A GENERAL PRIME NUMBER THEOREM.

By
BERTIL NYMAN of Uppsala.

Consider a monotone sequence of real positive numbers
(1)

$$
1<y_{1}<y_{2}<\cdots<y_{n}<\cdots
$$

Form all possible products

$$
\begin{equation*}
x=y_{n_{1}} y_{n_{\mathrm{a}}} \ldots y_{n_{k}}, \quad n_{1} \leq n_{2} \leq \cdots \leq n_{k} \tag{2}
\end{equation*}
$$

and arrange them in a non-decreasing sequence

$$
\begin{equation*}
\mathrm{I}<x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq \cdots \tag{3}
\end{equation*}
$$

where every x appears as many times as it can be represented by formula (2). The numbers $\left\{y_{n}\right\}$ are called the primes of the sequence $\left\{x_{n}\right\}$. Let $\pi(x)$ denote the number of primes $\leq x$, and $N(x)$ the number of $x_{n} \leq x$.

This definition of generalized prime numbers is given by Beurling, who under certain general conditions has derived very interesting relations between the functions $N(x)$ and $\pi(x) .{ }^{1}$

In what follows, $\zeta(s)$ denotes the function
(4)

$$
\zeta(s)=\mathrm{I}+x_{1}^{-s}+x_{2}^{-s}+\cdots=\int_{0}^{\infty} x^{-\varepsilon} d N(x) . \quad s=\sigma+i t
$$

(For the sake of simplicity, we assume that $N(x)$ has a step equal to I at the point $x=\mathrm{I}$.) $\mathrm{Li}(x)$ denotes the logarithmic integral, i. e. the principal value of the integral

$$
\int_{0}^{x} \frac{d y}{\log y}
$$

[^0]It is well known that $\mathrm{Li}(x)$ has the following asymptotic expansion:

$$
\mathrm{Li}(x) \sim x\left\{\frac{1}{\log x}+\frac{1!}{(\log x)^{2}}+\frac{2!}{(\log x)^{3}}+\cdots\right\}
$$

The following theorem will be proved:
Theorem: The following three statements are equivalent:
A. There exists a real number a>0, such that
(5)

$$
N(x)=a x+O\left\{\frac{x}{(\log x)^{n}}\right\} \quad \text { as } \quad x \rightarrow \infty
$$

for every positive n.
B. To every $\varepsilon>0$ and every non-negative integer n, a constant A^{1} can be chosen such that
(6)

$$
\left|\zeta^{(n)}(s)\right|<A|t|^{\varepsilon}
$$

(7)

$$
\left|\frac{\mathbf{1}}{\zeta(s)}\right|<A|t|^{\varepsilon}
$$

uniformly in the region $\sigma>\mathrm{I},|t| \geq \varepsilon$.
C. $\pi(x)$ has the same asymptotic expansion as $\operatorname{Li}(x)$, i. e.

$$
\begin{equation*}
\pi(x)=\operatorname{Li}(x)+O\left\{\frac{x}{(\log x)^{n}}\right\} \quad \text { as } \quad x \rightarrow \infty \tag{8}
\end{equation*}
$$

for every positive n.
This theorem will be proved by the aid of Parseval's formula for Mellin transforms.

From each of the hypothesis A, B and C it follows that the series defining $\zeta(s)$ is absolutely convergent in the half-plane $\sigma>1$ and can be written there as an Euler-product

$$
\zeta(s)=\prod_{1}^{\infty} \frac{1}{1-y_{n}^{-8}}
$$

Thus
(9)

$$
\log \zeta(s)=-\sum_{1}^{\infty} \log \left(1-y_{n}^{-k}\right)=\int_{1}^{\infty} x^{-1} d \Pi(x)
$$

where
(ro)

$$
\Pi(x)=\pi(x)+\frac{1}{2} \pi\left(x^{\ddagger}\right)+\frac{1}{8} \pi\left(x^{\frac{1}{2}}\right)+\cdots
$$

${ }^{1} A$ always denotes a positive constant, possibly depending apon ε and n, but not depending upon σ and t. A can very well have different valnes in different places.

For the proof we need the following lemmas:
Lemma I: Let $\varphi(s)$ be a function which is holomorphic in the band $1<\sigma<2$ - and, for $n=0,1,2,3, \ldots$, satisfies the following conditions:

$$
\begin{equation*}
\left|\varphi^{(n)}(s)\right|<\frac{A}{(\sigma-1)^{n+1}}, \tag{II}
\end{equation*}
$$

(12)

$$
\left|\varphi^{(n)}(s)\right|<A|t|^{k_{n}}
$$

where $k_{n} \geq 0$ and

$$
\lim _{n \rightarrow \infty} \frac{k_{n}}{n}=0
$$

uniformly in the region $\mathrm{I}<\sigma<2,|t|>t_{0}>0$. Then to every $\varepsilon>0$ and $n=0,1$, $2,3, \ldots, a$ constant A can be chosen such that

$$
\begin{equation*}
\left|\varphi^{(n)}(s)\right|<A|t|^{\varepsilon} \tag{13}
\end{equation*}
$$

uniformly in the same region.
Let us suppose that $\alpha_{n} \geq 0$ is the least number such that, for every $\varepsilon>0$,

$$
\left|\varphi^{(n)}(s)\right|<A|t|^{\alpha_{n}+\varepsilon}
$$

uniformly in the above region. By (12), $\alpha_{n} \leq k_{n}$. Suppose that $\sigma \leq \frac{8}{2}$ and choose σ^{\prime} so that $\sigma<\sigma^{\prime}<2$. For $|t|>t_{0}$ we have, by (II),
$\left|\varphi^{(n)}(\sigma+i t)\right| \leq\left|\varphi^{(n)}\left(\sigma^{\prime}+i t\right)\right|+\int_{\sigma+i t}^{\sigma^{\prime}+i t}\left|\varphi^{(n+1)}(s)\right||d s| \leq \frac{A}{\left(\sigma^{\prime}-\sigma\right)^{n+1}}+\left(\sigma^{\prime}-\sigma\right) A|t|^{\alpha_{n+1}+\varepsilon}$.
Putting $\sigma^{\prime}=\sigma+A|t|^{-\frac{\alpha_{n+1}}{n+2}}$, where A is chosen so that $\sigma^{\prime}<2$ for all σ in the interval $\left(\mathrm{I}, \frac{3}{2}\right)$ and $|t|>t_{0}$, we obtain

$$
\left|\varphi^{(n)}(\sigma+i t)\right|<A|t|^{\alpha_{n+1} \frac{n+1}{n+2}+\varepsilon}
$$

uniformly for $\mathrm{I}<\sigma \leq \frac{8}{2},|t|>t_{0}$. By (in), an inequality of the same form evidently holds even for $1<\sigma<2$. Thus

$$
\alpha_{n} \leq \frac{n+1}{n+2} \alpha_{n+1}
$$

and

$$
\frac{\alpha_{n}}{n+1} \leq \frac{\alpha_{n+1}}{n+2} \leq \cdots \leq \frac{\alpha_{n+p}}{n+p+1} \leq \frac{k_{n+p}}{n+p+\mathrm{I}}
$$

Since we may choose p arbitrarily large, it follows that $\alpha_{n}=0$ for all n, and (13) is proved.

Lemma II: Let $\varphi(s)$ and $\psi(s)$ be two functions, which for $\sigma>1$ may be represented by the absolutely convergent integrals

$$
\begin{align*}
& \varphi(s)=\int_{1-0}^{\infty} x^{-s} d S(x) \tag{I4}\\
& \psi(s)=\int_{1}^{\infty} x^{-s} d T(x)
\end{align*}
$$

where $S(x)$ is non-decreasing, $S(x+0)=S(x)$, and $\mathrm{o} \leq T^{\prime}(x) \leq A$. Let us put

$$
\frac{d^{k}}{d s^{k}}\left\{\frac{\varphi(s)-\psi(s)}{s}\right\}=\theta_{k}(s)
$$

and suppose that

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|\theta_{k}(\sigma+i t)\right|^{2} d t \tag{ㄴ6}
\end{equation*}
$$

is uniformly bounded for $\sigma>\mathrm{I}$ for a fixed $k \geq 0$. Then the relation

$$
\begin{equation*}
S(x)=T(x)+o\left\{\frac{x}{(\log x)^{n}}\right\} \quad \text { as } \quad x \rightarrow \infty \tag{17}
\end{equation*}
$$

is valid for $n \leq \frac{2}{3} k$.
By the proof, we can obviously assume that $S(\mathrm{I}-\mathrm{o})=0$ and $T(\mathrm{r})=0$.
Let $\sigma_{0}>1$. The inequality

$$
\varphi\left(\sigma_{0}\right) \geq \int_{1-0}^{x} y^{-\sigma_{0}} d S(y)=\frac{S(x)}{x^{\sigma_{0}}}+\sigma_{0} \int_{1}^{x} \frac{S(y)}{y^{1+\sigma_{0}}} d y \geq \frac{S(x)}{x^{\sigma_{0}}}
$$

yields

$$
S(x) \leq \varphi\left(\sigma_{0}\right) x^{\sigma_{0}}
$$

Thus (14) may be integrated by parts for $\sigma>\sigma_{0}$, i. e. for $\sigma>1$, since we may choose σ_{0} arbitrarily near to I. Thus

$$
\frac{\varphi(s)}{s}=\int_{i}^{\infty} x^{-s} \frac{S(x)}{x} d x
$$

Combining this formula and the analogous formula for $\psi(s)$, we obtain

$$
\frac{\varphi(s)-\psi(s)}{s}=\int_{1}^{\infty} x^{-s} \frac{S(x)-T(x)}{x} d x, \quad \sigma>1
$$

Differentiating k times, we obtain, for $\sigma>1$,

$$
(-1)^{k} \theta_{k}(s)=\int_{1}^{\infty} x^{-s} \frac{S(x)-T(x)}{x}(\log x)^{k} d x
$$

From Parseval's formula for Mellin transforms, it follows that, for $\sigma>\mathrm{I}$,

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|\theta_{k}(\sigma+i t)\right|^{2} d t=\int_{1}^{\infty}\left|\frac{S(x)-T(x)}{x}(\log x)^{k}\right|^{2} x^{1-2 \sigma} d x
$$

As $\sigma \rightarrow I$, the right-hand member is non decreasing and thus has a limit, which, by (16), is finite. By monotone convergence we thus get

$$
\int_{i}^{\infty}\left|\frac{S(x)-T(x)}{x}(\log x)^{k}\right|^{2} \frac{d x}{x}<\infty
$$

Let us put $S(x)-T(x)=\delta(x)$. Then

$$
\begin{equation*}
\int_{i}^{\infty}|\delta(x)|^{3} \cdot \frac{(\log x)^{2 k}}{x^{3}} d x<\infty \tag{18}
\end{equation*}
$$

Since $S(x)$ is non-decreasing and $0 \leq T^{\prime}(x) \leq A$, we have

$$
\begin{array}{r}
\delta(y) \geq \frac{\delta(x)}{2} \text { for } x \leq y \leq x+\frac{\delta(x)}{2 A} \text { if } \delta(x)>0 \\
-\delta(y) \geq \frac{-\delta(x)}{2} \text { for } x+\frac{\delta(x)}{2 A} \leq y \leq x \text { if } \delta(x)<0
\end{array}
$$

If $\boldsymbol{\delta}(x)>0$, we thus get

$$
\begin{aligned}
\int_{x}^{x+\frac{\delta(x)}{2 A}}|\delta(y)|^{2} \frac{(\log y)^{2 k}}{y^{3}} d y>\frac{\mathbf{I}}{A} \cdot\left\{\frac{\delta(x)}{2}\right\}^{3} & \frac{(\log x)^{2 k}}{\left\{x+\frac{\delta(x)}{2 A}\right\}^{3}}= \\
& =\left\{\frac{\delta(x)}{x}(\log x)^{n}\right\}^{3} \cdot \frac{(\log x)^{22-3 n}}{A\left\{2+\frac{\delta(x)}{A}\right\}^{3}}
\end{aligned}
$$

By (18), this integral must have the limit 0 as $x \rightarrow \infty$. If we choose $n \leq \frac{2}{3} k$ it follows that

$$
\varlimsup_{x \rightarrow \infty} \frac{\partial(x)}{x}(\log x)^{n} \leq 0
$$

A quite analogous argument shows that $\lim \geq 0$. Thus the lemma is proved.
A implies B. Integrating (4) by parts, we get

$$
\frac{\zeta(s)}{s}=\int_{1}^{\infty} x^{-s} \frac{N(x)}{x} d x
$$

Combining this formula and

$$
\frac{a}{s-1}=\int_{1}^{\infty} a x^{-8} d x
$$

we obtain
(19)

$$
\frac{\zeta(s)}{s}-\frac{a}{s-\mathrm{I}}=\int_{\mathrm{j}}^{\infty} x^{-\varepsilon} \frac{N(x)-a x}{x} d x
$$

These formulae are valid for $\sigma>1$. However, by (5), it follows that the integral in (19) is absolutely and uniformly convergent for $\sigma \geq 1$. Thus the left-hand member of (19) is continuous in the closed half-plane $\sigma \geq$ I. If $g(s)$ denotes the integral in.(19), we can write

$$
\begin{equation*}
\zeta(s)=a+\frac{a}{s-\mathrm{I}}+s g(s) \tag{20}
\end{equation*}
$$

Thus
(2 I)

$$
\zeta^{(n)}(s)=\frac{(-1)^{n} a n!}{(s-1)^{n+1}}+s g^{(n)}(s)+n g^{(n-1)}(s)
$$

where

$$
g^{(n)}(s)=(-\mathrm{I})^{n} \int_{1}^{\infty} x^{-s} \frac{N(x)-a x}{x}(\log x)^{n} d x
$$

By (5), this integral is absolutely and uniformly convergent for $\sigma \geq 1$. Thus all derivatives $g^{(n)}(s)$ are continuous and bounded for $\sigma \geq 1$. Consequently, it follows from (20) and (2I) that $\zeta(s)$ satisfies the conditions of lemma I with all $k_{n}=\mathrm{I}$
and t_{0} arbitrarily small. This lemma thus yields (6). The function $\zeta(s)$ satisfies the inequality

$$
\left|\zeta^{3}(\sigma) \zeta^{4}(\sigma+i t) \zeta(\sigma+2 i t)\right| \geq 1,
$$

due to Hadamard. Using this and (6), a classical argument ${ }^{1}$ gives (7).
B implies C. The formula
(22)

$$
\log \frac{s}{s-\mathrm{I}}=\int_{1}^{\infty} x^{-s} d p(x), \quad \sigma>1
$$

where
(23)

$$
p(x)=\int_{1}^{x} \frac{1-\frac{1}{y}}{\log y} d y=\operatorname{Li}(x)-\log \log x+A
$$

is easily proved. We can now use lemma II with
$S(x)=\Pi(x)$ (cf. (9)!) and $T(x)=p(x)$, since an inequality of the form

$$
\left|\frac{d^{k}}{d s^{k}}\left\{\frac{\log \zeta(s)-\log \frac{s}{s-\mathrm{I}}}{s}\right\}\right|<\frac{A}{\mathrm{I}+|t|^{1-s}}
$$

is valid for $\sigma>1$ and $k=0,1,2, \ldots$ For, carrying out the differentiations, every term will be of the form

$$
\frac{A_{v}}{s^{k \rightarrow v+1}} \frac{d^{v}}{d s^{v}}\left\{\log \zeta(s)-\log \frac{s}{s-\mathrm{I}}\right\}, \quad v=0, \mathrm{I}, \ldots, k
$$

and, if $\nu>0$,

$$
\left|\frac{d^{v}}{d s^{v}} \log \zeta(s)\right|=\left|\frac{P_{v}(s)}{\{\zeta(s)\}^{v}}\right|<A|t|^{\varepsilon}
$$

for $|t| \geq \varepsilon$ by (6) and (7), since $P_{\nu}(\varepsilon)$ is a sum of products of $\zeta(s)$ and its ν first derivatives. Further, by (7) and (20), the left-hand member of the above inequality is continuous for $\sigma \geq 1$. Thus the lemma gives

$$
\Pi(x)=p(x)+o\left\{\frac{x}{(\log x)^{n}}\right\} \quad \text { as } \quad x \rightarrow \infty
$$

for every n. (8) will then follow from (io) and (23).

[^1]C implies B. Integrating (9) by parts, we obtain

$$
\frac{\log \zeta(s)}{s}=\int_{i}^{\infty} x^{-s} \frac{\Pi(x)}{x} d x
$$

Combining this formula and formula (22), integrated by parts, we get

$$
\frac{\log \zeta(s)}{s}-\frac{\mathrm{I}}{s} \log \frac{s}{s-\mathrm{I}}=\int_{1}^{\infty} x^{-s} \frac{\Pi(x)-p(x)}{x} d x
$$

If $h(s)$ denotes the integral, we can write

$$
\begin{equation*}
\log \zeta(s)=\log \frac{s}{s-\mathrm{I}}+\operatorname{sh}(s) \tag{24}
\end{equation*}
$$

Since $\pi(x)$ satisfies (8), it follows from (10) that $\Pi(x)$ also satisfies (8). Thus $h(s)$ is absolutely and uniformly convergent for $\sigma \geq \mathrm{I}$. It follows that $\zeta(s)$ is continuous and $\neq 0$ for $\sigma \geq \mathrm{I}$, with the exception of the point $s=1$. Differentiating (24) n times, we obtain
(25) $\quad \frac{d^{n}}{d s^{n}} \log \zeta(s)=(-1)^{n-1}(n-1)!\left\{\frac{1}{s^{n}}-\frac{1}{(s-1)^{n}}\right\}+s h^{(n)}(s)+n h^{(n-1)}(s)$,
where

$$
h^{(n)}(s)=(-1)^{n} \int_{1}^{\infty} x^{-s} \frac{\Pi(x)-p(x)}{x}(\log x)^{n} d x
$$

By (8), this integral is absolutely and uniformly convergent for $\sigma \geq 1$. Thus all derivatives $h^{(n)}(s)$ are continuous and bounded for $\sigma \geq \mathrm{I}$. Consequently, it follows from (25) that the function $\frac{d}{d s} \log \zeta(s)$ satisfies the conditions of lemma I with all $k_{n}=\mathrm{I}$ and t_{0} arbitrarily small. Thus

$$
\begin{equation*}
\left|\frac{d^{n}}{d s^{n}} \log \zeta(s)\right|<A|t|^{\varepsilon}, \quad n=1,2,3, \ldots \tag{26}
\end{equation*}
$$

uniformly in the region $\sigma>1,|t| \geq \varepsilon$. From (24) and (26), it follows that

$$
\begin{aligned}
|\log \zeta(\sigma+i t)| \leq\left|\log \zeta\left(\sigma^{\prime}+i t\right)\right| & +\int_{\sigma+i t}^{\sigma^{\prime}+i t}\left|\frac{d}{d s} \log \zeta(s)\right||d s|< \\
& <\log \frac{1}{\sigma^{\prime}-\sigma}+A\left(\sigma^{\prime}-\sigma\right)|t|^{\prime}, \quad 1<\sigma<\sigma^{\prime}
\end{aligned}
$$

Putting $\sigma^{\prime}=\sigma+|t|^{-\varepsilon}$, we obtain

$$
|\log \zeta(\sigma+i t)|<\log |t|^{\varepsilon}+A
$$

Thus
(27) $\quad|\zeta(s)|<A|t|^{\varepsilon}, \quad\left|\frac{1}{\zeta(s)}\right|<A|t|^{\varepsilon}$
uniformly in the considered region. By carrying out the differentiations in (26) and using (27), we can prove (6) by induction.
B implies A. Let us put $a=e^{h(1)}>0$ (cf. (24)!) and $S(x)=N(x), T(x)=a x$ in lemma II. As on page 305, it follows from (6), (7) and (24) that

$$
\left|\frac{d^{k}}{d s^{k}}\left\{\frac{\zeta(s)-\frac{a}{s-\mathrm{I}}}{s}\right\}\right|<\frac{A}{\mathrm{I}+|t|^{1-\varepsilon}}
$$

is valid for $\sigma>1$ and $k=0,1,2, \ldots$, and (5) follows.

[^0]: ${ }^{1}$ A. Beubling, Analyse de la loi asymptotique de la distribntion des nombres premiers généralisés, Acta mathematica, vol. 68.

[^1]: ${ }^{1}$ Cf. A. E. Ingham, The distribution of prime numbers, p. 29 and 30.
 39-48173. Acta mathematica. 81. Imprimé le 29 avril 1949.

