SOME THEOREMS ON ALGEBRAIC RINGS.

By

LADISLAS FUCHS in BUDAPEST.

In his paper "Sätze über algebraische Ringe"¹ T. Nagell has discussed certain properties of algebraic rings. The present note concerns itself with the generalization of these results to relative algebraic rings; the theorems will be transferred without essential change.

In what follows we shall mean by F a finite algebraic number field and by R the ring of the integral elements of F. Let further ϕ be an algebraic field over F of degree n and let P be the ring of the integral elements of ϕ . It is well known that in ϕ there are n elements², $\omega_1, \ldots, \omega_n$, being linearly independent with respect to F, such that every element of ϕ possesses a unique representation of the form

$$\omega = a_1 \omega_1 + \dots + a_n \omega_n \tag{1}$$

with coefficients in F. The ω_i are called the basis of ϕ with respect to F. Let ξ be an element of P of the exact degree n, that is, ξ is a root of an *irreducible* algebraic equation $x^n + r_1 x^{n-1} + \cdots + r_n = 0$ where r_i are in R. In view of (1) we may set

$$\xi^{k} = c_{k1}\omega_{1} + \cdots + c_{kn}\omega_{n}, \qquad (c_{ki}\varepsilon F)$$
⁽²⁾

for k = 0, 1, ..., n - 1. Since ξ was chosen so as to be of the exact degree n, the determinant $c = |c_{ki}|$ of the coefficients in (2) does not vanish, and so the system may be inverted, and then we get

$$\omega_i = \frac{1}{c} (b_{i1} + b_{i2} \xi + \dots + b_{in} \xi^{n-1}), \qquad (b_{ik} \epsilon F)$$
(3)

for i = 1, 2, ..., n.

¹ Math. Zeitschrift 34 (1932), pp. 179-182.

² The elements of F will be denoted by Latin, those of ϕ by Greek letters.

Ladislas Fuchs.

For the sake of convenience we suppose that the ω_i were so chosen that whenever ω in (1) is integer, the a_i are all integers, i. e., are all in R. Then so are of course the c_{ki} in (2) [and hence c] as well as the b_{ik} in (3).

On account of (1) and (3) one sees at once that

$$\omega = \frac{1}{c} \sum_{i=1}^{n} a_i (b_{i1} + b_{i2} \xi + \dots + b_{in} \xi^{n-1}) = \frac{1}{c} \{ (\Sigma a_i b_{i1}) + \dots + (\Sigma a_i b_{in}) \xi^{n-1} \},\$$

that is to say, by means of the powers of ξ every element of P has a representation of the form

$$\omega = \frac{1}{c} (c_1 + c_2 \xi + \cdots + c_n \xi^{n-1}), \quad (c_i \in R).$$
(4)

(4) is unique in c_i , for $1, \xi, \ldots, \xi^{n-1}$ are linearly independent with respect to R.

Let now P^* be a subring of P containing ξ . Every element γ of P^* may clearly be represented in the form

$$\gamma = \frac{1}{c} (c_1 + c_2 \xi + \dots + c_l \xi^{l-1}), \qquad (c_i \varepsilon R, \ 1 \le l \le n)$$

where $c_l \neq 0$. Consider all the γ for a fixed number l. It is easily seen that the last coefficients⁸ c_l constitute an ideal in R. That this ideal \mathfrak{L}_l must contain a non-vanishing element and so \mathfrak{L}_l is distinct from the zero-ideal, is evident. Setting $\mathfrak{L}_l = (c_l^{(1)}, \ldots, c_l^{(m_l)})$, it is also evident that to each basis element $c_l^{(\mu)}$ there corresponds a number $\gamma_l^{(u)}$ of P^* with the last coefficient $c_l^{(\mu)}$:

$$\gamma_{l}^{(\mu)} = \frac{1}{c} \left(c_{l1}^{(\mu)} + c_{l2}^{(\mu)} \xi + \dots + c_{ll}^{(\mu)} \xi^{l-1} \right) (c_{l1}^{(\mu)} \varepsilon R, \quad c_{ll}^{(\mu)} = c_{l}^{(\mu)}, \quad \mu = 1, \dots, m_{l}).$$
(5)

The elements $\gamma_1^{(1)}, \ldots, \gamma_1^{(m_1)}, \gamma_2^{(1)}, \ldots, \gamma_2^{(m_2)}, \ldots, \gamma_n^{(1)}, \ldots, \gamma_n^{(m_n)}$, or, if we want to have the indices running successively from I until $N = \sum_{l=1}^n m_l$, the elements $\gamma_1, \ldots, \gamma_N$ form a basis of P^* with respect to R, that is to say, every element of P^* can be expressed in the form

$$\gamma = d_1 \gamma_1 + \dots + d_N \gamma_N, \qquad (d_r \,\varepsilon \, R). \tag{6}$$

However, this representation is not unique, in general.

286

⁸ More precisely: the *c*-times of the last coefficients.

The powers of ξ are in P^* , we can therefore find numbers x of R such that for k > 1

$$\xi^{k-1} = \sum_{l=1}^{k} (x_{l}^{(1)} \gamma_{l}^{(1)} + \dots + x_{l}^{(m_{l})} \gamma_{l}^{(m_{l})}), \qquad (x_{l}^{(\mu)} \varepsilon R).$$
(7)

If we replace here $\gamma_l^{(\mu)}$ by their values taken from (5), one sees immediately that the coefficient of ξ^{k-1} is 1 on the left side, while on the right side

$$\frac{1}{c}(x_k^{(1)}c_k^{(1)}+\cdots+x_k^{(m_k)}c_k^{(m_k)})=\frac{c_k}{c}$$

 c_k being a number of \mathfrak{L}_k . From the equality of the two coefficients, implied by the linear independence of $1, \xi, \ldots, \xi^{k-1}$, it follows $c = c_k$. We thus get that c is an element of every $\mathfrak{L}_k(k > 1)$:

Theorem 1. The determinant $c = |c_{ki}|$ is divisible by \mathfrak{L}_k for k > 1. We further get from (5) the equality

$$\gamma_l^{(\mu)} \cdot \xi^{j-l} = \frac{1}{c} \left(c_{l1}^{(\mu)} \xi^{j-l} + \dots + c_{ll}^{(\mu)} \xi^{j-1} \right)$$

showing that $c_{ll}^{(\mu)}$ and similarly, every basis element of \mathfrak{L}_l is contained in \mathfrak{L}_j for $l \leq j$. This implies that $\mathfrak{L}_l \equiv o(\mathfrak{L}_j)$ for $l \leq j$, that is in words,

Theorem 2. \mathfrak{L}_l is divisible by \mathfrak{L}_j if $l \leq j$. Let us now turn our attention to the proof of

Theorem 3. $c_{li}^{(\mu)}$ is divisible by \mathfrak{L}_l .

Proof by the principle of mathematical induction. For l = 1 the assertion is trivial. Let us suppose that $c_{kj}^{(\mu)}$ for $k \leq l-1$ is divisible by \mathfrak{L}_k and so a fortiori by \mathfrak{L}_{l-1} , in accordance with theorem 2. Consider $\gamma_l^{(\mu)}$ and take an element c' of $\frac{\mathfrak{L}_{l-1}}{\mathfrak{L}_l}$. The last coefficient³ of $c' \gamma_l^{(\mu)}$, $c' c_l^{(\mu)}$ lies in \mathfrak{L}_{l-1} , therefore elements $y_i \in \mathbb{R}$ can always be chosen such that $c' c_l^{(\mu)} = y_1 c_{l-1}^{(1)} + \cdots + y_{m_{l-1}} c_{l-1}^{(m_{l-1})}$ holds. Hence we conclude that $c' \gamma_l^{(\mu)} - (y_1 \gamma_{l-1}^{(1)} + \cdots + y_{m_{l-1}} \gamma_{l-1}^{(m_{l-1})}) \xi$ contains only powers of ξ with exponents not greater than l-2; so that we obtain

$$c' \gamma_l^{(\mu)} = \sum_{k=1}^{l-1} (x_k^{(1)} \gamma_k^{(1)} + \dots + x_k^{(m_k)} \gamma_k^{(m_k)}) + (y_1 \gamma_{l-1}^{(1)} \xi + \dots + y_{m_{l-1}} \gamma_{l-1}^{(m_{l-1})} \xi).$$

Setting here for the $\gamma_k^{(q)}$ their values taken from (5), we see that on the right hand side the first subscripts of $c_{kj}^{(q)}$ are not greater than l-1, therefore by

Ladislas Fuchs.

assumption we may hence conclude that the (*c*-times) coefficients of the powers of ξ are divisible by \mathfrak{L}_{l-1} . The fact that the coefficients of the same powers of ξ must be equal on the two sides implies that $c' c_{lj}^{(\mu)} \equiv o(\mathfrak{L}_{l-1})$. Since c' was arbitrary in $\frac{\mathfrak{L}_{l-1}}{\mathfrak{L}_l}$, we finally get that $c_{lj}^{(\mu)}$ must be contained in \mathfrak{L}_l , and this completely establishes the theorem.

We now pass to the proof of the following theorem.

Theorem 4. The relative discriminant of P^* with respect to R:

$$\vartheta_{P^{\bullet}/R} = \frac{1}{c^{2n}} \left(\mathfrak{L}_1 \ldots \mathfrak{L}_n \right)^2 \cdot D\left(\xi \right)$$
(8)

where $D(\xi)$ is the relative discriminant of ξ .

All the determinants of order n of the matrix⁴

```
\begin{pmatrix} \gamma_1^{(1)} \gamma_2^{(1)} \cdots \gamma_N^{(1)} \\ \gamma_1^{(2)} \gamma_2^{(2)} \cdots \gamma_N^{(2)} \\ \cdots \\ \gamma_1^{(n)} \gamma_2^{(n)} \cdots \gamma_N^{(n)} \end{pmatrix}
```

generate an ideal \mathfrak{L}^* in a Galois-overfield of F containing ϕ . The square of \mathfrak{L}^* is an ideal in R and is equal to the relative discriminant of P^* with respect to R. \mathfrak{L}^* may easily be verified to be the $\frac{1}{c^n}$ -times product of

```
\begin{bmatrix} I & I & \dots & I \\ \xi^{(1)} & \xi^{(2)} & \dots & \xi^{(n)} \\ \dots & \dots & \dots & \dots \\ \xi^{(1)^{n-1}} & \xi^{(2)^{n-1}} & \dots & \xi^{(n)^{n-1}} \end{bmatrix}
```

and the ideal \mathfrak{L} generated by the *n* ordered determinants of

$c_{11} c_{21} \ldots c_{N1}$
$c_{12} c_{22} \ldots c_{N2}$
•••••
$\left(c_{1n} c_{2n} \ldots c_{Nn} \right)$

• $\gamma_{\nu}^{(i)}$ is the *i*th conjugate of γ_{ν} .

288

where the c_{ri} are the coefficients for which

$$\gamma_{\nu} = \frac{1}{c} \left(\sum_{i=1}^{n} c_{\nu i} \xi^{i-1} \right)$$

(cf. (5); some of c_{ri} are vanishing). As I have proved elsewhere⁵, \mathfrak{L} is equal to the idealproduct $\mathfrak{L}_1 \ldots \mathfrak{L}_n$, so that we are led to the result enunciated in theorem 4.

⁵ A theorem on the relative norm of an ideal, Commentarii Math. Helvetici 21 (1948), pp. 29-43; see theorem 1.

37-48173. Acta mathematica. 81. Imprimé le 29 avril 1949.