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Introduction. 

The theory of spaces with negative curvature began with Hadamard's  famous 

paper [9]. 1 I t  initiated a number of important investigations, among which we 

mention Cartan's generalization to higher dimensions in [7, Note IlI] ,  the work 

on symbolic dynamics ~ for which, besides Poincar~, Hadamard's  paper is the 

ultimate source, and the investigations of Cohn-Vossen in [8], which apply many 

of Hadamard's  methods to more general surfaces. 

For Riemann spaces the analytic requirement that  the space has non-positive 

curvature is equivalent to the geometric condition that every point of the space 

has a neighborhood U such that  the s ide  bc of a geodesic triangle abe in U 

is at least twice as long as the (shortest) geodesic arc connecting the mid points 

b',c' of the other two sides: 

(*) bc>~ 2.b'e' .  

This condition has a meaning in any metric space in which the geodesic 

connection is locally unique. I t  is the purpose of the present paper to show, that 

(*) allows to establish the whole theory of spaces with non-positive curvature for spaces 

of such a genera ! type. This theory proves therefore ir, dependent of any differen- 

tiability hypothesis and, what is perhaps more surprising, of the Riernannian char- 

acter of the metric. 

I t  was quite impossible to carry all the known results over without swelling 

the present paper beyond all reasonable limits. But an at tempt was made to 

T h e  n u m b e r s  refer to the  References  a t  t he  end  of t he  paper .  

2 A b ib ] iog raphy  is found  in  t h e  pape r  [12] by  M. MORSE a n d  G. HEDLUND on t h i s  subjec t .  
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bring those facts whose proofs differ from the current ones. The following is 

a more detailed description of the contents. 

For the convenience of the reader Section I compiles the definitions and 

results concerning spaces with locally ~t~tique geodesics, which were proved elsewhere 

but are needed here. Section 2 discusses covering spaces and fu~Tdamer, tal don'~ai~s. 

Part  of it will not be used but is necessary for actually carrying over several 

known results not discussed here. 

Then non-positive curvature is defined by (*). If  the equality sign holds in 

(*) we say that the space has curvature o; and if the inequality sign holds for 

non-degenerate triangles, the space is said to have negative curvature. Section 

3 discusses the local implications of (*). The long proof of Theorem (3. I4)is  the 

only place where differentiability hypotheses would have permitted considerably 

simplifications. 

If  the space is straight, that  is if all geodesics are congruent to euclidean 

straight lines, then (*) implies that  for any two geodesics x(t) and y(t), where t 

is the arc length, the function x(t)y(t)  is a convex fanctio~ o f t  (Section 4). This 

is really the central point of the theory. I t  permits to do without the Gauss- 

Bonnet Theorem, for which no analogue in general Finsler spaces has as yet 

been found, but which is frequently applied by Hadamard and others. The con- 

vexity of x(t)y(t) also allows to establish a complete theory of parallels. 

Moreover, it is basic for the other fundamental fact, that  the u~iversal cover- 

ing space of any space with non-positive cum'ature is straight (Section 5). This is 

proved here under the additional assumption that the space has the topological 

property of domain invariance, which is probably always satisfied but defies 

present topology. 

The study of general spaces with non-positive curvature is reduced to simply 

connected spaces by means of the covering motions of the universal covering 

space. These motions have no fixed points. Section 6 investigates motions of 

this type. 

Application of these results yields among others the two facts (Section 7) 

on which Hadamard's  work is primarily based: In a space with non-positive 

curvature there is oMy one geodesic arc within a given homotopy class connecting 

two given poi~ts. I~ a space with negative curvature every free homotopy class con- 

tai~s at most one closed geodesic. 

Section 8 contains results on asymptotic geodesics which go also back to 

Hadamard, and points out some unsolved problems. 



Spaces with Non-Positive Curvature. 261 

Then special types of spaces are discussed, first spaces with curvature o (Sec- 

tion 9). They are locally Minkowskian. By means of an observation by Loewner, 

their study can be reduced to Riemann spaces of curvature o: They have fil~ite 

connectivity (Cartan) and all tori with non-positive curvature have curvatm'e o. 

There is no compact space with negative curvature and an abelian fundamer 

group. The fundamental group of a space with non-positive curvature has no 

(non-trivial) finite sub group: The simplest not simply connected spaces have 

therefore an infinite cyclic fundamental group. Section IO studies these spaces, 

in particular cylinders. 

The theory of two-dimensional manifolds, especially of compact manifolds 

with negative curvature is the subject of Section I I. The methods used by 

Nielsen [13, I4] for surfaces of constant negative curvature served as a guide. 

Finally we return to the starting point and prove that (*) is for Riemann 

spaces actually equivalent to non-positive curvature (Section I2). We also show 

that (*) is equivalent to the ~cosine inequality~) (see 02.4)). 

Under a minimum of differentiability hypotheses it can be seen (Section I3) 

that  the volume (Hausdorff measure) of a sphere in a Finsler space with non-positive 

curvature equals at least the volume of the euclidean sphere with the same radius. 

At first sight it seems rather surprising that  t h i s  fact, which is well known for 

Riemann spaces, extends to Finsler spaces. The corresponding statement for 

area of spheres is not correct in this simple form, but  more complicated in- 

equalities will be proved which contain the known Riemannian inequalities as 

special cases. 

Notations. 

Points are denoted by small latin letters, pointsets by latin capitals. 

Small German letters indicate parametrized curves. But a curve and the 

pointset which carries it are not sharply distinguished when no misunderstanding 

is possible. 

German capitals stand for groups. Motions or transformations are denoted 

by Greek capitals. 

All spaces considered are (at least) G-spaces, whose definition is found in 

Section I. The space in question is always denoted by R, its universal covering 

space by R, and R is related to R by a definite locally isometric mapping 2. 

A point p or curve 5~(t) of R lies over the point p or curve x(t) of R ifp~2----p 

o r  = x ( t ) .  
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The fundamenta l  group ~ of R is t h o u g h t  of not  as an abstract  group,  but  

a s  the g roup  of motions q~ in R which lie over the ident i ty  I of R, t h a t  is 

�9 Y2 ~--/. The  let ters  (/) and T (with or wi thout  subscripts) mean elements  of ~, 

and E is the iden t i ty  of ~. 

A space in which each geodesic is congruen t  to a euclidean s t r a igh t  line 

is culled straight .  The  f requent ly  occurr ing hypothesis  t h a t  the geodesics of the 

universal  cover ing  space of R are s t ra igh t  will therefore  simply be fo rmula ted  

as: R is s t ra ight .  

C H A P T E R  I. 

Metric Spaces with Geodesics. 

~. T h e  B a s i c  P r o p e r t i e s  o f  G - S p a c e s .  

The condit ions I to IV  listed below guaran tee  the existence of geodesics 

with the geometr ic  proper t ies  of the extremals  in finite dimensional  symmetr ic  

Finsler  spaces, leaving aside different iabi l i ty  properties.  The i r  fo rmula t ion  is 

simplified by using the  no ta t ion  (xyz) to indicate  tha t  x, y, z are different  points 

in a metr ic  space and tha t  the i r  distances xy,  yz, x z  satisfy the  re la t ion 

x y  § yz  = xz.  The  spherical  ne ighborhood  of p which consists of the  points 

x With p x  < Q is denoted  by S(p, Q). The condi t ions  for  a G-space R are these:  

I R is metric with distance xy.  8 

I I  R is finitely compact, or a bounded 4 sequence xl, x_,, . . . has an accumula- 

t ion point.  

I I I  R is convex, t ha t  is for  any two different  points x, z a point  y with 

(xyz) exists. 

IV Prolongation is locally possible, or every point  p has a nmgllborhood 

S(p, e(P)), e(p)>o, such t h a t  for  any two different  points  x, y in 

3(p, Q(p)) a poin t  z with (xyz) exists. 

V Prolongation is unique, or, if  (xyzl), (xyz2), and yzl----yz2 then  z I -~ z 2. 

In  this form V does not  appear  as a local requi rement ,  but  it is equivalent  

to a local condi t ion (see D and Theorem (4.I) in [4, P. zI5]). We  recall  some 

definitions and  proper t ies  of G-spaces which were proved in [4]. 

s In contrast to [4], it is here always assumed that x y  = y x .  

4 ~Bounded~, means: there is a 6 such that x i x  k ~ d. 
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A segment f rom x to y is an arc f rom x to y which is congruant  to a 

euclidean segment.  I t  has representalio~s x(t), a<. t<--fl, such that  x ( a ) = x ,  
x(fl) ~- y, and x(t~)x(t.,.) = [t~ - -  t~[ for  a f i  ti--< r An oriented segment  f rom x 

to y will be denoted by ,3(x, y) and the point  set carrying it by T(x,y) .  Seg- 

ments  ,3(x, y) exist and are shor tes t  connect ions f rom x to y but  need not  be 

unique, t towever  (see [4, (4 .2) P. 216]). 

(I. I) I f  a point z with (xyz)  exists, then ,3@; y) and T(x,  y) are unique. 

Segments  can locally be uni formly  prolonged (see [4, PP. 217,218]): for any 

>-- 2 and any point  x the numbers  fl, such that  every segment  T with endpoints  

in S(x,  ~) is subsegment  of a segment  with the same center  as T and with 

length ~fl, have a positive least  upper  bound ~p.(x); and ~.(x) satisfies the relat ions 

I w ( x ) - w ( y ) l  or for all ),-->2 and x. 

In  the present  paper another  number  ~) (not ment ioned in [4]) will play a 

rSle. ~p is the least upper  bound of those fl for which the segment  `3(x, y) is 

unique for any x, y in S(p,  fl). By (~.I) ~p is at  least  as large as ~.~(p) or the 

Q(p) occurring in IV. Moreover,  if p q < dp then 

S (p, 6p) > S (q, 6j~ - -  p q) 

therefore  always 6q > 6 p - - p q  and similarly 6p >--6,j-  qp hence 

I  - al<pq or 

A geodesic g is a curve which is locally a segment,  or, g has a parametriza- 

t ion x ( t ) , -  co < t <  cx) such tha t  for  every t o a positive e(to) exists such that  

x(tl)x(t2)-= [ t l -  t,l for I t o -  t,] <--~(to). x(t) is called a represe,,tatiou of g. Ob- 

viously t is the arclength.  At  t imes g will have a definite or ientat ion g+. Then 

the word representa t ion is to imply tha t  t increases when g+ is t raversed in the 

positive sense. 

For  any segment  ,3(x, y) there  is exactly one geodesic g tha t  passes through 

all points  of the corresponding set T(x,  y), see [4, (8.3), P. 23o]. I f  x(t), 

a <- t<-C/ represents  ,3(x, y), then a representa t ion  y(t) of ~ exists such tha t  

y(t) = x ( t )  for vr <. t < '~,  [4, (5 .6 ) P" 222]. 
There are two especially simple types of geodesics, the straight lines and 

the  great circles ([4, P. 232]). x(t) represents  a s t ra ight  line if x(t~)x(t~) = [tl - -  t2! 
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for  any t;, and a great  circle of length  fl > o if 

x(t,)x(4)---- rain It, - -  4 + ~fll" for  any tt. 
~-----0, 4-1, --+2 . . . .  

With  one representa t ion  of a s t ra ight  line or grea t  circle, every represen ta t ion  

has the character is t ic  proper ty .  

The  space R is s t raight ,  or all geodesics are s t ra igh t  lines, if  ~22(P)~ c~. 

In  t ha t  case also $ p -  oo. 

The fol lowing fac t  is no t  ment ioned in [4] but  will be needed here. 

(I .3) Le t  x(t) and y(t) represent  s t ra ight  lines and x(t) G < a  for  t ~ o ,  

where G is the set tha t  carries y(t). I f  y(x(t)) is a foo t  of X(t) on G, then  

e i ther  ,`(t)-~ ~ or z (t) -~ - -  yd. 

Proof. The relat ion 

I x(t) l = t/(o)y (=r ~ = ( o ) x ( t ) -  x ( o ) y ( o ) -  x(t)y(xCt)) > It I -  x ( o ) y ( o ) -  ~, 

implies Ix ( t )  l -~ oo. But  

I x  (t,) - x(t~) I = y (x(t?)v (,`(t,)) -< y (x(t,))x (t,) + x ( t , )x  (4) 

+ =(t , )y (,`~t,))< I t , -  t,I + 2~,. 

I f  I , , ( t ) l  > 2,, for t >  to and, say, , , ( t o ) >  o, then 

Ix(to)- x ( t ) l  < t -  to + 2 .  < 4 -  for  o < t - -  t o < 2~ ,  

implies t ha t  ,`(t) is positive for  t o < t < t o + 2a. By the same a rgument  x(t)  > o 

for  t 0 + a < t < t  0 + 3 a  etc., so tha t  x ( t ) - ~ c ~ .  

A ray r. is a half  geodesic x(t), t ~ o  for  which x(t l)x(4)----I t~--tel .  I f  p 

is any point  then  a sequence of segments T(p , ,  x(t,)) with p , - ~  p and t , -*  c ~  

will contain a subsequence which converges to a ray ~ with origin p. (For this  

and the fol lowing see Sect ion I I of [4]') Any ray ez which is obtainable  in this 

manne r  is called a co-ray from p to r. I f  p ' ~ p  is a point  of  ~ then  the co-ray 

f r o m  p '  to r is unique and coincides with the sub-ray of ~ beginning at p' .  

I f  R is s t ra ight  and g+ is an or iented line represented  by x(t), then  for  any 

point  p the line th rough  p and x(t), so or iented tha t  x(t) follows p, converges 

for  t -* oo to an or iented  line a ~, the so-called or iented asymptote 5 t h rough  p 

s In  [4] the word a sympto te  is also defined for not straight R. In  th i s  case the  p resen t  

paper  avoids the  word because of the  difficulties mentioned in Section 8. 
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to g*. For any point q on a * the oriented asymptote to g+ coincides with a § 

and any positive sub-ray of a + is co-ray to any positive sub-ray of 9 § 

I t  is important for the sequal to know that  the concept of asymptote is in 

general straight spaces ~either sy~nmetric uor trausitive (see Section i I I  5 of [3]). 

Also, if y(t) represents an oriented straight line, then y( t )g+< a for t ~ o is 

in general neither necessary nor sufficient for y(t) to be an asymptote to 9 § (see 

[4, PP. 245, 24o]), even if asymptotes are symmetric and transitive. 

2. Fundamental  Sets. 

The G-space /7' is a covering space of R if a locally isometric mapping ~2' 

of R'  on R exists (compare Section I2 of [4])- I f  x'(t) represents a geodesic in 

R' then x'(t)~'~---x(t)  represents a geodesic in R. Conversely 

(2. I) For a given representation x(t) of a geodesic in /7 and a given point x' 

over X(to) there is exactly one representation x'(t) of a geodesic in /~' for which 

x'(t) ~ '  = x(t) and x'(to)-~ x'. 

We say that  the geodesic 9' in R' lies over the geodesic g in /7 if repre- 

sentations x'~(t) of i}' and x(t) of g with x ' ( t ) ~ ' =  x(t) exist. 

(2.2) There is exactly one geodesic 9' i~ R '  over a given geodesic ~ in /7 which 

contains a git:en (~wn-dege~erate) segme~t ~' over a segment ~ in {~.e 

For the (obvious) definition of multiplicity of a point of a geodesic the 

reader is referred to [4, P. z3I] �9 (2.2) implies 

(2.3) The sum of the multiplicities at x' of the geodesics in /7 '  through x' which 

lie over the same geodesic g in R equals the multiplicity of g at x ~ x'  f t .  

Therefore in particular 

(2.4) If  x is a simple point of g then only one geodesic g' over g through a 

given point x'  over x exists and x' is a simple point of 6'. .... 

Let now R be the universal covering space of /7, and ~ a definite locally 

isometric mapping of R on R The fundamental group ~ of /7 consists of t h e  

motions of R which lie over the identity of R and ~ is simply transitive on 

the points which lie over a fixed point of /7. The following construction of a 

fundamental  set in /~ with respect to R uses the ))m~thode de rayonnement~) 

(see [7, P. 7I]) and applies to any space /7' which covers /7 regularly (compare 

w sT]). 
6 The statement (I2.4) in [4], which replaces the segments ~ and 6' by points, is wrong. 

(The mistake lies in the assertion that q5 ~5-1 (x, ~) is the identity.) The applications of (I2.4) 
in [4] are correct, because the assumptions of the present statement (2.4) are satisfied. 
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If  13o, px, . . .  are the different points of R which lie over the fixed point p 

of t3 then the motions of ~ may, because of the simple transitivity of ~ on 

{Pi} be denoted by q)o~ E, q)~, d0.~ . . . .  such that/)~ =/9o q~i. The sets ~ = .~i~Pi 
are closed because ~ is discrete (actually /~i/)~ > 2 V.~(p) for i ~  k, see [4, p. 25o]). 

The set H{29~ ) of the points a~ in J~ for which 2P~ > a~p~ is open and 

(z. 5) H(pk) q)[. ' q)~ = H(p,). 

For if $ [~d~-~  60 then p~q)=#~ and P ~ q ) =  Pi, hence ~q)P~q~ > ~Pp~q) for 

all 2 eH(/9~) so that  # P~ > #/9, for all # e H(29~) q). This means that  H(/9~) q)<H(p,). 
Similarly H(p~) q~-x < H(p~). Moreover, 

(2.6) H ( ~ )  A / ~  (p,) = o for i ~ 

because o~eH(pk) implies ~P~ < a~k < a~Pk --< a~p,. (2.5) and (2.6) yield 

(2.7) H(p~) a~ A H(~k) ~ ,  = o for m r l. 

The set H(/3k) is star shaped with respect to p~:, that  means, it contains 

with s every segment T(f)I:, 5"). For if ~)~ T(/gk, ~) then for i ~ k 

Because of (2.5) H(pk)~ is the same set H(p) in R for all k. 

(2.8) H(p) contains the set. D(p) of those points x in R for which a point y 

with (pxy) exists. 

The segment T(p, x) is by (I.I) unique. Let T(po, a~) be the segment over 

T(p, x) beginning at Po. If  x were not in H(p), then a~ would not lie in H(/9o), 

hence a~ Po --< ~Po. Therefore _~k ~ 19o exists such that  ~Pk < a~/~o. A segment 

T(pk, ~) goes under s into a 

to T(p, x) and is a segment 

be unique. A consequence of 

(2.9) I f  F(pk) denotes the 

d (F(pk)) ~< 2 ~ (R) and ~ (F(pk)) 

of the set A. 

geodesic arc from p to x which is not homotopic 

because ~Pk <-- Xpo = xp. Then T(p, x) would not 

(2.8) is 

closure of H(pk) then 2 k F ( p k ) = R .  Moreover, 

= oo if d (R) = oo where ~ (A) denotes the diameter 

For let ~ / ~  and connect x = 2 ~  to p by a segment T. Let T be the 

segment over T which begins at ~?. I t  ends at a point/3k over p. Then y~D(p) 
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for any point y ~ x  on T. Since H(/0E)~-- - -H(p)~D(p)  it follows that the 

point ~ over y of T lies in H(/0~), hence a? e F(/3~). 

i f  ~ ( R ) <  oo and q is the point with maximal distance from p, then the 

preceding construction shows, that every point of F(p~) belongs to a segment 

T which lies over a segment with origin at p. Hence F(pk) is contained in the 

closure of S(/0~, 2 pq). 

If  ~ ( R ) = o o  t h e n p  is origin of a ray (see [4, (9.5) P. 237]). By (2.8)H(p) 

contains such rays therefore H(/0k) contains rays. This leads to 

(2. ~o) Theorem, For every point /00 of R with fundamental group ~ - ~  {~o---- 

= E, t ~ , , . . . }  the fa~dame~tal set H (Do) consisting of the points �9 with ~/0o < ~.Po t~ 

for i > o has the following properties." 

a) H(/0o) is open and star shaped with respect to Po. 

b) H(Po) q)~ A H(po) (Ox = o for i # k. 

c) I f  F(#o) is the closure of H(Po) then Z~F(#o)q)~. = R. 

d) d(V(/0o))-< 2d(R) and ~(V(p))-~ c<~ i f  d ( R ) =  (x). 

e) I f  H(/0E) and F(p~) are correspondingly defined sets for ~ok----j00 (P~, then 

= 

f) H ( p k ) n  ~ D (p), where p =p~. n and D(p) is defined in (2.8). 

g) A sphere S(~, Q), o < q < 0% intersects o~ly a finite number of F(pk). 

h) ~ can be generated by (positive powers of)those ~ for which points x 

(depending on i) with/0o~ = ]-/00 q~ exist. 

Statements a) to f) follow from the preceding discussion. To see g) choose 

by c) the point /Sk such that ~F(/0~).  Then ~/sj _> ~/0k for al l j .  I f  S(4, Q)AF(~)  

contains a point ,r, then ~ ~> ,Ppj, therefore 

p~pk <-/0~ + ~ + ~Pk <--/0~=~ " + ~ + ~/0k < Z(~pk + e)" 

There is only a finite number of/0j which satisfy this ~nequality. 

We show h) following [7, P. 76]. Let Oe ~ E be a given element of J~: 

Connect/00 to/01 by a segment ~ and denote the last point of F(/0o) on ~ by ql. 

There is a set F(~k,) that contains ql and points of 73 that follow ql. For the 

set of points that  follow ql on ~ is open in ~ and would by g) be union of a finite 

number of closed sets. 

Let ~ be the last point of ~ in F(pk,). Then ~ belongs to a set F(/0k~) 
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that contains points of ~ that follow ~.  By a) and g) we arrive after a finite 

number m of steps at F(p~.,~) : F(p~). As a consequence of the definition of H(~ki) 

~ k i q i §  = qi+lPki+l ,  i = o, . . . ,  m - -  I, where/5~.o ----Po. 

Therefore r = hul is a transformation of the type required in h) and 

F( Oo) = 

It  follows that F(Po ) has the common boundary point ~ T7 ~ with F(pkJ T71 

and a hu~ which satisfies h) exists that  carries F(p0 ) into F ( # , , ) T :  -~ or 

F(p .J = F(po) 

Continuation of this process shows that F(/~,) has the form F(i~o)hUm . . .  T1 or 

@e-----Tin... TI where the Tj  satisfy h). 

I t  is easily seen, but not needed here, that  the q}~ that satisfy h) contain 

with any motion its inverse, so that just half of them generate ~ (unless 

consists of the identity only). We say that a G-space has finite connectivity, if 

its fundamental group can be generated by a finite number of elements. 

I f  R is compact then a-----~(F(i0o) ) is by (2. Iod)  finite. Every point ~ for 

which an 2 with/~o2 = 2./~ exists has at most distance 2 a from~o. The sphere 

S(/~o, 2a) contains by g) only points of a finite number of F(/~i). Hence the 

number of Oi that satisfy h) is finite and we find: 

(2. I I) A compact G-space has fi~ite connectivity. 

Some additional statements are possible if R is straight: 

(2.12) I f  [~ is straight, then 

a) A ray with origin Po intersects the boundary of  H(Po ) in at most one point 

(exactly one if R is compact). 

b) H(r )  = D 

c) H(l~o) is maximal,  that  is, H(Po) is not proper subset of an open set H* 

with H* q~/1 H* @k = o for i # k. 

Proof. a) If  ~ is on the boundary of H(po  ) then Poq g PJ'q for all j .  I f  

(Po 2q) then 

p o X : P 0 4 - - ~ 2 - < p ~ 4 - - ~ ' - < P ; x .  

7 T h e  geodesics  on an  e l l ipsoid  show t h a t  t he  s t r a i g h t n e s s  of R is e s sen t i a l  for t h i s  equa t ion .  
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The equality sign holds only when pjq ~p0~/ and (pjxq) but then ~J~P0 by u 

This shows �9 e H(Po). 
:Next let (pogt~j). Because ~ is on the boundary of H(Po) there is a Pi~Po  

with pi~ = ~p. Then 

because the equality sign would again imply fii =rio. Hence ~) is not in F(Po) 
and therefore not on the boundary of H(Po). 

b) Let y~H(p) and let ~ be an original of y in H(Po). Because H(Po) is 
open and ~ is straight H(P0) contains by (2. lo a) a point ~ with (po~)Z) and 

T(po, ~)< H(po). Then T(p, ~ ) ~ = A  is a geodesic arc in H(p) f rom p to e 

that  contains y .  I f  A were not a segment let T be a segment from p to z and 

construct in R the segment over T that  begins at 2. I t  ends at a point/3i ~ p 0  

over p because T ~ A and segments in _~ are unique. Since p2 is the length 

of A and A is not a segment it follows that  p~Z=pz  <202, which contradicts 

the definition of H(Po). Therefore A is a segment and (pyz) so that  ye.D(p) 
and H(p) < D (p). 

c) Let H* be an open set that contains H(fio)properly. Then a sphere 

S(~, Q) < H* -- H(/~o) exists. By (2. Io c),~eF(p~.) for some p~ ~Po. By (2.12 a) 

the sphere S(~, Q) contains a point of H(/~s.). Therefore H*AH* q)k ~ o. 

CHAPTER II.  

Spaces with Non-Positive Curvature. 

w 3. Local Properties. 

A center m(x, y) of two points x, y is defined by the relation 

(3. ~) x,~(x, u)= m,(x, y)y - xu/2. 

If  x, y are both in S(p, 6j,) (see Section I), then re(x, y) is unique, re(x, y) will 

also be called the center of T(x, y). 
The fundamental inequality (*) for spaces with non-positive curvature may 

then be formulated rigorously as follows: 

The G-space R has no.-positive curvature i f  every point p of R has a neigh- 
borhood S(p, Op), o < Q~ --< Op such that any three points a, b, e in S(p, ep) satis~/ 
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the relation 

2m(a, b)m(a, c) <- be. 

I f  under  otherwise the same conditions 

(3.3) 2m(a,  b)m(a, c ) =  be 

then R is said to have curvature o. 

Three points are called collinear if  one of the points lies on a segment  

connect ing the two others. Since (3.3) holds always for collinear points, we 

define: 

The G-space R has negative curvature i f  every point p of  R has a neighborhood 

S (p, r o < Qp <-- ~ such that for any three non-collinear points a, b, c in S (p, Qp). 

(3-4) 2re(a, b)m(a, c) < be. 

Since one-dimensional G-spaces are s t ra ight  lines or great  circles (see [4, P. 

233]), they satisfy (3.3) trivially and offer no th ing  interesting.  I t  will therefore 

always be assumed tha t  the dimension of  R in the sense of  Menger-Urysohn is 

greater than one. 

In  a spaee with non-positive curvature we introduce as auxiliary point  func- 

t ion tip the least upper bound of the 0, -< dp such tha t  (3 .2 ) i s  satisfied in 

S(p,  Qp). As in the proof of (I.2) it  is seen tha t  

(3.5) ]flp--flql<<-pq or f l p = o o .  

I t  will appear soon tha t  tip = ~v. 

The inequali ty (3.2) implies the following fundamenta l  fact  

(3.5) Theorem:  Let  x(t) and y(s) represent geodesics in a space with non.positive 

curvature. I f  for suitable constants at < a s, c # o, and d the segment T(xCt), y(ct  + d)) 

is unique for  a L <--t < -- as, then f ( t )  = x ( t ) y (c t  + d) is in the interval (a, a,.) a con- 

vex function of  t. 

))Convex); will here always mean ,)weakly convex~, tha t  is 

f((I --O)t,  + Ot,) g (i -- O)f(t~) + O f(t2) for o < 1 9 <  I. 

I f  the inequali ty sign holds for any t~ # t,, we say tha t  f ( t )  is strictly convex. 

To prove tha t  a continuous funct ion f ( t )  is convex it Juffices to show tha t  an 

e > o exists such tha t  

(3.7) 2/(( t  t + t~)/2)<--f(t~) +f(t2)  for It, --  t..I < ~. 
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For  the proof of (3.6) put  y(c t  + d )=  x'(t). Since the set V =  ~,,~t~,.~T(x(t),x' (t)) 
is bounded it follows from (3.5) tha t  f l = i n f f i p  is positive. I f  x ( t ) = x ' ( t ) f o r  

pEV 

a t ~< t ~< a e the theorem is trivial. W e  assume therefore  tha t  

k = x( t*)x ' ( t*)= max x(t)x '( t)  > o. 

Let  z(t*, u) represent  `3(x(t*), x'(t*)) for o --< u --< k and call z(t, u) the image of 

z(t*, u) under  a l inear 8 mapping of ,3 (x(t*), x'(t*)) on ,3(x(t), x'(t)) The definition 

of t* implies tha t  

(3.8) z(t, ul)z(t,  u2)<_z( t* ,ul)z( t* ,u .~)=[ul--u~[,  o g u , < _ k .  

Because the segments  3̀ (x(t), x'(t)) are unique the point  z (t, u) depends continuously 

on t and u. Hence an ~ > o  exists such tha t  

(3.9) z(tl, u)z(4, u) < ~ / 2  for  I t, - -  t~l < ~. 

Let  n > 2 k / f l  and pu t  u i = i k / n ,  i = o i . . . , n .  Then by (3.8) and (3.9) 

(3. Io) z(tl, uOz(4, u '+-1) < i l l2  + [ u ' - - u ; + l  I < #  for  all i and [ t l -  tel < e. 

Hence  the points z(t,, u~), z(4,  u~), z(4,  u ~-~') lie in S(z(t~, u~), fl) and the points 

z(4, ui+l), z(t~, ui), z(tl, u TM) lie in S(z(4,  ui+l), fl). Therefore  (3-2) yields with the 

nota t ion 

, ~ ;  = m [~ (t,, u" ) , ,  (4, " %  i = o , . . . , ,  

T/12i+1 = m [ 2 ' ( t  1, $/i), 2'(t,, u/+l)], i : O , . . . ,  . - -  1 

that 

2m2il'n2,+l ~ z ( 4 ,  u i ) z ( t ~ , u ' + ' ) ,  i = o , . . . ,  ~, - I 

2"12l"-[-1 m~_i+u ~ z(t,, ui)z(t,, ui+l), i = o , . . . ,  n -  l 

hence by addi t ion 

2n--1 

(3" I I]  2 Z YIIJ~I~J+I ~ Z ( t l '  O) Z ( l l '  ]~) "~- g(~2' O) Z ( 4 ,  k). 
. j -o  

Since z(t, o ) = x ( t ) ,  and z(t, k ) =  x'(t) and 

m o -~ m(z(t,, o), z(4,  o))-~ x((t~ + te)/2 ) 

m~_.-- m(z(t,,  k), z(4, k))= x'((t, + t~)/2) 

8 The l inear  mapp ing  x ~ x '  of ~6 (a, b) on ~ (a', b') is defined by a x : a b  = a ' x ' : a "  b'. 
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it follows from the tr iangle inequali ty and (3. I I) tha t  (3.7) holds for 

f ( t )  = x (t) x '  (t). 
In the case where one of the arcs x(t), y(t) shrinks to a point  Theorem 

(3.6) can be s trengthened.  (The assumption tha t  R has non-posit ive curvature  

is made th roughou t  this section). 

(3.I2) Theorem.  I f  p, a, b are not collil~ear and a, b~S(p ,  6t, ) the~ p x  is for 
x e T(a, b) a strictly convex function of ax. ConsequeJztly p has exactly one foot on 
T(a, b). 

We prove (3. I2) first under  the assumpt ion tha t  T(a, b) < S(p, ~p) and show 

later  that  this is always the case. Since T(p,  a) and T(p, b) lie in S(p,  (~p) seg- 

ments connect ing any points of these segments  are unique, so that  by (3.6) 

2 m (p, a) m (b, a) -<- p b 

2t,  (a, b) -< z [pn,(p,  a) + n (p, a)m(a, b)] <-pa + pb. 

The equali ty sign holds only when (pm(a,p)m(a,  b))but then p, a, b are collinear. 

(3. I3) tip = ~ and S(p,  t~) is convex, tha t  is, contains T(a, b) when it contains 

a and b. 

Proof.  Let  ~ be the least upper  bound of those Q for which a, b~S(p,  q) 
implies T(a, b)< S(p,~p). For  each such q the sphere S(p,e) is convex 

because the special case of (3. I2) already proved can be applied and yields 

p x --< max (p a, p b ) < 0  when a , b ~ S ( p , q )  and (axb). Therefore  S ( p , d )  is also 

convex. 

I f  ~ were smaller than ~p, then pairs a,, b~ would exist  for ~which 

pa~ < ~ + v- ' ,  pb,  < ~ + v -~ and T(a,, b,) contains a point  c, with pc~ --> (~p. I t  may 

be assumed that  {a,} and {b,} converge to point~ a and b respectively. Then 

pa<--~ and pb<--~. There are sequences a : - ~ a  and b : - , a  w i t h p a ' , < ~  and 

pb'~ < & The segments T(d,., b,.) and T(a',, b',.) tend to the, because of ~ < ~p, 

unique segment  T(a, b). But  T(a~., b:.) < S(p,  ~) because S(p, ~) is convex whereas 

pc,  --> Jp > d. This proves ~ = 6p so tha t  S(p,~p) is convex, and completes the 

proof of (3. I2). 

I f  a, b, c are any points in S(p,  ~p) a segment  connect ing a point  of T(a, b) 
to a point of T(a, c) is unique, hence (3. i2) yields era(a, b)m(a, c)<--bc, which 

implies tip -= ~.  
The next  theorem, whose proof is lengthy,  is impor tan t  for the distinction 

of spaces of vanishing, non-posit ive and negat ive curvature.  
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(3.I4) Theorem.  Let  a, b, a', b' be four  non-collinear points o f  S(p,  ~,), a ~ b. I f  

x -> x' maps ez (a, b) linearly s on ~ (a', b') and i f  the relation 

, xb  a x  
(3, I5) x x  = a--baa ' + ~-b bb' holds for one x wi th  (axb), 

then V : Z . r  T(x ,  x') is congruent to a trapezoid of  a l~Iiinkowski plane. 

(The segments  T(a,  a') and T(b, b') are the parallel  sides of the t rapezoid 

and the trapezoid degenerates  into a t r iangle when a ~ a' or b = b'). 

Proof.  By (3.6) x x '  is a convex funct ion of ax.  Therefore  the equali ty 

(3. I5) for  one x with (axb) implies tha t  (3.15) holds for  all x on T(a,  b). 

Pu t  a x = ~  and a b ~ a .  Let a", b" be points  of T(a ,a ' )  and T(b,b ' ) ,  and 

- +  " " " b " )  let x x map ez(a,b) l inearly8 on ~,(a , . Then by (3.6) 

x ~ " _ <  ~ - ,  [ ( , -  ~) a a "  + ~ b ~ " ]  
(3.  ~6) 

~ " ~ '  -< a'  b ' - '  [ (a'  b' - a ' ~ ' ) a "  ~'  + a ' x ' .  1," 1,'] 
hence 

~ x ' _ <  : ~ "  + ~ " x '  _< ~-~ [ ( ~ -  ~ ) ~ '  + ~bb'] 

therefore  (3-I5) and (3. I6) show tha t  the equali ty signs hold in (3.16) and that  

x"  T(x ,  x') < V. Pu t t i n g  x x "  ~-~2 the first relation in (3. I6) and the  definition 

of the mapping  x - >  x"  yield 

(3. I7) al  7 : ( a - ~ ) a a ' '  + ~bb",  a " x " : a " b " : ~ : a .  

W e  define ~, ! 7 as coordinates  of x".  Then x " ~  (~, ~/) maps V on the trapezoid 

J-~: o_<~_<~, o_<n_< , :~ [ (~ , -~ )aa '+  ~bl,'] 

of the Cartesian (~, 17)-plane. In  Y we introduce the euclidean metric 

(~,, ~._>) = [(~, - ~)-" + ( ~  - ~)-.],/~, ~, = (~,, ~<). 

Let z ~ ( ~ i ,  17i) i ~  i, 2 be points of V. I f  ~----- ~2,~ then T(zl ,  z2)satisf ies the 

equat ion ~----~i- I f  ~ < ~g then the same argument  tha t  established (3. I7 )y ie lds  

(3.  ~ s )  ( ~  - ~,) ~ --- (~  - ~) ~, + (~ - ~,)  n~, -~, -~: ~, z o = (~ - ~,) : ( ~  - ~,) 

for the  variable point  z :  (~, ~2) of T(z~, ze). I-lence V contains with any two 

points z~, z, the segment  T(z~, z~) and the points of /'(z~, z~) lie on a s t ra ight  

line in V. The intersection of a euclidean s t ra ight  line with V appears as a 
lS 
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segment  in V, which we call a straight line in V. We call two such straight 

lines parallel when they correspond to pieces of paralle] straight lines in V (or 

if their slopes are equal). (3.18) shows that 

(3. I9) The distances ~(zl, z2) and z 1z'2 are proportional for points on the same 
straight line. 

To prove that  the metric zjz2 in V is Minkowskian it m u s t  be shown that 

the factor of  proportionalit!! is the same ./br parallel lines (so far we only know 

that is so for parallels to the r,-axis). 

I t  suffices to see that  every interior point f of V has a neighborhood 

S(q, Q)< V such that the factor of proportionality is the same for parallels 

which intersect S(q, Q). The following considerations are restricted to a suitable 

S (q, e). 

The line H is perpendicular to L at 2'' (and L transversal to H at f )  if all 

points of H have the intersection f of H and L as foot on L. The transversals 

of H at f are, because of the convexity of the circles in V (see (3. I31), the 

supporting lines of any circle with center c ~ f  on H through f 

(3-2o) If  H is perpendicular to L, then H is perpendicular to all parallels 

L'  to L. 

For if H / ~  L'  ~ . [ '  and r is a point of H different from f and 2`" let a '~L '  

and let the straight line through r and a' intersect L at a (compare figure). 

Then by (3. I9) 
a t :  a ' r  = ,(a,  r): e(a'r) = , ( j ;  )'): e( j"  r) = j ' r : f ' r  

and a ' r > f ' r  because a r > f r .  

Under adequate differentiability hypotheses this means that  the parallels to 

L are transversal curves to the perpendiculars to L in the sense of the calculus 

of variations. Hence two parallels cut out equal pieces from all perpendiculars, 

or the parallels to L are equidistant to L (see [2, p. 339]). 

To prove this without differentiability hypotheses observe first that the 

equidistant curves to L are convex curves which turn their concavity towards L. 

This is contained in the following general fact: 

(3.2 I) 12`" in a space with nompositit'e curt'ature a, b, c, d are points o f  S(p ,  61, ) 

a,,d j', de,rotes the ,foot of  the poi~,t x~  T(a, b) on T(e, d) then x f~  is a concex 

fitnetio~ of  a x. 

For if x, y e T ( a ,  b) then by (3.6) 

(3.22) 2re(x, y).f,,<~,:/) ~ ~-m(.,,, y )m( f , , f , , )  <--x.L + U./;,. 
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R e t u r n i n g  to the present  special  case let  x be a poin t  of  an equid is tan t  

curve C to L and, general ly,  fi: the  foot  of t h e  poin t  x on L.  Then for  x ~ C  

the circle K =  K(f.~, xf~.) (the locus of  the points  z in V with z ~ : ~ - x f i . ) h a s  

the p o i n t  x in common  with C. A suppor t ing  line L 0 to C a t  x is also a sup- 

po r t ing  line to K at  x. 

By (3.I3) K is a convex curve and  has therefore  a unique suppor t ing  line 

or t angen t  a t  all bu t  a countable  n m n b e r  of points.  W e  assume first tha t  circles 

have t angen t s  everywhere .  Since then  the t ransversa l  to T(x ,  fx) at  x is unique,  

L o mus t  by (3.2o) be parallel  to L .  

Le t  z be any  point  of L 0 different  f rom x. Then z f :  ~ x./~ because C turns  

i ts  concavi ty  toward  L. The equid is tan t  curve C' t h rough  z to L has, for  the 

same reason as above, L o as suppor t ing  line at  z. There fo re  C" lies between Lo 

and C, it  mus t  contain  x, hence C ' :  C. Because C is convex C ~  L o. 

I t  now follows tha t  x - ~ j ] ,  maps  L 0 l inearly on L. Fo r  if  x, y e L  o and 
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z -~  m(x, y) then as in (3.22) 

2 z f z  <- 2 z m (fx, L )  <-- x f x  + y f ,  j =  2 z f=. 

Because the foot fz of z is unique m (f~, fij)----z. 

Take a subsegment T(e, d) of L with center f and segments T(c~, c2), T(dl, d2) 

of the same length  with centers c, d and perpendicular  to L at  c and d respec- 

tively. Then T(ci, di) lie on parallels to L. For  the points e in the quadrangle  

W with vertices e~, c2, d2, dl we introduce coordinates u, v as follows: if the 

perpendicular to L th rough  z intersects T(ei, dl) at  xl, then u ~ e l x  1 and 

v ~ xlz .  As in the proof of (3. I8) it  follows from the l inearity of the mapping 

x - ~ f ~  tha t  the s t ra ight  lines in W have l inear equations in u and v. The 

coordinates (6, U) and (u, v) of the same point in W satisfy therefore a relation 

of the form 

(3.23) ~: ~ : I = (aIU -~ bl~) + c1): (a2u "~- ~)2u -~- c2) : (a3u "§ bsy + c3). 

By (3.19) the distance ziz2, z i~- (u~, vi), is on a fixed line in W proport ional  to 

[(ul --  u2)" + (~'1 --  v2):] '/'. Therefore this distance and  [@~ - ~)~ + (w - w)~] '/' are 

proport ional  on a fixed line. This means tha t  (3.23) leaves the line at  infinity 

fixed and is an affinity. The lines u = coast which are parallel for (u, v ) a r e  

therefore also parallel in (6, ~). Because the curves v-~ coast  are equidis tant  

and parallel, the fac tor  of proport ional i ty  is the same for the lines u = const, 

or the parallels to H. Since H was arbitrary,  the theorem is proved in the case 

of  differentiable circles. 

I f  one circle with center  on a line H '  intersects H '  in a point  where the 

circle has a unique t a n g e n t ,  then (3.20) implies tha t  all circles with center  on 

H '  will intersect  H '  in such points. For  the sake of brevity we call a line H '  

with this property smooth. All lines through a fixed point except an at  most  

countable number  are smooth. 

I f  the line L th rough  f varies, the family of perpendiculars to L (and to 

the  parallels to L) changes continuously. A simple measure theoret ical  considera- 

t ion yields the  following: For  a sufficiently small positive fl and a given line H 

th rough  f a line L '  th rough f exists such tha t  the perpendicular H '  to L '  at  f 

is as close to H as desired and L '  contains points sl, s2 with (sxf.%)and s i f > f l  

at which t h e  perpendiculars P1 , /92  to L '  are smooth. 

The proof for differentiable circles used only tha t  T(x , f~)  and T(z,  fz) are 

smooth and shows therefore,  tha t  the equidis tant  curves L '  coineide between/91 
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a n d  /)2 with the parallels to L'. By the previous arguments the factor of pro- 

portionality is the same for all parallels to H'  between /)1 and P2, Since the 

factor depends continuously on the line and & f >  fl it follows that  the factor is 

the same for all parallels to H sufficiently close to H. This completes the proof 

of (3. I4). 

Notice the corollary 

(3.24) I f ,  under the assumptions of  (3.6), the space has negative curvature and 

the two geodesics are d(fferent then x ( t)y(et  + d) is a strictly convex function of  t. 

4.  T h e  T h e o r y  o f  P a r a l l e l  L i n e s  i n  S t r a i g h t  S p a c e s .  

i f  all geodesics are straight lines, then ~ ( p ) - ~  d v ~ vo for all ~ and p and 

the facts of the preceding section hold in the large. Because of their frequent 

occurrence we formulate the implications of (3.5) (3.2I) and (3-~4) explicitely: 

(4. I) I f  R is a straight space with uon-positive curvature then px(t)  is for a~y 

geodesic x(t) and any point p not on x(t) a strictly convex function of t. The 

spheres of  R are com,ex. 

(4.2) l f : x ( t )  and y(t) represent different geodesics g a , d  ~ in a straight space R 

with ,on-positive (uegative) curvature then for  any constants c ~ o, c' ~ o, d, d' the 

function x ( c t  + d)y(c' t + d') and x ( c t  + d)b, and y(c' t § d')9 are (strictly) cow,vex. 9 

This slightly more general formulation follows from (3.6) because a linear 

transformation of the independent variable does not influence convexity. (4.2) 

permits to show that  asymptotes have all the usual properties. I t  was pointed 

out at the end of Section I that  this is not  true in general straight spaces. 

(4.3) Theorem. I f  the line ~+ is an asymptote to 9 + then 9 § is an asymptote to D +. 

I f  ~+ is an asymptote to 9 § , and f+ to ~+, then [+ is an asymptote to g*. 

Therefore we may simply say that two oriented lines are asymptotic to each 

other. We prove at the same time 

(4-4) Theorem. Let x(t) and y(t) represent g+ a~d ~)+. Each of the following 

conditions is necessary and sufficient Jbr 9 § and D + to be asymptotes to each other 

a) x(t)y(t)  is bounded for  t > 0 

b) x ( t ) ~  (or y(t)9~) is bounded for  t > -- o, where ~ and 9~ are positive subrays 

of  ~+ and 9 § 

If x(t) and y(t) represent the same geodesic, then x(ct + d)y(c't + d') is either a linear 
function of t or there is a value t o such that the function is linear both for t - -  t o and for t--<t o . 



278 Herbert Busemann. 

I t  is clear tha t  (4.4 a) implies the symmetry of the asymptote  relation. I t  

also implies t rans i t iv i ty  because boundedness of x ( t ) y ( t )  and of y ( t ) z ( t ) ,  where 

e(t)  represents f~, implies boundedness of x ( t ) z ( t ) .  

For the proof of (4.4 a) denote generally by 0 § b) the s t ra ight  line through 

a and b with the or ientat ion in which b follows a. The line 9 § (a, x(t)) tends to 

the asymptote a § to 9 ~ through a. Let  a(s) and at(.~) represent a ~ to ~§ x(t)) 

with a(o) ----- at(o) = a. Then at(s) --, a(s) for t --, oo. P u t  

(4.5) ct = t / a x ( t ) ,  ct - -~  I for t -~ c~ 

because t - -  a x ( o )  <-- a x ( t )  <-- t + ax (o ) .  

By (4.2) at(s)x(c ts )  is a convex funct ion of s which vanishes for s - - a x ( t )  

and decreases therefore for - -  oo < s <-- ax ( t ) .  By (4.5) 

lim at (s) x (ets) = a (s) x (s) 

and a( s ) x ( s )  is a non-increasing convex funct ion of s. Moreover, a ( s ) x ( s ) i s  

bounded for t >--o which proves the necessity of a) and also of b )because  

a (s) 91 -< a (s) x (s) for large s. 

To see the sufficiency of a) we show: if the oriented line represented by x( t )  

is not  an asymptote to the oriented line f)+ represented by y(t) ,  then x ( t ) y ( t )  ~ oo  

for t ~ oo. Le t  a(t)  represent the asymptote  to b~ through x(o) with a ( o ) =  x(o). 

Then x ( t ) ~  a(t)  for t ~ o, hence x ( t ) a ( t )  is convex, vanishes at  t ~ - o  and is 

positive otherwise. I t  follows tha t  x ( t ) a ( t )  ~ oo for  t ~ oo. Because the necessity 

of a) was already proved, a ( t ) y ( t )  is bounded for t >--- o, hence x ( t ) y ( t )  ~ oo. 

Finally we prove the sufficiency of b). Let  y ( z ( t ) )  be the foot of x ( t )  on 

H + and x ( t ) y ( z ( t ) )  < a. Because of b) and (1.3) z~(t) ~ co. I f  x( t )  were not  an 

asymptote  to f)§ let a(t) with a(o)~-- x(o) be the asymptote  a + to f~§ th rough  x(o). 

Then y ( z ( t ) ) a ( ~ ( t ) ) <  ax by (4-4 a) hence 

x( t )  a t <-- x ( t ) a ( z ( t ) )  <-- x ( t ) y ( z ( t ) )  + 7t ( z ( t ) )a ( z ( t ) )  < a + a 1. 

But this is impossible because x ( t ) a  § is by (4.2) a convex funct ion of t, which 

vanishes for t ~ o and tends therefore to c~. 

(4.6) I f  p x , - - ~  oo and 9+(p, x,.)-~ f*, then g*(q, x,) tends for any point q to an 

asymptote to 1 § 

I t  suffices to see tha t  this is true for every subsequence i of {v} for which 

6§ (q, x~) converges to a line a +. Let  x~(t) and y,( t)  represent 6" (p, xi) and 9 ~ (q, x , )  
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with xi(o) : p, yi(o) ---- q. Then  xi(t) y,(t q xJpx~) decreases for  o --< t ~< px,.. Since 

x~(t) and y~(t) t end  to representa t ions  x(t) and y(t) of l + and a + and qx~/px~-+ I 

it  follows as before tha t  x(t)y(t) decreases for  t ~ o ,  hence a § and 1+ are by 

(4.4 a) asymptotes  to each other.  

I f  the lines 0 and 6 can be so or iented  tha t  0' is an asymptote  to g+ and 

10- to 6-, then we call p and ~ parallels to each other (see 4.3). I f  p(t) and x(t) 

represent  ~ and 6+, then  both  p(t)x(t) and p( - -  t)q(--l)  are non-increasing func- 

t ions of t, therefore  p(t)x(t) is constant .  Conversely,  if p(t)x(t) is cons tant  or 

only bounded,  it  follows from (4.4 a) t h a t  10 and ~ are parallels. TM In  the same 

way i t  follows f rom (4.4 b) t ha t  the boundedness  of p(t)~q or of x(t)O is necessary 

and sufficient for  ~ and ~ to be parallels. 

(4.7) The lines ~ and .q are parallels to each other ~:f and o~ly i f  they have re- 

presentations p(t) a,nd x(t) which have one of the following properties 

a) p(t)x(t) is constant o," bounded 

b) x(t)O (or p(t)g) is co~sta~# or bounded 

c) 2~t T(p(t), x(t~) is eongrue~t to a strip of a Minkowski pla~e botmded by 

parallel lines. 

Par t  c) follows immediately f rom par t  a) and Theorem (3.I4). Notice  the 

fol lowing corollaries 

(4.8) In a straight space with negative curvature the asymptotes to the two orienta- 

tions of a line ~ through a point not on ~ are carried by diflere~t straight li~es. 

(4.9) I f  in a s t ra ight  space of non-posit ive curva ture  the asymptotes  to the two 

or ienta t ions  of any s t ra igh t  line th rough  any point  lie on the same s t ra ight  line 

( that  is the eucl idean parallel  axiom holds) then  the space is Minkowskian.  

This  fact  is a special case of the more general  theorems IV 6.2 and IV 

7.4 in [3]- 

We  conclude this section with a theorem which rests on the fol lowing lemma 

(4. xo) For  any points  Pl . . . . .  p .  in a s t ra ight  space with non-posit ive curva ture  

and any a > x there  is exactly one point  q for  which ~, xp~ reaches its minimum. 

Le t  x(t) represent  any s t ra ight  line Then  p,x( t )  is a no where cons tant  

convex funct ion  of t (see (4. I)), hence p,x( t )  ~ is str ict ly convex. There fore  

2~p,x(t) ~ is a s tr ict ly convex funct ion of t which tends to c~ when I t l -+  0% 

and reaches therefore  its minimum at  exactly one t. 

~o We admit the case where p(t) ~ x(t + d) so that every line is parallel to itself. 
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The minimum of ~xp~  as x varies over R is reached at at least one point q. 

If  it were reached at another point r and x(t) represents g(q, r) then ~p,.x(t) ~ 

would have two minima as a function of t. 

Cartan observed in [7, PP. 566, 267] that  (4. Io) contains the theorem 

(4. I I) I f  6) is a finite group of motions in a straight space with non-positive 

curvature the~ a point q exists which remains fixed under all motions of 6). 

For let p~ be any point and P2 . . . .  , p ,  its images under the motions of ~.  

The set {pi} goes into itself under all motions of 6). Therefore the by (4. Io) 

unique point q where ~xp~,, a > I, reaches its minimum goes into itself under 

the motions of 6). 

5. The Universal Covering Space of a Space with Domain Invariance. 

The importance of straight spaces lies in the fact that essentially all simply 

connected spaces with non-positive curvature are straight. The term ~essentially 

alb> refers to the assumption made in the proof presented here that  the space 

has the property of domain invariance: 

(5. I) I f  X a~d X '  are homeomorphie subsets of R a~d X is open in R then X '  

is ope~ i~ R. 

Probably ever). G-space has this property, so that  assuming (5. I) means no 

restriction. But so far this has been proved only for two-dimensional G-spaces 

(see [3, P. 59]). The only known fact for general G-spaces which goes in this 

direction is (4.I2) in [4, P. 219]. All Finsler spaces in the usual sense are by 

their very definition topological manifolds and satisfy therefore (5.I). Property 

(5.I) is essential for Sections 7, 8, Io of the present paper, automatically satis- 

fied by the spaces considered in Sections 9, II ,  I2, 13 and not necessary for 

Section 5. 

The purpose of the present section is the proof of the following fact which 

is well known for Riemann spaces, see [7, P. 25I]. 

(5.5) Theorem. The uni~'ersal co~'eri~g .~Tace of a space with ~wn-po~.itive curvature 

aml domain invariance is s traoht  (and has, of course, also non-positive curvature). 

Proof. ~, may be assumed finite since otherwise nothing is to be proved. 

Fix a point p of the given space R and call V the l o c u s p x - ~ d ~ / 2 .  For u s V  

let x(u, t), t - - o ,  represent the half geodesic which coincides with ;~(p, u ) f o r  

o <-- t ~ ~p/z. For every point q of the space there is at least one pair u, t such 

that q : x ( u , t ) .  The mapping (u, t) o x ( u , t )  is one-to-one for o--<t<cip.  
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is by (I.2) positive, and since the funct ion x(u, t) is uniformly cont inuous for  

u~ V and o --< t --< k, compare [4, P. 224], an  ~a ~ O exists such tha t  

(5.4) u , u ' r  17, u , u ' < e ~ ,  and o - -~ t - -~2a ,  I t - - t ' ] < 2 r ~  imply 

x(u, 5) x(u', t') < 

Let  a :> dp and define W(v, a) as the set  of x(u, t) for  which ue V/~ S(v, ~ ) ~  V ~  
and ] t - - $ p / 2 ] < e : . i  -~ where M = 2 a / $ p .  Then W ( v , a )  is open and 

(5.5) x(u, t)-~ x(u, Mt), u ~ V:,,, I t - -  dpl2[ < ~ M  -~ 

maps W(v, a) cont inuously  on the set W'(v, a) consist ing of those x(u, t) for 

which us V~v and I t - - a [  <~..  I f  u;~ V~. a n d  [ti--dp/2[ < ~ M  -~ then 

x 8 6 )  -> x ( u , ,  s o -< -< x 

maps, by (5.3) and (5.4) the  geodesic arc o ~ t' ~ 5 x of x(ul, t) l inearly on the 

arc o ~ t' <-- 52 of x(u2, t) in such a way tha t  the  segment  connect ing corresponding 

points is unique. I t  follows from (3.6) tha t  x(ul, stx)x(u ~, s52) is a convex func- 

tion of s. Since it vanishes for s -~  o it increases (unless ul = us and t 1 = t~) 

and has for  s = M a greater  value than for  s = I, or 

This shows tha t  the inverse of the mapping (5.5) is single valued and continuous.  

Because of the invariance of ~he domain (5. I) the set W'(v, a) is open. 
W e  observe also thai  (5.5) furnishes a one-to-one and cont inuous  mapping  

of the  set W* (v, a) of pairs (u, t) (with the metric (ul, tl)(u2, t2) = ul u2 + ] tl - -  t2 ]) 

on W' (v, a) (because the correspondence (u, t) -+ x(u, t) is topological  for  W (v, a)). 
Let  U(v, a) be the maximal  sphere S(x(v, a), e) in W(v, a) and U*(v, a) the 

corresponding set  of (u, t) in W*(v, a). Because of (3.13), (5.3) and (5.4) the set 

U(v, a) is convex. 

The universal  covering space will be the set R of all pairs (u, t), u e v, t --  o 

locally metrized as follows. W e  put  

t for  o - - < t ~ < ~ p  
(ux, tl) (u2, t2) -~-- x (ux, tl) x (u2, is) t (u~', t~.) e U (v, a). 
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Therefore the curves in R get  definite lengths. We metrize /~ in the large by 

defining as distance of two points the greatest  lower bound of the lengths  of 

all curves t ha t  connect  two points. Because of the convexity of the U(v, a)and 
of S(p, $v) distances a l ready defined do not  change. Therefore (u, t)-~ x(tt, t) is 

a locally isometric mapping R on R. 

I f  R is finitely compact then R is automatically co~wex because of the way 
dista~ces were defi~ted in R (see Conditions I I  and I I I  in Section I and [4, P. 219 

and p. 248]). Fini te  compactness will be obvious when it has been shown tha t  

for any fixed u the curve (u,t), t--~o in R is a ray, or, since t is f rom the 

definition of distances in /~ the arc length  on (u, t), tha t  the arc (u, t), o ~ t ~ s 

is for every s a shortest  connection of (u, o)----/) and (u, s). 

Let  Q be the least upper bound of those s (called admiss ib le ) such  tha t  for 

every u s V  the arc o - -< t - -<s  is a shortest  connection o f ~  and (u,s). Then 

Q--> $~/2, but  we have to prove Q----~. 

I f  Q,., is the radius of the sphere U(v, a)in W(v, a)then Q,----inf Q,, for 

a ~ s and v~ V is positive. I f  all s < So are admissible then  s o is admissible. 

Therefore it suffices to see tha t  with any s the number  s' = s + Q,/8 is also ad- 

missible. For a given v~ V let ~=(~: ,  s') and p,(s), o ~ a < a, a sequence of 

curves from ~5 to ~ referred to the arclength a as parameter  whose length  a, 

tends to the distance 2~q of the points p and (~ in R. Since the are (v, t), 

o--< t--< s' has length s' it  may be assumed tha t  a, <--s'. 
The curve p,(a) contains a point p,(a  ~ of the form (u,, s). I f  the arc 

o < a < a ~ of 2)~(a) is replaced by the arc (u,, t), o ~ t--< s the new curve is, be- 

cause of the admissibility of s, no t  longer than p,(a). Therefore it may be as- 

sumed tha t  p,(a) represents for o--< a--< s an arc (u,, t), o --~ t ~ s. 

No point  of p,(a) with a >--s can be outside of the sphere S((v, s), Q,/4) in 

R, since this sphere is congruent  to the sphere S(x(v, s), Q~/4)in ~ and the 

length of the arc s--< a--< a, of p,(a) would be at  least Q,/4. Consequently,  the 

arc s --< a ----- a, of p,(a) may be replaced by the segment  from p,(s) to q wi thout  

increasing the length of p~(a). Then a subsequence of the new p,(a) will tend 

to a curve 2~(a) from l~ to ~ of length 2~q -< s' which consists of an arc (m, t), 

o--~ t--< s and a segment  from (u,, s) to ~. The minimizing property of/9((~) (it 

has length 2~(l) shows tha t  the segment  from (m, s) to ~ must  be a continuat ion 

of the arc (m, t). By construction (u,, t) and (v, t) have common points different  

The preceding discussion shows tha t  this definition is consistent in the sense 

tha t  pairs tha t  belong to two neighborhoods have the same distance in both. 
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from p only for u,--~ v. This shows tha t  (v, t), o <-- t <-- s' is shortest  connection 

of /0  and (v, s'). 

Since every half  geodesic issuing from p is a ray, every set in R can be 

contracted to /), hence R is simply connected and therefore the (unique, see 

[4, P. 255]) universal covering space of R. By the motions of ~ the p o i n t / )  

can be moved into any point over p. Since p was arbi t rary in /t,  the half  

geodesics issuing from any point of /~ are rays, which implies tha t  R is straight.  

(5.2) yields 

(5.6) A simply connected space with domain iuva~iauce and ~on-positive curvature 

is straight. 

Since a s t ra ight  space is not  compact we obtain from (5.6) and (2. II)  

(5.7) A compact space with non-positive curvature (a~d (5.I)) is not simply con~ected, 

but has finite connectivity. 

This implies, for instance, t ha t  spheres of dimensions ~--> 2 and topological 

products of such spheres (see [I5, w 43]) cannot  be metrized such tha t  they be- 

come G-spaces with non-positive curvature. 

6. Motions without Fixed Points in Straight Spaces. 

The covering motions of /~ over R have no fixed points. Properties of such 

motions will therefore be important  for the s tudy of R. 

The motion (9 without  fixed points of a s t ra ight  space. R (not necessarily 

with non-positivite curvature) is called axial if  (9 t ransforms a s t ra ight  line 9 

into i tself:  9 ( 9 ~ 9 .  I f  z~9 then (zz(gz(92) otherwise z ~ z ( 9  ~ because z z ( 9 =  

~-- z (9 z (98, but then  m (z, z (9) --~ m (z (9, z (9"~) would be a fixed point of (9. A line 

9 with 9 ( 9 ~ 9  is called an axis of (9, the orientat ion 9 + of 9 for which z(9 

follows z in an oriented axis of (9. The above argument  shows tha t  also 

9 § --~ 9". Clearly z z  (9 ~ z ' z ' (9  for any two points z, z' of 9- 

A characterization of axial motions is contained in 

(6.x) Theorem. Let (9 be a motion without fixed points of a straight space R. 

Then z z  (9 = inf  x x  (9, i f  a J~d only i f  the points z (9i lie o~ a straight line. 
2c E R 

Proof. Let  z i = z ( 9  ~, z o = z  lie on a s t ra ight  line 9. Then 9 is an axis 

of (9 and it follows from the preceding remarks tha t  z z n = u z z l .  Since 

x ( 9 ~ x ( g i + ~ = x x ( 9  for any i 
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~ Z Z l - =  z2,,~ ~ 2,x + x x  q) + x q ) x q ) 2  + " "  + x q ) n - l  x q  )n + x q ) ' z n  = 2 z x  ~- n x x ( l ) .  

For  n -~  oo we obtain  Z Z l ~ X X q ) .  

Let  z z  q~ -= inf x x  q). I t  suffices to show tha t  (ZZlZ2). 

let  ( zxz~) .  Then (z~xf f~zz) ,  but  no t  ( x z ~ x q ) ) ,  so tha t  

I f  this were not  t rue 

x x  �9 < XZl  + z l x q )  = z x  + x z l  ~-- z z x  

which contradicts  the hypothesis.  

(6.2) Corollary. I f  for  the  mot ion �9 of a s t ra ight  space R a point  z with 

zeq}  = inf x x  ep > o exists, then no power  of q) (except the  identi ty)  has fixed 
XeR 

points. 

For  z z f f J >  o implies tha t  �9 has no fixed points. I f  ~ ' ,  i ~ o ,  left  the 

point  p fixed then by (6.I) for  any j 

p z  = p q ~  z q )  ~j = p z  q)~J >-- z z  q)~J - - p z  = ] i j ] z z  q) - -  p z  

which is impossible. 

W e  put  in fxxqO-- - - s  if this number  is positive. By (6. I) points  zl, z2 
x ~ R  

on different  or iented axes I}:, g~ of �9 satisfy the relation Z l Z l q ) - ~  s  a = 
' + 

= 2,2z2q~. I f  zi(t) represents  g~ then 

2,i (k a) = z, (o) ~ ,  hence 2,1 (o) z2 (o) = 2,1 (k a) 2'3 (k a) 

and for any t, if k a--< t < (k + 1)a 

2,1 (t) Z 2 (t) ( 2' 1 (t) Z 1 (k if) -{- 2,1 (]~ g) 2,2 (k g) -{- 2,2 (k a)  2" 2 (t) 

= 2,1(O) 2' 2(O) -~- 2 ( t - -  k0f) ( Z 1(O) 2' 2(O) + 2 g .  

Therefore  (4.7) yields 

(6.3) I f  R is  s t ra igh t  a nd  has non-posi t ive curva ture  then two axes  o f  the same  

a x i a l  mot ion  o f  R are p a r a l l e l  

The fol lowing simple fac t  is of ten useful  

(6.4) I f  q) is a motion with axis g of the s t ra ight  space R and ~ is any motion 

of R, then ~-1~[)u is a motion with axis gW and $(h~- l~P) - - - -  $(~). 

For  T - I ~ T  has no fixed point  and g T ( h ~ - l q ) h ~ ) = g q ~ T - - - - g T .  I f  x r g T  

then  x - - z ~  for  a suitable z r  g and 

x x W  - I  ~ T  -~ z T  z T I g  -~ q ~ T  = z T  z O ~  ~- z z  O. 
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Now we come to facts where non-positive curvature is essential. We  dispose 

of the simplest case first 

(5.5) I f  qo ~ E is a motion of a s t ra ight  space with non-positive curvature for 

which x x  q) is bounded, then x x ( P  is constant .  The points p~)i lie for any p 

on a s t ra ight  line Lp. A point  q not  on Lp determines with Lp a Minkowski 

plane P and ~ is a t ransla t ion of P along Lp. 

Le t  x(t) represent a s t ra ight  line, then  x ( t ) x ( t ) ~  is bounded and therefore 

by (4.7) constant .  Moreover x(t) is parallel to x(t)q). Since any two points can 

be connected by a line it follows tha t  x x ~ P  is constsnt .  This constant  is not  

zero because q) is not  the identi ty.  By (5. I) the points pq~i lie for any p on a 

s t ra ight  line Lp. I f  q is not  on Lp then  g (p, q) is parallel to g (p, q) q) ~ 9 (P ~,  q ~) 

and the two lines bound by (4.7) a strip S of a Minkowski plane. (5.3) shows 

tha t  ZiS~)i  is a Minkowski plane. 

Corollary.  I f ,  under  the assumption of (5.5), the space is two-dimensional, 

then i t  is a Minkowski plane. 

But  the corresponding s ta tement  for higher  dimensions is false, see the 

example on pp. I4o, I41 in [3]. 

5.6) For  a motion �9 ~ E of a s~rai~ht space R with non-positive curvature 

let a point  z and a sequence {x,} exist such tha t  x , x , ~  is bounded, z x ,  ~ oo 

and 9 § x,) converges to a line 0 § Then �9 t ransforms any asymptote to g§ 

(in part icular  g§ itself) into an asymptote  to 9 § 

Note. ~P satisfies the hypothesis  if no points z with z z  q ) ~  inf  x x  q)exis ts .  
X e R  

The proof is simple: Le t  x,( t)  represent  g§ x,) with x,(o)--~ z. Then x,(t) 

tends to a representat ion x(t)  of 9 § and y , ( t ) ~ - x , ( t ) ( P ~ x ( t ) q ) : y ( t ) .  I f  

sup (x,.x, cp, z z  cP) -~ fl then 

x , ( t )y , ( t )<-- f l  for o < - - t < - - z x ,  

because x~(t)y,(t), is convex, hence 

x ( t ) y ( t ) ~ f l  for o - - ~ t < c o  

which shows according to (4.4) t ha t  9*0  is an asymptote  to 9 § . Because of the 

t ransi t iv i ty  9 + @~ is also a n  asymptote to 9 +. 

I f  ~§ is any asymptote  to 9 § then i) § Oi is an asymptote  to 9 § ~ and there- 

fore to 9 § . 
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(6.7) I f  in addit ion to the assumptions (6.6) z and g§ have the proper ty  tha t  

z z  do = inf  x x  (1) and ~ ~ ~ (z, z do) then  g (z, z do) bounds a Minkowski half  plane 
x e R  

(imbedded in R). 

For, on the one hand  x( t )y( t )  reaches (with the previous notat ions)  a mini- 

mum for  t = o ,  on the o ther  hand  x( t )y( t )  is non increasing because x(t) and 

y(t) are asymptotes .  Hence  x( t )y( t )  is cons tant  for  t ~ o .  By (3. I 4 ) t h e  rays 

x(t) ,y(t) ,  t ~ o  bound toge the r  with T(z ,  zdo) a piece V of a Minkowski plane 

and :~i Vdo i is a Minkowski halfplane.  

An appl icat ion of (6.7) is 

(6.8) An axial motion do of  a .~traight ,r with ~egative cur~'ature has exactly 

o~e axis g and x,x,,  do-~ oo when x,.~--, oo. 

The uniqueness of the ~ axis follows f rom (6.3) and (4-7). Assume for  an in- 

direct  proof  tha t  a sequence x', with x~.6 -+ c~ and x'~x~do < a exists. Le t  f'~ be 

the  foot  of x:  on g and b any point  of g. Choose i ,  such tha t  f ,  --=-f'~, do;, e T(b, b do). 

Then x , = x ; O  ~, has f ,  as foot  on g and x ~ . f ; = x ~ f , = x , , g - ~  co, moreover  

~ - ~ -  ~ X ~ X ~ d o  ~ (~. 

I f  {]c I is a subsequence of {v} for  which fk -~ z, then ~ (3~, xk) and therefore  

also g(z, xk) tend  to the  perpendicular  L to g at z. The  assumption of (6.7) is 

satisfied for  L, z and xk so tha t  R would not  have negat ive curvature .  

I f  R is a plane, the discussio~ can be carried much farther. Let  do ~ E be 

an axial  o r ien ta t ion  preserving mot ion  of the plane R with non-posit ive curvature.  

I f  g is an axis and D is paral lel  to g, then  ~)d0=~). For  ~ lies on the same 

side of ~ as l~. I f  x e ~  then  xdo~'g is constant .  On the o ther  hand x g is con- 

s tant  for  x ~ ~, so tha t  x do~ E I). 

Le t  z(t) represen t  the or iented axis g and y(s) the  perpendicular  to g at  

z(t) oriented to the ))right)) of g with y t ( o ) =  z(t). Then ever), point  in the plane 

has two coordinates  s, t and do is the t r ans fo rmat ion  

s ' = s ,  t' ---- t + ).(0). 

The parallels to g have equat ions s = const. I f  a is a non-positive and/~ a non- 

negat ive  number,  then  the set W of those values of s for  which s - - c o n s t  is a 

parallel  to g h a s  one of the fol lowing forms:  a --< s--< fl, a --< s < ~ ,  - -  c~ _< s--< fl, 

- - c ~ < s < c o .  I f  R has negat ive curvature ,  then  a = f l = o  by (4.7) and (6.3). 

In  the o ther  cases the set of points (8, t) w i t h  s e W is a piece of a Minkowski 

plane. 



Spaces with Non-Positive Curvature. 287 

(6.9) An asymptote  to s = a (s =/~) th rough  a point  (.Y', t') with s' < a (.J > ~) has 

dis tance o f rom s = a (s--f l ) .  

Proof .  Le t  g~ denote  the or iented axis s = a of to, and let  ~ be asymptote  

to g+ th rough  (s',t '). ~toi lies for  i < j  between ~toJ and g+ For  i ~ - - o o  the 
+ 

line ~ @~" tends the re fo re  to an asymptote  ~' to g .  But  ~' is invar ian t  under  all 

tot and the re fore  a parallel  to g~.: The definit ion of a shows tha t  ~ ' =  g~. Since 

to g~ = ~g~ i t  follows tha t  ~g~----o. 

Le t  T be an axial mot ion t h a t  reverses the or ientat ion.  Then T ~--  to pre- 

serves it. The preceding considerat ions  apply to to b u t  i t  is easily seen tha t  14 r 

must  be symmetr ic  to the (o, o), tha t  is i t  has e i ther  the form --~--< s--</~ or, 

- - o o  < s < c o  The  analyt ic  expression for  W is 

s ' - -~- -s ,  t ' = t  + Z(T). 

Following Nielsen [I4, pp. I98--199]  we prove:  

(6.1o) I f  to and W are or ienta t ions  preserving axial t ransformat ions  of a plane 

with negat ive curvature  whose or ien ta ted  axes g+ and ~ are asymptotes ,  then  

the commuta to r  W -~ �9 -~ h ~ @ is non-axial.  

By (4.4) @* ---- T - '  @-1W has axis g*W ~vith Z(to*) = ~(to). Now x @ * x O * t o  > 

_>-- 2(to), but  x ~ * x t o *  @ ~ X(@) when x to * g  ~ o. By (6.9) all asymptotes  to g 

and ~) have distance o f rom each other.  Therefore ,  as x t raverses  g§ in the 

positive direct ion x g T t o ~ o  and since x O *  lies on f l T t o  i t  follows tha t  

x@*x to*  to ~ o. Taking  or ienta t ion into account  we see tha t  x x  tO* tO ~ o, which 

shows tha t  inf  x x  tO-~ t O - i T  tO = o so tha t  the co m m u ta to r  cannot  be axial. 

7. Geodesic Connections and Closed Geodesics. 

In  a G-space let  p(t) and q(t) be two cont inuous  curves defined for  the same 

connected set Mt of values t. Denote  general ly by p( t l ,  t2) the subarc tl --< t--< t2 

of p(t) and by p (t2, tl) the same arc with the opposite or ientat ion.  Two cont inuous 

curves ci, i = I, 2, connect ing p(t,) to g(t,) are said to be homotopic alo~g (p, q) if 

(7. I) 
Since then  also 

ell ,  (tl t2 )c : '  q(t2, tl) ~ o. 

C2~)(t2, t l ) C ~  1 q ( f l ,  t2) ~ 0 

the concept  is symmetr ic  and t ransi t ive (and, of course, reflexive). 
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(7.2) Le t  R be s t ra ight  (see Notations). I f  p(t), q(t), t~Mt, are two continuous 

curves in R and c a curve connect ing p(to) to q(to), then for every teMt  exactly 

one geodesic arc 6t ~ c along (p, q) exists and gt depends continuously on t. 

For  let an arbi t rary continuous curve c over c begin at  2~ and end at  (l- 

Choose p (t) with ~ (t) ~ = p (t) and p (to) = p, similarly ~ (t) with ~ (t) ~ = q (t) and 

~(to)-~ q. Because R is simply connected the segment  gt--~ ~ (2~(t), ~ (t)) satisfies 

the relat ion ~t0 ~ c and for ix, 4 

~tjO (tl, t2) ~ t  1 (t (4,  tl) ~ O. 

Therefore ~tY2----gt is a geodesic arc in R with g,0~c and g , ~ c  along (p, q). 

For  a given t l~Mt let gl be any geodesic arc connect ing p(tl) to q(tl) which is 

homotopic to r along (p, q). Then gl ~ gt,. Therefore the arc ~1 over gl which 

begins at  p(tl) ends at  q(h). Moreover, gl is a geodesic arc and must  coincide 

with ~t, because R is s traight .  Therefore gl ~-gt,. 

The las~ consideration, o r  the special case where p(t) and g(t) are constant,  

yield 

(7" 3) I f  R is straight then for arbitrary p, q in R e~'e~?/ class of homotopic eum'es 
fi'om p to q contains exactly one geodesic are. 

In  the remainder  of this section and in the next  we assume that ,  when- 

ever a space R of nomposit ive curvature  is considered, R-has  the property of 

domain invariance. Then R is by (5.2) s t ra ight  and (4. I), (4.2) and (7.2) yield. 

(7.4) Le t  x(t) represent  a geodesic in a space of non-positive curvature,  and 

let c be a curve f rom the (arbitrary) point  p to x(to). Then exactly one geodesic 

arc gt ~ c along (p, x) f rom p to x(t) exists and the length  of gt is a strictly 

convex funct ion of t. 

(7.5) I f  x(t) and y(t) represent geodesics in -a  space wi th  non-positive (negative) 

curvature and c is a curve from x(to) to y(to) then exactly one geodesic arc 

gt ~ c along (x, y) exists and the length  of gt is a (strictly) convex funct ion of t. 

A geodesic one-gon of length l a l  > o is a geodesic arc x(t, t + ct)with 
x ( t ) = x ( t + a ) .  A closed geodesic of length [a[ is u geodesic for which 

x ( t + a ) - - x ( t )  (that is x ( t +  a)-~-x(t) for all t. I f  this is t rue  for one repre- 

sentation, it  is t rue for  all). I f  also fl ~ o, a and x(t + fl) -- x(t) then we consider 

the corresponding closed geodesic as different from the first. For  fl~- ia we say 

tha t  the second geodesic is i t imes the first. (7-3) yields 
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(7.6) I f  R is straight, then R contains no geodesic one-go,s or closed geodesic~ 

which are homotopic to o. 

There is a well known one-to-one correspondence between the classes of 

freely homotopic curves (free homotopy classes) in R and classes of conjugate 

elements in the fundamental group ~ of R (compare Ix S, w 49]. I t  may be 

briefly described as follows: Let c(s) be a closed curve o--< s--< a, c (o) ---- c (a). 

I f  Co lies over c(o) let 6 (s) 32 ---- e (s) with e (o) ---- #0. Then e(a) lies over c(a)----c(o), 

hence a motion a) (c, 60) in ~ exists with 6(a) -= c0 q) (c, c0). If  e'o is another point 

over c(o), then 6'0--=~0 qr for a suitable T in ~ and q)(C,#o)=T-lq)(C, Co)T. 

When c'o traverses the points over c(o), then t/t traverses ~. 

Conversely, if ~ and 6oq)----cl and 6(s) is a curve from c0 to cx, then 

6(s )~=c(s )  is a closed curve in R and the class of conjugate elements in 

determined by c(s) contains ~. The identity of ~ belongs to all curves that  can 

be contracted to a point. 

Standard arguments furnish the following facts 

(7.7) If  (in a G-space) a free homotopy class (+ o) contains a shortest curve c, 

then c is a closed geodesic. 

(7.8) I f  the free homotopy class K either does not contain curves outside 

S(p, ~) for large u, or the length of curves in K that  contain points outside of 

S(p,  ~,) tends with u to 0% then K contains a closed geodesic. 

In particular, if the space is compact, then every class K contains closed 

geodesics. The following criterion is of importance for general spaces: 

(7.9) Let [~ be straight. The free homolopy class K belonging to a gi~'en elen~ent 

�9 ~ E of q~ contains a closed geodesic i f  and only i f  q) is an axial motion. The 

closed geodesics i~ K are the images of the axes of �9 a~d hat'e length A(~)). 

Proof. Let  K contain the closed geodesic g: x(t), x(t  + a ) ~ x ( t ) .  For a 

suitable point 20 over x(o) the motion ~ will be the motion O(x, 20)defined 

above. Choose s such thug 2(t)t2----x(t) and 5~(o)-~ 20. Call L a segment with 

center x(o) that is represented by x(t), for [ t [ ~ f l ,  where ~ = m i n ( w ( x ( o ) ) ,  t), 

and L the segment over L with center 20 . Since �9 lies over the identity of R 

(i.e. r  I) ig carries L into a segment L' over L through x(o). 

The straight line ~(----2(t)) that contains L goes under ~ into the line g' 

through L'. Since ~ lies over ~ it contains the segment L"  through 2(o)qi----2(a) 

that lies over the segment L "  represented by x(t + a) for ] t ] ~ ft. But L"  ----- L 

because g is closed, hence L ' -~  L"  or g--~ g ~, which shows that �9 is axial and 

that ).(q~) is the length of g. 
19 
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The sufficiency of the condition that  ~ is axial can be proved by retracing 

our steps: Let  ~ , ~ , ~ 5  ~ be on a straight line g represented by 2 ( t ) w i t h  

2 ( o ) - ~ ,  2 (a) ---- ~ r a :X(@).  Let g be the geodesic x(~)----5(t)~ and L the seg- 

ment represented by x(t) for Itl--<~. As t goes from o to a the point x(t) and 

L go into x(a) and the segment L"  represented by x(t  + a) for It I ~ ft. I f  ]~" 

is the segment over L" with center at i ~b and f~' is the segment of length 2fl 

on g with center ~ ~b, then ~ r = ~ implies L"-= L', hence L-= L"  so that  g is 

closed (x(t -~- a) =- x(t) for I t[ --< fl implies x(t -~- a) ~ x(t), see [4, (5.6)]). 

This proof shows also that  ~ maps the axes of ~b into the closed geodesics 

freely homotopic to g. 

(7. Io) I f  R is straight then the shortest curves in a free homotopy class K of 

R coincide with its closed geodesics. 

By (7-5) every shortest curve in K is a closed geodesic without the assump- 

tion that  R is straight. This assumption is essential for the converse, as any 

ellipsoid of revolution a-2(x2+ y~)+ c -2z"= I shows, where the meridians 

y =-mx  are closed geodesics but homotopic to o. 

Let g be any closed geodesic and c(s)any closed curve freely homotopic 

to g. Choose a point c0 over c(o) and define ~b(c, 5o) as above. Since the class 

contains g the motion ~(c, Co) leaves a line ~ over g invariant. Then for 2~ 

the length of g is ~ ( r  and e has by (6. I) at least length ~ o ~ o r 1 6 2  

(6.8) and (7.9) yield the following basic result for spaces of negative 

curvature. 

(7. I ~) ]n a space of negative cum'ature erery fi'ee homotop~j class K contains at 

most one closed geodesic ft. The length of a geodesic one-gon i~ K tends to c~ when 

the distance of its vertex fi'om ~ te~ds to r 

8. Asymptotic Geodesics. 

The oriented geodesics g§ and b § in a space R with non-positive curvature 

and domain invariance are called a~yrnptote3 to each other if straight lines ~§ and 

~§ in R over g+ and [)~ exist which are asymptotes to each other. Following 

Badamard[91 this may be formulated without using R as follows: 

Let x(t) represent g~ and connect a given point p to x ( o ) b y  a curve r 

Let  bs he the (unique, see (7.3)) geodesic arc from p to x(s) which is homotopic 

to cx(o, s). If  ys(t) represents the geodesic which contains b, and for which 

ys(o) : p ,  y~ (length be)= x(s), then y~(t) tends for s - ,  c~ to an asymptote y(t) 
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to g§ more precisely the asymptote ~§ to g§ through p of type c. Whereas c deter- 

mines ~§ uniquely, D § may not  determine the type r uniquely. For  instance, 

parallel generators  on a cylinder are asymptotes  to each other  of infinitely 

many types. 

Le t  x(t), y(t) represent geodesics in R and let 

c ~ c  and c begins at  p and ends at  ~, let 2(t) 

C connect  x(o) to x(o). I f  

t2 = x(t) with 2 (o) = x. I f  

2(z(t)) is the foot of ~(t) on 2(t), then T t =  T[~(t), 2(z(t))]D is ~. geodesic arc 

in R with the property t ha t  y(o, t) Tt ~ cx(o, z(t)) and tha t  Tt is perpendicular to 

x(t) at x(z(t)). The arc Tt is uniquely determined by this property. The length 

y(t)x(~(t)) of Tt is called the distance ~(c; y(t), g+) of type c from y(t) to the 

geodesic g§ represented by x(t). Then (4.2) and (4.4) yield 

(8. I) Le t  x(t) and y(t) represent oriented geodesics g§ and I~ § in R and let c 

connect y(o) to x(o). Then d(c; y(t), g§ is a convex funct ion of t and I} § is an 

asymptote to g§ of type c if and only if  d(r y(t), g§ is bounded for t >--o. 

I f  the curvature is negative, the following can be added 

(8.2) I f  y(t) represents an asymptote of type c to g+ in a space with negative 
cur~:atu,'e and y(o)y(t) < a < co, then ~(r y(t), g*) -~ o. 

Since d(r y(t), fl+) decreases it  tends  for t ~  co to a l imit  d. For  a fixed 

fl > o consider the geodesic ares Tt-~, Tt, Tt+tJ defined above. Their  length tends 

to ~. For  a suitable sequence t,,-~ co the arcs y ( t , -  fl, t, + ~) tend because of 

y (o )y ( t )<a  to an arc of the form Z(to--fl, to+fl) of a geodesic z(t), ~.nd 

x(~(t ,-- f l) ,  z( t ,  + fl)) tends to an arc of a geodesic ~+. The limits of Tt,-~, 

Tt,, Tt,+fl are geodesic arcs of length fl perpendicular  to ~§ and of the same 

type c'. The funct ion ~(c'; z(t), ~§ would be l inear in the interval  t o -- fl--~ t - -  < t o + ~. 

By (3. I4) and (3.22) the space could not  have negative curvature. 

The following theorem was proved by I t adamard  (see [9, PP. 42, 65, 66])by 

using s trongly the l~iemannian character  of his metric:  

(8.3) In a space of negative currature let y(t) represent an asymptote to x(t) both 

of type q and of type c~, where q and c2 connect x(o) to y(o) and c 1 + c 2. 

I f  y(o)y(t) < a and the free homotopy class of qc..71 contains a closed geodesic 

g, then x(t) and y(t) are asymptotes to a suitable orientation of g. 

Proof.  Let  T~t be perpendiculars of type c~ from y(t) to x(t) and x(g~(t)) 
the endpoint  of Tit. Then 

TlCx[r ~2(t)] T -10, ~ cl c2 ' + o. 
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The curve on the left side has by (7. IO) at least the length z Q of g. By (8.2) 

the length ~(ci; y(t), x) of Tz't tends to zero when t-~ 0% hence 

x [ ~ , ( t ) ] x [ ~ ( t ) ]  -~ o for  t ~ oo and I ~ ( t , ) -  ~(t~)l  > ~ for  large t. 

The inequality y(o)y( t )< a implies y(o)x( t )< 2a for large t. Therefore a 

sequence t, -+ oo exists such that x(~rl(t:,) + s) tends for all s to a representation 

z(s) of a geodesic (see [3, PP. 22, 23] ). The argument converse to the reasoning 

that  leads to (7. i i) yields that  ~r~(t,) converges to a finite value sg. for which 

the are z(o, s~) is a geodesic one-gon freely homotopic to a suitable orientation 

g+ of g. We may assume that  s ~ > o .  Let 

~ ( t ' )  = (I --0)~(t,)+ 0~( t , ) .  

Then ~vl(t:)-~ 8s~ and z~(t:) tends to a value s 8 such that z(Os2, ss) is another 

geodesic one-gon freely homotopic to g+. 

Hence g+ has a multiple point at 0s2 unless the line elements of g+ at 0s a 

coincide. But g+ has only a countable number of multiple points (see [4, P- 23I]). 

Therefore there are 6 for which the line elements coincide, and z(s) is a closed 

geodesic. By (7. I I) it must represent g+. 

I t  follows easily that  x(t) and y(t) are asymptotes to g*. 

The connection between co-rays and asymptotic geodesics, which is entirely clear 

for simply connected spaces, is obscure .for general spaces and it seems difficult to 

find a general them'era. The following questions suggest themselves (compare 

the end of Section I). 

Let x(t) and y(t) represent oriented asymptotic geodesics which are rays for 

t--> o. Are these then co-rays to each other? 

The converse is certainly in general not true, that  is, rays which are co-rays 

to each other in a space of non-positive curvature need not belong to asymptotic 

geodesics. The following is an example: 

In the Cartesian (x, y, z)-space let Dn denote the disk in the (x, y)-plane 

punctured at the center defined by 

D n : ( x - -  2 n  .4- I) $ ~L y2 < 5--1n--2, (X, y) ~A (2n - -  I, O). 

Define f (x ,  y) by 

[ o  if (x, y) is not in ~nDn or (x, y) ~ (2n -- I, o) 

f ( x ,  y ) =  ~(tan [(5-'  "-~ - (x - 2 n  + I) ~ - y~)~. ~ So-~n  -~] i f  (x, y ) ~ D , .  
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Since tan [2 -1z  (x -- a)4 (b --  a) -4] is convex for a - - < x < b  and tends to oo 

for x ~ b -  the surface S:  z----f(x, y) consists of the (x, y)-plane except at  the 

disks D, ,  where infinite tubes of negative curvature are erected. The surface is 

of class C 8 because the first three derivatives of tan x 4 vanish at  o. Wi th  the 

ordinary geodesic distance s becomes a surface of non-positive curvature.  

The numbers have been chosen such tha t  the s t ra ight  lines th rough  

p = (o, I, o) and (2n, o, o) has no common point  with D~ and lies therefore in 

S. The limit of these lines is q( t )=( t ,  1,0) and the ray t-->o of this  line is a 

co-ray to every ray q~(t) = (t, a, o) with a--<-- I, t--> o. But  the oriented geo- 

desics represented by q(t) and q~(t) are not  asymptotes to each other  because no 

two segments f rom p th rough  (2n, o, o) to the point ( 2 n ( I - - a ) ,  a, o) of q~(t)are 

of the same type. 

I t  seems probable tha t  the infinite connectivity of S is essential  for such 

examples, but the question is open and worth invest igat ing.  

9. S p a c e s  w i t h  Curva ture  0. 

Any a t tempt  to enumerate  the different types of spaces with non-positive 

curvature is fu t i le  because the n-dimensional manifolds have not  even been 

classified topologically for n--~ 3. Therefore the a t ten t ion  must  be restricted to 

some special types of spaces. The following general  fact  follows f rom (4. I x). 

(9. I) The fundamental group of a ,Tace with non-positive curvature has ~o finite 

subgroup (except the group consisting of the identity). 

In  a space with curvature o it  follows from (3.3), (3.13) and (3.14) t h a t  the 

metric in any tr iangle with vertices in S(p,  ~p) is Minkowskian. it Therefore the 

geometry is locally Minkowskian.  The space is a manifold and domains are 

invariant.  Therefore 

(9.2) I f  R has curvature o, then R is a Minkowski space. 

The s t u d y  of spaces with curvature o can be reduced to the s tudy of Rie- 

mann spaces with curvature o by means of the following fact :  

(9.3) For a given Minkowski space M there is an associated ~2 euclidea~l space S 

for which all Minkowskian motio~s are euclidean motio~s. 

Let  K be the Minkowskian uni tsphere in a definite associated euclidean 

it The long proof of (3. t4) is not necessary in this case, because much more is known than 
the hypotheses of (3. I4). 

ts Compare [5, Section 2]. 
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space S'. According to an unpublished result of Loewner there exists exactly 

one ellipsoid E with the origin as center of smallest (Minkowskian 1~ or euclidean) 

volume that  contains K. 18 

Any motion of M carries Minkowskian, and therefore euclidean straight 

lines into straight lines and is therefore an affine mapping of the euclidean 

space. ~ This mapping preserves the euclidean volume, since it preserves the 

Minkowskian volume. 

Any motion q} of M can be composed of a motion q~' that  leaves the 

origin o fixed and a translation t/t (if T is a translation that  carries o into 

o ~ ,  then ~b~--(~#T-1)T and ~'-----~liff--1), Because q~' is an affine mapping 

that  preserves volume and carries K into itself, /~ goes into itself. I f  S is the 

euclidean space with E as unitsphere, then any motion of M which leaves o 

fixed is also a motion of S. Since the translations of M are also translations for 

S, the theorem is proved. Applying (9.3) to the motions of the fundamental 

group of a space with curvature o yields (compare [4, (I3.8)]): 

(9.4) Every G-space R of curvature o can be metrized as a Rieman~, space of 

curvature o such that S has the same geodesics as R and every motion of R is a 

motion of S. 

But it is important to notice that  not erery locally euclidean space can be 

realized by a given Minkowki  metric. For instance, the two-dimensional locally 

euclidean spaces belong to the following five topological types (see [IO], or [7, 

Chapter II,  Section VIII): 

The plane, the cylinder, the torus, the Moebius strip, and the one-sided 

torus or Klein bottle. 

The covering transformations of the plane over a cylinder or a torus consist 

of translations and can therefore be realized with any Minkowski metric. But 

the covering transformations for the Moebius strip and the one-sided torus contain 

products of translations and reflections in a line, and can therefore be realized 

by a given Minkowski metric, ol.dy i f  this metric admits a reflection i~ some 

straight thee. 

More generally, products of n circles and straight lines can be provided 

with any Minkowski metric, but other n-dimensional types cannot be realized 

by arbitrary Minkowski metrics. 

18 W h i l e  t h i s  pape r  was  in p r i n t  a proof  was  g iven  by  M. M. DAY in:  Some cha rac t e r i za t ions  

of i nne r -p roduc t  spaces ,  T rans .  Am.  Math .  Soc. vol. 62, I947, pp.  320- -337 .  
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The geodesics in a Moebius strip R have properties which will illustrate 

certain statements of the next section. The fundamental group of the ~in-  

kowskian covering space R is cyclic and is with a suitable associated euclidean 

rectangular coordinate system generated by the motion 

: 2 ' = - - 2 ,  Y ' = 9  + a, 

where the curves 9 = const are perpendicular to 2 ~ -o  (and a : ~(~), (compare 

section 6). The line x : o  is the only axis. The interval o~<9  ~ < a , 2 : ~  goes 

into a great  circle ~ in R. The intervals o - - < 9 ~ 2 a ,  2 : k ~ o  go into closed 

geodesics of length 2a  homotopic to 2g. 

Rays 9 : k  and 2~>o,  or 9 - k  and 2--<o go into rays in R, but  the 

whole line ?~ =-k does not go into a straight line in R, because points of the 

form (x0, Yo), (20, Yo + a) can for large 2 o be connected by curves which are 

shorter than the interval from (-- 20, ~)o + a) to (2o, Yo + a). 

Spaces with non-positive curvature which are not compact need not have 

finite connectivity as the example in Section 8 shows; but 

(9.5) Spaces of curvature o have finite co~nectivity. 

A proof for three-dimensional Riemann spaces of curvature o, which extends 

to n dimensions is found in Cartan [7, PP. 75, 76] �9 (9.4) shows then that (9.5) 

holds also for locally Minkowskian spaces. 

For certain spaces non-positive curvature implies vanishing curvature: 

(9.6) A torus of ~wn-positive curvature has curvature o. 

The proof rests on the following fact, which will be used again later on: 

(9.7) If  the fundamental group of a compact space with non-positive curvature 

is abelian, then ~9~b is bounded for a fixed ~ and all 9~R. 

Because /~ is compact any fundamental set F(/~) (see (2.1o d)) is compact, 

hence 22q} is bounded for 2~ F(/~). If ~ is any point in R then a point 2 in 

F(~)  and an element T of ~ exists with 2 T = 9 .  Because ~ is abelian 

so that  9Y ~b is bounded. 

If  q ~ E ,  then Y.Yq~ is by (6.5) constant, every point of R is on an axis 

of �9 and these axes form a family of parallel lines. 

I f  R is a torus we may represent R as a product of n circles and (because 

is abelian and conjugate elements are equal) these circles may be chosen as 
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n closed geodesics, G 1 , . . . ,  G~. The sub product G 1 • Gz is a torus with a 

Minkowski metric (see (6.5)), applying (6.5) again it follows that (G1 • G2) • G3 

is a Minkowski space, etc. 

~o. Spaces with Cyclic Fundamental Groups. 

Statements (9.7), (6.5) and (5.7) yield 

(IO. I) There is no compact space of negative curt'ature with domain ,nvarianee 

and an abeliau fu~,damental group. 

Since group spaces have abelian fundamental groups (IO. I) implies the following 

two facts: 

A compact group space cannot carry a metric with negative curvature 

(whether invariant under the group or not). 

There is no compact space with negative curvature and a simply transitive 

group of motions. 

The hyperboloid 

in (m. I) is essential. 

(IO. 2) I f  R contai,~s 

of one sheet shows that  the assumption of compactness 

However, the hyperboloid is in a certain sense typical. 

a closed geodesic g, has negative cur~'ature and an abelian 

fa ,dame , la l  group, the~z ~ is cyclic. All closed geodesics in 17 are multiples of a 

great circle. 

Proof. Let �9 be a motion in ~ wath an axis ~ over g (compare (7-9)) and 

~ E any motion in ~. Then T - , ~ T  is by (4.4) an axial motion and has g T  

as axis. But ~- l~bqu = ~ and �9 has only one axis (see (4.8)), hence ~ = g; 

that is all elements of ~ have ~ as axis. Because ~ is discrete there is an ele- 

ment r ~ E in ~ for which ~(~bo) is minimal. I f  T ~ B and Ze~ then 2 ( T ) = Z Z T  

is an integral multiple of ~(~o). Therefore i exists such that  Z ~ b o ~ Z T  or 

Zr T -~ -----Z. Since E is the only motion in ~ with fixed points it follows that  

~ - ~  T. This shows that  ~ is cyclic and that all closed geodesics are multiples 

of the geodesic fl0 that  corresponds to r The following discussion of a more 

general case will show that g0 is a great circle. 

Let r be an axial motion of a simply connected space R of non-positive 

curvature. Since no power ( ~  E) of r has fixed points (see (6.2))the cyclic 

group {~b':} is the fundamental group of a space R with /~ as universal covering 

space. 

(Io. 3) I f  ~ is an axis of ~b, then g----~Y2 is a great circle. The image ~Y2 of 

a perpendicular ~ to g at a point ~) is a geodesic ~ whose halfextremals 1) *, ~- 
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with origin y - - - - ~  are rays. ~3 then is locus of all points t h a t  have y as foot  

on  6" 

Proof .  We  prove a l i t t le more than  tha t  g is a g rea t  circle, namely t h a t  for  

any two different  points  x, z~6 every segment  T(x, y) lies on g. (6 is a grea t  

circle if a suitable segment  T(x, y) lies on 6, see [4, P- 2321.) L e t  a ~ = x .  The  

segment  over  T(x, y) t ha t  begins at  2 ends at  a point  ~ over y, and ~ 3 .  For  

contains at least one point  Yl over y, hence all points  ~)1 r but  F =  {r 

The re fo re  T(~, ~)) < ~ and T(x, y) < 6. So far  only the  fac t  t h a t  l~ is s t ra ight  

has been used. 

Le t  x~l~. Le t  A be a subarc f rom x to y of t) a n d f a  foot  of x on 6. 

Then  the length  Z(A) of A satisfies the  inequal i ty  ;~(A)--> xy  >--xf. Let  x~2--~ x 

and let  A be the arc over A tha t  begins at  .r and  T a segment  beginning at  

a~ over a segment  T(x , f ) .  f l  and T end at  points ~) a n d / o f  ~ because, as was 

shown before,  ~ contains all points over  6- A and T are locally perpendicular  

to 6. There fore  fi_ and I '  are perpendicular  to 6. Since they have the common 

point  ~, i t  follows tha t  .~ --~ T and A = T(x ,  f ) .  

The  example of the Minkowskian  Moebius str ip in Sect ion 9 shows t h a t  13 

need no t  be a s t ra ight  line. 

Specializing fu r t he r  assume th a t  i~ is two dimensional  and t h a t  �9 preserves 

the or ientat ion.  I f  we use the nota t ions  of Section 6 with dashes to dis t inguish 

between J~ and R and in t roduce  in i~ the coordinates  s, t, t hen  the represen ta t ion  

t' ~ : .~.' ---- s ,  = t ~- ~ ( ~ )  

shows tha t  R is a cyliJ~der, and tha t  o--< t ~< ~(r  may serve as (closed) funda- 

menta l  set. The  closed geo4esics of R are images of the axes of the mot ions  

~b # E in ~. There fore  they are the multiples of the  great  circles s=-So* W, 

o --< t --< X(r I f  R has negat ive curva ture  there  is only the one grea t  circle s = o. 

The images y,(s)----#t(s)s of the perpendiculars  to fl(s = o ) a r e  s t ra igh t  lines 

(and not  only union of two rays as in the preceding" theorem).  For  if Sl < o 

and s2 > o, then a segment  f rom #t(sl) to ~)e+~'~(s.~), i # o, e =).(~b), intersects  

at  some point  Z(to) with t < t o < t + i~. Because ~),(s) is perpendicular  to 

z(t0)> I I and Z(to) > 

hence yt(sl)ye+i,(se)>s2--sl, so tha t  the subarc yt(sl--s2) which has length  

s 2 -  sl is the shor tes t  connect ion of yt(sl) and yt(s2) in R. 
2O 
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In  general  there are lines in R between yi(s) and yt+~(s) whose images in 

R are also s t ra ight  lines. 

The behavior o f  the other geodesics in R can easily be discussed. Since we 

know the behavior on a Minkowskian cylinder, assume tha t  W has either the 

form a -~ s --< fl or a --< s < oo. and take an arbi t rary point _90 ~ (So, to) in R with 

s o < a .  Let  ~ be the line s - ~ a .  A line throughi0o ei ther  intersects ~ or is a 

non-parallel asymptote  to g~, or is nei ther  asymptote  to ~ nor intersects  ga. 

The first type intersects, also ~. I f  it  is so represented by x(t) tha t  x(o) is 

on ~, then  ~(t)~ tends monotonical ly to oo when t-~ oo or t - ~ - -  oo. I f  x(t) 

= s  then  the preceding discussion shows tha t  x(t)g = ~(t)g. Thus x(t) is a 

Jo rdan  curve with x(t)g ~ oo for I t [ - ,  co. 

I f  2(t) represents the oriented asymptote  th rough  100 to g~+, then  s162 de- 

creases monotonically and tends to o for t -~ oo. Therefore x(t)=:~(t)~2 is a 

Jo rdan  curve for which x(t)g~ varies monotonically from oo to o. 

I f  finally s represents a geodesic th rough  150 of the thi rd  type then 2(t)~ 

reaches a minimum for  some t o and is monotone for  t-----t o and for t--< to, more- 

over s g - ~ o o  for  [ t [ ~ o o .  Therefore each of the half  extremals t-->t o and 

t >---to of x(t) is a Jo rdan  curve on which x(t)g~ (or x(t)g) is monotone but the 

two half  extremals intersect  each other. 

I f  / t  has negative curvature,  we find thus  exactly the same behavior of the 

geodesics as on the hyperboloid of one sheet. 

I f  T is an axial motion of /~ which does not  preserve the orientat ion,  then  

the representat ion (compare Section 6) 

T: s ' = - - s ,  t ' =  t + ~(~) 

shows tha t  R is a Moebius strip. Because q~ = T ~ is the t ransformat ion 

s '  = t '  = t + 2 = t '  + 

R has a cylinder of the previously discussed type as two sheeted covering space, 

but W must  be symmetric  to the origin. As on the Moebius strip s = o ,  

o <--t<--~(T) is the only great  circle on R, the lines s----So, o <--t <- 2~(T), s0~ W, 

are closed geodesics which are homotopic  to twice the great  circle. 

Finally let R be a plane of non-positive curvature and r a non-axial motion 

of R without  fixed points. By (6.6) there is a line ~ with the property tha t  ~* 

is an asymptote D + qb, therefore ~b preserves the orientat ion,  t} is not  parallel to 

[)~, because it is readily seen tha t  ~b would then be axial (see the analogous 
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proof for L which follows). Since the strip F bounded by ~+ and ~+ r can serve 

as a fundamenta l  set, ~ : {q~;} is the fundamenta l  group of a space R with 

as universal  covering space, and R is a cylinder. 
/~ carries s t ra ight  lines. For  if a~(t) represents ~§ and x ( t )=  2(t)~2 then a 

segment  T, connect ing the point x(- -~)  to x(v) appears in F ei ther  as 

T(~(--v),  a3(r)) or as a set ~iT(.~(t~), ~(t~+l)~) with ~ ( h ) :  ~(--v),  ~(tn+~)----~(v)~ 

(possibly n =  I). For  v ~ co we have a~(h)2(t2)~b _> .~(--v)~ ~ co because ~- is 

not  an  asymptote  to ~ -~ .  Therefore x(--~)x(~) ~ co and a suitable subsequence 

of T, will tend  to a s t ra ight  line L in R. Let  L ~ = L. Then L /~  L r -- o because 

L has no mult iple points (compare (2.4)). I t  follows tha t  L and L r  bound a 

fundamenta l  strip. Therefore L and L ~ are non-parallel asymptotes  to each other. 

For  if  this were not  the  case and ~(t) represents L, then ?)(t)~(t)~ would 

reach a positive min imum for same value t'. To any point Z' not  as L or 

L ~  i there is a point  Z = Z ' ~ "  between L and L ~ .  Then 2~b is between Lq~ 

and  L q i~, so tha t  T(Z, ~ r  intersects L ~  in a point ~. Then 

and ~' Z ' ~  would reach a minimum at  ~)(t') or �9 would be axial. 

W e  may therefore assume tha t  ~ was chosen such tha t  ~ is a s t ra ight  line. 

I t  is easily seen tha t  the asymptotes  to ~+ appear in R as ss lines and 

tha t  R carries no other  s t ra igh t  lines. Also, R has no closed geodesics because 

no motion ~ is axial, see (7.9). 

There may  or may not  be geodesics in R other  than  the asymptotes to l} § 

which tend  in the  direction of I~ § to c~. On ordinary surfaces of revolution E ~ 

with cylindrical coordinates--z  ~-f(r), o ~< d < r < co where f(r)  is a decreasing 

convex funct ion  of r wi th  f ( r )  -+ co for  r -~ d + ,  the  first case enters for d > o. 

the  second for d = o. This follows from the well known relat ion r .  sin o~ = coast  

for the geodesics where r is the angle which the geodesic forms with  the merid- 

ians (see for  instance, G. Darboux,  Th~orie g~n~rale d~s surfaces, vol. I I I  Paris  

~894, p. 3). I f  d > o then suitable geodesics different f rom the meridians tend  

in the direction z-~ co to infinity and  behave essentially like helices on a 

cylinder.  

Every cylinder with non-positive curvature has a plane R as universal 

covering space and its fundamenta l  group is cyclic. Therefore the preceding 

discussion covers all cylinders. We  notice in part icular :  
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(IO. 4) Any cylinder R of non-positive curvature is generated by a oJ~e-paran~eter 

family of straight lines. 

(IO. 5) A cylinder with negative curvature either carries exactly one great circle 

and consists of straight lines peiTendicular to ~. Or it contains no closed geodesic 

and its straight lines form a family of non-parallel asymptotes to each other (of 

infinitely many types). 

I i. Genera l  T w o - D i m e n s i o n a l  Spaces .  

F. Klein investigated which topological types of two-dimensional manifolds 

can be provided with Riemann metrics of a given constant curvature. TM The 

preceding results (5.7), (9. I), (9-4), (Io. x), (xo. 2) show that  Klein's results extend 

to Finsler spaces whose curvature has constant sign: 

(I I. I) All two-dimensioJ~al ~nanifolds can be metrized as G-spaces with non-positive 

curvature except the sphere and the projective plane. 

The plane, cylinder and Moebius strip are the only manifolds that can be 

provided both with metrics of curvature o and of negative curvature. 

I f  a torus or a one-sided lotus carry a metric with non-positive curvature, then 

they have cum'ature o. 

All other than those fit'e types can be metrized with negative curvature, but not 

with curvature o. 

The subject of Hadamard's  investigations are the two-dimensional orientable 

manifolds with finite connectiw'ty and ~egative curvature, where every fi'ee homotopy 

class contai~s a closed geodesic. 

Such a manifold R may be represented topologically as an orientable mani- 

fold of finite genus p which is punctured at a finite member of points z l , . . . ,  z,. 

A closed Jordan curve C~ in R which can be contracted to zi bounds in /~ a 

domain D'i which contains zi and determines a closed geodesic gi. Then the 

domain Di bounded by g~. and containing zi is what Hadamard [9] calls ,,nappe 

6vas6e,) and Cohn-Vossen [8] calls ,)eigentlicher Kelch,,. It behaves exactly like 

one half of the cylinder described in (IO. 5) bounded by g. The part R* of R 

which remains after removing the domains Di is called by Hadamard the ,)partie 

finie,) of R. A half geodesic ~§ issuing from an interior point p of R* falls into 

one of these three categories: I) 1]* may intersect a gi. Then the part of ~+ 

14 A co nc i s e  f o r m u l a t i o n  of F.  K l e i n ' s  r e s u l t s  is  f o u n d  in  [! I]. 
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following this intersection tends on Di monotonically to infinity just  as the first 

type of geodesic on cylinders with a closed geodesic described in the preceding 

section, z) ~§ may be asymptotic to a gi. 3) ~* may fall into the angle between 

the asymptotes to different gi. ] t  then stays entirely in R* and shows a com- 

plicated behavior. For the structure of the three sets of geodesics the reader is 

referred to Hadamard [9]- 

A compact two-dimensional manifold R always satisfies the hypotheses of 

f in i te  connectivity and of the existence of a closed geodesic in a given free homo- 

topy class. If  R has negative curvature, then all geodesics belong to the last 

of the three categories enumerated above. Much information can be gained by 

considering the universal covering space R and showing that  it has ma~y properties 
of the hyperbolic pla~e. This will be the subject of the remainder of the present 

section. 

Let E denote the euclidean plane with distance e(x, y) and let the interior 

I of the unitcircle C with center o in E be also metrized by the hyperbolic 

distance 
e (x, u) e (y, v) 

h(x, y)-~ log e(x, v)e(y, u) 

where u (or v) is the intersection of the 'euclidean ray from x through y (from 

y through x) with C. The open euclidean segments with endpoints on C are the 

hyperbolic straight lines. 

First let R be any plane (two-dimensional straight space) with non-positive 

curvature. Fix a point ~ in R and map a semicircle ~ of ~----- I proportionally 

on a semicircle S of h ( o , x ) :  I in /. Then map the straight line g(~,~), ~ 

in /~ congruently on the hyperbolic straight line 6(o, x) in I such that ~ goes 

into o and �9 into x where x is the image of �9 on S. 

With  any two points x, y in I we associate as third distance the distance 

s of their originals in R. With this distance I becomes congruent to R. Hence- 

forth we identify R with I and use letters with bars for points in /. The dis- 

tances h(~, ~) and ~ coincide on a straight line through o----~ and R is im- 

bedded in E. 

Let ~(t) represent an oriented strai2ht line 6 + in R not through ~. Then 

the line 6(q, ~(t)) revolves monotonically about ~ as t increases. Therefore ~(t) 

converges as point in the euclidean plane E for t-~ c~ to a limitpoint e § on C, 

which we call the positive endpoint of 6 § Similarly ~(t) approaches for t ~ r 

the negative endpoint e- of 6 § (or the positive endpoint of 6-). 
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(x I. 2) The asymptotes to g+ are exactly those lines which have the same positive 

endpoint e + as g+. 

Fo r  it  was jus t  shown th a t  the  l ine f§ t h r o u g h  ~ with posit ive endpoin t  e + 

is an  asympto te  to g+, and t h a t  ~+ canno t  be asympto te  to  any line whose posit ive 

endpoin t  is different  f rom e +. ( I t . 2 )  follows there fore  f rom (4-3)- 

(I I. 3) I f  [~ has negative curvature then two points e + and e- on Care the positive 

and negative endpoints of at most one oriented line in R. 

For  (l I. 2) shows tha t  d i f ferent  or iented  lines with the same endpoints  are 

parallels, which do no t  exist  when R has negat ive  curvature ,  see (4-9)- 

Negat ive  curva ture  of R is no t  suff icient  to establish t h a t  a line wi th  end- 

points  e § and e- always exists. F o r  instance,  the  universal  cover ing space of a 

surface of revolut ion z = f ( r )  o --< ~ < r < oo as discussed in the  last  section 

will not  have this p roper ty  when ~ > o. Bu t  it  will be shown:  

I I. 4) I f  R is the universal corering plane of a compact surface R with negative 

curvature, then any two given points e +, e- on C are endpoints of  exactly one straight line. 

_~ admits  an axial mot ion  ~b tha t  preserves the  orientat ion.  Le t  G + be the  

or iented axis of �9 with endpoints  d + and d-. Call C + and C- the two arcs of 

C determined by d * and d-. Or ient  the perpendiculars  to G + so t h a t  thei r  

positive endpoints  are all on C +. Le t  H + be a perpendicular  to G + a t / 3  and 

let  H + = H : ~ ' ,  and denote  the endpoints  of H ,  ~ by e: and e:. The  points e: 

and el+, are  different  because H :  and H,++x are not  asymptotes  to each o ther  
+ + 

(see (6.8)) and e +  1 follows e + on C + in the  direct ion of d +. There fore  e + = lira e 

exists on C +. Because of (I I. 2) the mapp ing  ~b induces a mapping  of C on it- 

self. Here  we need only tha t  e + is fixed under  all ~"  and t h a t  therefore  a line 

with positive endpoin t  e + th rough  p (the asympto te  to g(~, e +) th rough  ~) goes 

again into a line with e + as positive endpoint .  

I t  follows now tha t  c +-~ d § For  le t  ~(t) represent  the line t h rough  15 with 

e + as positive endpoint .  Then  ~(t)~b represents  its image and is by ( I I .2)  an 

asympto te  to 2(t). Hence  ~(t)2(t)q~ is by (4.4 a) bounded for  t ~ o .  I f  x ( t ) d i d  

not  represent  G +, then ~( t )G + ~ oo for  t -+ vo and (6. 8) would yield ~ ( t ) ~ ( t ) ~  -~c~. 

I t  follows tha t  the endpoints  of the perpendiculars  to G + fill the  arcs C + and 

C - ( e x c e p t  for  d + and d-). 

I f  H ,  + and H., + are two perpendiculars  to G +, then  it  is easy to see t h a t  a 

l ine L exists such tha t  L + is an asymptote  to H :  and L -  to H.~. Therefore :  

( I I .5 )  I f  a*e C + and a - e  C- are given, a line with a + and a-  as endpoints  exists. 
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The fundamenta l  group ~ of R contains an axial motion T whose axis H + 

is different from G § By (6.4) the images of G § and H § under  the motions of 

the group generated by q~ and T are axes of motions in ~. The preceding 

considerations yield readily t ha t  any two points a + and a - o n  C can be separated 

by the endpoints of an axis of such a motion. (I1.5) shows then  tha t  a § and a- 

are endpoints  of a s t ra ight  line in R. This completes th,e proof of (II.4).  

We show next  

(11.6) I f  ft  is the universal eoveri~g plane of  a compact su'Jface R with negative 

curvature, then for  any two open intervals U § and U- on C an axis of  a motion 

in ~ exists which has its positive e~dpoint in U + aml its ~egative endpoint in U-. 

(Compare Nielsen [I4, p. 21o]). 

Proof. Let  r :  and r,~ be rays from ~ to points e: and e~ on U § I f  ~(t) 

represents the ray from 0 to a point  e + of U + between e: and e~ then S(5"(t), 26(R'~) 

is for large t contained in the angular  domain bounded by r :  and r~ because 

5"(t)r~ ~ c~. By (2.1o c, d) S(~(t), 2 O(R)) contains a point  fi over any given point 

p of R. Therefore e + is for any point p of R accumulat ion point of points of 

the from /~ q~,., q~ E ~. 

Le t  e + U + e and e-~ U- be given and choose ~b~ and q~_~ in ~ such tha t  

0q~- -~ e+ and ~ b  ~ -+ e-. The motion ~b-]q~ determines a class of conjugate  

elements in ~, therefore a free homotopy class and a closed geodesic G in R. 

Le t  p be a simple point  of G and fie/~'(~), / 5 s  Then the line G~ over G 

th rough  ~ r  must  pass th rough  ~b~  and G~ is the axis of ~b_-a r (if /~ does 

not  lie in H(~) it  may be necessary to replace ~ ~b_-]. and fi q~, by points in ~'(~)~b 

which are contiguous to E(~)q}:l ,  or /e(/~)q}~ but  this  does not  change the con- 

clusion). The endpoints  of G~ tend for v ~ c~ to e + and e- and lie therefore 

for large v on U + and U-. 

Theorems (11.5) and (I1.6) shows tha t  the closed geodesics in R (because 

they correspond to the axes of motions in ~) are in a very definite sense dense 

in the set of all geodesics in R. For  fu r ther  exploitat ion of (11.5) and (I1.6) 

the reader is referred to Nielsen [i3]. Here we observe only the following con- 

sequence of (6. 11) and (I 1.2), which is essential for a deeper discussion. 

(I 1.7) No two differe~t axes of  motions i~ ~ have a common e~ulpoi~#. 
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C H A P T E R  I I I .  

D i f f e r e n t i a b l e  S p a c e s  w i t h  N o n - P o s i t i v e  C u r v a t u r e .  ~5 

~2. R iemann  Spaces. 

The connection of the present definition of non-positive curvature with the 

s tandard  definition can easily be discussed by using the following lemma:  

(I2.1) If,  in a space with non-positive curvature, x ( t ) a n d  y ( t ) r e p r e s e n t  geo- 

desics with x ( o ) =  y(o) then  

liln x (a t ) y ( f l t ) / t  = tt (a, fl), a, fl ~ 0 
t~O+ 

e~ists, s ( - ,  ~)-< In[ + I~l and 

(I2.2) x(a t )  y(flt) >--t#(a, fl) for small positive t. 

For  x(a t )y ( f l t )  is a convex funct ion of t and has therefore at  t : o  a r ight  

hand derivative tt(a, fl). The relat ion #(a, fl) --<[a [ + ]fl[ follows from x(a t )y ( f l t )  -<- 

< t(I-I + I~l) for t >  o, and (I2.2) follows from the fact, t ha t  a convex func- 

t ion lies above the r ight  hand tangent  at  any of its points. 

In  Riemann spaces non-positive curvature is equivalent to the >>cosine 

i~equality>> (I2.4) which can be formulated under  very weak differentiability 

hypotheses.  

(I2.3) A Riema~m space has ~w~,-positive curvature according to the present defini- 

tion, ~f a~d o~dy ~f et'ery poi~d has a neighborhood S(p ,  Q) such that any geodesic 

tria~gle with vertices a, b, c in S (p, Q) sati.~es the relation 

(I2.4) 7 ~ ~ a ~" + fl~-- 2aft  cos c, 

where a = be, ~ = ca, 7 = a b and c is the angle at c. 

Proof. Let  R be a Riemann space with non:positive curvature in the present  

sense, and let a, b, ceS (p ,d~) .  I f  x( t ) , y ( t )  are geodesics which represent  the 

segments ,3(c, b) and ez(c,a) for o N t ~ a  and o ~ t - - < f l  respectively, then 

x(o) = y ( o ) =  c and, because R is Riemannian,  

trY(a, fl) ---= lim x(a t )y ( f l t )~ t  -2 ---- lira (aO-t ~ + fl~-t ~ --  2ct t i l t  cos c)t -2 

= a~ + f lo_  2af lcos  c 

and (t2.4) follows from (I2.2). 
t~ T he  cons ide ra t ions  of C hap t e r  I l I  e x t e n d  w i th  obv ious  c h a n g e s  to spaces  wi th  non -nega t ive  

cu rva tu re .  
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For the proof of the converse observe first that in any triangle q r s  in 

S(p ,  Q) with q r - - - ~ ,  qs----~, r s  = 2Z, and q m ( r ,  s ) = ~  the relation 

holds. For, if o denotes tile angle < q m ( r ,  s)r,  then by (12.4) 

,~>---/~:+ Z 2 - 2 / * ~ c o s r  and 

d~:> ~2 + Z~ + 2 t t ) . c o s o .  

Consider now a triangle abe  in S(p ,  #). Put  a' --- m(e,  a), b' -~ m(c, b), 

a c = 2 a, b c = 2 ~, a' b' -~ ~,', a b -~ ~,, and a' b = (~. Applying (I 2.5) to the triangles 

a ' b c  and boa  yields 

(I2.6) 4(7,2 + /~2) g 2(a ~ + ~) <- Z*" + (2~)'. 

so that  27'<-- 7 or 2a 'b '< - -ab ,  q.e .d .  

(12.7) A Riemam~ space has non-positive curvature in the present sense i f  and only 

i f  i t  has non.positive curvature in the usual  se~ce. 

Proof. If  a Riemann space has non-positive curvature in the usual sense, 

then (12.4) holds locally (compare [7, P. 261], where it is proved that  (I2.4) 

holds in the large for simply connected spaces. This implies, of course, that it 

holds in the small for general spaces). By (I2.3) the space has non-positive 

curvature in the present sense. 

The converse can be proved by using (12.3)to establish ( I2 .4 )and  then 

tracing Cartan's steps back. But it is simpler and geometrically more convincing 

the proceed as follows: let x( t )  and y(t)  represent two geodesics which form at 

x(o) ~ y(o) the angle 7. Then as in the preceding proof 

lim x(t)y(t)/t = t ' ( ~ ,  i ) =  [ 2 ( i  - c o s  7)] ' / ' =  2 sin (7/2) 

hence by (12.2) 

(12.8) x ( t ) y ( t )  >-- 2 t sin (r/Z). 

That  R has at p non-positive curvature means this (see [7, PP. x91--199]) : 

I f  P is any two dimensional surface element at p then the two dimensional 

surface M formed by all geodesics through p and tangent to P has at p a non- 

positive Gauss curvature. Take v geodesics x, ( t )  in M through p such that  the 

angle formed by x, ( t )  and x,.+~(t) at p is 2~r/v. If  Zt is the length of the circle 
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with radius t about p in M then by (I2.8) 

~t > 2~x~(t)x,,+l(t) >-- 2v t  sin (~/v), 

whence ~t --> 2 z t  for v -~ oo. The well known expression of Bertrand and Puiseux 

(see [7, P. 240]) for the Gauss curvature  K 

K ----- 3 er-1 lira (2 zct --  2t) t -3 
t~0+ 

shows tha t  K--< o. 

(9.2) shows tha t  also Riemann spaces of curvature  o in the usual sense are 

identical  with Riemann spaces of curvature o in the present sense. However, 

the corresponding s ta tement  for  negative curvature is no t  true, the present defini- 

tion being a little wider. For  theorem (3. I4) shows tha t  2a'b '  < ab in smale non- 

degenerat.e tr iangles abe  of a Riemann space with negative eurvature in the 

usual sense, which therefore also has negative curvature  in the present  sense. 

But, clearly, the relat ion 2 a ' b ' <  a b may still be true for non-collinear points 

when the curvature vanishes at certain sets of two dimensional  elements, for 

instanee at  all two-dimensional elements in isolated points. 

Iu  any case the preceding considerations on G-spaces of non-positive or 

negative curvature apply to Riemann spaces of non-positive or negative curvature 

in the usual sense. 

13. Inequa l i t i e s  for  Volume and Area of Spheres. 

The explicite definition of a Finsler space in the usual sense is not  needed 

here. I t  suffices for the fol lowing to know tha t  introduct ion of hernial coordinates 

at a point p may be formula ted  as follows: (see [3, I I  w 2]). 

In  S(p,  ~(p) )  a )~linkowskian mebic re(a, b) topologically equivalent to the 

given metric ab can be introduced such that 

(13. I) ab : re(a, b) for  points on the same diameter of  S(p ,  r]2(p)). ~G 

(I3.2) I f  a, -+p, b~ ~ p ,  and a, # b,, then a~b,/m(a, ,  b,) ~ I. 

A property which is a little weaker than  (13.2) but sufficient for the present 

purposes can be deduced from a simple geometric postulate of differentiabili ty 

16A diameter of S(p, y~(p)) is a segment with center p and length 2 ~2 (P) without  the 
endpoints. 
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and regularity. To formulate it  let t 3 = m i n  (~12(P)/2, i). For a, b~S(p ,  t3)denote 

by ~(a, b} the oriented segment with length 2/3 and origin a that contains b. 

Then we require: 

(13.3) I f  a,, b,, e, tend to p in such a way that r(a,, b,) and r(a,,, e,) converge, but 

to different limits, and i f  lim a,b,. /a,c,  exists (cx~admitted), then r(b,, c,) converges. 

Moreover, (b,a, + a,c ,) /b,c ,  -+ I i f  and only ~f 

lim ~(b,., a,) = lim r(b,,e,) or lim r ( a , , c , ) -  lira r(b,, c,). 

This is, except for slightly different notations, the postulate A (p) of [3, I I  w 3]. 

Its two parts are of a different nature, the first is merely a differentiability 

hypothesis, the second corresponds to the regularity of the integrand (or the 

strict convexity of the indicatrix) in ordinary Finsler spaces. I t  insures that  the 

resulting local Minkowski metric satisfies Axiom V of Section x. According to 

[3, I [  ~ 3, 4, 5] the condition (x 3. 3) implies that  in S(p,  V2(P)) a Minkowski 

metric re(a, b) can be introduced ~7 which satisfies (I 3, I) and 

(13.2 a) I f  a, ~ p ,  b, -+p and (a,p + p b , ) / a , b ,  < ~ < oo the,, a ,b , /m(a, ,  b,) -~ I. 

Assume now that  the space has non-positive curvature and that  (I 3. 3) holds 

at the pointp.  Let x(t) and y(t) represent different geodesics with x(o) = y ( o ) = p .  

Then 

(t3.4) m[x(a t ) ,y (# t ) ] -~ tm[x(a) ,y (#) ]  for o--<t<v,2(p),  [al  < I, Ifll < i 

because x(t) and y(t) represent diameters of S(p,  r~2(p) ) both for the ~inkowski  

and the given metric. Because of [3, II.  2 Theorem e, p. 52] 

[x(at)p + py(f l t )] /x(at)y( f l t )=--( lair  + If l l t) /x(at)y(~t) < ~ < ~ .  

Therefore by (I 3. z a) 

lira x (a t) y (fl t)/t ----- t~ (a, #) -~ m (x (a), x (fl)) 

and by (I2.2) x(a)y(~)>--n,(x(a), y(fl))hence 

(13.5) ab >-- re(a, b) for a, be S(p,  rh(p) ). 

Remember that  ~2(P)-~ c~ for simply connected spaces. 

The inequalities for volume and area which are the subject of this section 

follow from (I3.5). Fortunately the question, which area we are going to use 

ir A space which satisfies (I3.3) at one point p is because of [4, Theorem (4. I2)] a topological 
manifold and has the property of domain invariance. 
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proves unimportant in the present case: The inequalities hold for k-dimensional 

Hausdorff measure defined by coverings with spheres only or with arbitrary sets 

as well as for intrinsic area (compare [5, Sections I, 2, 3]). 18 We denote by I M[~ 

and 131, m [k the k-dimensional gausdorff  measures defined by arbitrary sets with 

respect to the given metric xy  and to m(x,y) respectively. For the sets Mcon-  

sidered here the measure [3I, talk equals the corresponding other Itausdorff 

measure or intrinsic area, so that using Mk yields the strongest inequalities. 

By Kolmogoroff's principle (see [5, (I. I4)]) 

(x3.6) IM[~ >--IM, m]~.. 

The spheres S(p, Q) with respect to ab and re(a, b) are identical pointsets. 

Since a sphere in a Minkowski metric has the same volume as in a euclidean 

metric (see [5, (2.5)]) we have if the space is n-dimensional 

( '3.7) ]S(p, e)[au~ k(")en , k(n)=~n/21T'-l(2+ I),  e ~  V~(p). 

This relation generalizes, under surprisingly weak differe~atiability assumptions a well 
know~ inequality for Riernan~ spaces to Fi~sler spaces. 

The Finsler area of the surface K(p, Q):m(p, x)-----q is not a function of q 

alone but depends on the metric as a whole. The analogue to (I 3. 7)wil l  there- 

ford be more complicated. 

I f  e(a, b) is a euclidean metric associated to m(a, b) (compare [5, section 2]), 

denote by a(v) the euclidean ( n -  I)-dimensional area of the intersection of the 

Minkowski unitsphere S(p, I) with a hyperplane whose normal has direction v. 

Then 

s) IK(p, , ,  =kCn-1) fa-i(~)dS(~) 

where dS(v) is the euclidean surface element of K(p,  I) at the point where the 

normal to K(p, I) has direction �9 (compare [5, (7.6)]). Since the spheres K(p,Q) 
are at the same time Minkowski spheres and are homothetic with respect to the 

Minkowski-metric, we find (see [5, (1.14)]) 

(I3.9) ] K(p, e)],,-, -> k(~-l) en-~ f a-~(~)d 8(~), e ~- rI2(P)" 

There are similar relations for lower dimensions. As an example we discuss 

the two-dimensional case. Let P be a two dimensional surface element through 

~s W h e t h e r  l o w e r  s e m i c o n t i n u o u s  areas  can  be used  is  a ques t ion  w h i c h  is b e y o n d  our  presen t  

s tage  of k n o w l e d g e  on a r e a  in F i n s l e r  spaces .  
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p and consider the manifold M formed by geodesics through p to tangent P. 

Under the present weak differentiability hypothesis we mean with P a two- 

dimensional p.lane in the Minkowski space ,~ (a, b) (or the euclidean space e(a, b)) 
and the geodesics i n / )  through p, which are the Minkowski (or euclidean) straight 

lines. On every geodesic through P we lay off a segment of length Q and obtain 

a circle C~ in M which bounds a set S e in M. Then as before 

The relations corresponding to (13.8, 9) can easily be found, but they have 

only in the two-dimensional case a nice geometric interpretation. (For the following 

compare [6].) Let  h~ be the curve in M which originates from C1 be a polar 

reciprocity in e(p, x ) =  I with respect to the associated euclidean metric e(a, b) 
and a subsequent revolution about p through ~/2. This curve is interesting be- 

cause it has an i,b'iltsic Mi~lkow.,'kial~ sig,(fica,ee, for it solves the isoperimetric 

problem for the Minkowski metric in M. Then {C1, r e{ l=  2 A(C1, K1)where 
A(C1, K1) is the mixed area of ('1 and I(1 (with respect to  the same associated 

euclidean metric). Hence 

[Ceil ~ 2eA  (C1, K1)~  2z'/"A(K1)'/"O 

where A(K  1) is the euclidean area bounded by / ~  (see I6, (3~.]). The right side of 

(13.9) cannot in general be expressed as a mixed volume, because (~-l(v) is not 

always a convex function of v. 

I t  would be desirable to find an ,,infinitesimals) condition instead of the 

finite condition (3.2) for non-positive curvature in Finsler spaces. I t  is not hard 

to use (12.I) to find a condition for the derivatives of 1~, but the condition ob- 

tained in that way does not seem to be related to the known invariants of a 

Finsler metric. 

Berwald [I] contains geometric interpretations of the invariants for two- 

dimensional spaces. In this theory the Finsler metric is approximated by a Rie- 

mann metric in the neighborhood of one line element only and cannot be applied 

directly because in (3.2) even if restricted to ))narrow)) triangles, (that is triangles 

for which the directions of ~ (a, b) and ~(a, c) are close together) the direction of 

~(b, c) is still arbitrary and can in no case be assumed to be close to ~(a, b). 
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