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I. The object of this paper is the proof of the following 

Theorem. If" 0 is any algebraic number of degree n >--2, and i f  there are an 
infinite number of rational fractions p/q such that 

IO - (p/q) I < q-", (I) 

then 

(2) -< V(z  n). 

There is a famous theorem due to Siegel(i) which states that  under the 

same hypotheses /~ satisfies the weaker inequality 

(3) #--< rain (s + - n  )<2V"n.  
l_<s~n--1  8 "1- I 

I t  is easy to see that  (2) is stronger than (3) for all n > 2, although the im- 

provement is not great for small values of n. 

The history of previous attempts to obtain a stronger result than Siegers 

is a curious chapter of accidents, and will be briefly summarised here before 

proceeding to the proof of the theorem stated above. In the first place it is 

probable, and was conjectured by Siegel, that  the correct conclusion to be drawn 

from the hypotheses of the theorem is 

(4) ~, -< ~, .  

irrespective of the degree n of 0. In  this direction, Siegel(2) proved that if (I) 

is satisfied for an infinite sequence of fractions p~/qi with 
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/log qi+l] 
(5) lira \ Vogq: / < 

then 

(6) tt --< e (log n + (log n)-l). 

A proof of the full result (4) without the additional hypothesis (5)was attempted 

by Kuroda(3), but  the argument was vitiated by a false premise which could 

not be dispensed with. Next, a valid proof of (4)was  given by Schneider(4), 

but only with the hypothesis (5). Finally, Koksma (5) stated that  he had been in- 

formed privately by Mahler that  Schneider had proved (4)without the additional 

hypothesis. There is however no mention of this in the published work of 

Schneider, and Professor Mordell has recently ascertained from Mahler that 

Schueider's proof never appeared in print and was probably incomplete. The 

present paper provides what is, as far as is known to the author, the first im- 

provement on Siegel's result (3) which covers the general case when (5) is not 

assumed to hold. 

The proof of the theorem of this paper is divided into two parts, the second 

of which runs closely parallel to the proof of Siegel's theorem given in Landau (7). 

The first part includes the new idea by which (3) becomes improved to (2), and 

the conclusion of this part can conveniently be stated as a self-contained lemma 

which is of some interest in itself. In the statement of this lemma, and through- 

out the paper, [x] will denote the greatest integer not exceeding x. 

(7) 
Suppose that 

Lemma. Let R (x, y) be any polynomial with real  or complex coefficients and 

of degree not exceeding u in x and s in y. Let  (n + I) distinct real or complex 

numbers Xo, xl, �9 �9 x~, and (n + I) distinct real or complex numbers Yo, Yl, . �9 Y~ be 

given (with no restriction upon whether any of the xi are equal or unequal to any 

of the yi). Let  6, ~, to, t . . . . ,  t,, be real numbers such that 

[ o < ~ < ~ ,  Z->2(~ -~, s<-�89 
~o<_ti<_s,  )~[& + i ] _ < u +  I, i = o , I  . . . .  , n ,  

for every three integers i, v and # such that 

- ~ 0  
Y=Yi  

(9) o --< i --< n, o --~ v --< h, o ----- tt ~ )~ (h - -  v). 
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Then 

(1o) 2 ~ ( I  3 t- [[i])(~i-- �89 [~i]) "~ (I -~ �89 n(~ + 1)(J)(8-~- I)(IX -{- I). 
i~0 

The meaning of this lemma is as follows. The left side of (IO) is approxima- 

tely equal to the total number of conditions (8) satisfied by /~(x ,y)a t  the points 

(xi, y,.). The number of coefficients of /r (x, y) is (u + I)(s + I), and this is the 

smallest number of conditions (8) which can possibly be inconsistent for a non- 

zero polynomial R(x,y) with undetermined coefficients. Thus the 1emma states 

that  the maximum number of conditions of this type which can be satisfied by 

one polynomial cannot exceed the number which must be satisfied by some poly- 

nomial by a factor greater than (I + �89 + I)~); and this factor can be made 

indefinitely near to unity by making the ratio u/s sufficiently large. The next 

section will be occupied with the proof of the lemma. 

II .  The polynomial /~(x,y) may be expressed in the form 

l--1 
(I i) R (x, y) = y ,  ~ (x) g~ (y), 

j=0 

where the j~ are polynomials in x of degree u at most, the gj are polynomials 

in y of degree s at most, and 

( i2)  l < - s  + i. 

For example, such an expression is possible with 

Let then an expression of the form (lz) for R(x,y) be chosen with the smallest 

possible value for 1. I f  the fi(x) are linearly dependent, then for some value of i 

and so 

f~ (x) = ~ ,  c~f~ (x), 

which is impossible because R(x,y) cannot be split into a sum of less than 1 

terms of the form (If). Hence the ]~(x) must be linearly independent, and by 

the same reasoning the gj(y) must be linearly independent also. 
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Suppose that for some integer k the determinant 

(~3) M k - -  i>(x) ~=0, ,  . . . . .  

is identically zero. Then there exist rational functions e j (x )  not all zero such that  

k 

(14) y ,  e j (x ) fy )  (x) = o, i = o, 1 , . . . ,  k. 
j ~ o  

Differentiating (14) and using (14) to simplify the result, 

k 

(15) ~ , e j ( x ) f J / ) ( x )  = o,  i = o,  T , . .  ., k - -  I .  
j = 0  

I f  

(16) 2}(x) = c(x)  ej(~), .j = o, ~ , . . . ,  2, 

for some rational function c ( x )  independent of j, then 

ej(x) = A~ e,,p ( /c(x)d~) ,  j --- o, 1 , . . . ,  2, 

where the A j  are pure numbers, and this is impossible by (I4) since the fi(x) 

are linearly independent. •ence (I6) is false for any c (x ) ,  and so (14) and (15) 

give two independent linear relations between the 

fJ~')(x), / = o , I , . . . , k - - 1 ;  j = o , I  . . . .  ,k. 

Eliminating f ~ ' ) ( x )  between (14) and (I5) gives one linear relation between the 

fy)(x), i = o ,  1 . . . .  , ~ - - I ;  j = o , I , . . . , k - - I ;  

and therefore the determinant Mk-1 must also vanish identically. I t  is thus 

proved that  if Mk-1 is not zero then Mk is not zero. But 

Mo = f0 (~ )  

is not zero. Therefore Mk does not vanish for any k, and in particular 

f Y )  i = 0 ,  1, . . . .  l--1 
(~7) L ( ~ )  = ; ~ _ ,  = (x) j = 0 , ,  . . . . .  ,-~ 

is not identically zero. By an exactly similar argument, 

(18) N ( y ) =  i)(y) ~=o, 1, ~-1 

is not identically zero. 
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Le t  a set of polynomials h~(y) and a set of  integers dlj be defined by the  

following inductive process. For  each value of j in the range o ~ j ~  l - - I ,  

haj(y) is one of those l inear combinat ions of the gk(y) which vanish to the least 

order, greater  than  any dim with  m < j ,  at  y ~ yi; d~j is the order to which 

h~j(y) vanishes at  y = y~.. These definitions can be satisfied in a variety of ways, 

and it  is not  necessary to enquire whether  the hij(y) and dij are uniquely fixed. 

The h~.j(y) for a given value of i are l inearly independent  since they all vanish 

to different orders at  y - ~  yi, and they are all l inear  combinat ions of the gk(y). 

Therefore 
1--1 

(i9) h,~(y) = ~ c~j~. ~k(v), 
k ~ 0  

where the de te rminant  

(20) D ~ =  C~kN~=~,~ ' 1-~ 

is a number  different  f rom zero. 

Consider now the de terminant  

0 " O a,.j ~=o, 1 ..... ~-1 

By (I I), (I7), (I9), (2o) and the rule of mul t ip l icat ion of determinants ,  

~o-v,! h,.~(v,) ~=0.,, . , ,-" 

The last  de te rminant  on the r igh t  of (22) is independent  of x. The elements of 

the leading diagonal  ( j  = k) are all non-zero, and the elements above the leading 

diagonal  (k > j )  are all zero. Hence the value of the de te rminant  is a number  

Ei  different  from zero, and 

(23) Y,(x, y~) = E, D~ -~ L(x). 

By (8) and (9), the last  element,  and a fort iori  each earlier element  also, in 

column j of the  de te rminant  (2I), wnishes  a t  x - ~  x; to the order 

[z ( t , -  d,~)] - -  Z + 2 

at  least. Hence the whole de te rminant  vanishes at  x = xi to the order 

l --1 

(24) Z Max {o, [~,(ti -- d,j) --  l + 2]} 
j'=O 
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at least. Thus by (23) the non-zero polynomial L(x)  vanishes at x = xf to the 

But the degree of L(x)  is l u at most, and the xi are all order (24) at  least. 

distinct. Therefore 

(25) 
n l--1 

~, ~ ~ a x  {o, [ z ( t , -  d , A  - ~ + 21} -< Z.. 
t = 0  j=O 

The determinant N ( y ) i s  by (I8), (I9), and (20) equal to 

D~ -1 h (Y) /=o. 1 ..... 1-1 

The general term in the expansion of the last determinant is 

(26) + h?0 o) (v) hll,)(v) h(~-l)(v),  
" " " " ~ i , l - - i  

where ko, k~,. . . ,  kl-1 is some permutation of the integers o, I , . . . ,  l -  i. ~ o w  

vanishes at y = yi to the order (d;j --  kj) at least. Hence the product (25) vanishes 

at y----yi to the order 
l--1 l--1 

(27) ~, (d,j --  kj) = ~_~ (d,j - - j )  
j = 0  j = o  

at least. Since (27) is independent of the particular term (26) chosen, the poly- 

nomial 2V(y) vanishes at y = yi to the order (27) at least. Now it is possible to 

choose a set of linearly independent combinations bo(y), bx(y),.. . ,  bz-~(y) of the 

g~(y), such that  bo(y) is of degree s at most, bl(y ) of degree ( s - - i )  at most, and 

so on. The degree of /V(y) is equal to the degree of the determinant 

I i = 0 ,  1 . . . .  , l--1 
bJ')(v) 

[ j ~ 0 ,  1, . l--1 

which does not exceed the degree of a typical product 

b~;~ (v) ~i;,)(v) �9 �9 �9 bl'!; I) (vl- 

The degree of such a product does not exceed 

/ - 1  l - 1  

(28) ~ ( s - - j - - i j ) - - - -  ~ , ( s -  2 j ) =  l ( s -  1 + ,). 
j=o j=o 
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The degree of  the  polynomial  2V(y) is a t  most  (28), and ~V(y) vanishes to the 

orders (27) at the  (n + i) different values y~. Therefore  

n / - - 1  

(29) y, y (d~j-j)_ z(8-~+ ~). 
~=o j=o 

Since for  each i the  dij are strictly increasing with j, the average value of 

(d~y- - j )  for o--<j--< b is a non-decreasing funct ion of b. Thus (29) gives, for  

o < _ b < _ l - - i ,  

(3o) ~ (d;~ --  3:) --< (b + i)(s - -1  + i). 
~=o j=o 

Let  T be the largest  [t,.], and let  b be the lesser of T and (1-- l). Then by (7) 

o ~ _ b < _ l - - 1 ,  ) . ( T +  i ) _ < u  + i. 

Adding  (3 o) mult ipl ied by ~ to (25), and us ing (12), 

(3x) y,  Maxlo,  Z ( t , - - j ) } < - - l u + ( n + I ) ( b + 1 ) ( l - - I ) + Z ( b + ~ ) ( s - - l +  I )< 
~=0 j=0 

<-(,,+i) l + y - ~ ( ~ - ~ + l )  +(,+~)l~. 
Pu t t i ng  

b, = Min {[t;], l - -  I}, 
this becomes 

" ( b+l :  ) 
(32) ~ ( i + b , ) ( Z t , - - � 8 9  Z + ~ t s - - l + ~ )  + ( , + i ) Z ~ .  

Now it is an e lementary principle tha t  if a > fl > o and 7 -> o then (fl/a) < 

< ((fl + 7)/(a + 7)). Applying this with 7 = s + [t,'] + I - - 2  t~, which is positive by (7), 

(2 t~ - -  [t~])/(2 t~ - -  b3 --< (s + I) / (s  + 1 + [~ti] _ _  hi); 

and applying it with 7 = T - - [ t ; ] ,  

(I + [t~])/(s + I + [ti] - -  b~) <-- (i + T)/(I + s + T - -  b3. 

These two inequalit ies combine to give 

(33) (I + [t,.])(2 tr - -  [t,]) < (I + T) ( I  + s) . 
(I + bi)(2ti--.b~) --  (I + b~)(I + s + T - - b i )  

In  the same way, if T ~ l - - I  the principle with 7 - ~ - s +  I - - 1  gives 

z/(T + i) <- (i + ~)/(2 + s + T -  z), 
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which may be written 

(34) 1<_ 
(~ + T)(~ + s) 

1(2 + s +  T - - l )  

Now either b i =  l - - I  or b~= [tf]. In the first case the right sides of (33) and 

(34) are the same, and in the second case the left sides are the same. If  T < l - -  I 

the second case holds for every value of i. Hence (33) and (34) together give 

for i = o ,  I , . . . , n ,  

(I + T ) ( I  + s) if r > _ l - - ] ,  
(I + [ t i ])( t i --}[t i])  < 1(2 + 8 + T - -  l) 

(35) (~ + b , ) ( t ,  - �89 b,)  - 
I i f  T < l - - I .  

If  T < l - - i ,  then b =  T, and (3 2) and (35) give 

(36) • Z ( I  +[t,])( t f - -~.[b])<(u+ I)(s+ I1 I + ( u  + I ) ( s +  " 

I f  T__ l -  i, then b = l - - I ,  and (32) and (35) give 

n { ( I + T ) ( n + 1 ) s  i 
(37) ; ~ ( ]  + [t,]) (t, - -  �89 [bll <-- (u + I ) (s+  I) [ + ( u +  ])(2 + s +  T - - l )  " 

i=0 

Substituting for l from (I2) and for s from (7), (36) and (37) imply the truth of 

(Io), whether T < 1 -- I or not. This completes the proof of the lemma. 

[II .  The second part of the proof of the theorem, as explained at the be- 

ginning of this paper, starts at this point. In the first place, the proof may be 

reduced to the case in which 8 is an algebraic integer. For suppose that  any 

algebraic number 8 satisfies the conditions of the theorem. There exists a rational 

integer N such that  NO is an algebraic integer, also of degree n, and by (]) 

(38) I NO -- (Np/q)] < Nq -u 

for an infinity of p/q. If  ~ is any positive number, then (38) implies 

(39) I NO -- (NP/q) l < q-~'+~ 

for an infinity of 2Vp/q. I f  the theorem is true for algebraic integers, (39) implies 

. - <  V(2 - )  + ~, 
and since e is arbitrarily small 

~, <- V (2 .) 
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The theorem is therefore true for any algebraic number 8, if it is proved for 8 

an algebraic integer. 

In what follows it will be assumed that  8 is an algebraic integer of degree 

n and satisfies the conditions of the theorem; 8 will be a root of an equation 

(40) a (0) ~ O" + al 8 "-1 + " "  + a,, = o 

with integer coefficients at. This equation, being the equation of lowest degree 

satisfied by 8, has n distinct real or complex roots 

(4I) 

Let 

(4 2 ) 

0 = 01, 0 , ,  08 . . . .  , 0,~. 

a = M a x { , ,  In, I, la ,  I . . . .  , I~.11. 

Two arbitrary positive integers s and t and a real number d are now chosen, 

subject only to the conditions 

(43) t + ~ <_s + ~ -< �89  + ~), 

(44) O < d < (2 n) -s. 

A fraction Pffqx can be found which satisfies (x) and also 

(45) log ql > 6 d -i t log 4 A. 

A fraction .P,/q2 can be found which satisfies (i) and also 

(46) log q2 > 2 d -1 log ql. 

Let  

(47) 

(48) 

(49) 

By (48) and (43) 

(50) 

By (46), (47) and (44) 

( 5 0  

By (49) and (45) 

(52) 

By (5x) and (50) 

(53) 

Z = log qfflog ql, 

,, = [�89 ,, t (t + ~) z/(~ + ~)1, 

B = [q~] .  

u +  I ->Zt - -> �89  ~)-->Z(s+ ~)/n. 

dZ > 2, Z > I6n  s. 

log(B + 1) >~ 6 u t d  -1 log 4A.  

s < �89 n,l(u + i). 
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Consider now the set P of all polynomials 

V(x,y) = ~ ~ vijxiY j, 
t=0 j=0 

where the vii are integers between o and B inclusive. The number of polynomials 

in P is 

(54) - ~ =  (B �9 I) (s+l)(u-ki). 

Given one such polynomial V(x,y), there is a set D(V) of derived polynomials 

! ~! ~ V(x, y) 

where a and fl vary over all pairs of integers satisfying the conditions 

o - < ~ - < t - ~ ,  o_<  a_< Z ( t - - f l -  ~). 
D(V) contains 

t--1 
(55) No = F ,  [~ + z ( t  - ~ - ~)] -< t + �89 + I) - ~ t ~  

fl=0 

polynomials. Each polynomial in D(V) has coefficients which are obtained by 

multiplying one of the vii by two binomial coefficients, so that  the coefficients 

of polynomials in D(V) are integers not exceeding 

B 2 u+s. 

I f  S(x,y) is a polynomial in D(V), let Ts(x) be the remainder when S(x,x) 
is divided by the polynomial a(x) of (4o) by the ordinary long-division process. 

Ts(x) is a polynomial in x of degree not exceeding ( n - - I )  and with integer 

coefficients. I f  Ur(x) is the remainder after r steps of the long-division process, 

the coefficients of Ur+l(x) are of the form (ul--aiuo) where u 1 and uo are coeffi- 

cients of U~(x) and ai is a coefficient of a(x). Hence the magnitude of the 

largest coefficient of U~+l(x) does not exceed (i -t-A) times that  of U~(x). But 

Uo(x) -~ S(x,x) and Ts(x)= U~(x) for some r --~ u + s. Therefore the coefficients 

of Ts(x) are majorised by 

(56) M = ( I  § A)u+s(I § s)B2 u+s. 

The number of coefficients of all the polynomials Ts(x) with S(x,y) in D(V) 
does not exceed 

nN o ~-- nt § �89 § I)).-- ~nt;L 
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Each of these coefficients is a positive or negative integer  majorised by M, and 

so can take only (2 M + I) distinct values. Hence the total  number  of possible 

distinct sets of values for the coefficients of all the Ts(x) with S (x,y) in D(V)  

does not  exceed 
N '  =(223/" -F l )"t+ �89 nt(t+l) z-~ntz. 

By (56) and trivial inequalities 

log N ' <  nt(�89 + I) + I -- dZ) (log e + (u + s) log (cA + e) + log (s + I) + log  (B + I)) 

< n t ( � 8 9 2 4 7  I - - d 4 )  l o g ( B +  I ) + n t ( I  + � 8 9  + I ) ) ( u + z s +  2) l o g 4 A .  

Now by (5o) and (5 I) 

u + e s + z -< u + 2 .  (u + ~)/4 < u (~ + (4 n/4)) < 2 u ,  

~ - - 6 4 < - - � 8 9  i+ �89247  

Hence the inequality for log N '  becomes 

l o g N ' <  nt(~4(t + I)-- �89 § I) + 3nt~Zulog4 A. 

Finally, by (52 ) and (48), this gives 

log N '  < �89 ntZ(t + I) log (B + I) < (s + I) (u + I) log (B + I) = log N, 

and therefore 

(57) N ' < N .  

In  view of (57)there must  exist two dist inct  polynomials Vl(x, y)and V,.(x,y) 
in P such tha t  the polynomials Ts(x) der ived from V~ (x, y) as described above are 

all identically equal to the corresponding polynomials derived from V~ (x, y). Let  

(58) R (x, ~) = v j  (x,  y) - v 2 ( ~ ,  u). 

R(x,y) is a polynomial of degrees not exceeding u in x and s in y; its coeffi- 

cients are positive or negative integers of magnitude not exceeding B;  it is not  

identically zero; and it has the property that  the polynomials in z 

I 0 ~' 0 ~ 

are exactly divisible by a(z) for all pairs of integers a and ~ such tha~ 

(60)  o __< ~ <_ t - ~, o <- ~, <- z (t  - 8 - ~). 
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The arbitrary polynomial R(x,y)  of the lemma will now be identified with 

the polynomial defined by (58). The numbers 0,. given by (4t)are  all distinct, and 

they are all irrational and therefore distinct from Pl/ql and pffq~. The lemma 
can b e  applied with 

(6I) Xo----pffq, yo=p~/q~; x~=y~=O~, i = 1 , 2  . . . .  , n. 

By (59) and (6o), the conditions (8) and (9) of the lemma are satisfied for 
i - - 1 , 2 , . . . , n  with 

(62) t~ = t - ~. 

Suppose, if possible, that  (8) and (9) are also satisfied for i - - o  with 

(63) t o = (n -[- I)( t  -t- I )V(~  n(~ ). 

By (44) 

(64) to g (n + I)(t  + I)/4n <-- ~(t + I) g ~-t--< t - -  1 < t - -  ~, 

and by (5o) 

(65) 2 [ t , + I ] < - - ~ [ t - - ~ + I ] ~ - - - Z t < - - u +  i, i - ~ - o , I , . . . , n .  

The conditions of the lemma are then all satisfied, (7) being a consequence of 

(44), (5I), (53), (43), (64) and (65). The lemma therefore leads to the result  

Z(I + [to])(to-- �89 [to]) + �89 n t • ( t - -  2a + i) < (i + �89 n(n + I)a)(s + I)(U + i). 

By (48) this gives 

(66) ~.(I +[to])(to--~[to])<c~nt2 + �89  ~)5(s+ I ) (u+ i ) + s +  I. 

Now by (5I), (48) and (43), 

~ , t 2  + �89 + I)(~(8 + 1)(?A § I) + 8 + I 

~ , t 2  + ~ , ( n  + I)~q~(8 + I) + � 8 9  + I)~(8 + I) + �89 ~.(8 + I) 

< ~nt2 + �88 + I)~2t(t + ~) + �89 + n(n + I) ) �89  + I) 

= e Z n { � 8 8  + I ) t ( t  + I) 4- t + �88 + I) + n ( n  + ~)(t + I)/4k} 

< ~Zn{�88 + I)t(t  + I) + t + �89 I)1 

< ~ Z n { i n ( n  + I)t(t + I) + �88 + I)'} --< � 88  + I) '  in ~ + n + 3} 

<- � 8 8  + ~ ) ' ( .  + i) ~ 
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Therefore (66) implies 

�89 2 to ~ < 2( i  + [to] ) (to - -  �89 [to]) < �88 82n (t + 1)' (n + I) *, 

which contradicts (63). This means that the hypothesis that  (8)and (9)are satis- 

fied for i = o with t o given by (63) is untenable. That  is to say, there exist two 

integers a and fl such that  

(67) 

while 

(681 

\ Y l  I =Pllql,  

a + Zfl<_Zto. 

yA O, 
y = P~/q2 

Let one pair of integers a and ~ be chosen to satisfy (67) and (68), and let 

(69) 

By (59) and (6o), 

(70) 

whenever 

c9 ~ O J  

o ~ _ j + ~ < _ t - - J ,  o N i  + a _< Z (t -- ] --  j --  d). 

By (68) this implies that  (7 o) holds whenever 

(7 i) i + z j  _< z (t - e - to) = z (t - 8) (i - ~), 

where ~ is defined by the equation 

(72) , ( t -  8 ) =  t o =  (n + i ) ( t  + I ) V ( � 8 9  

Now Ro(X,y) has the Taylor expansion 

(73)  Ro(X,y) = ~ ~ e,j (x --  O)' (y - 0)~'. 
i=o/=o 

The general coefficient in the expansion is 

I 0 J 

a! 
-- q' I . ) ( j  ~,(a j ~,o--i--a + a--j--fl~ 
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where the ar are the coefficients of the polynomial .R(x,y). Remembering that  

Pl/ql and p~/q~ both satisfy (I), (73) and (47) together give 

I (~ P ' ) l<~,c i j ]q~-~ '~q~ 'J=~'c i j 'qv  t'~+~j). 
(75) Ro ' ~  -i=o~=o i=o~=0 

But by (7o), all the cij for which (7 I) is true are zero, and therefore (75) implies 

(76) B [ P ' ,  ~1-,) Oiq, - q i  3E I ,Jl- 
i = 0  j=o 

Since 

and the expressions 
(e ! / i  ! a ! (e - -  i - -  a ) ! )  

are terms in the multinomiM expansion of 

(~ + ~ + ~)~, 

~he coefficients eij given by (74) are majorised by 

B(u  + ~ ) ( ~ +  ~)3~§ ~+', 

where m =  Max (I, [0]). Therefore (76) gives finally 

] (P',PelI<--(u+ I)~(s+ I)~B(3m)U+Sq~ -~'~(t-a)(l-~) (77) 11o ~ q,,/ 

On the other hand, Ro(x, y) is by (69) a polynomial of degrees not exceeding 

u and s in x and y respectively, and all its coefficients are integers. Therefore 

tlo (PJq, P,/q2) 
is a rational fraction with denominator not exceeding 

t t  $ q, q~. 

This fraction is not zero, by (67). Therefore 

(78) Ro , --> ql q.., 

Together, (77) and (78 ) give 

{u + Zs - -  Z,u(t - -  ~)(I - -  ~)} log ql + log B + (u + s ) log  (3 m) + 2 log ((u + ~)(s + I'~) >-- o. 

Now 
log((u + I)(s + I))--< u + s. 
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Hence, substituting for log B from (49), 

(79) {u(I + ~ ) + ~ ( s - - t t ( t - - ~ ) ( I - - t ) ) } l o g q l + ( u + s ) ( 2 + l o g ( 3 m ) ) > - - o .  

By (45), (44), (48) and ( 5 ' ) i n  turn, 

nd~Z(I + ds)log ql > 6n)~t(l + ds)log 4 > �89 + )~tis > u + s. 

Therefore (79) implies 

U(l + ~) + Z ( s - - t t ( t - - d ) ( I  -- t ))  + n~"Z(I + ds)(2 + log(3 m)) > o. 

Hence, multiplying by (s + I)/Z and using (48), 

(80) �89 + I)(I + d) + (.9 + I ){S- - ,u( t - -d) ( I - -~)  +nd~(x + t~s)(z+ log(3m))>o. 

Since ~ was chosen subject only to the condition (44), it is allowable to 

make d tend to zero in (8o). Of the quantities occurring in (8o), all except t 

are independent of ~, and t tends to zero with ~ according to (72). Thus in the 

limit (8o) becomes 

s i t + ~  
(8,)  _< + - .  - - .  

2 s + I  

The inequality (81) is proved for any two positive integers s and t satisfying the 

conditions (43). In particular, the choice t---- I gives precisely Siegel's result (3)- 

The best bound for /z deducible from (8I) is however obtained by letting s and t 

tend together to infinity in such a way that  the ratio sit tends to I f  (�89 which 

can always be done without violating the conditions (43). In  the limit, as s and 

t tend to infinity in this way, (8I) becomes (2), and so the theorem is proved. 

IV. The fact, that  the bound (2) obtained for # is proportional to the square- 

root of n is directly attributable to the two variables of the polynomial R(x,y)  

of the lemma. If  a corresponding lemma could be proved for a polynomial in 

three variables, ~ bound for ~ would be obtained proportional to the cube-root 

of n. I f  a similar lemma could be proved for polynomials in an arbitrarily large 

number of variables, the full result (4)could be deduced. The present' paper 

probably represents the limit of what can be done with two variables only. 

Further  progress must wait upon a fundamental  investigation of the properties 

of polynomials in a larger number of variables; such an investigation, with a 

proof of (4) as the final objective, would not be in any way a hopeless under- 

taking. 
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