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Introduct ion.  The special functions of classical analysis derive much of 

their interest and importance from the properties of the numerical differential 

equations that characterize them. Since the publication of Frdchet's famous 

I9o5 thesis (Palermo Rendiconti), an enormous amount of significant contribu- 

tions have been made to the study of very general classes of functions in many 

general spaces - -  topological spaces, normed linear spaces, and many others 

and the study of the spaces themselves has received a considerable amount of 

attention. Since the independent variables of the functions considered lie in 

function spaces and other infinitely dimensional spaces, and in other general 

spaces, it is clear tha t  the speciM functions of general analysis could not in 

general, from their very nature, be characterized by ordinary numerical differential 

equations. I t  appears to the author that  the characterization problem for special 
1 
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funct ions in general  analysis will have to be sought  amongs t  funct ional  equat ions 

in Frdchet  differentials or in o ther  differentials  of general  analysis. 

In  this  paper  we invest igate  the  propert ies  and solutions of a special d i f fer  

ential  system in normed l inear  spaces 

, j  = ( y  x, (o )  = 

in which the unknown funct ion ylx) occurs quadrat ical ly  in the funct ion T and 

~y(.~') is the Fr~chet  differential  of y(x). In  Theorem I we prove tha t  under  

some na tura l  assumptions,  the differential  system has a unique ent ire  ana- 

lytic solut ion in accordance with the theory  of analyt ic  funct ions  in Banach 

spaces. 1 This  special funct ion y(x), character ized by the given different ial  system, 

is given explicit ly by (3.I) as an abs t rac t  power series t ha t  involves certain 

i tera t ions  of the funct ion  T. The /th successive Fr~chet  differential  of y ( x ) w i t h  

equal increments  is given by formula  (4.2). The different ial  system ( i . i )  is 

shown in section 5 (Theorem 2) to define a cont inuous  t rans format ion  group 

in an abst ract  parameter .  Use is made of the Michal-Paxson-Elconin generalized 

Lie differential  equations.  -~ 

Some special instances are first taken up in section 6. The Banach  spaces 

are taken  to be spaces of funct ions whose values are in normed l inear  rings. 3 

The par t icu lar  case in which the normed l inear  r ing is the  space of square 

matr ices  ~ normed in any one of several equivalent  ways - -  and the func t ion  

I (y~, x, Y2) is taken as in (6. I), is of considerable interest  since i,J~ tMs case the 

system (I.r) characterizes the matJ:iza~t j'u~ch'o~al pror Yo is tl~e uuit matrix. 

The matr izant  it  will be rembered is the funct ional  expansion occurr ing in the  

i The ttleory of analytie functions in (real and cot, nplex) normed linear spaees was initiated 
by the auth0r in collaboration with ROI~EIUr 8. MAI~TIN" in tile author 's  seminar at the California 
Insti tute of Technology during the ycar I9.~I--IC)32. Frt~chet's pioneer work on abstract poly- 
nomi'lls ~Journal Math. Ptlres et Appl., I929) was naturally a source of inspiration-rod encourage- 
ment in pointing the way to abstract power series. 

"-MICHAL, A. D. and Pxxso~',  E. W., ~Slaps of Abstract  Topoh)gical Spaces in Banach 
Spaces,), Bull. of Amer. Math. Sot., vol. 42 (I936!, pp. 529--534; >)Addendum,, Bull. of Amer. 
Math. 8oc., vol. 43 kt%7), P. 888. 5IIcJLtL, A. l). and ELt'O~rN, V., >*l)ifferential Properties of 
Abstract Transformation Groups with Abstract 1)arameters~>, Amer. Journ. of Math. vol. 59 (I937), 
pp. I29-- 'I43. See also MI('HAL, A. D., H1GI~Br:RC;, 1. E.. and TAX'Lt)R, A. E., >~A1)stract Euclidean 
Spaces with Independently Poslulated AmLlytical and (teometrical Metrics>~, Annali di Pisa, vol. 

VI (~937'), pp. I I7 - - I48 .  
Mlt't/At,, A. l)., ,,3;he Total Differential Equation for the Exponential  Function in Non- 

Commutative Normed Linear Rings>), Pro('. of the Nation-d Academy of Sciences (U. S. A.} vol. 3I 
(I945) , pp. 315~3/7 .  S e e  also MICHAL, A. D. and MARTIN R. 8., ,Some Expansions in Vector 
Space>>, Journal de Matht:matiques 1)ares et Appliqudes, vol. I 3 (I934) pp. 69--9I .  
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Peano solution of a system of ~ linear differential equations in J~ unknown 

functions with variable coefficients. As an instance of our general theory then, 

we have solved the characterization problem for the matrizant. We believe this 

result on the matrizant to be new and fhat other problems - -  not discussed in 

this paper - -  in the theory of special funetionals and their applications to 

geometry can now be attacked with a good chance for success. 

The theory of the system (1.I) and the methods of the first five sections 

are instrmnental in obtaining definitive results on the solution of an ~)ordinary~ 

linear differential equation (7.I) in Banach spaces as an entire analytie func- 

tional of the one-parameter (nmnerieal) linear transformation on the right hand 

side of (7.i) - -  see Theorem 3 and Theorem 4. The solution is characterized 

by the completely integrable liuear differential system (7.6) in F%ehet differentials. 

Theorem 6 gives the generalized Taylor's series expansion of the solution 

of (~.I) in an increasing order of F%ehet differentials. The Corollary to Theo- 

rem 6 gives the generalized Taylor's series expansion for the well known matri- 
p 

zant functional - -  thus giving another new property of the matrizant. 

Theorem 3, Theorem 4 and Theorem 6 with its Corollary are used in the 

proof of Theorem 7 of section 9. In this theorem the solutions of a system 

(9. I) of numerical linear differential eqtmtions as functionals of the coefficients are 

shown to be characterized by the completely integrable linear differential system 

(9.3) in Fr6chet differentials. The generalized Taylor's series expansions for the:solu- 

tion functionals are given by the expansions (9.4)and (9.5). There are obciot~s but 

impo~'ta~t application,s of Theorem 7 to the approximate solutioJ~s of s.qstems of li,nea~ 

differential equation,~. 

T h e  paper closes with t w o  sections on related topics. Section IO gives an 

existence and uniqueness theorem for the non-linear system (Io. 1), while section 

i i  slmws briefly how to develop the subject matter of this paper in complex 

Banach spaces (complete nornied linear spaces with complex number mulfipliers). 

I t  should be s~ated here at the outset that  the  known existence and uniqueness 

theorems on completely integrable differential equations in Fr6chet differentials 

in Banach spaces (Michal and Eleonin, Acta mathematica, vol. 68 (I937), PP. 

7I--Io7) are not strong enough to be used in obtaining some Of the results of 

the present paper. 

I . . T h e  I)ifferential Equation. Let BI ~ and B~ be Banach spaces .(complete 

normed linear spaces with real number multipliers) and let :/'(YI, x, y,,) be a tri- 
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linear function (additive and continuous in each of the three variables) on B 1 B~ B1 

to B~. Consider the differential system 

( I . l )  ~y(X)-~ r(y(x) ,  ~ x ,  ?j(x)), ~ j ( o ) =  Yo, 

where ~y(x) is the Fr~chet differential of y(x) at x ~ x  with increment ~x, and 

Yo is any chosen element of B~. 

We shall need to make some assumptions on the trilinear function T(yl, x, y..,). 

We shall often write T(yl, x, y~) simply as Yl"x'Y~. 

A s s u m p t i o n  1. 

._)  (y. x~. y ) . x ,  .~ = y . x . .  (,/" ~ ,  y) 

jbr all y E B1 and x~, x~ e B~. 

Define the linear function of y~, 

(i.3) r~(y, ,  x, ~,) 

with y~ and x as parameters, as the ith iteration of the linear function T(yl, x,y~) 

of y,,. 

A s s u m p t i o n  2. 

( I :4)  r i  (Y, "~'1, y)*x~" T j (y, Xl, y ) =  T i (.Ij, Xl, y * x2* TJ(y, x[, y)) 

for all positive integers i a~d j. 

Assumption 3. There exists a positive M(y) such that 

0.s) [[ T~(y, x, Y)H < I]:q[IM'(Y)l[x[[ ' ( i = i  e , . . . ) .  
--  i !  

The condition (I.2) in Assumption I implies t h a t  the ))condition of complete 

integrability~,) for the total differential equation (I.I) is satisfied. 

Although the restrictions imposed by the three assumptions are rather 

strong, the author's more interesting instances of the total differential system 

(I.I) satisfy all the three assumptions. The reader is referred to sections 6, 7 

and 9 for a brief discussion of some of these instances. 

2. Some Consequences of  the  Assumptions.  To prove our existence and 

uniqueness theorem for entire analytic solutions of the differentia] system (I.I) 

1 MICHAL, A. D. and ELCONII~-, V., ,~Completely Integrable Differential Equations in Abstract 
Spaces% Acta mathematiea, vol. 68 (I937) , pp. 7I--Io7. The condition of complete integrability 
for ( I . I )  i s  (y"  X 2 �9 y)"  X 1 �9 y + y" X 1 �9 (y" X2" y) ---- (y" XI" Y)" XZ" y + y" X2" (y" XI" y) for all y E B 1 
and x 1 , x 2 E B 2 .  
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we need the results of the following lemmas, the first two of which are conse- 

quences of condit ion (I.2) and do not  use the assumptions 2 and 3 -  

L e m m a  I .  I f  xD x, e B~ and Yl, Y~, ya E B~ are arbitrary elements, then the 

followi~g identity holds: 

(2 . i )  P,~,,~,,,~ (y,  .~ . , .  y~).  ~ , - y ~  = P,~, y~,,~ y ,  �9 x~ .  (y ,  . x ~ .  y~), 

where Py,,j,,j, denotes the sum of six terms obtained by permuting Yl, Y2, aud y3. 

Lemma 2. 

(z.2) T~(y, x, y)~-- T(y, x, y ) . x . y  for all xEB,~ and yeB~. 

( 2 . 3 )  y . x . ( ( y  . x . y ~  . x . y )  = ( ( y  . x . y )  . ~ . y )  . z . y 

for all x E B~ and y e B 1. 

L e m m a  I is proved by two successive Fr~chet  differentiat ions in y of con- 

di t ion (I.2). Clearly (2.I) implies condit ion (x.z). Now (2.2) of Lemma 2 is an 

immediate  consequence of (I.2). To prove the ident i ty  (2.3), take x~----x~ = x, 

Y ~ = Y a = Y ,  and y 2 = y . x . y  in (2.I). Then use (2.2) to obtain the ident i ty  (2.3). 

In  view of (z.2), the ident i ty  (2.3) can be wri t ten 

(2.4) r s (y, x, y) = r '  (y, x, y ) . x  .y. 

For  later  use, we observe t ha t  Lemma 2 is equivalent  to the following identi t ies:  

(2.5) T(y,  x,  y) .  x . y  = y.  x .  r ( y ,  x, y), 

(2.6) r ~ (U, x,  y) .  x .  y = y .  x .  r-" (y, x, y). 

The following lemma makes use of Assumption I and part  of Assumption 2, 

but  not  Assumption 3. 

L e m m a  3. The .following identity holds for all x fi B: and y E BI: 

(2.7) T-(y ,  x, y ) - x . y  = y . x .  r" (y, x, y) 

( n =  I, 2 . . . .  ). 

To prove this lemma, let us observe tha t  (2.7) for n =  I and n = 2 holds 

by vir tue of Lemma 2 whose validity depends only on the condit ion (I.z). We 

shall give an induct ion proof of (2.7) for n --> I. Take x2 ---- xt = x, Ya = Tn (Y, x, y), 

and Y , . = Y 3 = Y  in ident i ty  (2.i), and obtain for n--> I 
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T n (y, x, y ) .  x .  y + (,~. x .  T'~ ~f, x, y~). ~ -  V + (,j- x .  V) ".~" T'~ (V, ~, y) 
(~.S) 

= T'~ (,j, z, V)" x .  (y.  x .  y) + y .  z .  (T  '~ CV, x, V). ~ .  v) + :~. ~ .  (.,t" x .  T" ~y, x, y)). 

On using the induction hypothesis in (2.8) we obtain 

2 T"+~(v, ~, v ) - x - y  + (y.  ~ . v ) x "  T"(y, x, V) 
(2.9) 

- -  2 y . x .  T'~+'(y, x , y )  + l '~(y, x, v ) . x . ( y . x . v ) .  
But from (1;4) we have 

(2. ~o) (y.  x .  v) .  x. ~ (,~, x, v) = T" (y, ~, ,j). x .  (y.  x .  y) 

and hence from (2 .9)  

(2 . I  I)  Tn§ x, y ) ' x . . ~  ~ - - y ' x .  y n + l  (~, x ,  ~). 

But we know that (2.7) holds for n = I, 2. Hence the lemma follows immediately. 

The following lemma makes use only of assumption 3. 

Lemma 4. The power series in the Banach variable x 

(2.12) Y0 + ~ T' (Y0, x, Yo) 
i = l  

defines an entire analytic fm~ction ~ y(x) on Be to B v 

3. Existenee and Uniqueness Theorem for Differential System.  With  the 

aid of the preceding four lemmas we can shorten the proof of the main theorem 

of the paper concerning the differential system (I.I). 

Theorem 1. Under assumptions I, 2 and 3 of  r I, and under the assump- 

tion ~ 4 

T '  (Y, x ,  Y" x~. Y) = T'  (y, x,,  Y)" x,.. y 

1 A power  series ~ Pi(x) in Banach spaces defines an ent i re  analy t ic  funct ion of x if the  
i = 0  

o o  

real power  series Z m (Pi);. i converges  for all real ). and if m (P~) is the  modulus  of the  homo- 
i=0 

geneous  po lynomia l  P~(x) of degree i in Banach spaces. 
I t  can be shown tha t  t he  , ,associativity, ,  (i) : (Yl �9 xz �9 y~)- x l "  Ya = Yl" x~ �9 (y~. x l "  Ya) for all  

y~ E B1 and x ~ E B ~  impl ies  t h a t  a s sumpt ions  I and 2 of w I and the  above a s sumpt ion  4 are 
satisfied by t h e  t r i l inear  funct ion  T (Yl, x, y~). Hence,  the  conclus ions  of Theorem I hold  under  t he  
res t r ic t ions  t ha t  t he  t r i l inear  funct ion T(y~, x, Y2) satisfies a s sumpt ion  3 of w I and the  iden t i ty  (i). 
The  special  ins tances  considered in th i s  paper  sa t i s fy  a s sumpt ion  3 Of w I and the  iden t i t y  (i). 
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j o t  all y e B t ,  x ~ , x ~ e B ~ ( i - - 2 , 3 , . . . ) ,  the d(fferential system ( t . i )  has a um;que 

entire analytic solution given, by 

(3.~) v (~) = ,So + ~ ,  . ~  (~, yo), , .h, , , . .  ~ (~, :/o) = T'  (,So, ,~', ~/o) 

so tkat _/1 ~ (x, Yo) is the ith iterate, as a Ju~mtio, of  z, o f / 1  (x, z) : Yo " x . z evaluated 

for z = Yo. 

To prove this theorem, let us then find necessary and sufficient conditions 

tha~ an entire analytic funct ion 
Oo 

(3.2) :,,(~)--:/0 + Y, ~,(~) 
i~l  

satisfy the differential  system (l.X). In  (3.2), ~i(x) is a homogeneous polynomial 

of degree i on B~ to Bt, i .e. ,  ~i(x) is a cont inuous funct ion of x such tha t  

(1) ~ k ( Z x ) - ~ Z ~ i ( x )  for all real )~ and all x 6 B ~ ;  

i 

(2) ~2i(x + ~ z ) =  ~ r  @,.(X, Z ) f o r  all real )~ and all x, z e B ~ .  
r ~ 0  

Robert  S. Martin1 first proved (it was later  proved independent ly  by Mazur and 

Orlicz ~ tha t  a homogeneous polynomial  in Banach spaces has a unique polar, 

i .e . ,  there exists a unique /-linear funct ion wi(xl, x, . . . .  , xi) such tha t  

oJ~(x, x . . . .  , x)-~ ~2~(x). The polar is in fact  defined by 

1 , ~  $2i(o), 
i ! x, ~, . . . .  z i 

where J i  is the i th  successive difference opera tor-wi th  successive incre- 

ments xl, x 2 , . . . ,  xi. Robert  S. Mart in  also proved tha t  the Fr~chet differential  

of a homogeneous polynomial  D~(x) exists and is given by 

(3.3) ~.qi(x)-- i~ , (x ,  x , . . . ,  x, ~x). 

1 MARTIN, R. S., >>Contributions to the Theory of Functionals% California Inst i tute  of 
Technology Thesis, June, I932. 

2 MAZ(;R, S. and ORLICZ, W., Studia Mathematica, vol. 5 (I934), PP. 5 ~  This paper did 
not appear until 1936. See also TAYLOR, A. E. >>Additions to t h e T h e o r y  of Polynomials in 
Normed I;inear Spaces,.  The T6hoku Math. Jour., vol. 44 (1938) PP. 3o2--3 xd. 
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By a theorem of the au tho r  1 on the t e rm by te rm Fr~che~ different iabi l i ty  

of a power series in Banach  spaces, it  follows t h a t  the  Fr~chet  differential  of the 

ent i re  analyt ic  funct ion  y (x )  in (3.2) exists fo r  each xeB~. and is given by 

oo  

(3.4) d y ( x )  = Z i c o i ( x ,  x,  . . ., x,  dx).  
i = l  

I f  we use (3.4) in the different ial  system (I.I)  we find 

(3.5) s~, (~) = ~ (~, yo) 
(3.6) ~ (x) = A '  (x, :to) 

and for  n >--2, the fol lowing relat ions 

(3.7) (n q- I) eOn+l (X, X, . . ., x, ~X)=yo'~X'~-~n(;g ' )  + ~'~,,(X)'~.T.'yo 

+ :~ ~,(x). ~ x. ~ ( x )  
i+j--n 
i , j ~ l  

The result  (3.6) was ob ta ined  on using (2.2) of Lemma 2. 

We  see tha t  a necessary condit ion tha t  (3.7) hold is t h a t  for  n--> 2 

(3.8) ~2,,+1(x) - -  I { y 0 . X .  Q,,(X ) q- ~ .~n(X) .X . y  0 
n + !  

+ ~ O,(x)" x" m r(x)}. 
i + j = n  
i , j~l  

I f  we now use results (3.5) and (3.6), and if we use an induet ion  proof  on (3.8), 

we find on using (2.7) of Lemma 3 and (I.4) (Assumption 2) for  x 2 ~--- x I ~ x and 

Y - -  Yo tha t  

(3.9) $2~(x) = A ' (x ,  Yo) (i = I, 2 , . . . ) .  

Now the condit ions (3.9) are also sufficient t h a t  y ( x ) i n  (3 .2)sa t i s fy  the dif- 

ferent ia l  system (x.i). In  fac t  an applicat ion of (I.2), (I.4) and assumption 4 to 

the evident  formula  for the first Fr~chet  differential  d T n+~ (Yo, x,  Yo) (n >--2) 

d T "+1 (Yo, x, Yo) = Yo" d x .  T" (Yo, x, Yo) + go" x .  (Yo" d x .  T "-1 (Yo, x, Yo)) 

-1- T~-(yo, x ,  y o ' f ~ x "  Tn-2(Uo , x ,  Yo)) + "'" -t- r " - l ( y o ,  x ,  y o ' d X "  r ( . y  o, x ,  Yo)) 

+ Tn(yo, x, Yo" 6 x" Yo) 

shows tha t  (3.7) holds for  n >-- 2. Hence  by Lem m a  4, the  t r u t h  of the theorem 

follows. 

t MICHAL, A. D., -The Fr6chet Differentials of Regular Power Series in Normed Linear Spaces,, 
Duke Math. Jour., vol. 13 (I946), pp. 57--59- 
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4. H i g h e r  Order  Di f fe ren t ia l s  o f  t he  Solut ion.  I t  is possible to give the 

expression for  the nth successive Fr6chet  differential with equal increments  o f  

the  solution funct ion (3.I) of the differential  system (I.I). By a simple calcula- 

t ion the second Fr6chet differential with equal increments  (ix given by 

(4,1) (i'* y (:r) --  2 ! T-' (y, (i.v, y). 

W e  shall prove the fol lowing general formula by induction:  

(4.2) (i'y(x) = i! T'(y,  (ix, y) for  any positive i,deger i. 

Clearly f rom the induct ion hypothesis  for  i - ~  n, we have 

(4.3) (in+l y ( X ) =  $, [(i Tn(y ,  (~X, y). 

From the elementary theorems on Fr6ehet  differentials and definition of 

T"(y, (ix, y) we find 

(4.4) (i T"(y, (ix, y ) =  T(y,  (ix, y ) . ( i x .  T" - ' ( y ,  (ix, y) 

+ y .  (ix.  ~ 1 '"-1 (y, (ix, y). 
p 

From the induction hypothesis  for i = n - - , ! ,  n we have 

(4"S) (in--ly(x) = ( , , -  I)! T n - l ( y ,  (~x, y), 

(i" y (x) = , ,  ! T" (y, (i x ,  y).  

Hence  ( i "y (x )= ( n -  ,)! ( iT"- l (y ,  (ix, y), which implies 

(4.6) (i T"- l (y ,  (ix, y ) =  n T"(y, (ix, y). 

On using (4. I5), the definition of T"+l(y, (ix, y), and the ident i ty  ( 1 . 4 ) f o r / =  I, 

j = n -  I, we find tha t  (4.4) reduces *o 

(4.7) (i T " ( y ,  (ix, y) = (~'/+ i) T n+l (y, (i:r, y). 

This result  inserted in (4.3) gives (4.2) for  i = n + I. 

The fol lowing corollary of the Theorem I is now clear. 

Corol lary .  I f  the increment ( i x = x ,  then the solution of the d*ig'erential 

system ( I . I )  will have the generalized ,>Maelaurin series expansion>> 

i (ii (4.8) Y(.':) = Yo + ~ y(o), 
i=1 

where (i~y(o) is the ith successive Frdehet d(#'erential of  y(x) at x = o with all i 

increments equal to (ix = x. 
2--46929. Aeta mathematlca. 80. Imprim~t le 1 juin 1948. 
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5. A Continuous Transformat ion  Group. The differential system (I.I) defines 

a continuous transformation group in the Banach space B~ with a parameter 

ranging over the Banach space B~. The classical Lie theory of finite and infinite 

continuous groups naturally does not t reat  of such generalized groups. The be- 

ginnings of a generalized Lie theory, with the differential aspects as the main 

flavor, was given by Michal and Elconin. ~ The generalized Lie differential equa- 

tions were also given by Miehal and Paxson. 2 

From the existence and uniqueness theorem of section 3 we see that  the 

differential system (I . I )  with a slight change in notation) 

(5.I) 
is satisfied by 

(5.2) 
where 

(5.3) 

:0 = J ' ( : l ,  

f (y ,  a )=  y + ~ T i(y, a, y). 
i = 1  

Let us look at {5.2) as a t ransformation ill B., for each value of the parameter 

a EB 1. Clearly f / - - y  for a = o so that  the identity transformation corresponds 

to ~ = 0 .  

I t  follows from Theorem 2.5 of Michal and Elconin 3 that  

(5.4) f(f~y, a), f l)= f ( y ,  a + fl). 

Evidently the inverse transformation to (5.2)corresponds t o - - a ,  so that  

the unique solution of the non-linear equation (5.2) is given by 

(5.5) Y=f(~a, - -" )  

i.e., by the entire function of a 
oo 

(5.6) v =  :O + ( - , ) ' T ' C O ,  , ,  :0). 
i - - 1  

Theorem 2. The differential system (I.I) defines an Abelian continuous trans- 

formation group in B I with the translation gro~q) of B~_ as its hvo ide~tical para- 

meter groups. 

MICHAL, A. D. and ELCONIN, V., loc. cit. 
MICHAL, A. D. and PAXS0N, E. V~'., loc. cit. 
MICHAL, A. D. and ELCONIN, V. ]oc. cit. 
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6. Some Ins t ances  o f  t h e  Dif ferent ia l  Sys t em (i . i ) .  Le t  B~ be the  Banach  

space of real cont inuous funct ions  y(t, s) over  a ~< t, s--< b, and let B,, be the 

Banach  space of real  cont inuous funct ions  x(s) over a--< s--< b. The norm in 

each case i s - t aken  in the usual way as the maximum of the absolute value of 

the funct ion.  I f  we take  T(y ,  x, Y2) as 

f 

(6. I) f Yl (~, 8);g'(8)y 2 (8, r)(18, 
r 

then the differential  system (I.I) in this  instance becomes 

(6.z) 

t 

~v [,(,,)/t, ,.] = f v [,(,,)/t, ,] ~ x ( , )v  [x( , ) / , ,  ,.] ,t,,, I r 
v [o / t ,  ,-] = y0 (t, r). 

I t  is not  difficult  to show tha t  assumptions I, 2, 3, and 4 are all satisfied. Hence  

by the  existence and uniqueness theorem of section 3 the unique ent i re  func- 

t ional  solution of (6.2) is given by 

or 

(6.3) v(~:) = ,/o + ~ ~*'(v0, x) ,vo 

where i (Y0, x) s tands for  yo(t, s)x(s) and the * denotes  in tegra l  composi t ion 

powers  and' products  in accordance  with the defini t ion:  y, *y.~ stands for  

t 

(6.4) f Yl (t, s)!/~ (~, r ) d s .  
r 

As we shall see later,  the  fol lowing modification of the previous instance 

will be of considerable importance.  Le t  _N be a complete  no rmed  l inear  r ing  1 

(not necessari ly commutat ive)  with I as a un i t  element.  Le t  B 1 and B_~ be 

Banach spaces defined as in the previous instance with the  difference t h a t  the 

vahtes of the funct ions  are now in N. Hence  the norms in B 1 and B~ are defined 

respect ively by 

1 MICHAL, A. D., -The Total Differential Equatimt for the  Exponent ia l  Funct ion in Non- 
Commutative Normed Linear Rings,,, Proc. of the  National ~cad. of So. (U. S. A.), vol. 31 (I945), 
PP. 315--317. See also MICHAI., A. D., and MARTIN', 1~. S. ,,Some Expansions in Vector Space~ 
Journal  de Mathdmatiques Pures et Appliqudes vol. 13 (1934) , pp. 69--9I ,  
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(6.5) 
[11 :J II =a:~t,,~max II y (t, ,)I1.,- 

where i] ils is the norm of N, and the ordinary products  of funct ions  in (6. I ) t o  

(6.4) are to be in terpreted as (non-commutative) ring products.  

I f  the initial  condition funct ion yo(t, r ) = / ,  the uni t  of N, then the solu- 

tion of (6.2) becomes 

(6.6) 
/ y [.~ (,,)/t, ,.] 

i 

l t ~1. 

= I + / ' x ( , , ) , t , ,  + f x ( , , )d , ,  f x(~.)(l~, 
/" r r 

t 1~ '! 

+ f x ( u l d , , f x ( v l d v f x ( w l d w  + ... ,  
r r r 

where x(~t)x(v), x(u)x(v)x(w),  etc. are associative but  not  commuta t ive  ring 

products.  

The funct ional  y[x(u)/ t ,  r] has also the fol lowing proper t ies :  

(I) I f  x ( , t ) x ( v )=x (v )x (u )  for  all real u, v in the interval (a, b), then 

t 

. f  x ( . )  r l~t  

:t Ix(,,)/, ,  ,-] = e' , 

where c ~- is the exponent ia l  funct ion in the normed l inear r ing _N. - -  See my 

paper  in Proc. Nat.  Acad. of Sciences, 1945, for a character izat ion of e 2. 

(2) The Frdchet differential  of the funct ional  y[x(u)/t ,  r] commutes  with 

the numerical  derivat ive of y Ix(u)~,, r] with respect  to the  variable t. (This se- 

cond proper ty  is an evident consequence of the result  tha t  (6.6)sat isf ies  the  

differential system (6.2).) 

(3) y [x, (u) + x.,(,,)lt, r] = y Ix, (u)l t, r] ~r Ix, (,;)It, ,'] 

if x, (u) x~ (v) = x, (v) x, (u) for  all u, v, in the interval  (a, b). In  particular,  this 

ident i ty  holds if xl(u ) = L the uni t  of the normed linear ring N, and in fact  

we  have the formula  y [I + x(u)/t,  r] = e t - ' y  [x(u)/t, r], where e t is the numerical  

exponent ial  function.  

I f  in particular,  the normed linear r ing N is tha t  of all square matrices 

x = (x j )o f  real numbers  xj with n rows and normed, say, as 

V is.z) I l x l l , =  Y, ( ~ y ,  
i , j = l  
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we see that  (6.6) is the matrizm~t ~ and that  the completely integrable d{fferential 
system (6.2) with yo(t, r) = I characterizes the matrt~ant. Hence the results of the 

previous sections immediately apply to the matrizant. These theorems on the 

matrizant are believed to be new. For example, let us write explicitly the nth 

successive Fr6chet differential of the matrizant ytr[x(u)] as given by (4.2): 

t S I 

1" r 

(6.8)  s n - I  

... j "  y , , - ,  Ix]  ~ ~ (~,,) ,~:,, [~] ~l ~.,, 
7' 

(,,, _> ~). 

I t  is of some interest at this point to inquire into the term by term Fr~chet 

differentiability of the functional expansion (6.6). An application of the au tho r ' s  

theorem ~ on the Fr~chet differentiability of power series in Banach spaces shows 

that  the Fr~chet differential of the functional y [x(u)/t, r] exists for each x(u) 
of B~ and is given by the alternative expansion 

/" 2 [ /  "' "i--1 
a,s  [ . , : . ( , , ) / t ,  ,-] = a~(,,)du + a,,;(,,,) d~, j 'x( , , )d,: . . ,  f x(,,),l.,, 

i,=2 
( 6 .9 )  " ~ t ui -  1 1 " '  

+ . . .  + f . .  
r r �9 

I f  the ma~ric-valued function yo(t, r) is taken to be an arbitrary matric- 

valued function in Bx instead of the unit matrix / ,  then we obtain a generaliza- 

tion of the matrizant and the following - -  by Theorem 2 - -  will be an infinite 

continuous transformation group on B l to Bj with A(s)eB. ,  as the variable 

parameter of the group: 

t t ~ 

(6. ,o)  9'. = yo',. + f yo~ A(s,)yo:'ds, + f yo'~ A(s,)dsl f yo? A(s~)yo'/ds~ + "." + "" .  
r r r 

7. Applications to >>Ordinary>> Differential Equations in Banaeh Spaces. 
The functional expansion (6.6) of the previous instance enters in an essential 

way in connection with the t reatment  of an ordinary linear differential equation 

1 See, for example, expansion (4.8), page 22 of MICHAL, A. D., >~Matrix and Tensor Calculus 
with Applicat ions to Mechanics, Elasticity,  and Aeronaut ics , ,  Galcit  series, John  Wiley & Sons 
(New York, I947). 

" Duke Math. Journal ,  Ioc. cit. 
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in Banach spaces. Let  a(x,  w) be a linear function of w e B a ,  a Banach space, 

with values in B a and depending parametrically on a real variable x for 

a G x --< b. The differential equation 

d ~, (z) 
(7.I) < l x  

can be written conveniently  as 

<t~, (x )  __ A (:~) �9 u' (x ) ,  (7.2) d x  - -  

where A . w  is the bilinear funct ion on N B  3 to 33 and N here stands for the 

wellknown complete normed linear r ing of linear t ransformat ions  on B~ to B~. 

We shall assume tha t  A(x)  is continuous in the interval  (a, b). I t  should be 

emphasized here tha t  the restriction of cont inui ty  on A(x) is merely illustrative. 

Other well known funct ion spaces of functions ,t(x) can be considered leading 

to similar results with the evident changes in interpretat ions of the notations.  

I f  the Banach spaces B x and B_~ are the two funct ion spaces described in the 

second instance of section 6, a n d  if the space N is taken as the normed linear 

ring of l inear t ransformat ions  oil II 3 to B:~, then, if we write the expansion 

(6.6) in the followino, notat ion 

9: X v 

(7.3) ~2~[A(~)], = I + f A ( ~ ) d ~  + . (A( r i )d~ . (A  (O) dO + . . . ,  

we can state the following two theorems. 

Theorem 3. The unique solution - -  obviously co~#imtous - -  qf tDe differential 

system 

(7.4) dw(x)  (A(x: eo,di,mous i,, (a, I;) u ~ = A ( ~ ) .  ,~, (.,.), , , . ( , , )  = ,,,,, 

is given by 

(7-5) ~ ' ( x ) -  a;; b-I M] ' '%, 

where the .fu~wtional ~ [A(~/)] i,, defi,ed by the e, t ire ./),netional expa,sio~ (7.3)- 

Theorem 4. There exi.~'ts a unique entire mmly//e solution of the completely 

integrable system i~z l,'r&het d(ffe.re,tial.~ �9 

y 

a . ,  [.~,,'.~] : - ~  [A ,S] ,l~, .t , -~  [ A ]  ~ .~1 (~) �9 ,,.~ 
( 7 . 6 )  . 

i, . '  [oI,~,:] = . ' , , .  
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where YJ~[A] is a given f,m'tional o~ B~ to B 1 and is deflated by (7.3). It  is 

given by the eJ~ti.re analytic fi~nctional (7 .5)with  ,4(~)ra~Tging over the Banach 

space B.2. 

The proof of Theorem 3 is similar to that  of the classical theorem on 

numerical systems of linear differential equations while the proof of Theorem 4 

uses similar methods to those of the proof of Theorem I. 

Theorem 4 is an existence and uniqueness theorem. However, under the 

assumption that  the Fr6chet differential dw[A/~]  exists, it can be shown quite 

readily that  w[A/x]  must necessarily satisfy the differential system (7.6). In 

fact, since w [A/x] satisfies the system (7.4), we see that  the Frdchet differential 

dw[A/x]  must necessarily satisfy the linear differential system 

On solving this system for the arbitrarily chosen A(x), we see that  w[A/z]  as 

a functional of A(x) must satisfy the differential system (7.6). We cannot go 

into details in this paper, but more extensive and similar studies can be made 

for higher order equations and for non-linear equations. 

The nth successive Fr~chet differential with equal increments of the func- 

tional ~'~.a [A(~)] exists for each positive integer ~z and is given by 

, 
(7.7) d" ~ [A] = ~!,] 1," [A, dA/x ,  ~] ~,{ [A] d~ 

( l ,  

while the nth successive Fr~ehet differential with equal increments of the solu- 

tion w [A/x] of (7.4) as a functional of A(x) exists for each positive integer n 

and is given by 
9' 

(7.s) a" .w = ,, ! j  F,, [ ,t ,  d . -I /x ,  . . ,  el . 

In (7.7) and (7.8) we understand that 

(7.9) I"[A, dA/x,  ~] = o-" [A] dA (~), 

and Fn[A, dA/x,  ~] stands for the nth combined ring (normed linear ring N) 

and integral composition power with variable limits. For example 

* :r  

1,'-0 [el, d A/ f ,  ~1 = f F [A, d A/x, ~1] I,' [A, d A/,2, ~1 e/V. 
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Theorem 3 and Theorem 4 can also be obtained by suitably generalizing 

some of the contents of my Proceedings 1945 paper >~Differential Equations in 

Frdchet Differentials Occurring in Integral Equations>). We shall speak briefly 

of this generalization. Consider the functional equation 

(7.io) f = y  + K |  

with respect to which we make the following assumptions: 

(I) K |  is a bilinear function whose values and independent variable y 

are in a Banach space B while the independent variable K ranges over a com- 

plete normed linear ring R for which a unit I is not assumed to exist. 

(2) (K1K,) |  ---- h~l C) (h" 2 (~ y) for all Iil, K2 fi 1'~ and y e B. 

(3) There exists a positive number M such that  

j~/i-1 
H K i H - < ( i - -  I)~ [[K[]i (i---- 2, 3 , - . . ) .  

To the differential system (I7) of my Proceedings I945 paper, there will 

now correspond the differential system 

(7.I  i) = - -  + o y 
l :I (o) = f ,  

where k (K)  = - -  It" + K ~ - -  K 3 + . . . ,  while the unique solution of (7.Io) is given by 

(7.i2) t / = /  + k o j :  

I t  can be shown that the nth Frdchet differential of y (K)  with equal in- 

crements d-K is given by 

(7.I3) 6 ' ~ y ( K ) = (  - ] ) " , , ! (~K  + k 6 K ) " |  (n---- I, 2 , . . . ) .  

This has been found rather useful in the specializations and applications of the 

general theory - -  see, for example, expansion (9-5) for the solutions of a system 

of linear differential equations as functionals of the coefficient functions. 

w 8 Generalized Taylor's Series Expansions for Solution of Total Dif- 
ferential System. If  re(p,,) is the modulus of a homogeneous polynomial p,,(x) 

of degree n on a Banach space E L to a Banach space I~ and if m(eo,,) is the 

modulus of the polar oJ,,(xl, x , , , . . . ,  xn) of pn(x), then we have the following 

result due to R. S. Martin (I932), loc. eit. 
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T h e o r e m  5. The moduli re(p,) a,,d m(~o,,) of the homogeneous pol!/,~omial p,,(x) 

aml it,r polar w,, (x,, x._, . . . .  , x,,) re.,'pectirely xatisfq the i~wqualities 

(S. I )  I ~ m ((0.)  "< . 
m (p,,) - .,! 

P r o o f .  Tha t  I --< m (~o,,) m (p,,) is clear. To prove the second inequali ty,  it  is known 

tha t  

~.,., x, . .,, p , ,  (o), 
(s._~) ~ ,  (:,.,, ~_~ , . . . ,  ~ , , ) =  

where ./.i.~,~. . . . . . .  .,, is the n th  difference opera tor  with successive increments  

/ '  I n "~ 
x,, x.,, . .,x,,. Since z/,'~, .,,,p,,(o) is a snm of 2" terms of form p,, / ; Z I �9 a ' . , . .  E i  ;7"i J - \ _  i = 1 2  

w i t h  e i=_+ I, we obtain f rom (8.2) wi th  the aid of the t r i angu la r  inequal i ty  

and the inequali ty II p,, (x)II -< , ,  (t),,)II x I1", the  fol lowing inequal i ty  

(8.3) II,o,(x~ . . . .  , ~ . ) l l -<  ,%i'~(Pn) (ma~ IIx, I[)". 
i 

The theorem follows now readily since re(to,,)= l . , t .b . l lw, , (xa  . . . .  , x,,)] I for  

II ~, H = I1.~,~ II . . . . .  II x ,  )1 = ~ .  
With  the aid of Theorem I and Theorem 5, we can prove the fol lowing 

theorem wi thout  much difficulty. 

T h e o r e m  6. For aJ~!/ giren XoeR,,  the emir<" a~alytic .,.dubon y(.i') of (I.I) 
caJ~ be e.cpal~ded in a generaUev'd Taylor's series of s m'cessire ]')'dcbet d~fl'~ire~#ials 

u'ith equal im~rrmenls 6x  rand for all dxE  lI~ 

(8.4} 
I 

y(.,.0 4 - ~ ) =  y (~o)+  ~ ; ~ .  [~,:,z(.,.)]: 
i =  1 .c - .% 

I f  we use (6.8) and (7.7), we obtain the  fo l lowing  impor t an t  new expansions 

for  the matr izant .  

Corol lary .  The Jbllowing ge~eralized Taylor's series expa~sio,~s hold for  the 

,,at,'iza,,t jbr all co,,ti,,uou.,, matrices A ( s ) =  (a:~(.,") and B ( s ) =  (t~(s;) 

2 
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t 

!2  I. [A (s) + B (s)] = ~2t [A (s)] + f .c2-t,: 
r 

[A] Bte ~ o~, [_d] ds, 
~' 11 " ' r  

(8.5) , + f,.,..:, [.4] B(.,.,),t,, f .'_,;; [.41 B (80 _o_;: [.4] a,,,._, I i = 2  r r 
,r I, __]  

- - .  f .Q""-a [A] B(s,) D.;' [A] ,Is,; 
�9 '~i 
r 

(86) $22[A(.~) + B(s)I=.Q:.[A(,,~)] + ~, i ~ " [ A , B / t , ~ l g 2 : [ A l d ~ ,  
i = I  r 

where /,'~[A, 13It, ~] stands /br the ith eombined matric aml integral eompositio.n 

power of ~2) [A]B(~) - - s . ee  statement following (7.9)- The ea'pa,~.~4o,~s (8.5) and 

(8.6) ~tre .unijbrmlq co~vergent Jbr all t, r in t o -<-l, r :< Ii. 

�9 9. 'SolUt ions  of  Systems of  Numerical Linear Differential Equations as 

Entire Analytic Functionals  of  their  Coefficients. If we write the nmnerieal 

linear differential system 

dwi(x)- = a;:(x)mi(x), wi(a) = w~ (ai~x ' ,  9., , continuous in a --< x --< b) (9. I) dx " 

as the matric differential system 

(9.2) d w ( , )  _ A (x), , ,( .) ,  ,,,(.) = w0, 
dx  

we can specialize Theorem 3 and Theorem 4, (7.8), and use Theorem 6 with its 

corollary to obtain the following theorem. 

Theorem 7. Let .Q~[A(s)] be the mah'izant of the matric-rahted fitJ~ction A(s) 

and w [A (s)/x] the ut,ique solutio,, of (9.2) as a./i,,,ctio,ml of A (s), then the followi,,g 

results gi~'e infor~mtion as to the depende~we of the solutio~s of (9. I) as fimetionals 

of the eoej.'fieients c~:(x). There exist.~ a unique entire analytic fimetioual solution of 

the completely inlegrable sydem i~ 1,'r&het &fferentials 

o ,. [AIx] = f .q3 [.-i] ~ A (f),,, [.4 ,"~] dS, 
(9,s) 

w / z l  = . , o .  

I t  is gieen by the entire analytie fmwtional solutio~ of (9 .2)as  a fmwtio~ml of 

A (s). The gel~eralieed Taylor's series ezpa~sion in Fr&het d(O"erential.e, ralid for 

all continuous A(.~.) and 6 A (s), 
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(9.4) a, [,4 (s) Jc (~ A (,,,.)/x] = ?v [A(s),/3c] -}- Z i (~i ic[;[(,,~.)lx]] 
i. 1 i l  �9 �9 

leads to the followi~y equivalent expansion,s: 

w [A (s) + 6 A (s)lx] = a' [A (s)/x] + f ~2~, [A] a A (s,)w [A is,] d~, 
(t 

(9.5) + $2x'~, [A]eA(s i )ds ' j 'O; :  [AldA(s~)'Q''[A]ds"''. " 
i = 2  a a 

si-- 1 

" s~ ~'-~ [.41 ,~ A (.,.,),,, [A/~.,.1 ,l,,, gl  

(916) w[A(s) + ~ a (.~)/4 = ,, b4( , ) /~]  + ~ fF ' [A ,  OA/z, S], , , [A/g]  ,Ig, 
/ = 1  a 

where F"[A, 6 A/x ,  g] sta~ds for the ith eombi~ed matrie al~d integral composition 

pou'e, �9 of .o~ [.4] 6 A (i). 

Aside from its great theoretical interest, we believe t h a t  this theorem could 

be used effectively in obtaining approximate solutions of a large class of systems 

of linear differential equations with variable coefficients (and more simply with 

constant coefficients) whenever the solution of only one system of the class is 

known. The degree and character of the approximation is evident from the 

definition of a Fr~ehet differential and Of suecessive Frdehet differentials. The 

following two corollaries will illustrate some of the applications of Theorem 7. 

Coroll&ry 1. Dr t~, [A/x] is, say, the known solution of the matrie differential 

system dw(x) d x  -- Aw ,  w(a) = w o (A, a coJ~stant square matrix, a.~d a <~ x < oo for 

a~y .fimte a, then for a~!! constant square matrix B, the solution of 

d w ( ~ ) _  (A + B)w, ,~'(a)= .'o 
(lx (9.7) 

is gice~ by 
.r 

~, [A + B / x ]  = ~ [A/x]  + f e: ~-'~-' B ~' [A/s]  ds  
a 

within first order 16"dchet d~erential correctioJ~s to w [A/x]. 

Corollary 2. UJ~der the hypothesis, of Corollary I, the solution of. (9.7) is given by 

u, [A + B / x l  = w [A/x] + feI~.-~,:~A B.., [A/s,] ds, 

+ e( ~'-~i~j B dsl J e (''-'~1 "j B w [A/s~] ds2 
fl a 

within seeoJ~d order Fr~ehet dtffereJ~tial eorreetio~s to w [A/x]. 
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xo. An Associated Differential System. There are other significant non- 

linear differential systems related to (I.I) whose unique solutions are entire ana- 

lytic functions. Let the trilinear function T(y, x, z) satisfy the assumptions of 

Theorem I. Consider the following differential system in the unknown functions 

y(x) and z(x) and their Fr6chet differentials 6y(x) and de(x) respectively: 

y (..) T (z ;.~; 0 x,  z ;x~) - -  T (y ::~,~, ~ x,  y ,~,) 

(IO.I) ' ~Z(X) = - -  T(z(x) ,  {~x, y(x)) - -  T(y:x: ,  (~x, z(x)) 

l y ( o )  - -  o, ~ (o)  = ~0. 

By methods similar to those in the proof of Theorem i the following existence 

and uniqueness theorem can be established. 

Theorem 8. bS~der the hypothesis of Theorem I, the d(Orerential system ( I O . I )  

in ~wrmed linear spaces is completely integrable and possesses the ~bllowi~g u,ique 

entire analytic solution ~/)~nctions 

[ y(x)=- 2 ( - -  I)i-'  T"i-l (Zol X, Zo) , 
I 0 . 2 )  . i = 1  

: z (~) = ~o + ( -  i) '  T -  (~o, x ,  ~o), 
i = I  

where T"(zo, x, zo) is the .nth iteratio~ of T(zo, X,Z ) as a linear fu,~ction of z 

evaluated for z = z o- 

I f  the trilinear function T(y, x, z) and the Banach spaces B~ and B2 are 

taken as in Section 6 with the norm (6.7) as the norm of the normed linear 

matric ring N with unit  z o = L the identity matrix, the resultant system (IO~I) 

possesses the unique solution 

! t ~l v 

( 1 0 . 3 )  r r ,' r 

[ ~'r [x(a)] = i '  ' " /~ ( , , ) , ~ , ,  t x ( v ) ~ .  + . . . .  
r r 

I I: T h e  D i f f e r e n t i a l  Systems in Complex Itanaeh Spaces. The resuits of 

this paper can be shown to hold with some modifications for the case of com- 

plex Banach s p a c e s -  complete normed linear spaces with complex number 

multipliers. In some cases stronger theorems can be proved. For example, take 

the case of Theorem I. We can prove 
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Theorem 9. Let B 1 aJ~d B., bc complex Ba~ach spaces. U,der the assump- 

tions of Theorem I there exists a m~ique solution oj" the d(fere~tial system (I.]). 

I t  is glee, by the e,  tire a~alytie )~J~ctio~ (3.I). 

The  uniqueness in Theorem I was proved within the class of  all (single 

valued) ent i re  analyt ic  funct ions  whereas the  unieity of the solut ion in Theorem 

9 is asserted within the class of all (single valued) funct ions  defined t h r o u g h o u t  

the complex Banaeh  space B~. 

The  proof  of Theorem 9 proceeds as the proof of Theorem I as soon as it  

is establ ished tha t  any funct ion tha t  satisfies ([ .[)  t h r o u g h o u t  the complex 

Banach space BI, with values in the complex Banach space B.,, is neeessarily an 

ent i re  analyt ic  funct ion.  But  this follows readily f rom known results. For, sup- 

pose y(x) satisfies ( i . I )  t h r o u g h o u t  the complex Banaeh space B~. Obviously 

then,  the  Fr6chet  differential  of y(x) exists everywhere  in B~. Hence  y ( x ) i s  

cont inuous t h r o u g h o u t  B~ and the Ga teaux  different ial  of y (x )ex i s t s  every- 

where in B v This means tha t  y(x) is analyt ic  in A. E. Taylor ' s  ~ sense in an 

a rb i t ra ry  sphere about  the origin and hence it follows tha t  y(x) is an ent i re  

analyt ic  funct ion in our  sense. 

In  the ease of the analogues of the  results  in Section 9, it is clear t ha t  

the independent  variable x will be a complex var iable  and tha t  the  integrals  

will be line integrals  in the complex plane ex tended  over paths  within the  

Mittag-Leffler  s tar"  of the coefficients a~(.r) of the differential  equat ions  (9.])- 

I TAYLOR, A. E., >)Analytic Functions in General Analysis,), California Institute of Technology 
Thesis, June, z936. A briefer version appeared later in Annali di Pisa, vol. 6 (I937), pp. 277--292. 

E. I,. [NCE, Ordinary Differential Equations, pp. 4o~--4[I. 

Cal i fornia  Ins t i t u t e  of Technology.  

February ,  1947. 

A 

T 


