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Introduction. 

I. Let H be a Hilbert space and T and T* two adjoined transformations, 

both determined throughout H. Let ~ be the set of eigenelements of T, cor- 

responding to ~, i. e. the solutions 9 ~ o of the equation T 9 ---- J( 9 ; and �9 the 

sum of all ~ . .  Firstly we assume that  

(A) the set �9 is fundamental on H. 

T n  "0 We shall denote by Cf and C$ the closed linear manifolds spanned by { f}o 

and {T*'g}o, respectively; f ,  g being elements in H. 

This study is devoted to two general problems concerning the transforma- 

tions T and T* which we shall call the extinction problem and the closure 

problem. We shall say that  T has an extinction theorem if, for every f #  o, it is 

true that  the manifold Cj contains at least one eigenelement 9 # o. In the ease 

7% 

f =  ~ e , 9 , , ,  9 , e ~ , ,  

where )~, # ).~ for v ~ ~, it is obvious that  all 9, belong to Cf. By (A), every 

f may certainly be approximated arbitrarily closely by linear combinations of 

eigenelements; but this does by no means imply that  the extinction theorem is 

a consequence of (A). 

By the closure problem we mean the characterizing of the elements g, for 

which C~ = H, by the behaviour of the scalar product (9, g), when 9 runs 

through ~. From the relations 

(9~, r*~ g) = (T~ 9~, g) = Z-(9~., g), ">-- o, 
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it immediately follows that  the condition 

(~) (9,, g)~ o, ~,eo, 

is necessary for closure. I f  this condition also is sufficient we shall, on account 

of a well known analogy in harmonic analysis, say that  the transformation T* 

will possess a Wiener closure theorem. 

I t  seems to be a very difficult undertaking to decide, in general non-trivial 

cases, whether these two theorems are true or not and if they are equivalent. 

However, under the assumptions already made, it is always true that the extinc- 

tion theorem implies the Wiener closure theorem. For, if C~ is a proper subset 

of /4, an element f #  o exists, such that  

o = (/, r ' " g ) =  ( r - / ,  g), n>o.  

Thus g is orthogonal to every he  C/, and hence to the eigenelement 9, which, 

according to the extinction theorem, must belong to C/. 

2. If  we, in addition to the postulate (A), also assume that  T is isometric, 

the extinction theorem holds and is a simple consequence of v. NSumann's ergodic 

theorem which we state in the following generalized form, due to F. Riesz 1 and 

G. Birkhoff : 

I f  T is a linear isometric transfo,'mation, or a contraction (11T/H-< Ilfll), of a 

um:formly convex Banaeh space, then the limit 

n--1 

will exist for every element f .  

Let us first give the following complement of this theorem. We shall say 

that  f is orthogonal to g, or f . t g ,  if 

I[f + e g II -> ][fl[ 

for every complex number e. I t  ought to be observed that  in general Banaeh 

spaces the property f •  g does not imply g J.f. 

I f  T has a fixelement 990 = Tq~o that is not orthogonal to f ,  then the limit 8 ( f )  

will be different from the null element. 

By the definition of orthogonality, there exists a constant e such that 

1t9o + ef!] < II~o[I. From this and the relations II~(g)ll-----I[gtl and S ( 9 o ) =  9o, it 
follows that 

i See [4] in the  References and G. BIItKHOFF, The mean ergodie Theorem, Duke vol. 5 (1939). 
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[I S (of)I1 = H S (90 + c f )  - -  9o ]t > I19o It - -  [I 9o + e l i  > o, 

i .e .  S ( f ) #  o. We thus  get  the fol lowing general  ext inct ion theo rem:  

Let  T be a linear isometric transformation of  a uniformly convex Bausch space, 

such that the set cP of  eigenelements of T has the property: 

(A') 9 I f ,  9 E ~ implies f = o. 

Then for  every f #  o the manifold Cf will contain at least one eigenelenwnt 9 # o. 

By (A') a 9 -  9~. mus t  exist  which is no t  o r thogona l  to f Since T is iso- 

metric,  we will have [ g ] =  I and the  opera tor  T~.= 4 -1 T is consequent ly  iso- 

metr ic  too, and has 9 i  as fixelement. Thus  
91--1 

S~ ( f )  = lira I ~ T ~ f  # o, 
n = o o  n 0 

and the  theorem follows since S x ( f )  belongs both  to C/ and ~.2 

I t  is immediate ly  seen, t h a t  the  theorem holds t rue  also for  a cont rac t ion ,  

provided tha t  its eigenvalues lie on the uni t  c i rcumference  ]41----- I. 

3. Re tu rn ing  to the  space H, i t  is now na tu ra l  to consider  the  fol lowing 

case: T is a proper  metr ic  contract ion,  i .e .  

(B) II Tf!l  -<- l]f]], lim ]1TnfH = oa, 
91=00 

while T* is isometric,  

(c) II r * f l l  = Ilfll. 

As will be seen subsequently,  the class of opera tors  subject  to the condit ions (A), 

(B) and (C) is still too wide to admit  genera l  results  concerning the  ext inct ion 

and closure problems. However ,  under  the addi t ional  assumption 

(D) at least one eigenvalue is simple, 

the  two problems may be complete ly  discussed with the  fol lowing pr incipal  re- 

sults:  ne i the r  the Wiene r  closure cr i ter ion (I), nor  the  ex t inc t ion  theorem are 

valid;  but  the  W i e n e r  closure theorem holds t rue  in a modified form s ta t ing 

t ha t  the inner  p roduc t  (ga, g) is different  f rom zero and, for  normal ized 9~., no t  

,,too small,, as [41 -~ I. 

Similar  results  will be obta ined for  the  ext inct ion problem. 

The interest of this theorem is chiefly due to the fact that the relevant orthogonality is 
~o I f  and not the converse but more natural f j .  q0. It should also be noted that at least in the 
ordinary Lp-spaces (p > I, # 2) there are subsets M having the property (A')without being 
fundamental. 

' This latter condition may be replaced by the.following weaker assumption: the eigenvalues 
of T are of modulus < I. 

31--48173. Acta mathematica. 81. Imprim6 le 28 avril 1949. 
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An Isomorphism. 

4. By elementar3 a rguments  we obta in  the  fol lowing proposi t ion:  

The conditions (A), (B), (C), and (D), imply the existence of  a complete ortho- 

normal set {en}~, such that 

j T e o = o 
(~) 

Ten ~ en-1, n ~ I, 

(3) T* e~ = e,,+l, n --> o. 

The eigenvalues of  T are all simple and fill the open uni t  circle I Z [ < I. The cor- 

responding eigenelements, normalized by the condition (qpn, co)= I, are of  the form 

o o  

(4) gPx ~-- Z ~t" en. 
0 

In accordance with (C), 

( T T ' f ,  g) = ( T ' f ,  T* g) = ( f  , g), 

for  e v e r y p a i r  of e lements  f and g, and thus, 

(5) T T* ---- I---- the  identity.  

By (D), there  exists a simple eigenvalue ~ = a, which in view of (B) mus t  be of 

modulus  < I. I f  r  is a corresponding eigenelement ,  then e o = ~ - -  a T* ~ will 

be different f rom the null  element,  since by (C), Ileo[I >--]l~0~l[(, - [ a l ) .  In  the  fol- 

lowing, we will suppose tha t  ~ is normalized by the condition I!eoU-- I. W e  get  

by (5) 

(6) T e  o = Tqp~--  a T T * ~ .  = a ~ - -  ag0~---- o; 

hence e o is an eigenelement  corresponding to ~ = o. Pu t t ing  en = T ' n  e o, n >--o, 

it  follows f rom (6) that ,  for  n > m ~ o, 

(e,, e~) = (T*" Co, r * -  Co) = (Co, T n- ~ Co) = o. 

In  view of the  normalizat ion It e o l l -  I we then  get  

(en, e ~ ) =  {o,  n ~ m ,  
I ,  n ~ m .  

By the definit ion of the  set {e,}o** the relat ions (2) and (3) are satisfied, and thus 

qgx defined by the series (4), really represents  an eigenelement.  Pu t t ing  Z -  a in 

the series, we get  back our original  e lement  ~0,. 
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I t  remains to prove that  every eigenvalue is simple. I f  this is not true, 

there will exist a number ~, I{~1 < I, such that  the equation T ~ = ~ 9 ,  besides 

the solution 9 :  of formula (4), also has a solution ~ # o, orthogonal to ~: .  

Starting from ~ we obtain, in the same manner as before, an orthonormal set 
r oo oo P {en}o with the same properties as {e,}o. Furthermore, (eo, eo)= o, from which 

follows that  (en, e~)-----o, n -  o, m ~ o. Consequently, the closed linear manifold 

spanned by the two sets are orthogonal. On the other hand this implies that, 

for every ~ in the open unit circle, ~ of formula (4) and 

' ~;L en, 
0 

will be linearly independent eigenelements. 

From the preceding discussion, it will be clear that  the conditions (A), (B) 

and (C) imply that  the dimension number of the set ~ is the same for all 

in the open unit circle, hence---- I in view of (D). Since �9 is fundamental by 

assumption, and (4) represents all normalized eigenelements, the set {e~}o ~ must 

be complete, thus proving our proposition. 

5. For every f E H  we then have 

f =  :,, = f), 
0 

1!fI: = If,, 5 
0 

The below scalar product, where the parameter ~ is replaced by z, 

o0 

(7) (qDz,f) = Z f , ,  zn = f ( z ) ,  I zl < I, 
0 

thus transforms f into a function f(z), holomorphic in the unit circle and satis- 

fying the inequality 

2,-~ 

~:If(/'eio)l'dO <j'fi'' 0 < r < I t!Jll , -- �9 

0 

According to well known properties, the radial limit 

f(e")---- lira f ( r d ' )  
* ' = 1 - - 0  
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exist almost everywhere, and has a summable square. Furthermore, the class of 

Taylor series f (z )  constitutes a Hilbert space H with the scalar product 

I ~  iO - iO f(e )g(e )eo 
0 

and the norm Ilftl = V ~ , f ) .  By means of (7) we obtain a unitary transformation 

of H into H. 

The operator T takes the function f(z)  into 

r f ( z )  - f ( , )  - f(o), 
Z 

while T* takes f ( z )  into 

T ' f  (z) = z f(z) .  

The eigenelements of T in the space H are obviously the functions 

i *' Izl  < I  

The Closure and Extinction Problems. 

6. In the space H we may formulate the closure problem in the follow- 

ing way : 

For which functions f (z)  is it true that  the set 

(8) 

is fundamental on H? I f  f(z) does not possess this property, which functions 

are then contained in the closed linear manifold C] spanned by the set (8)9 

We already know that  the Wiener criterion f ( z )  # o, Izl < I, is a necessary 

condition for closure. At first sight, this condition also seems to be sufficient. 

However, as we shall see, this is not true. On the other hand, an additional 

condition of the form 

2~  

lira d O < v o ,  p > o ,  
r ~ l - - O  

0 

proves to be sufficient but not necessary. By aid of a quantity r defined in 

the following manner 
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2~ 

r (9) ~ { / ) =  2~r I f ~  dO if f ( o ) # o  
0 

+ o o  if f ( o ) = o  

the adequate condition takes the simple form d ( f ) =  o. We easily see that  

2,-t ; (IO) lim __I log f~eTV) d@ > o 
r = l - - O  2 ~r~ 

0 

holds true if f ~  o. The relation d ( f ) =  o thus requires both that 

2 z  

I. f " " 

r = l - - O  
0 

i. e. f(z) has no zeros in the unit circle, and that the limit (IO) vanishes, which 

means that If(z)l is n5~ allowed to be very small as I z[-> I. 

7' By the proof, we shall avail ourselves of some well known properties, 

essentially due to Herglotz, F. and M. Riesz and R. Nevanlinna 4, concerning 

harmonic and analytic functions. Here we shall not express these results in their 

original scope, but in a modified form appropriate for our special purpose. 

Let f(z)~ o be holomorphic for I z I < 1 and subject to a Hardy condition 

2~t 

(,i) lira p > o .  
r = l - - O  z 1 1 : J  

o 

The radial limit f(e ~~ then exists almost everywhere and log If(d~ sum- 
mable. Let us put 

2 z  

1 e ia -4- z ] 
(12) /1 (z) = exp ! - -  floglf(r176 dO+ia t 2 ~ j  e -T-~  

0 

where a is the argument Of the first nonvanishing Taylor coefficient of f(z). 
The following important inequality, 

(I3) If(z)]--< Ifl(z)l, Iz[ < i, 

holds always true, and the function fo (z) defined by the relation 

(I4) f(z) = f o  (z) f l  (z), 

4 See [3] Chap.  VII ,  also for f u r t h e r  references.  
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will then have the properties, 

( I5)  

(~6) 

In 
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[fo(z)]-< i, Izl < ~, 

lim [fo(re;~ = I p.p.  
r = l - 0  

view of the normalization of fl (z), the first nonvanishing Taylor coefficient 

(~7) 

w h e r e  

of fo (z) will be real and positive. The general expression for a function of this 

type is 
2~ 

fo(~) = H ~  - z a ,  la-I exp j e ,  o _ z d a  , 
0 

z ( ~ - I a . I ) <  ~176 I . . l < , ,  

and where a = a(8) is a real nondecreasing bounded function, whose points of 

increase form a set of at most zero measure. I f  some of the a~'s are zero, we 

define the corresponding factors in the Blaschke product as z. In special cases 

both the Blaschke product and the exponential factor may, of course, be reduced 

to the constant x. 

A function which can be expressed in the form (x2), where V(0) ~- log [f(r176 I 
is summable, we shall call an outer function, whereas a function of the form (I7) 

shall be called an inner function. The special functions f l  and fo defined above, 

shall be termed the outer factor and the inner factvr of f respectively. This de- 

composition is obviously uniquely determined if f ~  o, and will be referred to 

as the Factorization Lemma. 

8. Let now 

2r~ 

g0(g) ~-- H I - - z b ,  b, J e  i0 - - z  d 
0 

be another inner function. When go/fo is bounded in the unit  circle, then it 

obviously is an inner function too, and we shall call f0 a divisor of go- For this 

it  is necessary and sufficient that  {a,} is a subset of {b,} and that  f l - - a  is non- 

decreasing. In the general case we define the largest common factor Of fo and go 

as the inner function 

2Z 

h0 ( z ) -  H ~ _ ze, c, 3 e , - ~ : ~  z dz  
o 
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where {c,} is the intersection of the sets {a,} and {b,} and the connection be- 

tween ~,, a and /3 (considered as nonnegat ive and completely additive setfunctions) 

is such t h a t  ~, is the largest  common minorant  of a and #. I t  is easily seen tha t  

he has the following characterist ic property:  if z is a point  in the uni t  circle 

such tha t  [fo (z)[ + [ go (z)[ # o, then  [ h o (~)[ < [/c o (z)[ for any inner funct ion ko ~ ho 

which is a divisor of both fo and go. In the case ho---- I, we shall  say t ha t  fo 

and go are wi thout  common factor.  

Again,  supposing tha t  f and g are two functions,  sat isfying a condition (I I) 

and ~ o ,  we may write 

f_=fo  .f_,. 
g go gl 

I f  h o is the largest  common factor  of fo and go, we have fo = he Fo and go ---- he Go 

and obtain 

.f = Fo 
g V--~" H,  

where I t  1 = f i g 1  is an outer  funct ion and Fo, G O are inner funct ions  wi thout  

common factor.  Obviously these three funct ions are all uniquely determined. 

Regarding the quant i ty  cl (f), we have ( I ( f l )~ -o  for every outer  function.  

Hence 

( f )  = J (fo) + ~ (f~) = ~ (fo). 

For  inner function,  on the other hand,  

2,-t 

(fo) = l o g  :o  (o) - l o g  + d >- o .  
o 

The relat ion d ( f ) =  o thus  implies tha t  the inner factor  of f reduces to the 

constant  I. 

9. The two problems, raised at  the  beginning of this chapter,  will now be 

completely solved by the fol lowing:  

Theo rem I. Let f ,  g e H and be ~ o. Then g will belong to the manifold 

C~ when, and only when, the inner factor o f f  is a divisor of the inner factor of g. 

The stated closure criterion ~ ( f ) = o  is obviously a consequence of this 

theorem, since the property C] = H demands tha t  the inner  factor  fo of f is a 

divisor of any inner  funct ion which can only be true if fo ~- I, i. e. if ~ (f)  ~ o. 
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Let  us first prove that  g E C~ if f0 is a divisor of go. To this end, it is suf- 

ficient to prove that  to every �9 > o, a polynominal p may be found such that  

I J p f -  glf < ~. 

But If0 (ei~ I almost everywhere, and go/fo-~/to is an inner function, hence 

I r p f  - gll = lip f l  - hog, II 

and it is thus sufficient to prove tha t  C~----H i. e. that  the equations 

(I9) ( T ' " f , ,  1r ---- o, n >-- o 

have no solution k E H other than lc------o. Let us put 

2~" 

0 

By (I9), e.----= o, n--< o, and consequently 

1 

where ~ is the common symbol in the theory of Fourier series. Since the left 

hand member in (20) is a summable function, the Taylor series 

( 2 I )  ~ ) ( ~ ) = Z  enzn,  I ~ 1 <  ~, 
1 

has the following welL known properties, 

(~2) ~0 (e ;~ = lira tp (r e ~~ = f~  (e '~ (e '~ 
r=l--O 

2z~ 

(23)  

According to the 

factors of k and 9,  respectively, 

Hence 

p.p. 

lira I f lu,(e,o)_~,C,.e,o)laO=o" 
r~l--0  2 ~ . l  

o 

Factorization Lemma we get, if k 1 and ~1 denote the outer 

I v  (~)1 -< I r = I f ,  (~)11 ~, (~)1, Izl < i. 
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and the function lP/fl then belongs to H and vanishes at the origin. I t  then 

follows from (22) that  
2 n  2 g  

x l (etOle,.O I (24) o -~ ~ j ~  dO= ~ (e~~176 n ~ o. 
0 0 

Again, since k E H, 
2fr 

o = ~ f  k(ef~176 ~ i. 
0 

By taking the conjugate value of (24), we see that  all the Fourier coefficients 

of k(d  ~ vanish; thus k ~ o  and C~/,--H. 

We still have to prove that  g cannot belong to L~/if go is not divisible by re. 

To this end, let re(r) denote the minimum of [f0(~)[ on the circle [z I ~  r < I, 

and let r be a fixed value such that  m ( r ) =  m > o. Under  the assumption g E C~ 

there will, for every e > o, exist a polynomial p ~pr ,=,  such that  l lP f - -  gll < ~m. 

Hence for ]zl-~--Q, o ~  I, 

2~ 

If (25) ~ [ p ( . l f ( z ) -  0(z) l 'd0 < ~"m'. 
0 

Putting go/fo-----h, we get on the circle ]~l-----r 

2~ 

l i p  (z) - g, ( )l'dO < (26) 
o 

and obtain, for [z[ = r, by Minkowsky's inequality, 

2~ 

< (llgli + + 

1 5  

(27) m)) z. 
2 ~  J 

o 

From this it is obvious that  the function h g~ must belong to H, and since 

[h (e~S)]-- - I almost everywhere, gl must be the outer factor of h gl, and thus h 

its inner factor. Then go is divisible by fo, which ends the proof. 

In  the preceding we have seen that  the inner factor of f is of decisive 

importance for the properties of the set C~:. Thus it follows from Theorem I 

that  a function generates the same manifold as its inner factor, i.e. C~ ~- C~:~. 

More generally, C~ and C~o are identical when, and only when fo is a divisor 

of go, and conversely, go a divisor of fo, which will occur only when fo ---- go. 
3 2 - - 4 8 1 7 3 .  Aeta  mathenm6ea .  81. I m p r i m 6  le 28 av r i l  1949. 
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IO. Now we shall see t ha t  the inner factor,  toge ther  with the quant i ty  d(f ) ,  

besides their  function-theoret ical  definition, also may be characterized by certain 

minimum properties in the manifold  C]. I f  e denotes the uni t  e lement  (e(z)--= i), 

we have 

(28) r*~e- - - z  ~, n = o , I , 2 , . . .  

and, if  d is the distance from e to C~, then the condition d =  o is obviously 

both necessary and sufficient for closure. In this  case we have fo = e; in the 

general  case the  following holds t rue:  

Theo rem II. The projection of e on C] coincides with the inner factor fo o f f  

constant V - I -  d ~. The quantities d and J = d ( f )  are connected 

d 2 ~--- i - -  e -2$ .  

I f  f (z)  vanish with its first p - -  I derivatives at the origin then the projection 

of T*P e = zp on C] falls on V I - d~ fo, where d~ is the distance from zp to C]. 

By the proof of the first part  of the theorem, we disregard the case f(o)----o 

as being trivial, since d = I, J = do. Le t  us then  assume f (o )  # o and let g be 

the projection of e on C]. Obviously g -  e must  be or thogonal  to ~ all elements 
$ n  O0 of C], hence in particular,  to {T g}o, which yields, 

2z~ 

(3 o) I--- I ( g ( d ~  I) .q(C to) ei"~ dO = o, ~ > O, 
2:rl~ , J  " 

0 

2~ 2~ 
I f ]  I f ~g(O', n = O  (3I) 2~  g(e'O)]Z e'n~ g(e'O) einOdO= (o  , n>_ i.  

0 0 

By taking  the conjugate  part  of this  integral,  we see tha t  the Four ier  series of 

]g(e '~ '~ reduces to the constant  term g(o) and therefore, 

I g(e;~ --- 9 (o) p.p. 

from which follows, 

(32) I 
(g) = �89 l o g  - -  

g (o) 

(33) d ~= I - - g ( o ) =  x - - e  -~JIg). 

Let  us now compare g(z) with the funct ion h(z)=fo(O)fo(Z); fo being the inner  

factor  of f .  A simple computat iou yields 

(34) ] 'h - -  e ?  = ! --f~o(o) = I --  e -2al/~ 
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Since fo must be a divisor of the inner factor of g, ~(g) ~ d(fo); hence, by (33) 

and (34), 

(35)  IIh - -  ell < l i t  - ell = d. 

On the other hand, it follows from the definition of g that  

Ilh-elt>-Ilg--ell. 
Then the sign of equality must hold in (35), which implies h = g ,  sinee the 

manifold C] is linear and the  Hilbert space is uniformly convex. Thus, 

g (z) = fo (o) fo (z) = V I " d '  f0 (z), 

and the first part of the theorem is established. 

As for the latter part of the theorem, let Hp be the subset of H consisting 

of all functions that  vanish with their 19 -- I first derivatives at  the origin. The 

transformation defined as a multiplication by z -p is then isometric and deter- 

mined throughout Hp. From this it is clear, that  the second part of the theorem 

is a consequence of the properties already proved. Let us only note that  if 

fo (z) = ap zp + . . . .  ap > o, then 

(36) d~ = x --  a~, 

and gp(z)= apfo(z), gp being the projection of zp on C]. 

Theorem III. The closed linear manifold C~ .q spanned by the sets 

{z~f(z)}7, {z~g()}o,z *~ 

where f ,  g ~ o, is identical with C~o generated by the largest common divisor he to 

the inner factors of f and g. 

Firstly, let us prove tha t  hoe C~g; i .e.  for every e > o polynomials p and q 

exist such that  HPf+ qg -- hell < ~. Put t ing 

f = fof~ = hoFof~ ~ hoF 

g = gogl = he Gogl ~-- he G, 

2o and Go will, by assumption, be inner functions without common factor. Hence 

I l p f  + q g  - hell = I I p F  + q G - -  iil 

and it is then suffieient to prove that  CF, G ~ H. 

If  this is not true an h ~ o  will exist, orthogonal to {z'F(z)}~, {z n G(z)}~*. 

Put t ing 
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2~ 

I / h(etO) F(e,O) e_,,OdO, 
0 

2 ~  

I f h (e io  ) G(dO ) e_,,odO, 
0 

we thus  have an----b, = o, n--< o, and the funct ions 

1 

will possess the same properties as ~(z) of formula (2x). Since the radial  l imits 

F(e ~~ and G(e ~~ may 

everywhere, 

vanish only on sets of measure zero, we have almost  

(r  _ h (e'~ 
lira F(r e~O ) -- 

rff i l --O 

w (" e'~ h (e'O), 
lira G(reiO ) -- 

r ~ l - - 0  

anct thus  the quotients 9~/F and ~,/G will represent  one and  the same mero- 

morphic funct ion m(~) in the uni t  circle. According to (I8) we may now write, 

ko 

where k o and l o are inner  functions wi thout  common factor,  and m I an outer  

funct ion such tha t  I ml (e ~~ I = ] h (e '~ I. Put t ing  ~ ---- ~o ~x and ~ = ~o ~x, we thus  

obtain 
~o~ ~o~1 ]co 

= Gog,  = To 

Hence 

So = ~o lo % lo. 
k o '  Go---- ko 

The inner  funct ions fro and ~?o must  then  be divisible by /Co. This implies t ha t  

l o is a common factor  of Fo, Go, and therefore,  l o must  be -~ x. Accordingly, 

the funct ion m no t  only is holomorphic in the un i t  circle, but  i t  in addi t ion also 

belongs to the space H,  which, as has been previously shown, implies t ha t  h --~ o. 
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The function h o therefore belongs to C~g. Then, by Theorem I, C~o ~ C~],g. 

Let  us now assume that  k----kokl is an arbitrary function belonging to C~g. 

Then for every s ~ o, we can determine two polynomials 1o and q such that  

liP f +  q g -  kl] ~ ~. In the same way as in Section 9, this leads to the bound- 

edness of the quotient ko/ho; i .e.  lco is divisible by h 0, which according to 

Theorem I, implies C~g ~ C~o. Thus, the two sets must be identical, and the 

theorem is proved. 

I I. Now, we shall consider the fully general case of a closed linear subset 

C* of H with the property 

(37) T* C* < C*, 
i. e. T* f E  C* when f E  C*. 

Theorem IV. Every closed linear manifold C* having the property (37), and 

not identical with the null element, contains a uniquely determined inner function fo 

that generates C* in the sense 

(38) C* = C~. 

Let  p be the least integer -----o such that  C* contains a function whose 10th 

order derivative is ~ o at the origin. As is easily seen, the distance dp from 

T*Pe==zP to C*, is then < I, and we may define a function f0 by the relation: 

] / I -  d~fo-----the projection of ~ on C*. 

In the same way as in Section Io, we find that  fo is an inner function, 

fo(Z) ---- apz p + ap+lZ p+I + "",  
such that 

i - - a l .  

I t  then follows that  C~ ~ C* Furthermore, if (38) were not true, there would 

exist an inner function go E C* which would not be divisible by re. In view of 

Theorem II I ,  the largest common factor 

he(z) ~- bpz p + bp+lZV+l + . . .  

of fo, go would also belong to C*. Then 

Vo, , I 
which implies ap < bp, thus leadiug to the contradiction 

- ho( )]l = i - -  h i <  4 ,  

which ends the proof. 
17 
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From Theorem IV we immediately get the following corrolary which in an 

essential point is equivalent to the theorem itself: Every non-empty set of inner 

functions {fol, enumerable or not, has a uniquely determined largest common 

factor he defined by the following properties: he is an inner function which is a 

divisor of every fo E { f  o}; whereas every ko with this property is a divisor of he. 

I2. Regarding the extinction problem, we shall content ourselves with the 

following result : 

Theorem V. Let  C be a closed linear ~bse t  of  H with the property 

(39) T C < C, 

and not identical with the null element. Then C will contain, either at least one 

eigenelement 

I - - J i g '  

or, otherwise, a function of the form 
2,* 

{/ } ( 4 0 )  ~0 (2 ')  = I - -  e x p  - -  I x _ z ei--o d t, ~ o 
0 

where Ix = l~ (8) is a nondeoreasing and bounded function whose points of increase form 

a set of at most zero measure. 

Let us denote by C* the orthogonal complement of C, and let f e  C, g E C*. 

In view of (39), we have, 

o = (f ,  g) = ( r - f ,  g) = ( f ,  r * - g ) ,  n >- o 

which implies that  T* C* < C*. As the theorem is evident in the ease C-----H 

we can assume that  C is a proper subset of H,  and consequently, that  C* con- 

tains functions ~ o. According to Theorem IV, there will exist an inner  func- 

tion h generating C*, and the condition 

( f , T * ' h ) = o ,  n>__o, 

is then both necessary and sufficient for f r o  belong to C. In  particular, an eigen- 

function 9~. belongs to C when, and only when (9~., h ) =  o. Put t ing 

h(~) ---- ~ c . ~ - ,  12"1 < i ,  
0 

we obtain 
to 

(h, ~ . )  = Y, e,, ~ .  = h (~). 
0 

Then qg~ E C only when h (~) = o. 
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On the  o ther  hand,  a gene ra l  proper ty  of inner  func t ions  h, is t h a t  I - -  h(o) h(z) 

is o r thogona l  to {znh(z)}*2. Thus,  I ~ h (o )h (z )  belongs to C, and, in the  case 

h(z) ~ o, [zl  < I, we have  
2~ 
l.eiO + z _ 

h (z) = exp - -  | ~-Tb--- d a} ~ I, 
j e  - - z  j 
0 

i_ze_~oda ~o,  
0 

i .e .  a func t ion  of the fo rm (4o), which proves the  theorem.  

Final ly ,  le t  us point  out  t h a t  t h rough  sl ight  modificat ions of the  argument ,  

the  resul ts  ob ta ined  may be ex tended  to the  space /-/P, 1o > I, of  holomorphic  

funct ions  f ( z )  subject  to a H a r d y  condi t ion  (x I) and. wi th  the norm 

2,~ 1 {,f IlflJ = ~ .  I f (e  ~~ ]P d 0 
0 

However ,  a ease of considerably grea ter  in teres t  is offered by the metr ic  

1 

]ff = a .  p p >- x, 

a~ being the Tay lo r  coefficients of f (z) .  W h en  19 = I we arr ive at  a case included 

in Wieners  original  results  eoncerr~ing the closure of t ransla t ions  of funct ions.  

The  eigenvalues now fill the  closed uni t  circle and the  W ien e r  closure cr i ter ion 

f ( z )  ~ o, ] z [ --< ], holds t rue.  I f ,  however,  the  closure condi t ion ~ ( f )  = o is re levant  

in the  cases I < p < 2, is an open question.  6 
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