
THE RATIONAL SOLUTIONS OF THE DIOPHANTINE EQUATION, 
y 2 _  X 3 D. 

By 

J .  W.  S. C A S S E L S  

TRINITY COLLEGE, CAMBItIDGE. 

1. We study the rational solutions X, Y of the equation 

y 2  ~_ X 3  D (1) 

where D is a given integer, a problem of a type considered by Bachet over three 

centuries ago. When D -: :k I Euler 1 [10] showed that  the only solutions are X -- 2, 

Y - -  T3 and trivial ones with X - - 0  or Y - -  0. Apart from a treatment of the 

special case when D is a perfect cube by Nagell [29], the first significant advance 

for many years was made by Fueter [12] who writes the equation as 

X 3 - -  y2~_  D , 

assumes that  D > 0, and studies factorisation in R ( ~ / ( - - D ) ) .  This work 'has been 

extended by Brunner in a doctorate thesis [3]. The case D < 0 was considered by 

Mordell [26] and then by Chang Kuo-Lung [5]. 

2. The integral solution ~, ~], ~ of the equation 

~ - ~  --~ A~ ~ , (~ ~ 0 )  

where A is a given integer, is trivially equivalent to the rational solution of (1) with 

D ~- 243aA 2 by putting 
X :  Y : A  = 223~:2232(~--~1):~-~rt. 

The case A = 1 is, of course, Fermat 's  problem with exponent 3. The equation with 

general A was extensively investigated in the 19th Centu?y by Lucas [19], Pdpin 

[36, 37] and Sylvester [40]; and Sylvester states tha t  he either had a solution or 

1 For  references see end of paper .  
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knew the equation to be insoluble for all positive A < 100 except 1 A ~-- 66. Further 

results have been given by Hurwitz [17], Faddeev [11] and Holzer [16]. Much of 

this work is summarized by  Nagell [31]. [added in the proof]. Since this was written 

new and interesting work has been done by Dr. E. S. Selmer (so far unpublished). 

3. The equation (1) is, of course, a special case of 

y 2 =  x~ C X _ D  (2) 

where C and D are integers. This was studied by Poincar~ [38] who noted that  the 

values of the parameter u corresponding to rational solutions form an additive 

group, II, when the usual parametrization Y ~ 1 , ~4) (u), X ~ 4~(u) is employed. 

This group was shown to have a finite basis by Mordell [25]. A more precise form of 

this result was given by Weil (cf. theorem II) who gives an elementary proof [42] 

as well as a deep proof of a far-reaching generalization [41]. In a doctorate thesis, 

Billing [2] has given a general s tudy of (2) using methods based on Weil's theorem 

and, in particular, he gives a complete solution of (1) for all IDf < 25 in the sense 

that  he gives a complete basis for U. He does not, however, give a detailed account 

of the method of obtaining these results. The present work was done in ignorance 

of Billing's paper; indeed, it was not until a late stage that  I realized tha t  the 

algorithm which I employed was that  underlying Weil's theorem II. In it, I have 

developed a more detailed theory of (1) than is given by Billing and have given 

general theorems as well as carrying the solution up to f D! <-50.  With one 

exception (D ~ - -15) ,  my results confirm Billing's in the range IDi < 25 studied 

by him. I have been led to compute a table 2 of class-numbers and units for 

all cubic fields R(~/D) with ]D I < 50; which I do not think has been given before, 

although a number of partial tables exist. Finally, it should be remarked that  

(2) is the subject of a series of papers by  Nagell [30, 32, 34, 35] and that  other 

aspects of the problem have been studied by  Ch~telet [6, 7], Lutz [20] and Lind [18]. 

4. In part I, I give a resumd of the general theory of (2) and discuss its relevance 

to (1) in general terms. In part  I I  the general discussion is carried further using the 

specific arithmetical properties of the relevant cubic number-fields, and in part  I I I  

the actual applications s re  made. 

1 Insoluble  by  theorem V I I I .  

Table 2. 
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P a r t  I. 

5. Let (X', Y') and (X" ,  Y " )  be any two rational solutions I of y2 = X 3 C X _ D  

with parameters u', u" and let (X'",  Y'") be the solution with parameter u '"  ----- 

u'q-u" .  Then (X', Y'), (X", Y") and (X'",  -- Y'") lie on a straight line y -~ A x q - B  

by a known result 2, where A and B must be rational. Hence X',  X" ,  X ' "  are the 

roots of 
X 3 - - C X - - D - - ( A X q - B )  2 ----- O. (3) 

The left-hand side of (3) must be identical with ( X - - X ' ) ( X - - X " ) ( X - - X ' " )  and so, 

if (~ is a root of ~3--C~--D = O, 

( X ' - - 6 ) ( X " - - 6 ) ( X ' " - - 5 )  = (A6q-B) 2 , 
i .e .  

= e ( 4 )  

In other words, if squared factors are ignored, the values of X- -6  form a multi- 

plicative group homomorphic to 11. There are three groups (~1, (~2, (~s (say) corre- 

sponding in this way to the three values 51, ~2, 6a (say) of ~. If 5a--CS--D is irreduc- 

ible, the numbers X - - S j  (j  = 1, 2, 3) are conjugate algebraic numbers, and the three 

groups (~j run entirely parallel to one another. If, however, 53--C~--D is reducible, 

this parallelism does not necessarily hold and so we are compelled to introduce a 

group (~ in terms of "triplets". 

A triplet {aj} is defined as a set of three numbers al, a2, as such that o~j E R(Sj) 

and the operations of addition and multiplication for triplets are defined by 

= = 

Then the set of triplets {X--dj}  is clearly also a multiplicative group N homomorphic 

to 11, when squared (triplet) factors are ignored. Obviously, when 63--CS--D is 

irreducible (~ is isomorphic to each of the groups gO;.. 

We denote, further, by 211 the set of 2u, u E 11. Clearly 211 forms a group. We 

denote the quotient group of 1I and 211 by  11/(211). Then the following three theorems 

hold. 

T h e o r e m  I (Mordell). The group 1I has a f ini te  basis. 

T h e o r e m  II (Wail). (~ is isomorphic to 1I/(21I). The element of ~ and the element 

I (X, Y) (with or wi thout  affixes) will a lways  be a rat ional  solution of Y ~  ~ X a - - C X - - D .  

2 cf. Whi t t aker  and Watson  [44]. 
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of tt/(21l) belonging to the same solution of y3 ~ x a _ C X _ D  correspond to one another 

in the isomorphism. 

T h e o r e m  I I I .  Let (I) w be the number of independent generators of infinite order in 

l~t, (II) g be the number of generators of ~ and (III)  s • 0, 1, 2 according as O a CO--D = 0 

has no, has one or has three rational solutions. Then w ~ g--s. 

Theorem I I I  is really a corollary of theorem II .  For  proofs we refer to the paper 

of Weil [42] or the book of Delaunay  and Faddeev  [9]. 

6. I f  (~ is known, then, by  theorems I I  and I I I ,  the s t ructure  of 1I is known,  

except for its generators of finite order. A theorem has been given by Lutz  [21] 

which, while not  completely characterizing the solutions of finite order of y 3 =  

X 3 - - C X - - D  (i. e. those solutions whose parameters  are of finite order in H), reduces 

the problem, when C and D are given, to the s tudy  of a manageable number  of 

cases. We shall not  need it here, but  quote it  for completeness. 

T h e o r e m  IV (Lutz). I f  X ,  Y is a rational solution of y3 ~ X a _ C X _ D  of 

finite order, then X and Y are integers and Y3/(4Ca--27D3). 

This is superseded in the case C ~ 0 by 

T h e o r e m  V (Fueter-Billing). Solutions of y3 Xa- -D with X = 0 or Y ~ 0 

are of order 3 and 2 respectively. The only other solutions of finite order are the two 

following:-- X -- 2, Y ~ •  D -- --1 ; (5) 

X = 233, Y ~ 32333 , D ~ 2433; (6) 

of order 6 and 3 respectively. 

7. Another  general theorem is 

T h e o r e m  VI (Fueter-Billing)i The number w* (say) of independent generators 

of infinite order of the group lI* (say) of the equation y3 _~ XaA_27D is equal to the 

corresponding number w for y 2 =  Xa D. 

The interdependence between these two equations has been known for a long 

time. I t  is connected with the possibility of "complex mult ipl icat ion" of the para- 

meter  u by  1/(--3). 

8. Finally,  we enunciate the a lmost  trivial 

T h e o r e m  VII .  There is a 1--1 correspondence between the rational solutions 

X,  Y of y3 = X3 C X _ D  and the integer solutions x, y, t of 
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y2 ~ x a _ C x t 4  Dt6, t > O, (x, t) _~ (y, t) = 1. (7) 

This follows immediately by putting X ~ - x ~ r ,  Y ~ y/s  where x, y, r, s are 

integers and the fractions are in their lowest terms. Comparison of denominators 

on both sides of y2  =_ Xa  C X _ D g i v e s  s2 _= r 3 and hence s ~ t 3, r ----- t 2 for some t. 

I t  will be more convenient to use this form in future. We note tha t  the multiplicative 

group (~ of the triplets {X--~j} may also be defined as the grou~ of the {x--t2(Sj}, 

squared factors again being ignored. 

Part  II. 

9. We shall now confine ourselves to the equation 

y 2 = x 3  Dt~ , t4=O,  (x,t)~-- ( y , t ) :  1, (8) 

where x, y, t are integers. We may clearly assume that  D is sixth-power-free and, 

by theorem VI that  27r Any such D can be put in the form 1 

D : E F 2 G  a, E > O, F > O, 3 ~G , (9) 

(E, F) = 1 ,  (10) 

E,  F ,  G squarefree. (11) 

By theorems I I I  and V the structure of the group 1I of solutions can be found from 

tha t  of the group (~. Until further notice, we shall assume that  D is not a perfect 

cube and so, by theorem III ,  the number of independent generators of infinite order 

of 11 is equal to the number of generators of ~.  Further, all three expressions 

x- - t26j  (j = 1, 2, 3) where ~j runs through the roots of 63 = D, are conjugate, and 

so we need study only one, say x--t26 where 5 is the real cube root of D. We first 

state some properties of the cubic fields R(6).  For proofs see a paper by Dedekind [8] 

or the general theory in Weyl [43]. 

10. Write 
(~ -~ GA, D* -~ E F "  ~- A3 > 1 .  

Small Greek letters denote numbers in R(A) ,  Gothic small letters denote ideals, as 

also do square brackets enclosing a (possibly redundant) basis. If D* ~ie :~ 1 rood 9 

integers in R(A) have the basis {1, A,  ~ 2/F} but if D* ~ -~-1 rood 9 the basis is 

{1, A, A2/F,  �89 In particular 

1 F o r  l e t  pS]]D w h e r e  p is  a r a t i o n a l  p r i m e .  A c c o r d i n g  a s  s = 1, 2, 3, 4, 5 we  m a k e  

(s = 1) PilE, p~FG; (s = 2) p]]F, p~EG; (s = 3) p]/G, p~EF; (s = 4) PilE, pfF, p]]G; 
(s = 5) p~E, p]]F, p//(~. F u r t h e r ,  s i g n  G = s i g n  D.  
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L e m m a  1. The number a+bA,  where a and b are rational, is an integer in R(J )  

i f  and only i f  a and b are integers. 

The  ra t iona l  p r imes  p factor ise  as follows in R ( J ) :  

p/D*: p - =  p~ where  p ~-- [p, J ]  or  p ----- [p, JJ/F] according as piE or p/F.  

p ~ 3~D*,  D* ~!-: :}=1 rood 9 : 3  =- ~3, 1: ~ [3, Tzl]  where  D* _~_ =kl m o d  3. 

p : 3 / D * ,  D* -~ ! l  rood 9 : 3  =- 1:2~ where  

--  [3, 1T J ,  ~ ( l I J §  

= [3, ~=~J, ~ ( - 2 + + J + J ~ ) ] .  

Here  r~ = [3, 1 ~= J ] .  

p : = - - 1  mod  3, p / D * :  p = pq where  

= [p, d - - A ] ,  

q = [p, d J + d J + A  ~] 

and  d is the  unique roo t  of the  congruence  d a ~  D* m o d  p. 

p and  q are of the  f irst  and  second degrees respect ive ly .  ~ 

p ~ 1 rood 3, p/D*, D* a cubic residue of p:  p ~ P~PJPa where  pj  ----- [p, dj--J]  

and  d~, dj, d3 are the  dis t inct  roots  of d a ~  D* m o d  p. 

p ~ 1 rood 3, p/D*, D* not  a cubic residue of p:  p remains  p r ime  in R ( J )  . 

The  following are quoted  for  reference as l emmas .  The  proofs  are e l ementa ry .  

L e m m a  2. Let a, b be rationa$ integers and p / (a ,  b) a rational prime. Suppose 

p ~ 3 i f  D* ~ •  mod 9. Then either p is prime to a §  or 

[p, a+bJ]  =- pw 

where p is some first degree prime divisor of p. 

L e m m a  3. I f  0 is a prime ideal of the first  degree the rational integers 

O, 1, 2 , . . . ,  p - -  1 are a complete set of incongruent residues rood p where p -~ N o r m  p.  

L e m m a  4. I f  q is a prime ideal of the second degree the numbers 

a §  ( a , b =  0, 1 ,2  . . . . .  p - - l )  

are a complete set of incongruent residues m o d  q where p2 ~ N o r m  q. 

L e m m a  5. Let t be a prime ideal and t~/2 for some s > O. Then ~ ~ fl rood i ~ 

1 i e N o r m p  ~ p ,  N o r m q  = pJ .  
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implies a 2 ~ f12 mod t ~. Indeed it implies a 2 ~ f12 mod t ~+1 i f  t is of the f irs t  degree. 

I n  particular a 2 ~_~ 1 mod  t s i f  t is of the f irst  degree and t ~ a. 

11. The  units  of R(z]) are all of the  fo rm ~:e n where s > 0 is the  fu n d am en ta l  

unit .  Fo r  our  present  purpose it  is enough to  know any  odd  power  ~ ~ -~ e ~n+~ > 0 

of s. Values of ~ and  of the  c lassnumber  h of R(A) are given in table  2. As a special 

case of a known general  theorem we have  2 

L e m m a  b. I f  h is odd, ~ is not a quadratic residue of 4. 

Let  now ~7~be the  pr incipal  class of ideals in R(A) and  gl, g2 . . . .  , t~k the  classes 

of order  2, if any,  i.e. ~. 4= ~ 8 2 -~ ~ .  Le t  c je  ~ and  choose ?~- > 0 such t h a t  

[?j] -~ c~. Then  every  n u m b e r  0 > 0 of R(A) for which [0] is the  square  of an ideal 

has one of the forms 

The  yj can be chosen to  be integers pr ime to  an y  g iven  ideal m. Hence ,  if 0 is an 

integer,  ~ contains in its denomina to r  on ly  ideals pr ime to m. In  part icular ,  we shall 

suppose hencefor th  t h a t  the  ~j are pr ime to  2. There  is a general isat ion of l emma 5 

which s ta tes  t ha t  t hen  precisely half of the  numbers  

1, V, ~j, W~- (j = 1, 2 . . . .  , k) 

are quadra t ic  residues of 4. We shall no t  use this general isat ion in the  general  

t heo ry  bu t  in numer ica l  work we shall use the  corol lary t h a t  if V is not  a quadra t ic  

residue of 4 the  ~ / m a y  be chosen all to  be quadra t ic  residues, to  give a normal isa t ion  

of the  ~j where possible. This is always possible in the  range ID[ < 50, since there  

is not  a quadra t ic  residue of 4. 

12. Consider the  factor isa t ion 

y2 = (x - -  Gt2z])(x2 +Gt~xA + G~t4A 2). 

1 I t  is dif f icul t  to decide if a g iven  u n i t  ~1 ~ 0 is a f u n d a m e n t a l  u n i t  b u t  easy  to decide if i t  is a 
per fec t  square .  I f  not ,  p u t  ~] ~ ~1. 

2 L e m m a  6 be longs  to t he  genera l  t heo ry  of class-f ields as e x p o u n d e d  b y  Has se  [13, 14]. The  full  
force of th i s  t h e o r y  is n o t  r equ i red  a n d  i t  is poss ib le  to base  a proof  on  t he  s impler  t h e o r y  of re la t ive-  

q u a d r a t i c  fields deve loped  b y  Hi lbe r t  [15]. B y  Satz  4 on  page  374 of [15] if ~ is a q u a d r a t i c  res idue  of 4, 

t h e  r e l a t i ve -d i sc r iminan t  of R(z~, ~/~) over  R(A) is un i t y ,  s ince  it  h a s  no  p r ime  factors .  B y  Satz  94 on  

page  155 (and  t he  r e m a r k  on page  156 e x t e n d i n g  i t  to  1 ~ 2 in t h e  the re  n o t a t i o n  if a f u r t he r  cond i t ion  
is sat isf ied)  i t  follows t h a t  h is even.  

I n  t he  l anguage  of class-field t h e o r y  if ~ is a q u a d r a t i c  res idue  of 4 t h e  field R(A,  ~/~) is u n r a m i f i e d  

(unverzweigt) over  R(A) a n d  so is t he  class-f ield to some  abso lu te  ideal  g roup  of i ndex  2. Th i s  impl ies  
t h a t  h is even .  
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Any  common divisor a of the two terms on the r ight  hand  side must  divide 

x2-~ Gt2xA ~-Get4A ~ _  (x--Gt2z~ )~ = 3Gt~xA 

and so a/3GA since (x, t) = 1. Hence  [x- -Gt2A]  -= ab 2 for some ideal b and a/3GA.  

We classify the  pr ime divisors of ~ as follows 

(i) p /d .  Then  p a _  [p] where p = N o r m p .  Since p occurs in y e =  N o r m  

( x - - G t 2 d )  to  an even power,  p occurs in x - - G t 2 d  to an even power, and so m a y  

be absorbed in b. 

(ii) q /G but  q fA ,  so q f3  b y  (9). Then  q/x  since q/G and q / ( x - -G t2A)  i. e. q /x  

where q is the  rat ional  pr ime d iv is ib le  by  q. Wri te  x = qxl, G -= qG 1. By  lemma 2, 

ei ther  xl - -G~t2A is p r ime  to q or [q, x~--Glt~A] --~ q,W for some first degree pr ime 

divisor q' of q, since qT~Glt 2 [as q ~ G  1 by ( l l )  and  q~ t  by  (8) (and q/x)]. Bu t  y~ =- 

Norm ( x - - G t 2 A ) =  q3Norm (x~--Gl t2A)  and so the second a l ternat ive  holds and 

q' divides x ~ - G l t 2 A  to an odd power.  

(ii i)  p/3 bu t  p fGz l .  Hence  3/~D bu t  3/y  since y ~ =  N o rm  (x - -Gt2A) .  Conse- 

quen t ly  x a ~ GateD * mod 9 so this case occurs only when D* ~ • 1 mod  9 i. e. 

when [3] = r2~. Now x 3 ~ G3t6D * ~- ! G 3 t  e mod 9 implies x ~ •  2 mod 3 and  

so r~ / ( x - -Gt2~)  since r~ = [3, 1-TA]. Bu t  3 ~ ( x - - G t 2 ~ )  ( lemma 1) so r / / ( x - -G t2~) .  

Hence  ~ occurs in x - - G t 2 A  to  an odd power since y 2 =  N o rm  ( x - -Gt2A)  and 

Norm ~ = Norm ~ = 3. 

All this p r o v e s  

L e m m a  7. Let  ql, .  . . ,  ql be the rational p r imes  such that qj/(x, G) but q j t D * .  

T h e n  

[ x _ G t 2 A ]  = q~ . . . . .  q_L. b2 ' (12) 
q~ qz 

where qj is some f i r s t  degree p r ime  divisor  o f  qj and  b is  some ideal; except that, when  

D *  ~ i i  rood 9 and 3/y,  

[ x _ G t 2 A ]  _= q~ . . . . .  q_t. ~ . b2 (13) 
q~ q~ 

In  par t icu lar  [x- -Gt2A]  = ab 2 where a is one of a finite set. Hence  ~ T f :  ~7/~ 2 

where ~ a n d  ~ are the ideal classes to which a and b belong and ~7[(as be fore ) i s  the 

principal  class. Fo r  given a and so for given ~71, this equa t ion  for ~ m a y  be insoluble 
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(e. g. when 1 the class-number h ~- 2 and ~ 4: gT(). If however ~/~2 = ~7( has the 

solution ~----- ~ , ,  the other solutions are all the ~ = ~16" where 6" (as before) 

runs through M1 the solutions of b ~" = ~ ,  t? 4: ~ .  We may choose bl E ~ ,  and prime 

to any given ideal m. Then ab~ is a principal ideal, say ab~ = [~t]. Now [x--Gt2~] = 

ab ~ :  [ab~][bb~-l] 2 where bb~-lE ~j~-11 : ~. for some j ,  or : ~Tf. 

Hence finally 

x _ G t 2 A  : •162 or • or + 7 j ~  ~ or •  
say 

x _ G t 2 A  : / ~ 2  (14) 

where # is an integer in R(A)  taken from a finite set, which may be chosen so that  a, 

though not necessarily an integer, has in its denominator only factors prime to any 

given 2 m. We note that  # > 0 since xa--(Gt2A) 3 = y2 > O. 

We shall say that  two values of # are essentially s imilar if their quotient is a 

square in R(A), otherwise essentially dissimilar. The values of # which actually 

correspond to solutions of (8) form the multiplicative group | when squared factors 

arc ignored, which we discussed earlier. We shall use this group-property frequently. 

We note in particular that  we can assume that  # is essentially distinct from 1 when 

investigating the number of generators of (~. As we remarked earlier, the number of 

generators of (~ is the number of generators of infinite order of lt. 

13. All the argument so far applies equally to the equation y2 : x3_~Dt 6 in 

which the sign of D is changed and leads to the equation 

x+Gt2A : #~2 (15) 

in which # has the same a priori a possible values as for (14). I t  will often be con- 

venient to discuss (14) and (15) simultaneously and then, in numerical work, we 

shall always mean by D, ~ the positive values and make the appropriate changes 

in the formulae when discussing negative D. General theorems will, however, apply 

equally to either positive or negative D. 

1 A numerical  case is D = ~:88 and 2Ix. Then G = 2, D* = l l ,  h = 2 and ~t = II is the  second- 
3 ( 

degree divisor of [2] in R( U 11), which is no t  a principal ideal. Hence there are no solutions wi th  D = -t- 88, 

2Ix [indeed none wi th  D = + 88 at  all]. A similar a rgument  in a quadrat ic  field has  been used by  Mordell 
and independent ly  b y  Marshall  Hall  (both unpublished) .  

2 We require only 111 ~ 6. 

a i. e. so far as the discussion in pa r t  I I  is concerned. We shall use a priori in this  sense t h roughou t  
pa r t  I I I .  
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P a r t  III .  

14. In  this pa r t  we  give a n u m b er  of general theorems covering most  o f  the  

values of D such tha t  IDI < 50 and then  dispose of the rest  individually.  

15. D odd. We examine  (14) modulo  powers of f and H, the  pr ime divisors of 

[2] of the  first  and second degrees respectively.  We note  t h a t  

f = [2, 1-~-6], [ 2 = [4, D - - 6 ] ,  f3 = [8, n - - 6 ] ,  

u = [2, 1--kS-kS2], u 2 = [4, 1--kDSq-52], u 3 =  [8, 1-kDO-k52] .  

We prove first 

T h e o r e m  VIII .  I f  D is odd and  (14) is true then either/~ is a quadratic residue 

o f  4 or 
~ D - -5 ,  2--5,  D - - 2 6  rood u 2 . (16) 

One and only one of x, y, t is even since (x, t) = (y, t) = 1 and we take  the  

possibilities in turn .  

(i) t even. Then x ~ x  3 ~ y 2 ~  1 mod 8 so / ~ 2 = x _ t 2 6 ~  1 mod 4 and /~ 

is a quadra t ic  residue of 4. 

(ii) y even. Then  x ~ x 3 ~ Dt  ~ ~ D mod 4 and s o / ~ 2  = x _ t 2 6  ~ D - - 6  mod 4. 

Bu t  ~ is pr ime to u since x- - t25  is (by lemma 2). Hence  

t~ = (x-- t26)(1/~)  3 ~ (D--6)(1/~) 2 mod u 2 . 

B y  lemma 4, ( l / s )  ~ 1, 6, 1 + 6  mod u so, b y  lemma 5, ( 1 / ~ ) 2 ~  13 , ~2, (1+5)2 

mod u 2 and then  (16) holds. 

(iii) x even. Then  D ~ Dt~ ~ _ y 2 ~ - - 1  mod 8. I f  4/x, then  / ~ 3 =  

x- - t35  ~ --5 ~ (53) 3 mod 4 so/~ is a quadra t ic  residue of 4. If ,  however ,  2]]x then  

/ ~ 2  = x _ t 2 6  ~ 2--5  mod 4 and so (16) holds. 

This concludes the  proof. 

C o r o l l a r y  1. I f  D is odd a n d / ~  is not a quadratic residue of  4 at least one of  

(14) or (15) is insoluble. 

For  if (16) is t rue  the  corresponding congruences in which the  signs of D and 

are s imul taneously  changed cannot  be true.  

In  part icular ,  

C o r o l l a r y  2. I f  D -j~ ~: 1 mod  9 is odd and  cube-free 1 and  i f  h D is odd, non-  

1 I t  is e n o u g h  t h a t  t he re  is no  p r ime  p wi th  pS//D. 



The Ra t iona l  Solutions of t he  D iophan t ine  E q u a t i o n  y 2  ~ X a _ D .  253 

trivial solutions do not exist for both y2 ~ x a • I f  non-trivial solutions do exist for 

one of these equations then the corresponding group 1I has precisely one generator of 

infinite order. 

For  under  the  conditions of corol lary 2 the  only a priori possible value  of # 

essentially dissimilar f rom 1 is # : ~, which is not  a quadra t ic  residue of 4 by  l emma 6. 

Hence  (~ has a t  most  one generator ,  i. e. 11 has at  most  one genera tor  of infinite 

order  ( theorem I I I )  and, by  corollary 1, such a genera tor  exists for  a t  most  one of 

the  two equations.  Final ly,  by  theorem V, the  only  solutions of finite order  for the  D 

under  considerat ion are trivial .  

We now consider some numer ica l  examples.  

Non-t r iv ia l  solutions ac tua l ly  exist  (table 1) for the  following values of D for 

which h D is odd (table 2) and which sat isfy the  other  conditions of corollary 2: 

D ~-- - -3 ,  --5,  ~-7, - -9 ,  ~ 1 3 ,  -~21, ~ 2 3 ,  ~ 2 5 ,  ~-29, --31,  --33,  --41,  -t-45, ~ 4 9 .  

Hence  1I has one genera tor  of infinite order  for these D whereas there  are no non- 

tr ivial  solutions at  all for 
D ~ ~ 3 ,  -k5, - -7 ,  + 9 ,  etc. 

Consider now D -[- • 1 mod 9 and cube-free, bu t  with h D even. Then  the only 

possible values of/~ essentially different  f rom 1 are /~ ~-- ~, ~j, ~l~j. Suppose fu r the r  

t ha t  tDI < 50. Then  (table 2) the  group of ideal-classes is cyclic, so essential ly on ly  

one value  of ~j : ~ exists~ and ~ is a quadra t ic  residue of 4 b u t  ~ and ~ are not .  

As the  values of/~ for which (14) is soluble form the  mult ipl icat ive  group (~, the  

group U has no, one or two generators  of infinite order  according as none,  o r  one 

or all th ree  possible values of # essentially dissimilar f rom 1 do in fact  have  solutions 

in (14). 

In  par t icular ,  consider D ~- q - l l .  Ne i the r  of the  solutions (x, y, t) --~ (3, 4, 1) 

or (15, 58, 1) leads to a value of # which is a quadra t ic  residue of 4 (as in the proof 

of theorem VI I I )  nor  do they  belong to  the  same # since the  rat io  

(3-~)/(15-~) 

is no t  a perfect  square 1. Hence  solutions exist  bo th  for /~ ~ ~/ and for # ~ V~, so 

also for ~ ---- ~ by  the  g roup-proper ty  of #. The  corresponding group 1111 has thus  

two generators  of infinite order.  By  corol lary 1 there  are then  no solutions for D :  --  11 

ei ther  with /~ ~--V or # ~--V~, so when D - ~  --11 the  only  possible value for /~ 

essential ly dissimilar f rom 1 is /~ ~ ~ i. e. the  group 11-11 can have  at  most  one 

1 I t  is not a quadratic residue rood [5, (~--1], the first-degree prime divisor of 5. 
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genera to r  of infinite order.  I t  h a s  precisely one such genera to r  since non- t r iv ia l  

solut ions do in fac t  exist.  H o w e v e r / ~  = 1 or/~ = ~+ is a quadra t i c  residue of 4 for  

all these solut ions and  hence so is I x~-t26. Since - -11 : :  - -1  rood 8, this  implies 2/t, 

as in the  proof  of t heo rem  V I I I .  I n  pa r t i cu la r  X = x/t 2 and  Y = y/t  3 canno t  be 

integers. The solut ion given in tab le  1 for D ~- - - l l ,  n a m e l y  (x, y, t) = ( - -7 ,  19, 2) 

corresponds  to  ~ x~-t"5 = ~+~2 and  not  to x~-t25 = ~2 since - -7~-46  =~ 5 m o d  t a bu t  

a s ~ I m o d  t 3 b y  l e m m a  5. 

Similar  a r g u m e n t s  a p p l y  to D = ~ 3 9 ,  --+43, -+47.  The  only  modif ica t ion  

necessary  when  D = -+ 15 is t h a t  a l though  we can p rove  tha t ,  when  D = ~-15, 

x-- t2b is a quadra t ic  residue of 4 this  does not imp ly  2/t since 15 _= --  1 m o d  8 and  

we m a y  have  4/x as in the  case (iii) of the  proof  of the  theorem.  This  in fac t  does 

occur. 

We leave for  la ter  considera t ion the  cases D _= -+ 1 m o d  9. 

16. We  m a y  s t r eng then  theo rem V I I I  somewha t  b y  considering congruences  

to powers  of t as well as to powers  of u. We  p rove  the  s t r eng thened  fo rm a l though  

it  is not  required  to deal wi th  ID] < 50. We require  first  

L e m m a  8. I f  D is odd and (14) is true but/~ is not a quadratic residue of 4 then 

either 2/y or 2//x, the second case occurring only when D ~ - -  1 mod, 8. Further/~ ~-~ 3 

m o d  ~2 and ~ ~ 7 or ~ 3 mod  ia, in the f irst  case according as 2//y or 4/y, and i n  the 

second case according as x ~ - -2  or x --= -+ 2 mod  8. 

The  proof  of the  f irst  sentence  has  a l ready  been given in the  proof  of t heo rem 

V I I I .  We reconsider  cases (ii) and  (iii) of t h a t  proof.  

(ii) 2/y. Suppose  2"//y. Then  t~"//(x--t25) since y 2 :  N o r m  (x--t2~) and 

u/~(x--t25) b y  l e m m a  2. Hence  

y2 = xa Dt6 = / ~ 3 ~ 6 ~ _ 3 / ~ x 4 t 2 ~ . . ~ 3 / ~ X 2 t 4 ~ 2  

on subs t i tu t ing  for x in t e rms  of /~ and  ~ and  so 

y )2 3~2/~ /~2~4 
= - - ) 2 T "  ( ! 7 )  

I f  a > 1 the  second and  th i rd  t e rms  on the  r ight  are divisible b y  t 4 and  the  first,  

b y  l e m m a  5, is congruen t  to  1 m o d  t 3. Hence  3/~ ~ 1, # _~ 3 m o d  t 3. I f  however  

i ~ ~ ~ 1 1  in  a c c o r d a n c e  w i t h  t h e  c o n v e n t i o n  i n t r o d u c e d  a t  t h e  e n d  o f  p a r t  I I .  
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a = 1, t he  t h i rd  t e r m  is still divisible b y  t 4 b u t  t he  second  on ly  b y  t 2 and  so ~ is 

c o n g r u e n t  t o  4 rood i a. H e n c e  3/, ~ 5, /~ ~ 7 rood  t a. 

(ii i)  2/x  so D ~ - - 1  rood 8. H e r e  ~ is p r ime  to  t s ince y is to  2 a n d  so 

# ~- t ta 2 = x - - t26  =~ x - - 6  ~_ x + l  m o d  t a . 

Since we h a v e  a l r e a dy  shown  t h a t  2 2 / x  i f : / ,  is n o t  a q u a d r a t i c  res idue  of 4 th is  

conc ludes  t h e  p roof  of the  l emma .  

I f  # is n o t  a q u a d r a t i c  res idue of 4 we m a y  n o w  wr i te  

# ~ 3-~4k m o d  t a , 

where  k ~ 0 or  1, a n d  p roceed  to  p r o v e  

T h e o r e m  IX .  Theorem V I I I  r ema ins  true i f  (16) is replaced by 

# ~ D - - 6 ~ 4 k + 4 / ( l + 6 ) ,  - - 2 D - - 6 ~ - 4 k - ~ 4 1 6 ,  2 - - D - - 2 6 + 4 k 6 + 4 1  m o d u  3 , (18) 

where k has j u s t  been def ined and  1 m a y  take both values 0 or 1. 

I t  is eas i ly  ver i f ied  t h a t  on ly  ha l f  t he  n u m b e r s  wh ich  are  q u a d r a t i c  res idues  o f  

u 2 are  q u a d r a t i c  res idues  of u a. T h u s  if fl ~ 1 rood u t h e n  fl~ ~_ 1, 5 m o d  u a b u t  

1-{-4~ a n d  5 + 46 are  n o t  q u a d r a t i c  r e s idues  of  u ~. To  p r o v e  t h e o r e m  I X  we need  n o w  

o n l y  recons ider  cases (ii) a n d  (iii) of t h e o r e m  V I I I  a n d  use l e m m a  8. 

(ii) 2/y. Here  

x ~ x a ~- y 2 + D t ~  ~- 4 k N D  m o d  8 , 
b y  l e m m a  8. H e n c e  

# = (x--t26)(1/o~) 2 ~_ (DN4k- -6 ) (1 /o~)  2 m o d  u a 

a n d  so (18) holds .  

(iii) 2/x. This  m a y  be s imi la r ly  dea l t  wi th .  

17. 2/ /D.  W e  cons ider  cong ruences  to  powers  of t where  

t - -  [2 ,  6] ,  t ~ = [2 ,  65] ,  t 3 = [2]  

T h e o r e m  X.  I f  2 / /D and (14) is soluble then either # is a quadratic residue of  4 or 

/~ ~ 1 •  , 1 + D - - 6 ,  l - - D + 6  rood  t 7 ----- 4[2, 6 ] .  (19) 

I f  e i ther  x or  y were  even  t h e n  so w o u l d  t he  o the r  be, a n d  t h e n  Dt ~ -~ x a - - y  ~ ~ 0 

rood 4 i. e. 2/t c o n t r a r y  to  (x, t) = (y, t) ~ 1. H e n c e  2 ~xy.  T h e r e  are  two  cases (i) 

t even  a n d  (ii) t odd.  

1 If  t f  fll and  tf/32 t hen /31~ /32  raod t since N o r m  t = 2; s imilar ly  if t'~11/31 and  ts/I/32 then /31~/3 . ,  
rood t s+l. 
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(i) t even. Here  x ~ x 3 _= y~ ~ 1 m o d  4, so / z~  2 = x--t2~ ~ 1 m o d  4 and  ~u is 

a quadra t i c  residue of 4. 

(ii) t odd. T h e n x ~ x  a - ~ y 2 + D t 6 : ~  I + D  rood 8 so 

I~o~ = x-- t25 ::_ I + D - - ~  m o d  [8] ---- fg.  

B u t  y is odd,  so ~ is p r ime  to f and  t hen  ( l / a )  ~ 1, 1 + ~ ,  1+53  , 1 + ~ + 5 2  m o d  

[2]---- t  3. Hence ,  b y  l e m m a  4, 

(1/~) 2 ~ 1, 1 + 2 ~ + ~  2, 1 + 2 ~ + 2 5 2 ,  5 + 3 5  ~ m o d  t 7 , (20) 

and  /z ---- (x--t25)(1/oO 2 satisfies (19). 

This  concludes the  proof .  W e  no te  t h a t  the  r ight  h a n d  side of (19) r emains  

una l t e red  when  - - D ,  - -~  are  subs t i t u t ed  for  + D ,  + ~  respec t ive ly .  

L e t  us now consider some numer ica l  examples .  I f  D ~1- • 1 m o d  9 is cube-free 

and  if h D is odd  the  only  a priori possible va lue  of / ,  essent ia l ly  d i f ferent  f r o m / ,  ---- 1 

is/~ ---- ~. Thus  ~ has  a t  mos t  one gene ra to r  and  U a t  mos t  one gene ra to r  of infini te 

order.  Since non- t r iv ia l  s o l u t i o n s  (i. e. solut ions of infini te order)  do exis t  for  

D ---- +-2, •  •  •  •  •  the  cor responding  group  lI has  precisely one 

inf ini te  genera tor .  T h e o r e m  X,  using tab le  2, shows t h a t  /, ---- ~ is impossible  for  

D ---- + 6 ,  •  •  +-42. Hence  for  these  D there  are  no non- t r iv ia l  solutions.  

Tab le  2 shows t h a t  there  are  no even  values  of D wi th  even  c lass -numbers  in 

the  range  ID[ < 50 unde r  considera t ion.  If ,  however ,  a n y  even  values  of D exist  

wi th  even c l a s s -number  t h e y  could be t r e a t ed  as when  D is odd. 

We consider  la ter  the  cases D ~ +- 1 m o d  9. 

18. 2~//D. Wri te  
D = 4 J ,  2 ~ J .  

We consider  congruences  to  powers  of t where  

f = [2,  �89 t ~ = [2, 6],  t 3 = [ 2 ] .  

T h e o r e m  X I .  I f  2211D and (14) is soluble then either tt is a quadratic residue 

of 4 or (I) i f  J ~ - -1  m o d  4, 

/~ := 5 - -5 ,  1--25,  1-}-5 2, 1 + 5 - - 5 2  m o d  t 7 , (21) 

or ( I I )  i f  T ~ + 1  mod  4, 

3 2 1 + 5 + � 8 9  1 + 5 + ~ 5 2  m o d  t7 (22)  /~ ~ - - 1 + � 8 9  2, 3 + ~ 5  , 

As (x, t) = (y, t) = 1 it  is easy  to  see t h a t  one of the  th ree  cases holds (i) 

2~xy, 2/t (ii) 27~xyt (iii) 2/x, 2//y, 2ft .  
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(i) 2~xy, 2It. This is analogous to case (i) in the previous two sections: We 

have x :~ x a ~ y2 ~ 1 mod  8 and so/~a2 __ x _ t 2 6  ~ 1 rood 4 i. e./~ is a quadrat ic  

residue of 4. 

(ii) 2r Here x ~ x  s = y 2 + D t  G ~  l + D ~ - ~ 5  rood 8 and so 

tto~ 2 = x--t26 ~ 5- -6  rood 8 . 

But  ~ is prime to t since y is prime, to 2 and so 

(I /a)  ~_ 1, 1-{--6, 1+�89 2, 1-{-6-1--�89 ~ mod  t a = [2] .  

Hence, by  lemma 5, 

(1/~) 2 ~ 1, 1 + 2 6 + 6 2  , 1+J6=l-62, 5 + 3 J 6  mod  t 7 . (23) 

Thus  if J ~ g= 1 mod  4, # is a quadrat ic  residue of t 7 and afortiori of 4 and if J ~ --  1 

mod 4 one of the congruences (21) holds. 

(iii) 2/x, 2//y, 27~t. Write  x = 2x', y = 2y' so t h a t  2~y' and 

2x 'a ~-- y'2-+-Jt6 ~ l + J  rood 8 . 

Hence J--I:  3 mod  8 and 

4/x if J ~ 7  mod  8 .  
(2~) 

x - ~  2 x ' ~  l + J  mod  8 if J ~  1 mod 4 .  

Let  a -~ �89 ' so tha t  a '  is pr ime to t and 

/~ '~  = (2/6~)2(x--t26) ~ - - J + x 5 2 / 4  mod t 7 . (25) 

We now consider the two cases J ~ 7 rood 8 and J ~ 1 rood 4 separately.  

(iiil) J ~ 7 rood 8. Then  (24) implies either t ha t  the r ight  hand  side of (25) 

is congruent  to 1 rood t 7 so tha t  # is a quadrat ic  residue of ff and a fo r t io r i  of 4 

or t h a t  it is congruent  to 1 + 6  ~ rood ff and then (2I) holds. 

(iii2) J ~ 1 rood 4. By  (24) the right hand  side of (25) is congruent  to 

- - J + ( l + J ) 6 2 / 4  rood t 7. Since (1/~') is pr ime to t, (1/a') 2 satisfies one of the con- 

gruences (23) and hence (22) holds. 

This concludes the proof of the theorem. 

C o r o l l a r y  1. I f  22//D and/~ is not a quadratic residue of 4 at least one of (14) or 

(15) is insoluble. 

For  (21) is incompat ible  with the set of congruences  obta ined from (22) by  

writing --6 for 6. 

I n  part icular ,  precisely as corollary 2 of theorem V I I I  is derived f rom corollary 1, 

we have here also 

17. Acta mathematiza, 82. Impr im6 le 9 mars 1950. 
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C o r o l l a r y  2. I f  2~//D, D =i~ • 1 rood 9 is cube-free and i f  h D i8 odd, non-trivial 

solutions do not exist for both y2 = xa =~ Dt 6. I f  non-trivial solutions do exist for one of 

these equations then the corresponding group U has precisely one generator of  infinite 

order. 

We now consider some  numer ica l  examples .  

Non- t r iv ia l  solut ions ac tua l ly  exis t  for  the  values  D = + 4 ,  - -12,  + 2 0  and  - -36  

which sa t i s fy  the  condit ions of corol lary  2. Hence  there  is precisely one infinite 

genera to r  for each of the  corresponding groups  1I. Moreover,  b y  the  same corollary,  

there  are no non- t r iv ia l  solut ions for D - ~  - -4 ,  + 1 2 , - - 2 0 ,  + 3 6 .  

We  leave for la ter  considera t ion the  cases D ~ ~_ 1 rood 9. 

19. 2a//D. As (x, t) = (y, t) = 1 it  is no t  difficult  to see t h a t  one of the  three  

cases holds:  (i) 2 txy  , 2/t (ii) 2 fxy t  (iii) 2~Ix, 2~/y, 2tt.  Of these (iii) gives rise to 

the  new possibi l i ty  t h a t  [x--t~6] is no t  the  square  of an  ideal. 

Since we are excluding perfect  cubes a t  present ,  the  only  values in the  range  

IDl ~ 50 under  considerat ion are D = ~:24, 2=40. F o r  all these D = + 2 a D  * where  

D* is odd and  cube-free and  hD. ~-= 1. As before let A a = D*.  We  consider congruences 

to  powers  of t and  u, the  f i rs t  and  second degree p r ime  divisors  respec t ive ly  of 2, 

where  

t = [2,  I + A ] ,  t 2 -= [4,  D * - - A ] ,  t ~ =  [S, D * - - A ] ,  

tt = [2, I + A + A 2 ] ,  n z ----- [4, I + D * A + A 2 ] ,  u ~ = [8, I + D * A + A Z ] .  

B y  the  discussion in w 12 the  only a priori possible values  of/~ are /~ = 1, ~ in 

eases (i) and  (ii) and /~  = 2, 2 9 in case (iii) where 2 > 0 and  [2] = u. The  g roup  U 

has  no, has one or has  two genera tors  of inf ini te  order  according as no, one or all 

three  va lue  of/~ essent ial ly  dis t inct  f rom 1 can ac tua l ly  occur  in (14). Case (i) is 

comple te ly  analogous  to ease (i) previously .  I t  implies t ha t /~  is a quadra t i c  residue 

of 4 i. e. t h a t  # = 1 and  so i t  m a y  be neglected in the  res t  of this  w 

We now t r ea t  D = + 2 4 ,  D = - -24 ,  D = ~=40 separa te ly .  We  shall show t h a t  

the  corresponding group  1I has  no, two and  one genera to r  of infinite order  respect ively .  

D~--  + 2 4 ,  A 3 = D * =  3. (ii) 27~xyt. Here  x ~ x  3 ~ y ~ - ~  1 rood 8 and  so 

i ~  2 -= x - -  2t2A 

1--2A m o d  8 

3 mo~t  t 3 . 

But  ~ is p r ime  to t, since y is p r ime  to 2, and  so ~2 ~ 1 rood t a ( l emma 5). Hence  
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# ~ 3 mod  ia. This is clearly impossible for # ~ 1 and it is also false for the only 

other  possibili ty # ~ ~ -= A2--2  ~ - -1  mod  t a. 

(iii) 2/ /x ,  22/y, 2 f t .  Let  x -~ 2x'  where x'.is odd and let~l  denote either 1 or~. The 

only a priori  possibility for # is ~, 2 where ~ > 0 and [4] -~ u, say ), ~ 2(A --  1) -1. Then  

~l~s - -  x ' - - t s z l  ~ x ' - - A  mod 4 . 
A - - 1  

Now ~ is prime to u since x ' - - tSA  is by  lemma 2 and so ( l / s )  ~ 1, I + A ,  A rood u 

by  lemma 4. Hence ( I / a ) s _  ~ l, - - A , - - I + A  mod u s' by  lemma 5, and then  

~1 ~ ( x ' - - A ) ( A - - I ) ( 1 / ~ )  2 mod u s 

1 - - x ' + x ' A ,  - - l + ( 1 - - x ' ) A ,  x ' - - A  mod u s . 

Since x' is odd this congruence is impossible bo th  for ~1 ~ I and for V~ ~ ~ ~ A s _  2 

I + A  mod u s. 

Hence w h e n D  ~ + 2 4  none of the  a priori  possible values of # essentially 

different f rom 1 actual ly  can occur, i .e .  1I has no generators  of infinite order. 

D - ~ - - 2 4 ,  A a D * = - 3 .  (if) 2~xyt .  'Solut ions  of this t ype  do exist with 

# = 7- An example is 
la - -52 ----- - -24  

since 1 + 2 A  ~ / ~ s  is no t  a perfect  squareL 

(iii) 2/ /x ,  2S/y, 2 f t .  Solutions do exist of this t ype  i. e. w i t h / t  : 2 ~ / ( A - - 1 )  

where ~ ~ 1 or y. An example is 

( - -2 ) a - -4  s -~ - -24  . 

Hence for D ~ - -24  solutions exist for at  least two, and so for all three a priori  

possible values of # essentially dist inct  f rom 1 i. e. 1I hs two generators  of infinite 

order. 

D ~ i 4 0 ,  A ~ ~- D* =- 5. (if) 2$xyt .  Here x ~ x a ~ yS ~ 1 mod  8. The only 

a pr ior i  possible value of # essentially different f rom 1 (which we neglect) is # ~ ~. 

I f  this actual ly  occurred we should have  

~7~ ~ =- x ~ 2tSA ~ l + 2 A  mod  4 ,  

and  so 
~ l + 2 A ,  2 - -A,  1--A mod  u s 

by  a familiar  argument .  This is a contradic t ion since ~ : =  1 - -dA+2z l~  =~ - - 1 - - A  

mod  u s. 

I 1 -}- 2A ~ --  1 m o d  t a w h e r e a s  a per fec t  squa re  is c o n g r u b n t  to + 1 b y  l e m m a  6. 
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(iii) 2~Ix, 22/y, 2 / t .  Solutions do exist of this type,  i .e .  with /~ : ~12 ,  for 

bo th  D : § (see table 1). B y  the group p roper ty  of / t  and since/~ = ~ was shown 

not  to occur, solutions with/~ = 2 and tt : ~]2 cannot  both  occur for the same value 

of D. 

Hence when D = -+ 40 precisely one of the a priori possible values of/~ essentially 

different f rom 1 ac tual ly  occurs i .e .  lI has one generator  of infinite order. 

20. 24//D. Since (x, t) : (y, t) : 1 it is not  difficult to see tha t  one of the three 

cases holds (i) 2 fxy ,  2It (ii) 27~xyt (iii) 22/x, 22//y, 27~t. 

The only values of D to discuss are D : -+ 16, -+48. Since for these D zl~ -+ 1 

rood 9, G has no factors which are not  a l ready factors of D* : E F  2 and hD, = l ,  

the discussion of w 12 shows tha t  the only a priori possible value o f / t  essentially 

dissimilar to 1 is/~ : ~. There is thus one or no generator  of infinite order according 

as solutions of infinite order (i. e. non-tr ivial  solutions) do or do not  occur. 

D - -  -+48. Non-tr ivia l  solutions occur for both  these values of D (table 1). 

Hence  for bo th  D : -+ 48 the group 1I has one infinite generator.  

D - -  +16 .  A n : D* = 2. We shall show tha t  no non-tr ivial  solutions exist. 

I t  is enough to show tha t  none exist for wh ich / t  = ~. We consider congruences to 

powers of f where 

f = [2, A], t ~ =  [2, AS], t ~ = [2] .  

As before, this implies t ha t /~  is a quadrat ic  residue of 4, i. e. (i) 2 f xy ,  2It. 

t ha t  /~ - -  1. 

(ii) 2,r Here x ~ : x  3 ~ y 2 ~  1 mod 8 and so i f # = ~  we should have 

~o~ ~ = x •  2 :~ 1-+2A mod 8 .  

Hence by  a familiar a rgument  

~] ~ l + 2 A ,  5 + A  "~, l+2A-4-3A 2, 1-4-2A 2 mod t 7 . 

This is a contradict ion since ~ = - - I + A .  

(iii) 22/x, 22//y, 2~t. Write  x = 22x ', y = 2~y ' so y '  is odd. Then 

4x'3 : y ' 2 - + t n .  

The upper  sign is impossible rood 8 and if the lower is to hold we have 2/x'. Fur ther ,  

if /~ - -  0 we have (taking only the lower sign) 

~o~ 2 = x +  2t2A = 4x' + 2t2A : (A2)2(t2+x'A2.) . 

I f  4Ix', t 2+x 'A  2 ~ 1 mod 4 and so ~ would be a quadrat ic  residue of 4, which is 



The Rational Solutions of the Diophantine Equation y2 = X a _ D .  261 

unt rue .  I f  2//x '  we also have  a cont rad ic t ion  since then  t e ~ x ' A  2 ~ 1 + 2 A  e m o d  

t ~ = 4[2, A] and  so 

~ l + 2 A  2, l ~ 2 A ~ 3 A ~ ,  5 ~ A  2, l + 2 A  m o d  i f ,  

whereas  r 1 ~ - - I ~ A  . 

This  concludes the  proof  t h a t  there  are no non- t r iv ia l  solutions when  D ~ ~ 1'6. 

21. 25//D. Since (x, t) ~ (y, t ) =  1 it  is easy  to  see t h a t  e i ther  (i) 2~xy, 2It 

or (ii) 27~xyt. 

The  only  values  of D to discuss arc D ~ =E32. He re  A 3 ~ D* ~ 4, hD, ~ 1. 

The  only a priori  possible va lue  of # o ther  t h a n  1 is # ~ ~ /and  so 1I has  one or no 

genera tors  of infinite order according as solutions of infinite order  (i. e. non- t r iv ia l  

solutions) do or do not  exist, We shall show t h a t  no non- t r iv ia l  solutions exist .  I t  

is enough to show t h a t  none exis t  wi th  /z -~ ~. 

W e  consider congruences to powers  of t where  

t = [2, ~A~], t 3 = [2, ~ ] ,  t ~ = [ 2 ] .  

(i) 2~xy,  2It. As before this implies t h a t  # is a quadra t i c  residue of 4, i. e./~ ~ 1. 

(ii) 2r  Here  x ~ x  ~ y 2 _ ~  1 m o d  8 and  so when  # = ~  we have  

~ z  _~ x:j:2t2A ~_ 14-2A rood 8 

1--2A m o d  t 7 . 
Hence  

~ 1  2A, I + A  2, 5 + A ,  1 A - - A  2 m o d  U ,  

b y  a known  a rgumen t .  This  cont radic ts  V ~ l~- �89 

22. D ~ =E 1 rood 9, D cube-free, h D odd. All the  remain ing  values  of D in the  

range  D 1 __< 50 which are no t  perfec t  cubes fall in this  ca tegory .  W e  shall  consider 

congruences to  powers  of ~ and  ~ where 

~ 2 ~ _  [ 3 ] ,  ~ - -  [3, D 6 ] .  

B y  the  a r g u m e n t  of w 12 the  only a priori possible values  of # are 

# - -  1, V, ~t, ~ ,  
where  Z is def ined by  

The  values  2, 2, t occur  if and  only  if 3/y. The  group U has  no, or one, or two genera tors  

of infinite order  according as no, or one, or all th ree  of the  values  of # o ther  t h a n  1 

ac tua l ly  occur. 
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Suppose 3/y so t h a t  # = ~ , ) t  where  ~,----- 1 or ~. Then  3f t ,  and  so x ~ x 3 =-- Dt  6 ~ D 

rood 3. Hence  
~ , ~  = x-- t26 ~ D - - J  z!_: 0 m o d  ~25, 

0 rood ~$. 

Since r - ~  and  consequent ly  ~2 ~ 1 m o d  ~, we deduce 

~, ~ (D--6)~  - '  m o d  ~.  (26) 

We now p rove  two general  t heo rems  according as ~] ~ ~ 1 m o d  v. 

T h e o r e m  X I I .  The group 11 has at most one infinite generator i f  (I) D ~ ~: 1 

m o d  9, ( I I )  D is cube-free ( I I I )  h D is odd (IV)~ ~ - -1  rood r. 

Fo r  if ~ ~ - -1  m o d  r the  congruence (26) canno t  be t rue  bo th  wi th  ~ -= 1 

and  wi th  ~ = ~l i. e. not  all three  values  of /~  o ther  t h a n  1 ac tua l ly  occur. 

T h e o r e m  X I I I .  A t  least one of  the two equations y2 _ xS ~ Dt  ~ has no solutions 

with 3/y i f  (I) D ~ ~: 1 m o d  9 ( I I )  D is cube-free ( I I I )  h D is odd (IV) ~7 ~ + 1 m o d  ~. 

F o r  if (26) is t rue  either with ~, -=-- 1 or with ~, = z] the  corresponding congruence 

in which the  signs of D and  ~ are s imul taneous ly  changed is false both for  ~ = 1 and 

for  ~1 = ~. 

We now consider some numer ica l  examples .  

The  condit ions of t heo rem X I I  are satisfied for  the  following values  of D, 

D =- ~ 1 9 ,  J:28,  ~ 3 5 ,  ~ 4 4 .  

Since non- t r iv ia l  solut ions exis t  for these D (table l)  the  corresponding g roup  U has  

precise ly  one infinite genera tor .  

The re  a r e  solutions when  D----- - -17  bo th  for  /~ = ~ and  for  /x-= ~ 2  since 

( - -  1) 3 _  42 _ ( _ 2) 3 _  3 ~ ~ - -  17. Hence  the  g roup  1I_17 has  two infinite genera tors .  

Fo r  D ---- + 17 there  are consequen t ly  no solutions e i ther  wi th/~ ----- ~ ( theorem V I I I  

corol lary  1) or wi th  # ---- Vl~ ( theorem X I I I ) .  Hence  there  are no non- t r iv ia l  solut ions 

a t  all for D---- +4-17. Similar ly  for D---- J=37. 

W h e n  D ~ ~=10 there  are no solut ions wi th /~  ---- ~ b y  theo rem X. As a non-  

t r iv ia l  solution ( - -1  ) 3  32 _ _ 10 does exis t  for D ---- - - l 0  the  corresponding group  

1110 has  precisely one infini te genera tor .  B y  theo rem X I I I  there  are consequen t ly  

no solut ions wi th  3/y for  ~D ---- ~ l0 i. e. none wi th  # ---- ~1~. Since there  are also 

none wi th /~  ~- ~ there  are none  a t  all. 

]By a precisely s imilar  a r g u m e n t  the  g roup  1146 has  no and  the  g roup  114~ 
precisely one infinite genera tor .  We no te  fu r the r  t h a t  the  solut ion for  D -~ - -46 ,  
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( - -7)8--512 ~_ --46.26 

must  correspond to a # other t han  1 since 3/y, and hence to the  only other occurring 

value of ,u. Consequently t h i s  value of ,u is also a quadrat ic  residue of 4, i .e.  # is a 

quadrat ic  residue of 4 for all solutions wi th  D - ~  --46. This implies t ha t  2It and 

hence X -= x/t  2, Y ~ y / t  3 cannot  be integers (ef. w 15). 

Final ly  D -- -}-26 has a group 1I with two generators. Hence D ~ --26 can 

have a group 1I wi th  at  most  one generator, by  theorem X I I I  and so precisely one, 

as non-trivial  solutions do exist. 

23. D = G 8. We discuss now the case when D is a perfect cube. By  the remarks 

at  the beginning of par t  I I  we m a y  assume 

G square-free,  3/~G. 

The roots ~1, 82, ~a of ~8--D ~ 0 are G, 5G, 52G where 5 is a complex cube root of 

uni ty .  Since ~ ,  (~2, 53 are not  all conjugate we must  use the " t r ip le ts"  in t roduced in 

w 5 to define the group (~. We recollect t h a t  the set of triplets ~ (x--t2(~i} form the  

mult ipl icat ive group 6J when squared fac tors  are ignored. We shall first prove 

L e m m a  9. The set of  triplets {x--t2~j} corresponding to solutions with 3~y 

form a subgroup G ~ of ~ with one less generator. 

We note t ha t  R(~I) = R(1), R(52) = R(Sa) = R(Q) and  t h a t  (l--Q) is a prime 

divisor of 3 in R(5 ) satisfying 
( 1 - 5 )  2 = - 3  5 . 

Write  Oj ~- x--t2(~j so t ha t  

01 -~ x--Gt2,  ' 02 = 93 -~ x - - s G t  2 , 

where the  bar denotes the complex conjugate.  Now it would follow from 3./02 tha t  

3Ix, 3/Gt 2 contrary  to (x, t) ~ 1 and 3~G. Hence (1--5)2202 and it is easy to verify 

t ha t  (1-5)202 or (~-5)//02 according as a/y or a/y. Clearly the set of {Oj} for 

which (1--5)f0 ~ form a subgroup (~o of (~ which either coincides with (~ or is of 

index 2, i. e. the set of {Oj} corresponding to solutions with 32y does this. Fu r the r  

(~0 cannot  coincide with ~ since there is always the trivial  solution (x, y, t) =- (G, O, 1) 

which does not  belong to G ~ Since all the elements of (~ are of order 2 it  follows 

tha t  (~0 has one fewer generator then  (~, which proves the lemma. 

1 el. w 8. 
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Suppose now tha t  3/~y so tha t  all the Oj are pr ime to 3 (and non-zero). We shall 

find a bounded  set of t r iplets  {/tj} ---- {/~1,/~2, ~2) such tha t  

0 ~ = / ~ a  2, a E R ( 1 ) ;  02----/~2x -+, ~ER(~)  

always holds for one of the set, and indeed with /q,/~2, a, ~ all integers.  Since 

0 1 ~ 1 - ~ 0 2 - ~ 0 2 0 3  : 0 

the  common fac tor  of an.y two of the Oj must  also divide the  third.  This common 

fac tor  mus t  also divide 02--01 : (1--o)Gt 2 and 02--~01 : (1--Q)x and so since 

(x, t) = 1 and the  Oj are prime to 3 : -  --~2(1--~))2 we have 

(01, 02, 03) = (x, G) = K > 0 (say) .  

Wri te  0j : K ~ j  where the ~vj are co-prime in pairs. Now y2 :_ 010203 : K3~vl~v3 

and K,  being a divisor of G, is square-free.  Hence  y : K2b, where b E R(1) is an 

integer  and 

~ 1 ~ 2 ~ 2  = ~/71~92q73 = Kb2"  

Since K > 0 and the ~ j  a r e  co-prime in pairs it  follows tha t  there  are integers 

H > 0, H E R(1) and v E R(ff) such tha t  

q~l -~ Ha2, a E  R(1); ~v 2 ~- ~ --  v~ 2, ~ E R(C); K ~- Hv~ - H N  ( say) ,  

i . e .  
01 : K H a  2, 02 ----- Oa = K v ~ 2 .  

We m a y  therefore  pu t  
{/~j} ---- {,ul, ,u2,/~a} : { K H ,  Kv,  K ~ } .  (27) 

Fu r the r ,  by  el iminating x between 01 and 02 we obta in  

i .  e .  

where 

K v a ' 2 - - K H a 2 =  (1--e)Gt  2 

Hae- j - (1- -~)J t  2 ~- vo~ 2, t :4: O, a # 0 , 

G = J K  ~- H J N  , N ~- r~ , H > O. 

(28) 

(29) 

Conversely a solution of (28) gives a solution of the original equa t ion  y2 _~ x ~ _ G S t  8 

with 3/~y. Since the groups @0 or (~ involve tr iplets  t hey  are difficult  to handle.  

We now show tha t  we m a y  use a group no t  involving triplets.  

T h e o r e m  XIV.  The  values o f  v /H  for  which (28) is soluble f o r m  a mul t ip l ieat ive  

group ~ i f  squared factors are ignored with the same number  o f  generators as there are 

independent  generators of  in f in i te  order in  1I. 
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Since the  set of t r ip le ts  {~gl' ~2' /~3} of the  fo rm which ac tua l ly  occur  wi th  solut ions 

of y2 = x a G 3 t  6 fo rm the  mul t ip l ica t ive  group  650 when  squared  fac tors  are ignored 

the  values  of l~2//~1 ~ v /H do fo rm a mul t ip l ica t ive  group ~ when  squared  fac tors  are 

ignored. N o w  (v, H)  = 1 since v~H --  N H  is a divisor of G, which is square  free. 

Thus,  since H > 0, the  ra t io  v/H dete rmines  v and  H uniquely  i. e. b y  (27) and  (29) 

it  de te rmines  {#j} uniquely.  Hence  ~ is i somorphic  to 650 and,  in par t icular ,  the  two  

groups  have  the  same n u m b e r  of generators ,  i. e. one fewer t h a n  65 b y  l e m m a  9. 

The  t heo rem  now is an  immed ia t e  consequence of t heo rem I I I  since 63 - -D  - -  0 has 

jus t  one ra t iona l  root .  

C o r o l l a r y  1. I f  (28) is insoluble except, possibly, when v -~ H ~ 1, the group l i  

has no generators of infinite order. 

For  t hen  ~ has  no generators .  In  par t icular ,  by  t heo rem V, 

C o r o l l a r y  2. I f  D 4= --1  and (28) is insoluble except, possibly, when v ~ H ~- 1 

there are no non-trivial solutions of y2 ~ x3 G3t% 

We now p rove  a useful l emma.  

L e m m a  10. I f  v -= ~ 1  and (28) has solutions then vH : N o r m  Z where Z E R O / 3  ). 

F o r  suppose c~ ~-- e+f~  where e and  f are ra t iona l  integers.  B y  equa t ing  coef- 

ficients of 1 and  ~ in (28) and  e l iminat ing  t we ob ta in  

~,Ha 2 .~ e2 + 2ef-- f~ = (e-Ff)~--2f f  

which proves  the  l emma.  

Since we are assuming 37~G the  only values  of D ~- G 3 in the  range  [D I < 50 

are D --~ + 1 and  D = :~ 8. T h e y  are bo th  covered b y  the  general  t heo rem due to  

Nagel l  [29]. 

T h e o r e m  XV. I f  every pr ime divisor p > 0 of  G is of the form 12n~-5, the 

equations y2=_ xa •  6 have no solutions of inf ini te  order (and so no non-trivial 

solutions except when D = --1) .  

F o r  N o r m  v -~ v~ = N ~ 1 is impossible  in R(~) if the  fac tors  of N are to be  

of the  requi red  type .  Hence  v = + 1 ,  ~ ,  -~-e 2 and  b y  absorb ing  fac tors  ~ = (~2)2 

or ~2 in ~2 we m a y  assume  t h a t  ~ = + 1 .  Hence,  b y  l e m m a  10, v H - ~  N o r m  ~, 

Z E R(~/3) and  this  again  implies vH = 1, i. e. v = H = 1 (since H > 0). T h e o r e m  X V  

now follows f rom corol lary 1 to  t heo rem X I V .  
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25. Conclusion. We have established a number of general theorems and: also 

given the number of generators.of infinite order of It for all values of D with IDI < 50. 

We end with three general remarks. 

I. I t  has not been shown that  the solutions listed in table 1 together with the 

solutions of finite order form a basis of the group 1I. All that  has been shown is that  

the number of independent generators of infinite order is the same as the number 

of solutions given in table 1. I t  is, however, quite straightforward but rather laborious 

to find a basis from the data given. Indeed the Mordell-Weil proof of theorems I 

and I I  depends essentially on the lemma. 

L e m m a  11. Suppose  (~ has g generators and  that we have obtained g solutions 

(x(z), y(t), t(t)) of  parameter u (t), (1 ~ 1 . . . .  , g), one for  each generator. Then  there is a 

constant A depending only on the x (t), y(t), t(t), and which m a y  be given explicitly,  wi th  

the fol lowing property : 

I f  (x, y, t) is any  solution with parameter u there is a solution (x*, y*, t*) of  

parameter u* such that 

Max (Ix*l, t .2) < A  (30) 
and 

u = u * § 2 4 7  �9 . �9 + k g u  (g) , 

where the k t are rational integers. 

By (30) the set of (x*, y*, t*) is bounded and may be found explicitly by trial- 

and-error. Clearly the u* together with the u (~) form a (possibly redundant) basis 

for lt. 

A considerable amount of computation is involved. Numerical examples are 

given by Billing [2]. 

II. In all the equations discussed we have found solutions except when we have 

shown that  none exist. There is, however, no certainty that  this will continue to 

happen. In other words our criteria are necessary for solubility but  their sufficiency 

is unproved. I t  seems to me likely that  necessary and sufficient criteria could be 

obtained by regarding (14) or (28) as congruences to appropriate moduli, but I do 

not see how this could be proved. 

Nevertheless considerable assistance in the search for solutions of y2 = x S _ D p  

may be obtained by regarding (14) or (28) as congruences. 

Suppose for example D = --39, 63 = 39. The only value of/~ # 1 which is not 

excluded in (14) by theorem VIII  is/~ = 4--6. Then 



T h e  R a t i o n a l  S o l u t i o n s  of t h e  D i o p h a n t i n o  E q u a t i o n  Y~ = X 3 - - D .  267 

x+t~ = ( 4 - ~ ) ~  2 (31)  

and  
y2 = x a ~ _ 3 9 t  e . 

Since 4 - - t  ~ (~ rood 4, x-~-t2~ is a quadra t i c  residue of 4. Hence  2/t (cf. proof  of ~ 

t heo rem  V I I I ) .  Suppose t = 2. T h e n  

x ~ x  a ~ y 2 ~ -  1 rood 24 .  (32) 

I t  is easiest  to examine  (31) modulo  ra t iona l  p r imes  which spli t  into th ree  

dis t inct  fac tors  in R(O). The  smal les t  of these  is 

19 = [19, ~- -1]  [19, (~--7] [19, ~--11]  = 010203 

(say). On regarding (30) wi th  t = 2 as a congruence m o d  Pl, P2, Pa in succession we 

ob ta in  

x ~ N 1 - - 4  ~ R - - 2 8  ~ N 8 - - 6  m o d  19 , 

where N ,  and  N 3 are quadra t ic  non-residues or zero and  R is a quadra t i c  residue or 

zero. Hence  
x ~ 8, 15 m o d  19 .  (33) 

The  least  in teger  sat isfying bo th  (32) and  (33) is x = 217 and  indeed 

(217)3+39.26 = (3197) 2 . 

I I I .  We have  p roved  inc identa l ly  t h a t  no integer solut ions exis t  for D = - -11 ,  

- -  39, q- 43, - -  46, - -  47 though  ra t iona l  solut ions exist.  However ,  m y  m e t h o d  appea r s  

unsui tab le  for discussing integer  as opposed  to  r a t iona l  solut ions 1. As a m a t t e r  of 

fact ,  Mordell  [23] has  shown t h a t  in the  remain ing  2 cases D = q- 21, q- 22, q- 29, q- 30, 

q-38, + 5 0  where  ra t iona l  b u t  no in tegra l  solut ions are given in tab le  1, t hen  

in teger  solut ions do not  exist .  

I a m  gra tefu l  to Professor  L. J .  Mordell  for his cr i t ic ism and  advice.  

1 In teger  solutions have  been widely discussed. Cf. Mordell [27]. 

2 Mordell does no t  actual ly consider D = -~ 50 in the text ,  b u t  i t  can be deMt wi th  by  his 

me thods .  
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Table 1. 

S o l u t i o n s  o f  y 2 =  xa Dt  ~ of  i n f i n i t e  o r d e r .  

D 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

Solut ions 
y t x y t 

None  
3 5 1 

None  
2 2 1 

None 
None  

2 1 1 
None  
None 
None 

3 4 1 
None  

17 70 1 
N o n e  

4 7 1 
None  
N o n e  

3 3 1 
7 1 8  1 
6 14 1 

37 188 3 
71 119 5 

3 2 1 
N o n e  

5 10 1 
3 1 1 

None  
4 6 1 

3,133 175,364 3 
31 89 3 

None  
N o n e  
None 
None  

11 36 1 
None 
None 

4,447 291,005 21 
4 5 1 

14 52 1 
N o n e  
None  

1,177 40,355 6 
5 9 1 

21 96 1 
N o n e  

12 41 1 
4 4 1 

65 524 1 
211 3059 3 

In tege r s  ~ Refs  2 

15 58 1 

35 207 1 

10 31 1 

63 500 1 

+ 

+ 

+ 

+ 

+ 

+ 

+ 
+ 
+ 
M 
M 
+ 

+ 
+ 

+ 
M 
M 

+ 

M 
+ 
+ 

+ 
+ 

+ 
+ 
+ 
M 

24 
17 
15 
18 
15 
17 
15 
24 
15 
22 
15 
18 
15 
17 
15 
20 
22 
17 
22 
18 
15, 
17, 
15 
19 
15 
22 

7 
22 
15, 
17, 
15 
21 
15 
17 
22 
18 
22 
17, 
15 
19 
15 
17 
15 
22 
15 
22 
15 
20 
15 
17 

M8 
318 

M14  
M 8  

M I 4  

(-~-) non-trivial integer solutions exist; ( - - )p roved  not to exist in present paper; 
not to exist by Mordell [23]. (A reference to Mordell is given only when necessary). 

References are to w167 Those prefixed with an M are to Mordell [23]. 

(M) proved 
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D 

- - 3  
- - 4  
- - 5  
- - 6  
- -7  
- -8  
- - 9  

- -10  
- -11 
- -12  
- -13  
- -14  
- -15  
- -16  
- -17 
- -18  
- -19  
- -20  
- -21  
- -22  
- -23  
- -24  
- -25  
- -26  
- -27 
- -28  
- -29  
- -30  
- -31 
- -32  
- -33  
- -34  
- -35  
- -36  
- -37 
- -38  
- -39  
- -40  
- - 4 I  
- -42  
- -43  
- -  44 
- -45  
- -46  
- -47 
- -48  
- -49  
- -50  

Solut ions 
x y t x y t 

None  
- - 1  1 1 

1 2 1 
None  

- -1  2 1 
N o n e  
NonQ 

2 4 1 
- -2  1 1 
- -1  3 1 
- -7  19 2 
~ - 2  2 1 

N o n e  
N o n e  

1 4 1 
None  

- -1  4 1 
, 7 19 1 

5 12 1 
N o n e  i 
None  

3 7 1 
N o n e  

- -2  4 1 
N o n e  

- -1  5 1 
N o n e  

i 2 6 1 i 
N o n e  

19 83 1 
- -3  2 1 

None  
- -2  5 1 

None 
1 6 1 

- -3  3 1 
- -1  6 1 

11 37 1 
217 3,197 2 

6 16 1 
2 7 1 

None  
- - 3  4 1 
- - 2  6 1 

None  
- -7  51 2 

17 89 2 
1 7 1 

N o n e  
- -1  7 1 

In t ege r s  

109 1,138 1 

- - 2  3 1 

1 5 1 

3 8 1 

57 2,290 7 

§ 
§ 

§ 

+ 
§ 
§ 

§ 

+ 

§ 
+ 
+ 

§ 

§ 

+ 

§ 

§ 
§ 

+ 

+ 
+ 
+ 
+ 

+ 
+ 

+ 
+ 

+ 

+ 

Refs  

24 
17 
15 
18 
15 
17 
15 
24 
15 
22 
15 
18 
15 
17 
15 
2O 
22 
17 
22 
18 
15 
17 
15 
19 
15 
22 

7 
22 
15 
17 
15 
21 
15 
17 
22 
18 
22 
17 
15 
19 
15 
17 
15 
22 
15 
22 
15 
20 
15 
17 

1 The solution (2, 3, 1) of finite order. 
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Table 2.1 
Class  " n u m b e r s  a n d  u n i t s  i n  R(~/D). 

D h r/ 2 y 3  

2 
3 
4 
5 
6 
7 
9 

10 
11 
12 
13 
14 
15 
17 
18 
19 
20 
21 
22 
23 
25 
26 
28 
29 

3 
12 

1 
1 
1 
2 
3 
3 

- - 1 + 6  

- - 2 + 6  ~ 
--  1 + �89 

I -- 46 + 262 
1 --66+363 

2--6 
- - 2 + 6  

1 ( 2 3 +  116+562 ) 
1 + 46-- 26 z 
1 + 36--  ~6' 

- -4- -36+262 

1+26- -63  
1 -- 306+  1262 

18--76 
1 - -36+63  

~ ( 2 + 2 6 - - 6  ~) 
1+6- -163  

- - 4 7 + 6 6 + 4 6 3  
23 + 36 -- 46 ~ 

-- 41,399-- 3,1606 + 6,23062 
1 + 26 ~ ~62 

3 - -6  
~ ( - - 2 - - 2 J + 6 2 )  

*--  322,461,439+ 103,819,4626+ 370,28463 
I + 96--  362 

-- 367 + 546 + 20~ 2 
"3,742,201 + 97,3926-- 394,09862 

613--246--5162 
~ ( - -22+106- -63 )  

1+36- -62  
10--36 

- - 1 5 1 + 5 5 6 - - 3 6 2  
- - 2 3 + 2 6 3  

*--  211,991,370,839 + 305,478,475,1846 
-- 70,761,183,38262 

1 - - 4 2 6 +  1262 
- - 7 + 2 6  

I(113--26 -- :~_62) 
1,081 + 666-- 10462 

"16,449,049+4,590,7986+ 1,281,25563 

*-- 592,199-- 69,7046 + 64,78663 

2 - ~ 6 3  
1 - 6 + ~ } 6 2  

9--4($ 

49 + 206 + 862 

4 - - 6  

-- 1 2 + 6  2 

12 - - J  

3 s See page 271. 
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1 Several ~ and about  half the h have been specially computed. Markoff [22] gives a large number  
of ~ and a few h. Reid [39] gives the values of h and vi for IDI < 10 as par t  of a larger table for general 
cubic fields. Dedekind [8] finds some more values of h using Markoff's table and incidentally proves 
certain of the ~ to be fundamenta l  units. Nagell [28] gives a larger table of r) and discusses general criteria 
for a uni t  ~/to be the fundamental  unit .  All these tables except the ' last  are reproduced by Delaunay and 
Faddeev [9]. [added in the proof]. There is a table of units  for all in Wolfe [45]. I am indebted 
to Dr. E. S. Selmer for this reference. 

These are fundamenta l  units  except, possibly, those marked (*), as is proved by Dedekind or by 
Nagell (loc. cit. supra). 

3 We remember t ha t  y > 0 and [y] is the square of an ideal bu t  t ha t  nei ther  ~ nor r/:F is the square 
of a number  of R(b). Since the group of ideals is cyclic for ID] < 50 essentially only one ~ occurs. 
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