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By 

BERTIL NYMAN 
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Consider a monotone sequence of real positive numbers 

(~) i < Yl < Y.. < <  yn < " .  

Form all possible products 

(2)  x - ~  y,~, y , :  . . .  Y'~k, ~tL < ~.~ --< "'" --< ~L., 

and arrange them in a non-decreasing sequence 

(3) x < x l ~ x ~  . . . --<xn--<.- .  

where every x appears as many times as it can be represented by formula (2). 

The numbers {Yn } are called the primes of the sequence {xn}. Let z (x )deno te  

the number of primes --< x, and At(x) the number of x~-< x. 

This definition of generalized prime numbers is given by BEURLXNO, who 

uuder certain general conditions has derived very interesting relations between 

the functions N(x) and g(x). ~ 

In what follows, ~(s) denotes the function 

(4) ~(.s.) = I + x;"  + x;* + . . . .  f x - ~ d N ( x ) ,  s--=a + it. 
0 

(For the sake of simplicity, we assume that _N(x) has a sf~p equal to ~ at ~he 

point x -~  I.) Li (x) denotes the logarithmic integral, i. e. the principal value of 

the integral 
x 

dy  . 
.1  log y 
0 

A. BEURLING, Analyse de la loi asylnptotique de la distribution des nombres premiers 
g~n~ralis~s, Acta mathematiea, vol. 68. 
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I t  is well known that  Li(x) has the following asymptotic expansion: 

Li (x) ~ x ~ ~ § I--I" 2--'I } 
[ log x (log x)' + (log x) s + .... 

The following theorem will be proved: 

Theorem: The following three statements are equivalent: 

A.  There exists a real number a > o, such that 

----- a S  X - - ~ -  0 0  

for every positive n. 

B. To every ~ > o and every non-negative integer n,  a constant A ~ can be 

chosen such that 

(6) I ffc~(s)l < Altl ' ,  

(7) I~Ts)I < A l t l ' ,  

uniformly in the region a > I, I tl-> ~. 

c. ze (x) has the same asymptotic expansion as Li (x), i. e. 

a s  X -~OO 

for every positive n. 

This theorem will be proved by the aid of Parsevars formula for Mellin 

transforms. 

From each of the hypothesis A, B and C it follows tha t  the series defining 

~(s) is absolutely convergent in the half-plane a > I and can be written the~e 

as an Euier-product 

(s) = H ' 

Thus 

(9) 

where 

(~o) 

l o g  ~ (S) = -- i log (I -- y~s) __-- :X-' d IT/(~), 
1 1 

~(x)  = ~ ( x ) §  ~ ( x * )  + ~ ~(xJ)§ .... 

1 A always denotes a positive constant, possibly depending upon e and n, but  not depending 
upon a and t. A can very well have different valnes in different places. 
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For the proof we need the following lemmas:  

L e m m a  I :  Let  9 (s) be a funct ion which is holomorphic in the band I < a < 2 

, and, for  n = o, i, 2, 3, . . . .  satisfies the following conditions: 

( i i )  

( I 2 )  

where kn ~-- o and 

I ~  ~'! (s) l < 
A 

({7 - -  I )  n + l  ' 

Iwc.l(s)l < Altl k., 

lira k~ - -  ~ O ~  
- -  n 

uniformly in the region I < {7 < 2, [ t ] > to > O. Then to every e > o and n = o, I, 

2, 3, . . . ,  a constant A can be chosen such that 

(~3) I~o~(s) I < AI tl~ 

uniformly in the same region. 

Let  us suppose t ha t  a,, >---o is the least  number  such tha t ,  for  every e > o, 

I r l < a I t l ~ + '  

uniformly in the above region. By (12), a, -- k,. Suppose that {7 --< I and choose 
{7' so that {7<{7'<2. For [t[>to we have, by (If), 

a'+tt 

19r + i t)[ <--19(")(d + i t)[ + f I r  I d s l  <-- 
a+tt 

A iriS+,+. ({7, _ {7).+x + (o'--o)A 

an + 1 

Put t ing  {7" ----- {7 + A I t] -~-+~, where A 

interval(I,~) and ]t[>to, we obtain 

is chosen so t h a t  {7'< 2 for  all o in  the 

n + l  . 

19~")({7 + it)l  < A lt l  a " + ' ~ * '  

uni formly  for I < {7--< 9, It[  > to. By ( I I ) ,  an inequal i ty  of the  same form 

evidently holds even for x < {7 < 2. Thus 

n + x  
a n ~ ~ n + l  n + 2  

and 

20 
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12'n < a n + l  < < Vtn+p ~ ]r 

n + I  n + 2  n + p + I  n + p + I  

Since we may choose p arb i t ra r i ly  large, i t  follows t h a t  a .  = o for  all n, and 

(I3) is proved. 

L e m m a  I I :  Let 9 (s) and Ip (s) be two functions, which for  a > i may be re- 

presented by the absolutely convergent integrals 

(I 4) 99 (s) = f x-S d S (x), 
1--0 

O0 

(IS) ~(~) = f x - , d r ( x )  
1 

where S(x) is non-decreasing, S(x  + o) = S(x), and o <-- T'(x) <-- A. Let us put 

d s k s 

and suppose that 
o o  

(16) f IOk((~ + it)l 'dt 

is uniformly bounded for a > I for a fixed k ~ o. 

(i7) 

is valid for n <-- ~ k. 

By the proof,  we 

Le t  a o > i. 

yields 

Then the relation 

{( S ( x ) =  T(x) + o lo as x - ~ o o  

can obviously assume th a t  S ( *  - -  o )  -~-- o a n d  T ( , )  ~-- o .  

The  inequa l i ty  

/ ~ S (y )d"  S(x) (o0) >_ v -  ~. d s (v) = s (x__)) + Oo ~ ~ >- 
1-o Xa~ 1 . Xa~ 

s (x) -< r (.o) x% 

Thus (14) may be in tegra ted  by parts  fo r  a > ao, i. e. fo r  a > I, since we may 

choose a o a rb i t ra r i ly  nea r  to  I. Thus  

T 
(s) _ t x - '  S (x) d x .  

S o X 
1 
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Combining this formula and the analogous formula for ~p (s), we obtain 

(8) - , (8)  =/x-" S(x) -x r (x) 
1 

dx, a> I. 

Differentiating k times, we obtain, for a > I, 

( - -  l)k0k(8)= :X-* S(x)- x r(x) (log x) k dx.  
1 

From Parseval's formula for Mellin transforms, it follows that, for a > I, 

fj ! Ok(a + it)]2dt = S ( x ) -  T(x) (log x x 1-2" 
2 ~  . x 

--o0 1 

dx.  

A S  f f - ~  I, the right-hand member is non decreasing and thus has a limit, which, 

by (I6), is finite. By monotone convergence we thus get 

/I I s(~)- T(x)( log  x)~ - -  
x x 

1 

< o o .  

Let us put  S (x) --  T ( x ) =  (? (x). Then 

(,s) 

oo 

j ' l ~  (~)1'' (log .~)~ 
XS d, x < o o .  

1 

Since S(x) is non-decreasing and o < T' (x)-< A, we have 

d ( )  ~(~) 
j ( y ) >  x for x < y - - < x +  ~ if ~ ( x ) >  o, 

2 2 2 1  

- ~ (v) -> - - - -  --e?(x) for x + e ? ( X ) < y < x  if ~ ( x ) < o .  
2 2 A - -  - -  

If ~ (x)> o, we thus get 

x + - -  
2 A  

- ,  , Iz ( l o g  y)~ 
f Iot.v~t )~ 

i _ 

(log x) 2 k-3 

A { 2  + A x J  
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By (x 8), this integral must have the limit o as x -~ oo. 

follows that  

li--m d (x) (log x)" < o. 
x--~ oo X 

I f  we choose n <--2-k it 
3 

A quite analogous argument shows that  lim - -o .  Thus the lemma is proved. 

A implies B. Integrat ing (4) by parts, we get 

Combining this formula and 

we obtain 

(~9) 

;(s)s = ;x-'  2~(x)z dx. 
1 

~  
- = a x - *  dx, 

s I 
1 

a = I ~ . _ , N ( x ) - a .  

8 - - 1  J "~ X 
1 

dx. 

These formulae are valid for ~ > x. However, by (5), it follows that the integral 

in (I9) is absolutely and uniformly convergent for ~--> I. Thus the left-hand 

member of (19) is continuous in the closed half-plane ~ -- I. If g{s) denotes the 

integral in ,(19), we can write 

(20) 

Thus 

(21) 

where 

; ( s ) = a +  a +sg(s). 
8 - -  I 

;(")(s) = ((~ t )" , , , , !  _ i)n+l + 8g(n)(s) + .Tt ~(n-1)(8), 

oo 

g(') (S)= (--I)" f X-" N (x)_--- a x  (log x) n d x .  
1 

By (5), this integral is absolutely and uniformly convergent for a ~ I. Thus all 

derivatives g(,)(s) are continuous and bounded for a ~ I. Consequently, it follows 

from (2o) and (21) that ~(s) satisfies the conditions of lemma I with all k,, = x 
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and t o arbitrarily small. This iemma thus yields (6). The function ~(s) satisfies 

the inequality 

I~t(a)~'(a + i t ) ~ ( a  + 2 i t ) I >  I ,  

due to Hadamard. Using this and (6) ,a  classical argument t gives (7). 

B impl ies  C. T h e  formula 

(22) log s ; s - -  I = x - *  d p  (x), 
l 

where 

(23) 

is easily proved. 

S(x) = n ( x )  (el. (9)!) 

is valid for ~ >  x 
every term will be of the form 

d_,+~ ds" log ~(s) -- log s , 

and, if v > o ,  

1 [ 
ds"  log : I I{ ~(s))" 

0 " > I )  

I 

Y p (x) : ~ dy : Li (x) -- log log x + A, 

We can now use lemma II with 

and T(x)=p(x), since an inequality of the form 

d~ log .~(~) - -  log T---~ < A 

d-~[  s I + Itl'---' 

and k = o, I, 2 . . . .  For, earryiug out the differentiations, 

~ - - - 0 ,  I, . . . ,  ~) 

< A l t l  ~ 

for I tl ~ - ~ by (6) and (7), since P,  (s) is a sum of products of ~(s)and its ~ first 
derivatives. Further, by (7) and (2o), the left-hand member of the above inequality 

is continuous for a ~ I. Thus the lemma gives 

0 { ~  } as x-~ oo, l I ( x ) = p ( z )  + 

for every n. (8) will then follow from (xo) and (23). 

I Cf. A. E. II~GHAM, The dis t r ibut ion of pr ime numbers ,  p. 29 end 3 o. 

39--48173. A a ,  a mathemat ica .  81. Irnprlrn6 le 29 avril 1949. 
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C imlglies B. Integrat ing (9) by parts, we obtain 

log ~ (8) = f x - *  ~ (x) d x. 
8 d X 

1 

Combining this formula and formula (22), integrated by parts, we get 

log ~(s) I log ----L-s = ?x  -*ll(x)-p(x) dx. 
s $ 8 - - I  d x 

1 

I f  h(s) denotes the integral, we can write 

(24) log ~ (s) = log ____s + s h (s). 
8 - - I  

Since ~r(x) satisfies (8), it follows from (Io) that  / / (x)  also satisfies (8). Thus 

h(s) is absolutely and uniformly convergent for a ~ I. I t  follows that  ~(s) is 

continuous and # o for a--> I, with the exception of the point s----I. Diff- 

erentiating (24) n times, we obtain 

d n I } 
log  ~(~) ( s -  ~)" + sh(")(s) + n h<"-') (s), (25) 

where 

I 
= ( - i ) ' - 1 ( ~ - x ) !  ; .  

1 

By (8), this integral is absolutely and uniformly convergent for a > I. Thus all 

derivatives h (~) (s) are continuous and bounded for a > x. Consequently, it follows 

d 
from (25) that  the function dss log ~(s) satisfies the conditions of lemma / with 

all kn = I and t o arbitrarily small. Thus 

e~--a log ~ (~) < A I t l ', ,~ ---- i, 2, 3 . . . .  , 

uniformly in the region a > I, [ t [ > ~. 

[ log ~ (a + i t)] <~ I log g (a' + i t) l + 
a+i t  

I 
< log a' - -  a 

From (24) and (26), it follows that  

a'+ft 
d 

- -  + A ( ~ ' - -  ~) l t l ' ,  I < a < 0". 
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Pu t t ing  a ' =  a + I tI-L we obtain 

I log ~ (a + it)  l < log I t l ~ + A.  
Thus 

(27) Iff(s)l < AItIL ~) <Air 

uniformly in" the  Considered region. By carrying out  the differentiat ions in (26) 

and us ing  (27), we can prove (6) by induction.  

B implies A. Let  us put  a = e h(l) > o (cf. (24)[) and S(x)= N(x), T(x)=ax 
in lemma II .  As on page 3o5, i t  follows from (5), (7) and (24) t ha t  

d~ ~(s) s -  I < A 

dsk~, s t + l t l  '-~ 

is valid for a >  I and k - ~ o ,  1,2 . . . . .  and (5) follows. 


