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w i. Introduction.  

The most  useful  conformal  invar iants  are obtained by solving conformMly 

invar ian t  ex t remal  problems. The i r  usefulness derives f rom the  fac t  tha t  they 

must  automat ical ly  satisfy a principle of majorizat ion.  There  is a r ich variety 

of such problems, and if we would aim at completeness this paper  would assume 

forbidding proport ions.  We shall therefore  l imit  ourselves to a few part icular ly 

simple i n v a r i a n t s  and study thei r  propert ies  and in ter re la t ions  in considerable 

detail. 

Each class of invar ian ts  is connected wi th  a category of null-sets, which by 

this very fac t  en ter  na tura l ly  in funct ion- theoret ic  considerat ions.  A null-set is 

the complement  of a region for  which a cer ta in  conformal  invar iant  degenerates.  

Inequal i t ies  between invar iants  lead to inclusion relat ions between the  corre- 

sponding classes of null-sets. 

Th roughou t  this paper  Y2 will denote  an open region in the extended z 

plane, and Zo will be a dis t inguished point  in t~. Most  results will be formula ted  

for the case z 0 ~ c~, but  the t rans i t ion to z o = c~ is always trivial. In  some 

instances the  la t te r  case offers formal  advantages.  

We shall consider classes of funct ions  f(z) which are analyt ic  and single- 

valued in some region t). F o r  a general  class ~ the region t~ is al lowed to 

vary with f ,  but  the subclass of funct ions  in a fixed region t~ will be denoted  

by ~(t2). For  ZoE ~ we in t roduce  the quant i ty  

6)= sup If'(zo)l. 
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The abbreviations M~, 21f,~(Zo) or M~($2) will be used when no misunders tanding 

can result. I t  will be assumed t h a t , ( s 2 )  is not  empty. 

The class ~ is said to be mo~wtonic if s  s implies ~($2)<  ~($2'). By (I) 

we have then 

(2) (s0, $2) =< (s0, $23. 

Suppose now tha t  z ' =  h(z) defines a one to one conformal  mapping of $2 

onto a region $2', and set Zo ~ h(z0). We shall say tha t  the class ~ is con formally 
invariant if f ( z ' )E ~ ($2') implies f(h(z)) E ~ ($2) for all such mappings. For  a con- 

formally  invariant  class we have evidently 

(3) M~ (So, $2) = 21T,~ (So, $2')" I h' (So) I . 

This can be wri t ten in the more symmetric  form 

I4) M~ (So, $2) I d ~o I = M~ (g ,  $2) I d So I, 

and  i t  is seen tha t  the differential  

(5) M,~ (~, $2) I ~.Zz I 

defines a conformally invariant  metric in $2. M~ is itself a relative conformal  

invariant,  and this is the type of invar iant  we shall  be mainly concerned with. 

Absolute invariants  can be introduced either as ~he quotient  of two relative in- 

variants or by forming the curvature of the metric (5). 

I f  ~ is both monotonic  and conformally invar iant  we can combine (2) and 

(4) to obtain 

(6) M (eo, $2')'ld gl =< $2)" Ide0l 

whenever z ' =  h(z) maps $2 conformally and one to one onto a subregion of $2'. 

We  shall refer to (6) as the weak monotonic property of M~. 

A ~tronger result  is obtained if ~ is analytically invariant. By this we mean 

tha t  f (z ' )  E ~ (s implies f ( h  (z)) E ~ ($2) whenever h (z') is single-valued and analyt ic  

in $2 with values in $2', regardless of whether  h(z) is univalent  or not. Since 

analyt ic  invariance implies conformal invariance the metric (5) will have the same 

invariance property as before. An analytical ly invar iant  class is eo ipso mono- 

tonic. Hence (6) is valid, but  the s tronger  assumption implies tha t  (6) holds not  

only for one to one mappings, but for  arbi t rary analytie mappings of $2 into $2'. 

In  this ease we shall say tha t  M,~ has the strong monotonic property. 
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A class ~ is said to be compact if the following is true: Given any in- 

creasing sequence of regions ~2~ and functions f = E ~ ( ~ , )  there exists a subse- 

quence f~,~ which converges to a limit function f E  ~(~),  ca = ~ ca~, uniformly on 
1 

every compact subse~ of s For a compact class there is a function in ~(/2) 

which makes If(z0)]  a maximum. 

Theorem 1. For a monotonic, co~Tformally invariant  and compact elaa.r ~ the 

followi~g holds." 

i) i f  ~ tends increasingly to ca, then 

(7) lim Ms(zo,  ~ )  = Ma(Zo, ca); 

ii) ~[S(z, ca) is a contiJ~uous fitnction of  z; 
iii) log ~ls  (z , ca) is subharmouic or ~ - oo. 

By (e) lira i.~(~o, ca,,) exists and i~ _--> i ~ ( , o ,  a). On th~ other hand, if f,, 

is an extremal function in ~(ca,t), the compactness implies 

MS (Zo, ~) ~ lim [A (Zo)[ = lim M~ (z o, ca,) 

and (7) is proved. 

To prove the continuity, let f be extremal in ~(~2) for the point z o. Let 

z~ be another point in ca such that the circle [ Z - - S o [ <  2 ]z~- -z  o [ i s  contained 

in ca. We have 

and hence 

(s) 

Let ~; be the subset of 

Ma (,~), ca) ~ If(z{,) I 

lira ~& (--a, ca) > :<~ (to, ca). 

consisting of all points whose distance from the 

boundary is > [Zo --  Zo I, and let ca" be obtained from ca' by the parallel translation 
p 

which takes z o to Zo. Then 

~ s  (t;, ca) = Ma (~o, ca") = Ms (So, ca') 

and as Zo-+ so we obtain by (7) 

(9) lim MS (Zo, ca) < M s (zo, ca). 
Z o ~ Z o 

The inequalities (8) and (9) show that M s(to, ~) is continuous. 
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Since log 2/f~(z, ~2) is defined as the maximum in a family of subharmonic  

funct ions  log I f ' (z )  l i t  must  i tself  be subharmonic.  

In  all cases tha t  we shall t rea t  it  will be seen tha t  21~r?(z, s cannot  vanish 

at  a single point  unless it vanishes identically.  I t  seems difficult, however,  to 

fo rmula te  a simple general  proper ty  f rom which this would follow. 

Our a t ten t ion  will be focussed on three basic classes, too'ether with a sub- 

class of each. The first two are the class 93 of bounded funct ions  and the class 

of funct ions  with a bounded Dir iehle t  integral.  The  th i rd  class (~ has a more 

complicated character iza t ion,  but  it  will be shown to be re la ted to the classes 

93 and ~ in a very symmetr ic  manner .  

More precisely, the classes 93(.c2) and ~ ( ~ )  consist of all single-valued ana- 

lytic fnnct ions f (z)  in ~(2 which satisfy the condit ions I f ( z ) l  < ~ and 

. i f  dx  __< 
.(2 

respectively.  

The class ~ (Y2) is defined only with respect  to a point  Zo, and consists of 

all single-valued anMytie funct ions  f(z') in s with the proper ty  tha t  (J'(z)--f(Zo)) -~ 
omits a set of values of area >_--~. 

The corresponding invar iants  are denoted by 21I,~, 21I~ and Me. As far  as 

these invar iants  are concerned we can replace 93, ~) and @ by the subclasses 

930, ~?0 and @0 of funct ions  which vanish at z 0. This is obvious for the classes 

and ~, and for  a funct ion  f(z) E~  we need only observe tha t  

.f(~) - f (Zo) 

I -- f(zo)f(z  ) 

is in 930 while its derivat ive at  z o is of absolute value ~ [f '(z)]- 

Ill addi t ion we shall consider the subclasses @93, ~ 3  and @~, formed by 

all univalent  (schlieht) funct ions  in 93, ~ and ~.  In  order  to be sure t h a t  these 

classes ~re not  empty,  and in order  to make the corresponding classes @93o, @~o 

and @(~o compact ,  we agree in this connect ion to consider constant  funct ions  as 

univalent .  The invar iants  3 I ~ ,  .3i~ and 21l~e are then  well defined. 

I t  is easy to ver i fy  tha t  all six classes are monotonic  and eonformal ly  in- 

variant .  The classes 93 and (2 are also analytieMly invar iant .  Hence  M~ and 

Me have the s t rong monotonic  proper ty  while the others  have only the weak 

monotonic  proper ty .  The classes 930, ~0, @0 and @930, @'~0, @~0 are compact.  

W e  are thus in a posit ion to apply Theorem I to ~11 our  invar iants .  
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(to) 

In this paper  we shall prove the in teres t ing  relat ions 

-/]I~ : 3lee 

Since ~ ~ ~ and ~ ~ ~ it  will follow tha t  the three  dis t inct  invar iants  

satisfy the inequal i ty  

The quant i ty  3Ie~ = 3Ie~ will also be identified with the maximum of an in- 

var iant  tt (Zo, p) of different  nature ,  defined by means of ex t remal  lengths.  

The complement  of a region s will be denoted  by E. Conversely, if a closed 

set E and a point  z 0 outside of E are given, the complement  of E has a unique 

component  t~ which contains z0. We shall say that  E is a ~ull-set of class ~ 

if ]l~(Zo, /2) is identical ly zero. To this definition we observe tha t  for  all classes 

considered above M~ vanishes identical ly as soon as it vanishes at  a point.  This 

is t r iv ia l  for  the classes o~ univalent  funct ions,  for  then  the vanishing of ?II~ 

at  any point  means tha t  the class ~(s contains only constants .  In  view of (Io) 

the proper ty  will thus need verification only for the class ~ .  

The inequali ty (II)  implies the inclusion re la t ions  

and it  will be shown by examples tha t  these inclusions are proper.  I t  follows 

from (~o) tha t  the three  types of null-sets have a double character izat ion,  and 

such in format ion  is of course apt to be valuable. 

We close this in t roduct ion  on the r emark  tha t  a grea ter  degree of general i ty  

c~n be a t ta ined  by in t roducing  classes of mult iple-valued functions.  As examples 

we could consider e i ther  the whole class of funct ions  f (z)which can be con- 

t inued along all paths in s and take only values of modulus ~ I, or the sub- 

class for  which }f(z) l  is single-valued and ~ 1. The first choice leads to the  

hyperbol ic  metr ic  with cons tant  negat ive  curvature  on ~ provided tha t  E has 

at least three  points.  The second choice leads to an invar iant  which for z o = c~ 

reduces to the capacity of E.  The capacity is hence a ma jo ran t  of ilia, and it  

follows tha t  all our classes of null-sets contain the sets of capaci ty  zeros. The  

propert ies  of capac i ta ry  null-sets are comparat ively  well known,  and this  case will 

not  be discussed fur ther .  
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There  are also impor t an t  in te rmedia te  metrics, for  instance the one which 

arises f rom the class of Abelian integrals.  I t  is merely for  the sake of con- 

cen t ra t ion  tha t  we have decided to leave this und similar cases out  of con- 

sideration. 

w 2. The Invariants 2tI~ and ~[e .  

This section is devoted to the proof  of the  re la t ion Ms--~ Me. I t  is evident  

t ha t  every funct ion  in ~0 belongs to the class ~0. The relat ion M~ ~ _Mz is hence 

trivial,  and only the opposite inequal i ty  need be proved. 
I 

Assume that  f(z)E~o(t2) and denote  by A the set of values w h i c h ]  does 

not  take in ~2. A is a closed set, and its area I(A) is by hypothesis  ~ ~. W e  

form the funct ion  

(I3) ~'(2")-- I ( A ) I I  I (W = U Jr- ~V).  
w 

This funct ion is clearly analyt ic  in f2, and its derivat ive at  z o is 

=s 
�9 J j  4 

I f  we can show tha t  ]~'(z)] ~ 1 in Y2 the inequal i ty  M~ ~ Me will follow. 

I t  is sufficient to prove tha t  

A 

for  all complex a. An auxil iary congruence t rans format ion  is obviously allowed, 

and hence we may take a ~ o and assume tha t  

j w 

is real  and positive. 

Le t  A § be the par t  of A si tuated in the r ight  half-plane. 

ordinates  w = re  ~ we have then  

In  polar  co- 
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( I 4 )  J J  w = . .  
A a + 

Denote by l(r, O) the linear measure of the set of points wE A + with arg w = O 

and ] w ] ~  r. Set t ing l(c~, 0)----l(O) we have first 

z 2 

f f  f )'" ('5) c o s O d r d O =  l(O) cosOdO<--<_ ~ l(O)'dO �9 

A + 0 

2 

On the other hand,  l(r, O)< r, and in tegrat ion with a fixed 0 gives 

(,.a,.>= f -Z(~ �9 2 

Hence 

2 

(16) I ( A )  >--_ �89 f z(O)' dO, 
2 

and by (I4), (I5) and (I6) it  follows tha t  

f f d u d v  < (zI(A)) , / ,  <_ I ( A ) .  
j w 

A 

This is what  we wanted to prove. We have thus shown tha t  

M.~ (zo, ~) = Me (Zo, s 

I f  Ms (z0, ~ ) =  o, every bou~ded funct ion in s must  satisfy . f  (z0)= o. 

if  f ( z )  is no t  constant,  i t  can be written in the form 

and then  
f ( z )  = f(Zo) + ck (z - -  Zo) k + . . . ,  ck # o 

But 

f ( z )  - -  f(Zo) 

(~  - -  ZO) k - 1  

would be bounded with a non-zero derivative. This is a contradict ion,  and we 

conclude tha t  the class !~ (~]) contains only constants.  I t  follows tha t  M~ (z, ~) 

is identical ly zero. As already pointed out, this observation is impor tan t  when 

we consider the identical  null-classes N~ and Ne. The former was first con- 

sidered by Painlev~ [7], and a set E of class Ns will be referred to as a Pain- 

lev~ null-set. 
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The  fol lowing theorem is an immedia te  consequence of the s t rong mono- 

tonic proper ty  of M~: 

Theorem 2. A non-constant meromorphic function, considered on the comple- 

ment of a null-set of class N~, takes all complex values with the exception of  anolher 

null-set of the same class. 

We in te r rup t  to remark  tha t  the corresponding theorem is of course valid 

for  any s t rongly monotonic  class. Al though a direct  consequence of the defini- 

t ions this theorem is very impor t an t  us a sharp and general  charac ter iza t ion  of 

omi t ted  sets. For  grea ter  emphasis we shall give it the fol lowing s t r iking 

formula t ion  : 

Theo rem 2'. Let F be any strongly monotonic class of functions, and let a 

compact set ~ be measured by m,~(E)= M~ (cx~, D), where D is the complement of 

E. Then any normalized meromorphic function f ( z )  ~- z + c o + cl + ... in .Q omits 
z 

the values of a compact set T," with m~ (E') ~ m~ (E). 

We re tu rn  now to the case of Painlev6 null-sets and note  the fu r t h e r  char- 

acteris t ic  proper ty  : 

Theo rem 3. L Suppose that a r E of class Ne is contained in a regio~ 

D'. Then every analytic and bounded function f (z )  in D ' - - - E  can be continued to 

an a~alytic function in D'. Conversely, ~f the continuatio,~ is always possible, the 

set E is of class N,~. 

By a s tandard  appl ica t ion  of Cauchy's integral  formula  we can write 

f ( z )  ----A (z) + A ( z ) ,  where A ( z ) i s  analyt ic  in .Q' and A(z)  is analyt ic  in ~,  the 

complement  of ~:. But  then  f2(z) is bounded, and if E is a null-set it  must  

reduce to a constant ,  so tha t  f (z)  must  be analyt ic  in D'. The converse is 

obvious, 

Corol lary .  The value of lhe invariant M,~ (z 0, D) does not change ?f a null-set 

of class N~ is removed from 52. 

In  fact,  the family of compet ing funct ions  remains the same. 

1 The first precise s t a t emen t  of th is  theorem is difficult to locate, bu t  i t  is implic i t  in the 

work of PAINLEV~; [71" 
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w 3. T h e  I n v a r i a n t s  2hr~ and M e e .  

W e  shall now prove tha t  Ms  - -  Mee. We wish to point  out  tha t  this resul t  

and the method by which it  is proved are previously known, a l though not  ex- 

actly in the present  connection.  The idea of the proof  goes back to Grunsky  [4], 

and a theorem by Schiffer [~o] is essentially equivalent  with ours. Nevertheless,  

it  is essential  for  our  purposes to give a new version of the proof. 

The classes ~o and ~ o  both sat isfy the condit ions of Theorem I. For  this 

reason it  is' sufficient to prove  the relat ion 3 I ~  M e e  f o r  r e g i o n s  which can be 

used to approximate  an arb i t rary  region f rom within. We are there fore  allowed 

to assume tha t  the region .q under  considerat ion is bounded by a finite number  

of analyt ic  curves. The complete boundary,  taken in the positive sense with re- 

spect to the region, will be denoted  by / ' .  

The existence of a univalent  funct ion  

I 

p ( ~ ) = - - - -  + .  ( ~ -  s0) + .  
Z - -  Z o 

which maps t? onto a r eg io n  bounded by hor izonta l  slits is well known. Simi- 

l a r ly ,  there  exists a funct ion  

q(z) - -  I § b ( z - -  Zo) + . . .  
- -  S o 

which maps Y2 onto a region bounded by ver t ical  slits. 

Le t  f(z) be any regular  analyt ic  funct ion  in the closed region /2. By a 

famil iar  formula 

O ( f , p - - q ) = :  . f ' ( z ) (p ' (z ) - -q  (z))dxdy-~ ; .  

But d23=dp and d ~ = - - d q  on F. Hence 

f f ( d~  -- dO)= f f((~p + dq)= - - a ~ i f '  (Zo) 
1' l '  

by the residue theorem, and we obtain 

(I8) D(,f, p -  q)-= 2 ~:f' (Zo). 

For  f = p - - q  this formula  gives 

D (p --  q) == 2 7~ (a - -  b) 

and we find, incidental ly,  tha t  a -  b is real  and positive. 
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The Schwarz inequali ty 

[ D ( f , p - -  q) J~ ~ D ( f ) D ( p - -  q) 
now yields 

4 ~ I f '  (eo)I ~ ~ 2 ~ (a --  b) D (f),  

and hence D ( f ) ~  z implies 

with equality for 

(IV) 

I t  is thus proved tha t  

if' (Zo)] ~ ] / / a  --2 b 

f ( z )  = P - -  q 
V2 (6 - b) 

1 /  b a 
M~ (zo, ~2) = [ /  

2 

In  fact, any s tandard  approximation technique can be used to show tha t  (I8) 

remains valid when f ( z )  is known to be analytic only in the open region ~. 

We  turn  now to the class ~ .  For  funct ions g ( z ) w h i c h  are analytic  in 

the closed region ~2 except for a simple pole at  Zo we introduce the integral  

i 

1" 

I f  the pole is missing, I (g )  is equal to the Diriehlet  integral  D(g) ,  and in the 

presence of a pole i t  can be used as a subst i tute for D(g) .  I f  g is univalent,  

- - I ( g )  is the area .enclosed by the image of F,  and if I_ is of class ~ ( [ 2 )  we 
g 

have hence I(g) ~ --  ~r. 

The corresponding bilinear integral  can again be evaluated by the residue 

theorem�9 We find 

(2i) I(g,p + q)=i  f f 9 (d~ + d 4) = i g (dp  - -  d q) = - -  ~ c (a - -  b), 

I '  p 

where c is the residue of g at  z o. In particular,  

(22) l ( p  + q) = --  2 z (a --  b). 

From the fact  tha t  

I a - ~ ( p  + q) ----D ,q-- + q) _>-o 
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we obtain by (2I) and (2z) 

_ ~  I~(~ ~), S(q)_>- ~l~ - 

and if I ( g ) ~ -  7r the inequality 

A < V  a - b  

follows, with equality for the function 

P + q  
g = V2 (a--  b)" 

The relation 

(23) 

111 

1 /  b a 

2 

will hence be proved if we can show that the function p + q is univalent. We 

shall then have found identical representations (2o) and (23) of M~ and M~e. 

In order to investigate the nature of the function p + q we observe that 

d q 
dp is purely imaginary on F with two simple zeros and two simple poles on 

dq 
each contour. Then ~ cannot vanish at any interior point, for a level curve 

dq 
~ ~ o would have to pass through a pole and there are no such curves be- 

sides the contours. Since ~dqqa.p : I at z o we conclude that  ~ > o throughout 

dq 
the region. This implies that ~ p  decreases along each contour, and hence 

arg ( d p +  d q ) =  are tg (~  d~) 

is also decreasing with the total variation - - 2  ~. We conclude that  each con- 

tour is mapped on a convex curve, and a standard argument shows that p + q 

is univalent. Our proof of the relation 

M~ (Zo, ~) ----- mee (Zo, ~2) 
is now complete. 

Since Mee(Zo, ~): is evidently ~ Me(zo, ~2) we have also proved, in con- 

junction with (I7) , the inequality 

i ~  (~, ~) =< M~ (~, ~). 
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In  the in t roduc t ion  we have a l ready r emarked  tha t  ~Ie~ ~ o only if ~ (~  

contains  only the  cons tan t  zero, and this p rope r ty  is of course independen t  of 

z o. We  can now conclude t h a t  the  class ~ enjoys the  same proper ty ,  and  we 

can in t roduce the ident ical  null-classes N z  and N~e. The fo rmer  has previously 

been considered by Nevan l inna  [6] and  Sario I9]. The  ident i ty  of 2v~ and Nz~ 

can be expressed more  explici t ly as follows: 

Theor-em 4? A set E is a ~ull-set of class N~ i f  and on 0 i f  every region 

which is confbrmatty equivalent with the complement of E has a complement of 

zero area. 

The  fo l lowing  t heo rem is ana logous  to Theo rem 3, and  it  is p roved  in the 

same manner .  

T h e o r e m  5. 3 Every analytic function f ( z )  with 1) (.f) < c~ in ~2" -- E can be 

extended to an analytic fu~wtion in ~' i f  a~d only i f  E is a ~ull-set of class ~ .  

Corol la ry .  The value of M~ (Zo, s does not change i f  a ~ull-set of class 2~  

is removed from .Q. 

I t  is easy to show t h a t  the re la t ions (2o) and  (23) remain  valid for  a rb i t r a ry  

regions  ~ if p and  q are defined as l imits  of the  cor responding  funct ions  for  

an a p p r o x i m a t i n g  sequence of regions wi th  ana ly t ic  boundary.  This  r e m a r k  leads 

to the  fol lowing charac te r iza t ion  of null-sets of class Nu: 

T h e o r e m  6. 3 A set E is a null-set of class N~ *f and only i f  every univalent 

function i~2 the complement of E is linear. 

I f  E is a null-set  every un iva len t  func t ion  can be extended to a mero- 

morph ic  funct ion  in the whole plane. W e  m a y  in fac t  assume tha t  the  funct ion 

has  a pole outside of E,  and  then  its Dir ich le t  in tegra l  over  a ne ighbourhood  

of E is finite. The resu l t ing  func t ion  has a single pole and  is hence l inear.  

Conversely,  if E is not  a null-set, p and  q canno t  bo th  be l inear,  for  then  

they  would be ident ical  and  we would have  a -  b----o. 

The  considera t ions  of this  section are sui tably supp lemen ted  by a discussion 

of the  quan t i ty  

The necessity was recently pointed out by MYRBERG [5]. There is no record of the suf- 
ficient condition. 

Stated and proved in SARIO [91. 
s Stated in NEVANLINNA [6] and proved in SARIO [9]" 
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M~(.q, z,.,, -(7-)= sup If( .- ' , )--f(z~)l  
.f E ~ (-'-') 

defined with respect to two points zl, z., in L). We prove first: 

Theo rem 7. The va~Ushing of M s ( z t ,  ze, ~) is eqMralent with the identical 

va~dshing of  ~ (zo, -(2-). 

In  the first place, if M~(zo, -Q)= o the class ~ (.(2.) contains only constant  

funct ions  and Mz(z~, ze, ~) vanishes trivially. The converse can be proved us 

follows: Le t  f(2`) be univalent  in .(2- and choose any ZoE .Q. The funct ion  

f '  (2`0) 
f (2`) - -  f(2`o) 2  ̀- -  2̀ 0 

has a finite Dirichlet  integral ,  and if -Mz (2`~, ze, -(2-) = 0 we must  consequent ly  have 

,X" (2'0) I f '  (2`0) I 

,/'(z,) - -  f(Zo) z, --2`0 f(2`e) --J'(zo) z2 - -  Zo 

With  2̀ o as variable this is a differential  equat ion with l inear  solutions. Hence  

all univalent  funct ions  are linear, and by Theorem 6 this implies ]ll~(z0, .0.)=0. 

The invar ian t  3.S~(2`1, Ze, t2) can be de termined explicit ly by a method  com- 

pletely analogous to the cne used for  der iving the relat ion (20). W e  assume 

again t ha t  the boundary  F of .(2. is composed by a finite number  of analyt ic  

curves. I t  is possible to map o by funct ions  P(2`)and Q(z )on to  regions bounded 

by concentr ic  and radial  slits respectively so tha t  z I is mapped into o and z.~ 

into oz. We may normalize the mappings so tha t  both  funct ions  have the res- 

idue i at 2`e, and we set P'(zl)----A,  Q ' (2 ` I )=B.  

P 
The funct ion l o g ~  is analyt ic  and single-valued in .(2-. For  any regular  

funct ion  f(2`) in ~ we obtain 

log -~ . . . .  7 f d  log P ?  --  2 ,~(J'c<) -f(~,,)), 
1' 1' 

From this we derive 

39 log = 2 :r log ~ .  

lY(2`D - - f ( < ) I "  < i log A =" 2-7~ .~- D ( f ) ,  

and hence D ( f ) ~  r~ implies 

9 -  642136 A c t a  mathematicct .  83 
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[/'(z_~) - f ( z , )  [ < ~ log 

with equality for a multiple of log P Q. I t  follows that 

(24) )I~ (zl, z~, ~) = log -- .  
B 

The result remains true for an arbitrary region ~2 provided we define P 

and Q as limits of the corresponding slit-functions for a sequence of approxi- 

mating regions. We conclude that  Ms = o  if and only if the functions are 

identical. 

I t  could also be proved that V-ffQ is univalent and maps t2 on a region 

whose exterior has maximum logarithmic area. 

In w 6 we shall give an interesting interpretation of the relation (24)in the 

case where 1!: lies on the circle ] Z ] =  I. 

w 4- The Invar ian ts  d~le~ and ,~/e~. 

The equality of dlle~ and Me.~ will result from comparison with a third in- 

variant, defined by means of extrcmal lengths. An account of the theory of 

extremal lengths is under preparation, but since it cannot yet be referred to we 

shall list below the definition and main properties of this notion. 

Let {7} denote a family of rectifiable curves in a region ~2. Consider the 

class of non-negative functions Q(z) in t2 for which the quantities 

L,~, {7} = i n f f o l d z l  
7 7 

are defined and not simultaneously o or co. The least upper bound 

with respect to this class is called t h e  extremal length of the family {7}. The 

value of ;~ {7} does not depend on the  region Y2, but very frequently the family 

{7} will be defined with reference to a specific f2. 
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I t  is easy t o  see tha t  1/7} is a c o n f o r m a l  invarian~ in the sense tha t  any 

conformal  one to one mapping  of .q will t ransform {y} into a family {7'} with 

z it'} = ~ {r}. 
The following properties are immediate consequences of the definition: 

L e m m a  1. 

then 

I f  two families {7} and {7'} are such that every 7 contains a 7', 

z It) >= z {r'}. 

L e m m a  2. / f  the families {7~} aJ~d {7~1 cover disjoint pointsets, and i r a  third 

family {7} is such that a,ery Y contains a Y~ and a Y~, then 

z It} --> z {r,) + z {r~}. 

L e m m a  3. I f  the families {71} and {7.~} cover disjoi~*t pointsets, and i f  every 

71 and 7.~ is contained hz a curve 7 of a third family  {7}, then 

I I I 

z l r ) = z l r , }  zlr~} 

L e m m a  4. The extremal length of the family  of curves which join the sides of 

b 
length a in a rectangle with the sides a, b is - .  

a 

L e m m a  5. The extremal lenoth of the family  03" curves which separate two 

~ircles I~1 = ," a , d  I~1 = R > r is  equal to ~ ~ / l o g  ~ .  
r 

In  the present  connec t ion  we shall only consider ex t remal  lengths  which 

are defined in a very special way. Le t  Y2 be a region,  z o a point  of ~2 and /~o 

a subset  of the complement  E of ~2. W e  denote  by {7}r the class of simple 

closed curves in ~2 which separate z o f rom Eo while main ta in ing  a dis tance ~ r 

f rom zo. T h e  ex t remal  length  ~.{7}r will t end  to zero with r. But  if r ' <  r i t  

follows f rom Lemmas  3 and 5 tha t  

o r  

We conclude tha t  

I I I ]' 
- - > - -  + - - l o g ~  
z /7}~,=  z b'}~ z ~  r 

2:71: 

Z{rl, 
- -  + l o g  r ~ 2 ~  Z {r}~' + log r . 

2.'r 

(Zo, Eo) lira I 
r ~ 0  r 
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exists. The  differential  e lement  

, (.~0, t~o) ] d z0 I 

is conformal ly  invar ian t  for  a proper  definit ion of the t rans form of L o. 

I t  follows f rom Lemma I tha t  tt(zo, Eo) is a non-decreasing funct ion of the 

set E 0 and a non-decreasing func t ion  of s We shall call #(z0, to)  the perimeter 

of E 0 with respect  to the region ~2 and the center  Zo. For  a circle J z - - z o l < R  

all subsets of the complement  have the per imeter  I /R .  

I t  is obvious tha t  the value of #(Zo, ~0) depends only on the set of com- 

ponents  of E which contain points of _E o, and not  on the individual  points within 

a component .  Thus  the per imeter  of a single point  is equal to the per imeter  of 

the component  to which it  belongs. The per imeter  of a point  p is denoted by 

~t(Zo, p). Fo r  a simply connected region ~t(.Zo,p) has only one value, and for  

so = oo t h i s  value equals the capacity of E.  In  the general  case, ~t(cr E ) =  

= cap E .  

W e  shall prove:  

T h e o r e m  8. The invaria~zts ~/le~ and ~[~3 are both equal to the maxin~um of 

~t (,~o, 2) ) for p E E .  

We suppose first t ha t  s is bounded by a finite number  of analyt ic  contours  

I ' ~ , . . . ,  F,,~. Then  ~t(Zo,p) has only n values, one for  each component  of the 

complement .  There  exists a func t ion  .fk(z) which maps ~2 on a region bounded 

by the uni t  circle, corresponding to Fk, and n -  I concentr ic  circular  slits; we 

suppose tha t  the center  corresponds to Zo. For  a region of this sort  i t  is easily 

proved tha t  the per imeter  of the outer  contour  is exactly i ,  regardless of the 

number  and location of the slits. By conformal  invariance we have hence 

~, (z o , r~.) - -  I . f , ;  (Zo)] =< M| (Zo, s 

and we have proved thai~ 

max !t (Zo, p) =< M ~  (Zo, s 

Conversely, suppose tha t  f(z) maps s on a subregion of [w[~-  I and tha t  

f(Zo)-~ o. The image of s has a definite outer  con tour  which corresponds to 

a Fk, and by appl icat ion of Lemma I and eonformal  invariance we obtain at 

once 

If '  =<,  r,0. 
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Hence 

M ~  (Zo,/2) =< m a ~ .  (Zo, p), 

and we have proved tha t  max t t (z5,  p )=-71le~(Zo ,  s 

Le t  us now consider a mapping  of /2 by a funct ion of class ~ .  The image 

region has again a definite outer  con tour  which we suppose corresponds to / ' >  

We  replace /2 by its image s under  w =fk (z ) ;  /2k is a uni t  circle with con- 

centr ic  slits. 

Fo r  , fe  |  (/2k), set 

L(,)= f If'l Idwl 
luq=r 

whenever  [w[ = r does not  conta in  any slit, and 

D( , , )=  f f  I f ' l  ~ ~Z,,d~ (w = u + i~) 

for  all r. By the Schwarz inequal i ty  we have first 

L (,') ~ <= 2 ~ ," D '  (,') 

for  all non-except ional  r. On the other  hand,  since the image of [ w l <  r will 

always have the image of ]w] = r as its outer  contour,  the  isoperimetr ic  in- 

equali ty yields 

L (r)" ~> 4 z D (r). 
Hence  

D'(r) > 2,  
1 )  (,-) = r 

and in tegra t ion  f rom r o to I gives 

1) (to) =< 1) (~) ,-~ ~ ~,.~. 

Let t ing  ro t end  to o we conclude tha t  I t ' ( o ) ]  < i. In  terms of the original  re- 

gion ~q it  is then proved tha t  

and since all the funct ions  fk (z) are of class ~5~ we find 

M| = max  l f i  (Zo){ = Me~ .  

In  the general  ease we approximate  /2 with an increasing sequence of regions 

/2,~ with analyt ic  boundaries .  W e  write /~(z0, p ) w h e n  the invar ian t  is taken 

with respect  to Q,~. We  have tr ivial ly 
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t* (Zo, P) < ,",, (~0,1') 

sup tt (go, p) ~ lim max ~t,~ (Zo, p) = Me,~ (Zo, 32). 

The opposite inequality can be proved directly. Suppose that  w = f ( z )  with 

/(Zo)=O maps 32 on a subregion of I l< I .  We can a sequence of 

points wn = f ( z ~ )  which tends towards the infinite component of the complement 

of s Let p be a Limit point of the sequence z,. Then any curve 7 which 

separates z o from p has an image which separates o from Iwl = I, and we con- 

clude immediately that  

If' (Zo) J < t* (Zo, p) 
and consequently the equation 

~3/e~ (Zo, 32) = max ~ (Zo, p) 

holds for arbitrary 32. The relation Me~ = M ~  for arbitrary s follows of course 

directly by a limit process. 

w 5. Further Characterization of the Null-sets N ~ .  

I f  E 1 and E~ are disjoint compact sets in or on the boundary of a region 

32, the extremal distance ~(E1,  E2) between the sets with respect to the region 

32 is by definition the extremal length E {7} of the family of curves 7 which join 

E 1 and E~ within 32. 

We stated in Lemma 4 of w 4 that  the extremal distance between opposite 
a 

sides of a rectangle R is equal to the ratio ~ of the sides. Suppose now tha t  

a compact set E is removed from R. Then, by Lemma I of w 4, the extremal 

distance between the sides with respect to R - - E  is known to be > a/b. We 

claim that  the sign of equality will hold for all rectangles R if and only if E 

is a null-set of class N~. 

We may assume that  the rectangle R lies symmetrically with respect to the 

coordinate axis, the sides of length a being parallel to the x-axis. The ratio 
a 

is the extremal length between the vertical sides. As in w 3 we shall ap- 

proximate the complement 32 of E by regions 32n with analytic boundary, and 

introduce the functions .p,~(z) for z o = vo. I f  E is a null-set of class N~ we know 

that  lim pn (z) = z. 
n ~ 0 0  
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For  large n p .  (z) will map the  per imeter  of R on a quadr i la tera l  which differs 

very l i t t le f rom R. We  may hence find a,, and bn, t end ing  to a and b, such t h a t  

i~p=(z)  l < a= on the vert ical  sides of J7 and 13P,,(z) l > b,, = -  = - - o n  the  hor izonta l  
2 2 

sides. Le t  the rec tangle  with sides a ,  and b, be denoted  by R,,. Every  curve 

which joins the  ver t ical  sides of Rn contains  the  image of a curve jo in ing  the 

ver t ical  sides of R within R - - E .  By Lem m a  I, w 4, we can hence conclude 

tha t  the  ext remal  dis tance ZR-E wi th  respect  to R - - E  satisfies 

a ~ l  

and passing to the l imit  we obtain ZR-Z <= a/b. This proves t h a t  the extremal  

distance does not  change when a set E of class N~ is removed.  

To prove the converse, assume not  only tha t  ZR-E----b'  but  also tha t  the 

ext remal  distance ~R-E between the  hor izonta l  sides of R has the value b Le t  
a 

~ : s ( z )  be an a rb i t r a ry  univa len t  mapping  of ~2 with a pole a t  r I t  will 

t r ans fo rm the  per imeter  of R into a simple closed curve whose in ter ior  can be 

mapped in tu rn  by a funct ion  w ~ ~ (z) onto  a rec tangle  /7' of dimensions a', 
b'. Conformal  invariance and  Lem m a  I, w 4, lead to opposite inequali t ies f rom 

which we conclude tha t  
a t g 

- -  . 

b-7--~ 

Choose 0 = ~ -  in R - - E .  F o r  every curve 7 whieh joins the ver t ical  sides 

of R within R - - E  we shall  then  have 

By the definit ion of Z~-~: the  

area 

f e l d z l  > a'. 
7 

rec tangle  R must  hence be mapped  onto  an 

# 2 # r a /2,R-e= a b.  

This means  tha t  the  map of R - - E  will fill out  all of R '  except  for  a set of 

measure zero, and since the derivat ive I~b'(z) I is hounded  away f rom zero on the 

image of R -  E ,  i t  follows tha t  s(z) must  map ~ onto a region whose comple- 
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meri t  is of zero measure .  This  is t rue  for  an a rb i t r a ry  un iva len t  m~pping ,  hence 

for  the m a p p i n g  p + q of w 3, and  hence E is of class ~ .  

The proof  could be modified so as to apply  to a rb i t r a ry  quadr i la tera ls ,  and  

in f ac t  to a rb i t r a ry  ex t r ema l  distances.  W e  shall  the re fo re  announce  our  resul t  

in the  fol lowing fo rm:  

T h e o r e m  9 )  A set E is a ~ull-set of class N~ i f  a~d o~ly :if the removal of 

E does no.t change extremal dista~ces. 

W e  have  assumed,  so far ,  t h a t  E is conta ined  in the open rec tang le  /~. 

The  resul t  r emains  of course t rue  when the  in te rsec t ion  of R with  an a rb i t r a ry  

E of class N~ is removed,  a l though  the  proof  is not  so t r iv ia l  as it m i g h t  seem. 

Let  R '  be a concentr ic  rec tangle  with sides a '  ~ a and  b' < b. Since E is total ly 

disconnected,  i t  is possible to find a curv i l inear  quadr i la tera l  R"  which is con- 

t a ined  in the  rec taug le  wi th  sides a', b a u d  conta ins  the  rec tang le  wi th  sides 

a, b', and  whose pe r ime te r  does not  mee t  /~. I t  encloses a compac t  subset  E "  

of E,  and  we have hence )~R"-E" ~ hE". On the o ther  hand,  by two appl ica t ions  

of L e m m a  I, w 4, we obta in  

~R-Z <: ).W'-Z" = ~F:' ~ ~R' = a'/b' 

be chosen a rb i t ra r i ly  near  to a/b we find ~.Z-E <= a/b as and  since a'/b' can 

desired. 

W e  r e m a r k  also t h a t  the  o the r  ha l f  of T h e o r e m  8 has been proved  in 

s l ight ly  s t ronge r  form,  for  we have  shown tha t  E is of class N~ as soon as two 

par t i cu la r  ex t r ema l  dis tances  are unchanged.  I t  can be proved  in a t r iv ia l  

m a n n e r  tha t  ZR-E ~ a/b if the  p ro jec t ion  of E on the  ver t ica l  sides is of  men 

sure zero. Th is  accounts  for  the  sufficient condi t ion in 

T h e o r e m  10. A set E is of class 5~  i f  its project]oils in two orthogonal di- 

rections are of linear measure zero. On the other hand, ~f E is of class N~ any 

two poi~#s in the complement s can be joined by a curve in s whose length differs 

arbitrarily little from the distance between the points. 

The necessary  condi t ion is easily proved.  I f  two points  have  a d is tance  in 

.q which is super ior  to thei r  d is tance in the plane, i t  is c lear  t h a t  a th in  rec- 

t ang le  R can be cons t ruc ted  such t h a t  the  dis tance of two sides is g r ea t e r  in 

R - - E  t h a n  in R. This  implies  ).Jt-E ~ ).~, and  hence  /~ canno t  be of class N~.  

1 A related theorem in different terminology and connection is found in GI~0TZSCIa [3]- 
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w 6. Linear Sets. 

In  this section we shall always choose z 0~- oo. We can then  th ink  of the 

invariants  M,~, dlI~ and Me~ as funct ions  of a compact  set E which does not  

divide the plane. 

There  is a classical re la t ion  between M~ and the l inear  measure of the set 

E.  More precisely, we shall denote  by / /  the  greates t  lower bound of the to ta l  

l ength  of a system of closed curves 7 which separate E f rom cx~ and we shall 

prove tha t  

(2S) 21I  <= ! . . 4 .  
2 7 t  

This is an immedia te  consequence of Cauchy's  theorem.  

gular  and of absolute value G I in ,Q we have indeed 

I f  f ( z )  - -  c_ + . . .  is re- 
z 

7 7 

and the re la t ion (25) follows at once. 

W e  shall consider separately the case where E lies on a s t ra ight  line, for  

instance on the real  axis. I f  the l inear  measure of E is L we have ~/--~ 2 L 

and (25) implies 

(26) M~ =< ~ L .  

An inequali ty in the opposite direct ion is obta ined by considering the funct ion 

dx L+ 

E 

I t  is immediately seen t ha t  I~ t f ( z )  l <  zr, and the funct ion  

e 2 - - I  

.f(z) 
e 2  -~ i 

is hence of class ~ with the first coefficient -.L W e  have thus 
4 

L 
(z7) - .  

4 



122 Lars Ahlfors and Arne Beurling. 

In particular, we may conclude: 

Theorem 11.1 A linear set is of class ~ i f  and oMy i f  it is of li~lear mea- 

8$~Ye z e Y o .  

More generally, we may consider a set E on an analytic curve 7. We can 

still prove: 

Theorem 11'. A set E on an analytic curve is of class ]~% i f  a~d o~dy ~if it 

is of leugth zero. 

This is proved by showing that  every bounded function which is analytic 

in a region ~ ' - - E ,  where ~ '  is an open neighborhood of E, is analytic in ~'  

if and only if /~ is of linear measure zero. But it is clearly sufficient to prove 

the corresponding local statement, which follows from the fact that every point 

on 7 has a neighborhood which can be mapped conformally so that  7 wil l  cor- 

respond to a segment of the real axis. In  order to apply Theorem 3 it is nec- 

essary to choose the neighborhood so that its boundary does not intersect E. 

I f  E is totally disconnected this is always possible, and if E contains an arc 

neither 21I~ nor the linear measure can be zero. 

Let us now find a bound for M~ when E is a compact set on th'e real 

axis and has given length L. This problem is not quite easy and needs some 

preparations. Consider first a function f (z)  of the form 

oO 

where ~(t) is of summable square and vanishes outside /s By an application of 

the Fourier integral and the Parseval relation, we find this relation for D(f )  

o~  oo  / / '  I ) ( f ) - ~  Jr q~(s) --  9(t)l~ds dt  -- H(9)  
- 

- - o 0  - - 0 0  

which holds whether both sides are finite or infinite. Conversely, if D ( f ) i s  

finite, f(z)  is generated by a function ~ with H(q~)= D(f ) .  

Since H(~o) ~ H(I~I),  we may conclude that  the extremal function f of the 

class ~( t ] )  is generated by a ~ which is real and ~ o  on E. Let  now ~0" be 

i T h i s  t h e o r e m  is  due  to  DEN JOY [2]. 
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the even, symmetrically decreasing and equi-measurable function to ~0, and se~ 

kn(s) = Min (zs  -~, n). Thus H(r  is the limit as ,~t-~ co of the expression 

c r  ~ oO oO 

Y/ / /  ((~v~(s) + qv~(t))k.(s - t ) d s d t - -  2 ~(s )~( t )k . ( s - -  t ) d s d t =  A,,(~)--B.(q;). 
- - ~  - - c o  ~ o 0  - - o o  

Obviously .4~ (~) = A~ (f*), while B ,  (~o) <_ B,, (~0") according to a rearrangement 

theorem due to Hardy, Littlewood and Polya (see e. g. Inequalities, Cambridge 

I934, Theorem 38o). Thus H(~o) ~ H(~0*) and D ( f )  ~ D( f*)  follows, where f *  

is the function generated by ~0". Since ~0" vanishes outside the segment E* 

limited by the points _+ L/2,  the function f *  must be holomorphic outside /~* 

L 
and we conclude that Me (E)--< Me ( E * ) = - - .  

4 

Theorem 12. For a linear set of leugth L we have the string of i~equalities 

(28) _Mz,~ _--< Me _--< L __< M~ _--__ L 
4 z 

I t  is interesting to note that  M~ is smallest while Me,~ and Me are largest 

when E consists of a single segment. In the next section we shall show that 

there is no lower bound for Meu or Me in terms of L. 

Theorem 13. /~br linear sets M ~  a~2d Me are simultaneously positive or-----o. 

According to Theorem 8, the perimeter tt vanishes for every boundary point 

of ~ if Me~----o. This property is obviously invariant under schlicht mappings 

of t) onto 2 '  and thus implies that  the complement of Y2' is always totally 

disconnected. I f  in particular E is linear, both slit functions p and q must 

degenerate. Thus a ---- b -~ o and M~ ~ o follows. 

We shall now give a more precise characterization of linear sets of class 

Ne.  This is mos~ easily done for sets E which lie on the unit circle ]z]---- I. 

We begin by supposing that  E consists of a finite number, of closed arcs 

a;. The complement of E on the circle is denoted by E '  and consists of open 

arcs fl i .  According to formula (24) of w 3 the invariant Me (o, c~, Y2) is deter 

mined by the functions P(z) and Q(z) introduced in that  section. Obviously 

P(z) ~ z ,  making A----I, while Q(z) must satisfy the relation 

B 
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f r o m  which it  follows t h a t  [ Q ( z ) [ =  B ! on the  arcs fli. On the o ther  hand,  we 

0 
know also t h a t  ~ l o g ] Q ( z ) [ ~ - o  on hi, and for  this reason B - I Q ( z )  can be 

cont inued  f rom ]z[ > I  across the a,. to a func t ion  QI(z), defined and  single- 

valued out.side of the  arcs fii, which satisfies 

-(;) = Q, 

W e  conclude t ha t  the funct ion  

v(z) = ( -  log Q, (z) l - . l o .  B )  

is r egu la r  and ha rmon ic  outside of /~' except  for  a logar i thmic  pole at  c~ which 

is such t ha t  V(z) + log Iz l  vanishes for  z :- c~  V(z) is then  the equi l ibr ium 

po ten t i a l  of E '  with the  cons tan t  value - -  �88 log B on the set. The  capaci ty  of E '  

is hence B t and  it  follows f rom (24) t h a t  

V ' (29) .21/3 (o, o o  ~) = 2 log cap E'" 

This  resul t  can immedia te ly  be carr ied over  to the  ease of an a rb i t ra ry  closed 

set E on the  circle. The complemen t  E'  has  then an inner capaci ty ,  defined as 

the  least  uppe r  bound of the capaci t ies  of closed subsets  of E ' .  I t  follows by 

a t r iv ia l  l imi t ing  process t ha t  (29) remains  valid, provided t ha t  cap E '  is inter-  

p re ted  as the  inner  capaci ty.  

From (29) we derive the  following~ cri terion:  

T h e o r e m  14} A closed set E on the unit circle is of class N~ i f  and o~ly i f  

the inner capacity of'its complement is equal to I. 

I t  will be noted,  of course, thn t  this  does not  imply  t h a t  the set E is of 

zero capaci ty .  

There  is a more genera l  t heo rem whose proof  we shall  omit.  

T h e o r e m  14'. A closed set on an analytic arc is of class N~ i f  a~d only i f  

the inner capacity of its complement is equal to the capacity of the arc. 

w 7- Special Sets. 

I n  order  to show tha t  the  classes Ne~, N~ and 5 ~  are all dis t inct  we mus t  

exhibi t  a set  which is in Ne~ but  not  in N~ and a set  in N~ which is not  in Nu. 

1 Certain results in de POSSEL [8] a r e  related to this theorem. 
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W e  shall  also show tha t  there  are l inear  sets of posi t ive measure  in ~Y~ and 

N~.  ]n  mos t  of the cases the examples  will be general ized Can to r  sets. 
o9 O0 

Let  {qi}l be a sequence of real  number s  0 < qi < I and  {ni}~ u sequence 

of posit ive integers .  W e  shall  cons t ruc t  a cor responding  l inear  Cantor  set 

E({q~}, {n~}) as a closed subset  of the  uni t  in te rva l  E 0 : 0  ~ t ~ t. The  first step 

is to divide E 0 in 2 n 1 + I subintervals ,  the  odd ones of  length  a 1 =  q~/(n I + I) 

and the  even ones of length  b 1 = ( I -  ql)/n~; for  s implici ty  they  will be re fe r red  

to as a~-intervals and  b~-intervals, and  the  union of the  closed a~-intervals is 

denoted by E 1. In  the  nex t  step each al- interval  will be subdivided in 2 ~ + I 

a l t e rna t ing  a~- and b,~-intervals of l eng th  a2 and  b~ respect ively.  These leng ths  

are chosen so tha t  the  a~-intervals cover a p ropor t ion  q~ of the  al- intervals ,  and  

the union of all a~-intervals is denoted  by E~. The  process  is r epea ted  and  we 

obta in  a nested sequence of sets _E~ ~ E 2 ~ . . .  whose produc t  E =  EI E 2 . . .  is 

the Can to r  set E({qi}, {hi}) which we set  out  to define. The  length  of E is 

[ [ q , .  I t  is posi t ive if and  only if ~ ( I - - q i ) < o o .  
1 1 

W e  shall first der ive a sufficient condi t ion for  E to be a null-set  of class 

~Vz~. By L e m m a  3 and 5 of w 4 this will be the  case if each point  of E can 

be su r rounded  by a sequence of d is jo in t  annul i  c, which do not  mee t  E and  

whose decreasing radi i  r :  and  r :  sat isfy the condi t ion 

(30) log r 
1 r v  

Let  us fix our a t t en t ion  on a poin t  t E E ,  I t  belongs for  each k to a cer- 

ta in  ak-interval which we shall  denote  by ak(t). W e  sur round  t by annul i  

centered  a t  the midpo in t  of ak(t) which pass t h rough  the  bk-intervals con ta ined  

in ak-1 (t); some of these  may  intersect  the  real  axis in only one b~:-interval. In  

order  to make  sure t h a t  the  aunul i  do not  mee t  E and  are all d is joint  we agree 

to include only those annul i  whose inner  radius  is a t  leas t  equal  to ak + bk while  

the outer  radius  is a t  mos t  equal  to bk-1. I t  is clear t h a t  such an annulus  canno t  

in tersect  any ak-x~interval o ther  t h a n  ak-l(t) and hence cannot  mee t  E .  More- 

over, an  annulus  of the  k + 1:st genera t ion  cannot  mee t  an annulus  of the  k:th 

genera t ion,  for  a common  point  would a t  once be a t  a d is tance ~ ak + bk f rom 

the center  of ak(t) and  at  a d is tance ~ bk f rom the center  of  ak+l(t) which is 

impossible  since the two centers  have  a m u t u a l  d is tance  < ak. 
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The  smal les t  annulus  of the k:th genera t ion  which can satisfy the  imposed  

condi t ions  has  radi i  ~ak + b~. and  ~ a~ + 2 bk, and  these  radi i  are increased by 

ak + bk a t  each step. The  n u m b e r  vk of the  last  permiss ib le  annulus  is the re fo re  

de te rmined  by the  condi t ion 

a~ + b~ + yr. (ak + b~.) < b~.-~. 
2 

But  ak + bk < ak-~/nk and 

sufficient to take 

bk- i  :> I - -  qk_~ - -  a~-~ > (I - -  q~._~)ak_~. I t  is the re fore  
qk-~ 

= - q k - , ) ]  - 

whenever  this num ber  is positive. W e  note, moreover ,  t h a t  

i) = - -  log i - -  - - > 
t~k 
- -  + b~, + v ( a k  + bk 
2 

v -t- I ak + b~ 
> - - .  

I ~ q k  

v §  

Hence  the  aunul i  of the  k:th genera t ion  con t r ibu te  to the  sum (3 o) an a m o u n t  

g rea t e r  t han  

z 3 

where  the f ac t o r  in f ron t  is > log vk + 2 The  whole con t r ibu t ion  is thus  g rea t e r  
4 

t h a n  

(I  - -  qk) log 
4 

and we conclude t h a t  ]g is of class Nz~, whenever  

n k ( I  q~--1) 
(3 I) Z (i - -  qk )log 

1 4 

diverges.  This  condi t ion does not  con t rad ic t  the convergence  of ~ (I - -  qk), and 
1 

we have  proved:  
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Theorem 15. There exists a linear set of positive measure which is a null-set 

of class Ne~. 

The Cartesian product of two identical linear Cantor sets of positive length 

is a 2-dimensional Cantor set of positive area. As such it will certainly not be 

of class _~.  However, this set is again of class Nz~ whenever the series (3 I) 

diverges. The proof is the same as above, except that  it is more convenient to 

replace the circular rings by quadratic frames. In (3 o) we let r:/r', be the ratio 

of the outer and inner dimensions of the frames and it is elementary to show 

that  the divergence of the series (3 o) is still a sufficient condition for the set 

to be of class Nz~. 

Theorem 16. There exists a set of class 2Ve~ of positive area, and hence not 

of class . ~ .  

I t  remains only to construct a linear set of positive measure which is of 

class 5r~. Such a set cannot be of class 2~ and therefore also serves to show 

t h a t  Nu is a proper subclass of N~. 

To this purpose we shall make use of Theorem I4, and our object is thus 

to construct a closed set /~ on the unit circle which is of positive length while 

the inner capacity of its complement E '  is equal to I. 

Let us first observe that  the inner capacity of a finite number of open arcs 

is equal to the capacity of the closed arcs. I t  is also wellknown tha t  the 

capacity of an arc of length 4/2 and radius I is sin I/2. Let now u(z) be the 

equilibrium potential of the arc 

E;: Io-ool< l  (rood 

Then I-u(z ?~) is found to be the equilibrium potential of the set 

E~: [nb)--OoI .<2/] t  (rood 2 r 

from which we conclude that  

? l  

c a p  /~'7~ - -  V s T n  i / ~  = I - - -  

while the length of E,'~ is 4/2. 

This example proves the existence of open sets with arbitrarily small length 
P 

and with an inner capacity arbitrarily close to x. Taking a sequence {/~}o of 

such sets with length L ,  = 4/~n such that  
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l im log ;t,~ - - ~ o ,  ~ 4 / 2 , < - -  L 
0 

we find t h a t  the union E'  of the sequence ~E'njo t~ has a length  --< L and an inner  

capac i ty  ---- I. 

T h e o r e m  17. There exists, on the circle or ou. the line, a set of  positive linear 

measure which is of type N~. 

At the end of his thesis  S~rio [9] lists a number  of unsolved questions.  Those 

which concern plane regions  have  all been answered  in this paper.  The  ques- 

t ions are s ta ted  below in our  own te rmino logy .  

Can a l inear  or p lane  Cantor  set  of class _ ~  have posi t ive  l inear  or areal  

measure?  Fo r  the  areal  measure  of  plane sets the answer  is cer ta in ly  nega t ive  

as seen by Theorem 4. For  l inear  sets the  answer  is aff i rmative,  as impl ied  by 

the  proof  of Theo rem  I6, but  it mus t  be no ted  t h a t  we have  considered more  

genera l  Can to r  sets. 

Are  there  any to ta l ly  d isconnected  poin tse ts  which are not  of class 1V~? The  

af f i rmat ive  answer  is t r iv ia l  for  we need only consider  a to ta l ly  d isconnected  

l inear  po in tse t  of posi t ive measure .  

Is  the  to ta l  d isconnectedness  of a poin tse t  inva r i an t  under  conformal  map- 

pings of the complemen t?  This  is not  so, for  there  exis t  to ta l ly  d isconnected 

pointse ts  which are not  of class Ne~.  An example  was not  given,  but  it  suffices 

to t ake  a to ta l ly  d isconnected set whose complemen t  has finite area. This  implies 

t ha t  the  cor responding  Me~ > o and the  set is no t  of class Ne~.  
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