ON LATTICE POINTS IN A CONVEX DECAGON.

By
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Let K be a convex domain in the (z, y)-plane symmetrical in the origin
0 = (0, 0) of the coordinate system. If
Xy = (1, 1) and X, = (x,, ys)

are two points not collinear with O, then the set .4 of all points®

u Xy + up X, (ug,u3=0, F1, F2,...)
is a lattice, and the positive number

d(4)=|(X,, Xz)l

is the determinant of 4. We say that 4 is K-admissible if no point of .4 ex-
cept O is an inner. point of K. Then the lower bound

4(K)=1.b. d(4)

extended over all K-admissible lattices is a positive number and is called the
mintmum determinant of K. There exist critical lattices of K, i.e. lattices 4
which are K-admissible and of determinant

d(4) = 4(K).

Except when K is a parallelogram, such lattices have just three pairs of points
F A, ¥FB, ¥C on the boundary of K, and if the notation is chosen suit-
ably, then

A4+ B=C.

' We use vector notation; thus #; X; + wg X3 = (4 43 + %3 s, %; §1 + ¥g ¥3", and in particular
—X;=(—a1, —y1). The determinant of X; and X, is denoted by (X;, Xp) =1x; ¥y — X2 ¥ -
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If V(K) is the area of K, then the quotient

Vv (K)

Q(K)‘—‘j(f)

is invariant under all affine transformations which leave O unchanged. The
quotient Q(K) arises also in connection with the densest packing of convex
figures. Place domains of half the linear dimensions of K, but with the same
orientation, in such a way that their centres are at the points of .4. Then no
two such domains overlap if and only if .7 is K-admissible. Further the ratio of
the part of the plane covered by these domains, to the whole plane, is equal to

vV (K)

4d(4)
and therefore the maximum of this ratio, namely

VIK) 1
4 4(K) 4Q(K)

is attained when . is a critical lattice of K. Since this ratio cannot be greater
than unity,
Q(K) =4,
which is Minkowski’s classical theorem on convex domains. Here the equality
sign holds if and only if K is a parallelogram or a hexagon.
In the other direction, it is not difficult to show that!

QE)=Viz,

but the exact lower bound is not known. It was conjectured by Reinhardt*® that
this lower bound is attained for the smoothed octagon, but no proof has so far
been given. Reinhardt came to his result by showing a result which may be
expressed as follows:

1 K. MAHLER, The Theorem of Minkowski-Hlawka, Duke Mathematical Journal, 14 (1946),
611—621, Lemma 2.

® K. ReINHARDT, Uber die dichteste gitterférmige Lagerung congruenter Bereiche, und eine
besondere Art convexer Curven, Abh. aus dem Math. Seminar der Hamburgischen Univ. 9 (1933),
216—230. With regard to the smoothed octagon, Reinhardt said: »Die Frage nach den Bereichen
diinnster dichtester Lagerung liuft offenbar darauf hinaus, diejenige Kurve (oder diejenigen Kurven),
der von uns betrachteten Art zu finden, welche bei gegebenem einbeschriebenem etwa regulirem
Sechseck eine mdoglichst kleine Fliiche umschliesst. — Bei unseren Bereichen kommt diejenige
Figur in Betracht, welche aus einem regelm#issigen Achteck entsteht, wenn man jede Ecke durch
diejenige Hyperbel abschneidet, die die beiden anstossenden Seiten beriihrt, und die beiden wieder
an diese grenzenden Seiten zu Asymptoten hat.» We call this figure the smoothed octagon.
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»Denote by Ux the set of all hexagons H bounded by three pairs of tac-lines
(Stiitzlinien) of K symmetrical in O. Then

4(K)y=1%1 b V(K.

HeUy

Without knowledge of his paper, one of us' recently rediscovered this for-
mula and was lead to the same conjecture about the lower bound

Q

of Q(K) extended over all convex domains K symmetrical in 0. He further

studied the lower bound
Q.

of Q(Il,) extended over all convex polygons II, bounded by » pairs of sides
symmetrical in O, and he showed that®

4=02=03>04>05>05>“')

lim @, = Q,
16
04=7(3—V3)=3-62465

He further proved that each of the lower bounds @ and @, is actually at-
tained.

In the present paper, we continue these investigations and determine the
lower bound (5. While for » =4 the lower bound (@, is attained for the re-
gular octagon, we find that for » = 5 the bound is attained for a convex decagon
of a non-regular type, and that its value is

Q;=3-62173 ...

We also determine the value of @(D’) for the smoothed decagon D', i.e. a cer-
tain figure bounded by ten line segments and ten hyperbolic arcs, and we

find that
Q(D)=3-60974 ...

This value is larger than the corresponding value

Q(0") = 3-60965

for the smoothed octagon, a result which seems to support Reinhardt’s conjecture.

! K. MAHLER, On the minimum determinant and the circumscribed hexagons of a convex
domain, Proc. Academy Amsterdam 50 (1947), 692—703, p. 694. This paper will henceforth be
referred to as M.

M, p. 608; p. 702.

41—48173. Acta mathematica. 81. Imprimé le 30 avril 1949.
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1. The configuration. The five pairs of parallel lines which form a plane
symmetrical decagon D, will be denoted by

Li:liz +my+nm=o0, —Li:— (e + miyg)+mi=0 (¢=1,2,3,4,5). (1.1)

The vertices

PI)P2’P31P41P5)_Pl’—P2a—P31—P4’_P5 (1'2)

of D are the intersections of

Fig. 1.

—Ls and Lly Ll and Lg, L2 and Ls, ooy ""L4 and _L5

respectively.
For many purposes, however, it is more convenient to specify the decagon
by the vectors

]'1, 1‘2,...,1'5,—-1‘1,—1'2,..., —'r5, (1.3)
which form the sides of the polygon; thus r;= P; P;1:. The determinant
aij = (rs, T)) = — ajs ) (1.4)

represents the area of the parallelogram made by the vectors r; aud r;. Itis of
course sufficient to let the indices ¢ and j run from 1 to 5, since e.g.

Ayq = (ry, —T) = — @y, agg=(r5, — 1) = ay5 ete.

Indeed, the 10 quantities
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aij (Z<], i’j=l7 2,3 4 5)

afford a complete analytical description of the configuration we wish to study.
The polygon is convexr if and only if (Fig. 1)

a;;>o0 (<4, 4,=1,2,3,4,5). (1.3)

It is important to note that the quantities a;; are not independent. If
i, j, %, 1, are four distinct numbers out of 1, 2, 3, 4, 5, then

aij ar + ajxai + agi aj; = 0. (1.6)

Fig. 2.

For since any three vectors in a plane are linearly dependent,
Tr=AL; + ur; (2, u scalars);
on forming the outer product with r; and r;, it is found that
Gix = P aij, ar= — Aaij,
and therefore

aij T, + @ T + ariT; =0,

whence, on multiplying by r;, we obtain (1.6). Making use of the fact that
a;; = — aj;, we have e.g. ' ‘

Q12 @34 — (13 Gg4 + Q14833 = O

@13 dg5 — O3 A5 + Gy5 g3 = O (1.7)
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There are five such Pricker identities, but only three of them are independent.
Thus there are seven independent coefficients a;; which determine the configura-
tion apart from affine transformations.

By Fig.1 the position vector of the vertex P; is

p+r ottt r, E=1,2,3,4,35; ro=0)
where
p—————%(rl + 1'2 "*‘ l‘3+l‘4+l‘5).
Hence
-1
area (OP; Pip1)=3(p + vy + -+ rimy, 1) =} (p, 1) + § D) (v, 1),
k=1
and!
5 5
1)=2}_‘J area(OPiPi+1)=(p, Zl‘z’) + Z(Pi,l‘j), (1.8)
=1 i=1 z,i]:jl
that is

5
D= Z aij,
ij=1
i<j
since (p, ¥ ) = o.

If of the five pairs of sides (1.1) of D one pair, say ¥ L;, is omitted, the
remaining four pairs form a symmetrical octagon O, circumscribed to the original
decagon. The points P; and P;;, do not occur as vertices of this octagon, but
are replaced by the single point ;, the intersection of L;_; and L;;,. The area
of 0; (Fig. 2) exceeds D by

§3=Mﬂ=2area(PiQiPi+l). (1.9)

ai—1, i+1
For L
2 area (P: Qi Piy1) = (P @i, v3) = Ai(rimy, T) = Aiaicv i,
where ‘A; is a scalar which is determined by the condition that 4;r;—; — r; should
be parallel to r;y;. Therefore

O={APi1— T, Piv1) = Ai@i1, i+1— i, i+1,
whence the result follows.

The subsequent argument is chiefly concerned with the symmetrical hexagons
that can be circumscribed to D. There are evidently 10 such hexagons, each
being obtained by leaving out two pairs of parallel sides, say

¥ Li, F L

! Here, as elsewhere, the same letter is used to denote a plane domain and its area.
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from the original configuration. The area of this hexagon will be denoted by
H;,

the suffixes indicating the sides that have been omitted. We have to distinguish
two classes of hexagons H;; according as the two omitted sides are not, or are,
adjacent. In this context, r—; and r,, or r, and r-, are, of course, adjacent.

(i) Hexagons of the first class: The sides r; and r; are not adjacent. The area
H;; is then obtained by adding to D four triangles based on the sides

Fri, ¥y
like the single triangle shown in Fig. 2. Thus,

Hij=D+§?+§JZ~. v (I-IO)
The quantities
Ej=H;—D=§+§ (r.11)

will be frequently used.

(il) Hexagons of the second class: The omitted sides are adjacent, say v; and
ri+1. The hexagons H;;y1 is obtained from D by the addition of two quadri-
laterals, symmetrical in O, one of which viz. P;R;P;;2 P;;1 is shown in Fig. 3.
The additional area is given by

(@io1,s + @i—1,i+1) (@542 + @ig1,i42)

Eiiv1= - — ai,i+1,
@i_1,iv2

where the first term is analogous to the expression (1.9), the vector r; having
been replaced by r; + r;y1. On simplifying and applying (1.6) to the indices
t— 1,12, ¢+ 1, 7+ 2 we obtain

@i-1,i Gii+2 + 2@Qi—1,i Qit1,i42 + Bi-1,i41 Bit1,i+2

Ly = ——= (1.12)
ai-1,i+2

2- The intrinsic variables & and B;;.;. The determinants a;; are not the
most convenient parameters for defining the configuration. Instead, we shall use
as new variables the five expressions (1.9), namely,

v Q52 8= Q13093 ;o Q23034 _ 35 . __ 2505 (2.1)
51 7 ) 2 ) §3 Y 5 - b §5 - bl *
a3 I3 Qg ass 14

together with the five positive quantities
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— a3 Q35 ___ Qi3 dgy _ /6124 35
B = |/ 21222, ﬂzs—‘/— b= |/ 22l

] b
a5 Qa3 13 Agg Qo3 Q45
Bus = 935 214 B = /025 14
s gy O35’ 8 ayg Qg5

It will presently become clear that only seven of these variables are independent.

(2.2)

There can, however, be no identity between the &'s valid for all symmetrical con-
vex decagons. For if r; (=1, 2, 3, 4, 5) be the sides of a fixed decagon D, con-
sider a decagon D, with sides 6:x; (: =1, 2, 3, 4, 5), where

0,,0,, 05, 0,, 65

P
L, 1+2 R

Fig. 3.

are arbitrary positive parameters. The determinants of D, are

aij = 6;6;a;; (2.3)
and the £'s become :
=05  (i=1,23475). (2.4)

Hence the &'s can be made equal to any five positive numbers.
It is important to note that the §'s of D and Ds are the same, i.e.
Biir1 = Biit1. (2.5)

The @8's seem to have no simple geometrical significance.
The equations (2.1) and (2.2) can be solved for the a;;, thus

a1z = & & Bhe, 23 = &3 83 Ba3, a3q = §384 Paa, ags = £4 &5 Bas,
a15 = £5 61 81,
ay3 = 5183810 Bos, @10 = Ea 8185 Bs1, Gas = E3 84 BosBaas a5 = &5 82 Br1 Bz,
35 = £3 85 B4 Bas-
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On substituting in (1.8) we find for D the expression

D=p12818 + Basbala + Baabsbs + Busbals + Bubstr
+ B12B23 6185 + Bas B34 82 8a + BaaBas 5385+ Bus 1 §a b + Bsa Brabs s

The Pliicker identities (1.6) imply that the §'s are not independent. For

(2.7)

example, we have
Q23 Q45 + O34 tlgs — 94 G35 = O,

whence
ds a gy @
1 4 34825 __ 424035 =4,
Qg3 Qg5 a3 Q4
i. e.
B—1 = 34 Q25
34 I =——:
Qa3 dgp
Similarly

_ 045 Oq3
g — 1 = 248 %3,

Q34 Qg5
and therefore

(Bl — 1) (Bl — 1) =2 %3 _ g2

Qa3 dy5

Analogous formulae are obtained by cyclical pertﬁutations of the suffixes, thus

(B2 — 1) (6 — ),

(B — 1) (65 —

( ) (B — 1), (2.8)
Bis = (B — 1) (82 — 1),
B = (B — 1) (85 — 1).

From (2.8), further relations between the 8's may be deduced. In particular,

B1B23 . Bie , B2 fBsu_ B  PasBus B
BaaBas Bh—1 PusPs Bu—1 Bsibra Bu—1

bub_ B BB Pu (2.9)
B2 Bas P’is—l Bas Baa  FBa—1

Hence all 8's are greater than unity.

'&

Bia
Bas
Bsa

L — 1

IS

These equations between the f's are also not independent. It is, ¢n fact,
posstble to express all five §'s in terms of the two parameters

1351 4312 ﬂ23 t= 1334 545 651
1834 645 ’ 512 523

which, on using the first and the fourth equation (2.9), may also by written as

(2. 10)
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Bz §— B3 )
48?2"_1, ,325“—1

Since the @'s are by definition positive, it is easily shown from (2.11), (2.10),
(2.8) that

s st—1 st—1 Tt
512_ ::a 1923—] T——l_’ 4334"]/8__1 s ﬂ45'_']//t_1’

(2.11)

8§ =

(2.12)

Bs1 = Vst.
In these formulae, s and ¢ may be any real numbers subject to the con-
ditions
s>1, t>1. (2.13)

We next express the area H;; of a circumscribed hexagon, or rather the
excess F;; of H;; over D in terms of the new variables & and f;;+1. For hexagons
of the first class, this is accomplished by (1.11). As regards hexagons of the se-
cond class consider a particular case, say E,;. By (1.12)

I
Eyy = —(ajpa9q + 2 ay3 a3y + 13 agy).
a1y
Substituting for the a;; from (2.6), we obtain

_ B2 B3 B 2 2
Ean =" 8 (s Tt 53)‘

whence by (2.9)

2 . )
E23=[57§3£2i—1(§§+ @gzgs + §§) =&+ & + &,
where
1
&5 =——__—(§§ + 28555 85 + &)
Bos — 1
Therefore

Ea—g+ BBl g, bbbl (2.14)

Four similar formulae are obtained by cyclical permutations of the suffixes.
For reference, we give here a complete list of the 10 quantities F;;:
Ep=§5+&
Ey=8+8&
Ey=8+8& (2.15)
Eg; = £+ &
Ey= 5 + &,
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Ep=§+8+ =008 + 20& &+ 8:8)/8:.—1)

Epy =8+ &+ & =(Bu& + 28355 + B0 5)/ (B — 1) '

Usa =& + & + B = (B8 + 2 8sa5a 84 + B 5D/ (B4 — 1) (2.16)
Ep=8+&+ 8= (B8l + 28585 + Bis5)/ (66— 1)
Eq=8+8+ & =85+ 28u8586 + S 8)/(6:—1)

?

where
a,¢+1 (52 + 2 ﬁ, i+1 & §1+1 + 1+1)/(ﬂ?,i+1 - I)- (2- 17)
Notice that
ng 2 2 2
“ii+1 T §i R TES St 5' i+1
hence
1.7—§1+51) (2'18)

whether or not the suffixes ¢, j are adjacent.

3. Critical hexagons. A symmetrical hexagon circumscribed to the decagon
D is said to be cretical if it is of minimum area. A decagon may, of course,
have several critical hexagons and these may be of the first or of the se-
cond class.

Theorem I: If H,, and H,, be critical hexagons of the second class, they have.
one suffix in common.

Proof. Assume that, on the contrary, all four suffixes 7, s, p, ¢ are distinct.
There is no loss of generality in assuming that these suffixes are 1, 2, 3, 4,
respectively, i.e. that H;, and Hg, are critical. Therefore, in particular,

H,3 = H,,, whence E;3 = E,

i.e.
B+E8=8+ 8+ L,

and thus

&> &.
Similarly, from ‘

Hyy = Hyy

we deduce that

&> &,

thus arriving at a contradiction. This proves the theorem.

Corollary: There cannot be more than two critical hexagons of the second class.
For two distinct critical hexagons of the second class are necessarily of

the form
42-48173. Acta mathematica. 81. TImprimé le 30 avril 1949.
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Hi i, Hiin
and a third such hexagon, say Hj; i1, cannot have a suffix in common with each
of them, unless j=1¢ or j =7 — 1.
4. Extreme decagons. Every decagon possesses one or more critical hexagons.

Denote these hexagons by H.g, Hewg, Hag', ... Then

H,s= Hyg = Hy'g'=---= min {Hi;} =D + E, (4.1)
and therefore

E= E,,{g=Ea'(3'=Ea".g~='-~=min {E,_,} (4.2)
Definition: A symmetrical convex decagon D is said to be extreme if Q(D) is

a menimum, 1. e. if )

QD)= QD)

Jor every symmetrical convex decagon D’. Here

_ypy_ D
D) =40)= 1)

As was mentioned on p. 321, it is known that

4 (D)=} min {H;;} = } (D + E)
so that

_ 4D _ 4
E
It follows that for an extreme decagon the ratio

¢(D)=€—.

takes its smallest value.

Theorem 2: If D 4s an extreme decagon, then each of the numbers 1, 2, 3, 4, §
occurs at least once amongst the suffixes of the critical hexagons of D.

Proof: If the theorem were false, assume that 5, say, does not occur as a
suffix of any critical hexagon of D. Then compare D with the decagon D’ de-
fined by the vectors

 ori=my, Ta=Ty, Ts =Ty, T4=Try, Ts=(1 —&)r5 (¢ > O).

By (2.4) and (2.53),

§;=§1 (= 1,23 4)’ §f’)=(l _€)§5
and
Biiv1=Bi+1, E=1,2,3,4,5)

where letters with a prime refer to D’
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Therefore from (2.14), (2.15) and (2. 16)
Eyj=E;  (,i=1,2 3, 4),
while the four numbers
| Eis — Eis| G=1, 2,3, 4)
can be made arbitrarily small by choosing ¢ sufficiently small.
Now, by hypothesis
E= min {E;} < min {E;j}. (Z#))

7,j=1,2,3,4 i=1,2,3,4
Hence
EF= min {Ej}l= min {(Ej}=E, ()
_ 1,j=1,2,3 4,5 4,j=1,2,8,4
since

| min {Ei;} — min {E}l

i=1,2,3,4 i=1,2,3,4
is arbitrarily small, and therefore
E' < min {Ej)}.
i=1,2,3,4

On the other hand, by (2.7)

D' —D=—¢(§Bus + E1Bs1 + EaBaaBus + EaBs1512) & <O,

whence
oD _D_

contrary to the assumption that D is extreme.

Theorem 3: FEvery extreme decagon possesses at least 3 critical hexagons.

Proof: This is evident from theorem 2, since the set of the critical hexagons
H,5, Hyg, ... involves all five suffixes.

Theorem 4: If D ¢s an extreme decagon, then at least two of its critical hexa-
gons Hog, Hyg, ... have mo suffix in common.

Proof: Assume that, on the contrary, all critical hexagons involve the suf-
fix 1. This means that each of the critical hexagons is formed from D by omit-
ting the lines T L; and one other pair of lines. Thus a variation of the lines
F L; has no effect on the critical hexagons, and consequently leaves the quantity
E unaltered. On the other hand, if we move these lines closer to the origin in

such a way that the figure remains a symmetrical and convex decagon D', we
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should have D’ < D. The new decagon would give rise to a smaller value of the
ratio D/E, in contradiction to our hypothesis.

Applying now the corollary of theorem 1 (p. 329), we clearly find that there
are just three possible types of extreme decagons, namely,

15t type: The extreme decagon has no critical hexagon of the second class.

2nd type: The extreme decagon has exactly ome critical hexagon of the sec-

ond class.
3rd type: The extreme decagon has exactly fwo critical hexagons of the sec-

ond class.

These three types will be discussed separately and it will be shown that the
extreme decagon is, in fact, of the third type.

5. Decagons of the first type. In this section, we shall examine the pos-
sibility that the extreme decagon is of the first type, so that all its critical
hexagons belong to the set

Hy,, Hyy, Hyy, Hys, Hy. (5.1)

By theorem 3, at least three of these hexagons are of equal minimum area, and
it will be necessary to consider separately the cases in which just three, four

or five of the hexagons (5.1) are critical.

(a) Exactly three of the hexagons (5.1) are critical:

The six suffixes of these three hexagons involve all five suffixes 1, 2, 3, 4, 5
(theorem 2). Hence one of these suffixes occurs twice, say the suffix 3. The
critical hexagons of D are then

H,;, Hyy, Hj; (5-2)
and no others. Thus

E = Ey3 = FEyy = Eg;,
whence, by (2.13),
E=8+5=8+8=5+& (5-3)
The problem is to find the minimum of (D), i.e. of
D/E=DJ/(& + &),

subject to the conditions (5.3). Since D is homogeneous and of dimension 2 in
the &'s, the problem is equivalent to finding the minimum of D, subject to the
conditions

B+8=8+&=5+8=1,&>0(=1,234,5). (5.4)
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We shall show that no such minimum exists. (As the region over which the
variables range, is not closed, the minimum is therefore attained on the
boundary.)

The conditions (5.4) are satisfied if

L=&=a>0 §=y>0,8>0 >0
where
& +y=1, H+E=1

Substituting these values in (2.7), we can write

D=h&E + g8 + &+ p,

where h, g, f, p are-positive quantities depending on «, ¥ and the #'s, but not
on & and &,. It is sufficient to prove that D, when regarded as a function of
& and &, cannot attain a minimum if the variables range over the region

§§+§i=l, §2>07 §4>O:
i.e. if
§2 == €08 01 §4 = sin 0)
where 6 ranges over the interval o <6 < =/2.
But the function

F{l)=hcos8sinf -+ gcosf + fsinf + p
cannot attain a minimum for an acute angle @ since
F’'(0)=—2hsin 20 —g cos § — fsin 0

is negative if 0 < 6 < =/2. This shows that an extreme decagon of the first type
cannot have only three critical hexagons.

(b) Exactly four of the hexagons (5.1) are critical.

Then one of these hexagons, say Hj,, is not critical. Thus

H,3= Hyy = H3s = Hyy < Hy,,
and therefore
E = Ey3= Ey = E3; = Ey < Ej,,

B+i=B+8=8+8=8+8<B+E.

Hence we may put

u=§ =§=%&, v==E§=%§,
22
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where
w*+1vi=1, u>o0, v>o0. (5.4)

The expression (2.7) now becomes

D=au®+ 2buv + cv?,

where a, b, ¢ are certain positive quantities which depend only on the @'s, but
not on u or v.
The problem is to find the minimum of D, when the variables are subject
to the conditions (5.4).
By’ the method of Lagrange's multipliers any stationary point (ug, vy} of D
in the set (5.4) satisfies the equations
(@a—p)ug + bry=o0
(5.5)
b'llo + (C - ‘u,)vo = 0,
where
p=auy+ 2bugre + ctj.
The stationary point is the minimum, if

au + 2buv +c*=p
for every point (u, v) satisfying (5.4). Therefore, in particular, if

u=Vi1i—¢e, v=¢, where 0<e <1,
then

a(t —ed) + 2beV1—e* +cet=p,
whence, on passing to the limit ¢ - o,

a=p.
Similarly,

c=pu.
But then (5.5) obviously cannot have a solution in positive numbers u,, v, since
b > o, while the other coefficients are non-negative. (Since the determinant is
zero, these latter coefficients are, in fact, positive too.) This concludes the proof
that a decagon of the first type cannot have just four critical hexagons.

(¢) All five hexagons (5.1) are critical.
In this case, &§ =8, =& =§, =§&;, =&, say, and the ratio

D
¢ = T 2—15)2 = é (Bra + Baa + B3+ Bus + Bs1 + P12 Bas + Bas Baa + Baa Bas + Bas Bs1 + B51 r2)
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is independent of &'s. On expressing the 8's in terms of s and ¢ according to
(2.12), we find that

2¢1=(l/3i1+l/t_t_l)(r+1/é_t)+1’s_t:(VsLI+Vt1_1)+vs—t

- (5.6)
+ st—1 (I+Vs +_V_t)
Ve—nt—n\ " Vst—1
Introduce the new independent variables
u=3t) ’I/U=V(S—I)(t—_15, (57)
where, by (2.13)
u>1, w>o. (5.8)

Then (5.6) can be written as

1+Vu - — 1 —
2y = ———(u—1+w+ 20V + 2L+ Vu
w w

Vu—1

w

+ {(u—~1—wg+2w)*+(u+1—1:’2+2Vﬂ)*}.

For any fixed positive value of w, the right-hand side is a strictly increasing
function of u. Therefore the minimum of ¢, is attained for the least value of
# compatible with this particular value of w. But when

st—s—t+ 1 =w*= const
is given,
#=st
attaing its smallest value if
s=t=w+ 1.

On putting now ¢t=ys in (5.6) we find that

/ S
2¢;=2(s + I)l/ s»_j——1+2VS+I +(2s+ 1)+ 2]/8—(i+—)-

s§—1

In order to obtain the minimum of this function, it is convenient to introduce
the new variable

Vst 1=c¢. (5.9)
Then

¢1=(z2+z)( /§?+1)—
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and the condition
d ¢y

—==0

dz

for a stationary value becomes, in a rational form,

28+ 325 —32'— 10+ 62+ 2=0,
that is

(z”—z——1)[zg+(2——V;)z—V5][z2+(2 +V2)e+V2]=o0.

Hence there are 6 possible stationary values, namely

1+ Vs 1—Vsg —2+4V2+Ve
& = y Zg = , £3 = s
2 2 2
—24V2—Ve —2—V2+Ve6 —2—V2—6
242 2 1‘25: 2 ,‘?6:_—2-_——

Since s > 1, it follows from (5.9) that only those values of z are admissible which

are greater than V2. Only the first root

fulfils this condition.
However, it does not correspond to a minimum. For since {*={ + 1, we
find that

=80+ 1)=5(+V5), (5. 11)
and consequently
-4 LY =2
Q-I+¢l_,—19(21/5 1)=3-655.... (5.12)

But this number is greater than the value
Q,=3-62465 ...

for a regular octagon, contrary to the inequality (25 < @, proved in the general
theory (M. § o).

In fact, { is the value of z corresponding to the regular decagon, for which
all 8's and all £'s are evidently equal. The relations (2.8) then become

g =8 —1)

whence

BF—B—1=o0
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since 8> 1. It follows that

1+ Vs
g=C= —2—
Also
. fi=bL=hL=t=8=31FE
and
D
h=F= 3 (B2 + Bag + Bag + Bus + Bs1 + Pz Bes + Bas Baa + Baa Bas + Bas Bor + B frz)

1+ H=2C+0)=20C+1),

as in (5.11).

6. Decagons of the second type. By the result just proved, the extreme
decagon cannot be of the first type. In the present section, we shall discuss the
question whether it can be of the second type. Accordingly we shall assume
that exactly one of the critical hexagons is of the second class, say the hexagon

H51. Then
E=E51=ﬁ+§%+-§§1. (6.1)

Since £ is the minimum value of the E;;, it follows that, in particular,
Eys = Eyy, Eyy = Ey,
whence, by (2.15) and (2.16),
E=8+8, 8=84+E.
On adding these inequalitieg, we find that
E+i=8+8+28>8+8+ 8
and so

E24 > E51 .

Hence H,, cannot be a critical hexagon, and every critical hexagon other than

Hg, belongs to the set
Hi3, Hy, Hy;, Hg;. ©.2)

By theorem 2, the critical hexagons, between them, involve all five suffixes. Hence

are critical hexagons, since otherwise the suffixes 2 and 4 would not occur.
Further also at least one of the hexagons Hyy, Hy; is critical, since the suffix 3
must occur. We must then distinguish two cases, according as only one, or both,

.of these two hexagons are critical.
43—48173. Acta mathematica. 81. Imprimé lo 30 avril 1949.
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(a) Only one of Hy3 and Hj; is critical, say Hy,.
Then
H51» H137 H41y H52

are the only critical hexagons, and in particular

Hy3 < Hys, i.e. Eyg < Eg;,
whence by (2.15)

e

1< s (6.3)
Since

E = Eg = Fyy = Fy = Eg,
we have by (2.16)

E=ﬂ§1§?+ngfsfﬁﬂ?lﬁ:gﬁ§§=§?+§i=§§+§§. (6.4)
Thus
e Bk +8)° .,
§5+~—§ﬁ—§1‘-_—f-‘—§§ FE
and
2 (§1+ﬂ1§_5)?_2_,_ 2 __ 2
§l+~ﬁ”§1—51 =L+ E=8+E,
whence
_ Bl t & g 5t Bubs 6.
B=Ta T BR= R (6.5)

In order to decide whether Q(D) can attain its minimum for a decagon of this
type, assume that the §'s are fixed, that &; and &; are independent variables, and
that &, &, £, are defined as functions of & and & by (6.5). The expression

D=0158 1 Ba35:8 + B3a538s + Bus8als + Bsn &5 61

(2.7)
+ B12BesE1 53 + BasBaaba + BaaBasSsls + BasBs18abs + Br1Brabsbe
then becomes a quadratic form in & and &, say
D=Ag+2B§E + OF, (6.6)

where the coefficients 4, B, C depend only on the §'s. The argument will be

based on the fact that
A—C>o. (6.7)

In order to prove this inequality we introduce the following notation: if f(&;, &)
is any function of & and &, put

[f(gsv §1)] =f(§5, §1) _'f(gl» 55)-



On Lattice Points in a Convex Decagon. 339

Evidently
[af(§5) §l) + by (§5a gl)] =a [f(§5= §1)] +b [g (§57 gl)]a (6 8)

if @ and b are constants. In particular, in virtue of (6.5),

—mm=my=&a=ﬁ%:@—m

— [t — =1 (r_ H .
— &l = — bl = [6E] Vﬂ?,——_l(gi £, (6.9)

(38 = — (& — &), a8l =[5 8] =584 =o.

Next, we evaluate [D] in two different ways. First, from (6.6) it is obvious that

[DI/E—E)=4—C. (6.10)
Secondly, by (2.7)

[D] = B1281 8] + Bas[E28al + Baal&s8a] + Bus [Ea sl + Bsa [E5 5]
+ BraBos [E1 Es] + Bas Baa [E2 Ea] + Baa Bus [E3 &5l + Bas 851 [Eaba] + 851 P12 [§5 &l

whence, from (6.9)

[D]/(gé . gi) — (351 B4 545 - .312 1823 + (334

Ve —1
— B2 1923___ B34 851 -
V@rﬁﬁm% 0+%'
Since, by (2.9),
BsaBs1 __ Bis ,
.312 .323 13:5 — 1
DE— g =—bubs e 6.11)

(Bs—1) Vﬂgl —1
which is clearly positive.
Comparing (6.10) with (6.11), we conclude that

A— (C>o.

We now return to the question whether the function

‘MD):E

can attain its minimum for values of &;, & satisfying

& > >o. (6.12)



340 Walter Ledermann and Kurt Mabhler.
Since by (6.4) and (6.6)

2=ﬂ§1—-1 A& + 2BEE + Cﬁ’
E Bor B b+ 255 + Bl

the problem is equivalent to deciding whether the quadratic form
F(, ) =A8 +2BEE + C8
assumes its minimum if, in addition to (6.12), the variables satisfy the condition
B s+ 285 + fnbi—1=0. (6.13)
By means of Lagrange multipliers, it is found that any such solution,
&= gsa &= gl (6.14)
say, satisfies the linear equations
(A—A€51)§5+(B_l)§~1=0 (6.12)
(B—A& + (C—2fu)é =0,
where A4 is the assumed minimum of F. Thus
F&, &) =4
~for any permissible pair of values &, §;. Let, in particular,
P (n=1,2,3,...)
be two sequences of numbers, such that
> >o0

Bsr (B2 + 2808 + B () —1=0

and
1
lim gfr,”) = = lim §‘1")‘= 0.
00 Vﬂﬁl n—o00
Then
. 1 A
A< lim FEP, &) = F(- o, o) =2,
n—+ 0 ('5 ) (V 51 ) 551
1. €.

A . }. ﬂsl 2 0.
Since 55 and 51 are positive, we conclude from the first equation (6.15) that

B—A<o,
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and therefore from the second equation (6.15) that

0_2.551 20.

On multiplying the two equations (6.15) by £ and §~1 respectively and subtracting
we obtain

(A~ E=(C— 18 &,
whence by (6.3)
A —ifn < C—ifsn,
contrary to (6.7).

Hence the extreme decagon cannot have only the critical hexagons

H517 H13a Htll’ H52'

(b) Both H,; and Hj; are critical.
Then the complete set of critical hexagons is

H517 -H131 H417 H525 H35'
Hence

Bkl + 28k +ﬂ§1§§

§l+§3 §3+£, §n+§2_§d+s-ﬂ

B —1
and therefore
£y =8 =&, say
and
B + 1
E == = B ——————— -3
52 §3 §4 Vﬂgl g g
On substituting these values in (2.7), we find that
. , + I
D]& = 851 + (B1a + Bus + B12Pas + BaaBus + Bus Bs1 + 81 Pr2) 17@;2——1
M5t —

(B + 1)*

+ (Bas + B3 + BosBad) g — g1

Also
E=f+8=0p

On substituting for the §'s in terms of s and ¢ in accordance with (2.12), these
expressions become

. f s /Tt = Vst—1 Ly Vst
D/E = V8t+](l/s—l+]/ t—l)(l+}6t)+V(.s——l—)_(—t— (Vs lt)JVst—I

1/st—1 si—1 _ st—1 \(Wsi+1) (6.16)

s—1 +V(s—1)(t—1 st— 1
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Vst
E/lp=_215. (6.17)
T Vst—1
As on p. 335 introduce again the variables
u=st, w="V(—t)t—1)-
Then
P = D/E
is given by
2¢2=(Vﬂ——41)+K(u,w) 1——+Luw +1)l/1——
(6.18)

L ().

where, for shortness,

K (u, w) «{(l +Vu)lu—1+w +20Vu) + u—l)*(u+1—wg+2ﬁ)*},

I (6. 19)
L (u, w) = i;(u —1—w?+ 2w,

For a fixed value of w, K (u, w) and L(u, w) are strictly increasing functions of
%, and S0 is ¢, by (6.18). Hence, as on p. 335, ¢, can attain its minimum
only if

s=t=w+ 1
and therefore

u=s% w=s—1.

The expression for ¢, then becomes

et ) )l )

where the variable s is restricted by the condition

s>1. (6.20)

In this range of s, the functions

- I S
Vs+7fmd V.s--f—r+'/$+I
s s

are strictly increasing, since their derivatives
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L1 I ! and £—I——(l L

2 Vs\ ) My U T
are always positive. Hence ¢, is also a strictly increasing function of s and
therefore. cannot assume a minimum in the open range (6.20).

This concludes the proof that the extreme decagon cannot be of the sec-
ond type.

7. Decagons of the third type. As the existence of an extremum is guar-
anteed by the general theory (M, § 8), there must exist an extreme decagon of
the third type, since all other possibilities have already been ruled out.

By theorem 1, a decagon of the third type has two critical hexagons of

the form
Hi 1, Hiia.

There is no loss of generality in assuming that ¢ = 3, so that

Hys, Hy,
are critical hexagons. The remaining critical hexagons are all of the first class.
Since
E = Ey; = Eyy = min {Ey},
we have
E24 = E23a E24 = E347
i.e.
E+Ez=H+8+8, G+HE=8+ 8+ &,
and so

§a> 83, 5> &,
It follows that

BE+E8>8+8 B+8E>E8+E,
or

E41 > .E13, E52 > .E35.

Thus Hy and Hgyy are certainly not critical, and any further critical hexagons

belong to the set
Hy, Hyy, Hss.

All of these hexagons are in fact critical, H;3 and Hjg, because the suffixes 1
and 5 must be represented, and H,,, since otherwise each critical hexagon would
have 3 as one of its suffixes, contrary to theorem 4 (p. 331).
Hence
E = Eg3 = E3y = Ey3 = Eyy = Eys. (7.1)
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The four equations
Eyg = Eg5, Eyg= Ep3, Ey = E3y, Eyy= Eyp3
allow to express the ratios of the &'s in terms of the g's, viz.

S= §5 =t (yes + BesBaa + 73d),

1 (Bas + 723 F34),
(7.2)
§3 = u(?’zs?’:u — 1),
4= 1(Bss + Baa¥sa)s
where u is an arbitrary factor, and
Vo3 = Vi — B, Y= VI—_E?;-
We again express the 8's and #’s in terms of ¢ and ¢. By (2.12)
1/ tls—1) s(t —1)
Ve = 1 Va4 = s— 1
The equations (7.2) then become
Vs+1)(Vit+1)
=&=¢ =
Vst +1
VwﬂOH+)
L= ,
Vst—1
J— (7.3)
= Vis—1)(t—1)
3 Vst+1 '
b g VimiWs)
‘ Veim1
where
E= _“(_'Sj.f_l)__
Vis—1)(t—1)

is an arbitrary factor. Further

MUEDI D)

E=g+i= Vst+1

After some elementary calculations, ¢; = D/E is obtained in the form

o= () =t vt ) Ve 20—, (7.4
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where
#=st.

When # is fixed, the first factor, viz.

/w1 _L

u—1 ZV;—{—I

is constant, while
Vs+1)(Vit+1)

assumes its smallest value when

s=1.

Thus the problem therefore reduces to finding the minimum of

S 1 I =
"""z(V;é‘:—zH1“)(‘/”’)2—” 7S
when
s> 1.
The equation
d Vs+1 ., 1 Vst : 4 Vs :
Vit o e V1 e g

2Vs(s+ 1)
has exactly one positive root, namely

0 =1"43555.... (7.7)

When s passes this value in the positive direction, d ¢3/ds changes from negative
to positive values. Hence the stationary value o is, in fact, the minimum. On

substituting o for s, we obtain

$s=¢s = 9574521 ...
and

Q=Qs=3 62173227 .... (7.8)

In agreement with the general theory, this constant is smaller than the cor-

responding constant for octagons, namely
Q,=3-62465471 . ... (7.9)
8. The shape of an extreme decagon.
We next evaluate the parameters 8;;+1 for an extreme decagon. We have
s=t=ogo,

44 —48173. Acta mathematica. 81. Imprimé le 30 avril 1949
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where ¢ is the number (7.7). By (2.12),

5122545;—]//021’ .3232534:]‘/0—;_;, Ba=o0. (8.1)
Next, by (7.3), we obtain the ratios of the & in the form
e Wern)? L, Vo+t1 __ ,o—1
h=5=5—1T7" L=5= Vaiy & - (8.2)

Finally, the ratios of the quantities ai;, are found from (2.6).

Affine-equivalent decagons have the same ratio (D). Therefore, two of the
vectors (1.3), say r; and r, can be chosen arbitrarily, as long as the condition
of convexity (1.5) is satisfied. Then

T; u;Try + YTy (1’ I, 2, 31 4, 5) (8 3)
where
ai; _ s .
= P = 8.
t 015) /"3 a15 (Z I) 2’ 3’ 4’ S) ( 4)

(an = Qg5 = 0.)

From (2.6), (8.1) and (8.2), we find that

I o+ 1
= Y = / ,
He * 0'+V0' c—1
Vet—1
P £t S (5.5)
T (Ve+ 1)V
. Vs /o,
S T
Also (see Fig. 1)
— I 1o—1+ Ve —1
p=0P1=—§(r1+r2+r3+r4+r5)=——5 p— (rs + 1), (8.6)

and the remaining vertices are then obtained from (8.3) and (8.4) (Fig. 1).
In Fig. 4, we have constructed an extreme decagon where

s=(w@—1—Ve—1,0),r,=0 —ct+t1+Vo—1), (8.7)

and therefore .
0P1=(I, —I) (8.8)

The diagram also shows the intersections ¢; and R; of non-adjacent sides as
indicated in Figs. 2 and 3. The position vectors of these points are given by
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EQ{Z ai,iﬂ . P hi= Qiive + ai+1,i+2rt—1
ai—1,i+1 aj—-1,i+2
respectively.
The values of the co-ordinates of the 15 points P, @, R: (1 =1, 2, 3, 4, 5)
are contained in Tables' 1—3, where the symbol [z, j] denotes the intersection

of the lines L; and L;.

Table 1.
Po=[—51]] Po=[1,2] | Py=[2,3] | Pa={34] | Ps=1{4,5] ||
|
x I 1 0.4663 0.3605 —0.4056 }
y —1 —0.4056 0.3605 0.4663 1 J
Table 2.
=[—52] @=0,31| @=(24] | Q=375 |&=1[4 —1i
T 1.4140 ¢ I 0.4229 —0.1731 —1
y —1 ! —0.1731 0,4229 1 1.4140
Table 3
Bi=[-53]] Re=[1,4] | Rs=[2,5] |Ra=(3, —1]| Rs=[4, —2]
x 1.8269 I 0.0209 -1 —2.3646
v —1 0.0209 1 1.8269 2.3646

9. The smoothed decagon.

5 critical hexagons

Hls; H357 H34) H241 H23'

In our notation, the extreme decagon has the

(9.1)

From the general theory it is known (M, § 4) that the mid-points of the sides
of these hexagons define the critical lattices of the decagon. Denote the mid-
points of any one of the critical hexagons by

T4, +B 0

! In order to save space, only four places of decimals are given, but the calculations were
actually carried out with greater accuracy.
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then, with suitable notation,
A+ B=C
and!
(4, B) = 4(D), (9.2)

4 (D) being the minimum determinant of the decagou.
In the reference system (8.7), the co-ordinates of the mid-points of the sides
of the critical hexagons (9.1) are as follows® (see Fig. 4):

(1) Hys: t 4;, * By, £ 0, C=4,+ By,

where
A1= _'&(03 + P5)=(_—"0086s _'7114))
B, = (@1 + @) = (- 9185, — -2886).
(2) Has: t 4,, £ By, £ Cp, Cy=A4;+ By,
where
A2= - %(Q:ﬁ + Q5)=(‘28861 —'9185))
B, =3(P, + Q3) = (7114, -0086).
(3) H34: i ASr i B3) i 033 v3’:'143 + B37
where
Az =3}(P, — Ry) = (- 4896, —1),
By =}(P, + R;)=(-5104, - 2972).
(4) Hay: +4,, + By, +C, Cy= A4+ By,
where :
A4=%(P1—Q4)=('58667 _I)a
By =3(Q: + Q4 = (-4134, - 4134).
(5) Has: t A5, * B;, £ G5, Cy= 45+ B;,
where
A5=%(—P5+P1)=('70287 —I)a
By =} (R, + P5)=(-2972, -5104).
Note that

(44, B)) = 4 (D) =-655035 .... (9.3)

Just as in the case of the extreme octagon (M, § 12), we can construct an
trreducible convex sub-domain D’ of D, of the same minimum determinant, but
of smaller area, and hence satisfying Q(D’) < @ (D).

! The bracket depotes again the determinant of A and B.
? See footnote on p. 347.
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The irreducible domain is constructed as follows. Consider, say, the hexagons
H,; and Hg;. The mid-points of their sides are

i Alv i Bl: i 01
and
.t Az, i B2= i 02

respectively. Let X be a variable point on the line-segment A4; 4,, and let the
point Y on the line-segment B; B, be defined by the condition that

(X, Y)=4(D).

The point
Z=X+Y

then describes a hyperbolic arc which cuts off the vertex P; of D and touches
the two sides which meet at P,. We carry out analogous constructions for each
of the other vertices by taking other pairs of hexagons. The resulting figure is
convex and symmetrical in O.

We now give a brief analytical treatment of this construction (Fig. 5). Suppose
X11 X2$ Y17 I72 (94)
are four given points such that

(X1, Y1) =(X,, Y,) = 4(D), (9-5)
and put
a=(X;, Y,), B=(X,, Y). (9.6)
23
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Let

X=(l—aX;+zX, o=x=1
and

Y=(1—y) Y, +yY, (o=y=i)

be two points on the line-segments X; X, and Y; Y,, respectively, such that
, (X, Y)= A4(D) =9, say.
Then

_ B—d)x
YT T ee—e—Pa—(@—a) ©:7)

When X describes the segment X; X,, the point ¥ moves along the segment
Y, Y,, but the point

Z=X+Y=(1—a)X;+zX, +(1—9) Y, +y Y, (9.8)
describes an arc joining the points
Z1= Xl + Irl and Z2= X2 + Yz-

The parametric equations of this curve are obtained from (9.7) and (9.8) by
substituting for y in terms of x in accordance with (9.7).
The area of the sector O Z, Z, is given by
1

I az (0 —a)(8—9) d—a

1 1 >
;.[(Zy dw)dx_E(XerZ)—l-E(Yl: I2) 26"‘a—ﬂ lob ‘8—‘6’
0

and the total area, } 2 say, of the shaded part of Fig. 5 is

‘ — _ 0 —a
;.Q-:(Xp X,) + (Y1, Yz)_(azdi)ff_;) log ﬂ—d

This formula is applied to the five pairs of arcs which cut off the five pairs of
opposite vertices of ). The result is summarized in Table 4, where the first

(9.9)

entry in each row specifies the hexagons which are moved into each other.
The total area of the smoothed decagon D’ is then

D=3Q=12-367756....
As the minimum determinant has not been altered, we finally find that

D 2-367756

Q= ;
PT 4DV 655033

=3-600974 . ... (9-10)
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Table 4.
X, X Y, Y, Ko
Hys— Hiss A As B, B, 604134
Hys— Hys ds ¢y B; —4, -579743
H34 - H24 Cs 04 — A4 3 — A4 .302068
Hg4—’ H23 04 05 "A4 —A5 .302068
| Hss— Hyy | B, By —Cy ~Cs -579743
| 2.367756

This value! is, of course, smaller than the number (; obtained in (7.8), but it
is slightly greater than the corresponding ratio for the smoothed octagon, which
is (M, § 12)

Qi = 3-609656737 .. ..

This fact seems to support the conjecture that (2 is actually the minimum of
Q(K) for all convex domains K.

! We are greatly indebted to Mr. D. F. Ferguson, M. A. for helping us with most of the
numerical work of this paper.



