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I n t r o d u c t i o n .  

In  1920 , Siegel I proved the fol lowing general isat ion of the Thue-Siegel  

Theorem : 

Let ~ be an algebraic number of degree d ~ 2. 

1. Let ~ be a fixed algebraic number.field, and let ~ satisfy an irreducible equation 

of degree m >~ 2 with coefficients fi'om ~. Let s be a natm'al number less than m. 

Then for every positive 6) the inequality 

I 

- -  + s + O  
A,~+I 

has only a finite nu, mber of solutio~s in primiti~'e numbers 2 of ~, A bei~g the maximum 

of the absolute valuers' of the eoefficient,9 of the primitive irreducible polynomial with 

rational integral coefficients having 2 as a root. 

2. Let h and s be two natural numbers, of which ,~' i,~. le~'s than d. 

every positive 6) the iJ~equalitp 

Then for 

has only a finite number of solutions in algebraic numbers 2 of degree It. 

1 C. SIEGEL, ' A p p r o x i m a t i o n  a ]gebra i scher  Zablen ' ,  M a t h e m a t i s c h e  Zei t scbr i f t ,  Vol. Io  (I921), 

pp. 173--213.  
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In  I932 , Mahler  ~ extended the  Thue-Siegel  Theorem,  for  the case when the 

approx imat ing  number  ~t is a ra t iona l  number  2 = P ,  p and q being relat ively 
q 

prime ra t ional  integers,  to non-Archimedean as well as Archimedean valuations.  

He  also obta ined an approximat ion  to the actual  number  of solutions of  his 

inequali ty.  His  resul t  was as follows: 

Let PI, P2, . . ., P~ be ~( >-- o) d~:[ferent natural prime numbers, and let ~o, ~l, ~2, . . ., ~ 

be respectively real, Pl-adic, P~-ad ic , . . . ,  Po~adic roots of  an irreducible poly~wmial 

f ( x )  o f  degree m > 3 with rational integral coefficients. Le t  a be the ~umber 

rain ( n ~  + s ) ,  and fl a number such that a < fl <-- m. Let  c be a positive 
s = I ,  2, . . . ,  m - - 1  

constant. Then the number of  solutions in pairs  of  relatively prime rational i~tegers 

p and q of  the inequality 
eY 

is ~wt greater than 

min (I, I P - -  ~ q  b~k) ~ c max (Ipl, lq I)-~ 

to) (y CO 25_ a (1 + 

where ~o is a positive number and c o is a constant dependi~Tg only on %, fl and f ( x )  

a~d not on the number and choice of  the prime numbers P1, P~., . . ., P~. 

(l P - -  ~k q Ipk denotes  the Pk-adic value of ( p - -  ~k q)). 

The  pr imary  object  of the  present  paper  is to combine these two results  

and extend them to the case when approximat ion  is made, by algebraic numbers  

of a fixed degree h ~> I (or of a degree dividing h) over a field ~ of degree 

n > I over  the ra t ional  number  field ~ ,  to a number  of real or complex roots 

and r-adie roots  (v being a finite prime ideal of ~ ) o f  a p o l y n o m i a l f ( x ) o f  degree 

m --> 2 with in tegra l  coefficients f rom ~. The polynomial  f ( x )  need ~ot ~ow be 

irreducible, the  only condi t ion imposed upon it  being t h a t  it  shall have a non-zero 

discriminant.  In  s ta t ing  the  resul t  obtained,  use is made of the term 'i~finite 

prime ideal'. The meaning  of this term, and the definitions and nota t ion adopted  

for absolute and r-adie valuations,  are given in w I. By the symbol g (p) is meant ,  

if 13 is a finite prime ideal of ~, the degree of the perfect  0-adic extension of 

over the per fec t  p-adic extension of ~ ,  where p is the na tura l  prime number  

divisible by 0, and if  13 is an infinite prime ideal  of ~, the degree of the perfec t  

1 K. ~ A H I ,  E R ,  ' Z u r  Approximation algebraischer Zahlen', Mathematische Annalen, Vol. IO  7 

pp. 69x--73o and Vol. Io8, pp. 37--55 (I933). 
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O-adic extension of ~ over the  field of real  numbers.  G(O) denotes a na tura l  

number  not  g rea te r  t han  g(p). A denotes the maximum of the absolute values 

o f  the coefficients of t ha t  polynomial  of degree hn  which is a power of the 

primit ive irreducible polynonfial  with ra t iona l  in tegra l  coefficients having 2 as 

a root.  

The  result,  as s ta ted in Theorem I, is as follows: 

Let  f ( x )  be a polynomial of  degree m >--2 with integral coefficients from ~ and 

a ~wn-zero diseriminant. Let  q~, q~. . . . .  , q.o, where o<--Q < -- r l 2 1  - F2, be Q of the r~+r~ 

infinite prime ideals eorrespondi~g to the r 1 real and r~ paivs of  eo,jugate imaginary 

.fields conjugate to ~, and let r~, r.2, . . ., r~, where a >-- o, be a &~erent  fiuite prime 

ideals of  ~. Let  hk~ (k - - - - I ,2  . . . .  , a; 6 =  1, 2 . . . .  , G(rk)) be a natural mmtber not 

greater than h 2. Let  ~h,(J = x, 2 , . . . ,  0; 7 = I, G(Oj)) be a real or complex root o f  

f ( x )  and ~ k ~ ( k =  I, 2 , . .  ., ~; 6 =  I, 2 , . . . ,  G(rk); ~ =  I, Z , . .  ., hka) an rk-adic root 

of  f (x) ,  and let t be the total number of  these roots. Let  c and e o be two positive 

numbers and a and fl two numbers such that et = rain ( m, + s~ and fl > 
s = l , 2  . . . . .  m--1 ~ 8 +  I ] 

Then the number of  d(~ferent algebraic numbers 2 of  degree h (or any divisor of  h) 

over .~, lying in the perfect rradic, rradic, . . ., ro-adic extensions of  ~ and sat@flying 

the inequality 

j = l  ~'=1 k--1 r ~=1 

is ~ot greater than 

where k o is a constant dependi~g 

k o 2fl -~ 

only on %, fl, c, ~, f ( x )  and h, a~d ~ot on the 

number and choice of  the roots to which approximation is made or on the corresponding 

ideah'. 

In  the  par t icu lar  case of this resul t  when h ~ - I ,  ~t is an element  ~o of ~, 
U 

and A is denoted  by t2. w may be represented as the quot ient  co = -  of  two 
V 

integers  u and v of ~ such tha t  _N((u, v)) ~ ] Vd(~t)], where d(~) is the discr iminant  

of ~. From this fact  and f rom Theorem I there  follow a number  of results, 

conta ined in Theorem 2 and its corollaries, on binary forms with in tegral  coeffi- 

cients f rom ~. These  results are simply general isat ions of Mahler 's  results  for  

binary forms with ra t ional  in tegra l  coefficients. 
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Theorem 2 states that: 
I f  F(x ,y )  be a binary form of degree m >~ 2 with integral coefficients from 

and a non-zero diseriminant and such that the coefficient of x m is ~ot zero, and i f  

vk(k = I, 2 , . . . ,  ~) be the mr of ~:-adie roots of F(x ,  i), then the number of 

solutions of the inequality 

rk 

in non-associated ~ pairs of integers u and v of ~ such that N((u,v))<~ I V Y ) { ,  

where N(F(u ,v) )  is the norm in ~ over ~3 of F(u,v) ,  is not greater than 

k 3 2 (~-a ~(" 1G (rk) m a x  ( I, r~.), 
k=l  

where k a is a constant depending only on e0, fl, ~ and F (x, y), and not o~ the q~umber 

a~d choice of the finite prime ideals rz, re, �9 �9 v~. 

From Theorem 2, Corollary I, involving less stringent conditions for F(x,  y), 
is easily proved. I t  states that: 

I f  T'(x,y) be a binary form of degree not less than 3 with integral coefficients 

from ~ a~d a non-zero discriminant, then the number of solutions of the equality 

g 

(F u, IF(., v)I i = ,  
k=l  

in ~wn-assoeiated pairs of integers u and v of ~ such that N((u, v ) )~  [Vd(~)[ i~' 
not greater than 

K ( k ~  g(~k)) +~, 

where K is a eonsta~t depending only o~ ~ and F (x, y), and not on the number and 

choice of the finite prime ideals q, r,2, �9 . . ,  r~. 

With these conditions for F(x ,y) ,  it is proved that: 
The mtmber of non-associated pairs of integers u and v of ~, with N((u,v)) 

I Vd(~i l ,  such that N(F(u, v)) is divisible by no rational prime numbers other than 

the ~ ( ~  o) gi~,en different ratio~al prime numbers rD r~, . . ., r~, is not greater than 

T w o  se t s  of h +  I in t ege r s  ~to, u l , . . . , u  h and  Vo, V t , . . . , v  h are  sa id  to be assoc ia t ed  if  

uo/v  o = u j v i  . . . . .  Uh/V h = ~  is a u n i t  in j~; o t h e r w i s e  t h e y  are  non-assoc ia ted .  



The O-adic Generalisation of the Thue-Siegel Theorem. 5 

. t~ :~-  1 

where Ko is a constant dependi~g o~ly on ~ and F(x,y) ,  and ~ot on the number 

and choice of rl, r~, . . . ,  r~. 

From this result follow a number of corollaries on the representation of 

integers of ~ in the form F(u,v),  cuhninating in the result: 

Let U and V be any pair of integers of ~ with N((U, V))<--]Vd(~)l, or a 

multiple of such a pair by an integer of ~. Thell the number of different represen- 

tations of any integer I of ~ in the form _F(U, V) is of order 

IN(S) I 

norm in ~ over ~3 of I and ~ is an arbitrarily small positive where N( I )  is the 

consta~ t. 

Of particular interest is the result, involving even less stringent conditions 

for /F(x,y), analogous to Mahler's result on the greatest rational prime divisor 

of a binary form with rational integral coefficients and rational integral values 

for the variables. The present result is as follows: 

I f  ~(x,  y) be a binary form with integral coefficients from ~, and such that 

F(x,  I) has at least three d~'erent roots, of which one may be infinite, and i f  u and 

v be any pair of integers of ~ such that N((u, v)) --< IVd(~')!, then as 

max (I;V(u)l, IN(v)l)-  0% 

the greatest of the norms of the finite prime ideals of ~ dividing F(u, v) tends to 

infinity. 

The proof of this result is greatly simplified by the fac~ that  the polynomial 

f (x)  in Theorem I, and consequently the binary form F(x,  y) in Theorem 2, need 

not be irreducible in ~. 

By using the more general form of Theorem I, with h ~  I, these results on 

binary forms may clearly be generalised to forms of the type: 

]e[ + + + . .  + 
v = l  

where ~1, ~.a, �9 �9 ~,~ are the real or complex roots of f ( x )  and x0, xl, �9 �9 xm are 

integers of ~. For such forms are merely products of h binary forms in which 

the variables take values from conjugate fields of degree h over ~. 
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The writer wishes to express his gratitude to Dr. K. Mahler for his help 

and guidance throughout the preparation of this paper, and particularly in 
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w i. P r e l i m i n a r y :  De f in i t i on  a n d  P r o p e r t i e s  o f  F i n i t e  a n d  In f in i t e  

O-adic V a l u a t i o n s .  

(a) Let ~ be any finite algebraic field of degree n ~ I over the field ~ of 

rational numbers. 

By Ostrowski's Theorem, there exist only the non-equivalent valuations of 

the rational number field ~ stated below. First there exists the absolute valua- 

tion Ix I. We write this as 

and refer to this valuation as 'the valuation with re,Tect to the infinite prime 

number p~'. The absolute valuation is thus made analogous to the second possible 

set of valuations, the p-adic valuations, p being a natural prime number. The 

p-adic valuations, of which there are an infinity, are defined for each 1) as 

I o for x-----o; 

x l l _  |p'" for x # o, where ,u is a rational integer and 
--.] the reduced fraction p " x  contains the fac torp  

/ 

( in neither numerator nor denominator. 

The remaining possible valuation, the trivial valuations, is 

~o for x = o; 
Ixl~ for x#o. 

Thus the product of the valuations of x with respect to all natural and infinite 

prime numbers p satisfies the relation 

(,) I[ixt, : i: t0 
p 

x K. MAHLEtr ' 0 b e r  die Anngherung algebraischer Zahlen durch periodische Algori thmen' ,  
Acta mathemat ica  (1937) , p. I I I - - I 1 4 .  
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(b) There  are in general  several possible cont inuat ions  of [ XIp~ and Ix Iv into 

the field ~. 

We consider first the cont inuat ions  of [ x [p~. Of the ~ fields ~('), ~ c'~), . . . ,  ~(-) 

of real  or complex numbers  c o n j u g a t e  to ~, let  the first rl be the real fields 

and the remaining 2 r 3 (r I + 2 ~'~ = n) be the r~ conjugate  imaginary pairs 

~(h), ~(h+r~) (h = ~'1 -~, I ,  ~'1 ~- 2 . . . . .  ~*i ~- ~'~). 

We make correspond to each of the real fields ~(1,)(h = I, z, . . . ,  r~), and to each 

pair  of conjugate  imaginary  fields R(h) ~(1,+r.~)(h = rl + I, r~ + 2, . . . ,  r 1 + r~), an 

infinite prime ideal b(h) Fur the r ,  we denote  by w (h) the e lement  of ~(1,) conjuga te  

to an e lement  w of ~. Then  the r~ + r~ absolute values 

define all the possible non-equivalent  cont inuat ions  of ]x[~)~ into ~, and for  

elements  x of the  ra t ional  number  field ~ are ident ical  with Ix[p=, i. e., 

I~o Io~) = I , ,  I,~. (h = ~, ~ , . . . ,  ~-~ + 1"3) 
if  ~o lies in g~. We  now write 

{ I  for  h =  I, 2, . . ., r~; 

9 ( ~ ) ) ~  2 for  h - - r ~  + I , r~ + 2 , . . . , r  1 d- r_~. 
Then  

r~ ~ r~ 

~ ( ~ )  = ,,, 
h = l  

and if N ( o )  be the norm in ~ over ~ of r 

(2) I N ( ~ )  h,~ --- H I , ,  ~,~ . 
h =  1 

Inc identa l ly ,  g (~ ) )  is the degree of the p e r f e c t  ~ ) -ad ic  extension of ~ over the 

field of real numbers,  i. e., over the per fec t  p~-adic  extension of ~.  

Similarly, we can cont inue the valuat ion I X[p into ~. Le t  

i=l  

be the fac tor i sa t ion  of the na tura l  prime number  p into prime ideals of ~, so 

t ha t  e(O (i)) is t he  order of the prime ideal ~(~}. We define the O?)-adic validation 

for  i = I ,  2 , . . . , r r  by 
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] co ],(,.)= ! 
f 

o for w -~ o; 

pc(C*/) for w-~= o, where #(#;)) is a rat ional  in teger  and 

the fract ional  ideal 9/*;"(r (o)) contains the factor  p(,'/ 
in nei ther  numera tor  nor denominator .  

The 7~ valuations thus defined are the only possible non-equivMent continnatim~s 

of ]xlv into $~', and for  elements x of the rat ional  field 9~ are identical  with 

Ix l~ ,  i. e., 

if r lies in ~3. We  now write 

g (lO (i/) = e (~o (`)) f (p(')), 

where f(p(i/) is the degree of ~(z), i. e., the na tura l  number  such tha t  N(~ (i)) =2/(r  

Then 

2 g  (~<) = . .  

Also, since (oJ) contains ~a (i) to the power  #(~(")), and since 

(p) = H ~(")~ ('>), 
i = 1  

it follows tha t  

(3) 
and so 

(4) 

N (~/~)):,~:p"/) = pAr (r = ] ~o rJ(r i~(i) , 

.,7 (r 

i = l  i - 1  

I t  may be noted  that  g(p(;)) is the degree of the perfect  D(<adic extension of 

over the field of p-adic numbers,  i .e . ,  over the perfect  jo-adic extension of ~ .  

Finally,  ~ has the trivial valuation 

]~O[o__{o for ~ o = o ;  
I for c o # o .  

This is the only possible cont inuat ion of [X[o into 2. Clearly, 

(9 I N(~) Io = I~ Io. 

By Ostrowski 's  Theorem, every other  valuat ion of ~ is equivalent  to one of those  

already defined. 
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From (I), (2), (4) and (5) follows the fundamenta l  relation for ~ corresponding 

to (I), viz., 
(6) ]][ I~}~ ~ =  I~ Io, 

P 

the product  being taken over all finite and infinite prime ideals of ~. 

In particular,  if w be an integer  Wo(~ o) of ~, 

I 

where the  product  H is taken over any number  of different finite prime ideals 

of ~, and G(~) is a natural number not greater than g(r). 

We shall use the relat ion (6) and the inequality (6 a) in proving Theorem 2 

and its corollaries. 

(c) From the relations (2) and (3) may be obtained an inequali ty which is 

of fundamenta l  importance in the proof of Theorem I. Le t  the r~ + r2 infinite 

prime ideals 0~)(h = I, 2 , . . . ,  rl + re) be represented, in any desired order, by 

q~, q.2 . . . .  , %+r  and let r~, re, �9 �9 r~, where a >-- o, be ~ different finite prime 

ideals of ~. Then by (2) and (3), 

r, + r e ~ o O (rk) 

�9 1 I  0,%,) - - -  ]11~12) ~j> I~o ~; = lx(o) l  I I  x(r,,) "<~>%~>, 
j ~ l  k 1 t ' = l  

where 0(rk) (k = I, 2, . . . ,  ~) is a positive number  not  greater  than  g(rk). Now 

since ~o is an element of 2, there exists a polynomial )7 (x; w, ~ ,  n) of degree n 

which is a power of the primitive polynomial with ra t ional  integral  coefficients 

and irreducible in ~ having w as a root. I f  Br0 be the eoeffieient of the 

highest  power of the variable x and W,~ be the constant  term of the polynomial 

r ( x ;  co, ~ , n ) ,  then [W01 and IW, I are not  less than  unity,  provided ~ # o ,  and 

I~ (o , ) l - I  w,,[ 
IWol 

fl 
But (~o)=~ ,  where a and 5 are relatively prime ideals of ~ and _N(t~): ]W~I, 

2v(~)--Iw01. Thu~ 
Yo 

k = l  ~/~n. ~ 

where Yo and :Y~ are relatively prime natura l  numbers such tha t  Yo]Wo and 

Yn]I4~,. I t  follows tha t  the product 
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o m') 

f i n  (r~.)" (~k) .,(~.~.) 
k = l  

may be writ ten as the quotient  Zo_ of two positive numbers Z o and Z~, such 

o 

,.1+,.~ Io/k~ I w , , I Z o >  , I w , , l >  , 
(7) I I [ ~  I~) "~/IF[ I ~ . . . .  - - .  

Suppose now tha t  w' is a number  of degree n"  over ~, where n"  is a divisor' 

of a na tura l  number  n'. Then oJ' will be an element of a field W of degree u' 

over ~ and n n '  over ~.  (co' has the same meaning as w when n ' : I . )  Le t  the 

nn '  fields conjugate to ~ '  consist of r'~ real and ~,'., pairs of conjugate imaginary  
t t 

fields, and let q], q~ . . . .  , q~,,+,.,~ be the corresponding infinite prime ideals in any 
! t p 

desired order. Let  r], r~, . . . ,  r~, be any a (>--o) different finite prime ideals of W. 

Since w' is an element of a field ~ '  of degree nn '  over ~, there exists a polyno- 

mial l"(w; co', ~3, u.n') of degree n~/ which is ~ power of the primitive polynomial 

with rat ional  integral  coefficients and irreducible in ~3 having w' as a root. Let  

W~ be the coefficient of the highest  power of the variable x in Y(w; w', ~,  nn'). 

Then, since the inequali ty (7) is t rue for the elements of any given field, 

r ' l  ~-  r ' , ,  o I 
t t 

cs) I I  I,,,' I I  I > * �9 

Here the p'-adic valuation,  and e(~'), f(~') ,  g(~'), 0(~') and ~t(p') are defined for a 

finite or infinite prime ideal V' of W, in relation to ~3, in the same way as are 

~-adic valuation, and e(13), f(p) ,  g(P), 0(p) and /L(V) for a finite or infinite prime 

ideal V of ,~. 

Let  now r be any finite prime ideal of ~. Then 

r --- H ~'(i)F(~'(i)) 
i = l  

where r '% r'<~),.. . ,  r '/~') are different  finite prime ideals of W, and the E's  are 

natura l  numbers. Thus, if r belongs to the rat ional  prime number 1), and w' 

lies in the perfect r-adic extension of ~ and has the r-adic valuation p~-i-~7, where 

e(l~) is the order of r, 

t ha t  I < Z 0 --< I7o and I ~-~ Zn <-- Yn, and so 
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"~' Z :(r'{;)),, (r'(~)) 
II z~ (',)= p':' 

Z f(r '(i)) E@ '(i)) !t (r) 
_~ pi=l 

'<< = I < < "  I I : " ( " L  

Thus, if ~. be any natural number not greater than n'g(rk) for k ~ I ,  2 , . . . ,  o, it 

follows that, for the appropriate a', the appropriate prime ideals r~(k= 1, 2 , . . . ,  o') 

in ~ '  and the appropriate O(r~:), the inequality (8) is identical with the inequality 

:~"1 + 7"t2 o # 

(9) H I ('0' ]g'(q'~) k i l l  I ~ '  Ir~ > I , 
j = ,  . =  " - I w;I 

This is the fundamental inequality underlying the proof of Theorem I. 

(d) In dealing with the valuation of w', we shall make use of the following 
notation: 

I) The field ~.i~. 

Let (]j be any infinite prime ideal among the r t + r  , infinite prime ideals 

q,, q~, �9 �9 q~,+~ corresponding to the r 1 real and r~ pairs of conjugate imaginary 

fields conjugate to .~'. Then if {~j corresponds to a real field conjugate to ~, let 

this field be called ~j i  (i. e., ~:]~, where 7 =  g(qJ)). I f  qj corresponds to a pair 

of conjugate imaginary fields conjugate to ~', let these be called ~ j l  and ~j~ 

(i. e., ~j:,, where I --< 7 --< g(q/)). 

2) The Y polynomials. 

By the polynomial Y (x; w', ~,  nn') is meant the polynomial in x of degree 

n i,' which is a power of the primitive polynomial with rational integral coefficients 

and irreducible in the rational number field ~3 having r as a root, w' being 

as before  any number of degree n" over ~', where n" is a divisor of a natural 

number n'. 

By the polynomial ~'(x; w', ~, n') is meant the polynomial in x of degree n' 

which is a power of the primitive polynomial with integral coefficients from 

and irreducible in ~ having w' as a root. 

By the polynomial ~ (x; co', ~j~., n') is meant, for j = I ,  2 , . . . ,  r~+ r2 and 7 = I ,  

g(q/), the polynomial conjugate to Y (x; o/, ~, n') with respect to the field ~j.~. 
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3) The valuation I w' Iqj r" 

This means the absolute value of any root w' of the polynomial  T(x;  J ,  ~.Jr, n') 

( j~ -  I, 2 . . . .  , r t+ r2 ;  y = I, g(qj)), and reduces to the valuation I(~{qj ( j - :  I, 2 , . . . ,  

r l +  r~) when w' is an element ~o of ~. 

I t  may also be noted tha t  if r is a finite prime ideal of ~, ]~o'lr denotes 

the r-adic valuation of any root r of T (x; r ~, n') lying in the perfect r-adic 

extension of ~'. The inequali ty (9) holds if  different roots of T(x; w', ~, n') are 

evaluated with respect to the different r~(k == I, 2, . . . ,  a), since the rk-adic roots 

of such a polynomial all have the same rk-adic value. 

In  the remainder  of this work, by the number  o)' will be meant  any root co' 

of the polynomial :F (x; w', ~, n'), and by 'different'  ~o' will be meant  roots of 

different polynomials Y (x; ~o', g,  n'). By 'a property satisfied by r will be meant  

a property satisfied by some root or roots of :F (x; w', ~t, n'), e. g., to say tha t  co' 

lies in the perfect r~-adic, r .2-adic, . . . ,  ~o-adic extensions of ~ means tha t  in each 

of these perfect extensions there lies some (not necessarily the s a m e ) r o o t  of 
r (x; o;, 

(i) 

Notation. 

((a) IP(x,...)1=~ denotes the maximum of the absolute values of the 
coefficients of the polynomial  _P in any number  of 
variables; in particular, this nota t ion  can also be used 
to represent the absolute value of a constant.  

(b) If  P(x . . . .  ) and Q ( x , . . . )  are two polynomials in the same variables 
such tha t  the coefficients of Q are non-negative and 
not  less than  the absolute values of the corresponding 
coefficients of P, Q(x, . . . )  is called a majoriser of 
P ( x  . . . .  ), and  we write 

. . . .  ) < Q ( x ,  . . 3 .  ) 

is a finite algebraic field of degree n ( ~  I ) o v e r  the 
ra t ional  number  field ~.  ~ is an algebraic integer  
genera t ing g,  and 

9(z) = z" + z lz  "-1 + z~z ''-2 + .,- + z,~ 

is the polynomial  with ra t ional  integral  coefficients and 
irreducible in ~ having ~ as a root. x is the na tura l  

number  ~ .  



(3) q~, q ~ , ' ' - ,  qo, 

q~,)+l, q ~ + ' 2 , . . . ,  qr~+r.., 

(4) r,, r~, . . . ,  ro 

(6) 

(7) 

(8) 

(9) 

h 
h~ ~, 
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is a po lynomia l  in x of degree  m (--> 2): 

f (x, z) - a o (z) x m + a 1 (z) x " ' - t  + . - .  + a,~ (z), 

where ao(z) (3 o), al(z),..., am(z) are polynomials  in 
z wi th  ra t iona l  in tegra l  coefficients and of degree not  
g r ea t e r  than  n - - I ;  a is the smal les t  na tu ra l  n u m b e r  
such t h a t  

for  ~ ,=  o, I, 2 . . . .  , m; we suppose  t ha t  the  d i sc r iminan t  
of f(x, z) with respect  to x is not  divisible by q~(z). 
(N. B. f ( x ,  ~) need not  necessar i ly  be i r reducible  in ~:) 

where 0 ~< Q_< r~ + r.2, are 0 of the  r~ + r~ infinite p r ime 
ideals cor responding  to the r~ real  and  r 2 pairs  of 
con juga te  imag ina ry  fields con juga te  to ~. 
are the r ema in ing  infinite pr ime ideals. 

where  a ~> o, are a differen~ finite p r ime  ideals of ~. 

where  I) is a finite or infinite pr ime ideal of ~, is the 
degree of the  per fec t  l>adic extension of ~ over  the  
perfect  p-adic extension of the  ra t iona l  n u m b e r  field ~ ,  
p be ing  the na tu ra l  pr ime n u m b e r  divisible by ~ if 
is finite, or the  infinite p r ime n u m b e r  poo if  I~ is in- 
finite. 
is a na tu r a l  n u m b e r  no t  g r ea t e r  than  g(lo). 

is a na tu ra l  number .  

( k - - I ,  2 . . . .  , a; 6 = I ,  2 , . . . ,  G(rk)) is a na tu ra l  n u m b e r  
not  g rea te r  t han  h ~. 

( j = I ,  z . . . .  ,Q; 7 ~ I ,  G(qj)) i s a r e a l  or complex root  
of f (x ,  
( k = I ,  2 . . . .  , ~ ;  d ~ t ,  2 . . . .  , G(rk); * = I ,  2 , . . . , h k e )  
is an rk-adic root  of f(x, ~), i. e., a roo t  o f f ( x ,  ~) lying 
in the per fec t  rk-adic extension of ~. 

is the to ta l  n u m b e r  of the above roots ,  i. e., 

j = 1  ~'=l $=1 

is an a lgebraic  n u m b e r  of degree h (or some divisor h, 
of h) over  ~ (i. e., in our no ta t ion ,  w ' = 2 ,  n"=h', n'=h), 
and ly ing  in the perfec t  r~-adie, re-adic . . . . .  rr 

extensions  of ~. A is the  n u m b e r  I r  (x; 2, ~ ,  hn){. 
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w 2. L e m m a s  o n  P o l y n o m i a l s .  

1. Le t  

~ ( x )  -~- bog~:m + b lxm- l - t -  ""  ~ - bin, f f ' r (X)= ]3oXJf + .BlXM-I  ~ ""  -i- BM 

be two polynomials  in x with a rb i t ra ry  coefficients, and let  

d : m a x ( o , M - - m  + I). 

d Dividing bo T ( x )  by ~p(x), we have 

b~ ~ (x) = 9"  (x) ~ (x) + 9** (~), 

where T*(x) and ~**(x) are uniquely de termined  polynomials  in x, bo, b t , . . . ,  

bin, Bo, B 1 , . . . ,  BM with ra t ional  in tegra l  coefficients and T**(x), which is of 

degree  not  grea ter  than m - - I ,  in x, takes the form:  

~]ff*a(x) : ~0 xm-1 ~-, ~1 xm-2 A-.. .  -~- ~m--1. 

We now show t h a t  each of the coefficients ~o, !~j . . . .  , ~ - 1  is of the form:  

2d 

(IO) "~*"~" Z 8, l b, ollb, o 2 l . . ,  b~,odiB,.ul (Y : 0 ,  I , . . . ,  " 1 - -  I), 
l=l 

where the vO and vtt are cer ta in  of the  suffixes o, I , . . . ,  m and o, I , . . . ,  M 

respectively,  and each e,~ takes one of the three  values o, + x; in part icular ,  

for  d----o, the factors  b~e are absent. 

The  resul t  is obvious for  d - ~  o, for  then  T * ( x ) - ~  o, T**(x)~- -T(x) .  W e  

suppose i t  to be t rue  for  d : o ,  I , . . . ,  k - -  i, where k--> I, and hence prove 

t ha t  it  is t rue  for  d ~ k. By induction,  the resul t  will then  hold for  all non- 

negat ive  d. 

For  convenience,  we take b~+~ = bin+.2- b~+a . . . . .  o. Then  

bd~J(x) ~-b~ol- l .BoxM-m~j(X)~-  t, oI'd-1Llff__l (X), 

where 

and 
TI(X ) ~ CO xM-1 ~- Cl xM-2 -~-''"-~- CM--1, 

( v : o ,  I, . . ., M - -  I). c, -~ B , + I  b o - -  B o b , + l  

Now, dividing b ~ - l W , ( x )  by ~p(x), we have as before the unique relat ion:  

b~ -191 (x) = 9*(z) ~ (x) + ~** (x), 
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and since T 1(x) is only of degree M - - I ,  and o - - < d - - I - - < k - - I  < k ,  by our 

assumpt ion the coefficients ~,, of T**(x) are of the form: 

2d-- l 
Z t t t r ~ = e'~b,,oltb~o,2t. . . b,,oa_l,ze,,:,l ( v = o ,  1,. . . . .  n~-- I), 

/=1  

which is equivalent  to the form (lo). 

'2. The foregoing is t rue if we take b0, bl . . . .  , b~ and .Bo, B1 . . . .  ,.BM as 

polynomials in z with ra t ional  integral  coefficients. They will satisfy the  inequalit ies 

bj (z) ~ b(i  + ~)~' (j = o, ~ , . . . ,  m), 

Bk(z) < B( I  + z )"  (k = o, I, . . ., M),  

where b, b', B, B '  are certain non-negative rat ional  integers.  The coefficients of 

T*(x) and T**(x) will then be polynomials  in z with rat ional  integral  coefficients, 

and by (Io) the coefficients of T**(x) will sat isfy the inequalit ies 

(II) ! 3 , ( z ) < 2 a B b a ( I  + z )  B'+ab' ( v = o ,  I , . . . , m - - I ) .  

Hence :  

Lamina 1. Let  

~p (x, z)---- b o (z) x ~ + b 1 (z) x ~-1 + . . .  + b~ (z), ,e  (x, ~) = Bo (z) x ~ + B ,  (z) ~'~-~ + . . -  + B~(z)  

be two poly~wmials in x, of  which the coefficients b o (z), bl (z) . . . .  ,bm (z) and Bo (z), 

Bt  (z), . . ., B i ( z )  are polynomiah" in z with rational integral coefficients and satisfying 

the inequalities 
t,j (~) < b ( i  + ~)~' ( j  = o, i,  . . . ,  m), 

Bk(~) ~- B(~ + ~)~' (k = o, i . . . .  , M) ,  

where b, b', B,  B '  are non-negative rational integers. Let  

d ~ m a x ( o , M - - m +  I). 

Then two polynomials in x and z, ~s* (x,z) and T**(x, z), are uniquely determined 

by the relation 

bo (~)~ ~' (x, ~) = ~ *  (~, z) ~ (x, ~) + ~** (x, z), 
where 

u162 "~- ~O(Z) X m - x  "~ ~l(Z) X m-2 "~-''" ~- ~m--1 (2') 

is of degree not greater than m - - I  in x, and has coefficients which are polynomials 

in z w4th rational integral coefficients and which satisfij the inequalities 

( I I )  ~,,(g) ~- 2d~t)d(I  "~ Z) B'+db' ( ~ ' = 0 ,  I ,  . . . ,  m - -  I ) .  
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From this lemma and its proof arise the following corollaries: 

Corol lary 1. L e m m a  1 reu~ai~.~' true i f  d is amj uun~ber ~ot less than 

m a x ( o , M - - m +  I). 

Corol lary  2. I f  qJ (x, z) = W a (x, z) - -  % (x, z), and if,  for  the san, e d, W* (x, z), 

�9 ~* (z, ~), ~ (z, ~) ~..d ~**  (~, ~), ~F7 ~ (z, ~), ,~**(~, z) ~,,e the ~ol.~p.,o.~/~I~. ~o~,'e~o.d~.g 
to W(x , z ) ,  T~(x,z), W2(x , z), as in L e m m a  J, then 

Corol lary  3. I f  the coefficients bo(z), b~(z ) , . . . ,  b,,(z) and Bo(z ), B l ( z ) , . . . ,  B, , ( z )  

are independe~t o f  z, then the sa~J~e is true o f  the coefficients ~o(z), ~ (z) , . . . ,  ~,~-l(z), 

and these wi l l  be rational integers saff~fyi~g the inequali ty 

max [~,]~< max ]Bk[ (j 2 max ]bf])a. 
= 0 ,  1, . . . ,  m - - 1  k = 0, 1 . . . . .  31 = 0 ,  1, . . . ,  m 

3. In addition to ~p(x, z) and W(x,z) we define a polynomial  in z, 

~(z )  = z" + z~e '~-I + x~z "---2 + - - - +  z,, 

with rat ional  integral  coefficients and of degree 9~(~> I). We write 

If, as in Lemmn I, T(x ,z )  is wri t ten as 

where 
W** (x, .~)= ~o(Z)x,~ -~ + ~ ( z )  x"~-~ + ... + ~,~-~(~), 

~hen the ~ ,  satisfy the inequalit ies (~ ~) and hence the inequalities 

~ , ( z )  < ~ ' +  ~'+,/,~ ~ ~,~(~ + z + . .  + z ~'+~''~) (~ - o, ~ , . . . ,  ,~ - ~), 
since 

and 

- -  z + ~ + " " + Z l~' + a b', 
I 2 

(B' + db') ~'+'~'(BI + db') 
~ = ( I  + I )  B ' + d b '  = 2 B '+db '  

r z ~ o  

( r = o ,  I , . . . , B ' + d b ' ) .  



The l)-adic Generalisation of the Thue-Siegel Theorem. 17 

I f  d : m a x ( o , B ' + b ' d - - n + I ) ,  by Lemm~ I and since ~Y--I ~-= X o - -  I ,  ~ , ( . z )may  

be writ ten uniquely in the form: 

~,(z)~---~*(z)~(.7) + ~**(z) ( v = o ,  I , . . . , m - - I ) ,  

.~* (z) and i3~* (z) being polynomials in z (the lat ter  of degree not  greater  than  n - - I ) ,  

with ra t ional  integral  coefficients. Further ,  by Corollary 3, 

~3***(z)=d, oz~- l  + d, l zn -a  + ' " +  d,.,,,-1 ( v = o ,  I , , . . , m - - I ) ,  

where the d,.~ are rat ional  integers sat isfying the inequalities 

[d,,~<--21r+(b'+1)aBbd(2• J' ( v = o ,  I . . . . .  m - - I ;  / ~ = 0 ,  1 , . . . , n - - I ) .  

I f  we write 

(') (x, z) = ~ *  (x, z), 

~(~)(~, ~ ) =  ~o (~) x ~ - ~  + ~*(~)  ~ - ~  + . . .  + ~,,,_~(~), 
x** ~ t**  (Z.'t ~ ' ( x , ~ )  = ~o**(~)~ m-1 + ~ ,  (~)~-~ + . . .  + ~ , ,_~  ~, 

then  

and we arrive at the  f o l l o w i n g  result: 

L e m m a  2. Let 

~ ( ~ , z ) = b o ( ~ ) x ' ~  + b, (z)x '~-~ + . . .  + bm(~), 

be two S y n o m i a l s  i ,  x of  ~hich the coeffieie,ts bo(~), b~(z), . . . ,  ~m(~) a ,d  Bo(z), 
B l ( z ) , . .  ., BM(z) are polynomials in z satisfying the inequalities 

bj(z) ~ b ( I  -t- z)  b' ( j  = o ,  I ,  . . . ,  m ) ,  

Bk(z) ~ B ( I  + e) B' (k  = o ,  I . . . .  , M ) ,  

where b, b', B, B '  are non-negative rational integers. Let  

9 (z) = z" + z: z "-~ + m_ z '~-~ + "" + x,, 

be a polynomial in z alone with rational integral coefficients, and let 

d = m a x  (o,  M - -  ,~  -[- I ) ,  (~ ~-~ m a x  (o, B '  + d b ' - -  n + I), z = V~iz) l. 

Then there exist three uniquely determined polynomials ~P a) (x, z), W (~) (x, z), W (3) (x, z) 

in x and z with rational integral coefficients such that 

bo (~)d ~ (x, ~) = ~ " '  (x, ~) ~ (x, ~) + ~ '~)(~:, ~) ~ (~) + ~ '~' (~, ~), 

3 ~ 842136 Acta mathematica. 83 
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where Tce)(x,z) is of  degree not greater than m - - I  in x, and T<S)(x,z) is o f  degree 

not greater than m - - I  in x and n ~ I  in z. Further, 

I ~'~' (~, z) t -< 2-'+/,,'+~),, B b" (z ,.)~. 

From this lemma and its proof the following corollaries arise: 

Corollary 1. Lemma 2 remains true i f  d and 6 take larger values than those 

assigned. 

Corollary 2. I f  ~ (x, z) = ~ (x, z) - -  ~ (x, z), and if, for  the same d and a, 

~'~' (x, ~), ~?~ (~, z), ~;~ (x, ~), ~"~' (~, ~), ~ ) ( x ,  ~), wr (~, ~), w '~' (x, ~), ~?)(~, z), ~ (~, ~) 
are the polynomials corresponding to W(x ,z ) ,  W~(x,z), W~(x,z), as in Lemma 2, then 

Corollary 3. I f  the coefficients of  ~p(x,z) and T ( x , z )  satisfy the inequalities 

bj (y.) < b (I "J- Z) n-1 (j  = o, I, . . ., m), 

BIt(Z) "~ B ( I  -~- g ) . - 1  (~ ~-- O, I ,  . . . ,  ~ / ) ,  
then 

I ~'~' (x, ~)1 -~ ~c~ +~).-~ B b~ (2 ~)~. 

w 3. C o n s t r u c t i o n  o f  t h e  R - P o l y n o m i a l .  

4. Let ~ be a finite algebraic field of degree n(>_~) over the rational number 

field ~, ~ be an algebraic integer generating ~, and 

~v(z) = z ~ + x~z ~-I + x~z '~-2 + ... + ~,~ 

be the irreducible polynomial with rational integral coefficients having the root ~; 

as in 3 we write 

Further, let 
f ( x , z )  -~ a,o(Z)X 'n + a , ( z )x  'n-'  + ... + am(z) (ao(z) ~ o) 

be a polynomial in x and z wfth rational integral coefficients and of degree 

m(--  > 2 )  in x and of degree not greater than n - - I  in z; a is taken to be the 

smallest natural number such that 

av(Z) < a ( [  -~- z) n-1  

for ~ = o, I , . . . ,  m. Thus the polynomial f ( x , ~ )  in x has integral coefficients 

from ~ and is of degree exactly m in x. We impose the further condition that 
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its discriminant does not vanish, i. e., t ha t  the diseriminant o f f ( x ,  z) with respect 

to x ,is not divisible by q~(z), f ( x ,  ~) may be reducible in ~t. W e are concerned 

with the quest ion of how closely we can approximate  to a roo t  of f ( x , ~ ) b y  

numbers  of a fixed degree over ~, when we consider a finite number  of valua- 

t ions of ~. 

5. Let  e be a positive number,  s a na tura l  number  less t han  m, r a na tu ra l  

number  to be de te rmined  later,  and q the ra t iona l  in teger  de termined uniquely 

by the inequali t ies 
q__~ . e  

+ ~  I r < q + I .  

To every na tu ra l  number  R correspond exactly 

~[~1 = (2 R -I- I) n(q+r*l)(s+l) 
polynomials  

R(xl, = E  E =, 
I~=0 12=0 l,~--O 

of degree q + r in xl, s in x~, and n - - I  in z, and with rational integral eoeffi- 

cients such tha t  
] R(xl, R. 

We write 

/b, ;~ (x. x~, z) = o~'+;"/~ (x. x., z) 

q-br~  n--i (ll)(~2)Xl(_i, ps, l_e_i~zl~ 

Pu t t i ng  x ~ : x . 2 : x ,  i t  follows tha t  the polynomials  Rio (x, x, z), for  i----o, I, . . . ,  r - -  I, 

are of degree not  grea ter  t han  q + r + s  in x and n - - I  in z. Arranged  in powers 

of x, these polynomials become 
q+r§ 

Rio(X,X,Z)~- ~_~ Bj i (z)x  ~+'+'-j ( i = o ,  x , . . . ,  r - -  x), 
j=o 

where 

I,=0 /3=0 

q+r n--I 

/1=0 l~=0 

< 2q +'+~ R (I + z) "-~ 

(j----o, I , . . . , q + r + s ;  i = o ,  1 , . . . , r - - x ) .  
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F o r  i =  o, I , . . . ,  r - -  I, we app ly  L e m m a  2 to  t he  p o l y n o m i a l s  ~ (x, z) = Ri o (x, x, z), 

ga (x, z) - -  f ( x ,  z), and  99(z). S ince  s ~ < m - - I  a n d  M - - < q + r + s ,  

m a x  (0, M - -  m + I) --< m a x  (0, q + r + s - -  m + ,) --< q + r, 

so t h a t  we m a y  t a k e  d = q + r + I .  W e  a lso  t a k e  b , . ( z ) : a , ( z ) ( ~ : 0 ,  i , . . . , m ) ,  

b = a ,  B : 2 ~ * + ~ R ,  b ' = B ' : n - - I ,  so t h a t  

m a x  (o, B ' +  b ' c l - - n  + i ) =  (n - -  I) + (~t--  I ) (q  -1- r + I ) -  (~t - -  I) -~- (~'~ - -  I) (q + r q -  I). 

H e n c e  we m~y pu t  
=(q  + r +  I ) ( . - - I ) .  

Thus ,  by  a r e p r e s e n t a t i o n  c o r r e s p o n d i n g  to  t h a t  in L e m m a  2, R;o can be re- 

p r e s e n t e d  un ique ly  t hus :  

bo(z)dI~io(X,X,Z) = / ~ l ) ( x , z ) f ( x , z )  q- iFx~2)(0g,~')~0(~) + ~ 3 ) ( x , z )  ( i = o ,  I , . . . ,  F - - l ) ,  

where ,  in p a r t i c u l a r ,  
m--I ~1--1 

,U~0 v~O 

is of  deg ree  n o t  g r e a t e r  t h a n  m - - I  in x and  n - - I  in z a n d  has  r a t i o n a l  i n t e g r a l  

coef f ic ien ts  P i , ~  wh ich  sa t i s fy  the  i n e q u a l i t y  

[1~ "6}(x,Z) I ~ 2 n-l+n(q+r+l} 2 q+r+` ~ a  q+r+l (2 7.) ( ' - i ) (q+r+l) ,  

o r  

(2 a n - '  axn-1) q+r+l R (/ = O, I, . . . ,  r - -  I). 

F o r  g iven  R,  t h e r e  a re  fo r  the  s y s t e m  of p o l y n o m i a l s  Rl.a)(x, z) ( i = o ,  I , . . . ,  r - -  I), 

n o t  m o r e  t h a n  

~ _  {2(2an-lax'n-1)q+relR + I} m ' r  < (23n-1 eggn-1)(q+ r+l) ..... r(2x~: ~ q- 1) mnr 

d i f f e r en t  poss ibi l i t ies .  :Now 

r n + 8  
+ , ' +  i ) (8+  r ( , +  I ) = m n , ' +  

8 + I  

so t h a t  
~ > (2/~ + I) ~ r + * " " .  

H e n c e  

w h e n  
m 

2 R + I ~ (23n-x azn-1) (v+'+l)-~ "-> 2 R - -  I 
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Thus ,  when these inequali t ies hold, there  must  exist  at least two different  

polynomials of the ~ype /~ (x~, x,2, z), say 

q+r 2 ~-1 q+r 2 ~7--1 
l~ , l~x~  ,,~toxl, x~- z ',~, 

1~ 0 l.z--0 /a--0 ll=0 l~=0 l ~ 0  

with 
I~-N-< R, RV~l -< R, 

and sueh tha t  if R*o(x, x, z) and R**tx z) are ~o ~ , x, represented,  as in Lemma 2, in 

the forms : 

( i = o ,  I , . . . ,  r -  I), 
d ~$ $$ a 0 (z) R~'0 (x, x, z) = R~ *<') (x, z ) f ( x ,  z) + R7 *('0) (x, z) qv (z) + B~ <~, (x, z), 

the r ident i t ies  
R*(~) (x, ~) = - * *  <~ (x, ~) (i o, i , . . . ,  r I )  

are satisfied. We write  

q+r 2 n--I 
A~* (Xl, X2," Z) - -  ~ * *  (Xl'X~'~)~--R(Xl'Xf'Z) = Z Z j~l'l'~13x~'x~'z'~: 

11~0 l_~0 /a=0 

so t ha t  R(x,,x2, z) is a polynomial  with ra t ional  in tegral  coefficients which is not  

identical ly zero and for  which 
m 1 m_ 

I t~ (Xl ,X2 ,  Z)] ~ 2 ~  < ( 2 3 n a Z n - - 1 )  (q-kr+l)~ -3v I < ( 2 3 n a ~ n - 1 )  ( q + ' + )  e .  

Fur ther ,  the  polynomials  

R~o(x,x,~)=[ ~ ( i = o ,  ~ , . .  , - -  ~) 

can be wri t ten  in the form:  

(I2) Rio(X,X,Z) = ao(Z)-d{~:~l)(x,z)f(x,Z) +.B~2)(x,z)99(z)} ( i = o ,  I , . . . ,  r - -  I) 

for  cer ta in  polynomials B~ ~) (x,z) and B~ 2) (x,z) with ra t ional  in tegra l  coefficients. 

By Taylor 's  Theorem,  for  any fixed x, 

q+r 2 
l~=O 12=0 

~nd therefore  

R~0(~,,~,~)= ~ R,,,.(~,x,~) (x~-~)',-~(x~-~)', (i=o, ~ , . . . ,  , - -  ~), 
/m=O /.,=0 
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or, by (I2), 

R~o(xl ,  x~, z) = (-1 - x ) ' - i ~ ' ~ ( x l ,  x ~ , . ,  ~) + (x~ - x) (;~(-1, x~, ~, ~) 

q- f ( x ,  Z) U~ 1) (:gl, x~, x, z) + 99(z)H~ 2) (x,, x2, X, Z), 

where  

-~/ (Xl ,  X.2, X, ~) = Z Rl, ,.~ (x, x ,  z) (x  1 - -  x) l ' - r ( x  2 - -  x)'=, 
ll:r l~=O 

a~(x.x~,x,~l= ~ B~,,~(x,x,~l ( x , -  x/~,-~(.~ - x/~,-1, 
11=0 /~=1 

/4-(1) [a," Xo, X, ~) = ao(Z) -d  Z / ~ ( 1 )  (X, z) (x  I - -  X) l '-i ,  
1,=0 

, 1  

H~')(*.x,,x,~I=ao(~)-"ZRI?)(,%~I xl - - . /~ ,  - '  ( i = o ,  i , . . . , , ' - - , / .  
/,=0 

The  first two of these funct ions  are polynomials  in x,, x.~, x and z with ra t iona l  

in tegra l  coefficients, while the last two are polynomials  in xl, x~, and x with 

coefficients which are ra t iona l  funct ions  in z with ra t ional  coefficients and which 

are there fore  numbers  of ~ for  z = ~, since a0(~)~ o. Clearly, when z----~, the  

ident i ty  for  R~0(x,, x~, z) takes the form:  

Rio(X,, x~, ~)= (xl--x)r-i  Fi(xl, x~, x, ~) + (x2-- x) Gi(Xl, xo., x, ~) + f (x, ~) H~ 1) (xl, x,, x, ~) 

( i~-o,  I , . . . , r - - l ) ,  
and if we pu t  x = x~, 

(i 3) Rio (xl, x~, ~) = (x 1 - -  x , ) ' - iF i  (xl, x,, x~, ~) + f ( x , ,  ~) H~ 1) (Xl, x,, x,, ~). 

6. Since ~ is a field, every ideal in the r ing of all polynomials  in one 

variable with coefficients f rom ~ is a principal  ideal ~. There  is in par t icu la r  a 

polynomial  e(x~) with coefficients f rom ~ and a first coefficient uni ty ,  and of 

degree 0, say, which divides both  / / ( x  1, x~, ~) and f ( x , ,  ~), while no similar poly- 

nomial  of h igher  degree than  0 does so. Clearly, 

We  put  

f(x~, ~) = e(x~)~,(xo.), RCxl, x~, ~) = e(xe) S(xi, x~), 

1 B. L. VAN DER WAERDEN, 'Moderne Algebra', 2nd edition, Yol. x (I937) , Julius Springer, 
Berlin, p. 59. 
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so t ha t  7(x~) is of degree exactly m - - 0 ,  while S(xl, x~) is of degree not  greater  

t han  q + r  in xi and s - - 0  in x~, and has coefficients f rom ~. By our choice of 

e(xe), S(xl, x~) and 7(x.,) have no non-constant  common factor. 

We can arrange S(x,,  x~) in powers of x~, thus:  

S--O 

s (xl, <0) = ~ w,(x,) x,~, 
/=0  

where the polynomials 

(t4) Wo (xl), w, (xl), �9 �9 w,-o(Xx) 

are not  all identically zero and have eoefficients from ~. Let  Z + I  (Z >~ o), and 

no more, of these polynomials be l inearly independent  with respect to the field $~, 

say the polynomials Wro(Xl), wz,(x,) , . . . ,  w,z(x~), where l o < / , <  ... <1 z. Then the 

Wronski  de terminant  
~ ( x , ) -  d~-:~"~(x') I 

i ! d x  i i,j=o,l . . . . .  z 

cannot  be identieally zero 1. Clearly, J ( x l )  is a polynomial  in x, of degree not  

greater  t han  (g + I) (q + r), where Z ~< s - -  O. 

I f  we express the polynomials (I4) linearly in terms of the choaen g + I 

l inearly independent  polynomials, with coefficients f rom ~, then  S(xl,  xe) takes 

the form : 
z 

s (xi, x,) = ~ w,~ (<) & (x,..), 
j=o 

and it  is clear tha t  the Z + 2  polynomials in x~: 

& (~,), & (x,), . . . ,  &(~_,), r(x,) 

are none of them zero and can have no common factor. Now 

z 

tt (xl, x,, r ~ w,j (x,) e(x,) n(x2), 
j=o 

and 
Z d i w l j ( x l )  R,o(x,x~,~)=~ i ! d x l  e(x~)~(x~) (i-=o, ~ l . . . , r - - ~ ) .  

j=O 

d i wu (x~) 
Thus, on mult iplying /~o(X~, x2, ~) by the cofactor Aii(x~) of i! dx~ in J(x~), 

and adding the expressions obtained for i -~o ,  l , . . . ,  %, we find tha t  

1 See n o t e  I on  p.  I ,  p p .  1 7 7 - - 8 .  
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Z 

i--0 

f o r j ~ - o ,  I , . . . , Z .  Hence and by (I3), 

J(x,)e(x2)Y2~(x.2)=(x~--x~)r-zpi(x~,x2) + f(x,2, C)qj(x,,x~) ( j = o ,  1 , . . . , Z ) ,  

where pj(x~, x.2) and qj(x~, x~) are certain polynomials with coefficients from R. 

Differentiat ing these identities r Z 1 t imes with respect to x~, and put t ing 

x~ ~ x.2 = x, we see t ha t  all the polynomials 

~(~)(x) e(x) ~2j (x) (i = o, i , . . . ,  r - z - i;  j = o, ~ . . . .  , z) 

must  be divisible by f(x,~). Since f(x,~)-~e(x)7(x ) and since t~o(X ), Ql(x) . . . . .  

t2z(x), 7(x) have no common factor, all the derivatives .J(~)(x) must  be multiples 

of 7(x). Thus, since f(x,~) and therefore 7(x) have non-zero discriminants,  J ( x )  

is divisible by 7(x)r-z, and so 

( I  5) ,~ (X) = ~ (X) r - z  d (X), 

where d(x) is ~ polynomial with coefficients from ~ which is not  identically zero 

and is of degree ~, say. Since 7(x) is of degree exactly m - - 0 ,  and d(x)  is of 

degree not  greater  than  (g + 1) (q + r), i t  follows tha t  

<- (z  + ~ / (q  * , )  ( , -  z ) ( ,~  - o) _< (z + I) i m + ~t - , ' - ( , -  z ) ( ,~  - o) 
~s-~ ll 

[Z+, ) 
= ~" + z (m - e ) .  ~m--m+O r + e Z + s +  II 

I f  we write 
Z = s - - O - - v ,  

where v is a non-negative rat ional  integer, then  ~ satisfies the inequali ty 

< _ ( m - - s - - I ) O  + m 
- r +  , r +  (m-- I)m. 

s + I 
I f  we take 

8 ~< �89 r ~ 2~'t  ~, 

i t  is easily verified tha t  v must  be zero and tha t  

6 <- ~r + (m--Ore, 

for otherwise ~ would be negative, which is absurd. I t  therefore follows tha t  all 

the polynomials (14) are linearly independent,  and so we may take 

~" (~.~) = x~ 
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j such that  
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f o r j = o ,  I , . . . , s - - 0 .  Then the c a s e j = o  gives the identity 

~(<)  e(x~) -- ~ ~,o (x,)  B , o  (x,,  x~, ~). 
i = o  

Differentiating successively with respect to xl, we find that  
e -- O + j  

(16) J(J)(a:l)e(,~g~) --~- ff_; Pi j (x , )  tg, o(X,,X,,g) ( j = o ,  I ,  2 , . . . ) ,  
i = 0  

where the /?ij are certain polynomials in x,. 

Now let 2~ and ;La be elements of an arbitrary field over ~ such that  .f(2,,~) 

Then by (I5) there exists a non-negative rational integer 

j -< ~ ," + (,n - I ) , ,  
and 

since, firstly, 7(2,)~ o, and secondly, i f  J(x) is divisible by ( x - -2y ,  but by no 
higher power of (x--21), j--< 6. Thus, by (I6) and since e(2~) ~ o, at least one of 

the numbers Ri0(k,,it~,~) ( i = o ,  z , . . . , s - - 0 + j )  is not zero. We have therefore 

proved that  i f  2, and L, are a*~y hvo elements of an arbitrary field over ~ such that 

f(al ,  ~) a*ld f(L_,, ~) are uot zero, there exists a uo*~-uegative rational integer i ~,ot 

greater than ~r + m 2 -  I, where ~ <~ �89 and r >~ 2 m 2 (thus fidfilling the co, ditio~s 

that o ~ i <: r), such ~hat 
Rio (~, ~..,, ~) # o. 

7. We thus arrive at the following lemma: 

Lemma 3. Let: 

be a finite algebraic field of degree ~ (>~ I) over the rational number field ?~; 

be an algebraic integer generating ~; 

q~ (z) be the polynomial 

99(Z)  : Z n -4- Z l  z n - 1  -}- X2Z '1'-2 -~ " ' "  -~- Zu 

with rational integral coefficients and irreducible in 9~, having ~ as a root; 

z be the number ~ ( z ) ]  ; 

f ( x , z )  be a polynomial in x of degree m(  > -- 2): 

f ( x , , . )  = ao(~)x" + a~(~)x'~ + .  + am(~), 

where ao(z) (~  o), a,(z), a~(z) . . . . .  a,,~(z) a,'e polynomials in z with rational 

integral coefficients a~d of degree ~ot greater than n --  I, and f ( x ,  ~) has a 

~on-zero diseriminant (N. B. f ( x ,  ~) ~eed not necessarily be irreducible in ~); 
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be the smallest natural number such that 

for  v--~o,  I , . . . ,  m; 

s be a natural number less than m; 

r be a natural number not less than 2 mS; 

e be a positive number not greater than �89 

q be the rational integer determined by the inequalities 

q < (m + ~ ) 
_ - - -  I r < q + I .  

k s + I  

Then there exists a polynomial R (xl, x~, z), not identically zero, with rational 

integral coefficients and of  degree not greater than q + r in xl, s in x~ and n - -  I 

in z, with 

IR(x,,x~,~)l < ( ~ " a ~ - ' )  ( ~ + ' + ~ ,  

and such that the following properties are satisfied." 

(~) I f  

ll=r l~O 

a , (x .~ ,x , z )=  ~ R~,~.,(x,x,~) (x,-x)~.-~(x~-~.) ~~--', 

N ~) (x,, x,, x, ~) = ao(~)-("+r+' Z ~i~ (x, .') (x, --  ~)',-', 
l ~ O  

11=0 

where i takes one of  the values o, I, . . . ,  r - -  I, Rl,~._(x, x, z) is the function 

i ~ i ~ x ' , , ~ x ~  f~,=~=~' and R~)(x,z) and R(~)(x,~), ( i = o ,  ~, ,  �9 " - - 0  a,'e certai. 

polynomials in x and z with rational integral coefficients, then R~ 1) (x, z) and R~ 2) (x, z) 

can be chosen so that 

+f(x, z)H~ 1} (xl, x2, x, z) + q~(z)H~2)(xt, x2, x,  z). 
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(b) I f  ~1 and 2~ are any two elements o f  an arbitrary field over ~, other than 

roots o f f ( x ,  ~), then there exists a non-negative rational integer i such that 

i <--er + m ~ -  I < - - r "  i 

and 

Rio C) r o. 

w 4 a. Inequal i t i e s  Requ ired  in the  P r o o f  o f  T h e o r e m  1. 

8. We shall require the fol lowing sl ight  var ia t ion of a lemma proved by 

Siegel~: 

L e m m a  4. Let  t% t % . . . ,  ttt be any 1 numbers, where l>--I, and let L be the 

maximum of  the absolute values of  the coefficients of  the 29olynomial in z." 

Then 

1 

H 
! 

H max (I, Ix ,  I)~< 4 ~L. 

Proof. 
values no t  g rea te r  than  2. 

~tl, tt2, �9 �9 ttz,. Then  

Suppose 1~(o --< 11 g l) of the numbers  tt D t%, �9 �9 #t have absolute 

W i t h o u t  loss of general i ty ,  these may be taken as 

Then  
Ii 

P u t  f ( z )  = I [  (z - -  tt,.). 
~ = 1  

[1 

II m a x  ( I ,  ]~t~ [ ) ~  2 ll. 

for  at  least  one of the (11+ I)th roots  of uni ty  

*o : I, ~,, e~, . . . ,  e,,, say for  z o : ej (o ~< j --~ 11), If(zo) l is not  less than  I, since 

Thus 
It Ii 

See note I on p. I, p. I75. 
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Since ~t/,+l , ~t/ ,+2, . . . ,  ~l all have absolute values greater  than  2, 

l 1 l 

* ' = / j + l  ' v = l l §  l , 

l 

< H (i + I) = 2 '- ' , .  
Thus ~=t,+l 

1 l 

H max (,,  I : .  I) -<- z*II  I~o--t ' .  I--< z~L(Izo!  ~ + I~ol *-~+ ' + i) 
~,~1 ~=1 

= 2  t(l+ I)L--<4 ~L, 

and the lemma is proved, since l + I ~< 2 z for  1 >-- I. 

From Lemma 4 follows immediate ly:  

Oorol lary .  Let  

be a finite algebraic field of degree n(>_ I) over the rational number 

field ~; 
h, be a natural number; 

)~ be an algebraic number of  degree h (o~ ~ some divisor of  h) over S~, 

and so an element qf  a field ~'  of  degree h over ~ a~d hn over ~3; 

be the coefficient o f  the highest power of  x in the polynomial 

r (x; ~, ~, hn); 
be the number [Y(x;  2, ~ ,  hn)l ;  

be any w (o ~ w <- h n) conjugates to ~, with re,~pect to the field ~['. 

A 

2 ('), 2(2~,.. . ,  2 (~) 

Then 

and 

A 

(b) H ( ~  t~ (')l) < "'~ A ~.=1 + - - 8  ~ o ~ "  

9. We shall also require  bounds ]br the valuations of  any root o f f ( x ,  ~), or for  

a product  of valuat ions  of such roots. (Tile symbols ~(z), z, ~, ~, n, f ( x ,  z), a, m 

have the same meaning as in Lem m a  3.) 

We write f ( x ,  z) as a polynmnial  in z, thus:  

I ( X , Z )  = a ' 0 ( x ) z  n - 1  -~- a ' I (X)Z  n - 2  ~ - ' ' "  ~- o f n - l ( X ) ,  

where the at(x) ( r = o ,  t , . . . ,  n - - I )  are polynomials  in x with r~tional  in tegra l  

coefficients and of degree n o t  grea ter  than  m. They are not  all identically zero. 



The ~ adic Generalisation of the Thue-Siegel Theorem. 29 

Le t  D(x) be the resu l t an t  of f ( x ,  z) and q~(z) with respect  to z, so tha t  

(I 7) 9D (z) OD (X, Z) + f (x, z) F~) (x, z) ~- D (x), 

where @D(X, Z) and Fj)(x, z) are certain polynomials in z of degrees not  g rea te r  

than  n - - 2  and n -  ~ respectively,  and with coefficients which are polynomials  

in x with rat ionM integra l  coefficients. The resu l tan t  / ) (x)  is a polynomial  in x 

with ra t ional  in tegral  coefficients. Also, 

D (x) ~ o. 

For  otherwise the equat ions  9~(z)= o and f ( x , z ) =  o would have a common 

solution in z independen t  of the  value of x. Thus q~(z) and f ( x ,  z) would have 

as a common divisor a polynomial  in z with coefficients not  all zero, and not  

involving x. By the i rreducibi l i ty  of !#(z), this would be possible only if T(z) 

were a divisor of the coefficients ao(Z ), a l ( z ) , . . . ,  a,~(z) of f ( x , z ) ,  considered as a 

polynomial  in x. But  this is impossible, since ao(Z), a~ ( z ) , . . . ,  am(z)are of degree 

not  g rea te r  t han  n - - I ,  while T(z) is of degree n. 

Thus  we may wri te  

D(x) = Dox'V + D~x 'v'-~ + ... + D~I, 

where M is a non-negat ive ra t ional  integer ,  Do, D1 . . . . .  DM are ra t ional  integers,  

and D O ~ o. 
By (I7), any root  of f ( x , ~ )  is also a root  of D(x), so tha t  the  problem is 

reduced to tha t  of finding bounds for  the roots of D(x). 

10. (a) Let ~ be a real or complex root o f f ( x ,  ~). Then 

Do ~'f------ (D, ~r-1 + D.~ ~ - 2  + .. .  + D:~), 

so that ,  provided ~ ~ o, 

and 

IDol I#1-< [D-](x + Ill-1 + I~l -= + . + IgI-("r-l)). 

Suppose now tha t  I ~ ] > I .  Then  

I~l <IDol" I -I~ l  -x 
Hence  

Ill < ilD---b~ + i. 
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This inequali ty is obviously true also for  I~l -< I; 

ra t ional  integer,  so tha t  IDol -> I, it  follows tha t  

I I<Vb-] § * 

for all real or complex roots ~ of f (x ,  ~). 

hence, since _D O is a non-zero 

(b) Let ~ be a root of f (x ,  ~) in the perfect r-adic extension of ~, i. e., an r-adic 

root of f (x ,  if), where r is a finite prime ideal of ~. As before, provided 7 ~ o, 

Hence 

I Do Ir 17 It < max (I, 17 171, 1 7 I~ -2, [7 -(,~L-~>) 

since D 1, D2 . . . .  , D,~I are r a t i o n a l  in tegers .  Thus ,  i f  17 Ir > I, 

I 

and this inequali ty also holds if ]7 [r ~ I, for D O is a ra t ional  integer,  so tha t  

IDol~<- ,. 
Let  now 71~, 72~ , . . . ,  7g(*)* be any g(r) roots of f (x ,  ~) in the perfect r-adie 

extension of ~. Then 

max (I, I r/,~ I~) ~ I Do I"I (~)' 
\ ~ = 1  . r 

the product  being taken over any number  of different  finite prime ideals ~ of ~. 

But  i t  was s tated in w I t ha t  if p(l), O('~).. . ,  p(~) are the different prime ideal 

factors in ~ of a na tura l  prime number  p, then  

i=i 

Thus, since D o is a non-zero rat ional  integer, 

g (r) ) 
l~ IF[ max (I, I~, ~Ir) 

\~=I 
-<IDol ", 

and so 

F /'' ) 
�9 \ ~ , = 1  



The p adic Generalisation of the Thue-Siegel Theorem. 31 

11. I t  now remains  to find an upper  bound for  ]D[ in terms of the coefficients 

and degrees of ~0(z) and f (x ,~) .  

The resu l tan t  D(x) of 9~(z) and f ( x ,  z) is the de te rminan t  of 2 n - - ~  rows 

and columns : 

/ O, I ,  7- D . . . . . . . . . . .  ~ ~(n--2, Xn--l~ XR, 

~ I r o w s  

~n  

(~0~ ~D (~2~ . . . . . . . . . . .  ~ r 

O~ ~0~ 61 , . . . . . . . . . . .  ~ ~n--2~ ~n-- l~  �9 

~0~ 6r . . . . . . . . .  ~ ~n--2~ Un--1 

~1. rOWS 

From this de terminant ,  q)9(x,z) is obta ined by replacing the  final column by 

z "-~, z "-~ . . . .  , I, o , . . . ,  o, and ~ ( x ,  z) by replacing the final column by 
O. .~ O~ gn--1 ~n--2 I 

:Now 
~/~(Z) ~ a ( I  + z ) n - - l ' ~  2 n - l a ( I  -'~ 2: -[- Z~'-~- - . .  + Z n - l )  ( ~ = 0 ,  I . . . .  , 'm) ,  

since 

ke ~=o 
Hence  

~ ( X )  "~< 2r~--I a ( I  " g f f X - ' ~ X 2 " ~ ' ' ' 2 c X ' r n ) ' ~ 2 n - - l a ( I 2 v X )  m (~' : O, ' ,  . . . ,  ~V~-- I ) .  

Let  z (x )  be the  polynomial  obta ined on tak ing  any one complete product  of 

elements  of the de te rminan t  ])(x).  Then  since ]z~,,] ~ z for  w : o, I , . . . ,  n, 

~ ( X )  < ~ n - l ( 2 n - - l g ) n  ( I  -~- X) mn  

"~ xn--12(n--1) n an 2 m n ( I  "[- X "~- X 2 + " '" -~-Xmn) .  

There  are at  most  ( 2 n - -  I)! such products  ~(x). Hence  

D(x)<(zn-- i ) I2h*-al"x"-aa'~2~'~( i  + x + x2 + . . . +  x'~'~). 
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IDI+ 
<: 

(2  n - -  I ) !  2(n--1) n + m n a n z n - 1  4- I 

22n--1 n2,~-I 2(n-1) n+mn a'n z ~ - I  

2n"-+n+m n-1 ~)~'2 ~*-1 an Zn-1 

:2n~+n+m n §  n log n a n  g n - - 1  

27~ (2 n §  2 nl +~ log n) a n z n - 1  

4 n (n+ra+2 log *~) a n ~n-1  

(since e < 2  ~) 

(since 2 1 o g n < n  for n--> 1). 

By (I7) , (I8) and (I9) we arrive at: 

Lemma 5. Let ~[', z, n, a, m, f ( x ,  ~) be defined as in Lemma 3. 

(a) I f  ~ be any real or complex root o f f ( x ,  ~), then 

(b) I f  r#~, V2~.,..., ~(~)~. be any g(r) roots of f (x ,~)  in the peTfect r-adic 

extension of S~, where r is any finite prime ideal of ~, then 

VI I ) 
I~r ~ H m a x ( I ,  [~'~['g) "~4n'("2n+m) a'z'Z n(n-1), 

\~,=1 

the product being taken over any number of different finite prime ideals r of ~. 

w 4.. P roo f  o f  the Approximation Theorem.  

12. Let  2~ and 2~ be any two algebraic numbers  of degrees h 1 and h2 (where 

h, and h2 are divisors of a fixed natural  number  h) over the fie]d ~, which is of 

degree n ( ~  I) over the ra t ional  number  field ~ (i. e., in our notat ion,  w'~--41 or 

42 and n " =  h~ or h2); let  L~0 and L2o be the coefficients of the highest  powers 

of x in the polynomials ~'(x;41, ~ , h n )  and Y(x;4~, ~ , h n ) ,  and let A 1 and A s 

be the numbers  II ' (x;  4 ,  ~ ,  h~)] and I1 ~/x; 42, ~ ,  hn)].  

By Lemma 3, provided nei ther  41 nor 42 is a root  of f ( x ,  ~), for some non- 

negat ive rat ional  integer  i not  greater  than ~r + m ~ -  I, 

= R o(4. 42, o ,  

Ri0(x~, %, z) being defined as in Lemma 3. Now Rio(X> x.2, z) is a polynomial  

in xl, x2 and z with ra t ional  integral  coefficients and is of degree not  grea ter  
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than  q+r- - i  in x~,s in x~ and s - - I  in z. Thus, s i n c e ~ i s  an integer o f ~ a n d  

~t I and ~.2 are of degrees ]h and he dividing h over ~, ~i is a non-zero element 

of a field ~ '  of degree h ~ over ~. Further ,  the coefficient of the highest  power 

of x in the polynomial  T(x;  ~ ,  ~,  h ~ )  is a divisor of ~--~o(l.q+~-~L~.~o,~h, since 2~ and 

/~.~ lie in fields ~ and ~ ,  of degree hn  over ~ ,  which are subfields of ~ ' ,  which 

is of degree h~.n over ~3 and therefore of degree h over ~ and ~,~. Thus, if 

~ } ,  9tI?),. " ., N~,-'n) be the real or complex values conjugate  to 9t~, with respect 

to ~' ,  and if r,, r~, . . . .  , r~ be any a ( - -  > o) different finite prime ideMs of ~, and 

if, for k = ~ , e , . . . , a ,  he be any natura l  number  not  greater  t han  g(r~)h ~, the 

inequali ty (9), with w ' =  9t,. and n ' =  h "~, takes the form: 

(2o) 

where 

h 2 n f i  HIm?l Im~l~2>-ILq:~-'L:ol -h, 
~ : 1  k : l  

provided 2L and 2:~ lie in the perfect rcadie, r~-adic . . . .  , ro-adic extensions of 

As before, let there be r~ real and r2 pairs of conjugate imaginary fields 

conjugate  to ~, and let q,, ci2, �9 �9 q~,+~ be the corresponding infinite prime ideals 

in any desired order. Then I ~ [ , j .  ( j =  I, ~ . . . . .  15+r~; 7 =  I, g(qi)) represents 

the absolute value of any of the ~ti')(~ ~--- I, 2, . . . ,  h~n) which are roots of the 

polynomial  Y(x; }tti, ~j~, h'~). Thus, if e be any non-negative rat ional  integer  

not  greater  than r 1 q-r2, and if  G(qj) be a natural  number  not  greater  than  

g(qj) (j = I, 2 , . . . ,  e), 

i ]  ]1 ]Nit.j r ] ~i,~. k - ( , - , o  Lgo 
j ~ l  7 : 1  k : l  

~' :1 \ j : l  7=1 

Now, as defined in Lemma 3, 

Hence 

and 

m q + r  s n - 1  

R(~,~,~} ~(~"~'~-~) (~'+~'T Z Y E ~,x~,,, 

R;0(x,, x~, ~/"~- (2~' a"'~-l/~'-r'l~ ~ " ~ 2~ - ,  ~"-i x~ ~ '  
ll=O 12--0 /a=0 

4 -- 042130 A c t a  mathemat ica .  83 
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But  

and so 

Also 

Hence 

v~0 

/~=0 

q+r--i 
< 2  q+r ~%~ X~' < 2q+r(I + Xl) q+r-i X.d 

1,=O 

n--1 

I~:O la=O 

-RiO (Xl, X2, Z) ~ (2 3 n a xn-1) (q+ r+l) me 2 q+r (I .3[- Xl)q+r-i (I + X2)5(I + 2") "-1,  

and so 

I ~,i~:, ~(28naxn-1)(q+r+l)m2q+"( I + 1211"j,)'7+~--'( I + I 2~ I"~-,)' ( I + I~1~) '~-1 

( j =  I, 2 , . . . ,  r~+r~; 7 =  I, g(q~)), 

where 12j ]qJr and ]2~, hj 7 represent  the absolute values of any roots 21jr and 22j./ 
of the polynomials Y(x;  21, ~jy, h) and Y(x;  2~_, ~jr ,  h), and I~L~ represents 
the absolute value of tha t  9t~r} corresponding to the pair of such roots chosen. 

I t  follows that  

H II H(, + 
~, j~ l  7=1 v~=l 

~,+~ .a(qj) h ~,+~: 
�9 H H H (i + 12~..)lv~).~ I I  (I - [ - I ~ l , y ( v ( n - , ) - .  

j = l  7=1 ~.~=1 j= l  

2~ 1), 2~ 2), . . . ,  2~ h) and 2 (1)2 , 2~ 2), . . . ,  2~ h) being the roots of the polynomials Y(x; Xt, ~, h) 

and Y(x;  2~, ~, h). Thus, by Lemma 4, Corollary (b), 

H,l~i~)l < (23nanxn_l)h%l(q+r+l)~2h, n(q+r) 8h.. {q+r_i)/ A, ~(~+~-~)h 8 h ' ' ' -  
, - ~ !  

Hence and by (2o), 

e o ( q ~ )  

H �9 
j = l  7=1 k=l 

! A \sh 
�9 I " ~  | 8 hn(n-x) xh~(n-1} 

~1 L~0 I I  

_> (Aq+~-, A~)-h {(2 3~ az~-l)'~(q+~+l}~2n{q+~) S~<q+~+m+~-2)xn-1}-h,. 
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13. We  write:  

r = F,.(2> k,,, gJr, ~), (~J;a'r = G.(2,,~ J',, ~'a z'r, ~-') (j = I , 2, �9 �9 ., e; 7 = I, G(qj)), 

_ - -  c p . , ,  ~.o, ,~,~, r 7 ,  = i ,  2 , . . . ,  o), a , , .  = s (,~,, a., vz.,  g ) ,  ~ :  ~ , ;  

where ,~;-(x~, x,, x, z) and  Gi(x,, x~, x, z) are defined as in L e m m a  3, and  ~j~ is a 

real or complex root  and W an rk-adic root  of f ( x ,  ~). 
We seek first for upper  bounds  for ~i j r  and  (~iJr, where j = I, 2, . . . ,  e and  

7 = ~, G(q~). I t  should be noted  t ha t  by [A (2:, 2~, ~j~, ~)[Vr' where A (x,x.,_, x, z) 
is any func t ion  of xj, xe, x and z, is mean t  the  absolute value of A when 

x ~ -  21jr, x~-~ ,~j~,,, x -= ~.ir and  z = ~j./, where  2, ir  and  ~2j~, a r e  any roots  of the  

polynomials  T (x; ~ ,  ~a';,, h) and T (x; ~.~, ~ r ,  h), and ~Jr is the  root  in the field 
~j./ of the  po lynomia l  ~(z). 

By the  definit ions of F~.(x> xz, x, z) and  G,(x~, x~, x, z), 

/~=0 

( j =  I, 2, . . ., 0; 7 = 1 ,  G(qj)), 
provided 

But  

/q=0 k~=0 13=0 

and by L e m m a  5 (a), 
I gJ;,l < 4 '~ '+~1  ~'~ ~-"-~, 

and, fur ther ,  it  is easily verified, by a me thod  ident ical  with  tha t  of IO (a), but  

with ~ (z) in place of D (x), t h a t  

Hence  

max (I ~iOr IV r' I (~iJr 19"7) ~ (2:'"a z"- ' )  Cv+'+I' ~ .  

" Z ffa ~"  k " ~ a . , = o q + "  a-,=o ,.~=o' { q+"- ,,=o (:") (k l )  (kQ (4" (= "+~) a" x"-l)~'+a'-t'-t ' (x + ' ) '  } 1 ,  1, 

. - q+,, 5 j  , , - , .  k , �9 } = (2a"az"-t)'q+r+l)'7 Z Z 1| *}(4 ' ' (2 ' z+ ' )a ' z" -*+  I)a"e <~-i( • + I)" 
~',=0 ~',=0 ~=0t \  / I 

(j = i, 2 , . . . ,  q; 7 = 1, G(q)). 
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Now 

Hence 

Also 

Also 

q+r(,) 
E ' ( 4  '~(~ 
kl :0  

q+r 
n+m) anxn--1 + i)/q,--i ~ 2q§ E (4n(2n+m) anxn--l + i)kl - i  

k~=O q+r() 
<__ 2 q + r ~ _  ~ q 4 - r  (4.(2,~+,n) a,~z,~_l+ i )a.  ' 

/:l= 0 ~1 

= 2q+r (4 n (2n+m) an xn--1 + 2)q+r 

"~ 3 q+r (4" (2 ,,+m) a,, xn-1)q+r. 

• (4-(2,~+-0 a . z,,-1 + I)#~ --~ 
k~=O 

< 

k 2 = 0 ]g2 

(4n (2n+m) an X'a--1 + 2)s 

(~)~-1 (4 ~ (~ ~+~) .,~ ~,,-~),~-~. 

Thus 

n--1 

Z ( , +  i),~ /(* 
la =0  ~ [ 

+ I-)~z --  I } < 2~ zn_ L 

m ~  (I ~,J, I~j,~, I e~j~, Iv,) 
. . . .  (q+r+l)  ~ 3 q + r + m _ l  x n _ l  < (2anax "-~) , 2 , , -m+1  (4n(2"+m)  a n x n - 1 ) q + ' + m - 1  

Hence, since 

(22)  

(j = i ,  2, � 9  Q; 7 = i ,  G (qj)). 

Q 

j = l  
e o(qj) 

j = l  ],=1 

< ( 2 ~ .  ~.n-') (~§247 ~ 2~ ~"-'~+' y (~+~+,.-1) ~,, (n-~ (4 ~ (~§ ~.-i)~(~,+r+m-~), 

provided 

f o r  j = I ,  2 ,  . . . ,  Q and 7 ---- I ,  V (qj). 

We seek next for upper bounds for the rk-adie valuations of ~,:~ and (~;~.. 

It should be noted that by [A (2~, Z,, Vk, ~)[~k, where A (x~, x~, x, z ) i s  any function 
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of x~, x~, x and z, is meant  the readic valuat ion of A (x~, x~, x, z) when x~ = 21,  

x~ = 2e, x = ~ and z -=  ~, where ~l .and 2~ are any roots of the polynomials 

Y(x;  2 ,  ~, h) and Y(x;  ~,,, ~, h) lying in the perfect  r~-adic extension of ~). 

By the definitions of T'~ (x~, x_~, x, z) and G~(x~, x~, x, z), 

max (I r I ~,~1~) -< max I n,,,,(w, ,>, r (~ -- ~, : , . . . ,  ~), 
l~ i ,  i + 1  . . . .  , q+r 
l.a~O, 1, "2,..., s 

provided 

But  Rl, l,~(x, x, z) is a polynomial  in x and z with ra t ional  integral  coefficients and 

of degree not  greater  than q + r + s  in x. Thus, since ~ is an in teger  of the field ~, 

(24) 

provided 

(25) 

max  (I ~-.1~, I ~,~-I~) -< max (I, I Vkl~k)q +~+~ (k = I, e , . . . ,  0), 

I ;~,  - ~. I~ -< ~, I ,Z~ - ,#.  I,.,~ -< ~. 

14. By Lemma 3, 

Rio (Z,, ~ ,  ~) = (~ - -  x) r-~ F,(Z,, ~ ,  x, r + (Z~ --  x) (;,(~1, Z~, x, r + f (x ,  r H~ 1) (Z, Z~, x, r 

Hence,  put t ing x = ~*z, it follows tha t  

I ~  Iv.~ = I(~, - ~J~)"-' ~ i ;~  + (~, - b~)  ~u~ lv~ ,  ( j  = i ,  2 , . . . ,  e; z = ~, . e  (qj~), 

and put t ing  x = ~7~', it follows tha t  

I'~,lr~ = I(X~-- ~.)~-~ ~ + (Z~-- ~)  ~i~ I~ (k = I, -~ , . . . ,  ,). 

Thus, firstly, 

I~l, Iv.z -< 2 max (I ~'.ir Iv:, I (~,:Jr I>) max ([ 2~ --  ~2~,, r-i [ 2 , -  ~J3' [qjT) r ' - 

so tha t  by (22) and  (e3), ( j -  1,2, . . . ,  e; 7 =  ~, G,,@), 

e a(V) 

(26) H H [~}~i[qj7 ~ 2 n  ( 23 n (t X n 1) (q F r + l )  E 2 n(n  m-kl) 3 n ( q + r + m - 1 )  X,~ (n--l) 

j = l  ;,=1 
q G(Oj) 

�9 "('§ 1I II  max (Is,-~.~:,la~-~', l a ~ - ~ , l v , ) ,  
provided j=a "/21 

<~ I, I ~ t . -  ~jr[qj 7 ~ I (27)  I x~ - ~_j./["Jr - 

for j = I ,  2 ,  . . . . .  Q and 7 = I ,  G (@. 
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Secondly ,  

r - - i  . , .~ 0")~ [{R,]~._< max  ([~,k[~a., [| max  (]2, ~]k]~ k , [2.a--~.lrk) ( l c=I ,  2, 

so t h a t  by (24) and  (25) , 

I ~,l~,. -< ma~ (~, I w I~,)~, +~+, max ( 1 2 , -  w I;2', I x , -  wL);  

and  if *228, (k-= I, 2 , . . . ,  a; d = I, 2 . . . .  , G(rk); ~-~  r, 2, . . . ,  h~8) be an  read ie  

root of f(x, r 

__ , q+r+s  [~}~il~ < H H { m a x  (I ,  Iv~.o,l~ ) m a x  ( [z , -ws~l~7 ' ,  I Z , - w . 8 ~ L ) } ,  
k=l k=l 8=1 z'=l 

where  hk8 (k----- I,  2 , . . . ,  (1; • = I,  2 , . . . ,  G (1;k)) is a n a t u r a l  n u m b e r  n o t  g rea t e r  

t h a n  h 2 and  such t h a t  
G (~k) 

h~.8 hk. 
8=1 

T h e n  by L e m m a  5 (b), 

(28) i I I  ~ i  I~ -< (4 '',(~n+m) a'Z= x" (n-1))(q+,'+8) h~ . 
k=l 

i~a (~ . s  hk 8 

k=l 8=1 r 
provided  

(29) I ~, - ~ 8 ,  I~ -< i, I z~ - ~ 8 ~  L -<~ 

for  k = I , 2 , . . . ,  a; ( 1 = i ,  2 , . . . ,  G(lck); ~ = I , 2  . . . .  ,hks .  

F r o m  (2I), (26), (27) , (28) and  (29) , i t  fol lows t h a t  

0 ~ (~j) ~ a(rk) hk e 

I I  I I  max(I/~--~Jvlo]:,,'r-' ILa--~.~r[,jr ) I I  I I  ]7[ max  (I ;q - -  ~k8~ [;;-;,. IZ-,--~x'8~l~k). 
=1 7=1 k---1 8=1 ,r=l 

"~ ( a q + , . - i  A ; ) - h  {(.,a n ct xn-1) n (q+r-~l) ~ 2 n (q+r) 8 n (q+, '+m+n-~)xn-1}-h 2 . 

�9 { 2  n (2 3 n a xn-1) n (q+r+l) "@ 2 n (n-re+l) 3 n (q+r+m-1)  x n  (n-l) (4" (2,'+m) a" xn--1) n (q+r+m--1)} --h a . 

�9 (4" l= ,,+,n) a" zn-1) -'~ (q+r+m-1) h" 

--~ (aq+r-i A~)-h T-l,  ~, 

say, provided  
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fo r  j = I, 2, . . . ,  Q and  7 = ~, G (qj), and  

fo r  k : I, 2, . . . ,  a;  6 = I, 2, . . . ,  G (rE); * : I ,  2,  . . . ,  hk 8. 

NOW 

2ran ~ 2ran{n--l) 
( q + r + l ) + 2 n  (q+r+m--1) (q+r+l)+(n--1)(n+l)+2*l  (n--1)(q+r+m--I) 

T g a  ~ z 

2(6n~m[e) (q+r+I}+(q+r) n+(n- -m+2)n+4  u2(2n+m) (q+r+m--I )+3 n (q+r+m+n--2)+2n  (q+r+m--1) 

= a I, xI.2 2 I a  

suy. Then ,  since m ~ 2 ,  n - -  I u n d  ~--~�89 

H e n c e  

T <(16ax)2n~(q+r+m)(2n+~-) 
and  so, if 

~(Q, ~ ) :  (,6 ~ ~)~'(~+r+"~) ( ~"+ ~) h~ (A,~+~-~ A:)~- 

0 G(qj) a GC~k) hk(~ 

�9 r-- i  H H m a x  ( I ) . , - ~ j , l , j ,  lz~-~#,l , j~,)  H H H mux  (Iz,-w~~L7", I z ~ - ~ l ~ ) ,  
j= l  7=1 k=l o~=I z=l 
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(30) E(e ,  a) > r, 

provided 

for  j = I ,  2 . . . .  , q  and 7 = I ,  G(@, and 

(29) Iz~-  w~l~.  ~ I, Ix~-  w ~ l ~  ~ * 

f o r  k = I, 2 . . . . .  a; 0 ~ = I ,  2 ,  . . . ,  G ( rk) ;  ~ = i ,  2 , . . . ,  h k  3 .  

15. Let  c and 0 be positive numbers  such that  

g// 
- -  - + s +  O < m +  I, e > i ,  f l = s + I  

v and let F j r ( j =  I,  z,  . . ., q; 7=- I ,  G(r F ~ d ~ ( k - = i , 2 , . . . , a ;  d = I , 2 , . . . ,  G(rk:; 
o , a (~�9 

~ =  I, 2 , . . . ,  h~,t) form a system of t =  ~ G(qs) + Z Z hk~ positive numbers  
with sum unity,  j = l  k=l ct=l 

W e  now impose the following conditions on ~, r, 2, and ,~: 

O I) o < ~ � 8 9  , < f l ,  

2) r ~ __2m a ~ _  _ _ ;  
8 

3) AI ~-- ( I6az )  '2'c-' (*@1 +0 ('~n+~) h/(e-3~) 

1 

4) (c hfl A , ) r  < A.~ < (c 

( : - : '  +~)/(o-13 ~) h 
c fi 

1. 
h,~ A1), +1; 

C, say ; 

[z, - g~r [vr -< (cA; h~@~ 
fo r  j = I ,  2 , . . . ,  e a n d  7 = I, G (clj); 

6) 

for  k = I ,  2 , . . . , a ;  ~ = T , 2 , . . . ,  G(r~.); ~ i , 2 , . . . , 1 1 ~ ;  

7) ;q and 5~ are not  roots of f ( x ,  ~). 
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The  Condit ions a l r e ady  imposed  a re :  

A) o <~.<_ �89 r >__ 2 m'-'; 

B) 

e) 

I X 1 - -  N J r l V r -  . . 

f o r  j = I, 2, . . . ,  O a n d  7 = I, G (qj); 

I~l--VkdVJrk ~ I, I]C2--~#'dr]rk ~ 1 

fo r  k = I, 2, . . . ,  a; 6 -= I, 2, . . . ,  G(rk); , =  I, 2, . . . ,  hke; 

D) ~, and  ),2 are no t  roo t s  of  f ( x ,  C). 

These  cond i t ions  are  con t a ined  in the  new ones.  A) fol lows i m m e d i a t e l y  f r o m  

I) and 2), and  D) is i den t i ca l  w i th  7). B) and  C) fo l low f r o m  1), 2), 3), 4), 5) 

and  6). F o r  by I), 6 1 - - f i e > o ,  and  so, by 3) and  since c>-- I ,  

Bu t  

and  so 

i .  e., 

Also, by 4), 

(i 
A I > c  --~ > c  ho 

8 

/3 if(8 -}- I ) - - 8 ( 8  + I ) _ _  
61 61y(, + i )  

~n + 61(g -1- 1 )__  ~ I 

o ~ ( ,  + ~) 61/3(, + i) + ~' 

1 I m 1'~ 1 

A1 > c h [b T(* ,~7  + ~) ~ ct7~,3, 

eAi-h~ ~ < I. 

~. _ 2 + r  + 1 m 1 
A ~ > c  ~ A I > c  ~ ~ ~ ' = c  r ~ % 

2 m ~ 

1 
c h fl, 

since 6 t < m ,  as  / 3 < m +  I. T h u s  

(by  2)) 

eAr-h, ~ < I, e A 2 h ~ <  I, 

and  by S) and  6), B) and  C) are  satisfied. 

I t  t h e r e f o r e  fol lows,  by the  r e su l t  ob t a ined  in  11, t h a t  the  inequa l i ty  

(3o) ~'(~, ~) > i 

holds  when  the  cond i t i ons  1) to 7) are  satisfied. 
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16. When  Shese conditions hold, by 5) and 6) it is clear tha t  

where 

since 

Z(@, a) --< max (El, E~), 

El = (16 a x)2 'd" (q+r +ra) (2n+ m) 1~: ( A~+r-i-i~ (r-i) A:)h cr-', 

.Ee--~ (16a• ~''~(q+r+'') (~n+ m),,2 (A~ +' '-/A~-a) h c, 

, a(qj) 
H H m a x  ([~I~j~[~j~? i, 

j = l  ?=1 

o C~k) h k 

k=l d=l z=l 

Q a(qj) ~ a(rk) hk 

--< 1 I  I I  max (c~-'Ai -h~(~-i), c A r h ~ ) I ) ' l I  1-I l I  'na'x(cr-iA~ -h(~(r-i), cA;h~) " ~  
j ~ l  ?=1 k=l  6'=1 *=1 

= max (c*-iA~-h~ (r-i), cATht~), 

the sum of the Fs being ~. 

Now 

E1< (16ax)2n'(q+r+m)(2n+'~) h' A~ e, cA, A~ e.~ ef.~, 

where, by 4), 

e , = q  + r - i - ~ ( r - i )  + 8(r + , ) = q  + r - - i - - ( # - - 8 ) r  + i# + 8, 

e ~ = q  + r - i  + ( s - # ) r = q  + r - - i - - ( # - - s ) r <  e.  

f l = r - - i - - f l ( r  + , ) <  I - -  r + I ,  

f .2~-I  - r ~ I - -  r + I .  

B y  the  inequali t ies of Lemma 3, 

q + r < - - ( m + e l  
\ s + I I  

and so 

B u t  

so tha t  

r, i ~ < * r  + re'~ 

m + ~'~ 

~ < m  + I, 8 - - - ~ / - -  I, r~----- 
8 + I m 8 

$ 6 

(m ~ -  , ) (#-  ,) + ~ < (m~-- ,)~ + (~ - -  ,) < ~ < ~ 
8 + I  
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Also, by the  definition of fl, 

( r - ( ~ - s ) , -  + ~,-(~- i) < -  o - ( ~ -  

I /enee 
m a x  (e,, e~) < -  ( o  - ~ 1  r. 

Further ,  since er--> 2m 3 > I, 

m a x ( f 1 , / ~ ) <  I - - ~ + e  r. 

Thus 

s)) 
~ T ~  r. 

max (El, E2) ~(I6aX)2n2(q"r+m)( ~n+m~h' rhe(1-~+~) r 

and by 3), and since (q ~ - r ) <  ~ / r  and m < m a < s , - -  - -  - - e r ,  
8 + I  

max(E,i, Fj~)<(i6ax)2n"(,+l )r(2n+m) h: 

. -O-j§ 
�9 ( I d a z )  '~.+1 e 

i .  e . ,  

which contradicts  (3o). 

.c(~-~+,)~ 

17. I t  therefore  follows tha t  the only algebraic numbers g of degree h (or some 

divisor of h) over ~, lying in the perfect rl-adic , r2-adie . . . .  , ro-adic extensious of ~, 
which can possibly satisfy all the inequalities 

for j = i, 2 , . . . , 0  and 7 : I ,  G(q/), and 

(32) [ Z --  *2ke, ]~k <- (c A-hl~) 'x'e* 

for k :  1 , 2 , . . . , a ;  d =  1 , 2 , . . . ,  G(r~); ~ :  I, 2 , . . . , h ~ . e ,  

,Y (x; ~, ~ ,  hn)[, are such that: 
A being the number 

either (a) A < C = ( i 6 a x ) 2 ~ : ( * ~ * )  ( 2~+ h/(o-~)C(1-~-,) /(-(~,lh,  

or (b) i f  A 1 be the minimum value of A not less than Cjbr  which a corresponding 

is a sobution of  the inequalities, then any other values of A not less than C for 

which a corresponding ~ is a solution satisfy the inequalities 

1 I-2 real 

At --< A < (c, ~ A~) [~--[ +1; 

or (c) Z is a root o f f ( x ,  ~). 
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Clearly,  the  to ta l  n u m b e r  of  so lu t ions  of  the  inequa l i t i es  (3~) and  (32) is 

finite.  W e  seek now fo r  an uppe r  b o u n d  fo r  the  n u m b e r  of  so lu t ions  in t e rms  

of  z, ~, a, m, h, c and  ft. 

18. L e t  now 2~ and  2.~ be two  d i f fe ren t  a lgebra ic  n u m b e r s  of degrees  h~ 

and  h~ d iv id ing  h over  ~,  such  t h a t  A s-> A~, and  le t  bo th  be so lu t ions  of  the  

inequa l i t i e s  (3~) and (32). Then ,  since the  sum of  the  F ' s  is ~, 

(33) 

e c, (,j) 

X = H H nlax ([Zl - -  ~J,lv~., I z~ - _~J,l,j.)- 
j = l  7=1 

�9 I I  1I H m a x  
< e A r _ h # "  ~.=~ d=~ ~=~ 

Also 

and  

so t h a t  

(34)  

2 m a ~  ( Ix ,  - ~ ,  I,~..:, I z~ - ~5~.loj:,) >- I (z ,  - # j , ) -  (z,  - # ; , ) I v ~  

= l/,1 - -  Z~ I,,j~, 

( j  : I ,  2 . . . .  , Q; ) ' =  I ,  G(I~j)), 

= I Z, - & I~k 

( k :  I, 2, . . ., a; d =  I, 2, . . ., G(h.); ~ = I , 2  . . . .  ,hk~), 

X ~  
E G(!]) j=l 7=[  k= l  

2 j =  1 

o 

Z (; ,,~j) " 
2 j = l  

by the  f u n d a m e n t a l  i nequa l i t y  (9) ( t ak ing  w' = Z, - -  Z~, n '  "-= h~), s ince (Llo L,,o) h 

is a mul t ip le  of the  coef f ic ien t  of  the  h i g h e s t  power  of x in  the  p o l y n o m i a l  

Y (x; Z~ - -  Z~, ~ ,  h ~n). ( H ' l ( z ~  - ze)(,) is the  p r o d u c t  

l,-'n o a(qf) 

II i (II II - I , , , ) - a  
~ = 1  J'~l 7 = 1  

where  t he  (~L--Z2)':") (~ = I, 2 . . . . .  h ~n) are  the  c o n j u g a t e  va lues  of Zx--Z~ in t he  

p o l y n o m i a l  T (x; Z, - -  )o~, ~ ,  h-~n).) 
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Now 

H I(2~ - z#,,I -< 1 [ ( 2  ma~ (I xi" I, I zS*, I~) 

o 

1,: .... E,(q~) h,, h,, 
_<2 ~=~ { l I  ma.  (,, I~>, l~II  ma~ (i, I,>,1)}", 

where ~ ' , ) (~,= I, 2, . . . ,  hn) and ~!?') (v-a= 1, 2 . . . .  , hn) are the conjugate values of 

Z, and Z.,. in the polynomials ]"(x;  ;~,, ~,  hn) and T ( x ;  Za, ~ ,  hn), and Z(~ ") and*.{.,"? 

denote the values of Z~ and Z._, corresponding to ()q --  ;te)(*). Thus, by Lemma 4 (a), 

H ' l ( z , - x = > l - <  2 ~=* ~ L101 ]L_~01 " 

Hence and f rom (34), 

and so by (33), 

i .e. ,  

(35) 

X > (2 h~ 16 h~n A h Ah1-1 

cAThl 3>~(32h~'~A~ .2, , 

1 
A~ > (3 2hn eh) -1 d e  -1. 

19. We divide the solutions of (31) and (3 2) into three groups, J~, J ,  and Js, 

as follows: 

J l :  I f  A 1 be tile minimum value of A not  less than  C for which a c o r  

responding ), is a solution, J1 contains those solutions for which 

1 )[2 ma] _1 
C<~AI<_A<(c  hi3A, ~- 

Je: contains those solutions for which 

1 1 
(64 h" c~)f T~-u --< A < C; 

J'a: eo~atains those solutions for which ei ther  

1 i 

(a) A < (64 '*'~ ch)fl72 , 

or (b) f(Z,  ~) = o 

(except tha t  any roots of f (x ,  ~) included in 0rl, J~ and J3 (a) are excluded 

from Ja (b)) 
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In  or,, since 

I 1--~+~ 

C > (I62h'~Ch) ~ 

it follows tha t  
8 

11--~+~ 
A, > (3 2hnc ~) o - ~ .  

Pu t  

(36) O- - f i r - -< �89  I--~@6 (f l --  2). 

Then  
1 2 

(37) A, > (32hn eh)~ - ~  . 

Let  A 1, A~, . . . ,  A,, be the values of A not  less than  C giving the # different 

solutions in Jl ,  and let A~ ~< A~--<,..--< A+,. Then 

1 2 1 [ 2 mSl [2 r # ]  

(32h~c~)~ :-2 < A~ < A~ --< .-. --< A/, < (e Q A , )  [-U]+~ < A ,  [-7-]+x 

But by (35), 

Thus 

and by (37), 

Hence  

and so 

(3s) 

1 
A t, >-- (3 21'' ch) -1 Aa-~ /x- 

1 

>_ (32h-e~)-I,+I~-l!/A~C)/~ 
1 

> . . .  > (32hneh)--(l+(3--1)+((l--1)*+...+((t--~)~"--2~, A~I, ~-~):'-1 

1 1 
2> {(3 2hn C h) ~/-2 A 1 } ( f l - l y  -1 .  

[2m31 1 (~3-- 1)~ - 1  
A [ - ~ - ]  +1 ~> (32hncfL) fl-2 A ( f l - 1 ) # - I  

~Tt 3 

A[ T ] + '  > A;-+ ~_,,,-1 A~-I),'-' = A? ~l~-' "-1. 

log 5 m3 
C # < i +  

log (fl-- ,) 
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Let  A~,+I,  Av+2 ,  �9 . . ,  A,+ ,  be the As corresponding to the different solutions 

of (3I) and (32) in J~, and let A~,+I <--A~,+2 <--... <--A,+*'. Then 

As before, 

and so 

Hence  

so tha t  

(39) 

1 1 

(64hnch)f1-2 <-- A,+I --< A,,+2 --< ... --< A,,+, < C. 

1 1 

A,,+. > {(32hne h) ~-2Av+,}(~-1),,-1, 

hn (f l_l) , ,_ 1 

C > 2~ -2 

(hn ) 
log log C > l o g  ~ l o g 2  + (v - -  l) l o g ( f l - -  I), 

V < l +  

log C ) 

log h n log 2 

log ( f l -  I) 

20. From (38) and (39) we now obtain bounds for /~ and v involving only 

z, n, a, m, h, c and ft. 
Siegel 1 has shown tha t  if 

then 

(4 ~ ) 

rain 
g = l ,  2, . . . ,  ~n - -1  

2 V m -  i <_~a <_ V 4 m  + I - I ,  

and the value s' of s giving a is 

(41) s' = I V4 m + i - i ] .  
2 

We choose fl, O and e so tha t  

(42) 

Then 

I 
# : c e  + O, o < 0 - -  < 

4 m' 
O - - ~ = i O > o .  

~ O  
a + O  

3 
I 6 m  

f2 
< L  

1 See note  I, p. I, p. I91. 
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a n d  s ince a is n o t  g r e a t e r  t h a n  m, 

w h i c h  is c o n s i s t e n t  w i th  the  o r i g ina l  def in i t ions  of  ~ a n d  ft. F u r t h e r ,  the  

i n e q u a l i t y  (36) is sa t i s f ied  f o r  s = s'.  For ,  i f  m > 2, 

( 8' ) [3 ( ~) (fl--8')(fl--2) (fl--2)(I -[- O) �89 ~ - x + ~  ( t ~ - 2 ) > ~  ~-- ( 8 - 2 ) =  >-- 
2 t~ 2 (~ + o)  

Thus ,  i f  m = 2, so t h a t  a = 2, it fo l lows t h a t  

s' } 0(~ + o) 0 
�89 I - - ~  q- ~, (fl--2) > 2 ( 2 ~  O) > - -  = ~ ) - - f l $ ' 4  

by (42); and  if m > 2, so t h a t  by (40) and  since,  if  m = 3, a = 2 �89 

~ - 2 > � 8 9  

i t  fo l lows,  by (40) a n d  (4I),  t h a t  

( 8' ) 1 I - - ~  ~- 8 (if-- 2) > �89 "J- O) 
2 (a + O) > 

I I 
4 4] /~-m~ - > - > ~ 6 ) = 0 - ~ ' +  I6m 

Since  (36) is t h e r e f o r e  sa t is f ied f o r  s = s '  w h e n  m > 2, t he  inequa l i t i e s  (38) and  

(39) f o r  /x a n d  v a re  t r u e  w h e n  the  c o n d i t i o n s  (42) hold .  

N o w  f r o m  (42), 

(43) 

Also  

so that 

log  5 m3 

log  ( f l -  I) >" log  (I + O) > o. 

~ 0  ~ 0  ~-0 0 > 0 ~/~ 

a + 6) ] / 4 m +  I 3g in  4Vm 2 

< log (5 m~ '2  0-~'*) < log ~(4 m)a~ I I / ~ -  / --< log ~ < 5 log b-" 

H e n c e  and  f r o m  (43) a n d  (38), 

(44) 

I 
5 log 

l*< * +iog(~ + o)" 



The 1O-adic Generalisation of the Thue-Siegel Theorem. 49 

Fur ther ,  by (43), 

log ! h ' ~ - - -  

log (fi - ~) 

I 

log 10~ 2 < l o g l o g  C - - l o g h n + l o g ( f i - - 2 ) +  
l o g  ( I  -}- 0) log (tiff-- I) log (i + O)' 

since log C >  hn, 

But  

Also 

I I 
i .e. ,  log log C - -  log hn > o, and log 2 > I, i. e., log log z 

l o g  (fi - z) I. 
log ( f i -  ~) 

I 

log lo~ 2 log 

log (I + O) <" log (I + O)' 

- - - - > O .  

since log 2 > 0.693 > ~. Thus, by (39), 

log g + log log C -  log h n 
(45) v < 2 + log (I + O) log (I + O) 

Now 
8 

m 1--~+e 
C = (I 6 a Z) 2"2 ( ~  +~) (2,,+~)hl(o--(le)C~L~). 

But, since m - - < - -  t - - > - -  and O --  f i t  = ]r O, it follows tha t  
4 0 '  2 

2n 2\-~+~{ m + t} (2n  + m ) h / ( O - - f i t ) < h n ~ ( m  + I)(2n +~)/�88 

Also, 

Thus 

and so ei ther  

3 2n  4 (since m > 2  and 2 0  "~!~<�89 < h'~ 80" 20  -~i~ 0 

= hna~ 0-% 

8 

I--~+~ a 6 
< 

h ( o - f i t )  l h e  h o  

6 

C < (I6 a x) "/'h'" ~ c h~ , 

(~1 c < ( ~ 6 a ~ ) - , . ' o  , 
5 - 642136 Acta  mathematica. 83 

12 

or (b) C < c h~ 



50 C . J .  Parry. 

In case (a), 
I 

log log C < l o g l o g ( I 6 a u )  + 31og'n + l o g h +  ~ l o g ~ + l o g 3 ;  

and in case (b), 
I 

log log C < log log e + log -~ + log 12 - -  l o g  h. 

Henee and from (45), 

I 
{ ! o g l o g ( i 6 a x ) + 2 1 o g n + ~ - l o g o + l o g 9  l og logc  + log-~ @ log I8} 

< 2 + m a x  - log(~ + 0 )  ' log(~  + O )  " 

Hence and from (44), and since log ~ < 2 and log I8 < 3, 

i I (46) /* § Y < 3 § log ( I ~  O) max. log log ( I 6 a • 2 4 7  

+ 21og'n + I o l o g ~ +  2, l o g l o g e  + 6 1 o g ~  + 3  " 

The number  of different solutions in J~ is clearly finite and is bounded by 

a number depending only on n, m, h, c and fl, and not on a and x, and it is of 

interes~ to note that  the total number  of different solutions of the inequalities 

(3 I) and (32) is therefore of order log log (I6 ax). 

21. We have now proved the following lemma: 

L e m m a  6 .  Let: 

be a finite algebraic field of degree n (>~ I) over the rational num, ber 

field ?~ ; 
be an algebraic integer generating ~; 

q~ (z) be the polynomial 

qp (z) : z '~ + z I z '~-1 " f  z.., z " - 2  -I . . . . .  t x., 

f ( x ,  z) 

with rational integral coefficients and irreducible in ?~ having ~ as 

a root; 

be the number [~ (z) I; 

be a polynominal in x of degree m ( ~  2); 

= + ..... + . . . .  



a 

ql, q 2 , . "  ', q,o, 

rl~ 172, . �9 .~ ra, 

a (@ 
e (r~) 

h 

h~ 

C 

| 

Fj~, Fka~ 

Then i f  

lying in the 

number I Y (x; 

o f f ( x ,  ~) nor 
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,g)here a 0 (~) ( ~  0), a 1 (z), . . . ,  a~c, (z) are  p o l y n o m i a l s  i n  ~ with rational 

integral eoejficients and of degree not greater than n - -  ~, and f ( x ,  ~) 

has a non-zero discriminant (N. B. f ( x ,  ~) need not necessarily be irre- 

ducible in ~);  

be the smallest natural number such that 

for v ~ - o ,  I , . . . ,  m; 

where o <-- Q ~ r 1 + r~., be Q of the r 1 + r2 infinite prime ideals corre- 

sponding to the r~ real and r~ pairs of conjugate imaginary fields 

conjugate to ~;  

where a > o, be a d(ff'erent finite prime ideals of ~; 

( j - -  I, 2 , . . . ,  e) be a natural number not greater than g (qj); 
(k = I, 2, . . . ,  a) be a natural number not greater than g(rk); 

be a natural number; 

(k = I, 2, . . . ,  a; 6---- I, 2, . . . ,  G(rk)) be a natural number not greater 

than h ~ ; 

( j =  I, 2 , . . . ,  Q; ) J =  I, G(qj)) be a real or complex root of f (x ,~) ;  

(k = I, 2 , . . . ,  a ;  d = I, 2, . . . ,  G(rk); ~ = I, 2 , . . . ,  hk~) be an rradic 

root of f ( x ,  ~); 

be a number not less than I;  

be the number min  ( ~ - n  + s ) "  
s= l , 2 , . . . ,m- -1  8 -~- I 

I 
be a positive number not greater than - - ;  

4 m 
be the number a + O; 

( j  = I ,  2 , . . . ,  e;  7 = I,  ~ ( q j ) ;  ]~ ~-- I ,  2 , . . . ,  a;  (~ : I , . . . ,  V ()2k); 

* = I, 2, . . . ,  hkd) form.  a s y s t e m  0 s t = E V ( q j )  -}- Z Z hkd pos i -  
j --1 /=1  d= l  

tire numbers with sum I. 

be any algebraic number ( f  degree h (or any divisor of h) over ~; 

perfect q-adic, r r a d i c , . . . ,  ro-adie extensions of ~', and i f  A be the 

2, ~3, hn) I, the number of different numbers ~, which are neither roots 

such that 
1 1 

A < (64 h'~ ch)~ -2, 

and which sati~jy the inequalities 

<- (c 
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f o r  j =- I, 2, . . . ,  q and 7 ~- I, G (qj), and 

f o r  k - =  I, 2 . . . .  , a; ~ ~ I, 2 , . . . ,  G(~:k); z ~ I, 2 , . . . ,  hk,~, is  less than 

(46) 3 + 
i ( 

l o g  (I  -/- ~)) Inax l o g  l o g  (16ax) + 

+ 2 1 o g n +  I o l o g - ~ + 2 , 1 o g l o g e + 6 1 o g - ~ + 3  �9 

22. We now require  to find a bound for  the number  of different  algebraic 

numbers  g of degree h (or any divisor of h) over ~, lying in the per fec t  rl-adic, 

r~ - ad i c , . . . ,  ro-adic extensions of ~, which satisfy the inequal i ty  

(47) 

e o 0.]) . a(rk) hk~ 

H II min (~, Iz-gJzl"JT)II II H rain (I' ] ;~ -~k ' ?* ] t ' k )~e / -h?* '  
j = l  7=1 k=l ~=1 ,r=l 

where fl* is any number  g rea te r  than  a. 

Clearly, we can choose 0 so t h a t  f l <  fl*. Then  

~* = {t(I  + 0), 

where 0 is a positive number.  

(48) 

Let  now 

Thus,  since c >--- I, 

?*-t~ t 3. 
e A - t, ~* e ~ (c A-"~)-~- < (e A--h~) 1+~ 

be any one of the solutions of (47). W e  exclude for  the present  
1 1 

solutions which are roots  of f ( x ,  ~) and those for  which A < (64 h~ch)~ -~. Thus,  

for  the  ~ we consider,  
1 1 1 

A > (64hn eh)U-2 > ch~, 

and so 

e A-ht  3. < c A-h?  < i. 

Hence  and f rom (47) and f rom (48), there  exists a system of 

o (~k) 

j = l  k=l J = l  
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non .negat ive  numbers  q j ~ ( j =  I ,  2 . . . .  , e ;  7 = I ,  G(Qj)) and  q k ~ , ( k - =  I,  2, . . . ,  (7; 

6 =  1,2  . . . .  , G(rk); ~ =  1 , 2 , . . . , h k ~ ) ,  with a sum not  less than  I, such t h a t  

(49)  r a i n  ( I ,  I~ - -  ~j,/Iqj 7 ) =  (c A-h[3*)qJ7 <--(c A-hi t )  (1+0) qJ7 

for  j = I,  2 , . . . ,  Q and 7 = I, G (qj), and 

(50) r a i n  ( I ,  I~ - -  ~ k d ,  l r k ) =  (e A--h[3*) qkry* <~ (e A-h[1) (l+O) qkd* 

f o r  k = I ,  2 ,  . . . ,  (7; ~ = I ,  2 ,  . . . ,  G(rk); , = I ,  2,  . . . ,  hke .  

But  there  exists a na tu ra t  n u m b e r  T such tha t  

O T > t ,  

so t ha t  if  the  sys tem of q's coincides wi th  a system of numbers  ql, q2, �9 . . ,  qt, 

t hen  for  l =  I, 2, . . . ,  l, 

( 5 I )  ( I  + O) g l =  ~ + Zl , 

where 
g l  ---= [2(I + 0) q l ] ,  

and the  residue, 

satisfies the  inequal i t ies  

so t h a t  

Since 

it  follows tha t  
t 

/=1 

/L 
z~ = (I + o ) q ~ -  ~ ,  

I 
o - - < Z t < ~ ,  

t t 

/=1 

~ q ~ > ~  I, 
/=1 

t t 

T - ( i  +o) Y~q,-2;z,>_(~ + o ) - o = , ,  
/=1 l ~ l  

i . e . ,  
t 

(521 ~ H~ --- r.  
l : l  

Le t  the  sys tem of inequali t ies  (49) and  (50) be represen ted  in the  fo rm:  

r a i n  ( I ,  IZ - -  ~Ll lPl) = (cA-h(3*) ql ~ ( 6 A - h  fl) (l + O) ql (1 = I, 2 , . . . ,  t). 
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Then by (5I), for 1--~ I, 2 , . . . ,  t, 
Hi 

min (~, IZ --  f" [*,t) -< (cA-h@ I+~ <- (cA-hfl) =it, 

since cA-h~ ~ < I. Thus, by (52), we can choose t non-negative rat ional  integers 

vl, v., . . . .  ,vt such tha t  vl <- Hl, v~<---H2,...,vt<--Ht and with sum T, so that ,  

for l =  1 , 2 , . . . , t ,  
'v l 

I t  follows tha t  to every solution Z of (47) (except the excluded eases) there cor- 

responds at  least one system of non-negative rat ional  integers r~, v ~ , . . . ,  rt with 

sum T such tha t  all the t inequalities (53) are satisfied. Consider any one such 

system, S, of v's. The v's of S cannot  all be zero if t is positive, since their  

sum is T. Further,  for any non-zero v, 

(cA-hI~)T < I, 
and so all of the t inequalit ies 

(54) I x - - [ z l l ?  l ~ ( g A - h " )  7fi (~ = I, 2 , . . . ,  t) 

for which the corresponding v's are not  zero will be satisfied. Le t  these be t' 
in number.  Now Lemma 6 holds if t is replaced by t', and the F's  by the cor- 

responding non-zero v's, and so, by this  lemma, the above t' inequMities have 

less t han  

I -[- O) ( ~1I I ) + log ([ max. log log ( I 6 a z ) +  2 log n +  ~o log +2,  log log c + 6  log ~ +  3 3 

1 1 
solutions for which Z is nei ther  a root of f (x ,  ~) nor such t h a t  A < (64 h~ ch)~ -2. 

Clearly, the t inequalities (53) cannot  have more than  this number  of solutions 

sat isfying the conditions stated, for the system S of v's, since every solution of 

a solution of the t' inequalities taken from (54). the t inequalities (53) is 

Fur ther ,  there are at  most  

systems of v's, this  being the number  of different solutions of the equality 

t 
Z v l =  T 
l=l 
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in non-negat ive ra t ional  integers  vj, v .~, . . . ,  yr. Also, every solution of the in- 
1 1 

equali ty (47) for  which ~ is ne i ther  a root  of f ( x ,  ~) nor  such tha t  A < (64 h" ch)l ~-2 

is also a solution of the t inequali t ies  (53) for  at least one of these systems. 

I t  therefore  follows tha t  the number  95 of different  solutions of the inequal i ty  
1 1 

(47) for  which ). is ne i ther  a 

less t han  

t -  I 3 -~- log  (I + O) 

root  of f ( x ,  ~) nor  such tha t  A < (64 hn ch)a -2 is 

max ( log log (I 6 a z) + 

+ 2 1 o g n  + I o l o g o  + 2, log l o g c + 6 1 o g ~ 9  + 3  �9 

23. We can select T, if t > o, so tha t  

fl t-<- l '  < J - ~ - - - t  + I, 

t 
since we have only imposed on T the condi t ion tha t  T > _ ~ - ~  t - -  - - .  

and since 

i t  follows t ha t  

--[~* t { 
9~ < 2/~*-~ . 3 -~- 

fl . fl* 
b , , _  ~, t_ < / '  + t - -  ~ < f i - _  b,t, 

T + t - - I  T + t - - i  .;- t 
~_j ~ -  2 T + t - 1  ~ 2( ~ -(J , 

t -  I *'=0 V 

log (I + O) 

fl Then  

max (log log (16 a z) + 

i i ) }  
+ 2 1 o g n  + I o l o g  ~9 + 2 ' l ~ 1 7 6 1 7 6  + 3  �9 

For  any sufficiently small number  %, we can choose O 

Then 

fl* __ fl* 
~, _ ~ ~,, : ~ (~ + ~o). 

95 --< kt 2~ *-~ (1+~0) t, 

so tha t  

where kl is a cons tant  depending only on %, fl*, c, • n, a and n~, and not  on the 

number  and choice of roots  of f ( x ,  ~) to which approximat ion  is made, or on the 

corresponding ideals. 
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F u r t h e r ,  t he  n u m b e r  of d i f f e ren t  so lu t ions  of  the  inequa l i ty  (47) such  t h a t  
1 1 

A < (64 hnch)~ -2 c lear ly  depends  only  on O (i. e., e0, m and  fl*), n and h, and  the  

n u m b e r  of  d i f fe ren t  so lu t ions  which  are  roo ts  of f ( x ,  ~) is a t  mos t  m. T h u s  the  

n u m b e r  of  so lu t ions  of  the  i nequa l i t y  (47) is no t  g r e a t e r  t h a n  

(55) ko 2#*-c~(1+~~ t, 

whe re  k o is a c o n s t a n t  d e p e n d i n g  on ly  on Co, fl*, e, z, ~, a, m and  h, i . e . ,  on ~o, 

fl*, c, ~ , f ( x ,  ~) and  h. N o w  the  inequa l i t y  (47) c a n n o t  have  more  so lu t ions  when  

c < I t h a n  w h e n  c >-- I. Again ,  any  inc rease  in e o can  only  increase  the  e x p o n e n t  

in the  b o u n d  (55). Thus l  i f  k o r ema ins  c o n s t a n t  fo r  these  changes  in value  of  c 

and  co, t he  b o u n d  (55) holds  fo r  any  pos i t ive  e and  ~o, and  k o stil l  does  no t  

d e p e n d  on  the  n u m b e r  and  choice  of  the  roo t s  to which  a p p r o x i m a t i o n  is made ,  

or  on  the  c o r r e s p o n d i n g  ideals.  

W e  have  t h e r e f o r e  p roved  the  fo l lowing  t h e o r e m  (in wh ich  we rep lace  fl* 

by /? and  f ( x ,  ~) by f ( x ) ,  ao(~), a l ( ~ ) , . . . ,  am(~) be ing  now any  in tegers  a o ( ~  o), 

a , . . . ,  of 

Theorem 1. 

f(x) 

q l ,  q 2 ,  �9 �9 ", q~' ,  

]~1,  ]~2~ �9 " *,  t o ' ,  

e 

G (~:k) 

h 

hko' 

Let:  

be a finite algebraic .field of  degree ~ (>-- I) over the rational number 

field ?~ ; 

be a polynomial of degree m (> 2) with integral coefficients f rom 

and a non-zero discriminant; 

where b <-- # < rl + re, be Q of the r~ + r2 infinite prime ideals cor- 

responding to the r 1 real and r~ pairs  of  coniugate imaginary fields 

conjugate to ~;  

where a > o, be a different finite prime ideals of  ~;  

(j = i, 2 . . . .  , e) be a natural number not greater than g (qj); 

(k = I, 2 , . . . ,  a) be a natural number not greater than g(rk); 

be a natural number; 

(k--~ I, 2, . . . ,  a ;  ~ = I, 2, . . . ,  G(rk)) be a natural number not greater 

than h e ; 

(3" = I, 2, . . . ,  e;  7---- I, G(qj)) be a real or complex root o f f ( x ) ;  

(k = I, 2, . . . ,  a; 6 = I, 2, . . . ,  G(rk); ~ =  I, 2, . . . ,  hk~) be an rk-adic 

root of f ( x ) ;  
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t 

C~ ~0 

a, 

be the total number of roots considered, i.e., 

be two positive numbers; 

be two numbers such that 

2; a + 2 Z h.; 
j = l  k=l d=l  

c t =  m i n  ( m + s ) ,  f l >  c c . - - - -  
s = l , 2 , . . . , m - 1  8 + I 

Then the number of different algebraic numbers ~ of degree h (or any divisor 

of  h) over ~, lying in the perfect rcadic, r~-adic . . . .  , ro-adic extensions of 2, and 

satisfying the inequality 

G(qj) a G(rk) hk8 

H H min (x, ]&-~g,~lq.j.) n n H min(I'~--~k~*l~k )<-cA-h~' 
j = l  7~I k=l d~=l z=l  

where A is the number I]7(x; s ~3, hn)], is not greater than 

a (l+Eo)t 
]C O 2fl - a  

where ]c o is a constant depending only on e o, fl, c, ~ . , f ( x )  and h, and not on the 

number and choice of  the roots to which approximation is made, or on the corre- 

sponding ideals. 

24. Remarks. 

(a) I n  t he  p a r t i c u l a r  case  w h e n  ~ is an  e l e m e n t  w of t he  field 2 ,  h = i a n d  

v =  I, and  we m a y  wr i t e  ~k61 = ~k~. T h e n  T h e o r e m  I t a k e s  t h e  f o r m :  

The number of different numbers w of ~ satisfying the inequality 

e G(qj) 

l I l I  
j = l  7=x 

o a(~k) 
m i n  (I ,  [w - -  ~j, [qj,) I [  I I  m i n  (I ,  [co - -  ~/k, Irk) -< c ~-c~, 

where t~ is the number i)C (x, w, ?~, n)I, is not greater than 

/3 (l+eo) t 
k o 2( 3-~ 

where k o is a constant depending only on %, fl, c, ~ and f ( x ) ,  and not on the number 

and choice of  roots to which approximation is made, nor on the corresponding ideals. 
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(b) L e t  0 1 , 0 . , , . . . , 0 , ~  be a f i x e d  basis o f  ~,  and  
t t t 

zl, z2 . . . .  ,z,~ denote any  2n  rat ional  integers such that 

absolute values is a na tura l  m~mber z. Then the inequal i ty  

let z l ,  z2, �9 �9 Zn and 

the m a x i m u m  o f  their 

,o (~ (q j) 

Y = I I  [[mi  ' 0  ' " 
j = l  7=1 12"101 + 2'2 ~ @ @ Z n O n  qJ7 

�9 l I  I [  min i, ziO, +z'20.~ + + z ~  ,, 
k = l  7=1 

where c' is  a posit ive number,  has not more than 

--?}k61 ) ~ C'Z-ni~ ~ 
rk 

/3 (1+*o) t 
]co 2/~-a  

p t 
solut io,  s in  selections o f  zl, z2, �9 . . ,  z,~, zl, z2, . . . ,  z'~ giv ing d~fferent numbers  

z 10~ +z.202 + . . . +  z~O, 
Z17 01 + Z2' 0.2 + + z~" On o f  the f ield ~ ,  ko being a constant depending only on the 

given basis and  on ~o, fl, c', ~ and f ( x ) ,  and  not on the number  and choice o f  roots 

to which  approximat ion is made, or on the correspo~ding ideals. 

This  s t a tement  can be proved as follows: 

Denote  by eo the number  z~70~ + z~, 03 + . .  + z,, O,, zlO~ + z20. 2 + + z'~On' which is a number  of R. 

Then  ~, is ~ root  of the polynomial  

n 

,v~J. 

the product  being taken over all the conjugate  values of 01, O e , . . . ,  0,,. 

of the form: 

P(x)  = bY(x ;  ~, ~,  n), 

p(x) is 

where b is a ra t ional  integer.  Le t  Y& be the absolute value of the coefficient 

of x " -d  in Y(x ;  ~o, ~ ,  n), let  t~ be the  number  [Y(x;  w, ~ ,  n)i , and let  0 be the 

greates t  of the n ~ numbers  [0(~1)[ . . . .  , [Ol~ )[. Then  for  d == o, I, 2 , . . . ,  n, 

and so 

~Q <- n ! (n 0)" z n = 0 0 z L  
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say, so t h a t  00 is a pos i t ive  c o n s t a n t  d e p e n d i n g  only on the  g iven  basis and  on 

~. Thus ,  by (a), the  inequa l i ty  

Y ~< c 07~ '~ z - "  

has  no t  more  t h a n  

--fl~- (1 + Eo) t 
]C o 23 -~ 

so lu t ions  in d i f f e ren t  n u m b e r s  co of ~,  i.e., in se lec t ions  of z~, z ~ , . . . ,  z,~ 

01 Zl + z~ O~ + + 
t 

z~, z ~ , . . . ,  z~ g iv ing  d i f fe ren t  n u m b e r s  z,,~OO, of  ~.  Thus ,  on 
Z'l ~ + z~ 0., + . . .  + Zn ,, 

wr i t i ng  C 00 ~ = C', the  resu l t  fol lows,  ko be ing  r ep laced  by a c o n s t a n t  ko d e p e n d i n g  

on the  g iven  basis as well as on e o, ~, c', ~ and  f ( x ) .  

w 5. Properties of Binary Fomns. 

25. L e t  F ( x ,  y) deno te  t he  b ina ry  fo rm  of  degree  m (--> 2): 

y f ~= ao x "~ a l x  "~-1 y -~ . . . . .  + am y"~, 

so tha t ,  f irst ly,  t he  coeff ic ients  a0(-~ o), a ~ , . . . ,  am are  i n t ege r s  of the  field ~, 

and,  secondly ,  F ( x ,  y) has a non-zero  d i sc r iminan t .  

L e t  now ~(1), ~(~) . . . .  , ~('~) be the  roo t s  of  F ( x ,  I) in t he  complex  field. T h e n  

{s6) F(<  v ) -  ao(x - ~(')v)(~-- i(~)y) ( x -  i(")y). 

Also, let  (1) V~:), V~ , . . . ,  V~*k) (k = I, 2, . . . ,  a ;  o <-- vk ~ m) be the  ~k-adie roo t s  

of  F ( x ,  I), ~,  ~2 . . . .  , r~ being,  as before ,  a ( ~  o) d i f fe ren t  finite p r ime  ideals  of 

~. Then ,  f o r  k ~ I, 2 , . . . ,  a, 

(57) Vk y) t y ) . . .  (x  - -  ~,'kl y) G~ (x, y), 

where  Gk(x ,  y) is no t  reduc ib le  to l inea r  f ac to r s  in the  pe r fec t  rk-adic exten-  

sion of  ~. 

6) . , 6 .  D i f f e r e n t i a t i n g  (56) l o g a r i t h m i c a l l y  wi th  respec t  to  x, 

F '  ( x ,  v). _ , + ~ + . + , 

F (x, y) x - -  ~(1) y x - -  ~(2) y x - -  ~(") y 
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(where the  dash denotes part ia l  differentiat ion with respect  to x). Thus, if 

~ ,  ~ ,  ~{m) ( j  = I ,  2 ,  . r I -k r ~ ;  ~ ' -~-  I ,  /7 (qj)) be the real or complex roots 
�9 " " ~  ~37 " " '  

of the polynomial  conjugate  to F (x ,  I) with  respect  to the field ~Jr, 

(58) I F(*,  v) h;~,>- I r  (=, y)h;r  min (I x --~2rYl,C~" I x -  c:''~jry . . . .  ' I x -  ~Jre{")"l~'" 
)n  

( ]F(x , y ) lq j  r denotes  the absolute value, for  any real or complex values of the 

variables x and y, of the binary form, ~ r ( x , y ) ,  conjugate  to ~ ( x , y )  with respect  

to the  field ~a'r.) 

Now there exist binary forms / / l (x ,  y) and K l(x,y)  of degree m - - 2 ,  and 

H~ (x, y) and K s(x, y) of degree m -  I, with coefficients f rom ~, such tha t  

(s9) ~(x ,  v)~/, (~, v) + F' (., v) H~ (., v) = x ~ - , ,  
(60) 2~(x, v) K, (x, v) + F' (., v) K~ (x, V) = V ~ ~-' .  

But  for all x and y, and for j =  1 , 2 , . . . , r ,  + r ~  and 7 =  I,g(qj}, there  exist 

constants  c ~ and c ~ such tha t :  

I&(x,y)l ,o~ -< ~ max (1"1, IV>-" ,  

I H.. (~,.~z) I,~r -< v" max (Ixl, Ivl) ~-1, 

IK,(x,v)lqa~-<~ ~ m a x  (]x], ]Yl) .... '~, 

I & (x, v )b, .  -< ~" max (I ~ I, I:I I) "-~. 

I t  therefore  follows, f rom considering tha t  one of the identi t ies (59)and (6o) the  

r ight-hand side of which has the greater  absolute value (or ei ther ident i ty  if 

x I =  l Y I), tha t  for  each pair  of real or complex numbers  x and y ei ther 

o r  

- -  - -  max (Ixl, ly[) 'n, 
2 O z 

I 
I k" (x, v)hJ~ -> ~ max (I x I, IV I) ~-1, 

for j = I ,  2 ,  . . . ,  r 1 -}- I" 3 and 7 = I, g (qj). 

In  the second case, it follows from (58 ) tha t  

[ F ( x , y )  iqar > - i I) '-* e,- ~=, max (Ixl, IV mi~ ( I x - -~<  Ul, 1"--  g)~ vl I x - -  gJg>ul). 21v/$ (~II ' �9 . . ,  
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Let  c m = max (I g',~' I, 1 ~5~' I . . . . .  I ~j.g) l) Then, for  v = I, 2, . . . ,  m, 
j = l ,  2 . . . . .  r~ =r., 

~,=1, ,q (qj) 

[ X l  ~ (~ I I I  _}_ i ) l : ~ / I ,  

,) : _ _  I 
I x - -  S! ")ul > max l Y -3", . . . .  CI I '  VIII + ~ m a x  ( I x l ,  I v l ,  

and if Ix[--< ((jIII + i ) ly] ,  

if 

~3~/ C I I I  + 1 max (I x I, l Y D x 

Hence  

IF(x,y)[qj7 >_ c TM max (Ixl, lyD m rain ( y  __ ~1~, ; _ _  ~.ir~c~ , . . . ,  Y -- ~'~-) I ' !)  

where d v is a positive constant.  Thus, in both cases, 

[F(x ,y )  IqJ7 > - c v m a x ( I x ] ' l y l ) ' ~ m i n  x - -~ ) r  --~J~ ' ' "  ' y - - ' J r  [' ' 

where 
= ~ C I v  . 

I f  w = -  be any element of ~, it is well-known tha t  it may be represented 
V 

U 
as a quotient  c o - = -  of integers u and v of ~ tile grea tes t  common ideal divisor 

V 

(u, v) of which has ~ norm N((u, v) ) in  ~ over ~ not  greater  than [ V d ~  1, where 

d(~) is the diseriminant  of ~.1 For  such integers u and v of ,~, 

IF(u,v)lqj7 > ~'~max (lulvT, I vlqj,)'~ rain (I ~ I~'--E~'IqJ. I ~,--g!~)IqJ7, I), 

for j =  I, 2 , . . . , r l  + r~ and 7 =  I,g(qj).  ( [F (u , r )  lqjr denotes  the absolute value 

of the binary form ~ 7 ( x , y )  when x and y take the conjugate  values in ~Jr to 

u and v.) Hence  the norm N(F(u ,  v)) in ~ over ~ of F(u,  v) satisfies the inequali ty 

rl+r.2 g (q j )  

I-N(F(u,v))I >--(cV) m H l ~  max (lulqjT, Ivlqj,)" 
j = l  7=1  

~,+~ .q (qj) 

II II rain ( Im- -~ ' l q /~ ,  Im-.~5~'lqs~,, [ ~ -  S(")lqj,, I)�9 �9 . .~ ~ jy  

i Follows from: E. HECKE, 'Theorie der algebraischen Zahlen' ,  Akademische Verlagsgesell- 

sehaft, Leipzig (1923), p. 12o. 
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But the conjugates of u and v can be formed into products of n members in 

not  more than  (2n)[ ways (one conjugate,  to ei ther  u or v, being taken f rom 

each field gtJ-/ conjugate to ~). Thus, since each coefficient of the polynomial  

divisor of a sum of not  more than  (2n)! such products, it  

follows tha t  

(2 n)! ] ]  [ [  max (l '~ lqJv l': lqs~) >- a, 
j = l  7~1 

where s is the number  IY(x; ~o, ~,  n)l. Hence, taking e(q)-~ {eVl(2u)!}% so t ha t  

e(q) is a positive constant  depending only on $~ and the binary form _F(x, y), 

7"l+r ~ ~q(j)  

(6I) I N (F(u ,  v))[ ~>e (q) -Q'~ H 1 [  min (] ~ ~'-" .. ,  E("*) IqJr, 1). 
j = l  7=1 

27. We can obtain from (57) corresponding inequalities for the r~-adie, 

Lo-adic , . . . ,  ro-adie valuations, bu~ we must  first prove the following lemmu: 

L e m m a  7. The r adie value of a polynomial r (x) with r-adie coefficients, where r is 

a finite prime ideal of an algebraic ~umberfield ~, and with a non-zero diseriminant 

and ~o r-adic roots, has a positive lower bound for all values of x which are r-adic 

numbers. In particular, ( f  all the coefficients of r (x) are r-adic integers, the first 

coefficient unity, and the diseriminant an r-adie unit, then jbr all r-adie numbers x, 

Proof. We may suppose wi thout  loss of generali ty t ha t  the firs~ coefficient 

of r(x) is I. Then r(x) may be writ ten us 

and we may write 

r ( X ) = X M  + b~x M-1 + b~x :~I-'2 + ... + bM, 

t~ = m a x  (~, I1,i I,, I t~ I, . . . .  , I t,.,, I~). 

I f  ]xl:  > b, it  is clear tha t  

I , ' (x)  J~- -I  x-'ll~ > I~M >_ i.  

Thus we need only consider values of x for which 

Ixl~-<b. 
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The  discr iminant  of r(x)  is: 

hi, b~ . . . . . . .  , bM-1, bM, 

I ,  b I . . . . . . .  , b .v -2 ,  bj1-l,  bxi, 

I, bl, b ~ , , .  . . . . . . . . .  , b i - 1 ,  b,}l 

M, (M-- ~) t,,, ( M - - 2 )  b~, . . ., bM-~, 

o, -71/, (M--  I) b ,  . . . ,  2 bjI-2, bM-1, . 

M~ 

and is assumed non-zero in the  

63 

(M--  I) b,,. . . . .  , 2 b.~i-2, bx-1 

M - -  I rows 

rOWS 

I 
I 
I 

enuncia t ion  of the lemma. Le t  ig(x) be the 

polynomial  obta ined  f rom this  de t e rminan t  by replacing the  final column by 

x :~-2, x M-a, . . . ,  I, o, o, . . . ,  o, and q (x) the  polynomial  obta ined be replacing the 

final co lumn by o , o , . . . , o , x  M - l , x  u - 2 , . . . ,  I. Then  

(62) r (x)p (x) + r '  (x)q (x) = D~. 

Now 19(x) is a polynomial  of degree M - - 2  and the r-adic value of each of its 

coefficients is not  grea ter  t h an  b 2'~-~. Thus  

(63) Ip (x)13 ~ b ~M-~ b z;-~ <~ b ~(M-1). 

Also, q ( x )  is a polynomial  of degree M - -  I and the r-adie value of e a c h  of its 

coefficients is not  g rea te r  than  b2~7 2. Thus  

(64) 
Then if 

(65) 

I q (x) I~ ~ b~ M-2 ba~-I = b a IM-I). 

[r(x)]~ < db  -3r 

where [Dr It = d, it  follows f rom (63) tha t  

I'" (x) p (z) I,. < d. 
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Hence  and by (62), 

and so, by (64), 

(66) 

C. J. Parry. 

[ / ( x ) [ ~ = m a x ( d ,  lr(.)p@)[,.) d 
]q(x)]~. - - ~ . '  

{ r' (x) [~. >- d b -~ ,,~-1!. 

We now show tha t  Ir(x)[r can be arbi trar i ly small for  r-adic numbers  x 

only if r(x) has an r-adic root. W e  suppose tha t  there exists an r-adie number  

Z such tha t  

I z Iv ~ b, [r (Z)[," < rain ~b~i-3/: ~ , b.-~ ~_1) ] , 

," (z) 
and tha t  0 is the  r-adic number  - - r ' ( z ) "  

(67) 

Fur ther ,  since [ Z It" ~ b, 

r: 
for  l =  1 , 2 , . . . ,  M. Henee  

Then by (65) and (66), 

b 3 (,u--l) 
I o l ~ - < - - I r ( z ) l ~  < ,.  d 

Thus 

(68) 

for 

Hence  also, 

and so, by (66), 

(69) 

b~-l  _< b : : - I  

N~ ~ - ," (z) ~ l~ 
],'(z) l~< 

d ~ 
b i - 1  b7 (M-I) 

d ~ 
b ~ ~iu-1) 

I,'(z + o)k < Ir(z)l~, 

M (/~ : \ 

~ r(')(z) 0 ~ = x2 r"'~z~ O~ r (z  + 0 ) - ~ r ( z )  + r ' ( z )O+ ~ l ~  ,=~ . l v  �9 

[ r (z  + O)[v < db -~ ( i -1 )  

Jr' (Z + 0)]~ >- d b -3C~-1/. 

- - - - I , ( z ) l ~ = l , ' ( z ) l ~ .  



The I)-adie Generalisation of the Thue-Siegel Theorem. 65 

Now there exist sequences of numbers Z~, 0, such tha t  

O - -  r , ( z  ) , X l = Z  ~-0, 

r (Z,) 
01 -- r '  (Zli' Z2 = Zl + 01, 

O~ - -  r ' ( x ~ ) '  Z~ = Z~ + 0~, 

r (Z~) 
O~ - -  r'  (Z3)' X4 = Z~ + 03, 

and so on. By (67), (6s) and (69), 

[_ cl ~" d ) 
[zIIT-< b, [r(z~)IT< I~(Z) IT < min \bT(M_l), ~(~:~-1), 

( d  ~ d ), 

ha(M-l) 
O~IT < - -  Ir(z~)IT, d 

b a (~-1) 
I r (z~) IT, 

5 3  ( M - - h )  

d I r (z~)IT, 
d 2 d ) 

IX3 ]~ --< b, [r (;~3)1~" < I r (Za)IT < rain ~ ,  b ~ _ ~  , 

and so on. Thus 

O3 IT -< - - - -  

lira ] r ( z ~ ) l r = o .  lim [ Z , + l - - g , l ~ . = l i m  0 , 1 ~ . = o .  

Thus {Z-} is a fundamenta l  r-adic sequence having a l imit  Z* which is a root of 

r (x). We have therefore proved tha t  ]r (x)IT can be less than  rain bT(e_f),~t~:~_~) 

for an r-adie number  x such tha t  Ixk_< b only if the polynomial r(x) has an 

r-adic root. 

Thus, if r(x) has no r-adie root, for all r-adic numbers x, 

d ~" d ) 
I r(x) ]r -> rain b M, b7(~:~-1)' b~M-i) ' 

and the first part  of the lemma is proved. The conditions stated in the second 

part  of the lemma involve the conditions b ~ I and d = I, so tha t  immediately 

Ir(x)[T-> ~ 
6 --  6 4 2 1 3 6  Acta mathematica. 8 3  
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Thus 

(7o) 

28. Different ia t ing (57) logari thmically with respect  to x, 

F '  (X, y )  I I I 
- -  + + . . . .  + 

(1) (~)  F ( x , y )  x - - ~ k  y x - - W  Y x- -~( [k)y  
+ a ;  (~, v_~) 

Gk (x, y) 

( k =  I, 2, . . ., a); o - < v k < m ) .  

] F (x, y) Ir k --> I F '  (x, y) ]~k min (I x - -  ~?~" y I~k, I x - -  ,]~') y Irk, .-- ,  

a ;  (~, v)L! 
( k ~  I, 2, . . . ,  a). 

I f  the maximum of the rk-adic valuations of the coefficients of Gk(x,y) is 

bok, and if u and v be, as before, any integers  of ~ such tha t  37 ((u, v)) g 1 Vd(~)  I, 

then 

(7~) I e ; ( u , v ) l - <  b0~ (k = ~, 2 , . . . ,  ~). 

Further ,  ne i ther  Gk(x, I) nor Gk(I,y) has an rk-adic root, and both have non-zero 

discriminants,  since F ( x , y )  has a non-zero discriminant.  Thus, by Lemma 7, 

for  every ~k-adic number  x, 

where bl~ is a positive constant .  Hence,  since G~(x, y) is homogeneous,  

( . ,  I 
Vk - -  rk 

(7). 
i~ k k "' 

Now by definition u and v have a grea tes t  common ideal divisor ( u , v ) =  c such 

t h a t  N(c)--< I ] / d ( ~ ] .  There are at  most  a finite number  of ideals in ~ with 

norms not  grea ter  than ] d ~ l ,  and so 

I c I~ -> b~ (k = ~, 2 , . . . ,  ,,), 

where b2k is a positive constant  not  grea ter  than I. (Here [clr means simply 
~t 

r e, where r is the rat ional  prime number  to which the prime ideal r of ~ be- 

longs, e is the order of r, and /x is the power to which r divides c.) Hence  and 

by (72), 



The D-adic Genera l i sa t ion  of the  Thue-Siegel  Theorem.  67 

b I G, (u, v)I~ >- ~ b~, ( k :  1, 2, . . ., a), 

s ince b m < ~,~-~ a n d  s ince a t  l e a s t  one of  the  ideals  !u) and  (v_)) is p r i m e  to  r~. 
2k - -  ~2k  ~ �9 C C 

Thus ,  by (7~), 

(73) ~ > ( k : ~ , 2 , . . . , a ) .  
] G~ (u, v) I ~ - -  bo~ 

T h e  d i s c r i m i n a n t  A of F(x ,y )  is a non-zero  i n t e g e r  of  R, a n d  so we m a y  

choose  b i n a r y  f o r m s  H~(x,y)  a n d  H,(x ,y )  of  deg ree  m - - 2 ,  a n d  K ~ ( x , y ) a n d  
K~(x,y) of  d e g r e e  m - - I ,  w i th  i n t e g r a l  coef f ic ien ts  f r o m  R, such  t h a t  

F(x ,  y )Hi  (x, y) + F '  (x, y)K~ (~, g) = ~ x  ~ ~-~, 

F(~,  y) H,  (x, y) + F '  (z, ~)K~ (~, y) = ~ y ~ - - ~  

Thus ,  t a k i n g  x ~ u a n d  y = v, 

' _ (I u 12,~-2 J v ~'~-~ m a x  (I F(u, v)J~k, J F (u, v)Irk) > I L/["k m a x  ,, '~k ' rk " 

_> I ~ l~1 ,~m-~, ,  (k = ~, =, . . . ,  ~). 

Hence ,  i f  f o r  a n y  k f r o m  k = I,  2, . . . ,  a a n d  a n y  u a n d  V, 

t h e n  

a n d  so, by (7 ~ ) a n d  (73), 

I ~ ,  , , ~ - ~  rain ( I , , - , 7 ~ . "  J F (u, v) J~, > _ _  ~ s  ir  k V2k 

Thus ,  fo r  k =  I , z , . . . , a  a n d  al l  u 

fo l lows  t h a t  

(74) 

~ 2 k  ' 

IF(u, ") 1~ > [~Jrk t '~ -2  

b m 

~' I~, l u - ~-" v ] ~ , . . . ,  l u - ,~'~)v I~, bo~ ! 

and  v, i f  Ck [,1t ~k b~-~2k m i n  I ,  b-ok-~ , i t  

] F ( u ,  v)]r~ > ck min  (] u -  ~ ' v  [u., Ju - -  ~g , ~k, �9 ', J u - -  ~ ' k ) v  Irk, I ) .  

F o r  al l  t hose  rk the  n o r m s  of w h i c h  exceed  a c e r t a i n  va lue  d e p e n d i n g  only  on 

a n d  F(x ,  y), t he  g r e a t e s t  c o m m o n  idea l  d iv i sor  of  u and  v, and  the  d i sc r im-  

i n a n t  A a n d  t h e  f irst  coef f ic ien t  a 0 of  F(x ,  I) are  p r i m e  to  rk. I t  t h e n  fo l lows  

fo r  t hese  rk t h a t  
Ck = I. 

For ,  f irst ly,  

1r ]rk = b~ = I. 
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Secondly,  
[ z~ Irk ---- I .  

Thirdly,  the  coefficients of the polynomia l  

~ I  F ( X ,  I )  = X m  q - a ~ X m - - 1  q-  ' ' "  Jr- a m  

a o r o a o 

are rk-adic integers ,  so t h a t  the  rk-adic roots  ~]~', ~.~) ~('k) of F(x,  I ) a r e  

rk-adic integers.  Thus,  the  fo rm 

• (x, v) 
• (; (x, v) = a0 

(1) (=) X (*'k/ 

has rk-adic in tegra l  coefficients and  a first coefficient uni ty ,  so t h a t  b0k= I. 

Four th ly ,  the d i sc r iminan t  of I__ G(x, y) is an rk-adic in teger  and  divides J ,  and  
ao 

is thus  an rk-adic unit .  I t  t he re fo re  follows f rom L e m m a  7 t ha t  we can take  

blk as unity.  Thus  we have proved  t h a t  

( Ck = [ d t , 2m-2  r a i n  I~ = I 
rk v2k b T f  

for  all those rk wi th  norms  exceeding a cer tain value depend ing  only on ~ and  

F(x,  v). 

Now by (74), 

( r  

�9 ' ' ~ a  " 

k= l  

( I  I n i n  (I U - -  ~):1)?.: irk, i? ~ __ /2~.,) /; i r a . , . . .  , i ~t__~(krk)Y irk, i ) ,  ~ (rk) ' 
t '=1 

where,  for  k = I, 2 . . . .  , a, G(r~.) is a na tu ra l  n u m b e r  not  g rea t e r  than  g(rk). 

Bu t  for  all those rk wi th  norms  exceeding a cer ta in  value depending  only on 

and  F(x, y), ck = I, and  for  o ther  rk, which can be only finite in number ,  ck can 

assume only a finite n u m b e r  of values. Thus,  the  produc t  ra(r,)c~(~"-') ca(r, ) 
�9 ~ 1  . . . .  o" ' 

however  la rge  the n u m b e r  and wha teve r  the choice of p r ime ideals rk, can assume 

only a finite n u m b e r  of values.  The  m i n i m u m  of ~hese values will be a posi t ive 

cons tan t  Co depend ing  only on ~ and  F(x,y), and not  Oll the  n u m b e r  or  choice 

of  the p r ime  ideals rl, r ~ , . . . ,  r~. Also, 
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o c~ 

(75) H I  F(u, , <'(~k> > ,.)1~ <oH , , in  (I - - ~  ':1~, I"--~,~ "l~'~ . . . . .  , I"--~i:k)~l~,~, ')<~'~ 
k=l k=l 

29. As before, let ~o be any e lement  of ~ and u and v any  pa i r  of in tegers  

U 
of ~t such that  oJ= and ( u , v ) = c  h~s ,a norm not greater than Iv l. Then 'O 

i t  r emains  to prove t h a t  

(76) 
G ff 

_ _  / I  OJ c~ <~-> H I  r ( " ,~ ' ) l~  (<',) > ~(~) H rain tl --17k r,:, I ~ - ~  I~ , , . . . ,  I~-~i"~)l ,k, ,)"(:~', 
k=l k~l 

where c(r) is u pos i t ive  cons tan t  depending  only on ~ and  F(x,y). 

(a) Suppose t ha t  for  a~ (o --~ a~ ~ a) of the rk, which wi thou t  loss of genera l i ty  

may  be t aken  as r,, r 2 , . - - ,  to., 

Then for  0 ~- ~, 2, . . . ,  rk, 

] r - -  "tk Vk 

and by (75), r ep lac ing  a by a 1, 

Ol 

rk 
k - -1  

O" 1 

l u - v T ~  I -  -~(~ ,l~k 
I L, Irk - - I  {: Irk lao Irk 

>-- <o H (I c I<,,. I ao <D <~ c~ l I  min (I ~ -- ~"' I~, I ~ -- V~' I<~, . - . ,  I ~ - -  VT"k~ I~,')'~ ~*~, 
k ~ l  k ~ l  

since Iv I~ --< ', a~d so I cl<k I~o I<~ --< ', for k = ,, ~ , . . . ,  o,. ~u t  by the inequal i ty  

(6 a), which clearly still holds if ~o is rep laced  by the  ideal c, 

Hence  

o l  
I 

H (1~ I<~.1 -o I~Y/,.~ _ -Y(c) I m(,o) I k = l  

>_ 
I v d ~  I N(~o) I 

o I o' l 

_ ,~ - <o, I I  m i .  (I ~ - -  I~k, I ~  - -  '~' . 
k ~ l  k = l  

where col is a posit ive cons tan t  depending  only on ~ and  F(x,y). 



7O 

(b) 

and so 

Hence 

C. J. Parry. 

For  the remain ing  rk, i .e . ,  r~,+~, ro,+2 . . . .  , to, 

] v]rz: <]  C]r~lao]rk, 

I~lr~ = I c I~. 

I F(u,  ~)Ir~ = ma~ / I  ~o u~ Irk, I a, u"~-~ ~ I~, .  �9 

= I aoum I~ = [aol~lc l  "~ rk* 

Thus 

1~ I ~ ( u ,  v)I" cry) _> 
rk 

k=(x~+ l 

a~ v~ Irk) 

>-- ~ I  ([a~ It  ~)G(rk) min(iw_~)~.l, lrk, ]w_~:~l rk ,  . [w__~([k)]rk, i)a(rk), 
rk " 

k - - a t + l  k = a l + l  

and by the inequali ty (6 a), 

I 

rk i N ( a o ) l l V ~ - ~  = co'-' 

say. Hence  

k = a l + l  k~a~ + l 

where co~ is a positive constant  depending only on ~ and ~'(x,y) .  

Thus (76) follows, with e (r) =Col Co2. 

30. Combining the  inequalit ies (6I) and (76) and wri t ing c ( q ) c ( r ) =  Co, we 

arrive at the following ]emma: 

L e m m a  8. Let:  

be a finite algebraic field of  degree n (>-- I) over the rational number 

field ?~ ; 

F ( x , y )  be a binary form of degree m ( ~  2), with a non-zero discriminant 

and integral coefficients f rom the field ~ of  which the coefficient of 

x '~ is not zero; 

ql, q~, �9 �9 q~,+r., be the r~ + r. infinite pr ime ideals corresponding to the rl real and 

r~ pairs  of  conjugate imaginary fields conjugate to ~ ; 

rl, r~ . . . .  , r~, where a ~ o, be a different finite prime ideals of  ~;  

G (rk) (k-~  i, 2 , . . . ,  a) be a natural number not greater than g (rk); 
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~ ) ,  ~ , . . . ,  ~J.~) ( j  = I ,  2 , . . . ,  r I -t- r2 ; ~ = I ,  g (q j)) be the real or complex roots of 

the polynomial conjugate to F ( x ,  ~) with respect to the field ~j~; 

V7 ), ~ )  . . . .  , ~ )  (k = I, 2 . . . .  , a) be the ~ rk-adic roots of F(x~ I); 

w be any non-zero element of ~;  

u, v be any two iutegers of ~ such that w --~ u_ and N ((u, v)) < [ 1 / ~ )  [, 
V 

where d (~) is the discriminant of ~; 

$2 be the number I Y(x ;  co, ~3, n)l; 

N(F(u ,v) )  be the norm in ~ over ?~ of F(u,v) .  

Then there exists a positive constant Co, depending only on ~ and F(x , y ) ,  and 

not on the ,number and choice of rt, r~ . . . .  , r~, such that 

fr 

I N(F(u, v))l H I  F(u, v)I~(W >- Co S~ ~- 
k=l  

r,+e2 g(qj) 

�9 I I  I I  , , , in  (1"  - -  N ' ; h J , ,  I ~  - g}~)l,;~, �9 - . ,  Io~ - ~,,s!~) I , ; , ,  , )"  
j =1 7=1 

ff 

�9 ] ]  ~ i n  (I o - -  ~7  ~ I~, I ~  - -  ~")I,'~, - � 9  I ~  - -  n ('~)~ I~, ' )"  ~)  
k=l 

for all w and all u and v. 

(This l emma  is, of  course ,  also t r ue  fo r  m = I.) 

31. F o r  a ce r t a in  n u m b e r  /~ (o --</~ ~ a) of  the  f ini te  p r ime  ideals  rl, r2 . . . .  , r~, 

~ k ~  O. 

W i t h o u t  loss of  gene ra l i t y ,  we can  suppose  these  to  be r~, r ~ , . . . ,  r~, so t h a t  

v k = o  f o r k = / ~ +  I , / ~ + 2 , . . . , a .  T h e n  the  inequa l i ty  of  L e m m a  8 becomes  

(77) IN(F(u,v))[ f i lF(u ,v) la(~  > >-- Co ~ .  rk 

r~+~ ~(q.~) 
H H rain ([w - -~<~)]q/'' I ~ - -  ~l'-';Iq;,, �9 �9 ", I~~ s I) " ~ J ,  
j = l  ~=1 

�9 H m i n  (I oJ - -  F~')Irk, [ w - -  F ; ) Ir  k . . . .  , [ to - -  ,?~'k)Irk, l ) a  (rk/" 
k=l  
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Now each value of w sat isfying the inequali ty 

(78) 
~, +r.. r 

H H -min(l~~ l~-G>lqJ< , I~ ,~)' . . . .  , ~j~ 

j = l  ~,=1 

I ~C~-fl �9 H rain  (1 o - -  - - & G ' '  , 
k = l  

also satisfies at least one of the inequalities 

r,+ro g (q j )  ~t 

(79) I I  I [  rain (I ~o - -  ~.j:/r Iq~.,, I I  rain ~(k~k) I~k, I)a (rk) G Y2-fi, 
j = l  7=1 k = l  ~ 0  

where a j ~ ( j = ~ ,  2 , . . . , r ~  + r ~ ;  y =  I,g(Qj~) tal;es each of the values 1 , 2 , . . . , m  

and ak(k=- r, 2 , . . . , t t )  each of the values 1,2 . . . . .  ~k. But  f rom Theorem 1, 

I 
w i t h  h ~-  I ,  ~ = go, ff~ - -  ~(~, g = C 0 '  ~ = r ,  + r o, a ~ -  # ,  G (qj) = g (qj) a n d  ~J7 ~ -  ~J~.#/) 

for  j--~ I, 2 . . . .  , r  1 + r e and 7 =  r,g(qj),  and W~--U~k)  for  k -~  I, 2 , . . . ,  re, 

6 ~-- I, 2 . . . .  , G(rk) and z ~- hk~ = r, i t  follows tha t  each of the inequali t ies (79) 

is satisfied by no t  more than  

~- (] +~o)t 
k o 2~ -~ 

r ~ -- r e [~ te 

different  numbers  oJ of a ,  where t = E g ( q j )  + E G ( r k ) ~ - n  + E G(rk), ao is 
j : l  k = l  k : l  

any positive number,  and k 0 is a constant  depending only on %, fi, ~ and /~(x ,y ) ,  

and not  on the number  and choice of r~, r ,~ , . . . ,  r,. Also, there  are no t  more 

than  m'~j  ~ .~. . .  ~t, different  inequali t ies of the form (79), so tha t  the number  

~0 of different  nmnbers  ~o of ~ sat isfying (78) is not  g rea te r  than  

2?:t~_a(l+,o) (v k ) ~__~ (1 + %) =~IG (t'k) 
k0 

k=l  

where kj is a cons tan t  depending only on %, fl, ~ and F (x ,y ) .  

Now to each r sat isfying (78) correspond not  more than  k s pairs of integers  

U 
u and v of ~ such tha t  ~o = -  and N ( (u ,v ) )~  I]/d(~.)l ,  where ks is a cons tant  

V 

depending only on ~. This follows f rom the well-known fac t  t h a t  the number  

of ideals with norms not  g rea te r  than  a number  x is of order  x 1, and because to 

i See p. 61, n o t e  1: ]-IECKE, 19. I60.  
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each such ideal c corresponds not more than one pair of integers u and v of 

(or t.wo pairs if sign be taken into account ) such  that u - = o~ a n d  (~, v) = c. 
Y 

Thus the number of non-associated pairs of integers u and v of ~ (writing 
\ 

u)  with N((u, v))--< [ V d ~ l  and satisfying (78)is not greater than 60 a s  

o +I _ & 
kl]C~2 \k=l ] 1 |  max (I,~k), 

and by (77) this expression is also an upper bound for the number of solutions 

of the inequality 
ff 

t y ( F < u ,  ~1)I ] - [  I F + ,  ~)I~<~ ~ -< ~ ' -~ ' ,  
k = l  

in non-associated pairs of integers u and v of ~ such that  N ( ( u , v ) ) ~ < ] V d ~ ] .  

Thus, writing k~ ke-~ k~, we have proved the following theorem: 

Theorem 2. Let:  

be a finite algebraic field of degree n (>~ I) over the rational .umber 

.field ?~ ; 

F ( x , y )  be a binary form of degree m (>--2) with integral coefficients f rom 

and a non-zero discrimi~ant and such that the coefficient of x m is 

n o t  z e r o  ; 

where a ~ o, be a different finite prime ideals of ~;  

(k : I, 2 , . . . ,  a) be a natural number ,or greater than g(rk); 

(]~ : I, z, . . . ,  a) be the number of  ~k-adie roots of F(x,  I); 

~1~ 1:2~ ' �9 '~ ICc~) 

a (~) 

~Yk 

5, fl 

~o 

be two numbers such that 

~ r a i n  
8 ~ 1 ,  2, . . . ,  #t--I 

be a loogtive number. 

Then the number of  solutions of the inequality 

t k  
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in non-associated pairs of integers u and v of ~ such that N((u,v))~--]V~(~)], 

where N(F(u,v)) is the norm in ~ over 9~ of F(u,v), ~2 is the number 

\ k : l  |]_ max (I, Yk), 
k=l 

where ka is a constant depending only on %,fl, ~ and F(x,y), and not on the 

number and choice of the finite prime ideals r,, r 2 , . . . ,  r~. 

32. 

becomes 

I f  m ~ 3, we can take fl----m, and the inequal i ty  of Theorem 2 then  

IN(F<u, v))l HI > 
k=l 

which, by the inequal i ty  (6 a), is equivalent  to the equali ty 

I / ~ ( F ( u ,  v))l f i l / F (  u, v)Igk(rk > = I, 
k=l 

since F(u,v) is an in teger  of ~. Le t  % =  I. Then,  since o--<vk--~ m for  

k = I, 5, . . . ,  a, the  number  of solutions of this  equali ty i n  non-associated pairs 

of integers u and  v of ~ such tha t  N((u,v))~--IV~)] is not  grea ter  than  

ks 4 k=l ~ m ,  

and therefore  not  grea ter  t h an  

K\k=l  / , 

where K is a cons tant  depending only on ~ and F(x, y), and not  on the number  

and choice of the finite pr ime ideals rl, r ~ , . . . ,  r~. 

Fur ther ,  we may replace the condi t ions tha t  the coefficient of x~(m ~--3)in 

F(x,y) is not  zero and tha t  F(x,y) has a non-zero discr iminant  by the condit ions 

tha t  ~(x,y)  is of degree not  less than 3 and has a non-zero discriminant .  F o r  

if  Fl(x ,y  ) is a binary form sat isfying the la t te r  but  not  the fo rmer  conditions, 

i t  may be t rans formed by a l inear  t r ans format ion  of de te rminan t  I with ra t ional  
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integral coefficients into a binary form F~(x,y) which satisfies the former con- 

ditions. Thus the number of solutions of the equality 

a 

[ 2~T(F1 ('a, V))I H IF1 (U, V)I~k (l:k) = I  
k=l 

will be exactly the same as the number of solutions of the equality 

a 

rk k=l 

We h~ve therefore proved the following corollary: 

Corollary 1. Let: 

be a finite algebraic field over the rational number field ?~ ; 

F(x ,y )  be a binary form of degree not less than 3 with integral coefficie~ds 

from ~ and a non-zero discriminant; 

~l, ~2, �9 �9 to, where a >~ o, be a different .finite prime ideals of ~. 

Then the number of solutions of the equality 

IN( 'Iu, v))l 1]  I F(,,, = , ,  
k=l 

in non-associated pairs of integers u and v of R such that N((u ,v ) )< []/~(~)I, 

where N(F(u,v))  is the norm in ~ over ~ of F(u ,v)  and d(~) is the discriminant 

of ~, ,is not greater than 

K\~:=t 1 

where K is a constant depending only on ~ and F(x ,y) ,  and not on the number 

and choice of the finite prime ideals ~t, r~, . . . ,  ro. 

33. From Corollary I follow a number of other corollaries. The first is as 

f o l l o w s  : 

0orol lary  2. I f  ~ be a finite algebraic field over the rational number .field ?~, 

i f  ~'(x,y) be a binary form with integral coefficients from ~ and such that F( x, I) 

has at least three different roots, of which one may be infinite, and ~f u and v be 

any pair of integers of ~ such that N((u, v)) <- IVd((~)l, where d(~) is the diserim- 

inant of ~, then as 



76 C . J .  parry, 

max ([ _N(u)[, [ N(v)D -~ c~, 

the greatest of the norms of the finite prime ideals dividi~g F(u, v) te~ds to 
i.fil~ity. 

Proof.  Suppose first tha t  F ( x , y )  satisfies the condit ions imposed in Corol- 

lary I. ~ o w  if Corollary 2 were false for  such F(x,y), F(u,v) could have only 

a finite number  of prime ideal divisors, say rl, r2~ . . . ,  r~, for  all members  of some 

infinite sequence S of pairs of integers u and v of ~ such tha t  N((u, v)) --< I V d ~ ) ]  

and max (I-N(u) l, I N(v) I) -+ oz. I t  would then  follow from the re la t ion (6) t ha t  

for  all pairs u and v of the infinite sequence S, 

rk 
k = l  

which would contradic t  Corollary I (with a-----a0). We have thus  proved the 

corol lary t rue  if _~(x,y) is of degree not  less than  3 and has a non-zero 

discriminant .  

I t  is also t rue if F(x, I) has at  least three  different  roots,  whether  or not  

F(x,y) has a non-zero discr iminant ,  for  then  F(x,y) decomposes into two binary 

forms F~(x,y)  and F~ (x,y), with in tegra l  coefficients f rom ~, such tha t  F~(x, ~) 

has at least  three  different  roots but  no coincident  roots. Thus  /~l(x,Y) is of 

degree not  less t han  3 and has a non-zero discriminant .  The corollary is there- 

fore  t rue for  F~(x,y), and consequent ly  for  F(x,y). 

84. Le t  F(x,y) be defined as in Corollary I. The norm of F(u,v)in 
over ~,  i .e . ,  N(F(u,v)), will be a ra t ional  in teger  for  any integers  u and v of St. 

Suppose tha t  u and v are such tha t  N(F(u,v)) is divisible by no ra t ional  prime 

numbers  o ther  than  the z(--> o) different  prime numbers  r ,  r ~ , . . . ,  r~. Le t  the a 

pr ime ideals r~, r ~ , . . . ,  r ,  consist  of all the different  prime ideal divisors in R of 

rl, r ~ , . , . ,  r~. Then  the valuat ions of F(u~v) with  respect  to all o ther  finite 

prime ideals of R are uni ty ,  for  otherwise,  by the re la t ion (6), !V(F(u,v)) would 

be divisible by o ther  ra t ional  prime numbers  besides rj, r 2 , . . . ,  r~. F rom the 

same relation, 

I N(F<u, v/)l H It(u, v)IV+ = , .  
k = l  

But  by Corollary I, the  number  of solutions of this equali ty in non-associated 

pairs of integers  u and v of ~ such tha t  N((u,v))--<l]/d~] is not  grea ter  t h an  
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( ~ g(~'k))+l 
KU=~ l , 

where K is a constant depending only on R and F(x,y).  Now 

g (r~) = ~, 
k = l  

since the sum of the g's corresponding to the prime ideals of R dividing a 

rational prime number is n. Hence 

+ 1  

k ~___ K~,+I < K~+I 

say, where K o is a constant depending only on ~ and F(x , y ) .  

Thus the number of  non-associated pairs of  integers u and v of ~, with 

N((u, v)) ~ [Vd~) [ ,  such that N (F(u, v)) is" divisible by ,~o rational prime numbers 

other than r,, r2, �9 �9 r,, is ~ot greater than 

K~+I 
0 

where K o is a constant depending only on ~ and F ( x , y ) ,  and not on the number 

and choice of  the prime numbers rl, r~, . . . ,  r~. 

This result may be given either of the interpretations contained in the 

following corollary : 

Corollary 3. Let  ~ be a finite algebraic field over the rational number field ~,  

let F(x ,  y) be a binary form of degree not less than 3 with integral coefficients from 

and a non-zero discriminant, let q ,  r2, . . . ,  r, be ~ (>-- o) different rational prime 

numbers, and let u and v be any integers of  ~ such that 2g((u, v)) <-- [ W d ~ [ ,  where 

d(~) is the disc~iminant of .~. Then: 

(a) the ~umber of  &i~rerent integers 1 of  ~ with ~wrms in ~ over ~3 which are 

d.ivisible by no rational prime numbers other than r~, r~, . . . ,  r,, and which are ex- 

pressible in the form F(u ,  v), is not greater than 

K~ +1, 

where K 1 is a constant depending only on R and F ( x , y ) ,  and not on the number 

and choice of rl, r2, . . . ,  r~; 
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(b) the number of different representatio~s of a ,non-zero integer I of ~, the 

,orm in ~ over ?~ of ~vhich is divisible by no rational prime numbers other than 

rl, r ~ , . . . ,  r,, in the form F(u,v) iu not greater than 

K~+I, 

where K~ is a constant depending only on ~ and F(x ,y ) ;  

(c) in particular, i f  the norm in ~ orer ?~ of I is a rational prime number, 

the number of d~fferent representations of I in the form F(U ,  V), where U and V 

are any pair of integers ( f  ~ which are multiples of a pair  u and v by an integer 

of ~, is bounded by a ~umber depending only on ~ and F(x,y) .  

(c) follows since, if a pair U and V are equal to a pair ku and kv, where 

k is an integer of R, 
1 =  F ( g ,  V) = F (,,, v), 

where m is the degree of F(x,y) ,  and so 

N(_r) = N ( F ( U ,  V~) = (~V(k)) ~ ~V(F(u, v)), 

which, by the definition of I, is impossible unless N(k)~-  I. But then 

lv((u, v))_< I I, 

so that  U and V are identical with a pair u and v. (c) then follows from (b) 

by taking , ~ I. 

From this corollary may be obtained a number of interesting results con- 

cerning the repres6ntations of systems of integers by homogeneous forms in 

more than two variables. 

Example. Consider the cubic binary form in x and y 

F ( x , y ) = a  ox 3 + a l x ' y  + a~xy~ + %y3, 

with integral coefficients from the quadratic field ~ = ~(Vc) ,  where C is 

a non-zero rational integer not equal to i and square-free. Then by Corol- 

lary 3(b), provided F(x ,y )  has a non-zero discriminant, the number of dif- 

ferent representations of any integer I of the field ~(I /C)  by F(u,v),  where 

u and v are integers of ~(VC) such tha t  N((u, v))--< I V Y ) ) ,  is not greater 

than g~+l, 
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where K 2 is a constant  independent  of I and ~ is the number  of rat ional  prime 

divisors of the norm ~ ' ( I ) i n  ~ (VC') over ~ of I. 

Now we may write 

a o = a  o + VCb o, a , = a ,  + VCb,, a-o=a2 + VC'b.o, a a - - a  a + VC'bs, 

I - ~ q  + V -C r ,  

u = u l  + v = Vl + V v-o, 

where ao, bo, al, b~, a_o, b2, a3, ba, q, r, ul, %, vl, vs are ra t ional  integers. I t  is easily 

verified tha t  if 

F ( u , v )  = q + V C r ,  

then 

a o u ~ -  Cb ou~+ aav~--  Cb 3v~ + 3Cbou~U-o + a  ou[vt + Cb lu~vs 
2 2 3 ao u] u, a~ u2 v~ C b~ + a-o v~ ul + C b-o v~ u-o + 3 C b8 v~ v-o - -  - -  - -  U 2  U s 

- -  a-o v~ u~ _ C bs v~ u _ as v~ v~ + 2 C 51 ul  u,, v~- -  2 a s u~ v~ v-o + 2 C b s v 1 v-o u x - -  2 a x v-o ul u-o 

- ~  q ,  

b ou~-aou2 '  + b 3 v ~ - a s v  ~2+3aou~u-o + bluer  1 + a l u ~ v  s 

3bou]Uj blu 2 u~v2 + bsv]U 1 + asvl . 3as - -  ~ v ~ a l  2uo + v~v~ 

- -  b-o v~ ul 2 u - -  2 v - -  - -  - -  as v2 ,. 3 ba v2 ~ + 2 a~ u~ u,, v~ 2 bs us v~ v2 + 2 as  v~ v-o u 1 2 b~ v~ u~ u-o 

= r .  

Thus the number  of different sets of ra t ional  integers u~, u-o, vl, v~ such tha t  

N ( ( u  1 + V-(Yus, v~ + ] / C v s ) ) ~  [ V d ( ~ V C ) ) I  and sat isfying the above pair of 

equations is not  greater  than  
K ~ + I .  

In  particular,  if C = - -  I, i .e.,  R ~ ( i ) ,  then  N(I)~-q-o + r  * and 

I V d ( - ~ ( ~ ) ] =  2. An interest ing case arises when 

a0-----I, b o = o ,  a~-=o,  b l ~ O  , a-o-~o, b2~-o , a ~ - - o ,  bs.-----I. 

For  these values of the coefficients, 

F ( x ,  y) = x ~ + i yS, 

so tha t  F ( x ,  y) has a non-zero diseriminant.  I t  therefore follows, by taking these 

values for the coefficients, tha t  the pair of equations 
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v~ - -  3 u~ u~ - -  3 v~ v~ + v~ = q, 

are satisfied by not  more than  

K~+ 1 

different  sets of ra t ional  integers  us, u,2, vl, v~ such tha t  .N ((u 1 + ira_, v I + ivy)) <~ 2, 

where K 2 is a cons tant  independen t  of q and r, and , is the number  of ra t ional  

prime divisors of q~ + r". 

35. A resul t  similar to  tha t  of Corollary 3(c) can be obtained for  any non- 

zero in teger  I of the field ~. Le t  B ( I )  be the number  of different  representa t ions  

of such an in teger  I in the form /7'(U, V), where U and V are a pair  of in tegers  

of ~ with N((U, V)) <-- IVd(~ ) [ ,  or a mult iple  of such a pair  by an in teger  of ~, 

and let  b(I)  be the number  of different  representa t ions  of I by /i'(u, v), where 

u and v are a pair  of in tegers  of ~ with N ((u, v)) --< I V d ~ l .  Then  

(J) B ( I ) - <  , 
o' 

where the  sum is t aken  over all positive in tegers  6 of ~ such tha t  (t ~ divides 1. 

Now if the norm N ( I )  in ~ over ~ of I has �9 ra t ional  prime divisors, the 

norm of / has the  same or fewer  ra t ional  prime divisors, and so, by the resul t  

preceding Corollary 3, for  each set of d's having the same norm H, say, 

8 
N (3 ')=~ 

But there  are at  most  T ( I )  ~'s having d i f f e ren tno rms ,  where T ( I )  is the number  

of ra t ional  in teger  divisors of N(I ) .  Thus  

B(I)  <-- T ( I ) K :  +1 

Fur ther ,  it is well-known tha t  the logar i thm of the number  of ra t ional  in teger  

divisors o f  the ra t ional  in teger  N ( D  is 0 (log ] N ( I ) [ / l o g lo g  I N ( I ) D ,  and tha t  the 
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number of rational prime divisors of N ( I ) i s  also 0(log ]N(I) l / loglog I N(1)D. ~ 

Thus 
l o g T ( I ) = O (  l o g I N ( I ) [  --_(:)[ log IN(I) [  

' ~ ~lo~iog I N(,r) ,,og log IN(I)I) t)' 
and so 

log B ( z ) =  o(~ lo~ IN(l) !  / 
vog tog I N ( z ) I f  

We have therefore proved the following corollary: 

Corollary 4. Let ~ be a finite algebraic field over the rational number field ~3, 

let F(x,  y) be a binary form of degree not less than 3 with integral coefficients from 

and  a non-zero diseriminant, and let U and V be any pair of integers of  ~ with 

N((U, V))--< [ Vd (~)l, where d (~) is the discriminant of  ~, o," a multiple of such a pair  

by an integer of ~. Then the number B( I )  of different representations of an integer 

I of ~ (with a sufficiently large norm N(I )  in ~ over ?~) in the form F(U,  V) is 

not greater than 
log 1;r (1) l 

K log log I -~ (1) I, 

where K~ is a constant depending only on ~ and F(x,y) .  Also, 

B (J) = o (I ~(z)Io), 

where e is an arbitrarily small positive constant. 

36. From the argument preceding Corollary 3 follows a further result on 

the greatest rational prime divisor of the norm of the product of a number of 

integers of ~, provided, firstly, that  the number of integers is sufficiently great, 

and, secondly, that  all the integers may be represented by means of a binary 

form F(x ,y)  with integral coefficients from ~ and such that  F(x,  I) has at least 

three different roots. F(x,  y) need not now have a non-zero discriminant. The 

result is as follows: 

Corollary 5. Let ~ be a fn i t e  algebraic field over the rational number field ~,  

a~d let F(x ,y)  be a binary form with integral coefficients from ~ and be such that 

F(x,  i) has at least three different roots, of which one may be infinite. Then ~f M 

is a sufficiently large natural number and i f  

Ul,  Vl ;  U ~  V.2; . . .; UM, VM 

1 E. LANDAU, 'Handbuch  der Lehre v o n d e r  Verte i lung der Pr imzahlen ' ,  Vol. I (I9O9), B. G. 

Teubner ,  Leipzig, pp. 22o--222. 
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a,+e M ,+o,+-ass0ei++++++ v+i,+.+ of +, a,++l v of S+ s.+h X(<+,,+,>)  IVd- ( ,< l ,  

where d(.~) is the diserimi++a++t of  .~', the greatest ratio++al 29rin+e divisor of  the ++orm 

jV'(+q, v,) ];'(u2, r e ) . . .  F(,OI, v+,1) 
is greater tha~ 

K.~ log M loglog M, 

where K 5 is a positive co~stant depeJ~ding only on ~ a,~d 2~'(x,.y). 

Proof. If F(x ,y)  has a zero discriminant, it may be decomposed, as in the 

proof of Corollary 2, into binary forms ~'~(x,y) and F~(x,y), with integral 

coefficients from St, such that  _b~(x,y) is of degree not less than 3 and has a 

non-zero discriminant. But if the corollary is true for F~ (x,y), it is clearly also 

true for F(x ,  y). We may therefore assume, without loss of generality, that  fi'(x, y) 

is of degree not less than 3 and has a non-zero discriminant. Then by the argu- 

ment preceding Corollary 3 (with the same �9 and _Ko) we can choose ~ so that  

K :  + I ~ M < K ~  +1 + I, 

provided that  M is sufficiently large and that  K 0 is chosen greater than unity. 

By the result of the argument preceding Corollary 3 the numbers 

N ( F % ,  v,)), N(~'(u+, v2)), . . . ,  N(F(+o~, v~,)) 

cannot all be divisible only by tile same ~ - - I  rational prime numbers, and so 

their product must be divisible by a rational prime number not less than the 

�9 th rational prime nnmber. But it is well-known that  ~th rational prime number 

is greater than �89 log v, provided that  T is sufficiently large? Further, we have 

defined �9 so that  
[log (M-- i)] 

+->t i~:Ko ' 
whence follows the result. 

1 See p. 8I ,  n o t e  I :  LANDAU, p. 2 I  4. 



A F u r t h e r  A p p l i c a t i o n  o f  t h e  p-adic G e n e r a l i s a t i o n  o f  t h e  T h u e - S i e g e l  

T h e o r e m .  

1. The object of this paper is to extend the results on binary forms 

contained in my previous paper, 'The O-adic generalisation of the Thue-Siegel 

Theorem', to forms of the type 

m 

where h is a natural number and ~ ( 1 ) ,  ~ ( 2 ) ,  . , - ,  ~(m) are the m roots of a polynomial 

f ( x )  of degree m(~_ h) with coefficients from a field ~ of degree n( > -- I) over 

the rational number field ~, and with a non-zero discriminant. The method of 

proof will differ from that  given for binary forms, and will be shorter, but the 

results obtained will not be quite so refined. 

The notation used will, as far as practicable, be the same as in my previous 

paper. As there, g(p), where ~ is a finite or infinite prime ideal of ~, will 

represent the degree of the perfect p-adic extension of ~, over the field of real 

numbers if p is infinite, and over the field of p-adic numbers if p is finite, p 

being the rational prime number divisible by 9. As before also, T(x; ~o'; ~ ,nn ' )  

will represent that  polynomial of degree ~n '  which is a power of the primitive 

polynomial with rational integral coefficients having as a root the number w', 

which is an element of a field .~' of degree ~' over ~. The symbol qj~ also 

retains the same meaning. I t  will now be convenient to refer to the symbol qjT, 

as well as the symbol % as an 'infinite prime ideal'. 

The main theorem will be as follows: 

Theorem 2 a. Let." 

be a fiuite algebraic field of  degree n (>-- I) o~e~" the rational number 

field ~ ; 

h be a ~atural number; 
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F (xo, x~, . . . ,  xh) be the jbrm 

G (r~,) 

a, fl 

'~0 

UO~ U D �9 � 9  U h  
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m 

I [  (~o Z')" + x,  _>~"-' I . . . .  + ,,,), 
, i ,~1  

where ~(1), ~(2), . . . ,  ~(m) are the roots of  a polynomial f(m) of degree 

m(  > -- h) with coefficients j~'om ~ and a non-zero diseriminaJd; 

where a >~ o, be a d{[ferent finite prime ideals of  ~; 

(k = I, 2 , . . . ,  a) be a natural number not greater than g(ra.); 

be two numbers such that 

a ----- r a i n  
8 = 1  o m - - 1  , - ,  . . . ,  

be a positive number; 

be a , v  system of  i , tege, 's  of  ~ such that N(C,o, u,, . . ., ,,hi) <-- I Vd~(ff)], 

where d(g~) is the diseriminant of  ~; 

A be the maximum of the absolute values ef  the coefficients of the 

poly~wmial i ,  x 

( [  (,r s '  + <,) ~"-~ +. . .  + "I',% 
. = 1  

where (~ h) are u~ , U~o -'~, ~(") (0 = o, I, 2, the conjugate values 
�9 " " '  ~ ' 0  * " *~ 

to Uo. 

Then the ~mrnber of  solutions in non-associated sets of integers u o, u l , .  . . ,  uh of 

the inequality 

[ N ( V ( % , u ~ , . .  , , , , ) ) l I ] l F ( u o , , ~ l , . .  Uh) ~ ' ( r~)<Am-h'~ -~, 
�9 ~ .~ r k - -  

k = l  

where N(F(uo ,  u 1 . . . .  , uh)) is the norm in ~ over ~ of F(Uo, ul . . . .  , Uh), iS not 

greater than 
/ , a r k  

]cr; (2fl  - g  Z-7) = , 

where k 6 is a constanl depemli~g o~ly on ~o, fl, h, R and F(xo ,  X x , . . . ,  xh), and not 

on the number and choice of the finite prime ideals L, r.> . . . ,  r~, and k7 is a con- 

stant depe~ding only on m and h. 

2. To prove  this  t h e o r e m ,  it will first  be necessa ry  to  e x t e n d  T h e o r e m  I 

of  my prev ious  p a p e r  to inc lude :  

(a) a p p r o x i m a t i o n  by n u m b e r s  ~ of degree  h over  R which do n o t  lie in the  

pe r f ec t  r~-adie, r~-adie, . . . ,  ro-adie ex tens ions  of  R; 
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(b) approximation by the roots ~('), ;~('.'/,..., ~(h) of a polynomial  

'~to xh 7- ~1Xh--L -F . . .  -~ t(/~, 

where % , u l , . . . ,  Uh are integers of ~'. 

(a) To include the first set of numbers, we must  extend our definition of 

valuation with respect to a finite prime ideal. I f  w' be a non-zero element  of a 

field ~'  of degree n' over ~, lying in the perfect r-adic extension of ~, where 

r is any finite prime ideal of ~, the r-adic valuat ion of w' was defined as 

~ (~) 

where p is the ra t ional  prime number  divisible by r, e(r) is the order of r, and 

#(r) is a ra t ional  integer  such tha t  the fract ional  ideal rt~(~'~(w ') contains the 

factor  r in neither  numera tor  nor denominator.  The valuation of co' with respect 

to any of the n' finite prime ideals r '(~/, r '(2), . . . ,  r'(~') of ~ '  dividing r is, of course, 
(r'(i/) 

p~(~'/,)) (i = I, 2 , . . . ,  z'), where /x(r '(~/) and e(r 'r are defined in the same way as 

re(r) and e(r). I t  is clear t ha t  each of these caluatio,s will be equal to l eo'l~, for 
~t 

i f  1: = H r ,  '(i) E@'(i)), ~(1 :  '(/)) = # ( I : ) ~ E ( I :  '(i)) a n d  e(1c '(Q) - -  e ( l : ) ] ; ( 1 :  '(i)) ( i  = I ,  2 ,  . . . ,  , l : ' ) .  
i = 1  

I f  co' does not  lie in the perfect r-adie extension of ~, the valuation l e)'l~. 

no longer  exists according to the above definition, but  we now define it to be 

anti one of the valuations ]w' ]1:,(1), ]o)' [~:,(2),.. " ,  ]07 [r'(~'), which may now be different. 

Now it was stated in the inequal i ty  (8) of my previous paper, and proved, 

tha t  
r n l @ T i  r 

"~ - I I~., k ,, ~=1 - I  W01' 

t ! ! p ! 
where ql, q2, �9 � 9  qrq+r'2 are the r~ + r~ infinite prime ideals corresponding to the 

p r t p p 
r~ real and r.~ pairs of conjugate  imaginary fields conjugate  to ~',  h,  r~. . . . .  , r,, 

are ~' ( >  o) different finite prime ideals of ~',  0 (r~.) (]c = ~, ~, . . . ,  a') is a positive 

number  not  greater t h a n  g(r[-), and W0 is the coefficient of the highest  power 

of x in the polynomial  r (x ;  ~o', ~, nn'). (.q(p'), where p' is a finite or infinite 

prime ideal of ~' ,  is defined in the same way in relation to ~ '  as is g(p)in rela- 

t ion to ~.) Now from the definition of g(p) given at the  beginning of the present 

paper g(r '(~)) --> if(r) (i = ~, ~ . . . .  , ,~'). I t  therefore follows tha t  inequali ty (9) of 

my previous paper, i .e. ,  
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rll -~r'2 (~ 

I I  I~o'l ~(q'j) ] I I  ~~ ' I 

remains true, provided ~/l:--~ g(rz.) (k = ], z, . . . ,  ~). The whole of the proof of 

Theorem I is then val id w i thou t  al terat ion, except that  h~.~= I (k ~ ] , z , . . . ,  ~; 

= I, e , . . . ,  G(rk)), i t  being understood that  at each step valuat ions are taken 

in fields of sufficiently h igh  degree over  ~ to give the  a r g u m e n t  meaning.  I t  

may  also be no t ed  t h a t  no res t r ic t ion  need now be p laced on the  ~-adic roo ts  

of f (x ) ,  which can now be any  roots  of t ha t  polynomial .  

Theorem i the re fo re  states,  in its revised form, t h a t  i f f ( x )  be a po lynomia l  

of degree m(-->2) wi th  coefficients f rom ~ and a non-zero d iscr iminant ,  if 

q~, q~, . . . ,  q,~, where  o --< Q ~ r~ + r,z, be Q of the r~ + r 2 infinite p r ime ideals cor- 

r e spond ing  to the  rt  real  and re pairs  of con juga te  imag ina ry  fields con juga te  

to ~, if  G(qj) (j = I, 2 , . . . ,  e) be a na tu ra l  n u m b e r  not  g r ea t e r  than  g(qj) and 

G(rk) (k : -  I, 2, . . . ,  a) a na tu ra l  n u m b e r  not  g rea te r  than  g(rk), if  ~jy ( j = i ,  2 , . . . ,  e; 

), = I, G (qj)) and  ~2~'8(k = I, 2 . . . .  , ~; d = l, 2 . . . .  , G (rk)) be roots  of f ( x ) ,  if  c, % 

be two posi t ive numbers ,  and if ;~ be any a lgebraic  n u m b e r  of degree h (or any  

divisor  of h) over  $~ and A be the n u m b e r  []:(x; 2~; ~ :  hn)[, then  the inequality 

G(qj) a(r~) 

l ~  ] ]  rain (I,  1s ~J'AqJ7) l ~  - [ [  - -  --< eA 
j ~ l  ~,=1. k = l  d = l  

is satisfied by not more than 
I ~' o ~ (~1") ~ 

! 
k 0 2 

different ~umbers ~, where ]% is a cons tan t  depend ing  only on %, :?, ~, f ( x )  and 

h, and not  on the  n u m b e r  and choice of roots  to which approx ima t ion  is made,  

nor  on the cor responding  ideals.  

(b) .On rep lac ing  h by h', the revised Theo rem I is d e a r l y  t rue  for  numbers  

of degree h' over  ~, where  h'  is a na tu ra l  n u m b e r  not  g r ea t e r  than  h, and  A 

is the  n u m b e r  I l" (x; ;~, ~ ,  h' )~)[. 

Now the  roots  of the  po lynomia l  % x  h + u~x ~-~ + .-, + u~, for  any  sys tem 

of in tegers  % , u ,  . . . ,  u~ of ~,  can be of degree ~, z, . . . . ,  h - -  I or h over  ~.  Le t  

the  class of number s  ~(~1 conta in  all possible roots  of degree  ~(~ = ~, 2 , . . . ,  h) 

over  ~. Then  we m a y  select  f rom these h classes those such t h a t  the  roots  of 

some po lynomia l  u ox  ~ + Ul x ~-~ + " "  + u~ are con ta ined  in the  selected classes, 
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at  leas~ one in each class. Consider any one such selection S: )/(~),2,(2),..., ),(h,,) 

(~ --< h o ~< h), of degrees h (~), h (~), . . . ,  h (ho) over ~. Consider also the inequali ty 

,o o(q~) 121 ~(rk) h~ 
(I) H H Inirl (I, l ~ - -  ~Ji'lqJ7) 1 /  [ [  nlin (I, 1). - -  7]k~]rk) ~ e II A'(")-h(')'~, 

j=l  7=1 k=l d=l ~=1 

where the ~ in each valuat ion is selected from any of the classes ;t '(~), i,(2) . . . . .  )'r 

and A '(~') (v = I, 2, . . . ,  ho) denotes the number  II"(x; g'(,,/, ~ ,  h(,,~n)[. This inequali ty 

can be split up into h 0 inequalities in each of which the left-hand side includes 

only valuations involving )~'(") (v =- I, 2 . . . . .  ho) and the r ight-hand side is 

Now if the inequal i ty (I) is satisfied, so is at  least  one of the h 0 subsidiary 

inequalities. But  by the revised Theorem I, each such inequali ty has not  more than 

k,/,.) 2 ~'-" \~:1 ~-1 " / 

solutions in numbers from the class Z'i*), where k '(~) is a constant  depending 

only on e0, fl, e, ~, f ( x ) ,  h (~1 and h o. Also, there are not  more than  h J--lG(q;)+k--~a(~k) 

ways of selecting the h o inequalities. Thus the number  of solutions of the 

inequali ty (I) in nmnbers from the classes ) ,(1)~/(2/ , . . . ,  7,(ho) is not  greater  than  

or 

(k'(l/+ k'(~) + . . .  + k'(ho/)(2c3-~/1+,o) h)~=x ~-=i / ,  

t2 - h) J= = /,  

where k' is the number  (k '(1) @ ~,(2) @ . . . .  ~ k '(ho)) and therefore depends only on 

e0, r c, ~ , f ( x )  and h, and not  on the number  and choice of roots to which 

approximation is made, nor on the corresponding ideals. I t  therefore follows, 

since the total  number  of selections of the type S from the classes ~(~') (v= I, 2 , . . . ,  h) 

is not  greater  than  h h, tha t  the number of solutions of the inequali ty (1)for  all 

possible selections S of classes from these classes is no t  greater  than  
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0 o 

k'(O) (2~-, h.) \~ =x ~.=~ / ,  

where k '(~ depends only on eo, fl, c, R, f ( x )  and h. 

Le t  now A be defined as in the Theorem 2 a already enunciated.  Then  by 

a resul t  due to Siegel x, for  every class ~'l~,), and appropr ia te  u o, u i , . . . ,  uh, 

A'(,I 
A ~ - - .  

h! 

Fur the r ,  h (1) + h (2) + ... + h (ho) = h. I t  therefore  follows tha t  the inequal i ty  

l ~  a(qj) G(rk) 

- H ,,,in (~, Iz - ,~-  I ~,,3 ~ ~(h! ) - ' ,~  A - " ~  
j = l  '~=1 k=l  d=l  

cannot  have more solutions in numbers  2 which are roots  of a polynomial  

Uo xh + u l x  h-1 + "  + uh t h an  has the  inequal i ty  (I) in numbers  /~ chosen f rom 

all possible selections S of classes ~'(') ( r =  1, 2 , . . . ,  h0; I --< h o-< h). Also, c is 

arbi t rary,  and the  number  of sets of integers  u 0, u , . . . ,  uh of ~ such tha t  

N((Uo, u , , . . . ,  uh)) -< I va- -~  I, ~ d  such that the p o l y n o m i a l s  Uo x" + u , x  h-1 + "" + uh 

have the same roots,  is not  grea~er than  a cons tan t  depending only on ~. We 

have therefore  proved the fol lowing extension of Theorem I: 

T h e o r e m  l a .  Let: 

~t be a finite algebraic field of degree n(  > -- I) ob'eY the rational number 

field ?~ ; 

f ( x )  be a polynomial of degree m ( ~  2) with coefficie~ts fi'om ~ and a 

non-zero discriminant ; 

qt, q~ . . . .  ,qc, where o ~ e <-- r~ + r~, be Q of the rl + "r~ infinite prime ideals cor- 

responding to the r 1 real and r2 pairs of conjugate imaginary fields 

conjugate to ~ ; 

~, ~ . . . .  , ~,  where a ~ o, be a different finite prime ideals of ~;  

G (qj) (j-~ I, 2 . . . . .  Q) be a natural member not greater than g ((13.); 

G (rk) (k : I ,  2 , . . . ,  0") be a natural number not greater than g (rk); 

h be a natural number; 

1 C. SIEGEL: 'Approximation algebraischer Zahlen', Mathematische Zeitschriit,  Vol. Io (I92I), 
p. I76, Hilfsatz HI.  
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~jv,~ka ( j =  I, z, . . ., e; 7 =  x, G(qj); k - = I , z , . . . , a ;  6 ~  1 ,2  . . . .  , G(rB) 

be roots of f (x ) ;  

be two positi~'e numbers; 

be two ~umbers such that 

a =  min  ( m + s) fl > 
s = l , 2 , . . . , m - 1  8 -{-" I 

Uo, ul . . . .  , uh be any system of integers of  ~ such that N ((u o, u~, . . ., uh)) <-- I V d ~ )  I, 

where d(~) is the discriminant of ~, and (uo, u , . . . ,  u h) is the ideal 

generated by Uo, u~ . . . .  , u~; 

be any root of  the polynomial Uo xh + u t x  h-1 + ... + uh; 

A be the maximum of the absolute values of  the coefficie~ts of the polyno- 

mial in x, (u~ ~) x '~ + ul € x '-~ + . . .  + u~l~)), where u~'), U(o'), . . . ,  u~') 
,a=l 

(0 = o, ~, z , . . . ,  h) are the conjugate values to uo. 

Then the number of  non-associated systems of integers Uo, ua . . . .  , uh such that 

roots ~ of the poly~wmial Uo x ~ + ua x ~-1 + . . .  + u~ satisfy the i.nequality 

e a(qj) o (;(~I') 

1~ l I  min  ( I ' l~ - -~J~ lqJ~ ' )H  I [  rain (x'l;~--m'~ c d - " O  
j = l  7=1 1:=1 6=1 

C~ ~0 

is not greater than 

where k (~ is a constant depending only ou %, ~, c, ~ , f ( x )  aJ~d h, and ~ot o~ the 

number and choice of roots to which approximation is made, nor on the correspond- 

ing deals. 

3. W e  s ha l l  require  the  fo l lowing  ex tens ion  of  a l emma  due to SiegelI :  

L e m m a .  Let  R, f (x ) ,  h and qJ'l (J = 1, 2, . . ., rx + r~; 7 =  I, g(qj)) be defined 

as in Theorem 1 a. Let  ~(1) g(~), . . . ,  ~(m) be the roots of the poly~omial f (x ) .  Le t  

Y,. = u0 ~ (~1~ + u~ ~(,)h-~ + .. .  + uh (~ = I, 2 . . . .  , m), 

where Uo, u , . . . ,  uh are intege,'s of  ~ such that N((uo, u i , . . . ,  uh))--< ] V d ~  l, 

where d (~) is the discriminant of  ~. Then: 

See p. 88, note I: SIEGEL, p. X96. 
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I )  '/jr" 

m a ~  (I % lqJ~, I ", l~J~, �9 � 9  I .u~ h~~,) : ~~  ( j  = ~, 2 . . . . .  r~ + r~; 7 - -  I, (J(qj?)), 

there exists a positive constant Co, dependiug only on f (x ) ,  such that of  the m linear 

forms y, not more than h are such that 

~(~,)h--1 

for valuation with respect to each infinite prime ideal qj~ (j = I, 2 , . . . ,  r 1 + r~; 

7 = I, g (qj)) (~j-~), ~ . ? , . . . ,  ~J~) being the roots of  the polynomial conjugate to f ( x )  with 

respect to the field ~/7); 

z) i f  r be any .finite prime ideal of  ~, there exists a positive constant a., de- 

pending only on f ( x )  and r, such that of the m linear forms y, not more than h are 

such that 
Iy, l~ = lu0~ (')h + "  + u~]~ < ~, 

and cl. = I for  all ~ with norms exceeding a certain value depending only on ~ and 

~(,)h-1 + .. .  _}_ uhlqj./ r e p r e s e n t s  the  abso lu te  (N. B. T h e  symbol  [no ~j.~!a + ul ~i~ 

value  of the  express ion  u~ "~) ~j.~)h + u~i~, ) ~J'/~(v)h-1 4 - . . . .  ~- u(J~/)h , where  --oCt(J~'), ~-Lr �9 � 9  u(hJT) 

are  the  c o n j u g a t e  va lues  to  %, u~ . . . .  , uh wi th  r e spec t  to  the  field ~Jr)  

P roof .  T h e  l e m m a  is t r iv ia l  fo r  h ~ m. W e  m a y  t h e r e f o r e  suppose  t h a t  

h_<_m--  i. 

W e  select  any  h + I of  the  l inear  fo rms  y,, which  w i t h o u t  loss of  gene ra l i t y  

may  be w r i t t e n  as 
h 

y~ = ~ ~(')~-~,~ (~ = ~, : , . . . ,  h + ~). 
0=o 

Since  ~(1), ~ (2) , . . . ,  ~(m) are  all  d i f fe rent ,  no, u 1 . . . .  , uh may  be wr i t t en  as l inear  

f u n c t i o n s  of  Yl, Y2, yh+l, in  which  the  coeff ic ients  l~ "), l~ "), z(~) (~=o ,  I, ., h) 
�9 " ' ~  " ' " ~  ~ ' h s  " "  

depend  only  on ~(1), ~(~) , . . . ,  ~(m). 

I) By the  above  

max  (] l~')[q/~, l l; ") ]qj~ . . . .  , [ l(h~l IqJ~) <- e~ 

(3" = I, 2 . . . .  , r l -~- r t  ; 7 = I ,  g (q j); v ---- o, x . . . .  , h), 
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whe re  c, is a c o n s t a n t  d e p e n d i n g  only on ~i1)~r  ~(,,). 

whe re  

T h u s  

H e n c e  

ujT<~(h+ i)(~,~/j7 ( j ~  i ,  2 . . . .  , r l  § r~; 7~i,g(qj)), 

ys~ = ,na~ (I y~kJ~,, I.'J~ k~~ , ,  �9 � 9  I yh+,lq~.,). 

U.h, _ _ >  u.j~ ( j ~  I, 2, . . . ,  r ,  + r.2; ) ' ~  I ,g(qj)) .  Ys~'>-~ + I)c, me, 

W e  can  d e t e r m i n e  such  a c~ fo r  every  poss ib le  c o m b i n a t i o n  of  h + I l i nea r  

f o r m s  y~. T h e n  if co ~< ~ f o r  each  % Co is t he  c o n s t a n t  r equ i red .  
~ C 1 

2) W e  have ,  f u r t h e r ,  

n,a~ (I Z~')I,, l l ! f  11, I " )  '~ < r (~ = o , ,  h), 
- " ' ' ~  " h + i I t ' )  - -  , �9 ' ' ,  

where  c'~ is a c o n s t a n t  d e p e n d i n g  on ly  on ~(1/, ~i ' - ' ) , . . . ,  ~r a n d  on r. T h e n  if  

m a x  (I , ,0L I , , 1 ~ . , . . . ,  I-,,1~) = ~-, m a x  (ly~ I~, l y ~ L . . . ,  ly~+~ I~) = y~, 

i t  fo l lows  as be fo re  t h a t  
r 

'Ur ~ Cr yr, 
SO t h a t  

~fr y~__> ~ - .  
Cr 

Z,To,~ s ince  N(~.o , , ,~  . . . .  , , ,~) - < [ V d S ~ ) l ,  

w h e r e  el' is a c o n s t a n t  d e p e n d i n g  only on 

t t  
C r  

yr>--_ ~- 
Cr 

~t and  r. H e n c e  

W e  can  d e t e r m i n e  a c o n s t a n t  c~. f o r  every  poss ib le  c o m b i n a t i o n  of h + I l i nea r  
tf 

Cr  , 
f o r m s  y,.  T h e n  if c~.--< ~- f o r  each  such  c:, c~ is t he  c o n s t a n t  required�9  

Cr 

F u r t h e r ,  f o r  all  r w i th  n o r m s  g r e a t e r  t h a n  a c e r t a i n  va lue  d e p e n d i n g  on ly  
t tf 

on ~ and  ~(1/, ~{~) ~(m), we m a y  t a k e  Cr = Cr = cr = I 

4. W e  can  n o w  p rove  the  m a i n  t h e o r e m  by a m e t h o d  a n a l o g o u s  to  t h a t  

used  by  Siege l  1 in dea l i ng  w i t h  t he  s a m e  p rob l em.  W e  wr i te  

2 See p. 88, note I: SIEGEL, pp. 197--8. 
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F (%, , , , . . . ,  u,,) = ] ]  ~. = ] ]  (% ~(~)" + ,~ ~(~)~ -~ + . . . .  ~ ,,,,). 

where u o, u ~ , . . . ,  u~ are integers  of ~ such tha t  /Y((Uo, u ~ , . . . ,  u~))--<l]/d(-~ ~)1. 

We may assume u o ~ o, as we m~y prove the theorem separately,  by taking  

appropr ia te  values in place of h, for  the cases u o -----o, ~1 ~z~ O; ~0 ~ O, U 1 ~ - O '  

U . ~ O ; . . . ;  Uo----O, U ~ = O , . . . ,  Ua--~---O, u ~ O ,  and sum the numbers  of 

solutions. 

Since u o ~ o, we m a y  wri te  

h 

~, = Uo ~l.)" + ~ ,  ~l ,)  ~ - ~  ~ . . . . .  ~ . ~  = ~,,o 1] (~(~) - z(~)  (~ = ~, 2 , . . . ,  ,~). 
0=1 

We choose combinat ions  of h different  forms f rom the m l inear  forms y,. 

assume h --< m.) 

a combinat ion.  

(We 

L e t  n o w  ~/~JT), y~JT),..., ,q(hJ'/)(I - - ~ j  ~ r I + ~'2; I --~ r g ~(qJ))  be such 

T h e n  

h h 

l y l  ~') ~,~".- �9 �9 �9 y("~h q~, = I %  I ~ ,  ] I  [ [  I~.~ ~ - ~:%~,. 
' ~ I  0~1 

Let  y~k) y!~.) . . . .  , y~) (i ~ k ~ a) be another ,  not  necessarily different,  such com- 

binat;ion. Then  
h h 

ly~ ~), y ~ ) . .  y(,:)l~= I,~ol~ [[ ]] I ~ ) ' -  ~.~~ I~. 
�9 ~1 0 - 1  

In  each case the ~'s are the roots o f f ( x ) o r  the appropr ia te  conjuga te  polynomial  

corresponding to the l inear  forms chosen and the i r  valuations. ~ o w  there  exist  

positive cons tants  bjv (j = I, 2 , . . . ,  rj + r~; 7 = I, g(qj)) and b, (k-~ I, 2 . . . .  , 6r), 

depending only on ~(1), ~(2) , . . . ,  ~(m) and the pr ime ideals qJoz and ~k, such t h a t  

the min ima  of the valuat ions of the differences of the numbers  ~ ,  ~) ,  ~('~) 
�9 " "~ ~J7 

with respect  to qJ7 and ~(1), ~(2) . . . .  , ~(~) with respect  to r~ are respectively no t  

less than  by7 and bk. Thus  in each double product  there  are not  more than  h 

factors  with valuations less than ~bj~ or bk, as the case may be. For  if  

]~j~) _ )(o)]qJr < �89 bj~ and ] ~J.~') - -  )~(e)]q.i~, < �89 bj~, where ~ # ~', then  l~J.~ )- ~J~')]qY~l < by./. 

Similarly,  if ]~([) - -  2(o) Irk < bk and ] ~([') -- X (~) ]rk < b~, then  skc(*) _ ~([')]r k < b~. Both  

these results  are impossible. 



The O-adic Generalisation of the Thue-Siegel Theorem. 93 

I t  therefore follows, since, by the inequali ty (6 a) of my previous paper, 

~-1-~r2 g (qj) a 

]l  Illul, , H ] ~ 0  G ( r k ) ~  I r k 
j : l  7=1 k : l  

t ha t  the number  of solutions of the inequali ty 

(2) ] I  I t  lYlJ')Y~ j ')  u(J')lcUr l ~  [Y]~')Y~ ~) ,,a')la(~k) < C A - ~ ' ~ ,  �9 ' �9 " " ~]h �9 �9 �9 O'h Iv k - -  
j : l  7 : 1  k : l  

A being defined as in Theorems I a and 2 a and C being any positive constant ,  

is not  greater  than  the to ta l  number  of solutions in roots ~ of polynomials 

u o x  h + u~ x h-1 + . . .  + uh of all the possible inequalities 

(3) 
rlTr.~g(qj) 

j = l  7=1 ~,=1 k = l  ~'=1 

~,+r~ .q (qj) 
~-- C H H (�89 bJ' )-h(h-1) f I  b7~ h(h-1) C'(~'k)" A -h ' f l '  

j : l  ] '=1 k = l  

where the selection of roots ~j(~), ~(2), . . . ,  ~J,E '(h) passes through all possible com- 

binations,  with duplications, of E (~), ~(2) ;(h) ~),, and the selection ~(1)~2), ~h) 
vj7 �9 . .~ ~ j ~ ,  �9 . . ,  

passes similarly th rough  all combinations of ~) ,  ~ /  . . . .  , ~(kh). 

W h e n  the inequali ty (3) is satisfied, so also is at  least one of the inequalit ies 

r, + r~ g (q j) 
- -  - -  ;~ [~k " < --  b. )-("-l) I I  �9 A -h~ 

j = l  7=1  k=l j = l  7=1  k = l  

(I < v j ~  g h ;  I <--~,k <--h). 

Now bk = I for all except a finite number  of finite prime ideals rk, since bk 

depends only on ~0), ~(2), . . . ,  ~(m) in addit ion to ~k. Hence 

r, + r~ g (q.j) 

H H (�89 biT)h-1 f i  bk h-1)G(rk) ~ bO' 
j=l  7=1 k=l 

where b o is a positive constant  depending only on ~(1), ~(2), . . . ,  ~(m). Thus the 

number  of solutions of (4) is not  greater  than  the number  of solutions of the 

inequali ty 
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(5) H [ [  ] ~! 'J 'r  Z ]qJ'I ] ]  l~i: ~) - -  /~  G(rkl < C ~):1 A-',i~ 
.17 rk " - -  

j = l  7=1 k=l 

(I ~ Vj7 ~ h ;  I ~ ~'/.-'~- h). 

By Theorem I a, to this inequal i ty  there  correspond not  more than 

k(0) ( 2 ~  a (1+%)h) n+k~=IG(rk) 

non-associated systems of integers  uo, u~ . . . .  , uh of ~ with -N((u0, u~ . . . .  , uh)) --< 

~<[1/( / (~]  and such tha t  roots  ~ of the polynomial  Uo x h + u l x  h-1 + . . . +  uh 

sat isfy the  inequali ty,  where k (~ depends only on %, fl, C, R , f ( x )  and  h. (Such 

systems of integers  will be called 'solutions'  of the corresponding inequali ty.)  

Corresponding to each innequal i ty  (3) there  are not  more than  h "+~ in- 

equalities (5). There  are, fur ther ,  not  more than  h ('+~ possible inequali t ies (3). 

I t  t he re fo re  follows tha t  the number  of solutions of (2) in  non-associated systems 

of in tegers  %, u~, . . . ,  ~o, is not  grea ter  t han  

,~ (.+ ~ a(~% t 
k~ol/t(h+l)(.+o)~ ~-~(1-~~ h)\ k=l "l. . [2, - 

Now the n + a sets of h l inear forms conta ined  in the inequali ty (2) can be 

chosen from the m forms y~, y~ , . . . ,  ym in ~. . (m- -h ) [ ]  ways. Thus  the to ta l  

number  of solutions of all the possible inequali t ies (2) in non-associated systems 

of integers  u 0, u~, . . :, uh, with u o e z o, is not  grea ter  than 

~ /~+~o/ t~+~~ h '+1 m'  ~ ' ~  

I 

I t  follows tha t  the nmnber  of solut ions with u # o is not  grea ter  than  

where k~ is a constant  depending only on %, fl, C, 4[, h and f (x) ,  and k 5 a con- 

s t an t  depending only on m and h. Replacing h by h - -  I , h - - 2 , . . . ,  I succes- 

sively, and summing" the number  of sulutions in each case, it  follows tha t  the  

number  of solutions of all possible inequali t ies (2) in non-associated systems of 
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i n t e g e r s  Uo, u, . . . .  , uh of  ~ such  t h a t  N((u0, u ~ , . . . ,  uh)) --< I g d ~ l  is no t  g r e a t e r  

t h a n  

{r (1+~0) ~ a(rt ' )  
k6 (2~--a k7 ) /,'=1 , 

w h e r e  k G is a c o n s t a n t  d e p e n d i n g  on ly  on eo, fl, C, ~ ,  h and  f (x ) ,  a n d  k 7 a con- 

s t a n t  d e p e n d i n g  only  on m and  h. 

B u t  by  the  l e m m a ,  fo r  each  s y s t e m  of  i n t e g e r s  uo, u~ . . . . .  uh, 

q J) rl -~ r2 g 
~!v)h . . . .  ) h - i  a f i  .(.~,h-- 1 ~. ,G(rk) I I  H II1%~..  + ul~), + - -  + ,~lqJ, I I  __l,oeg ") '+, ,~k'  + " + -~ ,~  

j = l  7=1 ~':1 k=l  'v=l 

r,+r,  g(qj) a r,+r.., g(qj)  a 

> ~(~-")" I I  r l  u~-~ r [  ~(~-,,),(,.~) I I  I I  ly!J')y! ~') -ylJ~)h~, I I  ly(:)u~ ') - . . r  "(~") - -  ~ o  1 1  J7 1 1  k " ' " r k  

j = l  ],=1 ,~'=1 j = l  7=1  k = l  

fo r  some  n + a s y s t e m s  of h l i nea r  f o r m s  y~r), y(.Jr), q/Jr) ( I - -< j - -<  r~ + r2; . �9 �9 ,~ .7 h 

I <-- 7 <- g(qJ)) and  yl k), y~), . . . ,  y~k)(I ~ k  --< a), a n d  some  c o n s t a n t s  ct: (k=I ,  2 , . . . ,  a) 

d e p e n d i n g  only  on ~,  f ( x )  a n d  rk, a n d  equa l  to  I f o r  all  rk w i th  n o r m s  g r e a t e r  

t h a n  a c e r t a i n  c o n s t a n t  d e p e n d i n g  on ly  on ~ and  f(x).  Thus ,  s ince 

and  

r t+r ,  g(qj) 

H H uJ, ' ~ -A '  
j=l 7=i 

k=l  

w h e r e  C' is a c o n s t a n t  d e p e n d i n g  only  on h, ~ and  f(x),  i t  fo l lows,  s ince h ~< m, 

t h a t  

~[ ,, I -N(F(-0, Ul ,  . . . , , ,h)) I I -~ (Uo, U l , . . . ,  ,lit)Ir~. (t'k) > 
k = l  

,., + r~ .q (q j) 

----- C' IF[ IV[ I:/! ''~) Yi~'~) �9 �9 �9 Yi~")IqJ:' 1 ]  I Y?)Y!") " �9 �9 ~I~ ~) Ir~ A"-~"  
j = l  ~=1 k = l  

I 
On t a k i n g  C =  =7, T h e o r e m  2 a fol lows.  

U 

5. P r o v i d e d  m > h ~a + h, we can  choose  fl so t h a t  h ~fl + h----- m. 

i n e q u a l i t y  of  T h e o r e m  2 a b e c o m e s  

IN(~ (,,o,,,1,. �9 ~,~)1 117(-o, u , , . . . ,  ,,,)l~(~k) <~ .  
k = l  

T h e n  the  
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I f  eo = I, the  number  of solutions of this inequal i ty  in non-associated systems 

of integers  u 0, u ,  . . . ,  uh of ~ such tha t  N((u 0, ul . . . .  , uh)) --< IVd(~) is not  g rea te r  

t han  

1 m-t~ , ( k ~  ~; 0':) ) 

 o(g 
and the re fore  not  grea ter  t han  

r k + 1 
k 

where K 6 is a constant  depending only on ~ and F ( x  o, x ~ , . . . ,  xh), and not  on 

the number  and choice of the finite pr ime ideals r~, r 2 , . . . ,  to. 

Fur ther ,  the resul t  is still t r u e  if one of g(*), ~(2) , . . . ,  g(m) is infinite, i .e . ,  if  

one fac tor  of F ( x  o, x ~ , . . . ,  xh) is x 0, for  any fo rm -V(Xo, X l , . . . ,  xh) of this type  

such tha t  the  corresponding f ( x )  has a non-zero discr iminant  may be t rans formed  

by a l inear  t r ans format ion  of de te rminan t  I with ra t ional  in tegra l  coefficients 

into a form of the type  already deal t  with. 

We have the re fore  proved the fol lowing corollary:  

Coro l l a ry  1. Let." 

be a finite algebraic field of degree n (>-- I) over the rational number 

fiead ~ ; 
F(Xo, xl, . . . ,  x~) be the form 

f i (Xo  ~(0 + x, ~(,.)h-~ + . . .  + xh), 

where g(1), ~(2), . . . ,  ~(,,) (of which one may be infinite) are the roots 

of a polynomial f ( x )  with coefficients from ~ and a non-zero dis- 

criminant, and of degree m > h= a + h, where 

rain (~m~ + s); 
s = l , 2 , . . . , m - 1  8 �9 I 

(-; (rk) 
where ~ ~ o, be a different finite prime ideals of ~; 

(k----- I, 2 , . . . ,  a) be a natural number not greater than g (rk). 
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The~, the number of solutions of the inequality 

I : ~ ( F ( - o ,  ~, . . . .  , ~,~))1 I~ ' ( .o ,  u,  . . . .  , u~)1~<~ - < ,  
k ~ l  

in non-associated systems of integers uo, u~ . . . . .  uh of ~ such that N((Uo, u~ . . . .  , Uh)) <-- 

--< I V ~ i ] ,  where N(FIuo ,  u , . . . ,  ,~)  is the ,or ,~  i,, ~ o~,e,'~ o/F(uo, u , . . . ,  u~) 

and d(~) is the discrirni~m~t of ~, is not greater than 

E G(rk)+ 1 
K6 k= l 

�9 " . .  xh), and ~ot on the where K 6 is a constant depending only on ~ a.nd I' (Xo, xl, ., 

number a~d choice of the finite prime ideals r l, r.~, . . . ,  to. 

6. F rom this corol lary arises, as before,  the  fol lowing corollary,  the p roof  

of  which follows exact ly  the  same lines as in t h e  case  of  b inary  f o r m s :  

C o r o l l a r y  2. I f  ~ be a finite algebraic field o~'er the ratio~al m~mber field ~,  

i f  F(xo, x~, . . . ,  xh) be the form 

H (Xo ~l,)" + x~ ~c,) '~-~ + .  + xh), 

where ~(z), ~(~.) . . . .  , ~(m) (of which one may be i~finite) are the conjugate roots of a 

polynomial f(:c) with coefficients from ~ and at least three d~rere~t roots, and of 

degree m ~ h ' a + h ,  where a~s=l,2,.min.,,~_l ( ~s-~+s)  ' a~d i f  u ~  be 

any system of "integers of ~ such that N((uo, u~ . . . . .  u~,~,) ~ IVd(~l ,  where d (~) .is 

the discriminant of ~, then as 

m a x  (I N(~o) I ,  [ N ( u ~  I, - . ,  I N ~,~,,~ I) ~ ~ ,  

the greatest of the norms of the finite prime ideals of ~t dividing the ~Tumerator of 

F(uo, ul, �9 �9 uh) in its reduced form te~,ds to infinity. 

(We are justif ied in wri t ing  ' n u m e r a t o r '  because F(uo, u i , . . . ,  u h ) b e c o m e s  

an in teger  of ~ on mul t ip ly ing  by ao h, where  ao is the coef f i c ien t  of x ~ in the  

po lynomia l  f (x )  ( taken now to have  in tegra l  coefficients), except  when  one of 

. .  ~ h where a 1 ~(~) ~(2), ., ~(~) is infinite. Then  a o o, and we mus t  mul t ip ly  by a,, 

is the  coefficient of x ~-1 in the  po lynomia l  f(x).) 
8 -- 6 4 2 1 3 6  Acta mathematlca. 8 3  



98 C . J .  Parry.  

W e  can ob ta in  a lower  bound for  m in t e rms  of h, such t ha t  m > h~a + h, 

by us ing  a m e t hod  due to Siegel. Siegel proved  ~ t h a t  a--< V4m + I -  I. I t  
the re fo re  follows, if  we wri te  m--> 4 h  4 -  2 h e +  ~;~*, where m* is a ra t iona l  

in teger  --> o, t ha t  

N o w  

m - -  h ~ a --> 4 h4 - -  2 h ~ + m *  - -  h2 ( V ~ 6  M - 8 h "~ + I + 4 m *  - -  I)  

>-4h 4 - 2 h ' "  + m * - - h  ~ ( 4 h ~ -  I +  2ra* I ) 
4 h 2 -  I 

2 h " - -  I 

4 h  u -  I 

2 h 2 m* 
= 7/g* - -  - -  71~* 

4 h z -  I 

2 h  ~ -  I 
m *  - -  > h ,  

4 h  ~ -  I 

provided m* > h 4 h  ~ -  I - - - - 2 h +  
2 h  2 -  I 

h 
2 h  2 -  I 

- - ,  i .e . ,  p rov ided  

or 

~* >-- 2 h + - -  
2 h  ~ -  I 

+ I = 4 i f  h = I ,  

m * > 2 h +  I if  h >  i. 

Thus  m > h2a + h, provided 

Thus,  for  example,  

m > 6  if h = I  

m > - - 4 h 4 - - 2 h e  + 2 h  + r if  h >  I. 

m --> 6I  for  h--~ 2, 

m > 3 1 3  for  h = 3 ,  

m >  Ioo l  for  h = 4 .  

(N. B. I t  has  a l ready been shown in the previous pape r  t h a t  m can be any  

in teger  g rea t e r  t han  3 if h =  I.) 

7. The  r e m a i n i n g  corollaries on b inary  forms,  concern ing  the r ep re sen t a t i on  

of in tegers  of  ~ by b inary  fo rms  and  the  g rea t e s t  r a t iona l  p r ime divisor  of  the 

n o r m  of a n u m b e r  of such representa t ions ,  also have  the i r  exact  coun te rpa r t s  in 

See p. 88, note I: SIEGEL, pp. 19I--2. 
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the present  case, and these too depend on the basic corollary. I t  is necessary 

however,  in making  this generalisation,  t h a t  f ( x )  should have in tegra l  coefficients 

and be of degree m > hen  + h, and to consider forms of the type a~F(Uo, ul, . . . ,  uk), 

where a o is the coefficient of x m in f ( x ) ,  ins tead of forms of the type  F(uo,  u l , . . . ,  uh), 

since forms of the la t te r  type are not  necessari ly integers.  In  cases where one 

of  the roots of f ( x )  is infinite (as is now possible), a o ~ o, and we must  consider  

h ,, . .  uh), where a 1 is the coefficient of x m-1 i n f ( x ) .  forms of the type  a, �9 (uo, Ul, ., 

All  these forms are denoted  for  convenience by F*(uo, U l , , . . ,  uh). W i t h  these 

modifications, and re ta in ing  otherwise the condit ions of Theorems I a and 2 a, 

the fol lowing resul t  is t rue :  

The  number  of non-associated systems of integers u0, u l , . . . ,  uh of R such 

tha t  .N(F* (%, ul . . . .  , ~th)) is divisible by no ra t ional  prime numbers  o ther  t han  the 

~ ( ~  o) given different  ra t ional  prime numbers  r~, r , , . . . ,  r~ is no t  g rea te r  than  

where K 0 is a number  depending only on R and F * ( x  0, x l , . . . ,  xh), and no t  on 

the number  and choice of rl, r ~ , . . . ,  r~. 

F rom this resul t  follow various others  on the represen ta t ion  of in tegers  of 

R in the form F* (Uo, u 1 . . . .  , uh), corresponding to those obtained for  binary forms. 

The wri ter  once again wishes to express his g ra t i tude  to Dr. K. Mahler  

for  his help and guidance in the prepara t ion  of this second paper. 
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