \lambda}^{[v]}=\left(\begin{array}{l}
\delta \tag{45}\\
\frac{\delta}{\delta} \\
\frac{\delta}{\delta}
\end{array}\right)^{\lambda} x_{\omega}^{[v]}
$$

[^3]where central differences and central factorials
$$
\underset{\omega}{\boldsymbol{\delta}}=\frac{\mathbf{1}}{\omega}\left(E^{\frac{\omega}{2}}-E^{-\frac{\omega}{2}}\right), \quad x_{\omega}^{[\nu]}=x\left(x+\frac{\nu-2}{2} \omega\right)_{\omega}^{(v-1)}
$$
are employed.
We may further mention the polynomials
\[

$$
\begin{equation*}
b_{v}^{[\lambda]}(x)=\left(\frac{\Delta}{D}\right)^{\bar{\alpha}} x^{(\nu)} \tag{46}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
e_{v}^{[i]}(x)=\left(1+\frac{\Delta}{2}\right)^{-\lambda} x^{(v)} \tag{47}
\end{equation*}
$$

which are related to the Nörlund polynomials $B_{v}^{[\lambda]}(x)$ and $\mathcal{G}_{v}^{[\lambda]}(x)$. The case $\lambda=1$ has been dealt with by Charles Jordan ${ }^{1}$, who calls $\frac{1}{v!} b_{v}^{[1]}(x)$ the Bernoulli polynomial of the second kind, and $\frac{1}{\nu!} e_{v}^{[1]}(x)$ Boole's polynomial.

The corresponding central polynomials are

$$
\begin{align*}
& \beta_{v}^{[\lambda]}(x)=\left(\frac{\delta}{D}\right)^{2} x^{[v]} \tag{48}\\
& \varepsilon_{v}^{[\lambda]}(x)=\square^{-2} x^{[v]} \tag{49}
\end{align*}
$$

where $\square=\frac{1}{2}\left(E^{\frac{1}{2}}+E^{-\frac{1}{2}}\right)$.
7. The theory of the N-polynomials runs parallel to that of the R-polynomials. Writing

$$
\begin{equation*}
N_{\nu}^{[\lambda]} \equiv N_{\nu}^{[2]}(\mathrm{o}), \tag{50}
\end{equation*}
$$

we obtain from (41) and (42) the two expansions corresponding to (io) and (II)

$$
\begin{equation*}
N_{v}^{[\alpha]}(x)=\sum_{s=0}^{v}\binom{v}{s} x^{\bar{s}]} N_{v-s}^{[\alpha]} \tag{5I}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{v}^{[\lambda]}(x)=\sum_{s=0}^{v}\binom{\nu}{s} x_{1}^{\text {ㄱ }} N_{\nu \sim \delta}^{[\lambda-s]} \tag{52}
\end{equation*}
$$

in the poweroids $x \sqrt{4}$ and $x_{1}^{\sqrt[3]{7}}$ respectively.
${ }^{1}$ Charles Jordan: Calculus of Finite Differences, p. 265 and p. 317. The notation differs from ours.

More generally we have

$$
\begin{align*}
& N_{v}^{[\hat{\beta}]}(x+y)=\sum_{s=0}^{v}\binom{v}{s} x^{\overline{-}} N_{v-s}^{[\hat{\lambda}]}(y) \tag{53}\\
& N_{v}^{[\hat{\lambda}]}(x+y)=\sum_{s=0}^{v}\binom{v}{s} x_{\mathbf{I}}^{\overline{\mathbf{I}}} N_{v-s}^{[\lambda-k]}(y) . \tag{54}
\end{align*}
$$

In order to obtain the generating function of $N_{v}^{[\lambda]}(x)$, we must begin by generalizing (12). According to P. (34) and P. (33) we have

$$
e^{x t}=\sum_{v=0}^{\infty} \frac{x^{\bar{v}}}{\nu!} \zeta^{v}, \quad \zeta=\varphi(t)
$$

for sufficiently small $|\zeta|$ and all x. If now

$$
\Phi(\zeta)=\sum_{v=0}^{\infty} c_{v} \zeta^{v}
$$

means any function which is analytical at the origin, and we require the coefficient of ζ^{v} in the expansion of $\Phi(\zeta) e^{x t}$, this coefficient is

$$
\sum_{s=0}^{v} c_{v-\varepsilon} \frac{x^{\overline{1}}}{s!}=\frac{\mathrm{I}}{v!} \boldsymbol{\rho}(\theta) x \bar{x}
$$

We therefore have

$$
\begin{equation*}
\boldsymbol{\Phi}(\zeta) e^{x t}=\sum_{v=0}^{\infty} \frac{\zeta^{\nu}}{\nu!} \Phi(\theta) x^{\bar{\eta}} \tag{55}
\end{equation*}
$$

where t is regarded as the function of ζ determined by $\zeta=\varphi(t)$.
This theorem contains (12), which is obtained for $\theta=D, x^{\bar{\eta}}=x^{v}, \zeta=\varphi(t)=t$.
Since any theta-symbol may be expanded in powers of any other thetasymbol, we may, in extension of (2), assume that θ_{I} is given in the form

$$
\begin{equation*}
\theta_{\mathrm{I}}=\varphi_{\mathrm{I}}(\theta)=\sum_{v=1}^{\infty} h_{v} \theta^{v} \quad\left(h_{1} \neq 0\right) \tag{56}
\end{equation*}
$$

Corresponding to this we write, when θ and θ_{I} are replaced by numbers, ζ instead of θ, and ζ_{I} instead of θ_{I}, thus

$$
\begin{equation*}
\zeta_{\mathrm{I}}=\varphi_{\mathrm{I}}(\zeta)=\sum_{v=1}^{\infty} h_{\nu} \zeta^{v} \quad\left(h_{1} \neq 0\right) \tag{57}
\end{equation*}
$$

We now put, in (55),

$$
\begin{equation*}
\Phi(\zeta)=\left(\frac{\zeta}{\varphi_{\mathrm{I}}(\zeta)}\right)^{\lambda}, \quad \Phi(\theta)=\left(\frac{\theta}{\varphi_{\mathrm{I}}(\theta)}\right)^{\lambda}=\left(\frac{\theta}{\theta_{\mathrm{I}}}\right)^{\lambda} \tag{58}
\end{equation*}
$$

and find, by (40),

$$
\begin{equation*}
\left(\frac{\zeta}{\varphi_{\mathrm{I}}(\zeta)}\right)^{\lambda} e^{x t}=\sum_{v=0}^{\infty} \frac{\zeta^{v}}{v!} N_{v}^{[\lambda]}(x) \tag{59}
\end{equation*}
$$

Since t is a function of ζ, (59) represents the generating function of $N_{v}^{[ג]}(x)$, and is a generalization of (15).

Putting $x=0$ in (59), we have the generating function of $N_{v}^{[i]}$

$$
\begin{equation*}
\left(\frac{\zeta}{\varphi_{\mathrm{I}}(\zeta)}\right)^{\lambda}=\sum_{v=0}^{\infty} \frac{\zeta^{v}}{v!} N_{v}^{[\lambda]} \tag{60}
\end{equation*}
$$

being an extension of (16).
It now appears that the results obtained for $R_{v}^{[\lambda]}$ can be utilized for $N_{v}^{[\lambda]}$ by a change of notation. Comparing, in fact, (60) with (16), and (56) with (2), we see that if t is replaced by ζ, and $\varphi(t)$ by $\varphi_{\mathrm{I}}(\zeta)$, that is, k_{v} by h_{r}, then R is replaced by N. Hence, we may write down from (18) and (17) the recurrence formula

$$
\begin{equation*}
\sum_{v=0}^{r} h_{r-v+1} \frac{\nu \lambda+\nu(\mathrm{I}-\lambda)}{\nu!} N_{\nu}^{[\lambda]}=0 \tag{6I}
\end{equation*}
$$

with the initial value

$$
\begin{equation*}
N_{0}^{[\lambda]}=h_{1}^{-2} . \tag{62}
\end{equation*}
$$

Further, if we write

$$
\begin{equation*}
\Psi_{\mathrm{I}}=\sum_{\nu=1}^{\infty} h_{\nu+1} \zeta^{\nu} \tag{63}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{I}^{n}=\sum_{v=n}^{\infty} b_{v}^{(n)} \zeta^{v} \tag{64}
\end{equation*}
$$

instead of (I9) and (21), we have instead of (22) and (23) the recurrence formula

$$
\begin{equation*}
\sum_{v=0}^{r} h_{r-v+2}[n r-v(n+\mathrm{I})] b_{v+n}^{(n)}=0 \tag{65}
\end{equation*}
$$

with the initial value

$$
b_{n}^{(n)}=h_{2}^{n}
$$

From (24) we obtain the direct expression

$$
\begin{equation*}
N_{v}^{[\lambda]}=\nu!\sum_{n=0}^{\nu}(-\mathrm{I})^{n} \frac{\lambda^{(-n)}}{n!} h_{1}^{-n-\lambda} b_{v}^{(n)} \tag{66}
\end{equation*}
$$

and from (25)

$$
\begin{equation*}
b_{v}^{(n)}=n!\sum \frac{h_{3}^{\alpha} h_{3}^{\beta} h_{4}^{\gamma} \cdots}{\alpha!\beta!\gamma!\ldots} \tag{67}
\end{equation*}
$$

where $\alpha, \beta, \gamma, \ldots$ satisfy the simultaneous relations (26) and (27). A number of special values of $b_{v}^{(n)}$, expressed by h_{v}, are obtained from the values of $a_{v}^{(n)}$ given above, if we replace a by b, and k by h; we need not write them down.

Finally we note the particular cases resulting from (30)

$$
\begin{equation*}
N_{v}^{[-1]}=\nu!h_{v+1}, \quad N_{v}^{[-1]}(x)=\nu!\sum_{s=0}^{v} h_{r-s+1} \frac{x^{s}}{s!} \tag{68}
\end{equation*}
$$

8. A binomial theorem for the N-polynomials may be derived as follows. From (40) we obtain

$$
N_{v}^{[\lambda+\mu]}(x+y)=\left(\frac{\theta}{\theta_{\mathrm{I}}}\right)^{\lambda}\left(\frac{\theta}{\theta_{\mathrm{I}}}\right)^{\mu}(x+y)^{\eta},
$$

where we may let $\left(\frac{\theta}{\theta_{\mathrm{I}}}\right)^{\dot{\alpha}}$ act on x, and $\left(\frac{\theta}{\theta_{\mathrm{I}}}\right)^{\mu}$ on y. Now we have, by P. (14I),

$$
\begin{equation*}
(x+y)^{\bar{v}}=\sum_{s=0}^{v}\binom{v}{s} x^{\sqrt{7}} y^{\overline{r-n}}, \tag{69}
\end{equation*}
$$

and on inserting this above we find the desired theorem

$$
\begin{equation*}
N_{v}^{[\lambda+\mu]}(x+y)=\sum_{k=0}^{v}\binom{\nu}{s} N_{s}^{[\lambda]}(x) N_{r-s}^{[\mu]}(y) \tag{70}
\end{equation*}
$$

which has the same form as (31).
From (70) we obtain formulas corresponding to (33), (34) and (36)-(39). Thus, since, by (40),

$$
\begin{equation*}
N_{v}^{[0]}(x)=x^{\bar{v}} \tag{7I}
\end{equation*}
$$

we find on putting $\mu=-\lambda$ in (70)

$$
\begin{equation*}
(x+y)^{\dot{\eta}]}=\sum_{s=0}^{\nu}\binom{\nu}{s} N_{s}^{[x]}(x) N_{\nu-s}^{[-\lambda]}(y) \tag{72}
\end{equation*}
$$

and from this for $y=0$

$$
\begin{equation*}
x^{\bar{\eta}]}=\sum_{s=0}^{v}\binom{v}{s} N_{s}^{[\hat{[}]}(x) N_{v-s}^{[-i]} \tag{73}
\end{equation*}
$$

being the expansion of x^{7} in N-polynomials, or, if preferred, a recurrence formula for these. In the latter case we have the initial value

$$
\begin{equation*}
N_{0}^{[j]}(x)=h_{1}^{-\lambda} \tag{74}
\end{equation*}
$$

resulting from (59) for $\zeta=0$, since t vanishes with ζ.
For $\mu=0$, (70) yields, by (71),

$$
\begin{equation*}
N_{v}^{[\lambda]}(x+y)=\sum_{s=0}^{v}\binom{v}{s} N_{s}^{[\lambda]}(x) y^{\overline{\gamma-n}} \tag{75}
\end{equation*}
$$

and hence we find for $y=-x$

$$
N_{v}^{[\lambda]}=\sum_{s=0}^{v}\binom{v}{s}(-x)^{\overline{v-s]}} N_{\beta}^{[\lambda]}(x)
$$

which is another recurrence formula for the N-polynomials. A similar formula is obtained by putting $x=-y$ in (54) and writing thereafter x for y.

If, finally, we put $y=0$ in (70), we find

$$
\begin{equation*}
N_{v}^{[\lambda+\mu]}(x)=\sum_{s=1}^{v}\binom{\nu}{s} N_{v}^{[\lambda]}(x) N_{v \rightarrow s}^{[\mu]} \tag{76}
\end{equation*}
$$

and, putting $x=0$ in this,

$$
\begin{equation*}
N_{\nu}^{[\lambda+\mu]}=\sum_{s=0}^{v}\binom{v}{s} N_{s}^{[\lambda]} N_{v-s}^{[/ \mu]} \tag{77}
\end{equation*}
$$

being the binomial theorem for the N-coefficients. The two last formulas have the same form as (38) and (39), only with R instead of N.
9. As an application, we will consider the polynomials $x_{\omega 2}^{v}$ defined by (44). We have here

$$
\theta=\Delta_{\omega}=\frac{t^{\omega} D-1}{\omega}, \quad \theta_{\mathrm{I}}=\Delta=e^{n}-\mathrm{I}
$$

so that

$$
\zeta=\frac{\mathrm{I}}{\omega}\left(e^{\omega 1} t-\mathrm{I}\right), \quad \zeta \mathrm{I}=e^{t}-\mathrm{I}=(\mathrm{I}+\omega \zeta)^{\frac{1}{\omega}}-\mathrm{I}
$$

Hence

$$
h_{v}=\frac{\mathrm{I}_{\omega}^{(\nu)}}{\nu!}=\frac{\mathrm{I}}{\nu!}(\mathrm{I}-\omega)(\mathrm{I}-2 \omega) \ldots(\mathrm{I}-\nu(\omega+\omega)
$$

The generating function is, therefore, by (59)

$$
\begin{equation*}
\left(\frac{\zeta}{(\mathrm{I}+\omega \zeta)^{\frac{1}{\omega}}-\mathrm{I}}\right)^{\dot{2}}(\mathrm{I}+\omega \zeta)^{\frac{x}{\omega}}=\sum_{r=1}^{\infty} \frac{\zeta^{v}}{v!} x_{\omega \lambda}^{v} \tag{78}
\end{equation*}
$$

On the Polynomials $R_{v}^{[\hat{\lambda}]}(x), N_{v}^{[\lambda]}(x)$ and $M_{v}^{[\lambda]}(x)$.
For $x=0$ we have the generating function of the coefficients $O_{\omega \lambda}^{v}$

$$
\begin{equation*}
\left(\frac{\zeta}{(1+\omega \zeta)^{\frac{1}{\omega}}-1}\right)^{\lambda}=\sum_{v=0}^{\infty} \frac{\zeta^{v}}{v!} o_{v, i}^{v} . \tag{79}
\end{equation*}
$$

From (4I) and (42) we find

$$
\begin{align*}
& \Delta x_{\omega, \lambda}^{v}=v x_{\omega \dot{\lambda}}^{\imath-1}, \tag{80}\\
& \Delta x_{\omega \lambda}^{v}=v x_{\omega, i-1}^{v-1} . \tag{8I}
\end{align*}
$$

The binomial theorem is, by (70),

$$
\begin{equation*}
(x+y)_{\omega, \lambda+\mu}^{v}=\sum_{k=0}^{v}\binom{v}{s} x_{\omega \bar{\alpha}}^{s} y_{\omega \mu}^{v-s} \tag{82}
\end{equation*}
$$

We note the following particular cases of (82). Putting $\mu=-\lambda$, we bave, since, by (44), $x_{\omega 0}^{\nu}=x_{\omega,}^{\{v)}$,

$$
\begin{equation*}
(x+y)_{v)}^{(v)}=\sum_{k=0}^{v}\binom{v}{s} x_{\omega, k}^{s} y_{(w,-\infty}^{v-s} \tag{83}
\end{equation*}
$$

and from this, for $y=0$,

$$
\begin{equation*}
x_{\omega}^{(v)}=\sum_{k=0}^{n}\binom{v}{s} 0_{(\omega,-\kappa}^{v-s} x_{\omega ఓ}^{k}, \tag{84}
\end{equation*}
$$

a recurrence formula for $x_{\omega \lambda}^{v}$, the initial value being

$$
\begin{equation*}
x_{0, \lambda}^{0}=1 \tag{85}
\end{equation*}
$$

resulting from (78) for $\zeta=0$. We may also look upon (84) as the expansion of the factorial on the left in polynomials $x_{\text {ci, }}^{v}$.

Putting $\mu=0$ in (82), we find

$$
\begin{equation*}
(x+y)_{\omega \bar{\alpha}}^{v}=\sum_{s=0}^{v}\binom{v}{s} x_{\omega) \AA}^{s} y_{\omega}^{(v-s)} \tag{86}
\end{equation*}
$$

and from this, for $y=-x$,

$$
\begin{equation*}
\mathrm{o}_{\omega \lambda}^{v}=\sum_{s=0}^{v}\binom{\nu}{s}(-x)_{\omega}^{(v-s)} x_{\omega \lambda}^{s} \tag{87}
\end{equation*}
$$

another recurrence formula for $x_{t \rightarrow 2}^{v}$.
Finally, putting $y=0$ in (82), we have

$$
\begin{equation*}
x_{\mathrm{v}, \alpha+\mu}^{v}=\sum_{s=0}^{v}\binom{v}{s}{o_{\omega, \mu}^{\nu-s} x_{\omega j}^{s}}^{v} \tag{88}
\end{equation*}
$$

20-6:32046 Acta mathematica. 78
and, putting $x=0$ in this, the binomial theorem for the coefficients $o_{\omega \lambda}^{v}$

$$
\begin{equation*}
\mathrm{O}_{\omega, \alpha+\mu}^{v}=\sum_{s=0}^{v}\binom{\nu}{s} \mathrm{O}_{\omega \mu}^{\nu-\varepsilon} \mathrm{O}_{\omega, \lambda}^{s} . \tag{89}
\end{equation*}
$$

By (80) and (81) we find the two expansions of $x_{w i}^{v}$ in factorials

$$
\begin{align*}
& x_{\omega \AA}^{\nu}=\sum_{v=0}^{\nu}\binom{v}{s} 0_{\omega え}^{v-s} x_{\omega\rangle}^{(s)}, \tag{90}\\
& x_{\omega \lambda}^{v}=\sum_{s=0}^{v}\binom{v}{s} O_{\omega, k-s}^{v-s} x^{(s)} . \tag{91}
\end{align*}
$$

More generally we have

$$
\begin{align*}
& (x+y)_{\omega \lambda}^{v}=\sum_{s=0}^{v}\binom{v}{s} y_{\omega \dot{\lambda}}^{v-s} x_{\omega}^{(s)} \tag{92}\\
& (x+y)_{\omega \bar{\alpha}}^{v}=\sum_{s=0}^{v}\binom{v}{s} y_{\omega, \hat{i}-s}^{\nu-s} x^{(s)} \tag{93}
\end{align*}
$$

Several of these relations have been derived in G. N. P., but only for integral, non-negative values of λ.
10. Another application of the N-polynomials may be made to the generalized Laguerre polynomials $L_{v}^{[c]}(x)^{1}$. We put, in (40) ${ }^{\text {², }}$,

$$
\begin{equation*}
\theta=\frac{D}{1-D}, \quad x^{\bar{T}}=q_{v}(x)=\sum_{s=0}^{v-1}(-\mathrm{I})^{n}\binom{v}{s}(v-\mathrm{I})^{(s)} x^{v-s} ; \tag{94}
\end{equation*}
$$

further $\theta_{\mathrm{I}}=D, x_{\mathrm{I}}^{\bar{\gamma}}=x^{v}$. Hence

$$
\left.\begin{array}{rl}
N_{v}^{[\lambda]}(x) & =(\mathrm{I}-D)^{-\mathrm{L}} q_{v}(x) \tag{95}\\
& =\sum_{k=0}^{v}\binom{\lambda+s-\mathrm{J}}{s} q_{v}^{(s)}(x)
\end{array}\right\}
$$

In order to show that this polynomial, after multiplication by a suitable constant, is a (generalized) Laguerre polynomial, we observe that we have here $\theta_{\mathrm{I}}=\frac{\theta}{\mathrm{I}+\theta}$, whence $\zeta_{\mathrm{I}}=\frac{\zeta}{\mathrm{I}+\zeta}$, so that, since $\zeta=\frac{t}{\mathrm{I}-t}, t=\frac{\zeta}{\mathrm{I}+\zeta},(59)$ becomes

$$
\begin{equation*}
(\mathrm{I}+\zeta)^{2} e^{\frac{x \zeta}{1+}}=\sum_{v=0}^{\infty} \zeta_{\nu!}^{\nu} N_{v}^{[x]}(x) \tag{96}
\end{equation*}
$$

[^4]Comparison with the generating function of $L_{v}^{[\alpha]}(x)$ shows thereafter that

$$
\begin{equation*}
N_{v}^{[i]}(x)=(-\mathrm{I})^{v} v!L_{v}^{[-\hat{k}-1]}(x) . \tag{97}
\end{equation*}
$$

We may now write down a number of results, several of them already known, for $L_{v}^{[\alpha]}(x)$.

From (95) we obtain

$$
\left.\begin{array}{rl}
L_{v}^{[c]}(x) & =\frac{(-1)^{v}}{v!}(\mathrm{I}-D)^{\alpha+1} q_{v}(x) \\
& =\frac{1}{v!} \sum_{s=0}^{v}(-\mathrm{I})^{v+s}\binom{\alpha+\mathrm{I}}{s} q_{v}^{(s)}(x), \tag{98}
\end{array}\right\}
$$

and (96) is written

$$
\begin{equation*}
(\mathrm{I}+\zeta)^{-\alpha-1} e^{\frac{x \zeta}{1+\zeta}}=\sum_{v=0}^{\infty}(-\mathrm{I})^{v} \zeta^{v} L_{v}^{[\alpha]}(x) \tag{99}
\end{equation*}
$$

Putting $x=0$ in this, we find, on expanding the left-hand side,

$$
\begin{equation*}
L_{v}^{[\alpha]}=\binom{\alpha+\nu}{\nu} \tag{100}
\end{equation*}
$$

From (42) we find

$$
\begin{equation*}
D L_{v}^{[\alpha]}(x)=-L_{v-1}^{[\alpha+1]}(x) \tag{1OI}
\end{equation*}
$$

and from (41)

$$
\begin{equation*}
\frac{D}{\mathrm{I}-D} L_{v}^{[\alpha]}(x)=-L_{v-1}^{[a]}(x) \tag{102}
\end{equation*}
$$

or

$$
\begin{equation*}
D L_{v}^{[\alpha]}(x)=D L_{v-1}^{[\alpha]}(x)-L_{v \rightarrow 1}^{[\alpha]}(x) . \tag{IO3}
\end{equation*}
$$

Hence, comparing (IO3) and (IOI), we have

$$
\begin{equation*}
L_{v}^{[a+1]}(x)=L_{v}^{[\alpha]}(x)-D L_{v}^{[\alpha]}(x) . \tag{104}
\end{equation*}
$$

By (53) we obtain

$$
\begin{equation*}
L_{v}^{[\alpha]}(x+y)=\sum_{s=0}^{v} \frac{(-1)^{s}}{s!} q_{s}(x) L_{v-s}^{[\kappa]}(y) \tag{105}
\end{equation*}
$$

whence, for $y=0$, by (IOO),

$$
\begin{equation*}
L_{\nu}^{[\alpha]}(x)=\frac{1}{\nu!} \sum_{s=0}^{\nu}(-\mathrm{I})^{s}\binom{\nu}{s}(\alpha+\nu-s)^{(\nu-s]} q_{s}(x) \tag{106}
\end{equation*}
$$

Similarly, we find, by (54),

$$
\begin{equation*}
L_{v}^{[\alpha]}(x+y)=\sum_{s=0}^{\nu} \frac{(-1)^{s}}{s!} x^{s} L_{v-s}^{[\alpha+s]}(y) \tag{107}
\end{equation*}
$$

and, for $y=0$, the well-known explicit expression

$$
\begin{equation*}
L_{v}^{[\alpha]}(x)=\frac{\mathrm{I}}{\nu!} \sum_{s=0}^{v}(-\mathrm{I})^{s}\binom{\nu}{s}(\alpha+\nu)^{(v-s)} x^{*} . \tag{108}
\end{equation*}
$$

The binomial theorem for the Laguerre polynomials is ${ }^{1}$, by (70)

$$
\begin{equation*}
L_{v}^{[\alpha+\beta+1]}(x+y)=\sum_{s=0}^{v} L_{s}^{[\alpha]}(x) L_{v-s}^{[\beta]}(y) . \tag{109}
\end{equation*}
$$

By (98) we have

$$
\begin{equation*}
L_{v}^{[-1]}(x)=\frac{(-1)^{v}}{\nu!} q_{v}(x) \tag{110}
\end{equation*}
$$

showing that $q_{v}(x)$ is, apart from a constant factor, a special Laguerre polynomial.

Putting now $\beta=-\alpha-2$, we find, from (io9) and (110),

$$
\begin{equation*}
q_{v}(x+y)=(-1)^{v} \nu!\sum_{s=0}^{\nu} L_{s}^{[\alpha]}(x) L_{v-s}^{[-\alpha-2]}(y) \tag{array}
\end{equation*}
$$

Putting $y=0$ in (1II), we obtain, by (ioo),

$$
\begin{equation*}
q_{v}(x)=\nu!\sum_{\varepsilon=0}^{v}(-1)^{s}\binom{\alpha+1}{v-s} L_{s}^{[\alpha]}(x) \tag{I12}
\end{equation*}
$$

an expansion of $q_{v}(x)$ in Laguerre polynomials, which expansion may be regarded as the inversion of (106).

A similar expansion is found by (98), writing this formula

$$
\begin{equation*}
q_{v}(x)=(-1)^{v} v!(\mathrm{I}-D)^{-\alpha-1} L_{v}^{[\alpha]}(x) \tag{113}
\end{equation*}
$$

whence, on expanding and applying (IOI),

$$
\begin{equation*}
q_{v}(x)=\nu!\sum_{s=0}^{v}(-1)^{v+s}\binom{\alpha+s}{s} L_{v-s}^{[\alpha+s]}(x) \tag{II4}
\end{equation*}
$$

Putting $\alpha=0$ and writing $\nu-s$ for s, we have the simpler expansion

$$
\begin{equation*}
q_{v}(x)=\nu!\sum_{s=0}^{v}(-\mathrm{I})^{s} L_{s}^{[r-k]}(x) \tag{array}
\end{equation*}
$$

[^5]On the Polynomials $R_{v}^{[\lambda]}(x), N_{v}^{[\lambda]}(x)$ and $M_{v}^{[\lambda]}(x)$.
If, in (109), we put $\beta=-\mathrm{I}$, we find, by (110),

$$
\begin{equation*}
L_{\nu}^{[\alpha]}(x+y)=\sum_{v=0}^{v} \frac{(-1)^{p-s}}{(\nu-s)!} L_{s}^{[\alpha]}(x) q_{v-s}(y) \tag{116}
\end{equation*}
$$

or (IO5) in a different notation, whence, for $y=-x$, by (100),

$$
\begin{equation*}
\binom{\alpha+\nu}{\nu}=\sum_{s=0}^{v} \frac{(-1)^{r-s}}{(\nu-s)!} L_{s}^{[\alpha]}(x) q_{r-s}(-x) . \tag{117}
\end{equation*}
$$

Finally, we obtain from (109), for $y=0$,

$$
\begin{equation*}
L_{v}^{[c+\beta+1]}(x)=\sum_{s=0}^{v}\binom{\beta+\nu-s}{\nu-s} L_{\varepsilon}^{[\varepsilon]}(x) . \tag{118}
\end{equation*}
$$

For $\alpha=-\mathrm{I}$ we have again (106), with β instead of α.
11. An extension of (I) is P. (23) which may be written, by a change of notation,

$$
\begin{equation*}
x_{\mathrm{I}}^{\boldsymbol{\pi}}=x\left(\frac{\theta}{\theta_{\mathrm{I}}}\right)^{\nu} x^{\overline{\mathrm{n}}-1} . \tag{119}
\end{equation*}
$$

A consideration of this formula, which allows to obtain one poweroid from another, leads to examining the polynomials $M_{v}^{[d]}(x)$, defined by

$$
\begin{equation*}
M_{v}^{[d]}(x)=\left(\frac{\theta}{\theta_{\mathrm{I}}}\right)^{i} x^{\overline{\rho+i]} \mid-1} \tag{120}
\end{equation*}
$$

and analogous to the N-polynomials defined by (40).
In this notation (II9) may be written

$$
\begin{equation*}
x_{1}^{\bar{\pi}}=x M_{r-1}^{[i]}(x), \tag{I2I}
\end{equation*}
$$

in analogy with (4).
Owing to the relation P. (17), or

$$
\begin{equation*}
\theta^{\prime} x^{\overline{p+1}}-1=x^{\overline{7}}, \tag{I22}
\end{equation*}
$$

where $\theta^{\prime}=\frac{d \theta}{d D}$, a number of relations for $M_{\nu}^{[\lambda]}(x)$ may be obtained with great ease from those for $N_{v}^{[i]}(x)$. We need only observe that, performing θ^{\prime} on hoth sides of (120) and applying (I 22), we have

$$
\theta^{\prime} M_{v}^{[\lambda]}(x)=\left(\frac{\theta}{\theta_{\mathrm{I}}}\right)^{2} \theta^{\prime} x^{\overline{++1]}-1}=\left(\frac{\theta}{\theta_{\mathrm{I}}}\right)^{2} x^{\bar{\eta}}
$$

or

$$
\begin{equation*}
\theta^{\prime} M_{v}^{[i]}(x)=N_{v}^{[j]}(x) . \tag{I23}
\end{equation*}
$$

Since, now, θ^{\prime} contains a constant term, the operation $\frac{1}{\theta^{\prime}}$ is completely determined and may be performed on both sides of (123), the result being

$$
\begin{equation*}
M_{v}^{[\lambda]}(x)=\frac{1}{\theta^{\prime}} N_{v}^{[\lambda]}(x) . \tag{124}
\end{equation*}
$$

This shows that relations implying $M_{v}^{[i]}(x)$ may be obtained from those for $N_{\nu}^{[\lambda]}(x)$ simply by performing $\frac{1}{\bar{\theta}^{\prime}}$ on both sides. Thus, for instance, we obtain from (41) and (42)

$$
\begin{align*}
& \theta M_{v}^{[\lambda]}(x)=\nu M_{v-1}^{[\lambda]}(x) \tag{125}\\
& \theta_{\mathrm{I}} M_{v}^{[\lambda]}(x)=v M_{v-1}^{[\lambda-1]}(x) \tag{126}
\end{align*}
$$

Further, since, by (122),

$$
\begin{equation*}
\frac{\mathrm{I}}{\theta^{\prime}} x^{\bar{\eta}}=\overline{x^{v+1}-1} \tag{127}
\end{equation*}
$$

we find, by (51) and (53),

$$
\begin{align*}
M_{\nu}^{[\lambda]}(x) & =\sum_{s=0}^{v}\binom{v}{s} x^{\overline{s+1}-1} N_{v-s}^{[\lambda]}, \tag{128}\\
M_{v}^{[\lambda]}(x+y) & =\sum_{s=0}^{v}\binom{v}{s} x^{\overline{s+1}-1} N_{v-s}^{[\lambda]}(y) . \tag{129}
\end{align*}
$$

If, in (53), we operate on y instead of on x, we find

$$
\begin{equation*}
M_{v}^{[\lambda]}(x+y)=\sum_{s=0}^{v}\binom{v}{s} x^{\overline{8}]} M_{v-s}^{[\lambda]}(y), \tag{130}
\end{equation*}
$$

and if, in (54), we act on y, we have

$$
\begin{equation*}
\boldsymbol{M}_{v}^{[\lambda]}(x+y)=\sum_{s=0}^{v}\binom{\nu}{s} x_{\mathrm{I}}^{s]} \boldsymbol{M}_{v \rightarrow s}^{[\lambda-s]}(y) \tag{131}
\end{equation*}
$$

These are the expansions of $M_{v}^{[i]}(x+y)$ in the poweroids $x^{\bar{s}]}$ and $x_{\mathrm{I}}^{\overline{[]}}$.
For $y=0$ we obtain the corresponding expansions of $M_{v}^{[\lambda]}(x)$, viz., writing $M_{v}^{[\lambda]} \equiv M_{v}^{[\lambda]}(\mathrm{o})$,

$$
\begin{align*}
& M_{v}^{[\hat{\lambda}]}(x)=\sum_{s=0}^{\nu}\binom{v}{s} x^{\text {可 } M_{v-\varepsilon}^{[\hat{~}]}, ~} \tag{132}\\
& M_{v}^{[\hat{\lambda}]}(x)=\sum_{s=0}^{\nu}\binom{v}{s} x_{\mathrm{I}}^{\bar{s}]} M_{v-s}^{[\hat{\lambda}-s]} . \tag{I33}
\end{align*}
$$

Since the definition (120) assumes that $x^{\overline{v+1}-1}$ is known, the constants $\overline{0^{2+1}-1}$ are also known, and we may express the M-polynomials by the N-polynomials if, in (I29), we put $x=0$, and, thereafter, replace y by x. The result is

$$
\begin{equation*}
M_{v}^{[\lambda]}(x)=\sum_{s=0}^{v}\binom{v}{s} \overline{\mathrm{o}^{s+1} \mid-1} N_{v \rightarrow s}^{[\lambda]}(x) \tag{134}
\end{equation*}
$$

Putting $x=0$ in this, we have the constants $M_{v}^{[2]}$ expressed by the constants $N_{\nu}^{[\lambda]}$.

From the binomial theorem for the N-polynomials, or (70), we find, performing $\frac{\mathrm{I}}{\theta^{\prime}}$ on both sides

$$
\begin{equation*}
M_{v}^{[\lambda+\mu]}(x+y)=\sum_{s=0}^{v}\binom{\nu}{s} M_{s}^{[\lambda]}(x) N_{v-s}^{[\mu]}(y) \tag{135}
\end{equation*}
$$

This is, however, not strictly a binomial theorem, since both M - and N-functions enter on the right.

Since, by (120),

$$
\begin{equation*}
M_{r}^{[0]}(x)=x^{\overline{v+1]}-1} \tag{136}
\end{equation*}
$$

we obtain from (135), on putting $\mu=-\lambda$,

$$
\begin{equation*}
(x+y)^{\sqrt{v+1}-1}=\sum_{s=0}^{v}\binom{v}{s} M_{s}^{[2]}(x) N_{i-k}^{[-i]}(y) \tag{137}
\end{equation*}
$$

and hence, for $y=0$,

$$
\begin{equation*}
x^{\overline{v+1]}-1}=\sum_{s=0}^{v}\binom{v}{s} \boldsymbol{M}_{s}^{[\bar{\beta}]}(x) N_{v-s}^{i-\lambda i]} \tag{I38}
\end{equation*}
$$

If this is used as recurrence formula for $M_{v}^{[i]}(x)$, we want $\boldsymbol{M}_{0}^{[i]}(x)$, which may be found by (124) and (74), thus:

$$
M_{0}(x)=\frac{\mathrm{I}}{\theta^{\prime}} N_{0}(x)=\frac{\mathrm{I}}{k_{1}+2 k_{2} D+\cdots} h_{1}
$$

or

$$
\begin{equation*}
M_{0}^{[\lambda]}(x)=\frac{\mathrm{I}}{k_{1} h_{1}^{2}} \tag{139}
\end{equation*}
$$

We may also note the formula obtained from (135) by putting $y=0$, viz.

$$
\begin{equation*}
M_{v}^{[\alpha+\mu]}(x)=\sum_{s=0}^{\nu}\binom{\nu}{s} M_{s}^{[\lambda]}(x) N_{v-s}^{[\mu]} \tag{140}
\end{equation*}
$$

whence, for $x=0$,

$$
\begin{equation*}
M_{v}^{[\lambda+\mu]}=\sum_{s=0}^{v}\binom{v}{s} M_{s}^{[\lambda]} N_{v-s}^{[\mu]} \tag{141}
\end{equation*}
$$

Recurrence formulas for $M_{v}^{[2]}(x)$ are obtained from (130) and (13I) by putting $x=-y$ and thereafter writing x for y. We need not write them down.

The question of the generating function of $M_{\nu}^{[i]}(x)$ must be considered independently, because we may not apply $\frac{\mathrm{I}}{\boldsymbol{\theta}^{\prime}}$ to the two sides of (59), since they are not polynomials. We proceed as follows.

Differentiating the relation P. (34)

$$
\begin{equation*}
e^{x t}=\sum_{v=0}^{\infty} \frac{x^{\bar{\eta}}}{\nu!} \zeta^{v} \tag{142}
\end{equation*}
$$

with respect to \leftrightarrows, the result may be written

$$
\begin{equation*}
e^{x t} \frac{d t}{d \zeta}=\sum_{v=0}^{\infty} \frac{x^{\overline{v+1}}-1}{\nu!} \zeta^{v} \tag{143}
\end{equation*}
$$

We now find for the coefficient of ζ^{v} in the expansion of $\Phi(\zeta) e^{x t} \frac{d t}{d \zeta}$, where $\boldsymbol{D}(\zeta)=\sum_{v=0}^{\infty} c_{v} \zeta^{v}$,

$$
\sum_{s=0}^{v} c_{v-s} \frac{x^{\overline{x+1}}-1}{s!}=\frac{1}{v!} \Phi(\theta) x^{\overline{p+1}-1}
$$

Hence

$$
\begin{equation*}
\Phi(\zeta) e^{x t} \frac{d t}{d \zeta}=\sum_{v=0}^{\infty} \frac{\zeta^{v}}{v!} \Phi(\theta) x^{\overline{v+1}-1} \tag{144}
\end{equation*}
$$

where t and $\frac{d t}{d \zeta}$ through the relation $\zeta=\varphi(t)$ are regarded as functions of ζ.
If, now, we choose

$$
\Phi(\zeta)=\left(\frac{\zeta}{\varphi_{\mathrm{I}}(\zeta)}\right)^{\lambda}, \quad \Phi(\theta)=\left(\frac{\theta}{\theta_{\mathrm{I}}}\right)^{\lambda}
$$

we have the generating function of $M_{v}^{[\lambda]}(x)$

$$
\begin{equation*}
\left(\frac{\zeta}{\varphi_{\mathrm{I}}(\zeta)}\right)^{\lambda} e^{x t} \frac{d t}{d \zeta}=\sum_{v=0}^{\infty} \frac{\zeta^{v}}{v!} M_{v}^{[\lambda]}(x) . \tag{145}
\end{equation*}
$$

Putting $x=0$, we obtain the generating function of $M_{v}^{[x]}$, or

$$
\begin{equation*}
\left(\frac{\zeta}{\varphi_{\mathrm{I}}(\zeta)}\right)^{2} \frac{l t}{d \zeta}=\sum_{v=0}^{\infty} \frac{\zeta_{v}^{v}}{v!} M_{v}^{[\lambda]} \tag{146}
\end{equation*}
$$

$$
\text { On the Polynomials } R_{v}^{[\lambda]}(x), N_{v}^{[\lambda]}(x) \text { and } M_{v}^{[\lambda]}(x) \text {. }
$$

12. Examples of the polynomials $M_{v}^{[x]}(x)$ may be obtained from (I20) on inserting any poweroid, or from (124) when $N_{v}^{[\lambda]}(x)$ is given. In certain cases the M-polynomial is, bowever, only an N-polynomial in a different notation.

Thus, for instance, if we choose $\theta=\underset{\omega}{\triangle}, \theta_{I}=\triangle$, we find, by (44) and (124), since $\theta^{\prime}=e^{(\omega D}=E^{\omega}$,

$$
N_{\nu}^{[\lambda]}(x)=x_{\omega \lambda}^{v}, \quad M_{v}^{[\lambda]}(x)=(x-\omega)_{\omega \lambda}^{v},
$$

so that $M_{\nu}^{[\lambda]}(x)=N_{\nu}^{[\lambda]}(x-\omega)$. These M-polynomials therefore only differ from the corresponding N-polynomials by a displacement of the variable, and several of the M-relations are, therefore, really N-relations. A noteworthy result is, however, obtained by (12I) which shows that $x(x-\omega)_{w r}^{v-1}$ is the poweroid corresponding to the operator \triangle. We have, therefore

$$
\begin{equation*}
x^{(v)}=x(x-\omega)_{t v v}^{p-1} \tag{I47}
\end{equation*}
$$

which may also be written

$$
\begin{equation*}
x_{\omega, v+1}^{v}=(x+\omega-\mathrm{I})^{(v)} . \tag{148}
\end{equation*}
$$

In the latter form the theorem was proved by a more elaborate method in G. N. P. (38).

Again, puttiug $\theta=\frac{D}{1-D}, \quad \theta_{\mathrm{I}}=D$, we find, by (97). (95) and (124), since $\frac{d \theta}{d \stackrel{\theta}{D}}=(\mathrm{I}-D)^{-2}$,

$$
N_{v}^{[\hat{1}]}(x)=(-1)^{v} v!L_{v}^{[-\hat{i}-1]}(x), \quad M_{v}^{[\lambda]}(x)=(-1)^{v} v!L_{v}^{[1-i]}(x)
$$

so that $M_{v}^{[1]}(x)=N_{v}^{[i-2]}(x)$. Here, too, there is therefore only a question of notation.

Since, then,

$$
M_{v}^{[0]}(x)=(-\mathrm{I})^{v} v!L_{v}^{[1]}(x)
$$

and, by (I20),

$$
M_{v}^{[0]}(x)=\frac{\mathfrak{r}}{x} q_{v+1}(x)
$$

we have
or P. (100).
But let us now consider the poweroid P. (44), putting

$$
\begin{equation*}
\theta=\frac{1}{\beta}\left(E^{\prime \alpha+\beta}-E^{v}\right), \quad x^{\overline{4}}=x(x-v \alpha-\beta)_{\beta}^{(\eta-1)} \tag{149}
\end{equation*}
$$

If

$$
\begin{equation*}
\theta_{\mathrm{I}}=\frac{\mathrm{I}}{\beta}\left(E^{\beta}-\mathrm{I}\right), \quad x_{\mathrm{I}}^{\bar{I}}=x(x-\beta)_{\beta}^{(\nu-1)} \tag{150}
\end{equation*}
$$

we have $\frac{\theta}{\theta_{\mathrm{I}}}=E^{\alpha}$, so that, by (40) and (I49),
In this case

$$
\begin{equation*}
N_{v}^{[\lambda]}(x)=(x+\alpha \lambda)(x+\alpha \lambda-\nu a-\beta)_{\beta}^{(v-1)} . \tag{151}
\end{equation*}
$$

$$
\begin{equation*}
\theta^{\prime}=\frac{1}{\beta}\left[(\alpha+\beta) E^{\alpha+\beta}-\alpha E^{\alpha}\right] \tag{152}
\end{equation*}
$$

but the reciprocal of this operator is inconvenient, so that, instead of using (124), we apply (i20), the result being

$$
\begin{equation*}
\boldsymbol{M}_{\nu}^{[\alpha]}(x)=(x+\alpha \lambda-(y+1) \alpha-\beta)_{\beta}^{(\nu)} . \tag{153}
\end{equation*}
$$

It is easy to ascertain that this polynomial together with (151) satisfies (123).
The M. and N-polynomials are here really distinct.

[^0]: ${ }^{1}$ The Poweroid, an Extension of the Mathematical Notion of Power. Acta mathematica, Vol. 73 (1941), p. 333. This paper will be referred to below as »P».

[^1]: ${ }^{1}$ J. F. STEFFENSEN : Interpolation $\S 15(5)$ and $\S 18(41)$, or the Danish edition (where m is written for h.

[^2]: ${ }^{1}$ N. E. Nöriund: Differenzenrechnung, chapter VI.

[^3]: ${ }^{1}$ J. F. Steffensen : On a Generalization of Nörlund's Polynomials. Det Kgl. Danske Videnskabernes Selskab, Mathematisk-fysiske Meddelelser, VII, 5 (1926). Referred to below as »G.N.P.».

[^4]: ${ }^{1}$ Pólya und Sueqü: Aufgaben und Lehrsätze aus der Analysis, Il p. 294. These authors write $L_{v}^{(\alpha)}(x)$ while I prefer $L_{v}^{[\alpha]}(x)$.
 ${ }^{2}$ P. (98).

[^5]: ${ }^{1}$ This result shows that it would be more consistent to define the Laguerre polynomial as ${\underset{\sim}{q}}_{v}^{[\alpha]}(x)=L_{\nu}^{[\alpha-1]}(x)$.

