ON TWO PROBLEMS CONCERNING LINEAR TRANSFORMATIONS IN HILBERT SPACE.

By
ARNE BEURLING
of Uppsala.

Introduction.

1. Let H be a Hilbert space and T and T^{*} two adjoined transformations, both determined throughout H. Let Φ_{λ} be the set of eigenelements of T, corresponding to λ, i. e. the solutions $\varphi \neq 0$ of the equation $T \varphi=\lambda \varphi$; and Φ the sum of all Φ_{h}. Firstly we assume that

We shall denote by C_{f} and C_{g}^{*} the closed linear manifolds spanned by $\left\{T^{n} f\right\}_{0}^{\infty}$ and $\left\{T^{* n} g\right\}_{o}^{\infty}$, respectively; f, g being elements in H.

This study is devoted to two general problems concerning the transformations T and T^{*} which we shall call the extinction problem and the closure problem. We shall say that T has an extinction theorem if, for every $f \neq 0$, it is true that the manifold C_{f} contains at least one eigenelement $\varphi \neq 0$. In the case

$$
f=\sum_{v=0}^{n} e_{v} \varphi_{v}, \quad \varphi_{v} \in \Phi_{\lambda_{v}},
$$

where $\lambda_{\nu} \neq \lambda_{\mu}$ for $\nu \neq \mu$, it is obvious that all φ_{ν} belong to C_{f}. By (A), every f may certainly be approximated arbitrarily closely by linear combinations of eigenelements; but this does by no means imply that the extinction theorem is a consequence of (A).

By the closure problem we mean the characterizing of the elements g, for which $C_{g}^{*}=H$, by the behaviour of the scalar product (φ, g), when φ runs through Φ. From the relations

$$
\left(\varphi_{\lambda}, T^{* n} g\right)=\left(T^{n} \varphi_{\lambda}, g\right)=\lambda^{n}\left(\varphi_{\lambda}, g\right), \quad n \geq 0
$$

it immediately follows that the condition

$$
\begin{equation*}
(\varphi, g) \neq 0, \quad \varphi \in \Phi, \tag{I}
\end{equation*}
$$

is necessary for closure. If this condition also is sufficient we shall, on account of a well known analogy in harmonic analysis, say that the transformation T^{*} will possess a Wiener closure theorem.

It seems to be a very difficult undertaking to decide, in general non-trivial cases, whether these two theorems are true or not and if they are equivalent. However, under the assumptions already made, it is always true that the extinction theorem implies the Wiener closure theorem. For, if C_{g}^{*} is a proper subset of H, an element $f \neq 0$ exists, such that

$$
\mathrm{o}=\left(f, T^{* n} g\right)=\left(T^{n} f, g\right), \quad n \geq 0
$$

Thus g is orthogonal to every $h \in C_{f}$, and hence to the eigenelement φ, which, according to the extinction theorem, must belong to C_{f}.
2. If we, in addition to the postulate (A), also assume that T is isometric, the extinction theorem holds and is a simple consequence of v. Néumann's ergodic theorem which we state in the following generalized form, due to F. Riesz ${ }^{1}$ and G. Birkhoff :

If T is a linear isometric transformation, or a contraction $(\|T f\| \leq\|f\|)$, of a uniformly convex Banach space, then the limit

$$
\lim _{n=\infty} \frac{1}{n} \sum_{0}^{n-1} T^{v} f=S(f)
$$

will exist for every element f.
Let us first give the following complement of this theorem. We shall say that f is orthogonal to g, or $f \perp g$, if

$$
\|f+c g\| \geq\|f\|
$$

for every complex number c. It ought to be observed that in general Banach spaces the property $f \perp g$ does not imply $g \perp f$.

If T has a fixelement $\varphi_{0}=T \varphi_{0}$ that is not orthogonal to f, then the limit $S(f)$ will be different from the null element.

By the definition of orthogonality, there exists a constant c such that $\left\|\varphi_{0}+c f\right\|<\left\|\varphi_{0}\right\|$. From this and the relations $\|S(g)\| \leq\|g\|$ and $S\left(\varphi_{0}\right)=\varphi_{0}$, it follows that

[^0]On Two Problems Concerning Linear Transformations in Hilbert Space. 241

$$
\|S(c f)\|=\left\|S\left(\varphi_{0}+c f\right)-\varphi_{0}\right\| \geq\left\|\varphi_{0}\right\|-\left\|\varphi_{0}+c f\right\|>0
$$

i. e. $S(f) \neq 0$. We thus get the following general extinction theorem:

Let T be a linear isometric transformation of a uniformly convex Banach space, such that the set Φ of eigenelements of T has the property:

$$
\varphi \perp f, \quad \varphi \in \Phi \text { implies } f=\mathrm{o} .
$$

Then for every $f \neq 0$ the manifold C_{f} will contain at least one eigenelement $\varphi \neq 0$.
By $\left(\mathrm{A}^{\prime}\right)$ a $\varphi=\varphi_{2}$ must exist which is not orthogonal to f. Since T is isometric, we will have $|\lambda|=1$ and the operator $T_{2}=\lambda^{-1} T$ is consequently isometric too, and has φ_{2} as fixelement. Thus

$$
S_{\lambda}(f)=\lim _{n=\infty} \frac{\mathrm{I}}{n} \sum_{0}^{n-1} T_{2}^{v} f \neq 0
$$

and the theorem follows since $S_{\lambda}(f)$ belongs both to C_{f} and $\boldsymbol{D}^{2}{ }^{2}$
It is immediately seen, that the theorem holds true also for a contraction, provided that its eigenvalues lie on the unit circumference $|\lambda|=r$.
3. Returning to the space H, it is now natural to consider the following case: T is a proper metric contraction, i.e.

$$
\begin{equation*}
\|T f\| \leq\|f\|, \quad \lim _{n=\infty}\left\|T^{n} f\right\|=o^{3} \tag{B}
\end{equation*}
$$

while T^{*} is isometric,
(C)

$$
\left\|T^{*} f\right\|=\|f\| .
$$

As will be seen subsequently, the class of operators subject to the conditions (A), (B) and (C) is still too wide to admit general results concerning the extinction and closure problems. However, under the additional assumption
(D) at least one eigenvalue is simple,
the two problems may be completely discussed with the following principal results: neither the Wiener closure criterion (1), nor the extinction theorem are valid; but the Wiener closure theorem holds true in a modified form stating that the inner product $\left(\varphi_{2}, g\right)$ is different from zero and, for normalized φ_{λ}, not »too small» as $|\lambda| \rightarrow \mathrm{I}$.

Similar results will be obtained for the extinction problem.

[^1]
An Isomorphism.

4. By elementary arguments we obtain the following proposition:

The conditions $(A),(B),(C)$, and (D), imply the existence of a complete orthonormal set $\left\{e_{n}\right\}_{0}^{\infty}$, such that.
(2)

$$
\begin{aligned}
& \begin{cases}T e_{0}=0 \\
T e_{n}=e_{n-1}, & n \geq \mathrm{1}\end{cases} \\
& T^{*} e_{n}=e_{n+1}, \quad n \geq 0
\end{aligned}
$$

(3)

The eigenvalues of T are all simple and fill the open unit circle $|\lambda|<1$. The corresponding eigenelements, normalized by the condition $\left(\varphi_{n}, e_{0}\right)=\mathrm{I}$, are of the form
(4)

$$
\varphi_{i}=\sum_{0}^{\infty} \lambda^{n} e_{n}
$$

In accordance with (C),

$$
\left(T T^{*} f, g\right)=\left(T^{*} f, T^{*} g\right)=(f, g)
$$

for every pair of elements f and g, and thus,
(5)

$$
T T^{*}=I=\text { the identity }
$$

By (D), there exists a simple eigenvalue $\lambda=\alpha$, which in view of (B) must be of modulus <I. If φ_{α} is a corresponding eigenelement, then $e_{0}=\varphi_{\alpha}-\alpha T^{*} \varphi_{\alpha}$ will be different from the null element, since by (C), $\left\|e_{0}\right\| \geq\left\|\varphi_{a}\right\|(1-|\alpha|)$. In the following, we will suppose that φ_{c} is normalized by the condition $\left\|e_{0}\right\|=1$, We get by (5)
(6)

$$
T e_{0}=T \varphi_{a}-\alpha T T^{*} \varphi_{\alpha}=\alpha \varphi_{a}-\alpha \varphi_{\alpha}=0
$$

hence e_{0} is an eigenelement corresponding to $\lambda=0$. Putting $e_{n}=T^{* n} e_{0}, n \geq 0$, it follows from (6) that, for $n>m \geq 0$,

$$
\left(e_{n}, e_{m}\right)=\left(T^{* n} e_{0}, T^{* m} e_{0}\right)=\left(e_{0}, T^{n-m} e_{0}\right)=0
$$

In view of the normalization $\left\|e_{0}\right\|=I$ we then get

$$
\left(e_{n}, e_{m}\right)= \begin{cases}0, & n \neq m \\ 1, & n=m\end{cases}
$$

By the definition of the set $\left\{e_{n}\right\}_{0}^{\infty}$ the relations (2) and (3) are satisfied, and thus φ_{λ} defined by the series (4), really represents an eigenelement. Putting $\lambda=\alpha$ in the series, we get back our original element φ_{α}.

It remains to prove that every eigenvalue is simple. If this is not true, there will exist a number $\beta,|\beta|<1$, such that the equation $T \varphi=\beta \varphi$, besides the solution φ_{β} of formula (4), also has a solution $\varphi_{\beta}^{\prime} \neq 0$, orthogonal to φ_{β}. Starting from φ_{β}^{\prime} we obtain, in the same manner as before, an orthonormal set $\left\{e_{n}^{\prime}\right\}_{0}^{\infty}$ with the same properties as $\left\{e_{n}\right\}_{0}^{\infty}$. Furthermore, $\left(e_{0}, e_{0}^{\prime}\right)=0$, from which follows that $\left(e_{n}, e_{m}^{\prime}\right)=0, n \geq 0, m \geq 0$. Consequently, the closed linear manifold spanned by the two sets are orthogonal. On the other hand this implies that, for every λ in the open unit circle, φ_{2} of formula (4) and

$$
\varphi_{\lambda}^{\prime}=\sum_{0}^{\infty} \lambda^{n} e_{n}^{\prime}
$$

will be linearly independent eigenelements.
From the preceding discussion, it will be clear that the conditions (A), (B) and (C) imply that the dimension number of the set Φ_{λ} is the same for all λ in the open unit circle, hence $=1$ in view of (D). Since $\boldsymbol{\Phi}$ is fundamental by assumption, and (4) represents all normalized eigenelements, the set $\left\{e_{n}\right\}_{0}^{\infty}$ must be complete, thus proving our proposition.
5. For every $f \in H$ we then have

$$
\begin{aligned}
f & =\sum_{0}^{\infty} \bar{f}_{n} e_{n}, \quad f_{n}=\left(e_{n}, f\right), \\
\|f\|^{2} & =\sum_{0}^{\infty}\left|f_{n}\right|^{2} .
\end{aligned}
$$

The below scalar product, where the parameter λ is replaced by z,

$$
\begin{equation*}
\left(\varphi_{z}, f\right)=\sum_{0}^{\infty} f_{n} z^{n} \equiv f(z), \quad|z|<\mathrm{I} \tag{7}
\end{equation*}
$$

thus transforms f into a function $f(z)$, holomorphic in the unit circle and satisfying the inequality

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta \leq \| f^{2}, \quad 0 \leq r<1
$$

According to well known properties, the radial limit

$$
f\left(e^{i \theta}\right)=\lim _{r=1-0} f\left(r e^{i \theta}\right)
$$

exist almost everywhere, and has a summable square. Furthermore, the class of Taylor series $f(z)$ constitutes a Hilbert space H with the scalar product

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) \overline{g\left(e^{i \theta}\right)} d \theta
$$

and the norm $\|f\|=\sqrt{(f, f)}$. By means of (7) we obtain a unitary transformation of H into H.

The operator T takes the function $f(z)$ into

$$
T f(z)=\frac{f(z)-f(0)}{z}
$$

while T^{*} takes $f(z)$ into

$$
T^{*} f(z)=z f(z)
$$

The eigenelements of T in the space H are obviously the functions

$$
\frac{1}{1-\bar{\lambda} z}, \quad|\lambda|<1
$$

The Closure and Extinction Problems.

6. In the space H we may formulate the closure problem in the following way:

For which functions $f(z)$ is it true that the set

$$
\begin{equation*}
\left\{z^{n} f(z)\right\}_{0}^{\infty} \tag{8}
\end{equation*}
$$

is fundamental on H ? If $f(z)$ does not possess this property, which functions are then contained in the closed linear manifold C_{f}^{*} spanned by the set (8)?

We already know that the Wiener criterion $f(z) \neq 0,|z|<1$, is a necessary condition for closure. At first sight, this condition also seems to be sufficient. However, as we shall see, this is not true. On the other hand, an additional condition of the form

$$
\varlimsup_{r=1-0} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{\mathrm{I}}{f\left(r e^{i \theta}\right)}\right|^{p} d \theta<\infty, \quad p>0
$$

proves to be sufficient but not necessary. By aid of a quantity $\delta(f)$ defined in the following manner

On Two Problems Concerning Linear Transformations in Hilbert Space. 245
(9)

$$
\delta(f)=\left\{\begin{array}{lll}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\frac{f\left(e^{i \theta}\right)}{f(0)}\right| d \theta & \text { if } & f(0) \neq 0 \\
+\infty & \text { if } & f(0)=0
\end{array}\right.
$$

the adequate condition takes the simple form $\delta(f)=0$. We easily see that
(io)

$$
\lim _{r=1-0} \frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\frac{f\left(e^{i \theta}\right)}{f\left(r e^{i \theta}\right)}\right| d \theta \geq 0
$$

holds true if $f \not \equiv 0$. The relation $\delta(f)=0$ thus requires both that

$$
\lim _{r=1-0} \frac{\mathbf{I}_{i}}{2 \pi} \int_{0}^{2 \pi} \log \left|\frac{f\left(r e^{i \theta}\right)}{f(0)}\right| d \theta=0
$$

i. e. $f(z)$ has no zeros in the unit circle, and that the limit (Io) vanishes, which means that $|f(z)|$ is not allowed to be very small as $|z| \rightarrow \mathrm{I}$.
7. By the proof, we shall avail ourselves of some well known properties, essentially due to Herglotz, F. and M. Riesz and R. Nevanlinna ${ }^{4}$, concerning harmonic and analytic functions. Here we shall not express these results in their original scope, but in a modified form appropriate for our special purpose.

Let $f(z) \neq 0$ be holomorphic for $|z|<1$ and subject to a Hardy condition

$$
\begin{equation*}
\varlimsup_{r=1 \rightarrow 0} \frac{\mathrm{I}}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta<\infty, \quad p>0 \tag{II}
\end{equation*}
$$

The radial limit $f\left(e^{i \theta}\right)$ then exists almost everywhere and $\log \left|f\left(e^{i \theta}\right)\right|$ is summable. Let us put

$$
\begin{equation*}
f_{1}(z)=\exp \left\{\frac{\mathrm{I}}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(e^{i \theta}\right)\right| \frac{e^{i \theta}+z}{e^{i \theta}-z} d \theta+i a\right\} \tag{12}
\end{equation*}
$$

where a is the argument of the first nonvanishing Taylor coefficient of $f(z)$. The following important inequality,

$$
\begin{equation*}
|f(z)| \leq\left|f_{1}(z)\right|, \quad|z|<1 \tag{13}
\end{equation*}
$$

holds always true, and the function $f_{0}(z)$ defined by the relation

$$
\begin{equation*}
f(z)=f_{0}(z) f_{1}^{\prime}(z) \tag{14}
\end{equation*}
$$

${ }^{4}$ See [3] Chap. VII, also for further references.
will then have the properties,

$$
\begin{equation*}
\left|f_{0}(z)\right| \leq \mathrm{I}, \quad|z|<\mathrm{I} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{r=1-0}\left|f_{0}\left(r e^{i \theta}\right)\right|=\mathrm{I} \quad \text { p. p. } \tag{16}
\end{equation*}
$$

In view of the normalization of $f_{1}(z)$, the first nonvanishing Taylor coefficient of $f_{0}(z)$ will be real and positive. The general expression for a function of this type is
(17)

$$
f_{0}(z)=\prod \frac{a_{v}-z}{\mathrm{I}-z \bar{a}_{v}} \frac{\bar{a}_{v}}{\left|a_{v}\right|} \exp \left\{-\int_{0}^{2 \pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} d \alpha\right\}
$$

where

$$
\Sigma\left(\mathrm{1}-\left|a_{v}\right|\right)<\infty, \quad\left|a_{v}\right|<\mathrm{I}
$$

and where $\alpha=\alpha(\theta)$ is a real nondecreasing bounded function, whose points of increase form a set of at most zero measure. If some of the a_{v} 's are zero, we define the corresponding factors in the Blaschke product as z. In special cases both the Blaschke product and the exponential factor may, of course, be reduced to the constant I.

A function which can be expressed in the form (12), where $U(\theta) \equiv \log \left|f\left(e^{i \theta}\right)\right|$ is summable, we shall call an outer function, whereas a function of the form (17) shall be called an inner function. The special functions f_{1} and f_{0} defined above, shall be termed the outer factor and the inner factor of f respectively. This decomposition is obviously uniquely determined if $f \neq 0$, and will be referred to as the Factorization Lemma.
8. Let now

$$
g_{0}(z)=\prod \frac{b_{v}-z}{\mathrm{I}-z \bar{b}_{v}} \frac{\bar{b}_{v}}{b_{v}} \exp \left\{-\int_{0}^{2 \pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} d \beta\right\}
$$

be another inner function. When g_{0} / f_{0} is bounded in the unit circle, then it obviously is an inner function too, and we shall call f_{0} a divisor of g_{0}. For this it is necessary and sufficient that $\left\{a_{v}\right\}$ is a subset of $\left\{b_{v}\right\}$ and that $\beta-\alpha$ is nondecreasing. In the general case we define the largest common factor of f_{0} and g_{0} as the inner function

$$
h_{0}(z)=\prod \frac{c_{\nu}-z}{1-z \bar{c}_{\nu}} \frac{\bar{c}_{\nu}}{c_{\nu}} \exp \left\{-\int_{0}^{2 \pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} d \gamma\right\}
$$

where $\left\{c_{v}\right\}$ is the intersection of the sets $\left\{a_{\nu}\right\}$ and $\left\{b_{\nu}\right\}$ and the connection between γ, α and β (considered as nonnegative and completely additive setfunctions) is such that γ is the largest common minorant of α and β. It is easily seen that h_{0} has the following characteristic property: if z is a point in the unit circle such that $\left|f_{0}(z)\right|+\left|g_{0}(z)\right| \neq 0$, then $\left|h_{0}(z)\right|<\left|k_{0}(z)\right|$ for any inner function $k_{0} \neq h_{0}$ which is a divisor of both f_{0} and g_{0}. In the case $h_{0} \equiv \mathrm{I}$, we shall say that f_{0} and g_{0} are without common factor.

Again, supposing that f and g are two functions, satisfying a condition (iI) and $\neq 0$, we may write

$$
\frac{f}{g}=\frac{f_{0}}{g_{0}} \cdot \frac{f_{1}}{g_{1}}
$$

If h_{0} is the largest common factor of f_{0} and g_{0}, we have $f_{0}=h_{0} F_{0}$ and $g_{0}=h_{0} G_{0}$ and obtain

$$
\begin{equation*}
\frac{f}{g}=\frac{F_{0}}{G_{0}} \cdot H_{1} \tag{18}
\end{equation*}
$$

where $H_{1}=f_{1} / g_{1}$ is an outer function and F_{0}, G_{0} are inner functions without common factor. Obviously these three functions are all uniquely determined.

Regarding the quantity $\delta(f)$, we have $\delta\left(f_{1}\right)=0$ for every outer function. Hence

$$
\delta(f)=\delta\left(f_{0}\right)+\delta\left(f_{1}\right)=\delta\left(f_{0}\right)
$$

For inner function, on the other hand,

$$
\delta\left(f_{0}\right)=\log \frac{1}{f_{0}(0)}=\sum \log \frac{1}{\left|a_{\vartheta}\right|}+\int_{0}^{2 \pi} d \alpha \geq 0 .
$$

The relation $\delta(f)=0$ thus implies that the inner factor of f reduces to the constant I.
9. The two problems, raised at the beginning of this chapter, will now be completely solved by the following:

Theorem I. Let $f, g \in H$ and be $\neq 0$. Then g will belong to the manifold C_{f}^{*} when, and only when, the inner factor of f is a divisor of the inner factor of g.

The stated closure criterion $\delta(f)=0$ is obviously a consequence of this theorem, since the property $C_{f}^{*}=H$ demands that the inner factor f_{0} of f is a divisor of any inner function which can only be true if $f_{0} \equiv \mathrm{I}$, i. e. if $\delta(f)=0$.

Let us first prove that $g \in C_{f}^{*}$ if f_{0} is a divisor of g_{0}. To this end, it is sufficient to prove that to every $\varepsilon>0$, a polynominal p may be found such that

$$
\|p f-g\|<\varepsilon
$$

But $\left|f_{0}\left(e^{i \theta}\right)\right|=1$ almost everywhere, and $g_{0} / f_{0}=h_{0}$ is an inner function, hence

$$
\|p f-g\|=\left\|p f_{1}-h_{0} g_{1}\right\|
$$

and it is thus sufficient to prove that $C_{f_{1}}^{*}=H$ i. e. that the equations
(19)

$$
\left(T^{* n} f_{1}, k\right)=0, \quad n \geq 0
$$

have no solution $k \in H$ other than $k \equiv 0$. Let us put

$$
c_{n}=\frac{\mathrm{I}}{2 \pi} \int_{0}^{2 \pi} f_{1}\left(e^{i \theta}\right) \overline{k\left(e^{i \theta}\right)} e^{-i n \theta} d \theta
$$

By (19), $c_{n}=0, n \leq 0$, and consequently
(20)

$$
f_{1}\left(e^{i \theta}\right) \overline{k\left(e^{i \theta}\right)} \sim \sum_{1}^{\infty} c_{n} e^{i n \theta}
$$

where \sim is the common symbol in the theory of Fourier series. Since the left hand member in (20) is a summable function, the Taylor series
(2I)

$$
\psi(z)=\sum_{1}^{\infty} e_{n} z^{n}, \quad|z|<\mathrm{I}
$$

has the following well known properties,

$$
\begin{gather*}
\psi\left(e^{i \theta}\right)=\lim _{r=1-0} \psi\left(r e^{i \theta}\right)=f_{1}\left(e^{i \theta}\right) \overline{k\left(e^{i \theta}\right)} \quad \text { p. p. } \tag{22}\\
\lim _{r=1-0} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\psi\left(e^{i \theta}\right)-\psi\left(r e^{i \theta}\right)\right| d \theta=\text { o. }
\end{gather*}
$$

According to the Factorization Lemma we get, if k_{1} and ψ_{1} denote the outer factors of k and ψ, respectively,

$$
|\psi(z)| \leq\left|\psi_{1}(z)\right|=\left|f_{1}(z)\right|\left|k_{1}(z)\right|, \quad|z|<\mathrm{1}
$$

Hence

$$
\left|\frac{\psi(z)}{f_{1}(z)}\right| \leq\left|k_{1}(z)\right|, \quad|z|<\mathrm{I}
$$

On Two Problems Concerning Linear Transformations in Hilbert Space. 249
and the function ψ / f_{1} then belongs to H and vanishes at the origin. It then follows from (22) that

$$
\begin{equation*}
0=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\psi\left(e^{i \theta}\right)}{f_{1}\left(e^{i \theta}\right)} e^{i n \theta} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{k\left(e^{i \theta}\right)} e^{i n \theta} d \theta, \quad n \geq 0 . \tag{24}
\end{equation*}
$$

Again, since $k \in \boldsymbol{H}$,

$$
\mathrm{o}=\frac{\mathrm{I}}{2 \pi} \int_{0}^{2 \pi} k\left(e^{i \theta}\right) e^{i n \theta} d \theta, \quad n \geq \mathrm{I}
$$

By taking the conjugate value of (24), we see that all the Fourier coefficients of $k\left(e^{i \theta}\right)$ vanish; thas $k \equiv 0$ and $C_{f_{2}}^{*}=H$.

We still have to prove that g cannot belong to C_{f}^{*} if g_{0} is not divisible by f_{0}. To this end, let $m(r)$ denote the minimum of $\left|f_{0}(z)\right|$ on the circle $|z|=r<1$, and let r be a fixed value such that $m(r)=m>0$. Under the assumption $g \in C_{f}^{*}$ there will, for every $\varepsilon>0$, exist a polynomial $p=p_{r, \varepsilon}$, such that $\|p f-g\|<\varepsilon m$. Hence for $|z|=\rho, 0 \leq \rho \leq 1$,

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}|p(z) f(z)-g(z)|^{2} d \theta<\varepsilon^{2} m^{2} \tag{25}
\end{equation*}
$$

Putting $g_{0} \mid f_{0}=h$, we get on the circle $|z|=r$

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p(z) f_{1}(z)-h(z) g_{1}(z)\right|^{2} d \theta<\varepsilon^{2} \tag{26}
\end{equation*}
$$

and obtain, for $|z|=r$, by Minkowsky's inequality,

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|h(z) g_{1}(z)\right|^{z} d \theta<(\|g\|+\varepsilon(1+m))^{2} \tag{27}
\end{equation*}
$$

From this it is obvious that the function $h g_{1}$ must belong to H, and since $\left|h\left(e^{i \theta}\right)\right|=1$ almost everywhere, g_{1} must be the outer factor of $h g_{1}$, and thus h its inner factor. Then g_{0} is divisible by f_{0}, which ends the proof.

In the preceding we have seen that the inner factor of f is of decisive importance for the properties of the set C_{f}^{*}. Thus it follows from Theorem I that a function generates the same manifold as its inner factor, i. e. $C_{f}^{*}=C_{f_{0}}^{*}$. More generally, C_{f}^{*} and C_{g}^{*} are identical when, and only when f_{0} is a divisor of g_{0}, and conversely, g_{0} a divisor of f_{0}, which will occur only when $f_{0}=g_{0}$.

32-48173. Acta mathematica. 81. Imprimé le 28 avril 1949.
10. Now we shall see that the inner factor, together with the quantity $\delta(f)$, besides their function-theoretical definition, also may be characterized by certain minimum properties in the manifold C_{f}^{*}. If e denotes the unit element $(e(z) \equiv \mathrm{I})$, we have

$$
\begin{equation*}
T^{* n} e=z^{n}, \quad n=0,1,2, \ldots \tag{28}
\end{equation*}
$$

and, if d is the distance from e to C_{f}^{*}, then the condition $d=0$ is obviously both necessary and sufficient for closure. In this case we have $f_{0}=e$; in the general case the following holds true:

Theorem II. The projection of e on C_{f}^{*} coincides with the inner factor f_{0} of f multiplied by the constant $\sqrt{\overline{\mathrm{I}}-d^{2}}$. The quantities d and $\delta=\delta(f)$ are connected by the relation

$$
\begin{equation*}
d^{2}=1-e^{-2 d} . \tag{29}
\end{equation*}
$$

If $f(z)$ vanish with its first $p-1$ derivatives at the origin then the projection of $T^{* p} e=z^{p}$ on C_{f}^{*} falls on $\sqrt{I-\overline{d_{p}^{y}}} f_{0}$, where d_{p} is the distance from z^{p} to O_{f}^{*}.

By the proof of the first part of the theorem, we disregard the case $f(0)=0$ as being trivial, since $d=\mathrm{I}, \delta=\infty$. Let us then assume $f(0) \neq 0$ and let g be the projection of e on C_{f}^{*}. Obviously $g-e$ must be orthogonal to all elements of C_{f}^{*}, hence in particular, to $\left\{T^{*} n g\right\}_{o}^{\infty}$, which yields,
(30)

$$
\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{\left(g\left(e^{i \theta}\right)\right.}-1\right) g\left(e^{i \theta}\right) e^{i n \theta} d \theta=0, \quad n \geq 0
$$

$$
\frac{\mathrm{I}}{2 \pi} \int_{0}^{2 \pi}\left|g\left(e^{i \theta}\right)\right|^{2} e^{i n \theta} d \theta=\frac{\mathrm{I}}{2 \pi} \int_{0}^{2 \pi} g\left(e^{i \theta}\right) e^{i n \theta} d \theta= \begin{cases}g(0), & n=0 \tag{31}\\ 0, & n \geq \mathrm{I}\end{cases}
$$

By taking the conjugate part of this integral, we see that the Fourier series of $\left|g\left(e^{i \theta}\right)\right|^{2}$ reduces to the constant term $g(0)$ and therefore,

$$
\left|g\left(e^{i \theta}\right)\right|^{2}=g(\mathrm{o}) \quad \text { p. p. }
$$

from which follows,

$$
\begin{equation*}
\delta(g)=\frac{1}{2} \log \frac{1}{g(0)} \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
d^{2}=\mathrm{I}-g(\mathrm{o})=1-e^{-2 d(g)} . \tag{33}
\end{equation*}
$$

Let us now compare $g(z)$ with the function $h(z)=f_{0}(0) f_{0}(z) ; f_{0}$ being the inner factor of f. A simple computation yields

$$
\begin{equation*}
\| h-e e^{Z}=1-f_{0}^{2}(0)=\mathrm{I}-e^{-2 \delta\left(f_{0}\right)} . \tag{34}
\end{equation*}
$$

Since f_{0} must be a divisor of the inner factor of g, $\boldsymbol{\delta}(g) \geq \boldsymbol{\delta}\left(f_{0}\right)$; hence, by (33) and (34),
(35)

$$
\|h-e\| \leq\|g-e\|=d
$$

On the other hand, it follows from the definition of g that

$$
\|h-e\| \geq\|g-e\|
$$

Then the sign of equality must hold in (35), which implies $h=g$, since the manifold C_{f}^{*} is linear and the Hilbert space is uniformly convex. Thus,

$$
g(z)=f_{0}(0) f_{0}(z)=\sqrt{1-d^{z}} f_{0}(z)
$$

and the first part of the theorem is established.
As for the latter part of the theorem, let H_{p} be the subset of H consisting of all functions that vanish with their $p-1$ first derivatives at the origin. The transformation defined as a multiplication by z^{-p} is then isometric and deter mined throughout H_{p}. From this it is clear, that the second part of the theorem is a consequence of the properties already proved. Let us only note that if $f_{0}(z)=a_{p} z^{p}+\ldots, a_{p} \geq 0$, then

$$
\begin{equation*}
d_{p}^{2}=\mathrm{I}-a_{p}^{2} \tag{36}
\end{equation*}
$$

and $g_{p}(z)=a_{p} f_{0}(z), g_{p}$ being the projection of z^{p} on C_{f}^{*}.
Theorem III. The closed linear manifold $C_{f, g}^{*}$ spanned by the sets

$$
\left\{z^{n} f(z)\right\}_{0}^{\infty}, \quad\left\{z^{n} g(z)\right\}_{0}^{\infty}
$$

where $f, g \neq 0$, is identical with $C_{h_{0}}^{*}$ generated by the largest common divisor h_{0} to the inner factors of f and g.

Firstly, let us prove that $h_{0} \in C_{f, g}^{*}$; i. e. for every $\varepsilon>0$ polynomials p and q exist such that $\left\|p f+q g-h_{0}\right\|<\varepsilon$. Putting

$$
\begin{aligned}
& f=f_{0} f_{1}=h_{0} F_{0} f_{1} \equiv h_{0} F \\
& g=g_{0} g_{1}=h_{0} G_{0} g_{1} \equiv h_{0} G,
\end{aligned}
$$

F_{0} and G_{0} will, by assumption, be inner functions without common factor. Hence

$$
\left\|p f+q g-h_{0}\right\|=\|p F+q G-\mathrm{I}\|
$$

and it is then sufficient to prove that $C_{F, G}=H$.
If this is not true an $h \neq 0$ will exist, orthogonal to $\left\{z^{n} F(z)\right\}_{0}^{\infty},\left\{z^{n} G(z)\right\}_{0}^{\infty}$. Putting

$$
\begin{aligned}
& a_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{h\left(e^{i \theta}\right)} \boldsymbol{F}\left(e^{i \theta}\right) e^{-i n \theta} d \theta \\
& b_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{h\left(e^{i \theta}\right)} G\left(e^{i \theta}\right) e^{-i n \theta} d \theta
\end{aligned}
$$

we thus have $a_{n}=b_{n}=0, n \leq 0$, and the functions

$$
\begin{aligned}
& \varphi(z)=\sum_{1}^{\infty} a_{n} z^{n}, \quad|z|<1 \\
& \psi(z)=\sum_{1}^{\infty} b_{n} z^{n}, \quad|z|<1
\end{aligned}
$$

will possess the same properties as $\psi(z)$ of formula (21). Since the radial limits $F\left(e^{i \theta}\right)$ and $G\left(e^{i \theta}\right)$ may vanish only on sets of measure zero, we have almost everywhere,

$$
\begin{aligned}
& \lim _{r=1-0} \frac{\varphi\left(r e^{i \theta}\right)}{F\left(r e^{i \theta}\right)}=\overline{h\left(e^{i \theta}\right)}, \\
& \lim _{r=1-0} \frac{\psi\left(r e^{i \theta}\right)}{G\left(r e^{i \theta}\right)}=\overline{h\left(e^{i \theta}\right)},
\end{aligned}
$$

and thus the quotients φ / F and ψ / G will represent one and the same meromorphic function $m(2)$ in the unit circle. According to (18) we may now write,

$$
m=\frac{k_{0}}{l_{0}} m_{1}
$$

where k_{0} and l_{0} are inner functions without common factor, and m_{1} an outer function such that $\left|m_{1}\left(e^{i \theta}\right)\right|=\left|h\left(e^{i \theta}\right)\right|$. Putting $\varphi=\varphi_{0} \varphi_{1}$ and $\psi=\psi_{0} \psi_{1}$, we thus obtain

$$
\frac{\varphi_{0} \varphi_{1}}{F_{0} f_{1}}=\frac{\psi_{0} \psi_{1}}{G_{0} g_{1}}=\frac{k_{0}}{l_{0}} m_{1}
$$

Hence

$$
F_{0}=\frac{\varphi_{0} l_{0}}{k_{0}}, \quad G_{0}=\frac{\psi_{0} l_{0}}{k_{0}}
$$

The inner functions φ_{0} and ψ_{0} must then be divisible by k_{0}. This implies that l_{0} is a common factor of F_{0}, G_{0}, and therefore, l_{0} must be $\equiv 1$. Accordingly, the function m not only is holomorphic in the unit circle, but it in addition also belongs to the space H, which, as has been previously shown, implies that $h \equiv 0$.

The function h_{0} therefore belongs to $C_{f, g}^{*}$. Then, by Theorem I, $C_{h_{0}}^{*}<C_{f, g}^{*}$. Let us now assume that $k=k_{0} k_{1}$ is an arbitrary function belonging to $C_{f, g}^{*}$. Then for every $\varepsilon>0$, we can determine two polynomials p and q such that $\|p f+q g-k\|<\varepsilon$. In the same way as in Section 9 , this leads to the boundedness of the quotient k_{0} / h_{0}; i.e. k_{0} is divisible by h_{0}, which according to Theorem I, implies $C_{f, g}^{*} \subset C_{h_{0}}^{*}$. Thus, the two sets must be identical, and the theorem is proved.
II. Now, we shall consider the fully general case of a closed linear subset C^{*} of H with the property
(37)

$$
T^{*} C^{*}<C^{*}
$$

i. e. $T^{*} f \in C^{*}$ when $f \in C^{*}$.

Theorem IV. Every closed linear manifold C* having the property (37), and not identical with the null element, contains a uniquely determined inner function f_{0} that generates C^{*} in the sense

$$
\begin{equation*}
C^{*}=C_{f_{0}}^{*} \tag{38}
\end{equation*}
$$

Let p be the least integer ≥ 0 such that C^{*} contains a function whose p th order derivative is $\neq 0$ at the origin. As is easily seen, the distance d_{p} from $T^{* p} e=z^{p}$ to C^{*}, is then $<\mathrm{I}$, and we may define a function f_{0} by the relation:

$$
\sqrt{\mathrm{I}-d_{p}^{2}} f_{0}=\text { the projection of } z^{p} \text { on } C^{*}
$$

In the same way as in Section 10 , we find that f_{0} is an inner function,
such that

$$
f_{0}(z)=a_{p} z^{p}+a_{p+1} z^{p+1}+\cdots,
$$

such that

$$
d_{p}^{2}=\mathrm{I}-a_{p}^{2}
$$

It then follows that $C_{f_{0}}^{*}<C^{*}$ Furthermore, if (38) were not true, there would exist an inner function $g_{0} \in C^{*}$ which would not be divisible by f_{0}. In view of Theorem III, the largest common factor

$$
h_{0}(z)=b_{p} z^{p}+b_{p+1} z^{p+1}+\cdots
$$

of f_{0}, g_{0} would also belong to C^{*}. Then

$$
\left|\frac{f_{0}(z)}{h_{0}(z)}\right|<\mathrm{I}, \quad|z|<\mathrm{I},
$$

which implies $a_{p}<b_{p}$, thus leading to the contradiction

$$
\left\|z^{p}-b_{p} h_{0}(z)\right\|^{2}=\mathrm{I}-b_{p}^{2}<d_{p}^{y}
$$

which ends the proof.

From Theorem IV we immediately get the following corrolary which in an essential point is equivalent to the theorem itself: Every non-empty set of inner functions $\left\{f_{0}\right\}$, enumerable or not, has a uniquely determined largest common factor h_{0} defined by the following properties: h_{0} is an inner function which is a divisor of every $f_{0} \in\left\{f_{0}\right\}$; whereas every k_{0} with this property is a divisor of h_{0}.
12. Regarding the extinction problem, we shall content ourselves with the following result:

Theorem V. Let C be a closed linear subset of H with the property

$$
\begin{equation*}
T C<C \tag{39}
\end{equation*}
$$

and not identical with the null element. Then C will contain, either at least one eigenetement

$$
\varphi_{\lambda}(z)=\frac{\mathrm{I}}{\mathrm{I}-\lambda z}, \quad|\lambda|<\mathrm{I}
$$

or, otherwise, a function of the form

$$
\begin{equation*}
\psi(z)=\mathrm{I}-\exp \left\{-\int_{0}^{2 \pi} \frac{1}{\mathrm{I}-z e^{i \theta}} d \mu\right\} \not \equiv 0 \tag{40}
\end{equation*}
$$

where $\mu=\mu(\theta)$ is a nondecreasina and bounded function whose points of increase form a set of at most zero measure.

Let us denote by C^{*} the orthogonal complement of C, and let $f \in C, g \in C^{*}$. In view of (39), we have,

$$
\mathrm{o}=(f, g)=\left(T^{n} f, g\right)=\left(f, T^{* n} g\right), \quad n \geq 0
$$

which implies that $T^{*} C^{*}<C^{*}$. As the theorem is evident in the case $C=H$ we can assume that C is a proper subset of H, and consequently, that C^{*} contains functions $\neq 0$. According to Theorem IV, there will exist an inner function h generating C^{*}, and the condition

$$
\left(f, T^{* n} h\right)=0, \quad n \geq 0
$$

is then both necessary and sufficient for f to belong to C. In particular, an eigenfunction φ_{2} belongs to C when, and only when $\left(\varphi_{2}, h\right)=0$. Putting

$$
h(z)=\sum_{0}^{\infty} c_{n} z^{n}, \quad|z|<\mathrm{I}
$$

we obtain

$$
\left(h, \varphi_{\lambda}\right)=\sum_{0}^{\infty} c_{n} \bar{\lambda}^{n}=h(\bar{\lambda})
$$

Then $\varphi_{i} \in C$ only when $h(\bar{\lambda})=0$.

On Two Problems Concerning Linear Transformations in Hilbert Space. 255
On the other hand, a general property of inner functions h, is that $\mathrm{I}-h(0) h(z)$ is orthogonal to $\left\{z^{n} h(z)\right\}_{0}^{\infty}$. Thus, $\mathrm{I}-h(\mathrm{o}) h(z)$ belongs to C, and, in the case $h(z) \neq \mathrm{o},|z|<\mathrm{I}$, we have

$$
\begin{gathered}
h(z)=\exp \left\{-\int_{0}^{2 \pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} d \alpha\right\} \neq \mathrm{I}, \\
\mathrm{I}-h(\mathrm{o}) h(z)=\mathrm{I}-\exp \left\{-\int_{0}^{2 \pi} \frac{2}{\mathrm{I}-z e^{-i \theta}} d \alpha\right\} \neq \mathrm{o}
\end{gathered}
$$

i.e. a function of the form (40), which proves the theorem.

Finally, let us point out that through slight modifications of the argument, the results obtained may be extended to the space $H^{p}, p>1$, of holomorphic functions $f(z)$ subject to a Hardy condition (II) and with the norm

$$
\|f\|=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{\frac{1}{p}}
$$

However, a case of considerably greater interest is offered by the metric

$$
\|f\|=\left\{\sum_{0}^{\infty}\left|a_{n}\right|^{p}\right\}^{\frac{1}{p}}, \quad p \geq \mathrm{I}
$$

a_{n} being the Taylor coefficients of $f(z)$. When $p=1$ we arrive at a case included in Wieners original results concerning the closure of translations of functions. The eigenvalues now fill the closed unit circle and the Wiener closure criterion $f(z) \neq 0,|z| \leq 1$, holds true. If, however, the closure condition $\delta(f)=0$ is relevant in the cases $\mathrm{I}<p<2$, is an open question. ${ }^{5}$

References.

[r] R. P. Boas, Jr., Expansions of analytic Functions, Trans. Amer. Math. Soc. vol. 48 (1940) pp. $467-87$.
[2] A. Beurling, Un théorème sur les fonctions bornées et uniformément contineus sur l'axe réel, Acta math. vol. 77 (1945) pp. $127-36$.
[3] R. Nevanlinna, Eindeutige analytische Funktionen, Springer 1936.
[4] F. Riesz, Another Proof of the mean ergodic Theorem, Acta Szeged Sect. Sci. Math. 10 (1941).
[5] L. Schwartz, Théorie générale des fonctions moyenne-périodiques, Annals of Math. vol. 48 (1947) pp. 858-929.
[6] N. Wiener, Tauberian Theorems, Annals of Math. vol. 33 (1932) pp. i-ioo.
[7] —》- The Fourier Integral, Cambridge 1933.

[^2]
[^0]: ${ }^{1}$ See [4] in the References and G. Birkhoff, The mean ergodic Theovem, Duke vol. 5 (1939).

[^1]: 2 The interest of this theorem is chiefly due to the fact that the relevant orthogonality is $\varphi \perp f$ and not the converse but more natural $f \perp \varphi$. It should also be noted that at least in the ordinary L^{p}-spaces $(p>1, \neq 2)$ there are subsets M having the property (A^{\prime}) without being fundamental.
 ${ }^{3}$ This latter condition may be replaced by the following weaker assumption: the eigenvalues of T are of modulus $<\mathrm{I}$.

 31-48173. Acta mathematica. 81. Imprimé le 28 avril 1949.

[^2]: ${ }^{5}$ For the semi-group of translations $T_{\tau} f \equiv f(x+\tau), \tau \geq 0$, applied to functions defined over $0 \leq x<\infty$, a corresponding study will be published by B. Nyman.

