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1. The  s t udy  of the  solut ions of the  sy s t em 

(1 .0)  dxj~ = X ~ ( x l  . . . . .  x n, t, ~) i = 1, 2 . . . .  n ,  
d t  

where the  X i are regular  funct ions  of e for small  e is classical. More recent ly  non-  

l inear sys tems  like (l .0) have  been  s tudied when  one or more  of the  Xi  has  a pole a t  

e --~ 0, or wha t  is equivalent ,  where  e or some power  of e occurs as the  coefficient of 

the  left  m e m b e r  of one or more  of the  equat ions  (1.0), [1, 2, 3, 4, 5, 6]. I n  this case the  

sys t em when e ~ 0 is  of lower order t h a n  when  e 4=- 0. In  the  s tudies  [2, 4, 6] it  is 

a s sumed  t h a t  the  sys t em has  a solut ion wi th  a cont inuous  de r iva t ive  in case e ----- 0 

and  condit ions are given for this to  be the  case when  e 4 0. 

I n  appl ied m a t h e m a t i c s  there  are cases where  the  sy s t em has  only d iscont inuous  

"so lu t ions"  when  e ~ 0 and  ye t  is k n o w n  empir ica l ly  t h a t  when  e > 0 the  sy s t em 

has  a cont inuous  solut ion which approaches  the  d iscont inuous  one as e -~  0. This  

fac t  has  been  explo i ted  b y  the  Russ ian  school of non- l inear  mechanics .  Here  a r igorous 

t r e a t m e n t  will be  given for a case where  the  sy s t em has  a d iscont inuous  " so lu t ion"  

when  e ~ 0. The  ma in  resul t  has  a l ready  been announced,  w i thou t  proof,  [3]. Since 

[3] has  appeared ,  a sys t em wi th  a d iscont inuous  solut ion has been  t r e a t ed  [5] b y  

Tihonov.  In  T ihonov ' s  t r e a t m e n t  the  " j u m p  arcs"  ins tead  of being solutions of {2.2) 

m u s t  be  s t ra igh t  lines. Also the  existence of der iva t ives  wi th  respec t  to initial  values  

is no t  considered. 

The  specific sys t em we shall  consider here is 
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dx~ du d2d du  
(1.1) d~ ~- f i  ~d~+q~i , i : 1, 2 . . . . .  n ,  S - d ~ + g - ~ + h  -~ O. 

Here  f i ,  ~i, g and h are funct ions of xl,  x~ . . . . .  xn, u, t and e. T h e y  are cont inuous 

in e for small e ~ 0. I t  will be convenient  to use a vec tor  no ta t ion  and to denote  

the vector  with components  x i by  x, the vector  with componen t s f l  by  f ,  and ?~ b y  q~. 

Thus  we can write (1.1) as 

dx  du d2u du  
(1.2) dt = f d i  +q~' ~ [ ; + g ~ [ + h  = 0 

where the first equat ion  of (1.2) is a vec tor  equat ion.  The vector  f i s f ( x ,  u, t, e) and 

similarly for  the vector  ~ and  the scalars g and h. 

B y  the degenerate  sys tem we shall mean  (1.2) with ~ ----- 0. We observe t h a t  

the  degenerate  sys tem is of lower order  t han  (1.2). We shall write the degenerate  

sys tem as 

dy  d v  dv 
(1.3) ~ = 1 ~ + ~ ,  gdi  + h  = 0 

where y is a vec tor  with components  Yl . . . . .  Yn and v is a scalar. In  (1 .3 ) f  is f ( y ,  v, t, O) 

and similarly for ~, g and h. Le t  us now consider a solution of (1.3) as a curve  in 

the  n +  2 dimensional  space (y, v, t). We assume th a t  such a solution s tar ts  a t  a point,  

A. We observe t ha t  when the solution reaches a point  on the hypersur face  g(y ,v ,  t, O) 

0, a singular s i tuat ion m a y  prevail  with regard to dv/dt. 

This s i tuat ion can be seen clearly b y  taking a ve ry  simple special case. We take  

the van  der Pol  equa t ion  with a change of t ime scale which m a y  be wri t ten  as 

d2u du  
(1.4) ~ - : = + ( u ~ - l ) - : + u  = o 

dt~ - - dt 

and we consider the re la ted degenerate  equat ion  

dv 
(1.5) (v~-l)hi+v= 0. 

The solution v(t) o f  (1.5) which at  t = 0 satisfies v(0) > 1 is readi ly  obtainable.  

However  all we need observe is t ha t  since 

dV 

dt 

v is decreasing. Thus  for v ~ 1 

V 2 -  1 
< 0  
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dv  1 

dt v~(O)--  1 
dv  

a n d  af te r  a f ini te  elapse of t we h a v e  for  some  t - -  tl, v(t~) ~ 1. As t -~ t ~ - - 0 , ~  -~ - - e~ .  

T h a t  is for  v ~ l d - 0 ,  dv/dt  ~ - - o o .  A n y  a t t e m p t  to  c o n t i n u e  t he  solut ion,  as a 

c o n t i n u o u s  f u n c t i o n  of t, b e y o n d  t ---- t l ,  fails since for  v ---- 1 - - 0 ,  dv /d t  ~ d -oo .  T h u s  

t he  so lu t ion  c a n n o t  pass  c o n t i n u o u s l y  f r o m  a b o v e  v ~ 1 to  be low v ~ 1. M o r e o v e r  

since v ~ I is o b v i o u s l y  n o t  a so lu t ion  of  (1.5) t he  so lu t ion  c a n n o t  be c o n t i n u e d  as 

v ~ 1. W e  n o t e  t h a t  v ---- 1 here  co r re sponds  to  g ~ 0 in (1.3). 

I f  we t u r n  to  (1.4) w i t h  s >  0 we see t h a t  t h e  line u =  1 offers  no special  d i f f icu l ty .  

T h u s  a so lu t ion  u(t)  of (1.4) o b v i o u s l y  can  be  c o n t i n u e d  b e y o n d  a p o i n t  where  

u = l- t-0.  L e t  u = 1~-0 w h e n  t ~ t l - -O a n d  let  us  i n t e g r a t e  (1.4) f r o m  t l - -~  t o  

t1~-5 where  6 > 0 is small .  W e  f ind  

dU -] t1+6 [ U 3 ~ ] tl~-(~ ( 'tl~r 

d u  (tl +_ ~) 
N o w  let us p roceed  heur is t ica l ly .  I f  as s -+ 0 we a s sume  dt a p p r o a c h  f ini te  

l imi t ing  va lues  a n d  if we a s sume  t h a t  lu[ r e m a i n s  u n i f o r m l y  b o u n d e d  in the  r ange  

( t l - -8 ,  t ld-5) t h e n  we ge t  

]t~+~ 0(~) 

N o w  le t t ing  6 ~ 0 a n d  recal l ing t h a t  u ( t t - - O ) =  1, we ge t  

�89167 = O.  

Solv ing  this  las t  e q u a t i o n  we ge t  e i ther  u( t l~ -O)  ~- 1 or  u( t l~ -O)  = - -2 .  T h e  va lue  1 

we d i sca rd  on  the  basis  of  ou r  exper ience  wi th  (1.5) a n d  we are  led t o  i nves t iga t e  

f u r t h e r  t he  poss ib i l i ty  u( t l  ~- 0) = - -  2. A c t u a l l y  (1.4) can  be  i n v e s t i g a t e d  d i r ec t ly  [ 1] 

a n d  it  is i ndeed  f o u n d  t h a t  as s ~ 0, so lu t ions  of (1.4) on  r e a c h i n g  u = 1 + 0  t e n d  

to  j u m p  to  u = - -2 .  W e  shall  n o t  pu r sue  th is  i n tu i t i ve  d iscuss ion  f u r t h e r  b u t  r a t h e r  

p roceed  in w 2 to  give a def in i t ion  of a so lu t ion  of (1.3) wh ich  m a y  be  d i scon t inuous .  

T h e  def in i t ion  will be  jus t i f ied  because  we shal l  show t h a t  as ~ -~ 0 so lu t ions  of (1.2) 

t e n d  to  solut ions ,  as we def ine t h e m  here ,  of (1.3). 

As was  o b s e r v e d  in [3] t he  s y s t e m  (1.2) inc ludes  as a special  case t he  s y s t e m  

d x  d w  
(1.6) d-[ = H ( z ,  w ,  t, s) , s--zT. = a ( x ,  w ,  t, e) 

ott 
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where x and  H are vectors  and H and G are cont inuous  in e for small ~ ~ 0. G and w 

are scalars. Wi th  e not  appea l ing  on the  r ight  this is the system t r ea ted  b y  T ihonov  

[5]. In  case the r ight  members  of (1.6) are not  l inear in w the sys tem can be b rough t  

to the form (1.2) ( w i t h f  ~ 0) s imply by  different ia t ing the last equat ion  with respect  

to t. On the  o ther  hand  if the r ight  members  of (1.6) are l inear in w then,  if we 
du 

in t roduce the var iable  u given by  d~ = w, the sys tem (1.6) assumes the  form 

dx  du d2u du 
= f ( x ,  t, ~ ) ~ + q ~ ( x ,  t, ~) ~ + g ( x ,  t, ~ ) w + h ( x ,  t, ~) 

dt  dt 2 g~ a~ 

which is a special case of (1.2). 

~ 0  

2. We shall now give the  definit ion of a solution of (1.3). We consider the solution 

as a curve,  S0, in the  n + 2  dimensional  space (y, v, t). At  the  point  A let  t -~ a and 

g > 0. For  a ~ t < 31, let (y(t), v(t)) be a solution of (1.3) and let  

(2.0) g(y(t), v(t); t, O) > O, a ~ t < vl . 

As t -~ r l - - 0  let g -+ 0. The point  ( y ( ~ - - 0 ) ,  v (v~ ,0 ) ,  v,) we denote  by  B 1. We shall 

denote  v(v~--O) by  v B and y(~l--0)  by  YB" A B I  is an arc of So. We assume t h a t . a t  B 1 

n ~ g .  ~g 
(2.l) I = ~'~L-~.J/+ 4= 0 

u y  i ~ v  " i ~ l  

Here  I ~ I B. The  nex t  arc of S O is B~C1 where B~C 1 is a curve y(v) in the hyperp lane  

t : Vl which satisfies the vec tor  equat ions  

(2.2) dy  
dv  = f ( y '  v, v~, 0 ) .  

(The sys tem (2.2) is (1.3) with t held cons tant  and with the last equat ion of (1.3) 

omit ted) .  The solution of (2.2) s tar ts  a t  B~. We then  consider (2.2) for increasing or 

decreasing v according as h a t  B is respect ively  negat ive  or positive. We assume tha t  

the solution of (2.2) can be cont inued for increasing or decreasing v, depending as 

we have  seen on the  sign of h a t  B, unti l  we reach the first value of v 4= v B for which 

v 

(2.3) I a(y(v), v, ~,, o) dv = o .  
vB 

This value of v we call v c and the point  C 1 is given b y  (y(Vc), vc,, 31). At  C 1 we assume 

(2.5) g(y(vc),  we, ~,, o) = g~ > o .  

On the basis of remarks  a l ready made  we have 



Perturbations of Discontinuous Soluti:(~r~s of Non-Linear Syst. of Diff. Equations. 75 

(2.5) (vc--v~)hB < 0 

where h B = h(yB, VB, T1, 0). ( T h e  in tegra l  corresponding to (2.3) in the  case of the  

v a n  der Pol  equa t ion  we considered above  is s imply  

i v ( v~--1) dv =. 0 
1 

and  since h a t  B 1 (where v -~ ]) is pos i t ive  we m u s t  t ake  v decreasing.  Thus  we see 

~ a t  here  v c = -  - -2 . )  

At  C1 we r e tu rn  to  the  sy s t em (1.3) and  consider the  solut ion wi th  init ial  va lues  

a t  C1 and  wi th  t increasing.  We  assume  t h a t  this  solut ion can be con t inued  wi th  g > 0 

unt i l  t ~ 32--0 where  g ~+ 0. F r o m  this  poin t  which we denote  b y  B 2 we assume we 

can proceed  in the  m a n n e r  a l r eady  indica ted  a t  B 1 wi th  v increasing or decreasing 

depending  on the  sign of h a t  B2- Proceeding  in this  w a y  the  solut ion So is def ined 

geomet r i ca l ly  as AB1C1B2C~. . .BNC~A" where A'  is an  o rd ina ry  po in t  (i. e. one 

where  g > 0). We  a s s um e  t h a t  (1.3) has  a solut ion So as jus t  def ined for  a g t _~ ft. 

W e  a s sume  fu r the r  t h a t  there  exists  an  open  set  R in the  n~-2  d imens ional  space 

(y, v, t) conta in ing  the  curve  S 0 such t h a t  f (y ,  v, t, e), % g and  h and  the i r  f i rs t  order  

pa r t i a l  de r iva t ives  wi th  respec t  to  Yi, v and  t are  un i fo rmly  cont inuous  and  bounded  

as funct ions  of y, v, t and  e when  (y, v, t) is in R and  ~ ~ 0 is small.  W e  shall  also 

a s smne  t h a t  ff and  h have  second order  pa r t i a l  de r iva t ives  cont inuous  in R and  for 

smal l  e a l though  this  a s sumpt ion  can be avoided.  

W e  see t h a t  S0 considered as a curve  (but  no t  as a funct ion  of t) is cont inuous  

b u t  t h a t  a t  the  points  C1, C2, etc. i t  has  a d iscont inuous  t angen t .  W e  see fu r the r  

t h a t  So is the  sum of two kinds  of arcs, the  arcs  AB1, C1B2, C~B3, etc. which are 

solut ions of (1.3) and  migh t  be  called regular  arcs, and  the  arcs B1CI, B2C2, etc.  

which are solut ions of (2.2) lying in planes t --~ ~i and  which migh t  be  called j u m p  

arcs since the  arcs are t r ave r sed  in a zero elapse of t. As a funct ion  of t the  solut ion 

is d iscont inuous  and  j u m p s  f rom Bj to Cj a t  t - -  ~j, j = 1, 2 . . . . .  N .  

The  condi t ion (2.1) can be weakened  b y  allowing I to van ish  On g = 0 b u t  

requir ing t h a t  I be  different  f rom zero and  of the  same sign off g ---- 0 in the  neigh- 

bo rhood  of B. A s om ewha t  s impler  s i tua t ion  where  there  will be  no j u m p  a t  all arises 

when I changes sign in passing th rough  g =- 0. These  cases will not  be pursued  fur ther .  

I n  w h a t  follows the  no rm of a vec to r  is def ined as Ix[ = X[xil. 

The  basic resul ts  for  (1.2) are given in the  following theorems,  
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T h e o r e m  1. Let the degenerate system (1.3) have a solution S o in the sense defined 

above, for ~ ~ t ~ ft. Let ~ > O. I f  ~, 01 and 62 are small enough there is a solution 

x(t), u(t) of (1.2) over (~, fl) for any set of initial values satisfying 

I x (~ ) - y (~ ) ]+[u (~ ) - v (~ )J  ~ 01 

du (~) dv(o,) < 02 

dt dt = ~" 

Moreover as ~, 01 and 02 tend to zero, the curve representing the solution x(t), u(t) in  

(x, u, t) tends to S o. I n  particular for any f ixed (~ > 0 

(2.6)  ]x(t)--y(t)[-F[u(t)-:v(t)[ 

tends uniformly to zero over the intervals, ~ ~_ t ~_ Vl--(~, Vl-~5 ~ t ~_ T 2 - - 0 , . . . ,  

vN~-(~ ~ t ~ fl, as e, 0~ and (~2 -~ O. Also 

du dv 
(2.7) dt dt 

tends uniformly to zero over the intervals ~-~0 ~_ t ~ Vl--~, ~ 1 ~  ~-- t ~_ ~ - - ~  . . . . .  
d~u d~v 

~ - 0  ~ t ~ fl as e, 0~ and 0~ --> O. The same is true for 
dt ~- dt ~ 

T h e o r e m  2. I t  is also the case that i f  S o is a solution of (1.3) for ~ ~ t ~ fl then 

corresponding to any set of initial values sufficiently near y(~), v(~) there is a solution of 

(1.3) which tends to S o as the initial values tend to those of S o. Moreover the convergence is 

uni form in t i f  the portions of S o between r j~O are omitted. 

Theorem 2 is in a sense Theorem 1 for the case e = ~-0. 

In what  follows let us denote by  ~a differentiat ion with respect to one of the 

n~- I  initial coordinates (x(~), u(a)) or with respect to the corresponding initial 

coordinate of (y(~), v(~)). Then we have 

T h e o r e m  3. Subject to the same hypothesis as Theorem 1 we have 

~x(t) ~y(t) ~u(t) ~ v ( t ) - ~ 0  
(2.8) ~a ~a ~- ~a aa ' 

(2.9) I ~ du ~ dv 
~adt  ~ a ~ - + 0  

for ~, 01, and 02 -+ O, the convergence being uniform for (2.8) and (2.9) over the same 
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intervals of t as for (2.6) and (2.7) respectively. Moreover denoting the initial value of 

du/dt at a by b we have 

~x(t) ~u(t) o 

and 

~--,o 

uniformly over the same sets of intervals as for (2.6) and (2.7) respectively as s, 6~ and 

6~-+ O. 

T h e o r e m  4. The functions 3y(t) ~v(t) and --~a are uniformly continuous with respect 

to changes in the initial values of y and v at a over the same set of intervals of t as in 

Theorem 2. 

Theorem 4 is in a sense Theorem 3 for the  case e = -t-0. 

As an appl icat ion of these theorems in case the  r ight  members  do not  conta in  t 

or in case t hey  are periodic in t we have  the  fact  t h a t  if the  degenerate  sys tem (1.3) 

has a periodic solution and  if the  Jacob ian  associated wi th  the  de te rmina t ion  of this 

solution by  vary ing  initial coordinates  is different  f rom zero, t hen  it  follows b y  

Theorem 3 t ha t  (1.2) will also have  a periodic solution. We shall show this in w 8. 

3. We shall require several  lemmass The  first  is well known.  

L e m m a  1. Let ~(t) be a vector with an integrable derivative and let 

d~ < a(t)-t-b(t)l~l , to < t < t l ,  (3.0) dt l = ~- ~- 

where b(t) ~ O. Then for t o ~ t • tl , 

(3.1) [$(t)--r l ~ [~(to)l(e ftob(s)ds--1)-~- oa(T)e Itb(s)&dr . 

Clearly (3.1) implies 

(3.2) I~(t)[ ~ I~(to)left'ob(s)ds ~ - Iioa(~)ef~b(~)dSd~ . 

Correspo~zling results hold i f  tl < to. 
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P r o o f .  Le t  

i 
t d~ 

z(t) = ~ dr. 
tO 

Then  I~(t)--~(to)l < Z(t) and  (3.0) becomes 

d Z  
_ _  < a(t)+b(t)Z+b(t)l~(to) 1 . 
dt - -  

Thus  

dt / 

Thus  in tegra t ing  we find 

e- I~o b(~jd~ <= (a(t) + b(t) l~(to)l)e- I~o b(s)d~ . 

z(t)e- f~o "~)~ ' <= Ito(a( v)-4-b(v)l~(to)])e- ftobtS)dS dv 

f rom which (3.1) follows. 

The nex t  l emma is ve ry  similar to  one Friedrichs and Wasow [2]. Here  z is a 

vec tor  and w is a scalar and  L(z, w, t) and  M(z,  w, t) are vectors  while H(z, w, t) and 

J(z,  w, t) are scalars. 

L e m m a  2. Let z(t), w(t) satisfy 

(3.3) dz L dw M ,  d~w H dw 
a-t= ~ + ~ b  + ~[ = g 

for a <~ t -<- V where L, M,  H and J are continuous in the region given by ~ <~ t <_ 

and [z]-4-lwl <= 2 for some 2 > o. I n  this region let 

(3.4) ILl < k, ]M] < k([zl+lw])+el ,  [J] < k(lzl-~-]wl)-~-t~l, H ~> m > 0 .  

Moreover at t : ~x let 

(3.5) [~(~,)J+lw(~)l =< 6~, 

Let lq = k ( k + m + l ) / m  and let 

4(k-4-1)2 (m-4-1) 
A =  

mk 

i dw(~) I 6~ - -~1 <=-  

(61"~- 62-~ El) �9 

Then for a <~ t _<_ V, and i f  el, 61, and 62 are small enough 

Iz(t)J + Iw(t)l <= Ae k'(~-~) 
and 
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- ~  kA k t  dw ~ 5~ e_m(t_~):e + _ _  e ~( -") 
II't 

P r o o f  of L e m m a  2. 

(3.6) 

Or 

d w  
From ( 3 . 3 )  w e  have if we set - -  = O, 

dt 

dz dw  dO 
dt L O + M ,  dt O, e dt  + H O  J .  

+ -d-i{ <= (k+l)lOl+~(Izl+lwl)+~l. 

If  ~ denotes the vector (z, w) then  L e m m a  1 yields 

(3.7) Lz(t)[+lw(t)l < +51 ek ( t -~ )+(k+l )  [O(~)[ek(t-~)d~. 
O~ 

From the last  equat ion of (3.6) 

e e~' = O(a) + Je  e~' d~ . 

Or since H > m >  0 

e_m(t_a)/e_~ 1 I t IO(t)l <~ I O ( c r  - IJle-m(t-v,/edv. 
E 

< 5~ e_m,t_~,)i~+ k (t 10(t)l 

Thus 

(3.s) 

From (3.7) 

F rom this 

k(k+e 1) e_m(t_T)/ed7: iolO(a) [ek(~_a)da " 

,39) f = - -  e k(t-~') +51 e k(t-~') IO(a)le-k(~-~')da. 
e m m ,~x 

t 
Applying L e m m a  1 with  ~ ~ ta[O(a)Ie-k((~-~)da we get 

In  (3.7) and  (3.9) this proves the lemma providing sl, 51 and  5~ are small enough so 
t h a t  A ek~(Y-~)< ).. 
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Before turn ing  to  the  proof of Theorem 1 we make  the following observa t ion  

which is valid for Theorem 1, 2, 3 and 4. I t  suffices to take the case where there  is 

only one jump  arc on S o since b y  repea ted  use of the  theorem for the  case of one 

j u m p  arc, the theorem for N j u m p  arcs follows at  once. Therefore  we shall assume 

tha t  S o is of the form AB~CiA' .  Clearly there  will be no confusion if we call So, A B C A ' .  

The proof  of Theorem 1 is divided into four  parts .  In  the first  pa r t  we proceed 

f rom A to a point  short  of B ;  the second par t  involves the immedia te  v ic in i ty  of B ;  

the th i rd  par t  takes  the arc BC with the two small port ions at  ends B and C omi t ted ;  

the four th  pa r t  takes  the  rest  of S o to A' .  We shall use K th roughou t  the  paper  to 

represent  finite constants  which depend on the  bounds of [fl, IFI, Igl, Ihi and thei r  

first order  par t ia l  der ivat ives  in R or pa r t  of R for small e, on the distance f rom S o 

to  t h e  neares t  point  on the bo u n d a ry  of R, and on the length of So. In  par t icu lar  the 

constants  K will remain  finite as ~ + ~ + 5 2  -~ + 0 .  A n y  devia t ion f rom this use of 

K will be noted.  

P r o o f  of  T h e o r e m  1, P a r t  I .  

Here  we prove  Theorem 1 for the in terva l  a ~ t ~ 7 where }, < T~. I f  we denote  

x - - y  by  z and  u- - v  by w we have  f rom (1.2) and (1.3) 

dz dw 
(3.10) d-t = f (x ,  u, t, ~ ) =  + ~  

a s  

(3.11) 

where F 1 

and 

d2w dw 
~ +~(x,  u, t, ~)-~. = F~ 

ct~ 

is a vec tor  and  

h(y, v~ t, O) 
FI = - - [ f (x ,  u, t, s)-- f(y,  v, t, 0)] 

g (y, v, t, O) 
t-q~(x, u, t, s)-q~(U, v, t, o) 

F~ = [g(x, u, t, ~)--g(y,  v, t, 0)] h(U, v, t, O) 
g(y, v, t, O) h(x, u, t, s) 

~ [ O dhat h O) dg] +h(U, v, t, 0)+-= [g(y, v, t, )==-- (U, v, t, g~ d tJ  

Let  the min imum of g(y(t), v(t), t, 0) over  (~, V) be denoted  b y  2m unless this min imum 

exceeds 1 in which case we take  m = 1. Then  so long as (x, u, t) is in R we have  using 

the mean  value theorem,  

K 
IFll ~ m ([Z{+lwI§ v, t, s ) - f ( y ,  v, t, 0)[§ v, t, E)-cf(y, v, t, 0)[) .  
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Since f and ~ are un i formly  cont inuous  for small e there  mus t  be a cont inuous funct ion  

~(e) such t h a t  ~(0) = 0 and such t h a t  

If(y, v, t, e)-- f(y,  v, t, 0)[ ~ ~(e) 

with similar results  for ~, g and  h so long as (y, v, t) is in R. 

Clearly we can  choose W(e) > e. We get  

K (3.12) IFll 
m 

dh dg 
and  similarly comput ing  ~ and  ~ we f ind 

K 
(3:13) ]P~] _<-- ~ ( I z l  + Iw] +~ (~ ) ) .  

We have  f(x,  u, t, ~) -~ f (y ( t )+z ,  v(t)q-w, t, e) and similarly for ~, g, and h. I f  we now 

apply  L e m m a  2 to  (3.10) and (3.11) and  make  use of (3.12) and (3.13) we see t h a t  

if e, 6~, and ~ as def ined in the  s t a t emen t  of Theorem 1 are small enough,  (x, u, t) 

is in R for a ~ t ~ 7, and indeed for a ~ t g ~, a t  least so long as g(x, u, t, e) ~ m, 

(3.14) Ix(t)--y(t)l-[-lu(t)-v(t)l  g e K/m* (~1~-5~-~(~)) 
and  

du dv 
(3.15) -~ . - - -~  ~ e-mC'-a)/~+eK/m'((~x-~(~+V2(~)). 

F r o m  (3.14) and  the  con t inu i ty  of g we see t h a t  we will indeed have  g(x, u, t, e) ~ m 

if e, (~1 and ~2 are small enough. We see f rom (3.14) and (3.15) t h a t  for t < 31, Theo-  

rem 1 is established except  for the difference of the  second der ivat ives  of u and  v. 

This we shall show in L e m m a  4. The  d iscont inui ty  a t  31 is precisely the  point  of 

interest  here and we begin to  handle  i t  in w 4. 

4. In  the  nex t  pa r t  of the  proof of Theorem 1 we shall show th a t  for small e, 5~ 

and  ~ the  solution of (1.2) intersects  the  hypersur face  g = 0 at  a point  which tends  
du 
- -  -+ ~ or - -c~  at  the  poin t  of to B as e, ~1 and  ~ -~ 0. Moreover  as e, 61, (~ -~ 0, dt 

intersect ion.  

Proof  of T h e o r e m  1, P a r t  2. 

We  shall consider here  the  case where h(y, v, t, 0) < 0 at  B. The  case where 

h > 0 is t r ea t ed  in exac t ly  the  same manner .  At  B we have  t ~ 31 and we shall 
dv 

designate y a t  B by  YB and v b y  v B. As t -+ 31--0 we have,  since h < 0 , ~ - ~  

6. Acta mathematica, 82, Imprim~ le 18 decerabre 1949. 
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h q-~x~. Let  v 1 < v B be near  enough to v B so tha t  as t increases f rom a toward  r 1 
g 

there is a value of t ~ t 1 near to v 1 such t h a t  v( t l )  ~ Vl and dv/d t  is large for tl ~ t < rl. 

We shall denote the point  (y ( t l ) ,  v( t  I), t l )  b y  the letter Q. If  we choose y so tha t  tl < y < rl, 

and apply  the results (3.14) and (3.15) we see tha t  if e, 51 and 52 are small enough 

then for some t (which tends to t 1 as s, ~1, 52 -+ 0) we have u(t )  -~ v 1. Let  us denote  

this point  by  P.  Then at  P we have t = tp,  x ( tp )  ~ Xp and u = u t, ----- u ( t e )  = v I. 

Also as s, 6x, 53 -+ 0, P -~ Q. Clearly we can  choose Q as near to B as we wish. 

We now change from t to v (and u) as the independent  variable.  Since when 

v = u the values of t for the points on S o and the solution of (1.2) are not  in general 

equal we will reserve t for the  sys tem (1.2) and in this section designate the variable 

t for (1.3) by  the letter s. We have  then  t h a t  (1.2) can be wri t ten as 

d x  dt d p  
(4.0) d u  = f +q~P' p = duu' s-d-UU = P 2 g + p ~ h  

where f = f ( X ,  u ,  t, e), etc. while (1.3) becomes 

(4.1) ely d s  
d v  = f q-cpq, q = -d-v' 0 =- g q - q h  . 

where f -~ f ( y ,  v, s, 0), etc. Since u and v are the independen t  variables here we can 

with no confus ion  use them in te rchangeably .  We consider (4.0) for u ~ v 1. The 

solution of (1.2) can now be regarded at  least in certain range of u as a so lu t ion  

of (4.0). 

Suppose v2 > VB- Let  us choose 

(4.2) K 1 > 2(Ifl~-IqIq-1 ) 

for all (x, u, t) in R. (Clearly K 1 is a K). Le t  R1 denote  the region of (x, u, t) bounded 

by  the planes u = vl, and  u = v 2 and  b y  

IX- -Xpl  q - I t - t e l  <= gl(v2--Vl). 

Clearly if v 1 and vz are chosen near  enough to vB we have R 1 contained in R for small e. 

I f  we consider the change in g as we follow-a solution of (4.0) we have 

Or 
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where 

dg 
du J~(x, u, t, e)~-pJ~(x, u, t, s) 

~g ~ 3g ~ ~g 

83 

We recall the  definition of I in (2.1) and  our assumpt ion  tha t  I ~ 0. Since 

g(y(v), v, s(v), 0) > 0 for v <  v B and  zero a t  v = v B we see tha t  dg/dv < O. This fact,  

the fact  t h a t  I # 0 and  the fact  t h a t  dv/dt is large implies t h a t  I < 0. Let  Ks be 

chosen so t h a t  in R and  for small ~, IJ~l < Ks. If R1 is small enough,  t h a t  is if v~ 

and  v2 are near  enough to vB, we cer ta in ly  have  J1 < �89 and h < �89 B for (x, u, t) 

in R1 and  for small e. 

Le t  v 1 be near  enough to v B so tha t  

I 
q(vl) = -g-Q < - - - -  

hQ 10K~" 

This is possible since gQ -+ 0 as vl -+ v B. Let  e, (~ and  ~ be so small t h a t  P is near  

enough to Q and  p near  enough to q at  u ---- vl so t h a t  

2gp I 
0 < v ( v , )  < - < 

Now let us suppose tha t  for our  solution of (4.0) there  is a va, vl < va < v2 such 

t h a t  for vl ~= u < v a, p ( u ) <  --2gp/h B bu t  t h a t  for u ~-va  we have either p---- 

--2gp/h B or (x, u, t) reaches the b o u n d a r y  of R~. We shall show tha t  this is impossible. 

B y  integrat ing 

dp 
(4.3) s - - =  (g+ph)du  

~9 2 

from v~ to v 3 we see t h a t  p > 0 since if p = 0 the lef t  side di,derges. 'For vz g u < va, 

since 0 < p < --2gp/h B, we can assume p < 1 since we can take  Q and  therefore P 

near  B where g vanishes. F r o m  (4.0) 

V3 

Ix - :xp]~] t - - tp[  g ~ Iv (]f]-~]q~l~- l )du < Kx(vz--v~) o 

1 

Thus (x(u), t(u)) is in R 1 for v~ _< u _< va and therefore we must  have p = --2gp/h B 

at  u = v s. Since p < --2gp/h B < - - I /4K~ for Vl < u < va, we have 

dg 
(4.4) - -  J~A-pJ~ < 1I-4-PK2 < ~ I - - ~ I  �88 < O. 

du 
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T h u s  g is d e c r e a s i n g  as  u i n c r e a s e s  u p  to  va. S ince  g is  d e c r e a s i n g  we  h a v e  a t  va 

g + p h  < gp@ l p h  B ~ g p - - g p  = 0 . 

T h u s  b y  (4.3), dp/du  < 0 a t  v a. T h a t  is p is d e c r e a s i n g  a n d  t h e r e f o r e  we c a n n o t  h a v e  

p = - -2gp /h  B for  t h e  f i r s t  t i m e  a t  va. 

W e  see t h e n  t h a t  o u r  s o l u t i o n  of (4.0) r e m a i n s  in  R 1 a n d  can  be  e x t e n d e d  t o  

u = v2 a n d  t h a t  0 < p < - -2gp /h  B for  v 1 =~ u =~ v 2. W e  can  t a k e  vl as  c lose  to  v B 

as  we wish.  T h u s  Q can  b e  as  n e a r  B as  we wish .  B y  t a k i n g  e, 51 a n d  5~ s m a l l  e n o u g h  

we can  b r i n g  P as  c lose  t o  Q, a n d  t h e r e f o r e  to  B,  a s  we  wish .  T h e  n e a r e r  we  t a k e  P 

t o  B t h e  s m a l l e r  is gp a n d  t h e r e f o r e  t h e  s m a l l e r  is p fo r  v I ~ u ~ v 2. S ince  q = - -g /h  

u n t i l  g = 0 a f t e r  w h i c h  q is i d e n t i c a l l y  zero  on  So, u n t i l  v = v C, we see t h a t  q for  

Vl ~ v ~ v 2 a lso  ge t s  s m a l l e r  a s  we  t a k e  v I n e a r e r  to  v B. Since  u a n d  v a r e  i n d e p e n d e n t  

v a r i a b l e s  for  t h e  r e s p e c t i v e  s y s t e m s  we  can  i d e n t i f y  u w i t h  v. T h u s  we  c a n  w r i t e  o u r  

d i f f e r e n t i a l  e q u a t i o n s  a s  

dx  dt 
d v  - -  f ( x ,  v ,  t ,  0)-~(D 1 , d v  P ' 

(4.5) 

dy  ds 
dv  f ( y ,  v, s, O)+w2 , dv q ' 

w h e r e  ~Ol = f ( x ,  v, t, s ) - - f ( x ,  v, t, O)+pq~(x, v, t, ~) a n d  o~2 = qq~(y, v, s, 0). U s i n g  t h e  

f a c t s  j u s t  e n u m e r a t e d  we  h a v e ,  for  vl ~-- v _< v2 

[(Di]-71-[O)2] ~ K(gp@gQ@~f(~)) 

w h e r e  ~(c) h a s  t h e  s a m e  p r o p e r t i e s  as  in  w 3. A p p l y i n g  a s t a n d a r d  t h e o r e m  to  (4.5) 

r e l a t i n g  t w o  a p p r o x i m a t e  s o l u t i o n s  of a s y s t e m  or  else s e t t i n g  ~ ---- ( x - - y ,  t - - s )  a n d  

m a k i n g  use  of L e m m a  1 we  h a v e  

[x(vl - -  y(v)[ + lt(v)--s(v)] <= K[~p(e )-~-gp-]-gQ-~- IX(V l ) -y (v l ) t  + ]t(Vl)--8(Vl)l] 
fo r  v 1 g v _~ v2. S ince  t h e  r i g h t  m e m b e r  can  be  m a d e  as  s m a l l  as  we wish  we  h a v e  

d e m o n s t r a t e d  T h e o r e m  1 u p  to  t h e  i n t e r s e c t i o n  of t h e  h y p e r - p l a n e  v ---- v2 w i t h  S 0. 

W e  o b s e r v e  t h a t  v 2 c a n  b e  k e p t  f i x e d  in  t h e  l a t t e r  p a r t  of o u r  a r g u m e n t  as  e, 51, a n d  

52 ~ 0 whi le  vl m u s t  a p p r o a c h  v B. 

P r o o f  of  T h e o r e m  1, P a r t  3. H e r e  we d e m o n s t r a t e  T h e o r e m  1 o v e r  t h e  p a r t  

of t h e  j u m p  a r c  B C  b e g i n n i n g  w i t h  v = v2 a n d  e n d i n g  s h o r t  of t h e  p o i n t  C. 
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Since I < 0 and  gp > 0 and is small, we see t h a t  (4.4) implies t h a t  the  solution 

of (4.0) crosses the hypersur face  g = 0 in exac t ly  one point  which is near  B. Le t  us 

designate the  point  where the  solution crosses g = 0 b y  the  subscript  4. We have  

by  in tegra t ing  (4.3) 

= ( g + p h ) d u .  

Or for u >='u 4 (and so long as x and  p remains  finite) 

(4.6) (u)  - -  - p h d u  . 
P /74 4 

I n  (4.6) g is g(x(u),  u, t(u), s) and  similarly for  h. 

We have  a l ready s~en t h a t  p(u)  < - -2gp /h  B for vl --~ v ~ v~. Thus  given any  

8a > 0, by  taking  P near  enough to B, we can make  p(u)  ~ 53, v 1 ~ u ~ v2. Given 

any  84 > 0 we can choose s, 51, and  82 small enough so t h a t  

(4.7) [x(v~)--y(v2)[ + [t(v2)-- s(v~)] ~ 84. 

Now so long as p(u)  ~ 8a we have  f rom compar ing the  two systems 

dx dt 
dv - -  f ( x ,  v, t, ~)~-p~(x ,  v, t, ~) , dv  - - p  

d y  _ f (Y ,  ds v,s, 0), d v = 0  

for v2 ~ v < v c, just  as in the  a rgument  following (4.5), 

(4.8) I x - - y  i + [t--s  I ~ K ( S a + 8 4 + ~ ( e ) ) .  

We recali incidenta l ly  t ha t  on BC,  s(v) ~-- ~:1. We shall show th a t  p(u)  ~ 83 almost  

up to  u ----- v c. We choose 55 > 0 as small as we wish and  then  choose 56 > 0 small 

enough so t ha t  
V 

(4.9) I g(y(v), v, s(v), 0) v < -480,  v2 <_- v __< vc-8 . 
V B 

This is possible since g < 0 for v B < v ~ v 2 and since the  cont inuous  funct ion of v 

V 

I dv < 0 < v < g v B v C �9 

VB 

The logical procedure  in this section is to first choose 85 and then  8~. We then  observe 
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t ha t  we can require 6 a a n d  64 to be as small as we wish" if we make  e, 61, and  02 small 

enough.  B y  taking  6al 64 and  e small enough we have  from (4.8) t h a t  for v c > v ~ v2 

and  so long as p ~ 63 

(4.1o) fg(x(v), v, t(v), ~)-g(y(, ,) ,  v, 8(v), 0)l < 6 J ( v c - v ~ +  l) . 

We can also sat isfy (4.10) for  vl ~ v g v~ on the  basis of P a r t  2 s imply b y  taking 

e, 01, and  63 small enough.  Turn ing  to  (4.6) we have  

E 
(4.11) p(u) = 

f,( f g x(v), v, t(v), e)dv-- phdv 
P 4  u u 4  

B u t  by  (4.10) followed by  (4.9) we have  for  v~ < u < vc - -0  5 

~ u 

u~  1 
Since we can bring u 4 as close to v B as we wish b y  taking ~, 61, and  ~ small enough,  

we can make  

dv < 6 , .  I 
Thus  

U 

- f g(x(v), v, t(v), ~)dv > 26o. 
e. U4  

Also so long as p ~ 0a, 

I S " p h d v  ~ K 6  3 3 "  

�9 u 1 

I f  we choose 6 a small enough so Ka6 a < 08 then  cer ta inly  the  last  two inequali t ies 

used in (4.11) yield 

(4.12) p(u) < ~/6, 

up to the  point  where we first  have  e i ther  p(u) -~ 6a or u ~ vc--65. Bu t  if e is small 

enough so t h a t  E/66 < 6a we cer ta in ly  cannot  have  p(u) ~ 6a in u 4 ~ u ~ vc--65. 

Thus  (4.8) holds in this range and we have  established Theorem 1 on So up to  any  

point  just  short  of C. 

T h e o r e m  1, P a r t  4. Here  we prove  Theorem 1 in the  ne ighborhood of C and  

beyond.  Given any  65 > 0 we saw t h a t  for  v B ~_ v ~_ Vc--65 we have  f x - - y [~ f t - -~ ' l l~  
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dt 
- -  --> 0 a s  s, 0~, 02 ~ 0. W e  n o w  s h o w  t h a t  in  t h e  n e i g h b o r h o o d  of C, p g r o w s  q u i c k l y .  du 
As we  h a v e  a l r e a d y  seen  f r o m  (4.3) p > 0 so l o n g  as  p r e m a i n s  s m a l l .  W e  sha l l  s h o w  

t h a t  p m u s t  e x c e e d  m i n  [gc/(2K), 1] in  t h e  n e i g h b o r h o o d  of C w h e r e  n o w  K is t h e  

m a x  of Ih] in  R.  

L e t  us  d e n o t e  a v a l u e  of v < v c b y  v 5 a n d  a v a l u e  v > v C b y  v s. W e  choose  v s 

a n d  v6 n e a r  vc .  So l o n g  as  p < I we  c a n  c o n s t r u c t  R2, m u c h  l ike  R 1, so t h a t  if  v 5 a n d v ~  

a re  c h o s e n  c lose  e n o u g h  t o g e t h e r  t h e  s o l u t i o n  of  (4.0) c a n  b e  c o a t i n u e d  u p  t o  v 6 a n d  

wil l  l ie in  R 2 w h i c h  in  t u r n  wi l l  l ie  in  R.  T h i s  is  c e r t a i n l y  t h e  case  t h e n  if  p is  sma l l .  

W e  can  a lso  choose  v~ a n d  v G n e a r  e n o u g h  t o  vr so t h a t  in  R2, g > ~gc > 0. 

I n t e g r a t i n g  (4.3) b e t w e e n  v I a n d  u4 we h a v e  

U4 

s f (g§ - -  o 

P 4  P !  v l  

Since  we can  choose  vl a s  c lose  to  v B as  we  w a n t  a n d  s ince  as  e, 01, a n d  03 -~ 0, 

u 4 ~ v B we  see t h a t  we  c a n  r e q u i r e  t h a t  

for  a n y  07 > 0. T h u s  

Iv~i4(g+ph)du]<(~7 

E 

- -  < - - - ~ - 0 7  �9 
P4 P l  

N o w  s ince  we  can  choose  ~, 01, a n d  ~ as  s m a l l  a s  we  w i sh  a f t e r  h a v i n g  s e l e c t e d  v 1 

w e  can  m a k e  s/ql a n d  t h e r e f o r e  a lso  e/p 1 as  s m a l l  a s  we  w a n t .  T h u s  we  can  r e q u i r e  

T h u s  (4.6) g ives  

8 

- -  < 2 ($  7 . 

P 4  

p(u)> 
207- !:4gdu-- I~4 phdu" 

F r o m  t h e  r e su I t  of p a r t  3 i t  fo l lows  t h a t  if  we  t a k e  v~ c loso e n o u g h  to  v c a n d  e, 01, 

a n d  62 s m a l l  e n o u g h  we  h a v e  

V5 

. Iu(g+ph)du <0~. 

W e  see t h a t  t h e  cho ice  of  07 a f f e c t s  t h e  cho ice  of v 5 b u t  n o t  v~. W e  h a v e  
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(4.13) p(u) > 

Now let  us assume t h a t  

587 
(4.14) g + p h  ~ - - - - ,  v5 ~-- u ~ v6. 

V 6 - -  V 5 

Then  we f ind f rom (4.13) t h a t  p(u) -+ c~, con t r a ry  to our  a s sumpt ion  t h a t  p < 1. 

Thus  (4.14) canno t  hold and  we have  

5~ 7 5~7 
ph < g < g 

V 6 - -  72 5 V 6  - -  V C 

for  some u, v5 < u < v6. I f  ~7 is small  enough this  can be replaced  b y  

ph < -- ~gv �9 

Since gc > 0 we m u s t  h a v e  h =~ 0. I f  h > 0 we h a v e  p < 0 which is impossible�9 I f  

h < 0 and  [h I < K we have  p > gc/(2K). Thus  if p < 1 we cer ta in ly  have  p > gv/(2K) 

for some u, v5 < u < vs. 

Since we can choose v 6 as close to C as we wish we see t h a t  indeed we can enclose 

C in a sphere  in (x, u, t) wi th  center  a t  C and  of radius  a rb i t r a r i ly  small  and  t h a t  

hav ing  chosen the  sphere  we can, b y  t ak ing  s, ~1, and  ~2 small  enough be sure t h a t  

R 2 lies in the  sphere  and  t h a t  the  solut ion of (4.0) enters  the  sphere  wi th  p ve ry  small  

b u t  a t  some point  in the  sphere  p ~- min  (gc/(2K), 1). Le t  us denote  this poin t  b y  D. 

At  D we t r a n s f o r m  back  to the  original independen t  variables .  To  show t h a t  the  

solut ion (1.3) changes b u t  l i t t le  f rom vl to  t D, i r respect ive  of whe the r  ~ - - t  D is 

pos i t ive  or nega t ive  we h a v e  only  to  no te  t h a t  tD--V 1 --> 0 as 8, (~1, (~2 --> 0. W e  

can now a p p l y  L e m m a  2 a t  D as we did a t  the  poin t  A and  we get  T h e o r e m  1 for 

the  range  of t g iven b y  m a x  (31, tO) --~ t --~ /~. 

The  proof  of T h e o r e m  2 is ve ry  m u c h  s impler  and  shor ter  t h a n  t h a t  of T h e o r e m  1. 

I t  is quite direct  excep t  nea r  B where  we m u s t  use an a r g u m e n t  s imilar  to t h a t  used 

in the  case of T h e o r e m  1, Pa r t .  2. 

5. The  proofs  of Theo rems  3 and  4 proceed a long s o m e w h a t  different  lines. We  

shall f irst  p rove  T h e o r e m  4. W e  use the  le t ter  a to  designate  an  initial  va lue  of x i 

du(~) which has  no coun te rpa r t  in the  and  Yl or of u and  v. The  init ial  va lue  of ~ -  

degenera te  s y s t em  we shall denote  b y  b. We  observe  t h a t  a t  t ~ ~, ~yJ~a is zero 
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unless a is the intial value of Yi in which case Oyi/Oa ~ 1 at  t ~ ~. Similarly with 

Ov/Oa. We have  0y 0x and 0v 0u 0-a = 0--a 0-a = 0--a at  t -~ ~ since a represents the same initial 

coordinate  in (y, v) as in (x, u). We always have  ~a d-/ = 0 at  t = ~. 

(5 .o)  

P r o o f  of  T h e o r e m  4. We have  on differentiat ing with respect  to a 

dOy ~d Ov Of dr acp 
dt  Oa = 

h Og ~h 

dt Oa g2 

Here f = f ( y ,  v, t, 0), etc. and 

Of n Of Oyi Of Ov 
= 2 . '  ov 

and  similarly for % g and  h. The sys tem (5.0) is linear in Oy/Oa and  Ov/Oa and  the  

coefficients are cont inuous for ~ < t < T1. The initial values are known and  thus  

~y/Oa and  Ov/~aare determined for ~ < t < vl. Moreover for cr ~< t _< ? < T~ the 

functions Oy/Oa and  Ov/~a are uni formly cont inuous  with respect  to t and  with 

respect to changes in the initial values of y and v at  t = cr 

Os/Oa at  v - =  v0§  by. 

v(s ,  a)  = Vo, 

At v ~ - v  0 < v  B bu t  with v0 near  v B we change f rom t to  v as the inde- 

pendent  variable. We observe t h a t  v ~ v 0 determines a point  on So near  B. 

As before it is convenient  to replace t b y  s and  reserve t for the sys tem (1.2). 

Let  s a t  v ~ - v 0  be so where clearly s 0 < T  1. We denote  Oy/~a and  Ov/Oa at  

Oy (so) Ov (So) 
s -~ so, or more precisely at  s = so--O, by  ~ and  - ~ - - .  We denote Oy/Oa and  

Oy(vo) Os(vo) 
a n d - - .  Clearly since v(so)= vo we have f rom 

~a ~a 

Thus 

(5.1) 

Also 

dv OS(Vo) OV(8o) 
ds Oa Oa 

~s (%) Ov (8o) ds (%) 
~a ~a dv 
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(5.~) ~y(Vo) dy ~s~vo) ~y(so) dy(vo) ~v(so) ~y(so) 

~a ~a dv ~a ~a ~a ds 

F o r  vo ~ v ~ v B we h a v e  

d ~ y _ ~ f  ~cfds d ~s d O s _  
(5.3) dv ~a ~a ~-~a dv-~q~dv ~a' dv ~a h ~ 

where  the  ia t i t i a l  va lues  are  t a k e n  f r o m  (5.1) a n d  (5.2). F o r  v B ~ v ~ v c, we h a v e  

(5.4) d ~ y  ~f - - - ~ d  ~s ~ 0 .  
dv ~a ~a ' dv ~a 

T h u s  ~y(v)/~a a n d  ~s(v)/~a are  d e t e r m i n e d  up  t o  t he  p o i n t  C. 

W e  h a v e  g(y~, v~, v~, 0) ~ 0. T h u s  

Since 

~g ~YBi ~g ~v B ~g ~v~ 
)--"~ ~y~ ~a t-~v-~a-~ ~t ~a - o .  

~y(VB) ~YB dy ~v B 
~a dv ~a 3a 

we have ,  reca l l ing  the  de f in i t ion  of  I -~ IB,  

I ~vB ~g ~Yi(VB) ~: ~g ~T1 
- - 0 .  

Since 1 ~= 0 we see t h a t  ~vB/~a is d e t e r m i n e d  in t e r m s  of ~v~/~a. 

(5.5) 

W e  h a v e  

T h e  c o o r d i n a t e  v c is g iven  b y  

V C 

g ( y ( v ) ,  v,  O)dv = o . 

Dif fe ren t i a t ing  w i t h  respec t  t o  a a n d  recal l ing  t h a t  g ~ 0 a t  B we h a v e  

8v c ~e( 9r ~Yi ~g ~vl\ , 
g(Yc'Vc'V~' 0 ) ~ a  q- I Va+  .B ~a  ) av -~ O . 

~1  ~s(vB) ds(vB) ~v B --  + 
~a ~a dv ~a 

Since ds(vB)/dv ~_ 0 we see 1 t h a t  ~ ' l / ~ a  -~- ~s(v~)/~a. T h u s  (5.5) de t e rmines  ~vv/~a. Also 

1 Strictly speaking we find DvB/~a in terms of Dvl/aa and then ~rl/c~a in terms of ~vB/~a 
which is not rigorous. Actually we should proceed with finite differences corresponding to an incre- 
ment in a, Aa, and then take limits as Aa --> 0 to show the existence of ~VB/COa from a single formula 
obtained by eliminating the term Avl/z]a from the equation involving I and the equation following (5.5). 
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(5.6) ~Yc _ dy ~v v ~y(vc) 
Oa dv ~a ~ ~a 

where ~y(vc)/~a is ~y/~a at v ~-- ve--0. As we approach C from s > s c we have 

(5.7) ~v v __ ~v(sc) ~ dv ~s v 
~a Oa ds ~a 

~Yc ~Y(Sv) dy Os v (5.S) 
~a ~a dt ~a 

where ~y(se)/~a is ~y(s)/~a at s ~ sc~-0 and similary for ~v(sc)/Oa. However ~sc/~a ~-- 

~'~l/~a. Using (5.5) and (5.7) we have 

- -  _ 

That  is ~v(sc)/~a is determined. Likewise ~y(se)/Oa is determined. Indeed from (5.8) 

and (5.6) 
3y(sc) dy(vv) ~vv ~y(vc) dy(sv) ~ 

~ a - - -  dv Oa ~ ~a ds ~a" 

From (5.7) and (1.3) therefore 

(5,10) ~Y(Sc) ~v(sc) '  ~Y(Vc) ~vl 
~a -- fo  ~ - ~  Oa q~v Oa" 

We now use (5.0) again from s c ~ s ~ fl and thereby determine ~y(fl)/~a and 

~v(fl)/~a. The functions ~y(s)/~a and ~v(s)/~a are clearly uniformly continuous with 

respect to the initial values of y and v at  s : ~  and with respect to s for a~S~Vl - -~ ,  

31~-~ ~ t  ~ f l  for any given 5 >  0. 

This completes the proof of Theorem 4. 

6, We proceed now to the proof of Theorem 3. In  the course of the proof we 

shall make use of Theorem 4. We recall the remarks made at  the beginning of w 5 

concerning the meaning of a and b. We require the following resnlt which is a slightly 

modified form of Lemma 2 and is proved in the same way. 

L e m m a  3. In  Lemma 2 let el in (3.4) be replaced by 

~2 
e V -  ~- - -  e - m ( t - ~ ) / e  
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and let ~1 and ~2 be replaced by ~3 and ~4 respectively. Then the conclusion of Lemma 2 

becomes 
Iz(t)l-~-[w(t)l ~ Z~l eki(t-~) 

I d w  I < 64 e_mtt_a)/s_~ s2(t--~) e_m(t_a)/s4 - ]czJl ckl(t_a) 

for a <~ t <~ ~ where A~ replaces A in Lemma 2 and 

4 ( k +  1)2(mA- 1) 2 
zJ 1 ~-~ (~1---}-~'2-~-~3-"~-~4) , 

km ~ 

and ]c~ is the same as in Lemma 2. 

We begin b y  considering ~ ~ t _~ ~ < T 1. 

(6.0) 

P r o o f  o f  T h e o r e m  3 ,  P a r t  1.  Here  we have  

dOx dOu Ofdu Oq~ 
dt Oa : ~ J dt ~ a + ~ a - ~  ~ Oa 

d 2 Ou d Ou ~9du Oh 
Oa = 0 

where f -~ f(x(t), u(t), t, ~), etc. and  where 

Of Of Oxi Of ~u 
~a -- )--'/ ~ ~a -~ Ou ~a 

etc. The  sys t em is l inear  in ~x/~a and  Ou/Oa. The  coefficients are al l  funct ion  of t (and 

of s and  the  init ial  values  of x, u, du/dt a t  t -~ ~). 

F o r  the degenera te  s y s t em we have  (5.0) where the  las t  equa t ion  can be wr i t t en  as 

d ~v 09dv ~h 
= o . 

0x 0y 0u 0v 
N o w  let  z - -  a n d  w - -  The  init ial  va lues  of z and  w are zero. F r o m  

0a 0a 0a 0a 

(6.0) and  (5.0) we have  

dz dw Of Of \dv  ~ Oq~ ~q~ 
(6.1) -~ = f ( x ( t ) , u ( t ) , t , ~ ) y i + ( 2 ~ z ~ + ~ w ) ~ i +  2 ' ~ z ~ + ~ w + F .  

d2w , ,dw [ ~ Og , 09 \dv  Oh Oh 
(6.2) edt  ~ ~-g(x(t), u(t), t, e)~-[+ ~ 2 ,  ~x i zi-t-~u W) d~-~ ~ x  i zi+~-vu w +  G -~ 0 
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where 

F = 

+ d v [  ,_,[ ~f ~f\~y~ ~ f  ~f\~v] 

8r / 3 r  ~ r  d ~v 
~y~y~)-~a4-[~u ~v)~a4-2~ ~a [f(x, u, t, s)--f(y, v, t, 0 ) ] .  

As e, 6~, and  6~ -> 0 we have  for ~ ~ t ~ y < vt f rom T h e o r e m  1, p a r t  1, t h a t  

~f(x, u, t, ~) ~f(y, v, t, 0) 1 
0 

un i fo rmly  where  x is x(t), y is y(t) etc. Similar  resul ts  hold  for the  o ther  differences 
du dv 

t h a t  occur  in F excep t  for the  difference - - - - - - .  F o r  the  l a t t e r  we have  b y  (3.15) 
dt dt 

dvl _< 
dt dt l 

d ~v ~ dv dv h 
The  t e r m  d-t a-a = ~aa di- is replaced b y  use of -d-t- ~- - - - "  We  have  easily f rom (5.0) and  

g 
L e m m a  1 t h a t  the  t e rms  ~yJ~a and  ~v/~a are bounded  over  a ~-- t ~ ~, b y  a bound  

t h a t  depends  only  on K a'nd m. Thus  so long as ]zl+lw I ~ 1 there  is an  E, a funct ion  

of K and  m, which becomes  large when  m gets  small ,  such t h a t  

(6.3) IFI <= E[~p(~, (~, 62)4-~2e-m(t-~ 
L J 

where ~(e, 61, 62) is a cont inuous  func t ion  of E, 81, 62, and  m which tends  to  zero 

when  e, 6t and  62 -~ 0. A similar  resul t  holds for G which has  t e r m s  like those of F 
d2v 

and  the  addi t ional  t e r m  S~ad- ~ .  I t  is here  t h a t  we use the  exis tence of the  second 

order  par t i a l  de r iva t ives  of g and  h. W e  find t h a t  G satisfies an  inequa l i ty  of the  

dv 
same fo rm as (6.3). F r o m  the  las t  equa t ion  of ( 5 . 0 ) ~  a ~ / a t  t = a can be computed .  

du dw 
We have  - -  0 a t  t = ~. Thus  - -  a t  t = a is bounde~t and  therefore  64 is of the  

3a dt dt 
fo rm Ke. W i t h  this we see t h a t  (6.1) and  (6.2) sa t is fy  the  hypothes i s  of L e m m a  3 

where  st = E ~  and  e2 = ES~. Using L e m m a  3 we see t h a t  T h e o r e m  3 is va l id  for  

~ t ~ I~ < ~t in so far  as the  der iva t ives  wi th  respect  to a are concerned.  
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As regards  the  de r iva t ives  wi th  respec t  to b we use (6.0) w i thou t  (5.0). W e  set  

z ~- ~x/~b and  w -~ ~u/~b and  a p p l y  L e m m a  3. Since a t  t ~ a,  z = w ~- 0 we h a v e  
du 

here t h a t  ~3 --= 0. Since b dt 1 a t  t ~-- ~ we have  5~ ~ ~. Clearly for  IzlA-Iw[ < 1 

we h a v e  

I g ~ + g  < g I ~ - ~ / I  + ~t  ~/ + g 

~ E I ~(e' ~ '  62)-~ ~e-m(t-c~)/e-~-Izl-~-Iw[ 

where  E is the  same  kind  of func t ion  as a p p e a r e d  in (6.3). A s imilar  resul t  holds for  
~g du ~h I 

I f  we  now use L e m m a  3 we f ind t h a t  I ox(t) i I Ou(t) ~ .  ~ - I  + f - ~  ~+ 0 un i fo rmly  f ~b dt I 

over  a _< t ~ 7 < vl as e, d 1 a n d  d2 -~ 0 while i ~ -  ~ --> 0 un i fo rmly  over  ~ - ~  ~< t ~< 

< ~ for  a n y  f ixed ~ > 0. This  comple tes  the  proof  of T h e o r e m  3 ove r  

Theorem 3, Part 2. 

A t  v = v0 < vB we change f rom t to  u (or v) as the  i ndependen t  var iable .  W e  

h a v e  f rom (4.0) 

d ~x ~f ~r ~p d ~t ~p 
- ~ a p + ~ a ,  - du ~a ~a du ~a ~a 

(6.4) 
d ~p 

du ~a 
2p~pgA_ Og ~p ~h = p2~aA-3p2~ah+p3~a. 

W e  also have  (5.3) for  the  degenera te  sys tem.  The  init ial  values  a t  u -~ v = v o of 

~X(Vo)/~a and  ~t(Vo)/~a m a y  be found  in the  same  w a y  as ~y(Vo)/Oa and  ~s(vo)/~a in 

(5.1) and  (5.2). H e r e  ~x(vo)/~a means  ~X(Vo-f-O)/~a etc.  F r o m  P a r t  1 we k n o w  t h a t  
~x(t0) ~y(s0) ~u(t0) ~v(s0) 

and  can be  m a d e  as small  as we w a n t  b y  t ak ing  e, ~1, and  ~a ~a ~a ~a 

~x(%) ~y(vo) ~t(vo) ~s(vo) 
52 small  enough.  Thus  and  can be m a d e  as smal l  as we 

~a ~a ~a ~a 

wish. 

We  have  also to  consider ~p(vo)/~a. We have  since p ~ 1 / - -  
dt 
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(6.5) 
3p(vo) - 1 [d~u3t(v~) d ~u_(to) ) 

~a (du~ ~ -d~ ~a ~ dt ~a J" 

\ d t ]  

A similar  fo rmula  is val id  for ~q(vo)/~a. The  t e r m s  in (6.5) t end  to  the  corresponding 

d~u 
t e rms  in ~q(%)/~a, with  the  possible excep t ion  of dt--~, as s, ~1, and  53 -~ 0 b y  T h e o r e m  1 

and  P a r t  1 of T h e o r e m  3. Here  we have  the  following l emma.  

d2u d2v 
L e m m a  4. For a~-(~ ~ t ~ ~ < vl, where ~ > 0, dt ~ dt -~OuniJbrmlyass,6l, 

and ~ -~ 0 under the hypothesis of Theorem 1. The result also holds for v1+8 ~ t ~ ft. 

We shall p rove  this  l e m m a  a t  the  end of the  section. We  see now t h a t  indeed 

~p(vo) ~q(vo) ~p(v) ~q(v) 
~a ~a - ~ 0  as s, 81, and  8~-~0 .  I t  is easy  to  see t h a t  ~a ~a ~ 0 u n i -  

ds g 
f o rm l y  for  v o ~ v ~ VB--~ for  a n y  (~ > 0 as s, 51 , and  ~ - ~  0. Since q - -  

d v - -  h 

we also see t h a t  ~ exis ts  and  is a cont inuous  funct ion  of v for  v < v B and  moreove r  

Oq(VB--O) exists.  I f  we now let z represen t  \ ~ a  ~a ' 0a 
~a 

and  (6.4) 

fd~l y ( x , v , t , ~ )  ~f(y,v ,s ,O)l+ K ~p ~ql 
I~vt < = ~a ~a I ~a---~l 

P ~ ( x ,  v, t, e) ~ ( y ,  v, s, 0)] ~q 
~a q ~a ! -~ -~a I~(x, v, t, s)---~(y, v, s, 0 t . 

So long as Ipl~-Iql ~ 1 and  as Izt ~ 1 , 

z l ~ l  =tzl~l+ ~x~ ~y, Val + ~ i - ~  ~al 

+ ' ~ i ~ x  i t~-aa T { ~ [ - - ~ s { t ~ a l + K I p - - q l +  t~a--~at + K I q ~ ( x ' v ' t ' s ) - ~ ( y ' v ' t '  O)[" 

Le t  va < v v. We observe  t h a t  v3 is unre la ted  to v 3 of T h e o r e m  1. I f  ~(s, 81, 62, va) 

represents  a funct ion  which tends  to  zero as s, ~i, and  ~, --> 0 then  for  v0 ~ v ~ v 3 

t d~ . K  { ~P aq I Idv ~ KIzI+KJp-qIT I~a-~a +~(s'81'5~'va)" 
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F r o m  L e m m a  1 

<= votp--q I d v §  K .o i ~ a - ~ a  l d V + ( V - V . ) V ]  . 

I t  follows easi ly f rom T h e o r e m  1 t h a t  

as e, dl, and  d~ -+ 0. W e  can also m a k e  [z(v0) r as small  as we wish. Thus  the  t e rms  on 

the  r ight  side of (6.6) all go to zero as e, dl, d2 ~ 0 with  the  possible excep t ion  of 

(3)_ qlev 

L e t  v o < v l < v B .  Then  since q = 0  for  v B < v < v  c, 

J g J.0 j 0a 0a] Vl ~a dv--~ Vl ~a " 

By taking v I close enough to v B and then taking E, (~1, and 5~ small enough the first 

two terms on the right above can be made as small as we wish. Thus given any 

s a > O we can make ,  b y  (6.6). 

i 
v3 ~p 

(6.7) Iz(v)l <-~ sa-{-K ~a dv  
Vl 

provid ing  we h a v e  chosen vo nea r  enough to v B so ]Pl ~-[q[ =< 1 for  v 0 --< v --< va and  

so long as lz[ ~ 1 and  v 0 --< v --< va. F r o m  sdp/du  ---- p2g+pah we find 

d / 1  ~p \  / 1  ~p \  3g ,  ~h 

Thus  

(6.8) aa p (v) pqvl) J 

Le t  v~ > v B and  let rain Ih[ ~ / ~  > 0 nea r  B. B y  (4.12), p _< s/~ 6"for v~ _< v _< v3. 

B y  t ak ing  e, ~1, and  ~2 small  enough we have  t hen  p < e~ for  v 2 --< v --< v 3. Since 

h <  0 near  B w e  have  for  v2- -<v--<va ,  

pv 1_ ~r v2hdu ~v 1_ ~ p2hdu . S a 

Also in m u c h  the  same w a y  
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(6.10) 

F r o m  (6.8), (6.9) and (6.10) 

1 ~a  # Vl 

where for any  choice of vl, ca can be made  as small as we wish b y  taking s, 51, and  52 

small enough.  Thus  (6.7) yeilds, for a rb i t r a ry  ss, 

Iz(a)ld~ +Ks�89 
# # ,l 

Let  v~--vl be small enough so t h a t  K(v~--vl)/# < e~ where s~ is a preassigned posi t ive 

quan t i ty .  Taking v 1 and  v 2 closer to v B affects the  previous a rgument  only  in so 

far as it  m a y  be necessary to  decrease s, 51 and  5~. Le t  m a x  Iz(v)] ~- M,  vl ~-- v ~ v3. 

(If M ~ 1 decrease v 3 so t h a t  we get  M < 1). Then  f rom 

(6.12) M ~= ss-t-s6-~-Ms6-)-Ks�89 
o r  

M(1- - s6 - -Ke  �89 ~ s.5+s6 . 

Thus  2(s~-e6) ~ M ~ Iz(v)l. (In par t icu lar  t hen  it  is unecessary to decrease v3 to  

achieve M < 1). We see then  t h a t  (6.11) becomes,  for  any  preassigned s 7 > 0, 

I TM  p(v) I. (6.13) <= 
Vl 

and  thus  f rom (6.7) 
(6.14) lz(v)l g s s ,  v o ~ v  ~ v a ,  

~x ~y , ~t ~s 
for any  preassigned ss. Thus  ~aa--~a ana  ~ a - - ~ a  t end  to  zero un i formly  over  Vo ~ v 

v8 as e, 51, a n d  53 t end  to  zero. T h a t  is we have  established Theorem 3 up  to  

any  point  short  of C. 

The  case ~xl~b, ~tl~b and  ~pl~b is handled  wi th  the  usual  modif icat ion.  T h a t  

is we now set z --~ \~-~, ~ / a n d  use the  fac t  t h a t  a t  v 0 the  values of ]z I and  ~p/~b 

t end  to  zero as e ~ 0. 

7. Acta mathemativa, 82. Imprim6 le 14 ]anvier 1950o 
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We  now tu rn  to the  proof  Of L e m m a  4. 

P r o o f  of  L e m m a  4. Actua l ly  the  resul t  of this l e m m a  is a consequence of 

P a r t  1 of Theo rem  3 which we have  a l r eady  proved.  There  we have  shown t h a t  

d 5u d ~v 
(6.]5) - ~ 0 ,  ~-~-3 < _ t _ ~ ,  

dt ~a dt 3a 

un i fo rmly  as e, 3~ and  3~ -> 0. B y  a well known art if ice ~/~a can be changed to d/dt. 

I ndeed  replace t b y  a + ~  in (1.2). Then  we have  

dt dx du 
--d(~ ~- 1 , ~ ---- f ( x ,  u,  t, s ) ~ + q ;  , 

(6.16) 
d2u du 

~ j + g ~ + h  = o.  

Here  we have  one more  dependen t  var iab le  t h a n  in (1.2) n a m e l y  t. The  independen t  

var iab le  a is assigned the  int i t ia l  value a ~- 0. Clearly then  t(0) --~ a and  a is an a 

for  (6.16). Also u = u ( a + a ,  s, x(0), u(0), u '(0))  where  x(0) etc. are the  values  of x 

~u du du 
etc. a t  a ~ 0. Clear ly ~ da dt and  s imi lar ly  for  v. Using P a r t  1 of T h e o r e m  1 

for the  sys t em (6.16) we h a v e  then  the  proof  of L e m m a  4 as a consequence of (6.15). 

The  proof  of L e m m a  4 for  v1~-3 ~ t _~ fl follows in the  same way  once (6.15) 

is d e m o n s t r a t e d  over  this range  of t. 

7. T h e o r e m  3, P a r t  3. 

Before discussing the  behav io r  of ~x/~a, ~t/~a and  ~p/~a near  C it  is conven ien t  

to ob ta in  the  following resul t  

e ~p ~V~gdv_~O 
(7.0) p2 ~a Jv~a 

un i fo rmly  for v B ~_ v ~ vc--3 for 3 > 0, as e, 31 , and  32 -~ 0. I n  (7.0) 

~g ~ g ~ x  i ~g~t  

The  proof  is a consequence of in tegra t ing  

d ( s ~p~ = h~P ~g ~h  +Va+PVa 
over  vt =~ u ~ v ~ Vc--3 and  using (6.13) and  the  fac t  t h a t  p -~ 0 un i fo rmly  in the  

in te rva l  v B ~= u ~ vv--3 as s, 31, 32 -+ O. 
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W e  t ake  v 3 < vv and  nea r  v C and  choose the  p o i n t  P4(x4, u4, Q) so t h a t  P4 is the  

first  po in t  where  we have  p = P4 = ~ and  t4 > t3. P4 here is unre la ted  to  the  po in t  

Pa used in the  proof  of T h e o r e m  1. Clearly f rom (4.12) of T h e o r e m  1, Pa -> C as 

~, 81, 62 -~ 0. 

F r o m  (6.4), le t t ing z = , we h a v e  

(7.1) I dzl <KIz[+KIzp '+K ~ p ' d u u ]  ~a~Pl 

and  therefore  b y  L e m m a  1 

[z(u) l < Klz3[+K ~a du, v 3 < u <= v4 . 

We have  since g > 0 near  C, 9--~ph > lg, v3 <-- u <~ v 4, if we have  chosen s small  

enough.  Thus  f rom edp/du = gp~+hp 3, p is an increasing funct ion  of u. Also 

dp > �89 so t h a t  

1 I ~ 
- p~du < K(p4.p~) < Kp4 �9 
F, ~ VlI 

- -  eft Jv3 . . . .  f 

(7.2) 

F r o m  (6.8) 

~p(u) 
(7.3) ~a P a) . 

~p(v3) . 
18 bounded  b y  (7.0) and  also using (7.2) we f ind easi ly  Using the  fac t  t h a t  

p~ ~a 

now t h a t  for v3 --~ v g v 4 

(7.4) ~a du ~ Kp4 + Kp4 [z[du, ~+(~1+~ < T(v3) 
V 3  V 3 

where ~(v3) is a cont inuous  funct ion  which tends  to zero as % -~ v 6. W i t h  t h e  fo rmula  

below (7.1) this  yields 

Iz(u)l ~ M ~ K[z3[~-Kp4+Kp4M(v4--va), e+(tl+(t~ < W(v3) 

where M = m a x  [z(u)[, va ~ u ~ v4. Thus  if s is small  enough M ~ K[z31+Kp4 < K 

since z a is near  0a ' 0 a / "  

Since ]z(u)] < K for  v B ~ v ~ va we have  

(7.5) [ z ( u ) [ ~ K ,  v B < - - u ~ v 4 .  
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By (7.4) and (7.5) we find from (7.1) 

(7.6) IZ4--Z3] ~ K(v4--v3)-]-Kp4,  e:-~-01-]'-O~ < tff(v3).  

At P4 we change again from u to t as the independent variable. We have, if 

t--~ t 4 at P4, from t(u, a ) ~  Q 

(7.7) 
Ou (t4) Ot (u4) du  (Q) 

~a ~a dt 

where bu(Q)/Oa is ~u(t)/3a at t : t4+O, etc. analogous to (5.1) and (5.2). We also have 

Ox(t4) Ox(u4) dx(t4) 3t(u4) 

Oa Oa dt ~a 
(7.8) 

du (t4) 1 Op(u4) 1 dp(u4) ~t (u4) 
- -  ) 

~a dt p] ba p] du Oa 

1 
We define t 5 -~ t4-~e log * - and denote the point (xs, %, ts) by Ps. We have from (1.2) 

(7.9) 

I t  follows easily that  by  integrating 

by  parts we have for small e 

(7.1o) 

du(t) du(q) _~_{t gdt 1 t .t ar d 
- -  e Eat4 - - -  h e -  ~ )~ a d a .  

dt dt e ~t4 

let d 

ge--i )o ~ a da 

du (ts) . h5 ! 
I d t - ~ g 5  ~ --+K(t~--t4) < 6�89 

P4 

where h5 denotes h(x, u, t, t) at P5 etc. 

By  (6.0) and Lemma 1 if ~ = \  ~a ' ~-a / then for Q ~ t ~ t  5 

(7.11) 
t K(t Idu dt+K(t_a)d a K t du dt+K(t-t4) ~4~f I d ~ul e Jal dt 

= + .t4] Val 

From (7.9) we have easily if g ~ KI > 0 near C where K1 is clearly a K ,  

(7.12) I du I ~ 1 e_gl(t_t4)/e4_K. 
p,  
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Thus  for t~ ~ t ~ t~ 

(7.13) 

Also from 

(7.14) 

(7.15) 

i 
t I d u Ke Ks 

t-~:. dt ~ +K(ts-- t4)  ~ - - .  
P~ P4 t4 

d a ,  

t d ~ u  = d3u(t4 ) ,t[.zl( ~ldU[+l)dt 
It4 dt-~a dt < Ks dt ~a "4-Kit4 

From (7.2), (7.3) and (7.5) we have  easily tha t  since 

e ,  ~1, ~2 ~ 0 

I < K ! -  

From (7.8) then and (7.5) and (4.3) 
K e] ~ du(t4ll < K + K < _ _  " 

~a dt I =  P4 P4 

s Op(u3) is bounded  b y  (7.0) as 
pl ~a 

Using the above,  (7.13) and (7.15) in (7.11) we have  if max  I~l = M for t 4 <_ t _< t5 

and if ~ is small enough, 

M ~ K [ N 4 ] + - - + K M  +t~--t4 . 
P4 

Since K -t-ts--t 4 < �89 if e is small we have 

K 
]~(t)] < KI541 + - - .  

P4 

Using (7.5), (7.7) and (7.8), w e  have  1~4[ <- K/P4 and thus  

- -  , ta ~ t ~ t 5 . 

where 

B y  integrat ing (7.14), 

~u(t) ~u(t4) + d Ou(Q).t 1r . 
-- I e- ~ )t4 gaa da-- J ~a ~a dt ~a ,'t~ 1 

-z---t-~-Jaa~ e as 
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Using (7.7) and (7.8) 

-- e- ~ lt4gdt d a - - J ~ .  3u(t) 1 ~t(u4) 1 ~p(u4) t (7.17) 
~a P4 ~a Jr p~ ~a p~ du ~a J t, 

Clearly using (7.16) and (7.13) for t4 g t _~ t 5 we find 

(7.18) ]J~] < ~-1 dt <: - -  < s~ 

for small ~. Integrat ing by parts we have 

where 

(7.19) 

Thus from (7.17} 

0u (t0) 1 Or(u4) 

~a P4 Oa 
Since edp/du -~ p2g+p3h,  

(7.20) Ou(ts) _ (h 4 ~t(u4) 
Oa ~ Oa 

where 

i 
?5  1 1 

I J21 < ~ .  

[ ~p(u4) p41dp(U4)du ~t (u4)l~a J ( I - ~ 1 J 2 )  - J l "  

g4P~ ~a J P4 ~a ~-Ja--J1 

J 3  ~ - -  - -  " 

g4 ~a p~ ~a / 

From (7.3) and (7.2) we have also using (7.0) 

I ~I~P(u3) I ~_K(v4_v3) (7.21) e ~p(u4) ~ ~P(-U3) < Kp4 
- 2  - 3  ~ 
P4 ~a ~a -~--aa I Pa 

Since v 3 and v4 can be as near v c as we wish we see tha t  by taking e, 51, and 52 small 
enough we can make 

IJ~l < ~9 

where e 9 > 0 is any prescribed quanti ty.  By (7.6) 

I~t(u4) ~t(u.) < 
Kp4-F K(v4--Va) . ~a ~a -~ 

Thus (7.20) yields 

au(t~) h4 ~t(u3) ~ ~p(u~) 
~ a = g ,  ~a g4P~ ~a ~1o 
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where elo > 0 can be chosen arbitrarily small. From (7.0) and continuity con- 

siderations the above formula yield 

.iV C, (7.22) i0u(ts) hc~l~_a f ~ < 
Oa gc Oa gc JvBOa I ell 

Og ~ g  Oy~ Og Or1 
where Oaa = ~ vy i. ~ a + O s  ~aa and where sll > 0 can be chosen as small as we wish 

by taking e, 51, and 5~ small enough. Comparing with (5.9) we have 

~ ~u(t~) Ov(tc) l 
(7.23) I 0a ~a I < s11. 

From (7.14), if gc > 2K1 > 0, we have using (7.8), (7.12), (7.16) and (7.21) 

(7.24) 
I dt Oa -- s, p4 p~ < s 

for small e, 51, and 52. 

Finally from (6.0) 

0 0x 

dt ~a 

Integrating we have 

d i Ou \ Ou df O~f Of du 
-- ~ f ~a) --~a dt+~a -~ ~a dt " 

~z(t~) Ox(q) 
~a ~a 

~u(ts) _ Ou(q) J 

where for small s, 61, and 52, by (7.16) and (7.13) 

K~ ] 1J I< p~<e ' .  
Or by (7.7) and (7.8) 

Ox(ts) Ox(ua) dx(Q) bt(u4) ~ Ou(ts) _ du(Q) Ot(u4) 

Oa --  Oa dt Oa ~-A ~ a + A  ~It ~a 
t-J 

Ox(u~) 
Oa 

~u(ts) Ot(u4) _ 
~-A ~ a - ~ J - + a  " 

Or by (7.6), (7,23) and continuity considerations 

3x(ts) ~x(%) bu(ts) ~t(ua) L 
Oa Oa f C - - O a - ~ - ~ C ~ a  < ~12 

where e12 > 0 can be chosen less than any prescribed quanti ty by taking s, 51, and 5~ 

small enough. Or by Theorem 3, part  2 and by (7.23) 
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I3x(t~) ~y(vc) _ ~v(tc) ~T~ (7.25) 

where e~s > 0 etc. Comparing with (5.10) we have  now 

(7.26) 
~a ~a I + } ~a ~a 1 } 

as small as we wish. Wi th  (7.24), (7.26) and (7.10) we can proceed now as in P a r t  I 

f rom t 5 to fl since in the range t c to t 5 or t 5 to  te the  change  in the degenera te  sys tem 

is small because {Q--tc[ is small. 

The  case where b is used instead of a proceeds with the  usual modificat ions.  

This completes  the  proof  of Theorem 3. 

8. Le t  us consider the  case where the  degenerate  sys tem has a solution, as 

def ined in w 2, which is periodic of period T. Le t  t ~ ~ be a point  where g ~ 0. 

Suppose in the  first  place we take  the case where the  funct ions  f (x ,  u, t, ~), cp, g and h 

are periodic in t of period T. Le t  the  initial values for  (1.3) be yl(~) . . . . .  y,(~),  v(~). 
du(o,) 

Let  us denote  the  initial values of x l ( ~ ) , . . . ,  x~(~), u ( ~ ) , - - ~ - -  b y  a l , . . . ,  a~+l, b. 

Then  for the sys tem (1.2) to have  a periodic solution for small s it  suffices tha t ,  if 

fl ~ ~q -T ,  the  de te rminan t  a t  t ~ f l ,  

D ( a l , . . . ,  a~+l, b, s) = 

should be cont inuous as 

~ x l  1 ~x 1 . . .  ~xj ~X 1 

~al ~a~ ~an+ 1 ~b 

~x~ ~x2 ax2 
~al ~a2 1 . . .  ~-~ 

~u 
o , ,  

du 
, o ,  

~al dt 

s -+ q-0; a 1 . . . . .  an+l ~ yl(a) . . . . .  v(a); and  b -~ - - - -  

~u ~u 
1 

~an+ 1 ~b 

0 du 

Ob dt 

hA 
gA 

and  D should not  vanish.  

This is a consequence of the  fact  t h a t  the  existence of a periodic solution of (1.2) is 

equiva len t  to the  existence of a solution (al . . . . .  a,+l,  b) of 
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x i ( f l ,  a l ,  . . . .  a n + l ,  b ,  e)  = a i ,  i = 1, 2 . . . . .  n ,  

d u ( t ~  , a l , .  . . , a n + l ,  b ,  ~) 
u ( f l ,  a l , .  . . ,  a,~+l, b ,  e)  - ~  a n + l ,  d t  - ~  b , 

where (al . . . .  , a~+ 1, b) are found as funct ions  of e > 0. B y  Theorem 3, the  last  column 

of D tends  to  zero excep t  for the  last t e rm in the  column which tends  to - -  1. Thus  D 

tends  to 

(s.0) 

~yl(~) ~yl(~) ~yI(Z) 
1 ~  

~al 0a2 aa~+l 

av (8) ~v (r 
- - - - - - 1  

~an+ 1 " . . Oan+ 1 

as e, dl, and d~ -+ 0. This is the  J acob ian  associated wi th  a periodic solution of (1.3) 

and  if i t  is different  f rom zero we see tha t  (1.2) also has a unique  n ea rb y  periodic 

solution for small e > 0. In  par t icu lar  if the  periodic solut ion of (1.3) is stable in the  

sense t ha t  the  associated character is t ic  roots  are all less t h a n  one in magni tude  then  

the  d e t e r m i n a n t  (8.0) does no t  vanish,  

In  case the r ight  members  of (1.2) do no t  involve t the  period T is no longer a 

cons tan t  for periodic solutions (if any)  of the  pe r tu rbed  system. Making the usual  

modif icat ion for this s i tuat ion the  same resul t  re la t ing the exis tence of periodic 

solutions for (1.2) to (1.3) holds again. 

The  ease where the  last  equa t ion  of (1.2) is a vec tor  equa t ion  can be t r ea t ed  

quite  readi ly  on the  basis of results  ob ta ined  here  b y  making  a change of coordinates.  

We shall r e tu rn  to this ease later.  
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