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i.  In troduct ion .  

A set of functions {~n (x)} is said to be complete in a space /2(a ,  b)(I _<p___oo), 
b 

if ff(x)~n(x)dx = o (n  = i, 2, 3 , ' "  ") implies f(x)=-- 0 when f ( x ) < / 2 ( a ,  b). Let 

the differential equation 

d ~ 
Ly-----$y, L=-- d x  ~.+q(x) (L) 

together with linear homogeneous boundary conditions at the end-points of an 

interval (a, b) (-- c~ < a < b --< + ~ )  define a regular or singular boundary-value 

problem of a Sturm-Liouville type 1, whose eigenfunctions form a set, complete 

in L 2 (a, b). Then, in general, the set of squares on the eigenfunctions cannot 

be complete in LS(a, b) (for instance the set {sin ~ nx}, belonging to ( L ) f o r  

q(x) = o and boundary conditions y(o) = y ( z ) =  o, has the completeness properties 

of the set {cos 2nx}). In  this paper some completeness properties of sets of 

eigenfunction-squares will be studied. The problems arose at the study of so- 

called inverse boundary-value problems, i. e. problems where the differential 

equation is to be determined from the knowledge of the spectrum and boundary 

conditions. ~ 

The main results are, roughly speaking, the following. 

' In the sequel we use S-L as an abbreviation of Sturm-Liouville. 
J G. BORG, Eine Umkehrung der Sturm-LiouviUeschen Eigenwertaufgabe, Acta math. 78 (I945). 

~ - - ,  Inverse Problems in the theory of Characteristic Values of Differential Systems, Dixieme 
Congres des Math~maticiens Scandinaves, Copenhague I946. In these papers some results con- 
cerning eigenfunction-squares of regular S-L problems are contained. 

34-48173. ~4cta mathematica. 81. Irnprim~ le 28 avril 1949. 
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I f  to one set of eigenfunction-squares there is added another, belonging to 

other boundary conditions, then the combined set is complete in the space M(a, b) 
of functions, effectively bounded on (a, b). The precise wording is given in No. 3 

trivial instance: {sin~nx} and ~sin ~2n + I  (a x the latter set equivalent to ( 2 J 

{cos (2 n + I)X} and belonging to boundary conditions y(o)--~ y ' ( z ) ~  o). 

The combined set is not normalized, nor in general minimal. Yet holds that  

at most 2 of the eigenfunction-squares are superfluous - -  at  least in the case of 

regular or regularly singular S-L problems. The proof is given in No. 9. 

The examples and results above indicate that one set of eigenfunction squares 

is complete in a space of functions, defined only on half the original i n t e r v a l -  

if this is finite. This property is at last, more precisely formulated, proved in 

No. IO for regular and regularly singular S-L problems. 

~. Notations and Known Properties of Singular S-L Problems. 

Some of the fundamental methods and results concerning singular S-L 
problems will be needed. 1 The differential eq. is as above 

L y - ~ y  (L) 
where 

d ~ 
L ------ q (x) --  d x ~" 

q(x) will be supposed to be continuous 

bo may be + o o .  If  b o < c ~ , q ( x )  may have a singularity for x----bo. 

The boundary conditions are 

for x = o: y (o) cos a + y' (o) sin a ~- o, o --< a < ~, 

for x ----- bo: y (x) < L * (o, bo) 

with the addition of another condition in the limit circle casefl 

We quote this boundary value problem as (L, R). 

TITCH~[ARSH, 

within an interval o ~ x < bo. 

(R) 

Further  we put, following 

H. WEYL, ~ber  gewShnliche Differentialgleichungen mit  Singularitiiten . . . ,  Math. Aml; 
68 (19IO). 

E. C. TITCHMARStI, Eigenfunction Expansions, Oxford 1946. This book is in the sequel 
quoted TITCHMARSH. We refer in this No. especially to TITCHMARSH, ch. 2nd. 

2 Cf. I~. WEYL, loe. eit. 
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O(x, ~ ) =  the solution of (L), which takes the  initial values 

8 (o, ~) = cos  a, 0' (o, ~) = sin a 

r (~, ~ ) =  the  solution of (L), which takes the  initial  values 

(o, g) ----- sin a, 4'  (o, g) = - -  cos  a. 

T h e n  ~ (X, g) satisfies the  boundary  condit ion (R) for x = o. 

Let  
a (x, = o (x, ;t) + z r 

and 1 (~ )=  lb (~t) be chosen so tha t  

holds, i .e .  
,9 (b, ~) cos tff + ,9' (b, ~t) sin ~ = o 

O' (b, ~t) s in  fl 1 (~) = - 0 (b, ~) c o s  fi + r 
~b (b, ~t) cos  ~ + (b, ~) s in  

(2. I) 

(2.2) 

When  ;L and b are fix numbers  (Ira (~)# o), and z = cot/~ describes the  real z- 

axis, the  complex number  1 (;t) describes a circle Cb in the  complex /-plane. The 

inter ior  points of the  circle are character ized by the  ineq. 

b 

f Im  (l) (2.3) 
�9 Ira(A)" 
0 

From this follows tha t  if b ' <  b, then  the  circle Cb,, includes the  circle Cb, 
and hence tha t  Cb converges to a l imit  point  or a limit circle as b-~ bo. 

Let  m (~t) be the  limit point  or a point  on the l imit  circle (for the  definition 

of which one addi t ional  condi t ion at x = bo is needed, cf. (R) above), then  

~p (x, A) -~ 0 (x, A) + m (A) 6 (x, A) < L ~ (o, bo) 

Im (m (A)) 
I m  (~.) 

(2.4) 

(2 .5 )  

and 
bo 

f l p(x,Z)l - dx=  _ 
0 

Regarded  as a funct ion  of A, lb(~.) is meromorphic  (I;LI< oo) and converges 

boundedly in the upper (and lower) half  of the A-plane to the  funct ion re(A). 

3- The  T h e o r e m  of  Completeness .  

We shall assume tha t  m(A) as [(A) is a meromorphic  funct ion (IAI < oo). 

Then  the spectrum {An} of (L. R) is the set of poles, thus  a discrete point  set. 
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We shall further  assume that  there exists a finite number Q so that  

I 
o o  

(We shall in the sequel always assume all ;t~ ~ o; this is no restriction, for the 

addition of a constant c to q(x) transforms the spectrum {~,} into {)~--c}). 

I f  these two conditions are satisfied, we will say that  (L, R ) h a s  a point 

spectrum with a finite convergence expo,ent (Q).I 

Let (R*) be the boundary conditions (R) with a exchanged for a* (i. e. the 

conditions at x = b0 unchmaged). To all functions, numbers, and relations de- 

fined in connection witl~ the problem (L,R), then correspond functions, etc., 

belonging to the problem (L, R*). We shall only use a * to distinguish them 

from the former ones. For instance the eigenvalues of (L, B) will be denoted 

by {~,,}, those of (L,R*) by {~*}, the normalized eigenfunctions by {~p~(x)} and 

{~p*(x)} respectively, the meromorphic functions by m(;t) and m* (~) respectively. 

We shall prove the following theorem. 

I f  the spectra of  the boundary-value problems (L, R) and (L, R*) (a* ~ a rood z) 

both are point-spectra with a finite convergence exponent, then the set of  all the 

squares of  eigenfunctions {~p~, (x), lp~ ~ (x)} (n, m = I, 2, 3 , - . . )  is complete in class 

M(o, bo) of]unctions effectively bounded within the interval o <--x < bo. 

Remark. The classical S-L problems, regular or regularly singular at  x =  b0 

satisfy the conditions of the theorem. 

4. A Boundary-Yalue Problem with Eigenfunetions {~(x)} and {~*2(x)}. 

Let Yl(x) and Yz(x) be solutions of (L), then u(x)=Yx 'Y2 is a solution of 

D u  + 4~u '  --  u'" + 40, - -  q(x))u' - -  2 q' (x)u = o, (D) 

where for the sake of simplicity we assume q' (x) continous (o ~ x < b0). Then 
*2 ~p~ (x) and ~p~ (x) are solutions of (D) for ~ = An and ;t = )~ respectively. They 

may bo looked upon as the eigenfunctions of a boundary-value problem, con- 

sisting of the eq. (D) and boundary conditions, corresponding to the conditions 

(R) and (R*) above. ~ We will prove our theorem by constructing a func t ion  

F(x, t, ~) which will serve as a Green's function of this problem. 

1 This  is of course especially the  case, if m (~.) is a s sumed  to be of finite order. 

Cf. G. BORG, Inverse  Problems . . .  Dixieme Congres des Matb~maticiens Scandinaves. 
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5 .  Green's  Function o f  the  Boundary.Value  Prob lem In No. 4. 

Under the assumptions in No~ 3, m (it) must be real on the real axis of ~, 

for we have 1 (~) = 1 (--~). Hence lim Im (m (it)__) ~ finite number except possibly for 
I,-r Im (it) 

= {it.}. Thus by (2.5) 

, ( x ,  it) < L~(o, be) for Z # {it,}. (5. ~) 

To the boundary value problem (L, R) belongs the following Green's function 

r (~ , t ,  it) ~ , (~ , i t ) r  x - - - t  (5.2) 
= I , ( ~ ,  i t ) , ( t ,  it), ~ < t, 

which according to (5. I) satisfies 

be 

flr(x,t,Z)l'dx<r z#{i t ,} ,  tfix. (5.a) 
o 

We recall the following two properties of Green's function, which are of 

importance in proving completeness theorems. 

a. 7(x, t ,  it) and Oy(x,t ,  it) 8 t are continuous within o --< x, t < be except at 

t = x, where 
t=x--O 

O ~, (x,ott, it) / 

I~X--/- 0 

o~r(x, t, it) 
b. - - L ( y  ) + i tT~  Ot 2 

~= - -  I. (5.4) 

+ ( z -  q (t)) r (x, t, z) = o, 
t # x  
x fix. (5.5) 

From the function 

responding properties 

OF 
I ~ r and 

O~F t98F 
0 t 2 0 t a 

o 
2 

18 

F(x ,  t, 4) mentioned above, we shall require two cor- 

continuous within o ~< x, t < be 

)) X, �84 o < x , t < b o ,  t # x  

*----x--O 

o' r (x ,  t; 4) ] 
: ~-~: :: = + 4  

t = x + 0  

D F ( x , t ,  i t ) + 4 i t l ~ ( x , t , Z ) = o  (xfix) for o ~ < t < b o ,  t # x .  

(5.6) 

(5.7) 
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The  last  proper ty  indicates  t ha t  F(x ,  t, 2) m u s t  be a sum of products  of 

solut ions of (L) (cf. No. 4). The proper ty  I ~ toge the r  with 4 ~ la ter  in this  No. 

require  the  funct ions  7(x, t, 2) and  7*(x, t, 2) for  the  cons t ruc t ion  of r ( x ,  t, 4). 

I f  we pu t  

g (x, t, Z) ----- # (x, 4) ~ (t, Z) - -  0 (t, Z) ~ (x, Z) --  ~ (x, Z) ~ (t, 4) - -  ~ (t, 2~ ~ (x, 4) 
(5.8) 

i t  is easy to prove t h a t  the  func t ion  

{ ; ~'(x' t' ]O " 7" (x' t' 2}' x >-- t (F) r(x,t ,z)= 

has the  requi red  propert ies.  Since I (x, t, ~) is a sum of products  of solut ions 

of (L) ~ for  t ~ x  ~ 2 ~ follows. The  proper ty  I ~ is easily proved t h rough  

s t ra igh t fo rward  computa t ions ,  us ing  the  re la t ions (5.4) and  (5.4*) and 

oa(x, t, 2) ] =  _ (5.9) g(t, t, Z) = o, Ot 
t=X 

ba 

Now let  f (x)  < M(o, bo). The in tegra l  f F(x, t, 2 ) f ( x ) d x  (t fix, 2 ~ {Zn}, {Z:}) 
0 

exists according to (5.3), (5-3*). P u t  

bo 

$( t ,  2) = f / ' ( x ,  t, Z) f (x)dx ,  f (x)  < M(o, bo). (5. IO) 
o 

Then  @(t, ~t) and  the  first two derivat ives are absolutely cont inuous  wi th in  

o ~ < t < b  o. Us ing  I ~ we find 

bo bo 

qf (t, ;t) = f ~ (x, t, 4)f(x) d x, fir' (t, Z) = f ~" (x, t, Z)f(x) d x 
0 0 

b. 

�9 '" (t, 2) ----- f/-'~" (x, t, Z)f(x) dx -- 4f ( t )  p . p .  (presque par tout )  
0 

and hence by (5.7) 

DO(t,  2) + 4 2 0 ; ( t ,  2 ) =  --  4 f ( t )  p . p .  f o r o - -  < t <  bo. (5.  I I )  

The  funct ion  F(x ,  t, 4) has some fu r t he r  propert ies ,  which  will be needed:  

3 ~ I f  the  spectra  {2n} and  {2~} are point-spectra  with a finite convergence ex- 

ponent ,  t hen  ~P(t, 4) is a meromorph ic  funct ion  of a finite order  ( ] x l <  c~) for  

every fix bvalue. {2~} and {2"} are the  only poles. 
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(t,).) converges to o, I ~ ] -} oo, except possibly in an arbitrarily small angle 

largZl  < e, l a r g Z - -  zr[ < e. 

4 ~ The principal part of �9 (t, 4) at a pole ~ = ~ is of the form 

ha 

(4 - Z~)-'- v.Ct)f~p~,(z)f(x)clx. (S. ~2) 
o 

The proof of the theorem is then brought to an end in the following way. 

Assume 
be be 

f ~p~,(x)f(x)dx= f ~p:'(x)f(x)dx----o (n-~ ~, z, 3, . . . ) .  (s. x3) 
0 o 

Hence, owing to (5. I z), (5. I2") O(t, ~L) is an integral function (t fix), which 

aecording to 3 ~ is of finite order. Since it converges to o in the manner men- 

tioned in 3 ~ it follows by the Well-known theorem of Phragm~n-LindelSf that  

�9 (t, ~) is bounded in all the ~-p]ane, i .e .  constant and so ----o according to 3 ~ 

Thus 

O(t, JL)--o for all t < b o and all ~. 

Hence, on account of (5. I I) 

f ( t )  = o p. p. ,  

which means that  the set {~On~(x), ~p~2(x)} is complete in M(o, bo). 

6. P roo f  of  t h e  P rope r ty  3 ~ of  No. 5. 

I f  the reverse is  not explicitly stated we assume ~( ~ {~t.} and ~ {)~}. 

cording to (5-xo) and (F) we have 

be t 

(t, z) ~- z f r (x, t, z) r" (x, t, z ) f (x )  ax  § z f a (x, t, x)(r + 7*If(x) dx.  
o 0 

~The first integral may be expanded in a series. We have 1 

A c -  

~n (z) (t) r (x, t, z) ~ )~ (6. z) 
. = 1  ,L - -  ~,, 

hence by (5-3) and the Parseval relation 

I TITCHMARSH, pag.  33" { ~ n ( t ) . ( X - - ~ n )  - 1}  are  t h e  Four i e r  coeff icients  of 7 (x ,  t , ) . ) w i t h  

respec t  to t h e  se t  (~On(X)). 
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b o 

f,'(=, ,,,),," (~, ,,,)f(=),,= = ~, '~- (') f r*(=, t, it)f(x) ~.(x) dx 
0 n = l  0 

_ ~ .  (t) >g , -  (t) 
- i t - L ,  it . i t ~  an. (6. 3) 

= ,in=l_ 

where a.,.=f~vn(x)~V~(=)f(x)d=. The summation order may as well be in- 
o 

vetted. 

To prove that the left hand member is a meromorphic function of a finite 

order, we will first estimate the difference 

/ 0  r ~,- ~,,,(t) ~*(t) 
d =  r(x,t, it)r*(x,t, i t ) / (x)dx--  ~ ~ ( i t_z . ) ( ; t_ i ta )a , , , , ,  

n ~ l  f ~ l  0 

(6.4) 

for all Z belonging to the region Dn: [ i t [ <  R with the exclusion of small circles 

round the poles )~ and ;(*. (n = I, 2, 3 , . . . ) .  From (6.3) follows 

n = , N + l  
=1 ~ a n t n  it __ it. a n , .  - , , ~  - -  i t , , ,  m = . N + l  i t "  -- - -  

** ~ . ( t )  u,*(t)., 
+ Z z_it.  i t_z~--- .  

n ,m=, /~  + 1  

Now for the first of the series on the right we get 

bn 

2 2 *"*" f (  Nt/)"(x)*"(t)~'*(xlt, it)f(x)dx(6.6) (it - -  ,~n) (it -- it•i an. r (x, t; it) = ~_j -Z-- Z - ]  
n = N + l  ' m = l  1 

0 

(the Parseval  relation, cf. (6.2)). Hence, if If(x)l < M p .  p., 

bo bo 

{fl 1' --< M ~'-- ~ dx Ir' I"dx = 
! & ' + l  t 1 

0 o 

1 i t - - i t " l  ~ 1 ~ 1  / 

The series 

1 z - z . I  ~ l z - z *  ' 

(6.5) 

(6.7) 
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which are convergent according to (6.2) and (5.3), are also uniformly con- 

vergent in DR, hence uniformly bounded (this fact being easily proved, is taken 

for granted). I t  is then always possible to choose 1V independent of ~t so great 

as to make the right-hand member of {6.7) less than a given ~ in Dn. 

Analogous arguments apply to the other two series of (5.5), whence the 

difference d (6.4) is less t h a n 3  ~ for all ~ < DR if N is chosen great enough. 
bo 

Hence fy{x, t,X)f(~,t,~)f(x)dx is meromorphic in 141 < oo and {4,}, {4*} are 
0 

the only poles. 

�9 The order of this meromorphic function is finite, for by (3. I )one  can choose 

the polynomials Q, (~t) = ~, + -.. + q ~ Z,] of a degree q <- Q, so that  

finite order with the zeros 4, and ~t,* respectively 

b, 
P(z). P" CZ). f r (x ,  t, x)r" t, 

U 

( is an integral function of a finite order. For, putting P~ = e qn(~) I I  I --  ~,. 

Pn* = . . . ,  we get from (6.7) for N - ~  o 

b~ oo �9 

0 

--< M g • Max Max I P- (4) P~, (Z)[. 
1 Zn n,,n lal=r 

Now, if I ~ t ] = r  is great enough, the right hand member is -----e re+', for such 

an inequality holds manifestly, uniformly in n, for all P~(~L) and P~ (~t). Thus 
b~ 
frT*fdx is the quotient of two integral functions of a finite order, which 
0 

proves the statement above. 
b. 

At last we prove that  frr*fdx converges to zero, when 141-~ c~ in the 
0 

region 
3 5 - - 4 8 1 7 3 .  Acta malhematica. 81. I m p r i m ~  le  28 a v r i l  1949. 
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J 
(~ being arbi t rar i ly  small, as above we assume ~,,, ~* ~ o). 

From (6.6) and (6.7) follows for  ~Y~ o 

bo 

"'f, ~ l / / "  g ~ t ~  

Pu t t i ng  ~p. = r we have 

and  

(6. 8) 

(6.9) 

Z . l  < c o  ( e l .  p. 272, l as t  row, p. 273) 

Pu t  2 : r e  t~ and let for  a moment  An be a variable, cont inuously varying from 

ff 
- - c o  to § co. Then the last  factor  assumes its max. for  2 . -~  and  the 

cos 
max. is c o s ~ ( I -  cos2~) -1. Fur the r  the  inequal i ty 

c o s  ~ a .  (I  - c o s  ~ a )  - 1  -< c o s  ~ ~ ( i  - c o s  ~ d -1  

holds for all X:s belonging to (6. 8). From this  follows t h a t  the series on the 

r i g h t  of (6.9) converge uniformly towards o in the region (6.8). For  if  we choose 

_~r fix and so great  as to make 

,,.+11 X. I ' - c o s '  

(~.' arbitrari ly small) then for every X in the  region (6.8) 

~Y+1 I --  cos ~ ~ ~'+1 ~.n ] 

Hence, since every term of the series in (6.9) converges to o, the t ru th  of the 

s ta tement  follows. 

Thus the  first integral  of (6. I) has the  property 3 ~ of No. 5. We  will now 

prove tha t  this is also the  case of the second. We shall restr ict  ourselves to 

one part  of the integral :  

t t 

I (t,).) = f g (x, t, ~t)7 (x, t, ~ ) f  (x) d x = f g (x, t, ~)~ (x, ~)lp (t, ~) f  (x)d x.  
o o 
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The remaining part  is to be treated in formally the same way. Since @it, 4)and 

0(t, 4) for t fix < b0 are integral functions of a finite order, and ~p(t, 4 ) =  

= O(t, 4)+ m(~)@(t, ~), we immediately find that  I(t, 4) is a meromorphic func- 

tion with the poles {Z~}. Its order is finite, if this holds of m(4). This is really 

the fact. Using TITCn~ARSH (rel. 2.5..7) we obtain the Parseval relation 

bo 

f w(t,Z) g( t)dt= ~, o 
�9 . = l  Z - - Z .  

o 

( r , =  the residue of m(Jt) in Jt=,~,, g(x)~ L2(o, bo3), i .e. for 

b' b~ b~ 

m(z)f +(t,X)dt=~(Z--4,)-l,.~f W,,(t)y(t)clt--fo(t,X)dt. (6. m) 
0 n=  1 0 ,0 

As in the case of the series (6.3) one finds that  the series of (6. io) represents a 

meromorphie function of a finite order Cowing to the property (3. I)). Hence from 

the definition of the order of a meromorphie function we conclude that  m(4), 

defined by (6. xo), is so too. 

I t  thus remains to be proved that  I z(t, z) l- ,  o, when 141-" oo i~ the region 

(6.8). For the proof we need the properties of m(4), mentioned at the end of 

No. e. In consequence of them 

(t, Z) = 0 (t, 4) + Z~ (Z) @ (t, Z) 

describes (for 4, t fix) a circle Sb as z = cot fl describes the real axis of z (for 

lb describes the circle Cb and ~(t, 4) is of the form a + b lb). The circle Sb is 

interior to the circle Sb,, if b' < b. If  m (Z) is the limit point or a point of the 

limit circle of the circles Cb (b ~ bo), then ~ (t, 4) = 0 (t, Z) + m (Z) @ (t, Z) is the 

corresponding point, relatively the eireles Sb, i .e.  a point inside an arbitrary 

one of them. Let Mb be the eentrum, rb the radius of the circle Sb (b < b0). 

Then we have 
I 0(t, 4)1-< I hl + r~. (6. i i )  

The radius of Sb is manifestly I@(t, 4) l times the one of Cb, and the eentrum 

is by the formula M b = 0  + l@ given in terms of the eentrum of Cb. Then, 
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using the well-known expressions for these last  quanti t ies  1, we get  

b 

IMbl = I W(a(b,  t, Z), ~(b)l" {2 Im (Z)-flu(t, Z)l'dt}-' 
u 

b 

,'b = I~(t,z)l. {z Im (z). f l ee ( t ,Z ) l ' d t } - ' ,  
o 

where W (u (x), v (x)) .-= u (x) v' (x) - -  u' (x) v (x) and g (x, t, it) is defined in (5.8). 

Now we will choose the fix number  b < bo and > t, x.  As is well known, 

we have for  all ~:s greater  than a positive number  R 

#(t,  i t ) =  (cos l iZt  sin a - - Z  - t  sin 17Zt cos tt)(I + O(it-t)) 

9(x ,  t, Z) = i t- t  sin ~f2(x - -  t)(I + O(Z-t)). 

Pu t t ing  2 = rte~'i'/, we get  af ter  simple calculations 

I~(t, 2)l ~ < !ed, l , inTI , s i n a r  

, ' - ' 1 6 ' ( t , z ) [ ) -  [ e , ' - l e  ~'i''"ri, sin a : o  

ee(lb-t)rl sinrl sin e ~ o 

] W (9 (b, t, ;0, ,~(b, 2))] --< I. er  -~ e (2b-tl'l'"rl,' s in  a = o 

/ ~e, ' l  cos 71 �9 [ sin hyp (2 b r  sin r)[, s i n a  ~; o 
12Ira(z) I~(t ,  i t ) l ' d t l  >-- 

o (e,.-~lcosrl.lsinhyp(zbrsin7)l, s i n a  = o. 

The relat ions hold for  all it:s in the  region (6. 8) and sat isfying l t I >  R. e is 

here and in the  sequel a constant ,  independent  of x, t and it, which has not  

necessarily the  same numerical  value in all cases. 

According to (6.8) we have ~ < 7 < zr ~ ~r ~ - _  _ - - - -  or - + - < 7 < z ~  - - ,  i . e .  
2 2 2 2 2 2 

('1 icosTI  -> s i n ~  > o .  Hence  by (6. II)  

er  I e -trlsin71, sin a ~ o 

I ~ ( t ' z ) l - <  ce-'.t,'.,I , s i n . = o .  

From the definition of I ( t ,  2) it now immediately  follows tha t  

t 

e f If[  d x  
Iz(t,  it)l < o - litl , t < b < b o ,  / t i n ( 6 . 8 ) ,  l i t l > R .  

The property 3 ~ of No. 5 hence follows. 

t TITCHMARSH, p~ 20. 
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7. Proof  of  the Property 4 o of  No. 5. 

I f  n ~ m  then  ~ A m  and L n * ~ * .  Fur the r  it holds tha t  Ln~L~ for all 

n and m. For  otherwise there  must  be two solutions ~n(x) and  ~*(x) ,  l inearly 

independent  owing to the  fac t  tha t  ~ n - ~  rtn~(x, ~n) and 4 " -  r * t ~ * (  x, L*)I, and  

belonging to L ~ (o, b0). This is impossible in the  l imit  point  case. In  the  l imit  

circle case we have 

,p*(x ,Z)=(a + cm*(X)) [O(x,X) + (b + dm')(a + cm')- '4,(x,  2)], (7. I) 

where a, b, c, d are constants,  independent  of it (defined by O* (x, $) -= a 0 + b ~, 

~* (x,  Z) -=  c 0 + d ~),  N o w  

~*(x,  it) = 0 "  + l'~b* -~--(a + c/*)[a § (b + dl*)(a + e /*) - '~]  

satisfy the  boundary  condit ion a* (b, ~) cos fl + ~* '  (b, ~) sin ~ -~ o, i. e. the  quot ient  

(b + dl*)(a + el*) -I is a point of the circle Cb as well as l(it)) The boundary 

conditions (R) and (R*) mean in the limit circle case that as b-~ bo, l(~) con- 

verges to a certain point m (it) of the limit circle and that the quotient (b + dl*). 

(a + cl*) -I converges to the same point. At the same time l*(it) converges to 

m* (~), a point of the limit circle of the circles C~b. Thus 

tacit)-=(b + dm*(it))(a + cm'(~)) - l .  (7.2) 

I f  it~ ---- it*, we must  have c ---- o, i. e. ~* (x, ~) =-- d ~ (x, ~), which is impossible, 

owing to the fact  tha t  a * ~  a (rood ~). 
bo 

So the  poles of q)(t, it)== f i r ( x ,  t, ~ ) f ( x ) d x  are simple. We  will detel~nine 
0 

the  residue in one of them, for instance ~--~ itn. 

bo b. 

lim (it --  it,,) f r(x, t, Z) f ( x )dx  = lira (Jr-- itn) f 2 r r ' f d x  + 
~-=~,, o ~.=a,, o ( 7 . 3 )  

t 

+ l i m ( Z - - z . ) f 2 g ( x ,  t, it)(7 + r*) f  dx.  
2 = 2 n  0 

From (6.3) we obtain for the  first l imit  

bo bo 

0 

t TITCHMARSH,  p .  24 .  s Cf .  N o .  2. 
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The  last expression is obta ined  by the  Parseval  relat ion,  no t ic ing  t ha t  4, # {2~}, 

i. e. t h a t  ~,* (x, t, 2,) < L '  (o, bo). 

Le t  as above r ,  denote  the  res idue of m(2) in 2 = 2~. Then,  according to 

~,, ( x ) =  r ,  ~ ~ (x, 2,) ~, we obta in  for  the  second l imit  

t t 

l im (4 --  4 , ) f  2 g (x, t, 4)(~, + ~,*)f(x) d x =  l im (4--4,) f 2 g (x, t, 4) 7 (x, t, 2)f(x) d x 
0 2 = 2 n  0 

t 

-~ 2 f g(x, t, 2 . )~ . ( x ) tp . ( t ) f ( x )dx ,  
o 

for  the  in terval  (o, t) is finite 

formly  in t ha t  interval.  

Add ing  (7.4) and  (7.5) and  us ing the  last  of the  relat ions (5.8) we get  

bn 

2 ~p, (t) ~*, (t, 2,) f %, (x) ~* (x, 4, ) f (x)  d x.  
0 

(7.5) 

and r (x, 4) ~ ~b (x, 2.), g (x, t, 4) ~ g (x, t, 2.) uni- 

Now ~p*(x, 2,) is a solut ion of L y - - . 2 , y = o ,  which  belongs to L ' ( o ,  b0). In  the  

l imit-point  case this means  t h a t  ~* (x, h a ) =  c, tp, (x)(c, be ing i ndependen t  of x). 

Using. (7. I) and  (7.2) we easily find t ha t  the  same re la t ion  holds also in the  
l imit  circle case. Thus  

bn bo 

lira (2 - -  2 . ) f  F (x, t, 2 ) f  (x) d x = 2 c,, ~Pn (t),I,* (t, 2,) f ap~, (x)f(x) d x. 
~'=~ o o 

The  residue in 2 = 2 "  will be compu ted  in the  same way. I t  has the  corre- 
bo 

spond ing  form:  2c,*~p*~(t)ep(t, 2~)f~o:*(z)f(x)dz. The  proper ty  4 ~ of No. 5 is 
0 

proved.  

8. The  P o i n t  x = bo (bo < oo) is  R e g u l a r  or R e g u l a r l y  S ingu lar .  

In  this  case is 

ap(x, 2) =(x--bo)J+~O(i) ,  R e a - - > o  

O(x, 2)1 = ( x - -  b0) t - ~  0 (I) Re a --> o,  (8. I) 
,(x, a)/ 

bo 

i. e. ~ ( x ,  2) < L=(o, bo). Then  a)(t, 2 ) =  fr(x, t, 2) f (x)dx has a sense also when 
o 

1 T I T C H M A R S H ~  p .  2 4 . 
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only f ( x ) ~  L 2 (o, bo) is assumed. I t  is also easily proved that  the theorem of 

"No. 3 holds if, in the present case, the class of functions M(o, b0) is exchanged 

for the class L ~ (o, bo). Only a few modifications in the proof above are needed. 

These depend upon the fact that  the inequality, leading to the relation (5.7), 

does not generally hold. But instead we have equality in the relations (5.2), 

(6.2"), which gives all that  is needed for the proof. The validity of these equal- 

ities follows from the fact that  the functions ~ (x) are in this case uniformly 

bounded and that  ~. 2~ ~-' < co. These last properties can in their  turn be traced 

back to the corresponding properties of the Bessel functions (of Ist kind). We 

need only write the eq. (L) in the form 

y (x) = (b o --  x) t J ,  [(bo --  x) V2] + / 

bo 

[ ~ gl (x, t, 4) q (t) (bo-- t) ~ y (t) d t, 

where gx(x, t, 2) is the function g(x, t, 2) of (5.8), but now belonging to the eq. 

d ' y + (  2 a ) ~ )  , ,  dx  ~ (bo-- y ~ o ,  and where, further,  a---- - - t ,  and chosen so that  

a 
q(x) (bo--X) ~ has no pole of order 2 at x ~-bo. Then we apply a Liouville- 

Birkhoff estimation of y(x) to find the results above. We do not enter upon 

details. The method is often used by R. E. LaNGER. 

9- On the ~Iinimality of the Set {lp~(x), ~*~2(x)}. 

A set {us(x)} is said to be minimal (us ~ L2(o, bo)) in L2(o, b0), if no func- 

tion of the set can be approximated arbitrarily exactly by sums of the others. 

I t  especially holds, that  {u~(x)} is minimal, if there is a set {v~(x)} (vn ~ L~(o, bo)) 

of such a kind that  {us(x); vn(x)} is a biorthogonal and normal set. 

The set {~(x) ,  ~2"2(x)} is not orthogonal. Therefore it is of interest to know 

something about the question of minimality. We shall prove 

I f  (L) is regular or regularly singular at x = bo, then the set {~p~ (x), ~ 2  (x)} 

is minimal after the exclusion of at most two eigenfunetion-squares. 

We will briefly sketch the proof, which is a generalization of an earlier 

one. ~ Put  

t Cf. G. BORG, Acta  math .  78 (I945), p. 57 f. 
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~ ~_~ (x) = ~ '  (x), us n (x) = ~ "  (x), n = i, 2, 3 . . . .  

We shall form a set {vn(x)}, of such a kind that  (un(x); vn(x)) (n = 3, 4, 5 , . . . )  

is biorthogonal and normal. We state that  the set may be defined as follows: 

v~m-~ (x) -- ~x  (cm ~ (x) 4'* (x, 2~) -- d~ ~21 (x) 4'* (x, 21) --  em ~p~ (x) 4' (x, 2~)) 

d 
v ~  (x) = d x  (c* ~ *  4' (x, 2*) - -  d* ~ <x) 4'* (x, 2~) - -  e* ~ (x) 4' (x, 2~)) 

( rn=  2, 3, 4 . . . .  ), if the constants era, c* etc. are appropriately determined. I t  

may be observed that  the principal term of v~_,(x) ,  e,,, ~,~ (x) 4'* (x, 2m), is pro- 

portional to the function vn(x), entering into the principal part  of ~P(x, 2 )a t  the 

pole A = 2n (el. No. 7 and 4 ~ of No. 5). Owing to (8. ,), all these functions be- 

long to L z (o, b0). We n~dd fur ther  the relation (27) of the paper mentioned 

above ~, which here takes the form 

b~ bo b. b. 

',, .,I r 
y , ~ l  l y , ~ l l '  

0 0 0 0 

if we .put u-----yS (x), v = ~  (x)~(x) and the functions y, ~7, ~ satisfy the eqs. 

Ly--2~y=o, L~--2~=o, L~--2,.~=o. 

Now let u = un(x) and 

v = c,~ ~p~ (z) 4" (x, 2,,), = - -  d ,  ~ ,  (x) 4" (x, 2~), = --  e,,,~p; (x) 4' (x, 2t) 

successively and lu ~ 2m, 21, ~[. All r ight  hand members = o according to the 

boundary conditions. Dividing by ( 2 u - ) ~ ) ,  ( 2 ~ -  21) and ( 2 , -  2r) respectively 

and adding, we get-(V2m-1 = Cm Wm 4' * - -  dm ~pj 4'*-- em ~)[ 4') 

bo b. 

2 j ' u a ( X )  V , m - l ( x ) d z - - / U n ( X )  ] ' r2m- l (x )~o .  
0 0 

I t  is now a simple mat ter  to determine the constants d~ and e~ so that  
b. 

/ u , ~ ( x )  of the values of for need to solve V~,,-  ~ (x) ~ 0 independently w e  only 
0 

Cf. G. BoRo, Acta math. 78, p. 40 f. 



O n  t h e  C o m p l e t e n e s s  of  S o m e  S e t s  of  F u n c t i o n s .  281 

the system of two linear eqs. 

d~ ~Pl (x) ~* (x, ;tl) + e~ ~p[ (x) 6 (x, 2[) ---- c~ ~p~ (x) 6" (x, ~tm) 

for x - ~ b  o and x = o .  

(9. 

They always have finite solutions. In  the same way d* and e~ are determined 

Thus 
bo 

f ,,aCx) vm(x)dx = O, n 
0 

At last, after simple calculations 1, using (9. I), we get 

bo bo 

0 0 

and analogous for even indices. Hence the constants c, and e* can always be 

chosen so as to make the set {Un(X); v,~(x)} normalized. 

This proves the theorem. 

Io. On the Completeness of  the  Set {~p~(x)}. 

The set {sin nx} is complete in LZ(o, ~r); the set of squares {sin ~ nx} is 

complete in L~ o,-~ , i. e, in the former space. We shall prove the fol- 

lowing generalization of this property ~ 

I f  the eq. (L) is regular or regularly singular at x-~ bo (bo < oo) then the set 

of eigenfunction-squdres of (L, R) is complete in the space LZ ~ 2'[b~ b9 ), i. e. in the 

Hilbert space, belonging to half the original inte~,al (o, b0). 

F o r  the proof we will use the theorem of No. 3, but still one clause is 

needed. We a s s u m e f ( x ) ~ L ~ ( ~ , b o ) a n d  

b0 

f ~p~(x)f(x)dx= o, n---- x, 2, 3 , . . .  
bd2 

The consequence wanted is f ( x ) ~  o. 

Cf. G. BoRo, inc. cir. p. 43. 
I This  theorem is a r e su l t  0[ discussions wi th  Prof. A. BEURLING, Uppsala.  I take the  0P" 

por tun i ty  to t h a n k  h im for th is  and for valuable advice dur ing  the  preparat ion of th is  paper. 

36--48173. A�9 ma~hematir 81. Imprim6 le 28 avril 1949. 
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r(~) 
Let re(X) -- N(X)' 

mon divisor, and put  

where T(~) and N(~) are integral functions without a corn- 

bo 

~(x) = f N(x)w'(r ~)f(~)d~. 
bo/~ 

In the present case, N(~) and T(~t) are integral functions of a middle type 

of order I/2 (Y, 2~ �89 < 0% cf. the argument of No. 6 p. 275). This property is 

the real foundation of the proof. We will only carry it through in the following 

special case. 

Let x = bo be a regular point, and y ( o ) = y ( b o ) =  o be the boundary con- 

ditions (R). 

and thus 

Then it holds that  

~0 (x, 2) = sin V ]  (bo -- x) 

N(,~) - sin V~. bo ~ § 0 
1/-;t 

bo 

J V i s i n  W~bo 
bol~ 

+ 0 f(x) dx. 

{( bo ) l im(~)] /  for all ~: s Since the integrand is <-- C. If(x)[I ~ I - j  exp 2 . - -  --  b 0 
2 

C 
in the region (5.8), we get lh u(~t)l -~ V ~ ] '  ~ in the region (5.8). Further  h u()~) 

is meromorphic of a finite order and the principal parts at the poles ~--~ ~,, are 

of the form 
bo 

(~ - ~,,)-' e . f  ~'~(x)f(x) dx,  
bd2 

whence, according to the assumption above, they are all = o, and ~u (A) is an 

integral function of a finite order. As in the case of theorem of No. 3 we then 

get �9 (;~) ----- o, i. e. 
bo 

bd2 

From this we conclude that f(x) is orthogonal to any set of eigenfunction- 

squares, belongingto(L) andboundaryconditionsy(~)cosa+y'(~)sina-~o; 
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y(bo)~-o. Applying the theorem of No. 3 (in the version of No. 8 ) fo r  the 

interval (to/2, bo), we get f(x)----o as stated. 

Fur ther  we state without detailed proof that  

The set {~p~ (x)} is after the exclusion of at most one sigenfunction-square min- 

imal in every space L ' ( ~ - - , ,  bo)) (, > o). 

The proof depends again upon a construction of a biorthogonal set. We 

choose boundary values (R*) and form the biorthogonal set {u,(x); v,(x)} of No. 9. 

This can be done in such a way that  at most one eigenfunction-square is super- 

fluous, viz. the function ~p~ (x). Then the set { ~  (x), v2,-1 (x)} (n = 2, 3, 4, . . . )  

is biorthogonal in La(o, to), and all functions v2~ (x) are or~hogonal to all V2~(x) 

(n---- 2, 3, 4, ...). Fur ther  it is possible to prove that  the set {v2,~ (x)} is complete 

in L ~ o, ~ - - - ~  . The proof is analogous to that  above in this No. Then for 

every u we can approximate v2,-l(x) by a sum Y..e,,v2,(x)in L 2 o, ~ - - ~  . 

Put t ing 

we get. 
bo bo 

0 bo 

and the first member also equals J.m (Kroneeker (i) according to the biortho- 

gonality property of the set {u.(x); v.(x)}. 

The applications of the theorems above to Bessel functions, belonging to a 

boundary value problem over a finite interval, and to Legendre functions are 

immediate. 

In  a later paper I shall fur ther  unfold the results and apply them to in- 

verse boundary-value problems. 

Uppsala, oct. 1947. 

A 


