
NORMALISABLE TRANSFORMATIONS IN HILBERT SPACE AND 
SYSTEMS OF LINEAR INTEGRAL EQUATIONS. 

BY 

A. C. ZAANEN 

of BANDOENG (JA~v'A). 

w i. I n t r o d u c t i o n .  

Originally it was assumed in the theory of Hilbert space that  the space 

considered, which we shall call ~, was complete (that is, from IIf~-f,~II -~ o 

for m, n ~ oo follows the existence of an element f e n  satisfying I l l - f u l l - - >  o 

as n-~ c~) and separable (that is, there exists an enumerable set of elements 

lying everywhere dense in ~). I t  was, however, pointed out by F. Rellich that  

the most important part of the theory of linear transformations in ~ maintains 

its validity when the condition of separability is dropped, and, if we confine our- 

selves to completely continuous self-adjoint or normal transformations, even the 

completeness of ,~l is not necessary, i We shortly recall some definitions. A linear 

transformation K, defined for all elements f of the (not necessarily separable, 

and not necessarily complete) Hilbert space ~ is called completely continuous 

when, for every bounded infinite set {f}, the set {K f}  contains a sequence con- 

verging to an element g E~. I t  is not difficult to prove that  every completely 

continuous linear transformation K is bounded, that  is, IIK2'!I ~ Miifll for ever}" 

f E ~ ,  where M ~  o does not depend o n f .  The bounded linear transformation K, 

defined for all elements fE~q, i s  called normal when the adjoint K* is also de- 

fined for all elements f e ~  (so that  therefore the relation 

(~) (K f,  g) = (A K* g) 

holds for arbitrary f ,  gE~), and when, moreover, K K *  ~-- K * K .  If  K is its own 

adjoint, K is called self-adjoint. Evidently every self-adjoint transformation is 

normal. I n  the case that the space ~ is complete, it is a well-known theorem 

that  every bounded linear transformation possesses a uniquely determined bounded 

1 F. RELI, ICH, Spektra l theor ie  in n icht , separablen  R/lumen, Math. Annalen I Io (I934) , p. 342 

- -356.  
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adjoint K*, and that, if, moreover, K is completely continuous, the same holds 

for K*. When, however, the space 91 is not complete, this theorem is no longer true. 

F. Rellich has proved now the following 

T h e o r e m  A. Let 91 be a (not necessarily separable, and not ~wcessarily complete..) 

Hilbert space in which the normal transformation K is defined. Supposinq now that 

both K and K *  are completely conti~mous, and that K is not identical with the null- 

transformation, this travsformatio,  K has at least o,e characteristic element 91 with 

characteristic value ~1 ~ o. Moreover, the same eleme~,t T~ is also a characteristic 

element o f  K *  with characteristic value ~1 (by ~1 we mean the conjugate complex 

number of  ~1). Furthermore, there exists an orthonormal (finite or enumerable) se- 

quence of  characteristic elements 9i (i = I, 2 . . . .  ) satisfqi~g 

such that, ~f az = (f, 9i) for  an arbitrary f 6  9t, 

n 2 n 
lira II K f --  ~_a ,~i a, qoxll = lira (K  f - -  , ~, ai qDi, K f - -  ff_~ 2, ae q~i) / -= o 
n + c ~  / = 1  n + o v  i = 1  i = l  

(2) 

and 

(3) lira I l K * f - -  ~ , [ I  = lim ( K ' f - - / . ~  "~ )4aiqDi, K ' f - -  ~ia~q~) ' j ' =  o. 
n ~ o 0  i = 1  n ~ o o  i = I  i = 1  

In  the present paper we shall introduce generalizations of the notions hitherto 

defined, and this will lead to the proof of a theorem which contains Theorem A 

as a special case. As an additional result we shall see that  the assumption of 

the complete continuity of K*,  which is essential in Rellich's proof, is superfluous. 

Our method of proof differs considerably from that  adopted by Rellich. More- 

over, we shall show that  this theorem may be used to obtain expansion theorems 

for certain systems of linear integral equations, a result which generalizes earlier 

results of J. Ernest Wilkins 1 (who in his turn generalized investigations of 

G. A. Bliss ~ and W. T. Reid a) and the present author. 4 

1 j .  ERNEST WILKINS, Definitely self-conjugate adjoint integral equations, Duke Math. Journal 

II (I944), p. I55--I66.  
2 G. A. BLISS, Definitely self-adjoint boundary value problems, Transactions Am. Math. Soc. 

44 (1938), p. 413--428. 
a W. T. REID, Expansion problems associated with a system of linear integral equations, 

Transactions Am. Math. Sot. 33 (1931), P. 475--485. 
4 A. C. ZAANI~N, On the theory of linear integral equations VIII, Proe. Kon. Ned. Akad. v. 

Wetensch. (Amsterdam) 5 ~ (I947) , p. 465--473 and p. 612--617 ( =  Indagationes Math. 9 (I947), 
p. 271--279 and p. 32o--325). 
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We consider a bounded, positive, self-adjoint transformation H, that  is, a 

bounded linear transformation H satisfying (H f ,  g) = (f, t t  g) and ( H  f, f )  >-- o 

for arbitrary f ,  g e~ ,  and we shall denote by [~] the set of all elements h for 

which H h  ~ o, while the set of all elements g orthogonal to [~] (that is, (g, h) = o 

for all he [~]) will be called [~]. Assuming now that  every f e ~  is expressible 

in the form f - ~ g  + h, where g e [!}~], h e [~], the projection E on [~]  is defined 

by g ~ E l .  Furthermore we shall write N ( f )  for the non-negative number (H f ,  f) '/h 

I t  is important to observe that, since the identical transformation / i s  evidently 

bounded, self-udjoint and positive, we obtain a special case by taking H~-- / .  

In this ease the set [~] contains only the nullelement, E ~ S and N ( f ) =  i!fii. 

Returning to the general case, we shall call two bounded linear transformations 

K and h" each other's H.adjoints when 

(4) ( H K J :  g)-~ ( H  f,  I~'g) 

holds for arbitrary f, g e ~R. When, moreover, H K I ~ - ~  H I ( K ,  the transformation 

K will be culled normalisable (relative to H). Two elements f ,  g e ~ will be said to be 

H-orthogonal when ( H  f ,  g) ~ o, and the sequence 9~i of elements q~; e ~ (i ~ I, 2 , . . . )  

will be termed H-orthonormal when (Hq~i, ~ j ) =  I for i = j  and = o for i ~ j .  

We shall prove now, besides other theorems, the following theorem (obtained 

y j o i n i n g  together the contents of the Theorems IO, 12 and I5): 

T h e o r e m  B. Let fit be a (not necessarily separable, m~d not necessarily complete) 

Hilbert  space in which the Jtormalisable tra~formatio.~ K is defined. S~,pposing *~ow 

that the transformation T ~ E K is completely continuous, and tDat S j ~ H K  is not 

identical with the uulltran~formation, the transformation T ~ ~E K has at least one 

characteristic element qna with characteristic value 21 # o. Moreover, the same elemei~t 

9l  is also a characteristic element of  I '  ~-- E_I~ with characteristic value ~ .  Further- 

more there exists ai~ H-orthonormal (finite or enumerable) sequence of  characteristic 

elements qDi (i = I ,  2 . . . .  ) satisfyD~g 

T 9i = hi q~, :[' 9i  = -~," q~, ~ ~ o 

such that, i f  at -= ( H  f, q~) for  an arbitrary f e  97, 

(-(.<s- A .<s- A o 
n + o o  i : 1  n + o o  f : l  i ~ l  
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a~d 

(6) 
n ~ ~ 1 6 2  i = l  ~ o o  ~ 1  i ~ l  

In  the special case that any clement, satisfying H f - =  o, satisfies also K f - =  o, 

the transformation K itself has at least one characteristic element tpl with charac- 

teristic value ~1, and there exists an H-orthonormal (finite or enumerable) sequence 

of characteristic elements ~pi, satisfying K ~Pi -= he tpi such that, i f  ai =- (H f ,  ~p,) for 

an arbitrary fE~t ,  the relations (5) and (6) hold with qg~ replaced by ~pi. 

As we have already observed, we obtain a special case by t~king H----I.  

From (I) and (4) we infer that  in this case any H-adjoint I~ of K is identical 

with the adjoint K*, which implies that  the notions of normalisable and normal 

transformations become identical as well. Since also /~-=-I, we see that 

T-= E K =  K and I ' - - - - -E/~= K*;  it follows therefore that  in this case Theo- 

rem B becomes identical with Rellich's Theorem A, except for the assumption 

about  the complete continuity of K *  in Rellich's theorem, ~vhich is superfluous. 

There exists a close connection between normalisable and normal trans- 

formations as will be shown by introducing a factorspace ~ =-~/ [~] ,  the ele- 

ments [ f ]  of which are classes of elements of the space ~. The element I f ]  E 

contains besides the element f e ~  all elements ge!}l for which H g ~ H f .  Ad- 

dition and multiplication with complex numbers a are defined by [f~] + [2'~] 

= [ f ~  +f~], a [ f ] = [ a f ] ,  while ([f~],[f.~])-~(Hf,,f2). In general, the space 3 

will not be complete, even in the case that ~ is complete. By adjunction of 

ideal elements, however, we shall obtain the complete space ~, the closure of ~. 

Defining now, for a normalisable transformation K satisfying the conditions of 

Theorem B, the transformation [K] in ~ by [K] [ f ]  = [Kf ] ,  it will be shown 

that  [K] is a bounded normal transformation in ~. Defining [K] also for those 

elements of the closure ~ which do not belong to ~ (this is possible in virtue 

of the boundedness of [K]), we shall prove (Theorem 25): 

Theorem O. I f  the normalisable transformation K satisfies the co~ditions of 

Theorem B, the transformation [K] in the space ~, corresponding with K in the way 

described, is a completely continuous normal transformation in ~. 

We shall also pay attention to bounded linear transformations K which, 

without being normalisable, possess an H-adjoint-/~. An analogue of Theorem B 

(obtained by joining together the contents of the Theorems 5, 6 and 20) will 

be proved. 
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In w I3 we consider normalisable transformations of the form K-----AH, 

where one at least of the bounded linear transformations H and A is completely 

continuous, and where A satisfies H A  H A *  H ~ H A *  H A  H, and we prove in 

Theorem 26 that in this case the convergence of the expansions 5s and 

~ i a i 9 ~  relative to the norm N(f), as expressed by (5) and (6), may be replaced 

by ordinary convergence relative to the norm IIJ[I. The sums of the expansions, 

however, are not necessarily equal to K f  and /~f, but 

where H h  = H k  = o. 

Finally, in w 14, we indicate the aforementioned applications to the theory 

of systems of linear integral equations in the space L~ ~')(J) of all functions f ( x )  

with complex values, having the property that  [f(x)l ~ is Lebcsgue-integrable over 

the m-dimensional interval J .  

The special case of completely continuous symmetrisable transformations 

(that is, bounded linear transformations which are their own H-adjo in ts )has  

been treated before 1, and its implications for the theory of one linear integral 

equation with symmetrisable kernel have been investigated in detail. ~ Some of 

the proofs for normalisable transformations resemble more or less closely the 

corresponding proofs for symmetrisable transformations. Nevertheless, it seemed 

advisable to us to include these proofs in the present paper, partly because it is 

always difficult to know where to draw the line as regards the use of the phrase: 

"The reader, by comparison with the corresponding theorem, will easily find 

that . . . " ,  but mainly in order to make an independent whole of the contents 

of the present paper. 

w 2. Some Pre l iminary  Considerations. 

We suppose that  ~ is a (not necessarily separable, and not necessarily 

complete) gi lber t  space. We shall not assume that this space has necessarily 

infinite dimension, so that  it may also be a unitary space. The following nota- 

tions will be used: 

1 A. C. ZAANEN, Ueber vollstetige symmetr ische und symmetr is ierbare  Operatoren, Nieuw 
Arch. v. Wisk. (2), 22 (I943) , p. 57--8o. 

A. C. ZAANElq, On the  theory of l inear  integral  equations I, Proc. Kon. Ned. Akad. v. Wetensch. 
(Amsterdam) 49 (I946), P. 194--2o4 ( 7  Indagat iones Math. 8 (I946), p. 9I - - IOI) .  

2 A. C. ZAANEN, On the  theory of l inear  in tegral  equations I I - - V I ,  Proc. Kon. Ned. Akad. 
v. Wetensch. (Amsterdam) 49 (~946), p. 2o5--212, 292--3oi ,  409--423, 571--585, 6o8--62I  ( =  In- 
dagationes Math. 8 (1946), p. IO2--Io9,  161--I7O, 264--278, 352--366, 367--38o). 
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~,#,Z, tt . . . . .  
a,#,;~,~, . . . ,  

(1, 
Ilfl , 
K , T ,  iE, U , . . . ,  

{l gt t ,  II TI!, . . . ,  

K @, T $ ,  . . . , 

H, 

i V ( f ) ,  

I, 

0, 

. . . ,  

elements of N, 

complex numbers, 

the conjugate complex numbers of a, fl, 4, tt . . . . .  

the scalar product of f and g, 

the non-negative number (f,f)'/~, 
bounded linear transformations in N, that is (for K), !IKJll 

Mllf] I for a certain M ~ o and K ( a f +  f ig)= a K f +  f l K g  
for arbitrary a, fl, f ,  g, 

the bounds of K, T . . . .  , that  is (for K), the smallest number 

M-~  o satisfying IIKfII ~ ~illfi I for every f e N ,  

the adjoint transformations of K, T , . . . ,  as far as they exist in 

N (it is well-known that, when N is complete, every bounded 

linear transformation K has a uniquely determined, bounded 

adjoint K* with the same bound as K); we have therefore (for 

K) the relation (K f,  g) = (f, K* g) for arbitrary jr, g, 

a bounded, positive, self-adjoint transformation, that is, a bounded 

linear transformation satisfying (H f ,  g) = (f, Hg) and (H A f )  ~ o 

for arbitrary f, g, 

the non-negative number (H f, f )  ~/~, 
the identical transformation; I f = f  for every f e N ,  

the nulltransformation; O f - - o  for every f e N ,  

closed linear manifolds in N, that is (for [s a subset of N 

having the properties that  ,)t I g E[~] implies a.]~ f lge[~]  for 

arbitrary a, t?, andfi~E [s (n = I, 2, ...), limfi, ~ - f i m i ) l i e s f e  [~]. 

We suppose that the bounded, positive, self-adjoint transformation H is 

defined i n  N, and that H ~ O .  Then the ' se t  of all elements hEH, satisfying 

H h  ~ o, is a closed linear manifold [~], not identical with the space N itself. 

I t  is not difficult to see that  the set of all elements gEN, orthogonal to [~] 

(that is, (g, h ) =  o for every h E [~]), is also a closed linear manifold, which we 

shall denote by [H]. We shall assume now that, for every f E N ,  there exists a 

decomposition f =  g + h, where g E [H], h E [~]. Then, evidently, this decomposi- 

tion is unique (It is well-known that, when N is complete, a decomposition of 

this l~ind always exists. The same is true, even when N is not complete, in the 

special case that  H is definite, that is, H f - ~ - o  only for f ~  o, since in this 

case [~] contains only the nullelement). The manifold [~] not being identical 
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with the whole space ~, the manifold [~J~] contains not  only the nullelement,  

bu t  other elements as well. Defining, when f = g  + h (ge [~],  h E [~]), the pro- 

jection E on [}FJ~] by g = E l ,  we have therefore E ~ 0. The projection on [~] 

is I - - E .  We observe tha t  E - ~  I in the special case tha t  H is definite. 

Lemma i .  H =- H E.  

Proof. On account of H h - =  o for every h e  [~] we have H ( I - - E ) f - - - o  for 

every fe  ~, hence H f =  H E f or H = H E .  

Lemma 2. For any element f e gl, the relations H f =  o and N ( f  ) -= (H f ,  f )'/~ = o 

are equivalent. 
Proof. I t  is tr ivial  t ha t  H f =  o implies N ( f ) - =  o. To show the converse, 

we use the inequal i ty 

(7) I(HJ;  g)[ -< (Ha+; f)'/~ " (Hg, g) '/'" = .N(f)  . N(g), 

which is proved in a similar way as Sch,varz's inequality ](/, g)[-<llfi[" [Igll. 

Taking now g = H f  in (7), we obtain 

{I nf l l"  g N ( f ) .  N ( H f ) ,  

which shows tha t  N ( f ) =  o implies H f - =  o. 

W h e n  the 

the re la t ion 

(s) 

for arbi trary f ,  g E {R, 

uniquely determined,  

w 3. H-adjoints. 

bounded l inear t ransformat ions  K and _K, defined in ~, satisfy 

(H K f , g ) =  (H f , f /g )  

we shall call /~ an H-adjoint of K. Generally /~ is no t  

since, if /~ is an H-adjoint  o f  K, and the bounded l inear 

t ransformat ion /~1 satisfies E / ~ I - =  E/72, then  K1 is  also an H-adjoint  of K, as 

follows on account of Lemma I from 

( H K f ,  g) = (H f ,  I72g) = (f, Hf i fg)  =- (f, H E K g )  = 

---- (f, H E /~ ,  g) = (f, H R, g) = [H f, K1 g). 

= E K 1 ,  Conversely, if  /~ and / ~  are both H-adjoints  of K, we have E / ~  ' ~ 

since ( l t K  f ,  g) = (H f, Rg )  = (H f ,  ~ g) implies (f, t t R g )  = (f, H R ,  g) for arbi- 

t rary  f ,  gE{R, hence H ( f i 2 - - ~ 2 1 ) g = o  or (R-R,)ge[~] for every gent ,  so tha t  

-r = o or E R 1 .  
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I t  is evident that, when /~ is an H-adjoint of K, then K is also an H- 

adjoint of /~, since (8) implies 

( H I ' g ,  f )  = (I~g, H f )  -~ (g, H K  f )  = (Hg, K f )  

for arbitrary f ,  g E ~. 

Finally we observe that, 

becomes 

in the special case that  H = L  the relation (8) 

(K f ,  g) = (f, R g). 

Any H-adjoint of K, if it exists, is therefore in this case identical with the 

uniquely determined adjoint K*: 

Before proving now several theorems on H-adjoints, we prove the following 

Lemma 3. When, in ~, the adjoint K* of the bounded linear transformation 

K is defined, it is bounded. 

Proof. I f  ~ is complete, the theorem is well-known; we shall suppose there- 

fore that  ~ is not complete. Then, by adjunetion of 'ideal' elements ('limits' of 

fundamental sequences possessing not already a limit in ~}, we may obtain the. 

complete space ~, the closure of ~. For fE  ~, and ~ ~, f = lira fi~, j',, E~, K f  is 

defined to be lira K f n .  I t  is easy to prove that  this definition is legitimate. 

Then K is bounded in ~, so that, on account of the completeness of ~, K* is 

also bounded in ~, and therefore certainly in ~. 

Theorem 1. Let the bounded linear transformations K a~d J~ be H-adjoints. 

Then any f E ~ ,  satisfying H . f =  o (equivalent with f E  [~]) satisfies also E K f  = o 

and E K f = -  o. 

Proof. From (8) and H f ~ - o  follows ( H K f ,  g )=  o for every g E~, hence 

H K f ~ - o .  Then KfE[~] ,  so that E K f - ~  o. 
From 

(Kg, H f ) ~ - - ( H K g ,  f )  = (Hg, ]~-f) = (g, Hl~' f)  

and U f = o  follows (g, H f)=o for every ,qC , hence H_ f= o. Then 
so ~h~t E l~ f = o. 

A bounded linear transformation K which is its own H-adjoint, so that  it 

satisfies the relation 

(9) ( H K f ,  g) = (HA Kg) 

for arbitrary at~ g E~, is called symmetrisable (to the left, and relative to H). 

Since (9) is equivalen~ with 
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( H K f ,  g) = (f, HKg) ,  

we may also say tha t  K is symmetr isable  whenever  H K  is self-adjoint.  1 In  the 

special case tha t  H = / ,  a symmetr isable  t r ans fo rma t ion  is therefore  the same 

as a self-~djoiut t ransformat ion .  

T h e o r e m  2. Let the bom~ded linear transformations K and ~ be H-adjoi~ts. 

Then K_h ~ a~d f t 'K  are symmetrisable, in other words, H K K a~d H K K are self- 

adjoinl. Furthermore the self-adjoint transformatio,s H K I~ a~d H I~ K are positive. 

Proof .  Using (8) several  ~ imes , .we  have, s  a rb i t r a ry  f, g:e~, 

( H K K f ,  g) = ( H / ~ f , / ~ g )  = (/~f, H I ' g )  = (f, H K Kg) = (Hf,  K~Sg) 
and 

( H I ~ K f ,  g) = (fi~Kf, Hg) = (Kf ,  H Kg) = ( H K f ,  Kg) = (Hf,  l~Kg),  

which shows tha t  K/~" and / t ' K  are symmetrisable.  

Fu r the rmore  

( H K I ~ f ,  f )  - - ( H ~ j ;  I~'f) >_ o 
and 

(H.I~ K f ,  f )  = (]~_ K f , H f )  = (K f ,  H A - f )  >-- o, 

because H is positive. 

Oorol lary .  Let the bou,JMed lib, ear tra,~sformation K possess the adjoi~d K* 

(K* is bouTzded by Lemma 3). Then If]Z* a~,d K* K are self-adjoint a~d positive. 

For  abbrevia t ion we shall write, whenever  K a n d / ~  are H-adjoints ,  E K  = T 

and E K =  5/'. Since by Lemma 1 we have H =  H E ,  it  follows from (8 ) tha t  

k 
( I I E  K f ,  9) = (H K f, g) = (H f, Rg)  = (f, H R g )  ~ (f, H E R g )  = (H f ,  E RO) 

o r  

(I o) ( t I T  f ,  g) -- (H f ,  5[" g), 

so t ha t  T and I '  also are H-adjoints .  We observe that ,  whenever  K is sym- 

metrisable,  the same is there fore  t rue  of T = E K .  As ~ consequence of Theo- 

rem 2 we have now 

Theo rem 3. Let the bou~Med li~tear transformations K a~d 1~ ~ be H-adjoi~ds, 

let T = E K al~d I ' :  E Is The~ H T ;[' a~d H ;[' T are positive, sdf-adjoi~d 

transformations. 

i Symmetr isable  t r ans fo rmat ions  K such tha t  both  H a n d / ~  are of integral  type with bounded 

kernels H(x, y) and K(.z, y) were introduced for the first t ime by J. MARTY, Valeurs  s ingulieres 

d 'une ~'~quation de Fredholm,  Comptes  Rendus do l 'Acad, des sc. (Paris) I5O (I9Io),  p. I499- - I502 .  ~ 
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Theorem 4. Let the bounded li ,  ear trau,formations K a~d 1~ be H-adjoi,~ts. 

I! H K f t l  ~ I! RII. tl H > .  ov (j) 

]1 HKXll <--tlgll" ]lYll '/-' �9 X ( . l ) .  

Proof. Taking g = H f  in (7), we obtain 

IIH/'II-" -< ( H / i f )  '/'' (H~" f ,  Ha?')"-'. 

(H~ f , H I )  <~ [] H~ fl[ �9 [! H f l  [ <- [[ H [[. I! H fll ~, 

II Hfl]-" -< [1 HI] ./..'. (H f, f)'/"" )t Hft] 

)IHII) <-ItHll l/=. (H f, f)'/= =/IHIF-' �9 N(f). 

But  

so tha t  

o r  

(13) 

Fur thermore  

II ~ K fit' ~ (HKf ,  H K f )  = (H f ,  R H K f )  <-- ]l H f/l" I[ R H K f l t  ~ tl R I1' IlHf]t" II HHTf[I 
o r  

so t ha t  by (I3) 
II H HVIJ ~ t1~1[" II Hfi l ,  

it HKfL[--< ItRII" l ln(> �9 N( f ) .  

This disposes of (ii).  The inequali ty (12) follows now also, since K and ] ~ m a y  

he interchanged.  

w 4. Introduction of a Factorspace. 

Two elements f and g E{R will be called H-orthoqonal when (H f ,  .q)= o; and 

the system Q of elements will be called H-orthouormal when, for 9~e Q, ,pc Q, 

we have 

I for ~ = ~ p ,  

(Hg~ '~P) :  o for 9~=flga. 

The elements f~, f~, . . . ,  f~ will be called H-independent when H ~  a~]~ : o 
i = 1  

implies % : a~ . . . . .  a~ = o. Evidently,  when f i ,  ~ ,  . . . ,  f~ are / / - independent ,  

they  are linearly independent.  
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Lemma 4. 
depe~den t. 

Proof. 

hence, since 

When the elements ~ . . . . .  q~,, are H-orthonormal, they are H-in- 

~t 

From H ~ ui qV = o follows, for  k = I . . . . .  n, 

_ ( I  for  i = k ,  
( H T i ' ~ ' ) - - / o  for  i / k ,  

L e m m a  5. Given the finite or enumerable set V of H-independent elements 

fi~(n = I, 2 . . . .  ), there exists an H-orthonormal set Q of eleme~ts qDn(n ~-- I, 2 , . . . )  

such that the linear mamfold ~2(V) of all finite linear combinations ~ u ~ f r  is. ideu- 
i 

tieal with the linear manifold ~(Q) of all finite linear combinations ~,fl~9~i. 
i 

Proof.  The H-o r thonorma l  sequence Q of elements  ~01, ~ , . . .  or iginates  

f rom the sequence fL , f2 ,  . . .  by a process, wholly similar to Schmidt 's  well-known 

or thogonal iza t ion  process, in the  fol lowing way: 

.q, = Z ,  ~,  = q , /N(g , ) ,  

u~ = L - ( H A ,  ~ )  ~ , ,  ~ = ~jJ.v(a.,), 

General ly,  if q~, . . . ,  ~0n-1 are a l ready defined, 

n - - 1  

gn -~- fn --  Z (Hfn,  qD,) ~f, 
i = 1  

~ , ,  = g , / ~ - ( . q , , ) .  

To just i fy this definit ion of r we have to show tha t  N ( g , ) / o .  Now, since 

]~ . . . .  , f~ are H- independent ,  so are F1, �9 �9 q~,,-1, f , ,  hence Hg,~ # o. This, how- 

ever, by Lemma 2, is equivalent  with _N(g , )#  o. I t  is easy to see tha t  the  se- 

quence Q is H-or thonormal .  Moreover,  ~ depends l inearly on f l , . . . , f , ~ ,  and 

.f,~ depends l inear ly  on q91 . . . .  , r hence ~2(V) = ~ (Q). 

We shall in t roduce  now a Hi lber t  space ~ with elements [ f ]  t ha t  are classes 

of e lements  of the space ~.  The  following definitions of [ f ]  are, by Lemma 2, 

equivalent  : 
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I ~ [ f ]  contains f and all elements g for which H g  = Hj', 

2 ~ [ f ]  contains f and all elements g for which N ( f - - g ) =  o. 

The class [ f ]  contains in par t icular  the element E l ,  since H E f =  H f  by 

Lemma i. The nullelass [o] consists of all elements h for which H h  = o, t ha t  

is, ali elements h E [g]. We shall write f--= g (rood [g]), or shortly f=--g,  when- 

ever f - - g  E [~], in other words, whenever [ f ]  = [q]. 

Fur thermore  we define 

I f ]  + [g] = I f +  g], 

a [ f l  = [a f ]  for  arbi t rary complex a, 

([f],  [g]) = (H f, g); 

hence 

II [ f ]  [I = ([f], [f]//" = (Hi; f)'/" = N( f ) .  

No contradict ion can arise from these definitions, since ~ / ~ J ;  and g ~ g, imply 

f +  g - ~ f l  + 91, a f=- -a f l  , and 

(H f ,  g)-= (HA,  g) = (.f~, Hg) = (A, H gj) -= (H f~, g,). 

Final ly o ~---I] [ f ]  I[ = N ( f )  if and only if H f =  o, t ha t  is, if and only if [ f ]  =- [o]. 

Wi th  these definitions the spaee ~ is therefore a t t i lber t  space. I t  is evidently 

some factorspaee of 91 relative to [~], so tha t  we may write ~ = 91/[s We observe 

that ,  even in the ease tha t  the space 91 is complete, the space ~ is generally 

not  complete. I f  the t rans format ion  H is definite, t ha t  is, if H f -= o only for 

f =  o, there is a one-to-one correspondence between the elements fE91 and the 

elements [ f ] e ~ .  In  the special case tha t  H = I,  the spaces 91 and ~ may be 

regarded as identical. 

Lemma 6. The system {f} in the space 91 is H-orthonormal i f  and only i f  

the system {[f]} in the space ~ is orthonormal. 

Proof. (H f ,  g) -= o is equivalent with ([f], [g]) -= o, and (H f, f )  ~ I is equi- 

valent with ]1 [AII ~ = I. 

Lemma 7. The elements f ~ , . . . , f , ,  i~ the space 91 are H-independent i f  and 

only i f  the elements [fl] ,  - . . ,  [f-] in the space S are linearly independent. 

2 Proof. H ~ _ j a i A = o  is equivalent with r [ o ] ;  if therefore one of 
i ~ l  i = l  

these relations implies a 1 . . . . .  a,~ = o, the same is t rue  of the other. 
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Lemma 8. Let vi(i = I , . . . ,  u) be an H-orthonormal system in 92, and let the 

unitary space, determi~wd by this system, be called ~ , .  The~, ~f the linear trans- 

.formatio, U, defiJwd in 92~ (that is, f E  3 ,  implies UfE  9],), has the property that 

the system U vi (i =- I . . . . .  ~J~) is' also H-orthonormal, there exists a~ H-ortho~wrmal 

~r 99i(i-~ I , . . . ,  ~) i~ 92~ such that 

c = [ I = ( i  = . . . ,  

Proof. We observe first that  H f =  o for an element fE92, implies f =  o. 

This follows from the fact that  every f E  92,~ can be written in the form f =  Z ctivi, 
i = l  

" 2 so that  H f ~ - o  implies ~_~aiHvi=o or a i ( t t v i , @ - ~ o  ( j ~ - x  . . . .  ,,,) or 

~j = o( j  = I , . . . ,  n). Introducing the unitary space ~ ,  corresponding" wi th  92, 

in the same way as the t t i lbert  space ~ corresponds with the whole space ~ll, 

there exists therefore a one-to-one correspondence between the elements [f]  of 

~ and the elements f of 92~. Furthermore we define the linear transformation 

[U] in ~,~ by [ U ] [ J ] = [ U f ] .  Then [U] transforms the orthonormal system 

[v,] (i = I . . . .  , /,) into the or~honormal system [Uvd ( i - - i , . . . ,  ,,), so that, by 

a Well-known theorem, [U] is a unitary transformation in ~,,, that  is [U] [U]*=[I] ,  

where [1] is the identical transformation in ~n. i t  follows, using another well- 

known theorem on unitary transformations in unitary spaces, that  there exists 

an orthonormal system [~o~] (i = I , . . . ,  n) in ~,~ such that  

[ U ]  [~0i] ~--- , i [ ~ 9 i ] ,  I ~ i l  = i ( i  = I ,  . . . ,  n ) ,  

so that  in the original space 92,~ there'exists an H-orthonormal system f~ (i = I , . . . ,  n) 

such that  

w 5. Singular Values of H-adjoints. 

The linear transformation K, defined for all fE~{, is said to be completely 

continuous when every bounded, infinite set of elements of 92 contains a sequence 

fn such that  the sequence Kfn converges to an element g E92. In the case that  

92 is complete, it is sufficient to require tha t  the sequence I f f ,  converges, since 

in this case the l imi te lement  gE92 exists by hypothesis. I t  is not difficult to 

prove that  every completely continuous linear transfmmation is bounded. 
I 5 -  642136 Acta mathematica. 83 
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T h e o r e m  5. Let  the bouJ~ded linear transformations K and 1~ be H-adjoig, ts; 

let 1 ' ~ - E  K arid T =Rig[ .  Supposimg ~ow that T is completely continuous, and 

that P =  H K  # O, there exist two elements u and v, both r o, and a positive 

number ). such that 

T u = ~ v ,  ~ P v ~ u .  

The number ~ will ce called a singular value of T and ~[,.1 

Proof.  ~ On account  of P # 0 there  is an element  f0 # o  such t h a t  Pro # o. 

This  implies Hfo  ~ o (since from H i 0  = o would fotiow, by Theorem I, ~ K f o  = o, 

hence P /0  = H K J o  = H E K f o  = o), so tha t  also N(f0)  # o. Wr i t ing  .~ = f o / ~ ' ( f 0 )  

and f l  : T) ;0 ,  we find 

H f t  = H Tfo : H E K f o  : H K  fo = P ~  ~ o, 

The sequences of elements fn and ]= (n : o, I, 2 , . . . )  are now hence N(J ; )  # o. 

defined by 

/ .  = f j ~v (/.), 

.f.~+l = Tfi.,~, /~.+~ = t / Z , + 1  

( n = O ,  I ,  2, . . . ) .  

To just i fy this definition, we have to prove tha t  N ( f i , ) ~  o for  every value of,n. 

This, however,  is a consequence  of 5T(fo) ~ o, N ( f i )  ~ o, 

( H / ~ . ,  J;.+~) -< X ( ~ . )  �9 X(.f~..+~) = X(~,~+~)  (.. = o, ~, 2, . . . )  

and 

N (f~.) = ( H  f2 . ,  f,~,,) "~' = : ( ~  ~ J21,--1, 72 . )  --- (~-/-A n- - l ,  ~P?2n) = 

(/-/.)2~,--1, f , . + l )  ~ ~ ; V ( ~ n - 1 )  " N(,f2//.q-1) = N ( f 2 n + l )  ( ,  ~-- I ,  2, . .). 

T h e  sequence of numbers  N (J<;i) (n = , I ,  2, . ~ .}.is therefore  non-descerrding. ~ Fur ther -  

more we observe t h a t  N ( f . ) =  ( H f . - z ,  j ;+ l )  implies 

(I4) N(J~_j ) -  N ( f , ) =  (Hf~-~,./;+~) (n = t, 2 . . . .  ), 

and, since on account  of this re la t ion ( H f , , - ~ , f , + , ) - - ( f ~ - ~ ,  Hfn+l) is real, also 

(I5) N( f i , _ : ) .  N ( f , ~ ) =  ( t l fn+, , f=- l )  (9, =- I, 2 , . . . ) .  

1 Some a u t h o r s  use  t he  n a m e  of s ingu la r  va lue  for the  reciprocal  va lue  of ).. 
P a r t  of t he  idea of t h i s  proof  is der ived from the  proof  t h a t  an in t eg ra l  equa t ion  wi th  a 

n o n - v a n i s h i n g  H e r m i t i a n  kerne l  has  a t  leas t  one cha rac te r i s t i c  va lue  # o, as g iven  in O. D. KELLOGG, 
On the  ex is tence  and  closure of sets  of charac te r i s t i c  funct ions ,  Math .  A n n a l e n  86 (I922), p. I 4 - - I 7 .  
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We shall prove now tha t  the sequence f_,n+l = Tf2~ contains a converging 

subsequence. For  this purpose we observe first tha t  the sequence H f n  is bounded 

since, on account  of Theorem 4, 

1HHTf~,~_I]I <--[[]'[[. IIHV/''. N(f;~-,)  = II i'Ll- iLglt '/2 f o r .  odd, 
IIH)(;I]= [[[HTfi~_,I[--<[[T[[ [IgI[ '/'" N ( J ~ - , ) = I I T I { .  IIHI{ '/~ for n even. 

This enables us to silow tha t  the assumption tha t  lim li .ll= 0o leads to a con- 

tradiction. Indeed, supposing tha t  lira (l~,ll = o o  there is an infinite number  of 

values of the index 2n  for which IlY~-+211 ~ I]Jr~!l, so tha t  for a certain sub- 

sequence • (j = 2 nj, 2 % , . . . )  we have IIf~+~l[ >- I[ZII. Since T is completely con- 

t inuous and t[J) IlJJllll ,, the sequence Tjfj/N)~I I =J~+~/l/~ll contains a subsequence 

fi:+l/ltfkll converging to an element f .  We have then 

H f =  lira Hfk+~/lifk II = o 

on account of lim IIf[ll = oo and the boundedness of Hf~.+l. Fur thermore  

1 ' f =  lim ,7, -. ,~, 2 fk+~/Nil" tl = lira 2V (j'k.+~) �9 I fk-t-1/lI?~ II = lim N (fk+l)" fk+2/llf~" I[. 

But,  in virtue of N(f~+~) >-- N(fk+l)  --> N(f~) and I~'+~}1 --> }1)~*}1, we find 

-LV(y~'+I) "fk+2/I[~.ll [ =  N(fk+O N(~+2)"  

so tha t  
i ' f  = lira o. 

This, however, is in contradict ion with H f =  o, since, by Theorem I, H f =  o 
implies T f =  Et~f--=- o. The relat ion lim 119q,!l = oo being" therefore impossible, 

we may conclude tha t  the sequence fi2,, contains a bounded subsequence f t .  

Then, on account  of the complete cont inui ty  of T, the sequence fi+~ = Tfi/ con- 

tains a subsequence f i  converging to an element te~t .  From 

N ~ ( f t )=  (Hf i ,  .l}) <- II HfilI" Itfi!l -< I] Hll.  IL~ I1" 

it  follows fur ther  tha t  the sequence of numbers 37(fz) is bounded, so that ,  since 

_N(fi) is a subsequence of the nondescend ing  sequence N(fn)  (n = I, 2 . . . .  ), the 

whole sequence N(fn) is also bounded. Consequently ;~ = lira-hr(fn) exists, and 

> o. Then lira f i  = t/)., so t ha t  

I i imf i+ ,  = lira i ' f i  = :l't/X = u, 
(I6) ( l i m f i + 2  = lira T ~ + i  = F u l l  = v.  
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l ira (H)~,  ji+~) i im (Hj i+2 ,  fi) = l im N ( f i ) .  N(ft+~)---- 2 ~, 

�9 7 o  N e ( t -  v) = h m  ~ - (.)q --d~+2) = 

22 22 )'~ lira N = 2  + = o ,  

so t h a t  also H ( t - - v ) - - - - o  by L e m m a  2, wh ich  impl ies ,  on a c c o u n t  of  T h e o r e m  I, 

~ [ ' ( t - - v ) = o  or T t = T v .  Th i s  b e i n g  so, we in fe r  f r o m  (I6) t h a t  

T u : 2 v ,  Y'v = 2u.  

B o t h  u a n d  v a re  ~ o  on a c c o u n t  of  N ( u ) = l i m N ( f i + ~ ) = 3 . > o  a n d  N ( v ) =  

lira N(2~+~) 3. > o. Th i s  c o m p l e t e s  t he  p roo f .  

T h e o r e m  6. Let  the bounded linear transformations K and ]~ be H-adjoints, 

and let I" = E K be completely continuous and P = t I  K ~ O. Supposing now, more- 

over, that any f e ~ ,  satisfying H f =  o, sati.sfies also K f =  ] ~ f =  o, the trans- 

formatio~s K and t~ have a si~gular value 3. > o ;  in other words, there exist two 

elements y and z, both # o, and a positive numbe{ 2 such that 

K y : 2 z ,  l [ - z : 3 . y .  

Proo f .  S ince  by h y p o t h e s i s  K h = _h~ h =-o for  all  h e [s (we reca l l  t h a t  [s 

is t he  se t  of  al l  e l e m e n t s  h s a t i s f y i n g  H h  =-o), we h a v e  

K ( [ -  J )f= o 

f o r  all  f e ~ ,  or  K - ~ K E ,  I ~ =  h~E. F u r t h e r m o r e ,  by the  p r ev ious  t h e o r e m ,  t h e r e  

ex is t  two  e l e m e n t s  u a n d  V, b o t h  # o, a n d  a pos i t i ve  n u m b e r  3. such  t h a t  

T u  3.v, 1"v = 3.u. 

T h e n  

K f ' v  = K E  t~v  = K~i 'v  = Z K u ,  

~ ' K u  = I ~ E  K u  = t~ T u  = Z f ' v .  

Def in ing  y = 2 - I  I~'v, z = ~ - i  K u ,  we have  t h e r e f o r e  

K y  -= 2 z, I~z  =- 3. y. 

F r o m  u # o fo l lows  E /~?v  --~ ~ ' v  = 2u  ~ o, h e n c e / ~ v  # o a r  y = 3 . -1 /~v  ~ o. T h e n  

also z # o, s ince z - -  o would  i m p l y  y = 2 -~ -K~z ---- o. 
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R e m a r k .  W e  observe t ha t  

E y  = ~ - I  E K v  = ~ - i  ~['v-= u, 

E Z : ~ - i  E K u : ) - 1  1 'u  = V. 
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Under  the san~e assumptio:~s as i~ the preceding  theorem, the rela- 

(z ~ o). 

)~,y and z ~ o ,  we have,  wr i t ing  

l ' u  = E K u - - -  E K E y  = E K y  = 2 E z  = 2~,, 

l '  v = . E t ~  V = E f (  E z  = E l { z  = iEy = s  

u ~ o ,  since K ~ t = K E y = K y = Z z ~ o ,  

v ~ o, since l ~ v  = I { E z  = K z  = Z y  ~ o. 

W i t h  every pa i r  of e lements  y , z ~  o, sa t i s fy ing (I7), cor responds  the re fo re  the 

pa i r  of e lements  u = E y ,  v = E z ,  bo th  ~ o, sa t i s fy ing  (I8). W e  shall  show now 

t h a t  wi th  different  pairs  y~, z 1 and  y2, z~, sa t i s fy ing  (I7), canno t  cor respond the  

same pair  u, v, sa t i s fy ing  (I 8). For  this purpose  we suppose t h a t  2 ~ o, yl, z~, y~, z . ,~ o, 

K y l  = ~ z i ,  g,Ei = ~Yl and K y o  = 2z,.,, 27[z.2 = ).Y2, 

Y~ ~ Y2, .E Yl = JE y~. 

Then z I ~ z~ (since zl = z o would imply  )Ly 1 = -Kz~ = / { z ~  = ~Y-2 or y~ = Y2), hence 

K ( y l  - y~) = z (z ,  - z~) ~ o .  " 

B u t  f rom E y  1 = - E y 2  and K =  K E  follows 

K ( y l  - -  y~)---- K E ( y l  - -  y,~) = K ( E y ,  - -  Ey2 )  = o, 

so t h a t  we ar r ive  a t  a contradict ion.  

I t  r emains  to prove  that ,  if  u, v ~ o sat isfy (~8), there  exist  e lements  y, z ~ o, 

sa t i s fy ing  (I7) , such t h a t  E y  = u ,  ~ z  = v. As we have  seen in the preceding  

theorem,  the e lements  y = ~ -1 / s  z = ) -1  K u  fulfil these  condit ions.  

betwee ,  al l  p a i r s  o f  elements y, z (both ~ o) sali.~fyiug 

( I 7 )  K y = ~ z ,  l ~ z = Z y  

a~d all p a i r s  o f  eleme~#s u, v (both ~ o) sa t i s~ f i~g  

( I 8 )  l 'u=) .r ,  "i'~,=iu 

Proof .  W h e n e v e r  K y - -  Zz ,  h~z = Xy;  

u = E y ,  v = E z ,  

(z ~ o), 

Theorem 7. 

tioJ~s u = E y ,  v = E z  and y = ) - I  l~v ,  z = ) - 1 K u  defit~e a one-to-o~e correspomteJ~ce 
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w 6. Characteristic Values of Normalisable Transformations.  

Theorem 8. Whe~ the bou~ded liJ~ear tra~sfo~'matio~s K a~2d h~ are H-adjoi~ts, 
then H K I~ r =  H T :[' and H I~ K - ~  H ;[' T. 

Proof. From H =  H E  follows H K  = H E K  = H T  and HI~'-~ H E h  ~ = H;[', 

hence 

( H K K f ,  g) ( H T I ~ f ,  g) = (HKJ;  1~g) ~- (It~['f, i 'g) ~-(HTIf,~ g) 

for arbitrary f ,  gE~,  so that  H K I x ~ - ~ H T i  '. The relation H I ~ K ~ - H ~ [ ' T  is 

proved in a similar way. 

Definition. Let the bounded linear transfornTatioJ~s K a~d I~ be H-adjoiuts. 

Then K will be called normalisable (relative to H) when H K [ ~ : H f s  

I t  follows from Theorem 8 that  we may also say that  K is normalisable 

whenever H T:[' = H;[' T, and this shows that, even though the H-adjoint /~  of 

K may not be uniquely determined, our definition is nevertheless independent 

of the particular choice of /~. We observe that, in the special case that  H =  I, 

we have /~-----K*; in this case, therefore, K is normalisable when KK*~---K* K, 

which shows that  a bounded linear transformation which is normalisable relative 

to I is simply a bounded normal transformation. 

Theorem 9. The bounded li~ear transfor~zation K is ~ormalisable ~f and only 

i f  T 1 ' :  ~'T. 

Proof. I f  T:T--~ T T, K is evidently normalisable. Conversely, if K is nor- 

malisable, we have H(T~[ '~  T T ) f - ~  o or, by the definition of E, E ( T i ' - - i ' T ) f = =  

-~o for every f E ~ .  But, since / ~ = E ,  we have . E T : E ~ K - ~ E K - ~ T  and 

E T - ~  E ~ R =  E I ~ =  2. Hence (T~['-- T T ) f =  o for every f e ~  or I ' 2  : TT.  

I f  K is a bounded linear transformation in ~, and K f ~ -  ~ f  for an element 

f ~  o, this element is called a characteristic element of K, belonging to the 

characteristic value ~.1 The set of all characteristic elements, belonging to the 

same characteristic value ~; is a closed linear manifold in ~, and the dimension 

(that is, the maximal number of linearly independent elements) of this closed 

linear manifold is called the multiplicity of the characteristic value ~. We shall 

assume the following lemma to be known: 

1 Some au thors  call )~ an eigenvalue of K, and reserve the  name of characterist ic  value for 

the  reciprocal value of ),. 
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L e m m a  9. The number of characteristic values of a completely co~tiHuous liltear 

traJl,~brmatiolt is fildte or e~mmerable, a~d in this latter case the characteristic values 

tend to o. The multiplici 0 of every characteristic value ~ o is .finite. 

L e m m a  10. Let the li~ear tran.~formatio~ A be completely conti'nuous, and 

H f -~ o imply A f =  o. Supposing now that ~ ~ o is a characteristic value of A, 

there exist a positive iJ~teger ~ a~d an H-orthouormal system qv~ . . . .  , qvn such that 

the ,vet of all characteristic elements of A, belonging to the characteristic value A, 

is ide~tical with the set of all liqueur combi~atio~s ~aiqDi. 
i ~ 1  

Proof.  By Lemma  9 the mulipl ici ty of the character is t ic  value )~ is a finite 

in teger  ~ > I. There  exist  there fore  n l inearly independen t  e lements  7.1, �9 . . ,  Z,~ 

such tha t  the set of all character is t ic  elements of A, belonging to the charac- 

ter is t ic  value )~, is ident ical  with the set of all e lements  ~ a~z~. The  e lements  

Z,, . - . ,  Z~ are H: independen t  since, by hypothesis ,  H ~ ,  a~Z~'---= o implies 
i = l  

A Z a i Z r  or ~ Z a i Z i : O ,  
i ~ 1  i ~ 1  

hence a~ . . . . .  a , ~ : o  on account  of L ~ o and the  l inear  independence of 

Z ~ , . . . ,  Z,,. The existence of an H-o r thonorma l  system ~ f l , . . . ,  ~,, wi th  the re- 

quired proper ty  follows the re fore  f rom Lem m a  5. 

Now we come to one of our  main theorems:  

T h e o r e m  10. Let the bounded li~ear b'ansformation K be normalisable, I ' =  E K 

be completely conti~uous, and P ~ H K ~ O. Then T has at least o~e characteristic 

value ~i ~ o with characteristic element q~l. Moreover, ~' = E I~ has the characteristic 

value ~ with the same characteristic element qh. 

Proof.  By Theorem 5 there  exist  a number  2 > o and elements  u, v ~  o 

such tha t  

T u - = ~ v ,  " i 'v=Zu.  

Then TY['v ~ ~ T u  ~ ~ v ,  which shows tha~ v is a character is t ic  e lement  of T P '  

with character is t ic  value 2~. The t r ans fo rma t ion  T P' is completely cont inuous  

(T is completely cont inuous  and ~/' is bounded),  and H f - ~  o implies T Y~f= o 

(H f =  o implies 1 ' f - - - -o  by Theorem ~, hence cer ta inly  T ] ' f ~ - o ) .  The set of 
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all elements v, sat isfying TY['v ~ ~ v ,  is therefore ,  by Lem m a  Io ,  ident ical  with 

the  set ~,, of all l inear  combinat ions  ~a~v, . ,  where , > I, and the system 

v~ . . . .  , vn is H-or thonormal .  

F rom T : I ' - - - - T T  and T]'v~--=-)Ovi ( i =  I , . . . , ~ )  follows 

T ~ ' (Z-~  T~.~) = z -~ T : ?  Tv~ = z -~  T ( T  i ' , ,~) = ~ ( z - ,  Tv~) ,  

which shows tha t  the elements  E-~Tv~ ( i ~ - I , . . . ,  ~) are also character is t ic  

elements  of " '~' T I ,  be longing  to the character is t ic  value 4 "2. The t r ans fo rmat ion  

U = E-1 T t ransforms,  therefore ,  every element  of ~,, into an e lement  of ~n- 

Fu r the rmore  

(H Vv~, Uv/) ~-- ~-~ ( H T c i ;  T~:~) ~- )_o ( H I '  1'v:, v:) =- g -~ ( H T I ' v ~ ,  ,.::) =- (Hv, ,  vj), 

so tha t  the  system Uv~ ( i =  I . . . .  , n) is H-or thonormal .  Then,  by Lem m a  8, 

there  exists an H-0r thonormal  system 9 ~ , . . . ,  9 ,  in ~,~such tha t  

hence, since U = Z -1 T, 

U q ~ i = g ~ ' 9 ; ,  ] : t l[  = I 

l ' ~ i  = ; t ~ i ,  JZ:] = ;t 

(i = :, . . . ,  ~), 

( i  = I . . . .  , n) .  

T h i s  shows tha t  T has at  least  one character is t ic  value g~ ~ o with character is t ic  

e lement  ~01. 

To prove that  T9~i = ~i9; we observe that ,  since ~iegL, ,  we have 

l '  T9~i -- T ]~qDi --  ~s cfl = L ~:gi, 

so t ha t  f rom ;tiq~i= T g i  follows 

Hence  2' q~ = ~ 9~i. 

Considering the case tha t  H =  I, we obtain the fol lowing 

Corol la ry .  Let  the completely continuous linear transformation K # 0 be normal. 

Then K has at least o~le characteristic value ~ ~ o with characteristic eleme~t qp~. 

Moreover, K* has the characteristic value ~ w i t h  the same characteristic element 9~. 

Theo rem 11: Let  the bom~ded linear transformation K be symmetrisable, 

T = E K be completely continuous, and P -~ H K ~ O. Then T has at least one 

real characteristic value ~ # o. 
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Proof. Since now T---- T, there exist, by the preceding theorem, a complex 

number  ~1 # o and an element 9~1 ~ 0 Sa t i s fy ing  

T ~ I  = ~1 ~0 !, T ~  = I '91 = ~1 ~ .  

This shows tha t  Zj ~-~L, so tha t  ~ is real. 

Considering again the case tha t  H = / ,  we obtain the following: 

Corollary.  I f  the completely continuous linear tran.~fornmtion K # 0 is self- 

adjoint, then K has at least o~e characteristic value ~ # o. 

Theorem 12. Let the bounded linear transjbrmation K be normalisable, T = E K 

be completely continuous , and P = H K  # O. Supposing now, moreover, that any 

f e ~, satL~fyiug H f =  o, satisfies also K f =  o, the tra~,,~formation K has at lea.~.t 

one characteristic value ~ # o. 

Proof. By Theorem io the ~ransformation T = E K  has at  least one charac- 

teristic value ).~ # o with characterist ic element ~ :  

Then, since now K :  K E  by our addit ional  hypothesis  (compare the proof of 

Theorem 6), we have 

K K qh = K-E  K qh ~ K T 91 ~ ;tl K q~j , 

so t h a t  .Wl--~ ~ 7 1 K g t  satisfies 

K ~Vl = ). ~Pl. 

Theorem 13. Under the same assun~ptions as in tke preceding tkeorem, the 

relations 

9 = E~p, ~p = Z -1Kgv 

define a one-to-one correspondence between all elements. ~ # o satisfqing 

and all elements 9~ # o satisfying 

Proof. 

r ~ = z 9  (z ~ o). 

The proof of this theorem is similar to tha t  of Theorem 7. 
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w 7. Some Propert ies  of T~ ' .  

Theorem 14. Zf the bounded linear ~ransjbrmation A is symmetrisable (that is, 

i f  H A  is self-adjoint), and ~f H f = o implies A f =  o, then the characteristic values 

of A are veal, and characteristic elements, belonging to different characteristic values, 

are H-orthogonal. If ,  moreover, H A  is positive, the characteristic values of A are 

no~-negative. 

Proof. Let f ~ o  and A f = 2 f .  I f  ( H i ; / ) = o ,  so that  by Lemma 2 also 

H f ~  o, we have by hypothesis A f =  o or Z f =  o. Hence, since f #  o, 2 = o .  

If  (Ha': f)>4_ o, we find 

Z ( / t  f ,  .f) = (H 2f, f )  = (H A,r f )  = (.L H A f )  = (f, H). f )  = 1 (H f,  f )  

or 2 = ~, which shows that  Z is real. 

Let now Z r  f r  g # o ,  A f = Z f a n d  A g = f e g .  Then 

2 (H f ,  g) = (HA f, g) = (j; H A  g) -- p (f, Hg) = # (H f ,  g) 

or (Z - /~ ) (Hf ,  g ) =  o, from which follows, since ~--/~ r o, that  (H f,  g ) =  o. 

Finally, if H A  is positive, f ~ o, A f =  Z f ,  we have Z-~o  for ( H i : f ) - - o  

as already proved, and, for (H f ,  f ) >  o, 

). (H f ,  f )  = (HZ f ,  f )  = (HA2;  f )  >-- o, 

hence Z >-- o. This shows that  now the characteristic values of A are non-negative. 

Supposing now again that  the bounded linear transformations K and/[" are 

H-adjoints, that  /) = H K  yg 0 and T = E K  is completely continuous, the results 

of the last theorem can be applied to the completely continuous symmetrisable 

transformation T~', since H f =  o implies ; /~f= o (Theorem I), hence certainly 

T h i ' f=  o, and H T;[' is positive (Theorem 3). The characteristic values of TT" 

being therefore non-negative, we shall denote an arbitrary one of them by ]Z~[. 

I t  is evident that  T I '  has at least one characteristic value ~ o ,  since, by 

Theorem 5, there exist elements u and v ~ o and a number 2 ~ o such that  

T u ~ Z v ,  i ' v = Z u ,  hence iT:I 'v=) .Tu--- -Z ~v. On account of L e m m a 9 i t i s p o s -  

sible now to range the characteristic values ~ o into a sequence [Zi[" (i = I, 2 . . . .  ) 

such that  every one of them occurs in this sequence as many times as denoted 

by its multiplicity, while, moreover, I Za ] --> ] Z~ ] >---.... By Lemma ~o it is possible 

then to choose in the unitary space of all characteristic elements belonging to 
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a certain characteristic value I;~ I ~ ~ o with multiplici ty n an H-or thonormal  system 

consisting of n elements such tha t  this system determines this uni tary  space. 

Doing this  for all characterist ic values ~ o, we may range the elements of all 

these H-orthonormal  systems into a sequence v~ (i = ~, 2 . . . .  ) such tha t  for every 

value of i the element vi belongs to the characteristic value I~;I ~, hence 

9) T = I I 

Evidently the whole sequence vi is also H-or thonormal ,  since for I X, , I=  I ;~, l the 

relation (Hv,~, v~)= o follows from our definition of the sequence v~, and for 

I)~ I ~ I)~,~1 this relat ion follows f rom the H-orthogonal i ty  of characterist ic elements 

belonging to different characterist ic values. We observe tha t  as a result  of these 

remarks every characterist ic element of T I '  with characterist ic value [)C1~r o 

is a l inear combina t ion  of those elements vj. f rom the sequence vi for which 

Wr i t ing  now 1 ' v i :  I).~lui, so tha t  i u ~ . =  l;~.l ~,~ by ('9), the sequence u, is 

also H-orthonormal ,  as follows from 

(H~,~, ~.,~) = I~. ~ I -~ (H i '  ~'~, i '  ~j) = I X~ ~j I -~ (H T i '  v,, ~) = 

[ I for i -~ j ,  

for i / j .  

w 8. Jk Maximum-property of the Characteristic Values of  a Normalisable 
Transformation. 

To prepare the way for the proof of an Expansion Theorem for normalisable 

t ransformations,  which will be given in the next paragraph,  we shall prove in 

the present  paragraph tha t  the characterist ic values of the normalisable trans- 

formations T and K, considered in Theorems Io and I2, possess a certain 

maximum-property.  

We  suppose therefore tha t  the bounded linear t ransformat ion K is nor- 

malisable, tha t  P =  H K  ~ 0, and T - =  E K  is completely continuous.  Then it 

follows from Theorem IO tha t  the sequences v~ and I~il, sat isfying 

T v, = I h l , 

which we introduced in the preceding paragraph,  may be identified now with 

the H-or thonormal  sequence ~ i  of characterist ic  elements of T and with the 

absolute values of the characterist ic values )~i of T, sat isfying 
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T h e o r e m  15. i o. 12,, I = max  N ( K f ) / N ( f )  for all elemeuts f satisfying the 

conditions N ( f )  # o and (1-If, 9~) . . . . .  (H f ,  9~,<-~) = o. ]<~or f -~ 99n the n~aximum 
is attained. 

2 ~ N ( K f ) = o  i f  and only i f  (H f, 9Di)= o for every value of i. 

In  the special case that H f =  o implies K f ~ - o ,  the characteristic elemeJfs 

q9 of  T may be replaced in both parts of  the theorem by the characteristic elements 
~p of K, corresponding with the elements qD by Theorem L?. 

P r o o f .  i o. Le t  N ( f )  # o and (H f ,  99~) . . . . .  (H f ,  9n- , )  = o. I f  N ( K  f ) -~o ,  

the  inequal i ty  N ( K f ) / N ( f ) < _  I~1 is cer ta in ly  s~tisfied; if, however ,  N ( Z f ) #  o, 

we have  P f =  H K f e a  o, ~nd we define the sequences ~ and j~.(k ~ o ,  s, 2 , . . . )  
in the  same way us in Theorem 5 by 

to=f, fUs (fD, 

Ak+l = T ~ k ,  ~2k-F2 : -TAk iml 

(~ ----0, I, 2 , . . . ) .  

W e  observe first t h a t  (Hfk,  q~l) . . . . .  (Hfk, ~lgn--1)~ O for every value of kl 

This  is p roved  by induct ion;  the  re la t ions  hold for  k = o  by hypothesis ,  and  

suppos ing  t h e m  to be t rue  fo r  k - -  I (k odd), we find 

(H f~., 9o~) = (H T ~ - I ,  99i) = ( H ~ - I ,  ;['99,.) -~ )~i(H fk- l ,  99i)/ N (fk-1) = o 

for  i :  I, . . . ,  n - -  I. The  proof  for  even k is s imi lar .  In  the  same way as in 

Theorem 5 we find now e lements  u, v ~ o and a posi t ive n u m b e r  2 such t h a t  

T u  : 2v, 1'v = s where v = limJ~+2 (l = k~, k~ . . . .  ). This  implies 

q l) . . . . .  (S-Sv, = o .  

N o w ,  since T~['v ~ ~ v, the  e lement  v is a l inear  combinat ion  of those  e lements  

q~j f rom ~he sequence ~01 for  which [~j] ~ ).; the r e l a t ions  (20) show tha t  q0~, . . . ,  99n-~ 

are not  a m o n g  ' these  e lements ;  hence ~--< ];t,,I. Final ly,  the  non-descending se- 

quence of numbers  N(fk)  (k ~- I, 2 , . . . )  hav ing  the  l imi t  Z, we conclude t h a t  

N ( K  f ) /  N ( f )  ~ 2r fo ) = N ( T ~ ) =  N(J~) <_ Z <_ [L,[. 

For  f ~  ~0,~ the  m a x i m u m v a l u e  [Z,,] is a t t a ined  on account  of 
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2 ~ We  suppose first t ha t  N ( K f )  = o. Then,  by L e m m a  2, H K f =  H T f =  o, 

so tha t  
(H f, 90,) = (H.f, ~.7~ ]+ q~,) = XT-* (//2'; ]~q~,) = )o~-~ (H Tj;  9D~) = o 

for  every value of i. 

Le t  now conversely (H f ,  e l , )=  o for every value of i. I f  _ N ( f ) =  o, then,  

by Theorem 4, H K f =  o or N ( K f )  = 0; we shall assume the re fo re  tha t  N ( f ) ~  o. 

Supposing first tha t  the number  of character is t ic  values ~i is infinite, so tha t  

lira 2~i = o, the re la t ions (H  f ,  go,-) ~ o imply, by what  we have proved in I ~ 

N ( K f )  <--Iz, I re(f) (7= e,...); 

hence N ( K f ) =  o. I f  the number  N of character is t ic  values 2i is finite, t h e  

existence of an e lement  f such tha t  N ( K f )  ~ o and ( / t  f ,  q0~) ----- o for  i = I , . . . ,  N 

implies, as the proof  of i ~ shows, the existence of a character is t ic  e lement  v 

of T ] '  with character is t ic  value ~ ~ o, and with the proper ty  tha t  (Hv,  9oi ) = o 

for  i = I, . . . ,  N. This, however,  is impossible since v must  be a l inear  combina- 

t ion of some of the elements  ~,. 

In  the special case tha t  H f =  o implies K f =  o, the  elements ~ may be 

replaced in both  parts  of the theorem by the  corresponding elements ~p, since t h e n  

(H f ,  W) = (Hf,  90,), the system *p, is H-or thonormat ,  and K~p,, = KE~p,, = Kqo,,. 

Remark. Since 

37 "a (K f )  = ( H K  f ,  K f ) =  (H f ,  K K  f )  = (f, H K K  f ) =  

= (f, H K R f )  = (Hf ,  K R f )  = ( H R f ,  R f) = N ' ( R f )  

we may replace _N(Kf) by N ( K f )  in the last  theorem.  

w O. Expansion Theorem for Normalisable Transformations. 

Under  the same assumptions about  K and T as in the preceding paragraph,  

we shall prove now the fol lowing 

Theorem 16 (Expansion Theorem). I f  ai = ( H  f,  9o~) (i = i, z , . . . )  Jar an 

arbitrary eleme,t f E ~, then 

lira N K f  
l l +  c~ t : l  n +  oo i : l  i = l  

(2i) 

and 

(=) - -  119 

n + 0 O  i = 1  n ~  i = 1  i = 1  

~ 0 .  
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Furthermore 
- 2 (HKf,,f) = F,Z,I~,I ~, (HRf, f)= ~ a , l ~ , l .  

In the special case that H f =  o implies K f =  o, the elements qg, may be re- 
placed by the eorrespo~ding eleme~ffs g)~, a~cl then a~ = (Hat; qD,.)= (H f ,  ga~). 

Proof.  W r i t i n g  r,,+~ = f - -  ~ a< 99~, we have (Hr~+~, {T~) . . . . .  (Hrn+l ,  ~0n)~---O, 
i = 1  

hence ( H r , + l ,  ~ aiqPi)~--O, f rom which follows immediate ly  
i = 1  

m ~ 
_n 

~'(s)  = (-s, J ) =  ( , ~  o,~,, >:o,~,) + (,.,,+,, ,.,,+,/= ~'" (2: o,~,)+ ~(,.,,+,), 
i = 1  i = l  i=:1 

so t h a t  N(r~+,) --< N(f ) .  

Supposing now tha t  the number  of character is t ic  values A/ is infinite, and 

tha t  N ( r ~ + i ) ~  o, we find in vir tue of Theorem I5, 1 ~ since ( H r , + l ,  ~ ) -  --  

= (Hrs,+l, ~) = o, tha t  

(23) iV(Krn+,)  <-- IZ~+ll N(r,,+,) ~ I~',,+, I N ( f ) .  

I f  _N(r~+,) = o, then  also HKrn+~ = o (Theorem 4) or N(Kr,,+~) = o, so tha t  (23) 

is t rue  in this case as well. Hence  

N ( /<s-  5~ ~.,o,~,) = N ( , < f -  :~o, ~ , )  
i ~ 1  i = 1  i = l  

= N ( K r n + , )  --< I ~.,,+, N(.f), 
and this shows, since lim [~n-bl[ = O, tha t  

l i m . N ( K f - -  ~ ) . , a , ~ , ) = o .  
n ~ c r  i - - 1  

I f  the number  N of character is t ic  values hi is finite, we find on account  of 

T h e o r e m q 5 ,  2 ~  re la t ion -N{Kra-+l)~ o or- 

N 

N(Ai - -  E~,c,,~O =o. 
i = 1  

Wri t ing  therefore  2, = o for  i--> N + I, we see tha t  (2t) holds also in this case. 

This  disposes of (2I). The  formula  (22) is p ro v ed  in a similar way, using 

Theorem 15 with K replaced by /t~. 

F rom 

I ( ~s (Ks -  Y, *,o,~,), v) l -< N (/~s - Z*,o,~,) ' N(v)~ o 
i = 1  / = 1  
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as n -~  co we infer  t ha t  

i = 1  

o r  

hence in particular,  for g : - f ,  

( H K f ,  f )  = ~_~ ).~ ]a~] ~. 
The relation 

is proved in a similar way. 

Evidently,  if H f ~ - - o  implies K f== o, we have a~--~ (H f, q ~ ) - ~ ( H f , / ~ P i )  = 

= (H f ,  ~p~), and the elements 9~i may be replaced by the corresponding elements 

g,, in (2I) and (22). 

Remark .  By faking H =  I, we obtain, as we remarked already in the In- 

troduction,  Rellich's Expansion Theorem for completely continuous normal trans- 

formations.  

w ~o. Continuation oll the Closure ~ .  

Supposing the Hilbert  space 02 to be not complete, we may continue the 

bounded l inear t ransformat ions  H,  K, /f ,  P, T, T and /~, about  which we make 

the same assumptions as in the preceding two paragraphs,  on the closure ~ of 02 

in such a way as to leave their  bounds unchanged.  I t  is easy to prove tha t  the 

relations H - ~  t t  E, P = H K = H T, T = E K, ~' = E I(, T ].' ~ I' T, holding in 

the space 02, remain true in the space ~. In  the part icular  case that ,  in the 

space 02, the relat ion H f =  o implies K f =  o, we have found K ~  K E .  This 

relation, therefore,  remains also true after  cont inuat ion o n ~ .  

We shall prove now tha t  the theorems in the preceding two paragraphs 

remain valid for all elements . f E ~  so tha t  it  is not  necessary to restrict our- 

selves to elements fE02. 

Theorem 17. I ~ I t ,  l : - m a x  N ( K f ) / _ N ( f ) f o r  all e lements fe~  satisfying the 

conditions ~V(f) # o and (H f,  qg~) . . . . .  (H f ,  ~,,-~) ---- o. For f ~ q~,, the maximum 

is attained. 

2 ~ N ( K f ) =  o for an element J'E02 i f  and only i f  (H f ,  qJi)2o for every 

value of i. 



224 A . C .  Zaanen. 

I~.z the special ease that, in the space ~, the relatio~ H f ~-o implies K f---- o, 

the element.~' qv may be replaced i~ both parts of the theorem by the eorrespo~di~ 9 
elements ~p. 

Proof. l ~ Let J 'E~ ,  N ( f ) ~  o and (H f ,  9~a) . . . . .  (H  f ,  q~n-~)= O, and let 

the sequence g~e~ be such tha t  lira g~----f, so tha t  also lim H g ~ H f .  Then 
n- -  1 

the elements ft. = g~ -- ~ (Hg~, q~.) 9~k belong also to the space ~ and (Hj~, ~,) 
k ~ l  

. . . . .  (H f , ,  ~,~-1)= o. Hence, in virtue of Theorem I5, 

__ ll,,I. 

But, since l i m ( H g i ,  9 ~ . ) = ( H f , ~ k l = o  for k = I , . . . , n - -  I, we have l i m f i =  

= lim gi = f ,  so tha t  lira K f .  = K f, lira N ( K f ) =  N ( K f ) a n d  lim N( f , - ) =  N( f ) .  

We conclude therefore f rom (24) tha t  

N (K f)~ N (f) <-- I Z,~ ]. 

We have already proved in Theorem I5 tha t  the maximum value [Z,, I is 

a t ta ined for f---- ~ , .  

z ~ Tha t  N ( K f ) ~  o implies (H f ,  9~)= o for every value of i is proved in 

the same way as in Theorem I5 . . . . . . .  

Le t  now conversely (H f ,  q~i)-~ o for every value of i. I f  N ( f ) =  o, or if 

the number of characterist ic values ~i is infinite, we may again repeat the proof 

as given in Theorem ~5. Le t  us assume therefore t ha t  the number N of charac- 

teristic values Z~ is finite, l e t  f e ~ ,  N ( f ) ~  o and (H f ,  ~,) . . . . .  (Hf,  q~.)= o. 

Then, supposing again the sequence giC~ to be Such tha t  lim g i = f ,  we find 
N 

t ha t  the elements f~ = g~ -- ~_~ (Hg~, q~) q~ belong to the space ~, and (Hf i ,  ~,) 
k ~ l  

. . . . .  (Hj~, q~-)= o. Hence  in virtue of Theorem I5, .N(.Kf.) o. But,  since 

lira (Hgi, ~.) = (H f ,  ~0~.) = o for k = I, . . . . .  N, we have limJ~ = lira g~ = f ,  so tha t  

N (K f )  = lira N (Kf~) ~- o. 

That  the elements 9~ may be replaced by the corresponding elements ~fl in 

the case that ,  in the space ~, H f = o  implies K f = - o ,  is proved in the same 

way as in Theorem x S. 

Theorem 18. The siatement8 in Theorem ~5 remain true for an arbitrary 

element f e ~. 

Proof. The proof of Theorem I6 remains unchanged.  
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w i i  Expansion Theorem for H-adjoints. 

In  this paragraph we shall  suppose again tha t  the bounded linear trans- 

formations K and /~7 are H-adjoints,  tha t  P = H K  ~ O, and tha t  T =  E K  is 

completely continuous (but no longer  tha t  K is normalisable). We have already 

introduced for this  case, in w 7, the seqaence [LI of singular values of T and :/', 

and the H-orthonormal sequences of elements u~ and v~, sat isfying 

and we fur ther  observe that ,  in the special case tha t  H f  = o implies K f =  K f :  o, 

Theorem 7 establishes a one-to-one correspondence between the H-or thonormal  

sequences ui, v~ and the H-or thonormal  sequences yl, z~, s a t i s f y i n g  

I t  is possible now to prove theorems analogous to those in the paragraphs 

8, 9 and IO. Since the proofs are also analogous, we shall omit  them and only 

ment ion the theorems. 

Theorem 19. 1 ~ ]X,] = max N ( K f ) / N ( f )  for all elements f e ~  satisfying 

the conditions N (f) # o and (H f,  u~) . . . . .  (H f ,  Un-~): o. For f =  un the maximum 

is attained. 

I ,~n I = max N ( K f ) / N  (f) for  all elements f e  ~ satisfying the conditions N (f) # o 

and (Hut ~ vl) . . . . .  (H f ,  v,~-l)= o. For f =  v, the maximum is attained. 

2 ~ . N ( K f ) = o  for an element f e ~  i f  and only i f  (Hf ,  u~)=o for every 

value of  i. 

N ( I s  = o for  an element f E ~  i f  and only i f ( H f ,  vi) = o for every value of i. 

In the special ease that, in the space ~, t I  f ~ o implies K f =  Is f = o, the 

elements u, v may be replaeecl in both parts of  the theorem by the corresponding 

elements y, z.  

Theorem 20 (Expansion Theorem).  I f  f l i :  (H f ,  ui) and 7, -: (H f ,  v~) ( i =  i, 2 , . . . )  

for an arbitrary element fe~, then 

l im ;V ( K f - -  ~ l Z, l ~, v,) = o 
n ~  0o , ~  1 

and 
n 

lira N(K.f  -- E I ,lr, u,) = o .  

16-- 642136 A c t a  m a t h e m a t i c a .  83 
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Furthermore 

(HKf,  f ) =   ,lz, (URf, f ) =  ~ , l z i l / g i T , .  

In  the special case that, in the space ~, H f =  o implies K f =  O, the elements 

ui, vi may be replaced by the corresponding elements, yi, zi, and then fli ~ (H f ,  yi); 

7i = (H f ,  z,). 

w i2. The Relation between Normalisable Transformations in ~ and Normal 
Transformations in the Faetorspace 8.  

We shall .consider here certain linear transformations in the factorspace 

-----~/[~], introduced in w 4. I f  A is a linear transformation in ~, we define 

the linear transformation [A] in ~ by [A] [f]  = [At] .  This definition, however, 

is only then without contradiction if [f]----[g] implies [At]  = [A g], or, in other 

words, if H f - ~  o implies H A f =  o. We shall consider, therefore, in this para- 

graph only linear transformations A having this property. I t  is not difficult to 

see that, conversely, with every linear transformation [A], defined for all [ f ]E~ ,  

corresponds a class of linear transformations A in the space ~, satisfying the 

condition that  H f =  o implies H A f t - o ,  and such that  [At]  = [A] [f]  for each 

of the transformations A. The equality [A~]----[As] in ~ holds therefore if and 

only if H A l  ~ H A s  in ~. 

If the bounded linear transformations K a n d / ~  in ~ are H-adjoints, H f ~ -  o 

implies H K f = H f Y f - - ~ o  by Theorem 4; this shows, by what we have just 

seen, that  the linear transformations [K] and [/~] exist in 8. The same is true 

of [K/~] and [/CK]. The proof for [K/~] is as follows: H f---- o implies H ~ [ f = o ,  

and this in its turn implies HK_Fs  the proof for [ /~K] is similar. Fur- 

thermore 
[K] [K] [f]  ----- [K] [Kf ]  = [ K K f ]  = [ K K ]  I f ]  

for arbitrary [ f ] e 3 ,  so that [K][/~] = [ K / ~ ] .  In  the same way we obtain 

Be] [ g ]  = [RK]. 
We shall suppose now, as in the paragraphs 8, 9 and io, that the bounded 

linear transformation K is normalisable, that  _ P : H K #  O, and T - ~ E K  is 

completely continuous. Then the linear transformation [K] : [T] in the space 

exists, and it is bounded, since on account of Theorem 15 we have 

]l [g]  I] : 1.u.b. N [g ]  [ f]  l l / i l  [f]  II : 1.u.b. II [K f ]  l l / l l  [f]  N ---- 1.u.b. N ( K f )  t IV (f) = ]]~j I. 
Ill E 3 [.,~ E 3 Y E 

In  the same way we find that  [/~] ~ [:~] exists, and t h a t  H [/~] N ~-]~i ]. 



Normalisable Transformations in Hilbert Space. 227 

Furthermore we see that [/~] ~ [K]* on account of 

( [g]  If] ,  It]) = ([K f ] ,  [g]) = ( H K f ,  g) = (H f , / ~ g )  = ([f], [/~g]) = ([J], [/[] [g]) 

for arbitrary [f],  [ t i e 3 .  Finally, observing that [K/~] = [/~K] in virtue of 

H K I ~ = H l f K ,  we obtain 

[K] [g]* : [K] [/~] = [K/~] ---- I / f  K] : [/~] [K] = [K]* [K]. 

The result is therefore that  [K] is a bounded normal transformation in ~. 

If  4 ~ o is a characteristic value of T ~ E K ,  that is, if 4 r  ~ E K 9 9  where 

4 ~ o ,  we have 4 [ q ~ ] : [ E K ] [ 9 ] : [ K ] [ 9 ] ,  where [q~]~[o] since H r  on 

account of E K ~  ~ o. We see therefore that  with any characteristic element 

q~ of T, belonging to the characteristic value 4 ~ o, corresponds the characteristic 

element [9] of [K], also belonging to the characteristic value 4. We shall prove 

that this correspondence is a one-to-one correspondence, and this will enable us 

to enunciate theorems for [K], analogous to the theorems for T in the para- 

graphs 8, 9 and I o. 

Theorem 21. There is a one-to-one correspondence beh~een all characteristic 

eleme~ts q~ of T ~ E K, belonging to characteristic val.ues ~ o, a~d all characteristic 

elen~ents [9] of [K], belo~2ging to characteristic val~tes ~- o. Corresponding elements 

have the same characteristic value. 

Proof. We have seen already that with the characteristic element ~ of T, 

belonging to the characteristic value 4 ~ o, corresponds the characteristic element 

[~] of [K], also belonging to the characteristic value 4. We shall prove now 

that  no two different characteristic elements ~ and ~ of T correspond with 

the same characteristic element of [K]. For this purpose we shall suppose that  

4 ~ = T ~ ,  ~ ~.2 = T ~ ,  4 ~ ~ o, ~ ~ ~ o, ~ ~ ~ ,  [~ ]  - - - -  [~] ,  

and show that in this case we obtain a contradiction. Indeed, from Xr 

and ~ q~ : T ~  follows 4 [9,] : [K] [9,] and # [~.j -~ [K] [~.~], hence 4 [~ ]  : ,u [q~.z] 

or 4 = # on account of [~ ]  -~ [~ ]  ~ [o]. Since ~ ~ r the relation 4 : te implies 

T ( r  q~.~): 4 ( T ~ -  q%)~ o. On the other hand, we derive from [~ ]  : [~]  the 

relation H ( ~ - -  ~) - -~o,  so that  also T ( ~ - -  ~)----o, in contradiction with 

T ( ~  --  ~ )  ~ o. 

I t  remains only to show that, if 4[T] ~ [K] [9] where 4[T] ~ [o], there 

exists an element ~ satisfying the relations 4~p ~ T ~  and [~] ----- [9]. For this 

purpose we observe that  4[9] ~ [K] [9] ~ [K] [Eq~] implies 4~  : K E q ~  + h, 
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where the e lement  h satisfies H h - ~  o, and therefore  also ]~h = o. We obtain 

therefore  Z Eq~ = E K t ~ q ~ - - T E g ,  which shows tha t  ~p = E  9 is the required 

element. 

Remark .  In  the same way we may prove tha t  there  exists a s i m i l a r  one- 

to-one correspondence between the characterist ic elements of 2' = E / ( ,  belonging 

to characterist ic  values ~ o, and those of [/~] = [K]*. 

This theorem shows that,  since T and I~ have at least one character is t ic  

value ~ o by Theorem IO, the same is t rue  of [K] and [/~]. I f  now [9i] is the 

or thonormal  sequence of characterist ic elements of [K], corresponding with the 

H-or thonormal  sequence 9i of characterist ic  elements of T, so tha t  

[K] [9~] = Z~ [9;], [K] [9;] = L [9~], 

we immediately get  the analogues for [K] and [/<] of the Theorems I5- -x8  

for T' and 5~'. We observe tha t  the s ta tements  in those theorems were the result  

of the complete Continuity of T - - E K ,  whereas their  analogues for [K] and [/~] 

are the result  of the established correspondence between the sequences q~i and [9,]. 

Theorem 22. ~o. ]Zn [ = max [I [ g ]  I f ]  [I/[{ [ f ]  [[ = max II I/f]  [J]  I[/[I [f]II for all 

[ f ]  ~ [o] satisfying the conditions ( [ f ] ,  [gJ]) . . . . .  ( I f ] ,  [9,~-~]) = o. For [ f ]  = [9,~] 

the maximum is attained. 

2 ~ [K] [ f ]  = [/{] [ f ]  = [o] / f  and only i f  ( I f ] ,  [9~]) = o for every value of i, 

or, star in a d~fferent way, the orthogonal complement of the closed linear manifold 

determined by [gJ], [9.2], - . .  is identical with the set of all elements [ f ]  satisfying 

[K] [ f ]  = [/s [3"] : [o]. 

Proof. Follows immediately f rom Theorem I5 since, for any element  re91 
belonging to the class of elements [ f ]  E3,  we have the relations 

11 [K] I f ]  II tll [ f ]  II : N ( g f ) / N ( f ) ,  ]j [/~] [ f ]  ]1/11 [J]  ]1 : N ( l { f ) / N ( f )  

and ( [ f ] ,  [9~] )=  (H f ,  9~), while I f ]  # [o] is equivalent  with N ( f )  # o, and 

[K] [ f ]  = [o] with .N(Kf)  = o. 

Theorem 23 (Expansion Theorem).  ! f a i  = ([f] ,  [gs]) (i = i, 2 , . . . )  for an 

arbitrary element [ f ]  e ~, then 

[K] [f] [9;], 

[f] [93, 
([g] [/], If])= Y,x,I  I If], [f])= ~,,t~]ail  ~. 

Proof. Follows immediate ly  f rom Theorem x6. 
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In the same way as we have obtained the complete t t i lbert  space ~ from 

the space ~ by adjunction of 'ideal' elements, we may obtain the complete 

Hilbert space 8 from the space 8. We shall use the notation [f ]  also to denote 

elements of 3, not belonging to 3, although for elements of this kind there are 

no longer elements f E ~  corresponding with it. The bounded linear transforma- 

tions [K] and [/~] may be continued now oll the closure ~ in such a way as 

to leave their bounds I/[K] i] = ]1 [/~] il : ]Z~ ] unchanged. 

T h e o r e m  24. The statements in the Theorems 22 and 23 remain true for  all 

elements [ f ]  E~, so that i t  is ~wt necessary to restrict ourselves to elements [ f ]  E~. 

Proof. The proof is similar to those of the Theorems 17 and I8. 

T h e o r e m  25. The bounded normal transformations [ K ]  and [/~] are completely 

co~tinuous in the space ~. 

Proof. We might give a proof depending on a general theorem about the 

spectral representation of bounded normal transformations 1, but  we prefer to 

give a more 'elementary' proof. For this purpose we recall that a sequence [f],~ 

of elements belonging to the complete Hilbert space ~ is called weakly con- 

vergent when the sequence of complex numbers ([f],,, [g]) converges for every 

element [g]E~. I t  is well-known that every bounded infinite set of elements 

[ f ]  E ~  contains a weakly convergent sequence [ f ] , ,  I t  follows therefore from 

the definition of a completely continuous transformation in w 5 that  to prove 

the complete continuity of [K] in ~ it is sufficient to show that, if Ur is a 

bounded, weakly converging sequence, the sequence [K] [j],~ converges. 

Let now ~ [~01, . . . ,  ~0~.] be the unitary space determined by [~ ]  . . . .  , [~0x.]. 

Then, for any []]  belonging to the orthogonal complement of ~ [~01, . . . ,  ~0k], we 

have by Theorem 22 the inequality I[ [K] [f]]l ~ I Zk+,l "l![f][!. In the case that  

the total number N of characteristic values ;(i is finite, the same theorem shows 

t h a t  [K] [f]  = [0] for any [ f ]  in the orthogonal complement of ~ [~0~ . . . .  ,9~] .  

Given the bounded, weakly converging sequence [fin, we shall prove that 

[K] [/'],~ converges. Let II []],~11 ~ M. Then, since we may write [ f ] ,  = [g],~ -F [h],,, 

where [g] , ,e~[q~,  . . . ,  ~k] and [h.],, belongs to the orthogonal complement of 

2ITs, . . . ,  q~t], so that ii[/]~lF = II[.q],dF + I][h],,?, we see that  also l![h],,ll ~ M. By 

what we have just  proved, the element [K] [h],~ satisfies therefore the inequ'ality 

II [K] -< I l-II F ],,II <- I I 
1 A bounded normal transformation in a Hilbert space of infinite dimension is completely 

continuous if and only if its spectrum converges to o. 
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(in the  case tha t  the total  number  _AT of characterist ic  values Zi is finite, we 

have even, for  k = N, the relat ion II[K] [h]~ll = o); hence, given e > o, we may 

take the index k so large tha t  II[K] [hi,If < r /3 for every value of ~. 

As regards the elements [g],, it is not  difficult to see tha t  they converge. 
k 

Indeed,  since [g],~ = ~  ( [ f ] , ,  [~] ) [9 i ]  and [f],, converges weakly,  we have  
i = l  

lira ( [ f ] , ,  [q),.]) ---- ,~, ( i =  ~ , . . . ,  k); 

hence lim [g]~ =~_j ai [(pi]. 
i = 1  

I J [ K ] [ g ] , ~ - - [ K ] [ q ] z l l < , / 3  for m , n > n  o. 

This shows that,  for  m, n > no, 

II [K] [f]~ --  [K] [f]m II <- 

--< II[K] [g],,-- [K] [g]-,l/+ I![ K]  [h],,ll + It[K] [h],,/l < */3 + */3 + r /3  = r; 

the  sequence [K] D],~ converges therefore.  This completes the proof  for [K];  

tha t  for [/~] is similar, 

The elements [K] [g]~ converge then as well, so tha t  

w I3. Normalisable Transformations of  a Special Kind. 

In  this paragraph We shall suppose tha t  the  Hi lber t  space 91 is complete, 

tha t  H is a bounded, positive, self-adjoint t ransformat ion  and A is a bounded 

linear t ransformat ion  in 91. Then, as we al ready remarked in w 2, the adjoint  

A* exists in 9t, and i s  also bounded.  I t  follows now from 

(HA Hr.  g) = (A H f ,  Hg) = (H f, A* Hg) 

tha t  the t ransformat ions  K = A H and /~ ~ A* H are H-adjoints .  W e  observe 

tha t  if f e 9 1  satisfies H f = - o ,  then also K f =  l ~ f : o .  If, moreover,  HKK_-= 
= HI~K,  tha t  is, if 

(25) H A H A * H =  HA* H A H ,  

the  t ransformat ion K = A H is normalisable.  

Making now the assumptions tha t  (25) is satisfied and tha t  one at least  of 

the t ransformat ions  A and H is completely continuous,  the t ransformat ion 

K ~  A H is therefore  normulisable and completely continuous,  so tha t  the theorems 

in ~ 8 - -  9 hold. I t  is possible, however, to prove somewhat  more in this spe- 
cial case: 
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Theorem 26 (Expansion Theorem). I f  ~ is the H-orthonormal sequence of  

characteristic elements of K =: A H, belonging to the sequence of characteristic values 

~i # o, and i f  at ~ (H f ,  ~t) (i--= I, 2, . . . )  for an arbitrary element f e  ~,  then 

g f = + h, g / =  + k, 

where H h = H k ~ o .  For n > 2 we have 

i 

Proof. I t  is well-known that, since H is bounded, self-adjoint and positive, 

there exists u uniquely determined, bounded, self-adjoint and positive transforma- 

tion H '/~, h~ving the property that  (H'/'~) ~ H. On account of (HWt, ~ j ) =  

= (H '/'~ ~t,  H '/~ 9j) we see therefore that  the sequence H ~/~ ~Pi is orthonormal, which 
k 

implies that, writing cq= (g, H '/~ ~i) for an arbitrary g e~ ,  the sums s k = ~  at H~/'~p~ 

converge to un element p. Taking g = H'/~f, we find then ~ at H '/~ Wi ~ 2 ,  where 

~ = (H~/~f, H ~/~ ? t ) =  (I-If, ~Pt). From this we derive 

A H'/' p : A H '/~ ~ at H '/~ ~t : ~ at A H ~ t  : ~_~ Zt at ~ .  

The convergence of the series ~Z,a~W, is thus established, and this enables us 

now to make n -* do in the relation 

l im _AT ( K f --  ~ ,~, a, , , )  = o, 
n ~  00 l =  1 

proved in Theorem 16. Writ ing K f - -  ~_j Z~ai~flf : h, we obtain then N(h) : o; 

hence, N ( h ) :  o being equivalent with H h  : o, 

K f  = ~ Z t  at ~pt + h, 
where H h = o. 

From this we infer 

K ~ f  : ~,  Z, cq g~p~ + K h  : ~ _ j  Z~a~p, + g h ,  

but, since H h  = o, we have K h  = A H h  :-: o; hence 

The relation 

for n > 2 follows easily by induction. 

The relations for / ~ f  and / ~ f  (n ~ 2) are proved in a similar way. 
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R e m a r k s .  i ~ I t  is no t  difficult  to prove  t ha t  the e lements  h and k in 

this  theorem are not  necessari ly  ident ical  wi th  the nul le lement .  

2 ~ . I t  m a y  be proved easily t ha t  the  re la t ion  H A  H A * H = H A * H A  H 

is equiva len t  wi th  H1/2A H A *  H 1/2 ~ H1/2A * H A  H ~/2, and this l a t t e r  equal i ty  is 

evident ly  equivalent  wi th  saying t ha t  H 1 / 2 A H  1/'~ is normal .  I t  is not  difficult to 

show now tha t ,  under  the men t ioned  condit ions,  the  no rma l  t r a n s f o r m a t i o n  

H1/2A H 1/2 has the  same sequence g~ of charac ter i s t ic  values ~ 0 as the  normal is-  

able t r an s fo rm a t i on  K---- A H.  Indeed ,  let  K~p = A H~p ~- ~ W # o. Then,  wr i t ing  

H~/~ ~ = Z, we have  H ~/~ A H '/2 Z ~ H1/'~ A H ~ = )~ H ~/~ ~ ~-- ]~ Z, where ~ Z ~ 0 since 

A H 1/2 )~ Z = 3. A H~p ~- )o. ~p ~ o. Conversely,  if H '/~ A H '/2 Z ~- 2 Z # o, we find, wr i t ing  

~p = ~-~ A H 1/~ Z, so t h a t  H 1/2 ~p = ) -1  H,/2 A H 1/~ Z ~- Z, t h e  relat ion 

K ~p ---- A H1/~ H1/2 ~ _-- A H'/~ Z --~ ~ ~ ,  

where  $ ~p ~ 0 since H 1/2,~ g) ---- )~ g ~ o. This shows t h a t  K and H '/2 A H ~/~ have 

the  same charac te r i s t i c  values ~ o, and  t h a t  with the  H-o r thono rma l  sequence 

~Pi of charac ter i s t ic  e lements  of  K corresponds  the  o r thono rma l  sequence Hl/2tpi 

of charac ter i s t ic  e lements  of H 1/2 A H '/~. 

3 ~ In  the  special  case t ha t  H A  H - ~  H A * H ,  in pa r t i cu la r  when A is self- 

adjoint ,  we have  ( H K ) *  ~ - ( H A H ) * - - - - H A * H =  H A H = H K ;  in this  case, 

therefore ,  K is symmetr i sab le ,  so t h a t  all charac ter i s t ic  values s are real.  

4 ~ Suppos ing  no longer  tha t  K - ~  A H  is normal isable ,  we may  prove,  in 

a s imi lar  way as we did the  las t  theorem,  the  fo l lowing Expans ion  Theorem for  

the  H-ad jo in t s  K ~- A H and /s  ---- A* H :  

Theorem 27, I f  yi  and  zi are the H orthouormal sys tems and  [~[ is  the sequence 

o f  nonnegat ive  numbers, ment ioned in  Theorem zo, a~d fit := ( H  f ,  y~), 7 t -~  ( H  f ,  zt) 

(i ---- I, 2 . . . .  ) f o r  an arbi t rary  element f E  9t, then 

KU=F  + h', 

where H h' ~ H ]/ ~- o 

w ~4. Applications to Linear Integral Equations. 

I n  the p resen t  p a r a g r a p h  we shall  give, finally, some indica t ions  of how the 

contents  of the  preceding  p a r a g r a p h s  may  be appl ied to the  theory  of l inear  

in tegra l  equat ions.  Le t  at, bi ( i =  I , . . . ,  m) be real,  and such t h a t  a i <  b~. 

(i = I, . .  ,, m). Then  J = [a~, b~; . . . ;  am, bm] is an in te rva l  in the  m-dimensional  
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Euclidean space. The point  (x~ . . . .  , x~) in this space will be denoted by x. 

Fur thermore  we shall denote the funct ion space of all funct ions f(x), with 

complex values, such tha t  [f(x)]~ is summable (in the sense of Lebesgue)over  A, 

by L~ "~) (J)  or L.~ (J)  or shortly by L~. As well-known, L2 is a complete Hilbert  

space if addi t ion and mult ipl icat ion with complex numbers  are defined in the 

Usual way, and  the scalar product of f and g as the integral  of f (x)  g(x)over A. 

Convergence in this t t i lber t  space of the series ~ fi(x) to f (x)  means tha t  
i = l  

lim f f (x)  - -~ . f i ( x )  ~ dx  = o; 
n ~ o o  zt i = l  

oo 

i~ is equivalent therefore with saying tha t  ~2~(x )  converges in mean to f(x) ,  
i ~ l  

and we shall write f ( x ) ~ f i ( x )  in this case. The interval  [a~, b~; . . .; am, b~; 
~=~ 

a~, b~; . . . ;  am, b~] in 2 m-dimensional Euclidean space will be denoted by A •  
and the funct ion space of all functions f (x ,  y) (x, y e A ) ,  with complex values, 

for which If(x,  y)I ~ is summable over J X d ,  by L~ 2m). 
Furthermore,  when ~R is a complete I-lilbert space (elements f ,  g . . . .  ; a complex), 

it  is well-known tha t  the set ~R" of all elements {f} = {fl ,  . . . ,  f,~}, when the 

fundamenta l  operations and the scalar product  in it. are defined by 

{f} + {g} = {f* + g~ . . . .  , f "  + gn}, 

a {f} = { a f  x . . . .  , af"}, 

--2 (If/,  {g/) (f;, V), 
i ~ 1  

(where the letters i and j will denote indices, and not  exponents), is also a 

complete Hilber t  space. The following lemma's  are now easy to prove: 

L e m m a  11. If, for x e ~l, the functions A~j (x) (i, j = I, . . . ,  n) are complex- 
valued measurable functio'ns, the transformation A, defined by {g} = A {f}, where 

r (x) = A,j  (x) f (x) (i = . . . ,  n), 
j = l  

is a bounded linear transformation in [L~m)(d)] n i f  and only i f  all functions Aij (x) 
arc bounded in A. In this case the adjoint {h} = A* {f} is given by 
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n L 
h i (x )  -~- Z A j i ( x )  f J ( x )  (i -~- I ,  . . . ,  n) .  

j=l 

We have A ~ 0 i f  and only i f  one at least of the functions Aij (x) ~ o on a set of 

positive measure; A is selfadjoint i f  and only i f  the matrix tlA,j(x)[I is Hermitian, 

that is, i f  and only i f  Aij (x )= Aji (x) for almost every x EJ;  and, supposing A to 

be bounded and self-adjoint, it is positive i f  and only i f  

Aij (x) f f  (x) fJ (x) ~-- o 
i , j=l 

for arbitrary {f} E[L~] ~ and for almost every x Ed. 

Lemma 12. If, for (x, y) e J • A, the functions A~j (x, y) (i, j : I, . . . ,  n) are 

complex-valued and measurable, and i f  the integrals 

(26) f lA,r (x, y)]~ d x dy  (i, j = I, . .., n) 
A• 

are finite (in other words, i f  Afj(x, y)E L(~2m)(J)), the linear "integral transforma- 

tion" A in [Lim)(A)] ", defined by {g} = A {f}, where 

is completely continuous. 

g Cx) 
j = l  

The adjoint 

h i(x) = 
j : l  

f y)fJ(y)dy (i = n), 
,t 

{h} = A* {f} is given by 

f x)f (y)dy ( i= n). 
J 

We have A ~ 0 i f  and only i f  one at least of the integrals (26) does not vanish, 

that is, i f  and only i f  one at least of the functions Aij (x, y) ~ 0 on a set of positive 

measure in J X J .  A i8 self-adjoint i f  and only i f  the "matrix-kernel" IIA~/(x, Y)II 

is Hermitian, that is, i f  and only i f  Aij (x, y) ~ Aji (y, x) almost everywhere in 

J • J .  Supposing A to be self-adjoint, it is positive i f  and only i f  

f A i ~ ( x , Y ) f i ( x ) f J ( y ) d x d y  >-~ 
i ,j=l JXJ  

for arbitrary {f} E [L~]'L 

The theory in w I3 may be applied now to several types of integral  trans- 

formagons :  
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I. The normal integral transformation K in [L~] ~ with matrix-kernel I!/~ (x, y)II, 

where ~ll Kij(x, y)E L~ TM. The adjoint transformation K* being determined by 

the matrix-kernel [[ K~. i (x, y)I[ = II Kjr (y, x)I[, we have therefore, since K K* -~K* K, 

f K.(x.z)Kj~(y,z)dz f K~(z,x)K~j(z,y)dz 
/=1  J l = l  ,/ 

for almost every point ( x , y ) E d X J .  Since (by Lemma I2) K is completely 

continuous, Theorem I z (with H - ~ I )  shows now that if one at least of the 

functions K i j ( x , y ) ~  o on a set of positive measure in J X J ,  the system of 

homogeneous linear integral equations 

f K~,j(z,y)V~(y)dy--~.V'(x)=o ( i=  ~, . . . , ,) 
j = l  ,t 

has a non-trivial solution with ~ ~ o, while from Theorem 25 it follows that, if 

~p~(x) (i ~-- I , . . . ,  n; k ~ I, 2 , . . . )  is the ox'thonormal sequence of characteristic 

"functionsets" of this system of equations, belonging to the sequence of charac- 

teristic values 2k ~ o, and if 

i = l  J 

for an arbitrary {f} ---- { f '  (x), . . . ,  f~(x)} E [L~] n, then 

(27) ~ fK~(x, y) S~(y) dy~E ~.k~s ) (~= ~,.. . , ,) ,  
j = l  ~/ k 

(2s) ~ f KS(x,v)f~(y)dy~X~akWi(x) (i= ,,...,~). 
j = l J  k 

We observe that  the expressions on the left in (27) and (28)vanish if (and 

only if) {f} is orthogonal to all {~k}. 

Besides the expansions (27) and (28), it is, however,  possible to prove an 

expansion theorem for the element K,.j(x, y) of the matrix-kernel as well. 

Theorem 28. We have 

(29) Ki~(~, y) ~ ~k ~i(x) ~(y)  (i,j = ~, . . . ,  .), 
k 

(30) ~ f ]K,~(x,y)l~dxdy=ZlZkl ~. 
t , j = l  z#• k 
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Proof. From K 0 (x, y) e L~ 2 ~) follows tha t  the element {k} = {U (x), . . . ,  kn(x)}, 
where U(x)= K~j(x,y) and j is fixed, belongs to the space (,~/ ,, [L,. ] for almost 

every yeL/ .  We  shall show now tha t  the relations ({k}, {g)k})=Akg)~(y)and 

({k}, {g})= o for every {g} E [L~] ~ orthogonal  to all {~#a.}, hold for almost every 

y E J ,  so tha t  it will be possible to write 

k 

in the terminology of Hilbert  space. Indeed,  

({k}, {.~}) = ~  f K,j(~,y)%(.)a.--~ f Kj~(u,x)V4(z),~.=X~VaI(y) 
/ = 1  d i = 1  ,/ 

for almost every y e d ,  and, if ({g}, {~k})= o for all values of k, so tha t  by (28) 

fK~(x,y)gJ(y)dy=o almost everywhere, we have 
j = l  4 

i = 1  d i = 1  , /  

for almost  every y E J .  

The relation {k} = ~ ({k}, {~Pk}){~0k} implies 

hence 

P 

{~} - E  ({k}, {v,~}){~,~} 2 = ~ t ({~}, {v,~})I ~, 
k = l  k = p + l  

P 

f ~,(*,Y)-Z~k*~(y)<(x)[ ~dx= Z I~ki'~l*g(Y)l ~ 
i : l  A k = l  k=p+l  

for almost every y e d .  Summing from j = I to j = n and in tegra t ing  over y, 

we see tha t  

2 f ]K/;(*,v)--2Zk~i.(*)V'~(u)12axdY 2 Ix~l ~. 
i , j= l  .4• k = l  k = p + l  

For  p = o we have  (3o), and, making p + 0% we find (29). 

Similar results hold for the system of equations with i terated matrix-kernel 

I] Kip.)(x, y)II, where 
~3 

K~}) (., v) = K/5 (x, v), 

K(vl/j (x, y) = ~ f Kn (x, z) K(~ p-l) (z, y) d z (p > I ) .  
/ = I A  
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I t  is not difficult to prove that  K~)(x, y)EL~ TM (H), that  the transformation Kv 
in [L~]", corresponding with ]IK~ )(x, Y)II, is also normal, that  ~ (k = I, 2 . . . .  ) is 

the sequence of all characteristic values ~ o of Kp, and that {~k} is a cor- 

responding sequence of characteristic elements. 

Finally, if IIKij(x, Y)II satisfies the condition that  all g~j(x, y) are continuous 
in mean, that  is, 

f l K , . ; ( x , y ) [ ~ d y  is finite for i , j  = I , . . . ,  n, and for every x e d ,  
,d 

and 
lira f I Ko  (~ ,  ~) - -  ~- ;  ( ~ ,  ~) I ~ d~ = o (i, j = ~  . . . .  , . ) ,  

it follows in a well-known way that the convergence in mean in (27) and (28) 

may be replaced by uniform convergence, and that, for p >~ 2, the series 
p ~.~ Z k ~O~ (x) ~ (y) converges uniformly in z /X z/ to K~)(x, y). 

k 

II.  The integral transformation K in [Le]" with matrix-kernel lIKij(x,y)tl = 

= II A/d (x, y)I1" I/h0"(Y)II (the dot means that  the mMrix-product is to be taken), the 

following conditions being satisfied: 

(a) All hij(y) are bounded and measurable in z/, and one at least of them 

is r o on a set of positive measure, 

(b) h~j(y)= hj,(y) and 2 hij(y)6iCtj ~ 0 for any system of complex numbers 
i , j = l  

a~, . . . ,  a~ and every yez / ;  the matrix Nh~j(y)i I is therefore t termitian and of 
positive type, 

(e) All A ,  (~, ~) e Li ~ ~) (~), 

the bounded linear transformation (d) When {,q} = H { f }  in [L~]" is de- 

termined by 
n 

g' (x) = ~ hij (x) S~ (x) (~ = ~ . . . . .  . ) ,  
j ~ l  

and A is the integral transformation with matrix-kernel IIAij(x,y)lt, so that 

therefore K = A H, then 
H A H A * H =  H A *  H A H .  

Since, by Lemma I I, the transformation H is self-adjoint, positive and ~ 0, 

and the transformation A is, by Lemma I2, completely continuous, we see that, 

by condition (d), the transformation K ~  A H is completely continuous and 

normMisable (relative to H). 
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Integral transformations of this kind were considered by J. Ernest Wilkins 1, 

who, however, supposed, instead of condition (a), all hij(y) to be continuous 

on H, and, instead of condition (c), all Aij(x,y) to be bounded in H • H with 

their discontinuities "regularly distributed", while finally, instead of condition (d), 

he supposed that  H A H = H A * H ,  in other words, that  K = A H  is symmetris- 

able. He proved some extremizing properties for the characteristic values of the 

system of linear integral equations, associated with the transformation K, and 

obtained an expansion theorem for functions of the form ~ f K i j ( x , y ) f J ( y ) d y .  
j = I A  

The present author ~ relaxed conditions (a) and (c) to the form quoted above, 

but retained condition (d) in the form H A  H =  H A * t t .  He succeeded in finding 

an expansion theorem for the elements of the matrix-kernel I!K,/(x, Y)il as well. 

Here we shall relax condition (d) to H A  H A * H =  H A * H A  H, which is equi- 

valent, therefore, to the generalization from a symmetrisable _K to a normalis- 

able K. 

Before stating results we recall the well-known fact that  every bounded, 

positive, self-adjoint transformation H in a Hilbert space possesses a uniquely 

determined "positive square root" H ~/~. The question may be raised now what 

can be said about this root H ~/~ when H is defined as in condition (d). The 

answer is given in the following lemma, which may be proved along well-known 

lines : 

Lemma 13. I ~ There exists a uniquely determined matrix [Ih~7')(x)I1, which is 

Hermitian and of positive type for all xEH,  such'that all funetioizs hi'(")(x) are 
~3 

bounded and measurable in H, and 

(~1~) (x)I1" II (x)II = II h,j (x)[I. 

2 ~ I f  all functions hii (x) are continuous in d,  the same holds for all func- 
tions h('l') (x). i j  

3 ~ The uniquely determined, bounded, posiHve, selfadjoint transformation 

{g} : H '/2 {f} in [L,2] '~ is determined by 

j = 1  

(i = I . . . .  , n). 

1 Cf. p.  I 98  , f o o t n o t e  I .  

g Cf. p. I 98  , f o o t n o t e  4. 
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Considering now the system of homogeneous  linear integral  equat ions 

(3 ')  ~ f K, j(x,y) ~(y) dy--Z~'(x)=o ( i =  i , . . . ,  ,) ,  
j = l  d 

Theorem 12 sh()ws tha t  if one at least of the funct ions  Pij(x,Y)r ~ o on a set 

of positive measure  in A X ~/, where II Pi~ (x, y)II = II h~j (x)]1" H Kij (*, y)il, this system 

has a non-trivial solut ion with s ~ o. Le t  us denote by Z~ (k-~ I, 2 , . . . ) t h e  

sequence of all character is t ic  values of (3I) and by ~ ( x )  ( i =  I , . . . ,  , )  a cor- 

responding H-or thonormal  sequence of characterist ic  funct ionsets .  These func- 

t ionsets satisfy therefore  the relat ions 

i , j = l  A 

f hi~(x)~i(x)Wi(x) dx=o  for kr~ l, 
i , j = l  d 

or, wri t ing ~ h O (x) ~ (x) ----- Z~ (x) (so tha t  H {~k} --  {gk}), 
j=l 

, = , a  ~)ik(x)g~(x)dx: o for  k / l .  

Then, by Theorem 26, if 
n 

ak = ( H { f } ,  {~k}) ---- ({f}, H{~k}) = ({f}, {gk}) = ~  ffi(x)zi(x) dx 
i = i  d 

for an arbi t rary  {f} ---- { f l  (x), . . . , f~ (x )}  E [L~]", we have 

(32) ~ fKu(x,y)f~(y)dy~ZZ~,~f(z)+p'(x ) (i---- i, . . . ,  n), 
j = l  d k 

where {io} = {pl (x) . . . .  , p" (x)} satisfies H {p} = {o}, tha t  is 

h,j (x) W(~) = o ( i =  i , . . . ,  , ) .  
j = l  

Besides the expansion (32), we shall prove now an expansion theorem for 

the  elements K~j(x, y) of the matrix-kernel as well. 

Theorem 29. We have 

k 

(i, j = I . . . .  , ,) ,  
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where p,j  (x, y) e L~ ~ m)(~1) (i, j = ~ . . . .  , n) satisfies 

(33) ~ hiq (x)pqi (x, y) = o. 
q ~ l  

Proof. We observe first that  by Theorem 26, Remark 2 ~ 2V----H1/~AH 1/~ 

has the same sequence gk of characteristic values # 0 as / ~ =  AH,  and that 

{q~k}----H 1/~ {~Vk} is a corresponding orthonormal sequence of characteristic ele- 

ments. Hence, by Theorem 28, 

k 

with T i (x) --~ ~ hl.~ ~) (x) ~ .  (x), so that  
j=l 

h('/'~)ir (x) l~rj (Z, y) : ~ h( '/'~)', (x) Ar~ (x ,  y) hsj (y) ~- 
r ~ l  r ,  s = l  

n n 

h(,l~) = Z x .  (~, v) 4~ (v) % 
(/=1 k q=l 

o r  

(34) • h (1/'~) ix ~ K ,r ' ] rj '(X, y) oo Z Xk ~13ik (X) Z~" (Y). 
r=l k 

Let us consider now the matrix-kernel ]ID,~(x, v)/I, belonging to the trans- 
formation D - ~  A H 1/2. Then, for every i ( i ~  i , . . . ,  n) and for almost every 

x E J ,  {d,} = {d~ (y) . . . .  , d~(y)}, where d~(y) ~ Dii(x ,  y), belongs to [L~] ~. Hence, 

by Bessel's inequality (the system of functionsets ~i (x) is orthonormal), k 

I ({&}, {~k})]~ -< II (&} [] ~ 
k 

or, since 

--2 f ~', A,~(x,y)h~lj~)(,) h'l/'>>, (y,' g,~ (y) d y = ~ f K~r (x , y )~p~(y )dy  = Xk~p~(x), 
j=l ,~ q,r=l r=l A 

(35) 
n 

~ Iz~l~l~(x)l~ ~E fIDij(X,y)l~dy 
k j=IA 

for  a l m o s t  e v e r y  x E J .  
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After this we observe that  in the I-Iilbert space [L~2") (A)]"'. the elements 

/f~} = {A.; (x, v) = ~ v,i. (z) ~)~ (v)} (i, 3 = ~, . . . ,  ,,) 

are orthogonal on account of the orthogonality of the system {~k} in [L~ m/(d)]'. 

Furthermore, by (35), 

(2 ~ !{{A.llf~ = ~  Ix~l ~ f I v4 (*) I' �9 t ~/. (v) I~ ~*  d:~) --  
k k i , j = l  A•  

which shows, since 

?~. 

= Z I x ~ . l ' ( ~  f l G ( . ) l ~ d . )  ~ ~ f ID,j(x,v)l~dxdY< o~ 
k i = l  A i , j = l  ,dxA  

q q 

E {f~} ' = ~ ti {f~.} Ii-" 
k = p  k = p  

by the orthogonality, that  ~ ,  {fi} converges in [L~ 2")(d)]C This implies that, 

for i,Y = I , . .  ,, ~, the series ~ ),k ~p~ (x) Tg (y) converges in mean. Denoting the 
k 

sumfunction by fij(x, y), we have therefore 

so that, writing 

we have also 

k 

f,~ (.,  y) h(;J.)(y) = K;~ (., v) --  p,; (*, y), 
q = l  

K~j (x, y) --  p,~ (~, V ) - ~  Z~ ~i. (.~) z~(Y) (i, j = ~ , . . . ,  ,,). 
k 

The only thing that remains to be proved is ~ hiq(x)pqj(x,  y) -= o. 
q = l  

we deduce 

2 2 h('/")~r (x) Krj (x, y) - -  hU"),r (x)pry (x, y) ~ ~ Zk W k (x) Zk (Y), 
r ~ l  r = l  k 

From (36) 

hence, comparing this with (34), 

hC,.-,),,. (x) P,.5 (*, U) = o or ~ h,r (x) prj (x, ,'t) = o. 

This completes the proof. 

Similar results hold for the system of equations with iterated matrix-kernel 

IL K(~ (x, y)[I. Id 

17 -- 6 4 2 1 3 6  Ac ta  mathemat ica .  83 
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Theorem 30. For p ~-- 2 we have 

(37) ~ f K~g)(~,y)f~(?~)dy~z~.=~,/,~(x) ( i = ,  . . . .  ,.), 
j=iz~ k 

where a~ has the ,~,ame n~eaMng as i~ (32); 

~p  i X (38) K~;~) (x, y) ~ ~ ~ ( ) z~. (u) 
k 

(i, j = I , . . . ,  ~). 

Proof. Formula (37) follows from the last part of Theorem 26. To prove (38), 

we observe that, by Schwarz's inequality, 

Ic,. (~, y) - p~ (~, ~) ~ l~ ~(~) z~ (?~) 
k 

implies 

q ~ l  A q = l  A 

k q = l A  

so that, since by (33) 

f K~(x,z)p~j(z,y)~b= s f A,,(x,z)h,,~(z)p~j(z,y)dz=o, 
q ~ l  ,:l 9, r = 1  A 

we have 

The proof for p ~ 2 follows by induction. 

Finally, if all A o ( x  , y) are continuous in mean in A X A, and all h~j(x) are 

continuous in J (so that  by Lemma 13 all h(V'~)(x) are continuous in z / a s  well), i j  

it is no t  difficult to prove-that  in (32) the convergence in mean may be replaced 

by uniform'convergence,  while the functions p~(x) ( i-~ I , . . . ,  n) are now con- 

tinuous as well. Moreover, for p--~ 2, the series ~ ~ ~0~.(x) if(y) converges uni- 
k 

formly in z /X  , /  to K~ p) (x, y). 

I I I .  The integral transformation K in [L~]" with matrix-kernel [[ Kq (x, y) l l :  

= [I Aij (x)]l [[ Hij (x, y)]], the following conditions being satisfied: 

(a) All H~j(x,y) EL!~n)(A), and one at least Of them is ~ o  on a set of 

positive measure in A X J ,  
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(b) Hij(x,y)= Hji(y,x) almost everywhere in z / X  z/, and 

i , j ~ l  A• 

for every {f} E [ L j ' ;  the bounded l inear t ransformat ion H in [L~] '~, determined 

by the matrix-kernel  I[H~j(x, Y)I!, is therefore self-adjoint and positive, 

(c) All Aij(x) are bounded and measurable  in J ,  

bounded l inear t ransformat ion {g} = A {f} in [L.2]" is de- (d) When  the 

termined by 

r (x) = 2~ Ais (x) f :  (x) (i = i, . . . ,  ,~), 
3.=1 

and H is the t ransformat ion  defined in condit ion (c), so tha t  therefore K = A H, then 

HAHA*H=HA*HAH. 

Since, by Lemma I2, the t ransformat ion  H is completely continuous,  self- 

adjoint ,  positive and ~ 0, and the t ransformat ion  A is, by Lemma 1 I, bounded, 

we see that ,  by condit ion (d), the t ransformat ion  K = A H is completely continuous 

and normalisable (relative to H). 

Considering now the system of homogeneous l inear integral  equations 

(39) ( i = i ,  . , , , ) ,  
j = I A  

Theorem 12 showB tha t  this system has a non-trivial solution with ~ r o, if  only 

one at  least of the functions / ) ; j ( x , y ) ~  o on a set of positive measure in 

z / •  z/, where 

Po(x,y)=- 2 f tt, q(x,z)K j(z,y)dz if, j=  i, . . . ,  It). 
q = l  A 

Let  us denote by Z~ (k =- I, 2 . . . .  ) the sequence of all characterist ic values of (39) 

and by tp[.(x) (i = I , . . . ,  n) a corresponding H-or thonormal  sequence of charac- 

teristic functionsets.  These functionsets  satisfy therefore the relations 

i , j = l  AxA  

2 f H'j(x,Y)~i(x)~i(y)dxdy=~ for k r  
i , j = l  / txA 
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or, writ ing ~ fHij(X, y ) ~ ( y ) d y  = ;lik(x) (so tha t  H{~pk} = {Z~}), 
j = I A  

/:r {i 
~i. (~) z~ (x) d x = 

i=l O for k ~ I. 

Then, by Theorem 26, if �9 

- - ~  ~x  ,~ ak = (H{ /} ,  {~Pk}) = ({/}, H {gae}) = ({f}, {ge}) --  f f  ( )z~(x)dx 
i ~ l  A 

for an arbi t rary  {f} e [L~] '*, we have 

(40) ~ f Ki j (x ,y ) fJ (y )dy~  ~2~a~.~ik(x) + pi(x) ( i=  I, . . . ,  n), 
j = l  zJ k 

where {p} = {p~(x) , . . . ,  p"(x)} satisfies H{p} = {o}, tha t  is 

f H~ (x, v) p~(y) dV = o (i = i , . . . ,  ,). 
j = I A  

~oreover ,  if iIK~} ~)(x, y) i] is aga in  the p-th i terated kernel, we have for p ~ 2 

(41) ~ f K}.~)(x, y) f J  (y) a y ~ ~ ak ~ .  (x) (i = i , . . . ,  ,). 
j = I A  k 

Besides the expansions (4o) and (4I) we shall prove now an expansion theorem 

for the elements of the i terated matrix-kernel  IIKI.~. )(*I Y)li (P ~ 2) as well. Since, 

in the general  case tha t  we consider here, the t r ans fo rma t ion  ttv~ is not  de- 

te rmined by a matr ix-kernel  with e lements  belonging to L! TM (z/), it seems not  

to be possible to obbain an expansion for the  elements K~j(x, y) themselves. 
The same fact  causes some peculiar difficulties in the" proof of the now following 

~heorem. 

Theorem 31. We have 

Ki.~) (x, y) -- pij(x, y )~  ~ ~ ~k ~ (x) Z~ (Y) 
k 

,che,'e ~,~ (x, v) e L~ 2''> (~) sa&fie, 

( i , j=  I , . . . ,  ,), 

(4~) f H,~ (., z)pq~ (z, v) a~ = o 
q-----1 ,,:I 

for almost every point (x, y) E J X d .  
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Fu~'thermore, for 2) >-- 3, 

Ki~)(x, Y)~_~ )~.~Pi(x). - ZJ(Y)k (i, j = , ,  . . . ,  n). 
k 

Proof.  The proof is divided into several parts. 

I ~ If, in the separable Hi lber t  space ~, the t ransformat ion  K is bounded 

and linear, and q~v (p = I, 2 . . . .  ) is a complete  or thonormal  system, K is said 

to be of finite norm, if _N2(K)=  ~ I kv~[o- < c~, where kw=(gq~,q~p) .  Then 
p, q ~ l  

w e  h a v e  1 : 

I f  A is bounded and linear, and K is of finite norm, then A K  and K A  
are of finite norm, and 

N ( A K )  <~IIAII. N(K),  N ( K A )  <_tlAIJ. N(K).  
Indeed,  

1(.4 Kgoq, q)p)l "2 ~--il A ]~qDq I1 ~ ~-- I)A i[ ~" I} g g ~  lio- = !J A 11"~, ] ( K  9q, q~,) 1~, 
p = l  r = l  

hence sumnfing over q, -N 2 (A K) --< t[ Ai '~" N~ o1" N ( A  K) <--iIAt[. N(K).  Finally,  

since evidently N(K*) -- N(K) ,  we have N ( K A )  = N(A*K*)  <~ IIA*il. ~Y(K*) = 
= ]1A t]" N(K).  

2 ~ If,  in the Hi lber t  space [L!m)J)] '~, the t ransformat ion K is determined 

by the matrix-kernel I] K~i(x, Y)]I, where all K~j(x, y)e L~ '2") (J), then g is of finite 

norm. Indeed, if {q~v} is an arbi t rary complete or thonormal  system in [Lo"]", then 

p = l  p = l  i=1 a j = l  zJ 

[s = =2 fax[2 12 fK,~(*.y)WX(v)ay '~1= 2 f f IK;,(,.v)l"ay],lx 
i = l  zl p = l  j = l  Zl i = l  d j = l  A 

= ~ flK,:a(*.y)lo"dxdy. 
i , j=l a •  

Conversely, if K is of finite norm, so that,  on account  of ~ l&,tl ~ 1 7 6  the 
p, q=l  

series ~ ~,~ ~ (z) ~ (V) oonver~e~ in mean i~ L~'~)(~') to a function K~ (x, V), 
p, q~l 

it  is not  difficult to see tha t  K is determined by the matrix-kernel liK, j(x, Y)II. 

1 F. SMITHIES, The  F r e d h o l m  theory  of in t eg ra l  equat ions ,  Duke Math .  J o u r n a l  8 (I94I),  
p. IO7--I3O , L e m m a  2.6.  
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3 ~ . Wr i t ing  B = A H A ,  so tha t  K ~ = B H ,  we see wi thout  difficulty tha t  

H B  H B* H = HB* H B  H on account  of condit ion (d), hence also HI/~B HB* H1/'= 
-= H 1 / " B * H B H  11~, which shows tha t  N-= H'/~BH ~/~ is normal.  By Theorem 26, 

Remark  2 ~ N has the same sequence X~ of character is t ic  values r 0 as K ~ = B H,  

and {Tk} = H '/2 {~0k} is a corresponding or thonormal  sequence of characteris t ic  

elements. Fur thermore ,  by I ~ N is of finite norm, so that ,  by 2 ~ _N is determined 

by a matrix-kernel  II_Nij(x,y)ll with de me n t s  belonging to L~"/(A).  Hence,  by 

Theorem 28, 

~ ( x ,  v ) ~  z ~ ~ ,). % (x) ~ (v) (i, j = ~ , . . . ,  
k 

W e  shall show now tha t  ~ ^k ~" ~g~r k(x) Z~(Y) converges in mean as well. Indeed,  
k 

q q q 

f rom E ak{Xk} t 2 =  H1/~ E ak{Tk} ~ --< ]IH'/']]~'I[E ak {Tk} * we deduce, tak ing  
k = p  k = p  k = p  

aa = s T~ (x), tha t  

j = l  A k = p  j = l  d /r 

f rom which the result  follows immediately.  Hence  

(43) c ,  (x, v) ~ Z  z- , % (x) z~ (v). 
k 

4 ~ We shall show now that  the t ransformat ion C, corresponding with the 

matrix-kernel  I! C~j (x, y)II, satisfies C =- N H  ~/~ (hence C = H ~#" B H = H ~/~ K~). Let, 

for  this purpose,  {f} a n d  {g} be two arbi trary elements of [L~] n, a n d  write 

{t}----H ~/~{f}. Then, denot ing the inner product  in the Hi lber t  space L~2~)(z/) 

by ( . . . , . . . ) 2 ~ ,  we have 

' C = Gj  = 
i , j = l  A• i , j = l  

= lira ~ ( ~  ~ W~. (x)g~ (Y), gi (x).fi (Yi)2,~ 
P ~ r  i , j = l  k = l  

= l i m  ~ [2,~.f~*i(.)r 
P+r i,d=l k = l  A A 

p ~ o o  t ~ l  k = l  a 
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~--~lim ~ [~z~f~f(x)g,(x)dx.f V(y)~i(u)dy] 
P~r i , j = l  k= l  A A 

P ~  i , j = l  k= l  

= ~ (~,~(x, y), g,(z)tJ(y))~ = (N{t}, M), 
i , j = l  

hence C { f }  ~- N{t}  = N H  '/~ {f} or C =  N H  '/~ = H'/~K ~. 
5 ~ We consider now the matrix-kernel IID~j(x,y)ll, belonging to the trans- 

formation D = B H ' / L  Then, for every i ( i =  1 , . . . ,  n) and for almost every 

x e J ,  {di} ---- {d~ (y), . . . ,  d~(y)}, where dJ(y) = D~j(x, y), belongs to [L~]". Hence, 

by Bessel's inequality (the system of funetionsets Tg(x) is orthonormal), 

Z I ({'~'}, {G})[" --< II {d,} I[", 
k 

or, since 

({dd,{~.})--  f D ~ j ( x , y ) ~ ( y ) d y  ~ f K(j(x,y)~(y)dy=).~pk(x),l~t 
j = l  A j - -1  zi 

(44) Z Ixkl'lo~(~)l ~ -< ~ flz);J(~,~')l ~ ~t 
k j = l  a 

for almost every x e ~/. 

In the same way as we proved in Theorem 29 the convergence in mean of 

~ k ~ ( x )  Tg(y) by using (35), we may prove now the convergence in mean of 
k 

)~ ~P~. (x) WJ (y) by using (44). After that, as in 3 o, we see that  ~ i~: ~ (x) z~ (~) 
k k 

as well. Hence, denoting the sumfunction by KI ~ ) ( x , y ) -  converges in mean 

- -  p~j (x, y), we have 

(4s) KI..~) (x, y) --  Pij (x, y) ~ Z~ ~)~ (x) Z~ (Y) (i, j = I , . . . ,  n). 
k 

The only thing that  remains to be proved is (42). From (45) we deduce as in 3 ~ , 

and bearing in mind that  C =  H ' / ' K '  has the kernel I[ Cij(x, y)!!, 

(46) Cij (x, y) --  q,j (x, y) ~ ~ Zi T i (x) Z~ (Y), 
k 

where, when IIPij(x, y) l] corresponds with the transformation P, ][qij(x, y) l[ cor- 

responds with H'/ 'P.  Comparing (43) and (46), we see that  H1/'P = 0, hence 

H P  = 0, which is equivalent with (42). 
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6 ~ . For  p ~ 3, the proof of the expansion for K,(~)(x,y) is similar to the 

proof of Theorem 30. 

Theorem 32. I f  the tran.sJbr~atio~ H '/~ G' delern~i,ed by a matrix-ker~wl with 
elemenls &elom.ling to r (.2 m) . ~ . ~  (A), then 

(47) i i  u (x, y) - -  l~,'.J (x, y ) ~ _ ~  )~k ~p~ (x) X~ (Y) (/, j = I, . . . ,  ~), 
k 

where Pu (x, y) E L~ 2") (~4) satisfies 

q = l A  

for  almost every point  (x, y) E J X J .  

Furthermore, for  p >-- 2, 

k 

Proof. The proof is 

(i, j = I , . . . ,  ~,). 

similar to t ha t  of the preceding theorem, using the 

fact tha t  in the case which we consider now, H 1/2 is of finite norm. We remark 

tha t  i t  is no t  difficult to prove tha t  H 1/2 is of finite norm if and only if ~ ttk 
k 

converges, where ttk (k = 1, 2 . . . .  ) is the sequence of characterist ic values f i  o 

of the t ransformat ion  H.  

Finally,  if all Hij (x, y) are continuous in ~ /X A, it is possible to prove tha t  

in (4o), (4I), (47) and (49) the convergence in mean may be replaced by uniform 

convergence, while (48) holds now for every point (x, y ) e L / •  J .  Moreover, when 

H{p}  = [o} implies {p} = {o}, and the functions A,j(x) are ei ther  all continuous 

in • or have the property that  the de terminant  of the matr ix I]Aij(x)[I is ~ o 

for almost every x e  J ,  the funct ions pi(x) in (40) and P*V(x, y) in (47) vanish 

identically, while in the lat ter  of these two cases the series ~ Z~:(x)7~(Y) con- 
k 

verges to IL:j(x, y), uniformly in J X  J .  

May i948. 
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