SOME THEOREMS ON ALGEBRAIC RINGS.

By
 LADISLAS FUCHS

in Budapest.

In his paper "Sätze über algebraische Ringe" ${ }^{1}$ T. Nagell has discussed certain properties of algebraic rings. The present note concerns itself with the generalization of these results to relative algebraic rings; the theorems will be transferred without essential change.

In what follows we shall mean by F a finite algebraic number field and by R the ring of the integral elements of F. Let further ϕ be an algebraic field over F of degree n and let P be the ring of the integral elements of ϕ. It is well known that in ϕ there are n elements ${ }^{2}, \omega_{1}, \ldots, \omega_{n}$, being linearly independent with respect to F, such that every element of ϕ possesses a unique representation of the form

$$
\begin{equation*}
\omega=a_{1} \omega_{1}+\cdots+a_{n} \omega_{n} \tag{I}
\end{equation*}
$$

with coefficients in F. The ω_{i} are called the basis of ϕ with respect to F. Let ξ be an element of P of the exact degree n, that is, ξ is a root of an irreducible algebraic equation $x^{n}+r_{1} x^{n-1}+\cdots+r_{n}=0$ where r_{i} are in R. In view of (1) we may set

$$
\begin{equation*}
\xi^{k}=c_{k 1} \omega_{1}+\cdots+c_{k n} \omega_{n}, \quad\left(c_{k i \varepsilon} \varepsilon\right) \tag{2}
\end{equation*}
$$

for $k=0, \mathrm{I}, \ldots, n-\mathrm{I}$. Since ξ was chosen so as to be of the exact degree n, the determinant $c=\left|c_{k i}\right|$ of the coefficients in (2) does not vanish, and so the system may be inverted, and then we get

$$
\begin{equation*}
\omega_{i}=\frac{1}{c}\left(b_{i 1}+b_{i 2} \xi+\cdots+b_{i n} \xi^{n-1}\right), \quad\left(b_{i k} \varepsilon F\right) \tag{3}
\end{equation*}
$$

for $i=1,2, \ldots, n$.

[^0]For the sake of convenience we suppose that the ω_{i} were so chosen that whenever ω in (1) is integer, the a_{i} are all integers, i. e., are all in R. Then so are of course the $c_{k i}$ in (2) [and hence c] as well as the $b_{i k}$ in (3).

On account of (1) and (3) one sees at once that

$$
\omega=\frac{1}{c} \sum_{i=1}^{n} a_{i}\left(b_{i 1}+b_{i 2} \xi+\cdots+b_{i n} \xi^{n-1}\right)=\frac{1}{c}\left\{\left(\Sigma a_{i} b_{i 1}\right)+\cdots+\left(\Sigma a_{i} b_{i n}\right) \xi^{n-1}\right\}
$$

that is to say, by means of the powers of $\boldsymbol{\xi}$ every element of P has a representation of the form

$$
\begin{equation*}
\omega=\frac{1}{c}\left(c_{1}+c_{2} \xi+\cdots+c_{n} \xi^{n-1}\right), \quad\left(c_{i} \varepsilon R\right) \tag{4}
\end{equation*}
$$

(4) is unique in c_{i}, for $\mathrm{I}, \xi, \ldots, \xi^{n-1}$ are linearly independent with respect to R.

Let now P^{*} be a subring of P containing ξ. Every element γ of P^{*} may clearly be represented in the form

$$
\gamma=\frac{1}{c}\left(c_{1}+c_{2} \xi+\cdots+c_{l} \xi^{l-1}\right), \quad\left(c_{i} \varepsilon R, 1 \leq l \leq n\right)
$$

where $c_{l} \neq 0$. Consider all the γ for a fixed number l. It is easily seen that the last coefficients ${ }^{3} c_{l}$ constitute an ideal in R. That this ideal \mathcal{L}_{l} must contain a non-vanishing element and so \mathcal{Q}_{l} is distinct from the zero-ideal, is evident. Setting $\Omega_{l}=\left(c_{l}^{(1)}, \ldots, c_{l}^{\left(m_{l}\right)}\right)$, it is also evident that to each basis element $c_{l}^{(\mu)}$ there corresponds a number $\gamma_{l}^{(\mu)}$ of P^{*} with the last coefficient $c_{l}^{(\mu)}$:

$$
\begin{align*}
& \gamma_{l}^{(\mu)}=\frac{1}{c}\left(c_{l 1}^{(\mu)}+c_{l 2}^{(\mu)} \xi+\cdots+c_{l l}^{(\mu)} \xi^{l-1}\right) \tag{5}\\
& \left(c_{l j}^{(\mu)} \varepsilon R, \quad c_{l l}^{(\mu)}=c_{l}^{(\mu)}, \quad \mu=1, \ldots, m_{l}\right)
\end{align*}
$$

The elements $\gamma_{1}^{(1)}, \ldots, \gamma_{1}^{\left(m_{1}\right)}, \gamma_{2}^{(1)}, \ldots, \gamma_{2}^{\left(m_{2}\right)}, \ldots, \gamma_{n}^{(1)}, \ldots, \gamma_{n}^{\left(m_{n}\right)}$, or, if we want to have the indices running successively from I until $N=\sum_{l=1}^{n} m_{l}$, the elements $\gamma_{1}, \ldots, \gamma_{N}$ form a basis of P^{*} with respect to R, that is to say, every element of P^{*} can be expressed in the form

$$
\begin{equation*}
\gamma=d_{1} \gamma_{1}+\cdots+d_{N} \gamma_{N}, \quad\left(d_{\nu} \varepsilon R\right) \tag{6}
\end{equation*}
$$

However, this representation is not unique, in general.

[^1]The powers of ξ are in P^{*}, we can therefore find numbers x of R such that for $k>1$

$$
\begin{equation*}
\xi^{k-1}=\sum_{l=1}^{k}\left(x_{l}^{(1)} \gamma_{l}^{(1)}+\cdots+x_{l}^{\left(m_{l}\right)} \gamma_{l}^{\left(m_{l}\right)}\right), \quad\left(x_{l}^{(\mu)} \varepsilon R\right) \tag{7}
\end{equation*}
$$

If we replace here $\gamma_{i}^{(\mu)}$ by their values taken from (5), one sees immediately that the coefficient of ξ^{k-1} is 1 on the left side, while on the right side

$$
\frac{1}{c}\left(x_{k}^{(1)} c_{k}^{(1)}+\cdots+x_{k}^{\left(m_{k}\right)} c_{k}^{\left(m_{k}\right)}\right)=\frac{c_{k}}{c}
$$

c_{k} being a number of \mathfrak{R}_{k}. From the equality of the two coefficients, implied by the linear independence of $1, \xi, \ldots, \xi^{k-1}$, it follows $c=c_{k}$. We thus get that c is an element of every $\mathcal{R}_{k}(k>1)$:

Theorem 1. The determinant $c=\left|c_{k i}\right|$ is divisible $b y \mathfrak{L}_{k}$ for $k>1$.
We further get from (5) the equality

$$
\gamma_{l}^{(\mu)} \cdot \xi^{j-l}=\frac{1}{c}\left(c_{l 1}^{(\mu)} \xi^{j-l}+\cdots+c_{l l}^{(\mu)} \xi^{j-1}\right)
$$

showing that $c_{l l}^{(\mu)}$ and similarly, every basis element of \mathfrak{Q}_{l} is contained in \mathfrak{Q}_{j} for $l \leq j$. This implies that $\mathfrak{Q}_{l} \equiv \mathrm{o}\left(\mathfrak{Q}_{j}\right)$ for $l \leq j$, that is in words,

Theorem 2. \mathcal{Q}_{l} is divisible by \mathcal{Q}_{j} if $l \leq j$.
Let us now turn our attention to the proof of
Theorem 3. $c_{l j}^{(\mu)}$ is divisible by \mathfrak{Q}_{l}.
Proof by the principle of mathematical induction. For $l=\mathrm{I}$ the assertion is trivial. Let us suppose that $c_{k j}^{(\mu)}$ for $k \leq l-1$ is divisible by \mathfrak{Q}_{k} and so a fortiori by \mathfrak{Q}_{l-1}, in accordance with theorem 2. Consider $\gamma_{l}^{(\mu)}$ and take an element c^{\prime} of $\frac{\mathfrak{Q}_{l-1}}{\mathfrak{L}_{l}}$. The last coefficient ${ }^{3}$ of $c^{\prime} \gamma_{l}^{(\mu)}, c^{\prime} c_{l}^{(\mu)}$ lies in \mathfrak{Q}_{l-1}, therefore elements $y_{i} \varepsilon R$ can always be chosen such that $c^{\prime} c_{l}^{(\mu)}=y_{1} c_{l-1}^{(1)}+\cdots+y_{m_{l-1}} c_{l-1}^{\left(m_{l-1}\right)}$ holds. Hence we conclude that $c^{\prime} \gamma_{l}^{(\mu)}-\left(y_{1} \gamma_{l-1}^{(1)}+\cdots+y_{m_{l-1}} \gamma_{l-1}^{\left(m_{l-1}\right)}\right) \xi$ contains only powers of ξ with exponents not greater than $l-2$; so that we obtain

$$
c^{\prime} \gamma_{l}^{(\mu)}=\sum_{k=1}^{l-1}\left(x_{k}^{(1)} \gamma_{k}^{(1)}+\cdots+x_{k}^{\left(m_{k}\right)} \gamma_{k}^{\left(m_{k}\right)}\right)+\left(y_{1} \gamma_{l-1}^{(1)} \xi+\cdots+y_{m_{l-1}} \gamma_{l-1}^{\left(m_{l-1}\right)} \xi\right) .
$$

Setting here for the $\gamma_{k}^{(e)}$ their values taken from (5), we see that on the right hand side the first subscripts of $c_{k j}^{(\rho)}$ are not greater than $l-\mathrm{I}$, therefore by
assumption we may hence conclude that the (c-times) coefficients of the powers of $\boldsymbol{\xi}$ are divisible by \mathfrak{Q}_{l-1}. The fact that the coefficients of the same powers of ξ must be equal on the two sides implies that $c^{\prime} c_{l j}^{(\mu)} \equiv o\left(\mathcal{Z}_{l-1}\right)$. Since c^{\prime} was arbitrary in $\frac{\mathfrak{Q}_{l-1}}{\mathcal{L}_{l}}$, we finally get that $c_{l j}^{(\mu)}$ must be contained in \mathcal{L}_{l}, and this completely establishes the theorem.

We now pass to the proof of the following theorem.

Theorem 4. The relative discriminant of P^{\bullet} with respect to R :

$$
\begin{equation*}
\vartheta_{P^{*} / R}=\frac{1}{e^{2 n}}\left(\mathcal{Q}_{1} \ldots \mathcal{Q}_{n}\right)^{2} \cdot D(\xi) \tag{8}
\end{equation*}
$$

where $D(\xi)$ is the relative discriminant of ξ.
All the determinants of order n of the matrix ${ }^{4}$

$$
\left(\begin{array}{c}
\gamma_{1}^{(1)} \gamma_{2}^{(1)} \ldots \ldots \gamma_{N}^{(1)} \\
\gamma_{1}^{(2)} \gamma_{2}^{(2)} \ldots \ldots \gamma_{N}^{(2)} \\
\cdots \ldots \\
\gamma_{1}^{(n)} \gamma_{2}^{(n)} \ldots \ldots \gamma_{N}^{(n)}
\end{array}\right)
$$

generate an ideal \mathbb{Q}^{*} in a Galois-overfield of F containing ϕ. The square of \mathbb{Q}^{*} is an ideal in R and is equal to the relative discriminant of P^{*} with respect to R. \mathbb{Q}^{*} may easily be verified to be the $\frac{1}{c^{n}}$-times product of

$$
\left|\begin{array}{lcll}
1 & 1 & \ldots & 1 \\
\xi^{(1)} & \xi^{(2)} & \ldots & \xi^{n)} \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right| \cdots \cdots .
$$

and the ideal \mathfrak{E} generated by the \boldsymbol{n}-ordered determinants of

$$
\left(\begin{array}{cccc}
c_{11} & c_{21} & \ldots & c_{N 1} \\
c_{12} & c_{22} & \ldots & c_{N 2} \\
\cdots & \ldots & \ldots & c_{1 n} \\
c_{1 n} & c_{2 n} & \ldots & c_{N n}
\end{array}\right)
$$

* $\gamma_{v}^{(i)}$ is the i th conjugate of γ_{v}.
where the $c_{\nu i}$ are the coefficients for which

$$
\gamma_{v}=\frac{1}{c}\left(\sum_{i=1}^{n} c_{v i} \xi^{i-1}\right)
$$

(cf. (5); some of $e_{v i}$ are vanishing). As I have proved elsewhere ${ }^{5}, \mathfrak{R}$ is equal to the idealproduct $\mathbb{Z}_{1} \ldots \mathbb{Q}_{n}$, so that we are led to the result enunciated in theorem 4.
${ }^{\text {a }}$ A theorem on the relative norm of an ideal, Commentarii Math. Helvetici 21 (1948), pp. 29-43; see theorem I.

[^0]: ${ }^{1}$ Math. Zeitschrift 34 (1932), pp. 179-182.
 ${ }^{2}$ The elements of F will be denoted by Latin, those of ϕ by Greek letters.

[^1]: ${ }^{3}$ More precisely: the c-times of the last coefficients.

