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1. In t roduc t ion .  In a series of earlier papers 1 [1], . . . ,  [7] both the (simple) 

duality theory of rings, and later the general K-ality theory (not only of rings, but  

of arbitrary operational disciplines), corresponding to a preassigned group K of 

admissible "coordinate transformations" in the ring (or discipline) were introduced 

and studied. Among the interesting concepts which were shown to evolve from 

this general theory is the notion "ring-logic",--or "ring-algebra" (mod K). In this 

connection the  class of "p-rings" was shown to possess an enveloping "p-ality 

theory"  which generalizes the familiar duality of Boolean rings (and algebras) ,~ 

which latter are simply 2-rings (p = 2). Furthermore for the special cases p = 2 

and p = 3, it was explicitly shown in [1] and [4] that  such p-rings are ring-logics 

(mod N), where N is the "natural  group" (see w 2),--with the status of general 

p-rings, i. e., p > 3, left undecided. 

Here, for given p ( =  prime), a p-r ing, - -as  first introduced by Mc Coy and 

Montgomery [8], is a commutative ring with unit ~ in which for all elements a, 

(1.1) a V ~ - a  

(1.2) pa = O . 

The concept p-ring is an evident generalization of that  of Boolean ring (p = 2). 

(In this Boolean case, p = 2, the condition (1.2) is a familiar consequence of (1.1); 

however for p > 2 (1.2) is independent). 

The following well known result of Stone [9]: 

(1 ~ Each  Boolean ring is i somorphical ly  representable as a r ing of  classes, or, 

1 Square brackets refer to the appended bibliography. 

2 For Mc Coy and Montgomery, [8], the notion "p-ring" does not  demand the existence of a uni t .  
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what is equivalent, is isomorphic with a subring of some (finite or infinite) direct power 

of F 2 (~- 2-element Boolean ring ~ field of residues rood 2), 

was generalized by  Mc Coy and Montgomery  in [8] to :  

(2 ~ Each p-ring is isomorphic with a sub-ring of some direct power of Fp (----field 

of residues rood p). 

In  connect ion with this result  they  showed t h a t  

(3 ~ Each finite p-ring is isomorphic with a direct power of Fp. 

The present  communica t ion  is concerned with a fu r the r  s tudy  of p-rings, 

within the f ramework  of the r ing-dual i ty  and K-a l i ty  theories. In  I, for  each 

Boolean ring J and each integer  n we define (w 3) a certain vec tor  ring " o v e r "  J ,  

the  "J-partition-vector r ing"  or "Boolean-vec tor  r ing"  of degree n. Here  the  

definit ion of the  vector  sum as Well as t h a t  of vec tor  product ,  in t e rms  of ground 

concepts,  is given by  means of a symmetr ic  kind of operat ion,  as a consequence 

of which these Boolean vector-r ings are " h y p e r c o m p l e x "  over  J only in an ex tended  

sense 3. 

Among other  things it is shown th a t  the Boolean-vector  rings of degree p-pr ime 

are p-rings ((1.1), (1.2)). I t  is then  fu r the r  established, in I I ,  t ha t  each (abstract)  

p-r ing is (uniquely) isomorphical ly representable  as a Boolean-vector  ring, and hence 

tha t  these two classes of rings are identical,  up to isomorphisms. This isomorphism, 

in turn ,  leads to the comple te  classification of p-rings in te rms of their  " idempo ten t  

Boolean sub-algebras"  (Theorem 10). To ment ion  but  one consequence of this theory ,  

p (p - -1 )  
it  is shown tha t  each e lement  of a p-ring m a y  be expressed as a sum of - - ~ - -  

idempoten t  elements.  As ano ther  consequence the previously ment ioned  results 

(2 ~ and (3 ~ of Me Coy and  M o n t g o m e r y , - - i n  fact  a re la ted s t ronger  resul t  

(Theorem 12) are derived. 

A fu r the r  appl icat ion of the  present  t h e o r y  leads to  an af f i rmat ive  answer 

to the above ment ioned  previously unsolved problem;  in fac t  it  m ay  be shown 

t h a t  all p-rings are ring-logics (rood N). A demons t ra t ion  of this result  will not  

however  be given here, bu t  will be presented in a subsequent  communica t ion  in 

connect ion with various applicat ions of p-rings and their  N-a l i ty  theory .  

One may reasonably object to the retention of the "vector" terminology in the face of the 
non-traditional vector addition. It was however thought desirable to adhere to the familiar expressions 
since, as will be shown (a) each "vector" is uniquely determined by certain components, and (b) under 
certain simple conditions the "vector sum" degenerates to the orthodox vector sum. 
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I 

BOOLEAN-VECTOR RINGS 

2. S o m e  notions and r e su l t s  f r o m  the  r ing-dual i ty  and K-al i ty  theor ies .  

In this section we shall lightly touch on a few points of back-ground taken 

from [l] ,  . . . .  [7]. Let R ~ (R, -f-, •  be a ring (here always understood to possess 

a unit), and let 

(2.1) K { . . . .  e, . . . ) =  { ~ , ~ ' , ~ " , . . . }  

be a group of "coordinate transformations" in ( ~  1-- 1 self mappings or permutations 

of) R, 

(2.2) x ~ ( x ) ,  (x,~(x) z's R ,  e ~ K ) ,  

where ~ is the identity of K, ~(x) ~ x, and where the inverse of ~ is written 5-- 

Each concept of the ring (R, ~-, •  may then be expressed in, that  is, may be 

cogrediently transformed with the various coordinate systems Qr In particular 

a multitation 4 (---- operation of one or more arguments) a(x, y . . . .  ) of the class R 

"becomes", in the "~ coordinate system", the multitation %, where 

(2.3) ae (x, y . . . .  ) ---- ~- (a(~(x), ~(y), . . . ) )  . 

Here the (isomorphic) multitations a and % are the "same" operations, expressed 

in different coordinates. In this sense the rings 

(2.4) (R, -~, x ) ,  (R,-f- ' ,  x ' ) ,  (R, + " ,  x " )  . . . .  

represent the "same" ring, expressed in the ~,~ ' ,~",  . . .  coordinate systems 

respectively, where the set of "K-al"  products 

(2.5) x ,  x', x", . . .  

are the "transforms" (2.3) of X by ~, ~', e", . - .  respectively, and similarly for 

the K-al sums, differences, etc., 

-~, -~', + " ,  . . . . .  etc. �9 �9 , ,  ~ , , �9 �9 �9 ~ (2.6) 

For instance 

(2.7) 
= e t c . .  

The "K-algebra"~also  called the "K-logic" of the ring R is the (operationally-, 

4 Compare with "[5]. 
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i .e. ,  eompositionMly-closed) algebra 

(2.s) ( R , x , x ' , x " , . . . ;  ~,e',d',- . .) ,  
also briefly written 

(2.9) (R, •  K) = (R, x ' ,  K) = (R, •  K) = e tc . ,  

operating in the same class R as the ring, but  whose operations are confined to 

the set of K-al ring products X, X', •  . . .  together with the operations (per- 

mutations) ~, ~', e", . . .  comprising the group K. Of the various categories of 

"K-algebraic (-- K-logical) definabili ty",--see [4] and [1], we here recall only one. 

Each ring uniquely determines its K-algebra (K-logic), (2.8). If, conversely, 

a ring (R, 4-, x )  is "fixed" by its K-Mgebra, i. e., if: (a) no other ring (R, ~-1, •  

exists (on the same class R and with the same •  but  with -~1 ~ -~) which has the 

same K-algebra as (R, -~, •  and if (b) the ring sum, -~, of R is equationMly 

definable in terms of its K-algebra, that  is, if an identity exists 

(2.10) a + b  ~ ~v(a, b) , (a, b e's R) , 
a, b 

in which q:(a, b) is some (compositional) combination of the K-logical operations 

•  X', X",  . . . .  $, ~', ~", . . .  we speak of R as a "ring-algebra (K)" , - -or  "ring- 

logic (K)". 

We are here concerned with only two groups of coordinate transformations, 

namely: (1 ~ the "simple" or "complementation" group, C,--of  order 2, consisting of 

X* ~ l - - X  
(2.~1) 

x** ~ (x*)* ~ ident i ty ,  

and (2 ~ the "cyclic negation" or "natural"  group, N, consisting of the group 

generated by ^,  

(2.12) x ^ -- l @ x .  

Unlike the group C the order of the group N will of course depend on the char- 

acteristic of the ring R. For a ring of characteristic p , - - in  particular for p-rings, 

N is of order p. 

Corresponding to the group C the concepts of R occur in (simple) dual pairs, 

or "C-als".  In particular: 0 and 1 are dual elements; x ,  @; -t-, @; -- ,  @; * are 

respective dual pairs of operationsS,--the latter, *, being self dual, where, by ap- 

s F o r  t h e  s i m p l e  g r o u p  C we s h a l l  M w a y s  u se  t h e  c i rc le  n o t a t i o n  @ ,  ( ~ ,  e tc .  i n s t e a d  of t h e  g e n e r a l  

x ' ,  . . . ,  -~ ", . . .  e tc .  no t a tSon  of (2.5) ,  (2.6). 
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plicatiou of (2.7), these are given by 

I a@b a @ b - - a •  

I a •  =- a@b@a@b 

l a G b  ~- a@b--1  

a@b ~- a@b@O 
(2.13) 

a@b ~- a - - b @ l  

a- -b  = a@b@0 

a * =  { 1--a  

O@a. 

The relations (2.13) illustrate the 

(Simple) Duality Theory for Rings. 

/ f  P(o, 1; + , @ ;  x , |  - , @ ;  *) 

is a true proposition in a ring R = (R, @, • ), so also is its (~imple) dual, 

d l P = P ( 1 ,  O; @ , + ;  | x ;  @, - - ;  *) 

obtained by replacing ecich argument in P by its dual , - -wi th  * left invariant (self-dual). 

The C-algebra ( =  "simple" algebra, = simple logic) of a ring (R, @, X ) is 

the system (R, •  @, *). In case R = J = (J, @, X) is a Boolean ring, that  is 

(Stone, [9]) if each element of J is idempotent, 

(2.14) a2(= a •  = a ,  ( a ~ J )  , 

--which then further implies characteristic 2, 

(2.15) a@a ~ 0 (a ~ J) , 

then its C-algebra (J, •  | *) reduces to the Boolean algebra, with the dual pro- 

ducts •  @ becoming Boolean intersection and union respectively, and * becoming 

the Boolean complement ; here the Boolean ring (J, @, • ) is interdefinably related 

to its C-algebra by the familiar equations 

a@b = ab*@a*b [ (a • b)*@(a* x b)] 

(2.16) l - - a ( =  1-i-a) = a* 

a @ b - - a b ( =  a@b-[-ab) = a@b.  

A Boolean ring is an example of a ring-algebra, rood C. 
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I t  was fur ther  shown in [4] and [1] tha t  a 3-ring (p ~- 3) is not  a ring-algebra 

mod C, but  is a ring-algebra rood N. As already remarked in the introduction,  

by use of results of the present paper it  may  now be shown tha t  all p-rings are 

ring-logics rood N. (Note t ha t  for p : 2, N ~ C). 

We shall extensively apply another  result established in [2]. I f  R : (R, + ,  • ) 

is a commutat ive  ring with unit,  (R, •  •, *) its C-algebra and J the set of all 

idempotent  elements of R, then  (J, •  (~, *) is an operationally closed sub-algebra 

of (R, •  •, *), 

(2.17) (J, •  @, *) ~ (R, •  G, *) �9 

The following generalization of Stone's Theorem (see [9]) was proved in [2]: 

T h e o r e m  A. The sub-algebra (J, X, @, *) of a ring R is a Boolean algebra with 

•  Q and * as logical product, logical sum, and logical complement respectively. The 

ring sum, + j  of the corresponding Boolean ring (J, + j ,  • ) is however not identical 

with the ring sum, + ,  of R, but is related to the latter by the equation 

(2.18) a + j b  ~ (a--b) 2 : a - -2ab+b (a, b o's J) . 

Applied to p-rings the natura l  group N, now of order p, leads to an extensive 

"p-al i ty  Theory"  along the lines of the simple, or C-duali ty theory,  as shown in [4]. 

Even a broad sketch of this theory would be too lengthy for consideration here, 

especially s ince  we are more concerned with the simple group C. At such points 

as touch on the p-al i ty  theory  an effort will be made to make such contacts in- 

dependent ly  readable. 

3. Vector  n - r i n g s :  part i t ion  vectors .  

In  this and the following two sections we exhibit  a certain class of vector 

rings "over"  a given Boolean ring. 

Let  J be a Boolean ring ~ Boolean algebra ~ Boolean ring-algebra (rood C), 

- -see  w 2, 

(3.1) J = ( . . . , a , b  . . . .  } =  ( g , + ,  ~ ) - =  ( J , @ , Q ) =  (J, •  e tc . .  

The equations which interdefinably connect ring (J, ~-, • ) and algebra (J, •  | *) 

have already been recalled in (2.16). In  addition, within the algebra itself, the logical 

sum Q and logical product  X are connected by the familiar De Morgan formulas 

(3.2) aQb ~ (a* • b*)* 

a •  ~ (a*| 
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Let  n be an integer, n > 2. By a vector part i t ion of J ,  of degree n , - -a lso  called 

a J - v e c t o r ,  or B o o l e a n - v e c t o r ,  we unders tand  an ordered n-uple of pairwise disjoint 

elements of J ,  
b = ( b', b", b'",  . . . ,  b (~)) 

(3 .3 )  b (~ • b ~) = b (~) ( i ,  j = 1, 2,  . . . ,  n )  . 

b (~) • b (j) = 0 (i ~ j ) .  

The b (i) are the "components"  of b, and two vectors are "equa l" ,  = ,  only if their  

corresponding components are identical, 

(3.4) b = cr (i) = e C) (i  = 1, 2 . . . . .  n )  . 

Notat ion:  As already anticipated,  bold face a, b etc. denote J vectors, and 

lower case (non bold face) a, b, x ,  etc. refer to elements of the Boolean ring J , - -  

except the letters i ,  j ,  k ,  l, m ,  n ,  p ,  r ,  s ,  t which throughout  the paper are reserved 

for integers. + @ + • 

We shall throughout  also employ the 2`" notat ion,  2,", _,)7, ~_~, etc., even 2`" 

ra ther  than  the more conventional product  notat ion,  / / ,  to denote a succession of 

" te rms" ,  separated by (the associative operations) -F-, respectively by @, etc. 

I f  a vector par t i t ion (3.3) satisfies 

(3.5) 2`~'b (1) = b ' + b " + .  �9 �9 + b  oo = 1 , 

we speak of a c o m p l e t e  vector. We shall use square brackets, [,  ] ra ther  than  the 

( , )  nota t ion (3.3), 

(3.6) b ~ [b', b", . . . .  b (n)] 

to designate tha t  the vector b is complete. 

Since ring sum, + ,  and logical sum, Q ( =  union) are identical for disjoint 

elements of J ,  

(3.7) ab = 0 ~ a + b  = a @ b  , 

the completeness condition (3.5) is equivalent  to 

Q 
(3.5)' 2`'b(i) = b ' @ b " |  . . .  |  1 .  

Each component  of a complete J-vector  is determined from the remaining 

components by equations of the form 
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(3.s) 

b = 1 - - ( b " - ~ b " + .  �9 �9 ~-b e~)) = 1 - ~ b " - ~ b ' " @ .  �9 �9 + b  (r.> 

- -  ( b " 4 ~ b ' " ~ - .  �9 �9 @b('~)) * = ( b " @ b ' " @ .  �9 �9 @b(~)) * 

= b"*  X b ' " *  X �9 �9 �9 X b e~)* �9 

Hence we may establich a 1--1 correspondence 

(3.9) [b0, b~ . . . . .  b~_~] <---~ < bl, b2, . . . ,  b~_~ > 

between j (~- l>  the class of all J vectors of degree n - - l ,  and J['] the class of 

all complete J-vectors of degree n. I t  is this l - -1 correspondence that  we have in 

mind when we write 

(3.10) J < ' ~ - ~ > ~ J ~ ] ,  or j<~-l> = j[,~3. 

Here, by (3.8) and (3.9), we have 

(3.11) 
bo := 5 1 @ 5 2 @ " "  ~ b ~ _ 1 - ~ 1  = (bl + b 2 - ~ "  " @bn_l )*  

- -  (b l@b~@. �9 �9 @b,~_l)* b ' b *  * - -  . - -  1 ,,. " " b n - [ .  

For the case where J is finite we mention the easily proved 

T h e o r e m  1. I f  J -~ J2k is  the f i n i t e  B o o l e a n  r ing  possess ing  exac t ly  k a t o m s  

(and hence 2k e lements ) ,  then  J ~ ] ,  (and  therefore also j ( ~ - l > )  consis ts  o f  n k e lements  

( ~  vectors). 

4. J - v e c t o r s  (cont inued) ,  vec tor  p - r i n g s ,  etc. 

For each given Boolean ring J and each integer n > 2 we shall now define a 

unique sum, + ,  and a unique product, •  which will convert (j[n], + ,  •  and 

similarly (j<~-l>, + ,  •  into a vector ring. As already remarked, each such vector 

ring will be "hypercomplex" over J only in an extended sense, inasmuch as the 

vector sum, + ,  is here not (in general) merely the traditional vector sum, i .e. ,  

not merely the sum of the corresponding components. (The relationship between 

the general vector sum, + ,  and the traditional vector sum, for which we write 

+v+c, is given by Theorem 15 of w 9). 

We augment tile previous 

Notation: All instances of bold face type,--elements a, b, etc. and operations 

+ ,  •  etc. ,--and later | *, etc., refer to the vector ring (j[nl, + ,  • ), or (J< n-1 >, .1. • ), 

which is to b'e defined presently, while ordinary type a, b . . . .  , + ,  X ,  @, *, etc. 

continues to refer to the "ground" Boolean ring-algebra J .  Furthermore when 

necessary to avoid ambiguity we shall use the dot subscript notation + ,  • and 
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later also @, • ', *, r etc., to refer to operations in the modular  ring (4.1) below; 

however since certain letters r, 8, etc. are reserved for integers (see nota t ion  fol- 

lowing (3.4)), it is usually unambiguously possible to write simply r + s ,  r8 instead 

of r + 8 ,  r •  etc. 

Le t  

(4.1) ((n)) = (((n)),  @., X. ) 

be the ring of residues, mod n. Each mul t i ta t ion  ~v ( =  self-mapping) of the set ((n)), 

(4.2) V =  V( r , s  . . . . .  t ) ,  (r, 8, . . . , t ,  and v(r, 8, . . . , t )  ~'s ((n))) 

may  be projected to yield a corresponding mult i ta t ion  of the class (of vectors) j i l l ;  

we denote this projected mul t i ta t ion  by bold face ~0. The components of the pro- 

jection are defined by 
+ 

(4.3) % =  [~0]i= [q0(a,b, . . . , d ) ]  i =  ~ _ ~ a r b s . . . d t ,  ( i =  0,1 . . . . .  n - - l ) .  
q)(r, s . . . . .  t) - i 

Here, on the right, the sum ( r ing+of  J)  stretches over all integers r, s . . . .  , t, 

(rood n), for which ~v(r, 8 . . . .  , t) ~ i (rood n) (also wri t ten = i (mod n)). 

For  example, for n ~  4, if ~v is taken  as • rood 4, 

cf = of(r, 8) = r8 (mod 4) , 

its projection ~ = • on J[~] has the components 

[a •  = aobo+aobl +aob2+aoba+albo+a2bo@asbo+a2b 2 : ao@bo@a2b 2 

[ a •  b]l = aabl@aab a 

(4.4) [ a •  b]2 ~- a lb2+aeb l+aeba+aab  2 

[aN b]3 = alba~-aab 1 . 

Similarly, for example, with n = 4 and ~ taken  as 3 ,  mod 4, its projection 

4" on j[4] has the components 

[a4"b]0 = aobo+alba+a2b2+aab , 

[a4"b]1 = aobl@albo@a2ba@a3b2 
(4.5) 

[a4"b]2 : aob2@albl @a~bo@aab a 

[a4"b]a = aob~+a,b2+a2bl+a3bo .  

In the definition of projection our reference to "components"  has anticipated 

the 
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T h e o r e m  2. I f  ~v(r, s . . . . .  t) is a multitation of the class ((n)), its projection 

~(a, b, . . . ,  d)  on jE,~J, 

(4 .6)  ~ = [~0(a,  b ,  . . . ,  d ) ,  ~ l ( a ,  b . . . .  , d )  . . . . .  ~n_l(a, b . . . . .  d ) ] ,  

where the q~i are defined by (4.3), is a complete J-vector. 

P r o o f :  
§ + 

(4.7) %q0j = (~_~ a r b s . . . d t ) ( X  ar,bs,...dr, ) . 
q~(r,s, . . . , t ) = i  q~(r',s', . . .  t ' ) = j  

For  i ~  j at  least one of the  following must  hold, 

(4.8) r ~  r', s;~ s', . . . ,  t;~ t ' ,  

and hence 

(4.9) ~ i  = 0 ( i ~  j ) .  

This follows from (4.8), the d is t r ibut iv i ty  of the  @ and • of J ,  and the fact  tha t  

(4.10) a --~ [a 0, al, . . . ,  an_l], b = [b0, bl, . . . ,  bn_l] 

are complete J -vec tors  by  hypothesis .  A similar simple argument  shows tha t  

T 

(4.11) ~" ~ = 1 ,  
( i - -  0 . . . .  , n - l )  

and completes Theorem 2. 

From Theorem 2 together  with (3.7), it is seen tha t  the  definition (4.3) of 

the  project ion of ~ may  be equivalent ly  s ta ted  in terms of | sums ra ther  than  ~-, 

| 
(4.3)' Fi = [r = ~.~" arbs" "dr" 

(p(r, 8, . . . ,  t) = i  

T h e o r e m  3. For a given Boolean ring J and a given integer n(n > 2), (1 ~ the 

system (J[n],-{-, •  with -{- and • defined by projection according to (4.3), i .e . ,  

+ | 
(4.12) [a-{-b]i = ~ a~b 8 ( =  ~ %b8) (i = 0, 1, 2 . . . . .  n - - l ) ,  

r+8-- i  ( m o d  n) r + s - i  ( m o d  n 

+ | 
(4.13) [a•  = ~ a~b 8 ( =  ~y' aft8 ) 

r8 i ( n m d  n )  r s = i ( m o d n )  

is a (commutative) ring (with unit), (2 ~ of characteristic n, 



(4 .14)  

(3 ~ ) F o r  n = p = p r i m e ,  

(4.15) a p ~- a X a •  . .  - X a  = a 

a n d  hence  (J[P],-[-, •  i s  a p - r i n g .  

p ~ R i n g s  a n d  t h e i r  B o o l e a n - V e c t o r  R e p r e s e n t a t i o n .  

n a  : a - t - a + . . .  + a  = 0 ( a  z J i l l )  . 

(a E jrnj) , 
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P r o o f :  The commuta t iv i ty  of -I- and of • is immediate  from (4.12) and (4.13). 

We first show tha t  (I): each of the operations -I- and X is associative. For  + we 

must  show tha t  

(4.16) [a-]- (b-{-c)] i  = [ ( a - l - b ) - I - c ] i ,  (i --~ 0, 1 . . . . .  n - - l ) .  

By (4.12) this is equivalent  to showing tha t  

+ + 

(4.17) ~ ,  ar(b~ct) ~ ~ 7  (arb~)ct " 
r+(s+t) = i (r+s)+t -- i 

iI~od n lllod 

This however is immediate  from the associativity of • in J and the associativity 

of the d- of the ring ((n)). The associativity of • given by (4.13) follows in a similar 

direct manner.  

We next  show t h a t  (II):  -[- and • are distributive,  t ha t  is, 

(4.18) [a(b-{-c)]~ = [ a b - l - a c ] i  (i = 0, 1 . . . .  , n - - I )  . 

(Notation: Here, as elsewhere where no ambigui ty  can arise, we write a b  (simple 

juxtaposit ion) in place of a x b ) .  

Using (4.12) and (4.13) this is equivalent  to showing tha t  

+ + 

(4.19) ) ~  ar(bscl) = ~ (a~b~)(ar,bt),  (i = 0, 1, . . . ,  n - - l ) .  
r x(s+. t ) = i  (mod n) (r•215 (mod n)  

On the right of (4.19) all terms of the sum are 0 except where r'  = r, because of 

the pairwise disjunction of the components.  The t ru th  of (4.19) is then obvious 

from the idempotence a~ ---- at, together  with the dis t r ibut ivi ty  of the ~- and X 

of ((n)). 
We next  establish (III) :  In  (jEn], .{ .) ,  

(4.20) a - { - x  = b 

always has a solution x,  given by (4.23), for given a and b. Here (4.20) is equivalent  

to the following equations 

16 642138 A c t a  ma themat l ca .  84 
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aoXo ~ - a n _ l  Xl-~-an_~X2 ~-  . . . - ~ - a l X n _  1 ~_ b o 

a l X o ~ -  a o x l  ~ - a n _ l x 2 - ~ -  . . .  ~ -a2Xn_  1 - -  b 1 

(4.21) a 2 X o +  a l x l - ~ a o x 2  ~ - a , ~ _ l x a - ~ .  �9 �9 ~ a a x n _  1 ~-  b~ 

an_lXo ~-an_2Xl  ~ - a n _ a x 2 ~ -  . . . - ~ - a o x n _  1 ~ bn_ 1 �9 

Multiply these in turn by a0, a I . . . . .  an_ 1 and add; making use of (3.3) and (3.5) 

we then get 

(4.22) x o ~ b o a o ~ b l a l  ~ - b 2 a 2 -  ~ �9 �9 �9 ~ b n _ l a n _  1 . 

Similarly, if the equations (4.21) are multiplied in turn by the coefficients of x i 

and added, upon simplification by (3.3) and (3.5) we get 

(4.23) x i  ~ b i ao -~b i+ la l - [ -b i+2ae -  ~ �9 �9 �9 ~ - b i _ l a n _  1 . 

That the xi given by (4.23) actually satisfy the equations (4.21) is immediately 

verified. This proves (III). 

The properties (I)-(III) prove part  ( l~  is that  (j[n], 4-, •  is a ring. 

Directly from (4.12) and (4.13) one finds the zero, 0, the unit, 1, and the "integers", 

14-1, etc. to be given by:  

o =  [~, o, o, . . . ,  o] = < o, o, . . . , o >  

1 = [o, 1, o, o . . . .  , o ]  = < L o ,  o, . . . , o >  

(4.24) 2 ( :  1 4 - 1 )  : [O, O, 1, 0 . . . .  , O] : ( O, 1, O, O . . . .  , 0  ) 

n - 1  = [ o , o ,  , . . ,  o, 1] = < o , o  . . . .  , o ,  1 > 

n ( =  1 - J - l + - . - 4 - 1 ,  n t e r m s ) -  O. 

From the distributive property and (4.24) 

(4.25) a 4 - a 4 - . . . + a  ( n  terms) : a •  ~ 0 ,  

and hence (2 ~ of Theorem 3 is proved. 

There remains to prove (4.15), for p = prime, that  is, to show that 

(4.26) [aP]i ~ [a]/ : a i (i : 0, 1 . . . .  , p - - l ) .  

By the definition of vector product, (.4.13), this is equivalent to showing that  
+ 

(4:27) )__J a r a r 2 a r a . . . a r p  = ai  , 
r X r 2 X .  . . x . r p - - i  (rood p) 
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where the sum stretches over all indices whose product  ~ i (rood p). From the 

pairwise disjunction,  and the idempotency of the components,  terms in (4.27) 

with different  subscripts vanish, and we may  write (4.27) as 

Jr 

(4.28) ~ "  a~ ~-- a i . 
rP=i 

However in ((p)), the field of residues rood p ~ prime, 

(4.29) r p : r (r E ((p))) , 

and hence (4.28) is verified, since the only te rm on the left of (4.28) which does 

not  vanish is tha t  for which r ~ i. This proves par t  (3 ~ and with it the complete 

Theorem 3. 

We list several useful formulas,  all ready consequences of (4.23), (4.24) and 

(4.12), as 

T h e o r e m  4. I n  

(jenl, -I-, X ) ,  

i f  a ~-- [a 0, a 1 . . . .  , a n , l ] ,  then  

(4.30) - - a  ~ [ a 0 ,  an_l, an_ 2, an_ 3, . . . ,  a l l  

(4.31) a ^ = 1-{-a = [an_l, ao, al ,  a~, . . . ,  an_2] 

(4.32) a * :  1 - - a  = [a 1, a o, a~_ 1, an_ ~ . . . . .  a2] . 

In  the ring (jE~J, ~_, •  we may,  via (3.11), completely eliminate a 0 and b 0 

from each of the components [a-{-b] i and from [a • b]i. In  this way, again by means 

of (3.11), we may  write the ring (j[nl, .{., •  in  the "non-homogeneous"  form 

(j<n-l>, .{., •  I t  is convenient to speak of these (isomorphic) rings as different 

representations of the " same"  ring, 

(4.33) (jill, .~, • : (j<n-l>, + ,  •  

In  this non homogeneous form it is usually convenient to write all vectors, in 

part icular  O, 1, etc. (see (4.24)) in the ( , )  form. 

For  the special case n : 2 we prove the 

T h e o r e m  4. V i a  the 1 - - 1  correspondence  

(4 .34)  a ~ [a*,  a] ~--~ ( a ) , (a e J )  , 

each B o o l e a n  r ing  J is  i s o m o r p h i c  w i t h  i ts  comple te  vector J - r i n g  o f  degree 2, 
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(4.35) (J, d-, • (j[2],-I-, •  ( j , l ) ,  "t-, •  

Proof . :  From (4.12), (4.13), (3.11) and familiar properties of a Boolean ring 

(see (2.14)-(2.16)), 

( al }'t '(  bl } ~-- ( aobi q-albo } = ((1--al)bl@ai(1--bl)}  = ( al @bl } 
(4.36) 

( al} X ( b,} = ( al X b l }  . 

From (4.36) the asserted isomorphism is immediate via the correspondence 

(4.37) a I <---+ ( a 1 } +---> [a0, a l l  , 

which is (4.34) in different notation. 

5. On comple teness .  A ring is complete if (1 ~ : the sum, and also the product 

of an arbitrary (not necessarily denumerable) subset of elements of the ring is 

defined and is an element of the ring, and (2 ~ : both associativity and distributivity 

holds for these general sums and products�9 In a complete ring it is readily shown, 

for an arbitrary group K of coordinate transformations in the ring (see w 2), that  

(3~ the general property (1 ~ holds for any K-algebraic ( =  logical) operation in 

the ring, and moreover that  any formal K-algebraic property of the ring that  holds 

for arbitrary finite subsets of the ring continues to hold in the above general sense. 

Applied to the foregoing vector rings we state without proof the 

T h e o r e m  5. I f  J is a complete Boolean6 ring, then the vector ring ( j [n ] ,  ~ . ,  X )  

over J is a complete ring. I f  

(5.1) A = { . . . , a ,  . . . } =  { a , b , c ,  . . . }  

is any set of (not necessarily distinct) J-vectors, 

a = [ao,  a l ,  . . . ,  a n _ l ]  , b = [bo, b I . . . . .  b n _ l ]  , . . .  

then the components of the sum of the vectors comprising A, a~d similarly of the product, 
is given by 

+ + @ 

(5.2) [_,~ a ] i =  ~ "  (arbsct...) = ~.,~ (arb~ct...) 
a @ A  r , s , t , . . . , = 0 , 1 , 2  . . . .  , n - 1  r + s +  . . . .  i (rood n) 

r + s + t + . . .  = i  (rood n) 

A complete  Boolean ring is also definable as one isomorphic wi th  the  ring of all subsets  of 
some set. 
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x + (~ 
(5 .3 )  a ] i  = = ( a r b o r , . . . ) ;  

a C A r x s x t X  . . . .  i (Inod n )  r 'xs'X . . . .  i (raod n) 

( i = 0 ,  1 ,2  . . . . .  n - U .  

Specialized to the simplest case n ---- 2, by  use of Theorem 4 and the  corres- 

pondence (4.37), or (4:36), the formula  (5.2), for instance,  yields the  familiar  re- 

presenta t ion  (either of a finite sum in any Boolean ring-algebra J ,  or of an a rb i t ra ry  

(not necessarily denumerable)  sum in any complete Boolean ring-algebra J ) ,  

( a - ~ b - ~ c - ~ d - ~ e  4 -  . . . ) ~-- a b * c * d * e * .  . . - ~ a * b c * d * e * .  . . J r ' "  

(5.4) ~ - a * b * c d * e * .  �9 �9 - 4 - a * b * c * d e * .  �9 �9 ~ - .  �9 �9 

4 - a b c g * e * f * .  �9 �9 ~ - a b c * d e * f * .  �9 �9 - ~  . . . 

where each t e rm has an odd number  of non-complemented  factors  and the rest  

complemented  (--~ starred).  (This insures tha t  the sum of the  subscripts  is - -  1, 

rood 2). The formula  (5.4) m ay  also be wri t ten  with | instead of + on the  right.  

A corresponding familiar  Boolean formula  for the produc t  a b c d e . . ,  results f rom 

(4.37) and (5.3) by taking n = 2, namely  

(5.5) a b c d e  . . . .  a * b * c * d * e * .  �9 �9 ~ - a b c * d * e * .  �9 �9 ~ -  . �9 �9 - ~ a b * c d * e * .  �9 �9 ~ . : .  

where (to insure t ha t  the produc t  of the subscripts is ~ l, mod 2), each t e rm con- 

tains ei ther  no or an even number  of non complemented  factors,  and the  rest  

complemented.  We m a y  again write Q instead of ~- on the r ight  of (5.5) 

Again for n --~ 3, for example,  (5.3) yields 

(5.6) [a • b • c • d • e •  �9 �9 ]~ ~ a ~ b ~ c ~ d l e  1 .  �9 �9 ~ - a ~ b e c ~ d ~ e  1 �9 �9 �9 

- ~ a : b  l % d l Q .  . . - ~  . . . 4 - a 2 6 2 % d 2 e 1 .  . . - ~  . . . 

(where each t e rm has no or an even number  of " 2 "  components  appearing),  

(5.7) [ a  • b • c • d • e • . . . ] ~  ~ a 2 b ~ c ~ d ~  . . . - ~  a l b 2 C ~ d ~  . . . - ~  . . . 

~ - a . 2 b e % d l e  1 .  �9 . - ~  . . . 

(where each t e rm involves an odd number  of " 2 "  components) .  Here  again we m ay  

also write | in place of -~ on the  r ight  of (5.6) or (5.7). 

Formulas  (5.2), (5.3) and the Completeness Theorem 5 will take  on addit ional  

significance in w 8 af ter  it  is shown tha t  any  (abstract)  p-ring (see (1.1) and (1.2) 

of w l) may  be isomorphical ly represented as a vec tor  p-ring. 
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6. Di rec t  p ro jec t ion .  In the vector ring (J[~J, ~-, X) : ( j ( n - l > ,  .{., X ) ,  the 

and X of the ring are the direct projections (4.3) of ~ and • from the ring of 

residues (((n)), ~ ,  .X), as defined in w whereas all further ring concepts, in 

particular K-algebraic ( :  K-logical) concepts are, as in any ring, "internally" 

determined, i. e. defined in terms of ~ and X. For instance for the generators of 

the simple and of the natural groups, C and N, a* : 1 - - a  and a ^ = 1-I-a were 

found to be given by (4.32) and (4.31). 

On the other hand it is easily verified that  the direct projections onto j[n] 

of the corresponding C- and N-logical concepts .*, "~ of the ring (((n)), .~, . •  

let us denote these projections by *p~, ̂ p', leads to precisely the same formulas; 

thus, by 
[a*Pr]i = ai*. 

(6.1) (i : 0, l, 2 . . . . .  n - - l )  
[ a ^ ~ , ] ~  = ai". 

(where '~ is the inverse of ~" , i .e. ,  i v ~ i 1), which is seen to agree with (4:32) 

and (4.31). Hence we have 
a �9 ~ aSpr  

(6.2) a n : a ^p" 

Since all C- (respectively all N-) algebraic concepts of jEn] are generated by X 

and * (respectively by X and ^), we have demonstrated the 

T h e o r e m  0. Each C- (respectively each N-) logical concept of (jinx, .{ .  • is 

the same whether determined "internally", from -{- and • or by directly projecting 

onto j[n~ the corresponding C- (respectively N-) logical concept of the ring (((n))), .+, X ). 

Briefly stated: the (C-, respectively N-) algebra of the projection is the projection of 

the (C-respectively N-) algebra. 

Actually only a trivial addition to the foregoing argument yields the stronger 

T h e o r e m  7. I f  ~ :  v2(a, b, . . .  )is a multitation of j[n] which is some compositional 

combination (~(-{-, • *, ^) of (any or all of) the operations ~ ,  • *, ^, then the 

components [y]~ of ~2 are the same whether computed "internally" (in the previous 

sense) or by direct projection of the same composition (~( ~. , • *., r of the corresponding 

operations •, • etc. of (((n)), ~ ,  .x ). 

Illustrations. 

(6.3) a |  ~ (a* • b*)* (internally) . 
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In this form the components [a • b]i are tedious to compute. By direct projection, 

however, 

(6.4) 

Again 

(6.5) 

Similarly 
(6.6) 

§ + 

[ a O b ] i  = ~ a~b~ = ~ arb~ 
r @ s = i  r+s--rxs=i 

(i = O, 1 . . . . .  n - - l ) .  

a ~ b  = ( a * . 4 - b * ) *  (by internal definition). 
+ + 

[ a ~ b ]  i = ~ "  a,b 8 = ~ "  arb s (by direct projection). 
r@s= i  (mod n) r+s-l=i (rood n) 

a x ' b  = ( a a x b ^ )  v (internal definition) 
+ + 

[a X 'b]i  = ~ arb~ : ~ arb~ 
rx+s=i (rood n) r+s+rs=i (mod n) 

| 

(by direct projection). 

In any of the above we may also take ~," instead of ~ .  

Theorem 7 shows that,  while the projection process 

_ _ - - - - ~  (((/b)), .~-, .>() proj (gEn], "t-, X )  

does not define a ring homorphism in the strict traditional sense, it does define 

a kind of operational homorphism. 

I I  

ABSTRACT p-RINGS AND T H E I R  BOOLEAN-VECTOR REPRESENTATION 

7. Canonical "linear" decomposit ion in abstract p-r in~s .  

We turn now from the class of vector p-rings, just considered, to arbitrary 

p-rings (see w 1), which we also refer to as abstract p-rings. Let 

S = (S, + ,  •  = (S, + ,  x ,  |  *) = etc. 

be any abstract p-ring. To facilitate later contact with vector p-rings we shall 

parallel the previous 

Notation: Bold face -J-, •  | *, ^, v etc. denote the familiar ring oper- 

ations (see w 2), and bold face a, b, etc. denote general elements of the abstract 

p-ring S; in addition small (non bold face) Roman letters a, b, etc. (except those 

reserved for integers,--see notation following (3.4)), always denote idempotent 

elements of S, 

(7.1) a 2 =- a l g a  = a . 
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The C-logic (or simple logic) of the ring S is the algebra (S, •  | *),--see 

w 2, where 
a* = l - - a ( :  O(~a) 

(7.2) a @ b  = a + b - - a •  

a •  = a ~ b ( ~ ( a |  . 

The set I ,  consisting of the p "integers" of S, 

(7.3) I : {0, 1, 2 . . . .  } 

where 

(7.4) 2 : 1@1, 3 : 1+[.-2 . . . .  

forms a subring ( :  sub field) of S, 

(7.5) (I, + ,  X) ~ (S, + ,  X ) ,  

which is obviously isomorphic with ((p)), the field of residues rood p, 

(7.6) (I, +,  (((p)), +, . x )=  +, x ) .  

As recalled in w 2, the set J of all idempotent elements of S, while not in general 

(i. e., for p ~ 2) a subring of S, is a (simple) sub-alffebra 

(7.7) (J, •  | *) ~ (S, •  | * ) ,  

and this sub-algebra is a Boolean algebra (with 0 and 1 as null and universe, and 

with •  | * as logical product, logical sum and logical complement respectively); 

the (simple, i. e. C-) algebraic notions of J are identical with those of S. To further 

facilitate subsequent contact between abstract and vector p-rings we agree to the 

convention or 

Notation: When applied to the idempotent Boolean algebra J of S the (simple) 

logical operations •  | * etc. are also denoted by ordinary (non bold face) type, 

a X b = a •  

(7.8) a| :-a| : (J, • 1 7 4  = (J, x , @ , * ) ,  

a* : a* 

and similarly for the idempotent elements 

0 : 0 , 1 - = 1 ,  

(but not for the (in general) non-idempotent 2, 3 . . . .  ). Furthermore, parallel to 
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the abbreviation for vector product (following (4.18)) it is frequently convenient 

and non-ambiguous even in the case of • in S, to write simply 

(7.9) a •  ~ -  a b  

and similarly 

(7.10) a t ~- a • a • . . . • a (t factors) , 

However the r ing sum, ~ (non-bold face!) of the Boolean ring (J, q-, •  

which corresponds to the Boolean sub-algebra (J, •  Q, *) is not identical with 

the ring sum, "l-, of S, but  is related thereto by 

(7.11) a~-b ~ a - - 2 a b + b ( ~ -  a - - a b - - a b - { - b )  , (a, b E's J )  , 

as reviewed in w 2. Thus, in particular , for dis jo in t  elements of J the two degenerate 

to the same operation, 

(7.12) ab -~ 0 ==~ aq-b  ~-- a-i-b (a, b ~'s J )  . 

T h e o r e m  8. Normal Representation Theorem. 

I n  an  abstract p - r ing  S ~ (S, -I-, •  each a c S m a y  be decomposed in  one and 

only  o n e  w a y  in  the "norma l  idempotent  f o r m "  

(7.13) a z a l . l . 2 a 2 - t . 3 a 3 . t -  . . . 4 " ( P - -  1)ap_l 

( ~  al.~-a2-I-a2.~-a3-~-a3-I-aa-i-a4.-~. . . ) 

i n  which  the "normal  componen t s"  a i ~ (~t)i o f  the element a are idempotent  e lements  

o f  S and pa i rwise  d is jo in t ,  

(7.14) a~ : a i . 

(7.15) aia j : 0 (i ~ j )  . 

The  normal  components  a k o f  a m a y  be de termined f r o m  a by the equations,  

(7.16) ak : ( p - -1 ) ( kP-~aq-kP-3a : - I - kp -4a3 -1 - . . . - I - k~  p-l) , (k ~- l, 2, . . . ,  p - - l )  . 

Here  the coeff icients  i n  (7.16) are to be taken  rood p. 

P r o o f :  We first show that  if an element a of S has a normal idempotent de- 

composition, i.e.,  is expressible in the form (7.13) with the a k satisfying (7.14) 

and (7.15), then these components a k are unique and are given by (7.16). We 

have  
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a ~ a l q - X a s - J - 3 a 3 d - 4 a 4 . J ~  - .  �9 �9 - { - ( p - -  l ) a p _  1 

a 2 :  a l . l - 2 2 a s - l - 3 S a a - l - 4 s a 4 - { -  . �9 . - { - ( p - -  1)2ap_l 

(7.17) a 3-- al-~-X3a2~-33aa-~43a4-~-. �9 �9 -~- ( p - -  1 )3ap_ 1 

a v - I  ~ a , - { -  2 P - l a s  ~ -  3 P - ' a 3 - [ - . . .  - ~  ( p - -  1 )P - lap_  1 . 

We borrow the following ident i ty  from number  theory :  Le t  p be a prime 

integer, and m, n any integers where m ~ 0, n ~ 0(p). Then 

(B) m P - S n  ~-  m P -  3 n 2 - ~ m p - 4 n  3 ~ - . . " - ] - m ~  p - '  

0 ( m o d p ) ,  if n ~ m ( p )  

p - - l ( m o d p ) ,  if n ~ m ( p ) .  

If  we now add the equat ions (7.17), app ly  the ident i ty  B with m ~ 1 and simplify 

by  use of the ident i ty  

(7.18) (p-- l )*  ~ 1 ( m o d p ) ,  

we find 
(7.19) al  ~ ( p - -  1) ( a . ~ - a 2 - } - a 3 +  . . . - ~ a  p - l )  . 

Again, if we mul t ip ly  the  equat ions  (7.17) in turn  by  2 p-3, 2 p-4 . . . . .  2 ~ add and 

again use (B) and (7.18), we get 

(7.20) a s ~ ( p - -  1) ( 2 P - 2 a - ~ 2 P - 3 a S - [ - 2 P - ~ a ~ . ~  - . .  �9 -[-2~ j~-l) . 

Similarly, by mult iplying the equat ions (7.17) in turn  by  3 p-'~, 3 p-'~, 3P-4, . . . ,  3 o 

and adding, respectively by  4 p-2, 4 p-3, . . . ,  4 o and adding, etc., each t ime applying 

(B) and (7.18), we get 

a a ~ ( p - -  1)(3P-2a~3P-3a2-~-. �9 �9 -{-3~ p-l) 

a 4 : ( p - -  l )  ( 4 P - ~ a + 4 P - 3 a S - | - . .  �9 -~4~ p-l) 
(7.,21) 

Up_ 1 -~- (p - -  1 ) ( (p - -  1 )P-2a-~ (p - -  1 F - 3 a ' ~ - b . . .  + ( p - -  l ) ~  

These formulas (7.19)-(7.21) are precisely those condensed by  (7.16). 

To complete  the proof of the  theorem we must  show tha t  for given a ~ S, the  

a~ d e f i n e d  by (7.16) actual ly satisfy the conditions (7.13), (7.14) and (7,15). Let  us 

first t ake  (7.13). Upon  subst i tu t ing  the a k given by  (7.16), the  right side of (7.13) 

may  be wri t ten 
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( p - - l ) { ( l + 2 P - ~ + 3 p ~ + . . .  + ( p - - 1 ) , ' - ~ ) a + ( I  + 2 p - 2 + 3 p - ~ ~  + ( p - -  l )p- :)a:  

(7.22) + ( l + 2 P - 3 + 3 * ' - a + . . .  + ( p - - 1 ) P - 3 ) a ' ~ + . . .  + ( 1 + 2 + 3 + . . .  + ( p - - 1 ) ) a  p-~} . 

Using B in (7.22), the coefficient of a is ~ (p- - l ) ,  while all other coefficients are 

~_ 0, mod p. Fur the r  simplification of (7.22) by (7.18) then  shows tha t  (7.13) is 

satisfied. 

We next  verify t h a t  the a k defined by (7.16) satisfy (7.14) and (7.15). In  place 

of the ar i thmetic  ident i ty  (B) we need the following var ian t :  Let  p be a prime 

and let k, l, t be integers where 

(7.23) 

Then 

(c) 

Here, in view of (7.18), 

(7.24) 

k ~ O , l ~ O , t ~ p - - 1  (mod p ) .  

kOlt + k l t - l  + k21t-~ + . . . + ktlO + kt+llV-2 + . . . ~_]cP-21t-p+ ~ 

{ ~ 0  if 

p - -1  if 

1 p ~---- 1 (rood p) , 

k ~ 1 (mod p) 

k ~ l (mod p) . 

and,  since all exponents are of course reduced, we have 

(7.25) 18 ~ l *' (rood p) =~z s -= s' (mod ( (p-- l ) )  . 

Thus, for instance, for p ~ 7, t ~ 3 (C) reads 

(7.26) 1 3 + k l 2 + k 2 1 4 - k 3 + k 4 1 5 + k S 1 4  { 

From the definition of p-ring S, 

~ 0  if k : ~ / ( 7 )  

~ 6  if k ~ _ / ( 7 ) .  

(7.27) a p ~ a (a  c S )  

and hence, similarly to (7.25), we h~ve 

(7.28) a 8 : a 8' ::> s ~ s' (rood (p-- 1)). 

If  we compute ak, a t by means of (7.16) and reduce the exponents by means 

of ~(7.25) and (7.28), we get 

(7.29) 

where 

aka  t -~ A k a a +  A ~z~a: + . , . + A kt(p_l)aP-1 , 
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A ~z ~ ---- (p - -  1):( kOlP,~ ~ klP-3 ~ k:lP-~-/ . . . + kP-~l ~ 

Akl ~ = (p - -  1)~(k~ + klP-4 ~-k21;-5 + . . . ~_]cp-21 p-2) 

(7.30) A kz 3 --~ ( p - -  1)~( k~ klP-5-/  k21P-6 + . �9 �9 ~- ]cP-~l p-'~) 

A~(p_l) -~ (p - -  1)2(k~176 kP)-: + k~lP-'~-/ . . . + kP-21) . 

By (C), if k ~ 1 (rood p), it is seen tha t  each Akl i ~ O, and hence by (7.29), (7.15) 

of Theorem 8 is verified. Again, if k ~ l(p), then  by (C), (7.29) and (7.30) we readily 

compute, 
Ak~ 1 = (p-- 1)2(p - 1)kP -2 = ( p - -  1)k p-2 

Ak~ ~ = ( p - - 1 ) 2 ( p - - 1 ) k ~ - 3 =  ( p - - 1 ) k  p-3 
(7.31) 

Akk~p_~) = ( p - -  1)~(p - 1) = (p - -  1)k ~ . 

Hence from (7.29), (7.31) and (7.16) we have 

aka k ~ a k (k = 1, 2, . . . ,  p - - l )  , 

which proves (7.14). This completes Theorem 8. 

8. p-Vector representation. 
A vector p-ring, as follows from Theorem 3, may  of course be conceived as an 

abstract  p-ring. We shall now prove the converse. For  this purpose the non- 

homogeneous vector form (j(p-l>, _[. •  is more convenient than  the homo- 

geneous form (J[P], .-[-, •  

Theorem 9. Let (S, -[-, •  be an abstract p-ring, and let J be its idempotent  

Boolean sub-algebra, 

(8.1) J ~ (J, •  Q, *),  

with corresponding Boolean r ing (J,  •  + ) , - - ( s e e  (7.7)-(7.11)). I f  

(8.2) a = ax + 2a2-[-3aa-[- . . . - [ - (p--  1)ap_ 1 

is the (unique) normal  idempotent  decomposit ion (Theorem 8) o f  an element a o f  S,  

then the 1 - 1  correspondence 

(8 .3 )  a ~ < a l ,  a 2 . . . . .  ap_  1 > 

represents an i somorphism between the abstract p-ring (S, -{-, •  and the vector p-ring 

( j (p-1) ,  .{., •  "over"  the Boolean idempotent  ring J o f  S ;  that is, 
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(8.4) a X b  ~--~ ( a  1, a 2, . . . ,  a p _ l > X < b l ,  b.2 . . . .  , b p _ l >  

(8.4)' a - t - b  ~--+ < a 1, a s . . . . .  a p _ l > - t - <  b l ,  b 2 . . . . .  bp_~> . 

Proof. :  The correspondence of the products is fairly immediate. From (8.1) 

and (7.6), by direct multiplication of the elements a, b of S, 

a X b  : (a~b~ @ .  . . ) l - l - ( a l b 2 @ a 2 b I  4 - .  . . ) 2 - { - .  �9 �9 
(8.5) 

= c 1 1 . t - c 2 2 . t - c a 3 - t - . . . - t - c p _ l ( p - - 1  ) , 

w h e r e  
+ 

(8.6) c i = ar,  b~, - l -ar , ,bs , , - I -  . . . .  ~ arb  ~ 
rs=i  (rood p). 

Now since the terms ar,b~,, ar,,b~, . . . . .  in (8.6) are pairwise disjoint elements of J ,  

by (2.18) the ring sum ~ (belonging to S) which occurs may be replaced by the 

Boolean ring sum, -~(=  -~g) of J,7--see (7.7)-(7.10), 

+ 

(8.7) c i = a r , b ~ , + a r , , b s , , ~  . . . .  ~," arb  s ( - ~  = - ~ j )  . 
rs=i  (rood p) 

These ci are thus idempotent and obviously pairwise disjoint, 

(8.8) clc  j : 0 ( i ~  j) , 

consequently the c i given by (8.7),--or by (8.6) are the actual normal components 

of the product a •  (Theorem 8). On the other hand, according to (4.13), the right 

side of (8.7) is seen to be identical with the ith component of the vector product. 

(8.9) < a l ,  a e . . . .  , a p _  1 > • < b l ,  b e . . . . .  bp_ 1 > . 

Hence, via the correspondence (8.3), (abstract) products correspond to (vector) 

products, and (8.4) is established. 

We turn to the proof of (8.4)'. For a, b of S, by direct addition 

(8.10) a - { - b  : ( a ~ - { - b ~ ) q - 2 ( a 2 - { - b 2 ) - b 3 ( a 3 . 4 - b 3 ) - { - . .  �9 - [ - ( p - -  1)(ap_l-{-bp_,) . 

However (8.10) does not in general represent the normal idempotent decomposition 

of a . 4 - b ,  (Theorem 8). Let the normal components of a - l - b  be ci; then by Theorem 8 

the elements c i of S are uniquely determined by the three conditions 

In fact, for disjoint idempotent elements a, b of any commutative ring R, 

a ~ R b  = a - ~ j b  = a @ R b  = a @ j b .  
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(8.11) 

(s.12) 

(8.13) 
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C~ ~ C i 

c~c~ = o (i ~ j )  

(a~ q-bl) -1-2(az  +b~)- l -  . . . -{- ( p - -  1)(ap_l-]-bp_1) : 

cxq-2c2-t-3%-I- �9 �9 �9 "i-(P-- 1)cp_l �9 

We shall show tha t  the solution of these equations (8.11)-(8.13) is given by 

+ 

c 1 - -  aobl- l -albo4.  . . . .  ~ arbs 
�9 r + s = l  (mod p) 

(s.141 
§ 

c i -~ aobi-l-alb~_l-l- . . . .  . ~  a~.b~ 
�9 r + p = ~  (rood p) 

( i =  1,2 . . . .  , p ~ l ) .  

F rom (8.15) the ci are seen to be idempotent  and pairwise disjoint elements of S, 

t h a t  is, (8.11) and (8.12) are satisfied. We proeede to show t h a t  (8.13) is also satis- 

fied. 

Subst i tut ing the  c~ given by (8.14) into the r ight  side of (8.13), the result m a y  

be arranged in the  form:  

a o b l  ..[-2aob 2 

+ a l b o  -[- 2a lb  1 

.4-a~b v_l-l- 2a~bo 
(s.16) 

+ 3 a o b  3 + .  �9 �9 + ( p - -  1)aobp_ 1 

+ 3a lb  ~ + .  . .  + ( p - -  1)albv_ 2 

+ 3 a 2 b l +  �9 �9 . + ( p - -  1)a2bp_~ 

-~- aab p_~ + 2a3b ~_l 4 ,  3 % b  o..~ . �9 �9 + ( p - -  1)aabp_ 4 

-~-ap_lbz-~-2ap_lb3+ 3ap_lb4 + . �9 + ( p - - 1 ) a p _ ~ b  o . 

Since a o and  b o are defined by 

(8.17) a o + a l + a 2 + .  �9 . + a p _  1 ~- 1; b o + b l q - .  �9 .q -bp_  1 ~- 1 , 

t ha t  is 

Here again, since the  terms in c i are pairwise disjoint idempotent  elements, these 

c i m a y  also be wri t ten with the  -k (of S) replaced by the Boolean ring + ( =  + j  of J) ,  

i .e . ,  
+ 

(8.15) C i ~ aobi-~-albi_l+ . . . .  ~ ,  arb s 
r+s=i (rood p) 

(-qL ~ ~ - j  ~ ring sum of J ;  i -~ 1, 2, . . . ,  p - - l )  . 
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a 0 z l + ( p - - 1 ) ( % - { - % ' t " ' "  "{-ap_l) 
(8.18) 

b o =- 1 . t - ( p - - 1 ) ( b ~ . l . b 2 - l - . . . - [ - b p _ l ) ,  

we may eliminate a 0 and b 0 from the sum (8.16), after which (i): the collected terms 

in axb~ (for fixed s = l ,  2 . . . . .  p - - l )  have the coefficient { s ( p - - 1 ) ~ - ( p - - 1 ) ~ - ( s ~ - l ) } ,  

which is ~ 0(p). (Here s ( p - - 1 ) a l b  8 comes from the first row of (8.16) and 

(p--1)a~bs-l-(s~-l)alb~ from the second row); (ii): the collected terms in bla 8 =~ O(p), 

by symmetry from (i); (iii): the collected terms in arb~(r, s ~ 2, 3, . . . ,  p - - 1 )  have 

the coefficient s ( p - - 1 ) ~ - ( r - ~ - s ) ~ - r ( p - - 1 ) ,  =_ O(p). (Here s (p - -1 )a f l~  comes from the 

first row of (8.16), (r-~-s)arb~.l-r(p--1)a~b ~ from the (r-~l) 8t row, and no terms from 

other rows). 

From ( i ) - - ( i i i )  and (8.18), the right side of (8.13), tha t  is, (8.16), immediately 

reduces to 

(8.19) (bl-{-2b~-[-3b3-t- . . . .Jf-(p-- l )bp_l)-[-(ai.JF2a2.Jff . . . - { - (p - -  1)%)_~) . 

This is however seen to be identical with the left side of (8.13) and hence we have 

shown that  the c i given by (8.14), also by (8.15), are the normal idempotent com- 

ponents of a~-b. But these normal components (in the ~ (of J) form, (8.15), are 

precisely those of the vector sum 

< al, a2, . . . ,  ap_l >'t'< bl, b2 . . . .  , bp-1 > , 

as defined in (4.12). We have thus shown that ,  under the correspondence (8.3), 

(abstract) sums correspond to (vector) sums, proving (8.4)' and with it Theorem 9. 

Since for given p and J the vector p-ring (jEp], -I', •  is uniquely defined, 

Theorem 9 has the corollary 

T h e o r e m  10. The  pr ime  p together wi th  the structure of  the idempotent  sub-algebra 

J constitute a complete set of  invar ian t s  (up to i somorphisms)  of  a p-r ing S.  

Thus, a p-ring S with idempotent sub-algebra J and a p'-ring S' with idempotent 

sub-algebra J '  are isomorphic if and only if p ~ p' and J and J '  are isomorphic 

Boolean algebras. We may accordingly speak of the p-ring whose idempotent sub- 

algebra is (or is isomorphic with) J .  Furthermore it is only a matter  of convenience 

whether we conceive a p-ring abstractly or vectorially. We may also transfer clas- 

sifications of Boolean rings to p-rings; thus, for instance, a complete--(respectively 

an atomistic--,  respectively an atomless,--etc.) p-ring, S, is one whose idempotent 

Boolean sub-algebra J is complete (respectively atomistic, etc.). 

In w 5 a different definition of completeness was given. The equivalence of this 
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earlier with the  above defini t ion of completeness for p-rings follows at  once from 

Theorems 5 and 9. We have  the  

T h e o r e m  11. A necessary and sufficient condition for a p-ring S to be complete 

in the sense of w 5 (i. e., to permit sums and products of arbitrary subsets of elements 

of S) is that S be complete in the above sense (i. e., that its idempotent sub-algebra J 

be a complete Boolean algebra). 

T h e o r e m  12. A direct power of Fp (field of residues mod p) is a complete p-ring. 

Conversely, a complete p-ring is isomorphic with a direct power of Fp. 

Tha t  a direct  power of Fp (in fac t  of any  p-ring) is again a p-ring is evident .  

We first establish a simple 

L e m m a .  Let p be a prime, Z any (finite or infinite) cardinal number Z ~ 1, 

and F(p z) and F(2 z) the Z TM direct power of Fp and F 2 respectively. Then (J, •  | *) 

and (F2, • | *(2)), the idempotent Boolean sub-algebra of F(p z) and F(~ z) are 

isomorphic, 

(8.20 J ~ F 2 . 

P r o o f .  The idempoten t  elements of a direct  power are those elements  all of 

whose direct  factors  are idempotent .  Hence  only those a E F~ Z) are idempoten t  

each of whose Z direct  factors  is ei ther  ~ 0 or --~ 1 (nmdp) ,  a e J equivalent :  

a ~- ( . . . ,  ai, . . .), each a i ~ 0 or ~---- 1 (mod p). Le t  

(8.21) a +--+ a '  

be the  1--1 correspondence between J and F2, in which corresponding direct  factors  
t P 

of a and a'  are " t he  same"  (i. e., a i ~ O(p) r ~ 0(2), and a i ~ l(p) r i ~_ 1(2), 

for all factors,  al). This correspondence is seen to  be such tha t  (8.21) and b +-> b' 

imply : 

(8.22) a • b ~--> a'  • (s)b' 

a* ~ - - +  a t * ( 2 )  . 

Since the  idempoten t  sub-algebra of a ring is generable by  • and *, the  L e m m a  

is established. F r o m  the L e m m a  it then  follows tha t  the  corresponding Boolean 

rings are also isomorphic,  via the correspondence (8.21), 

(8.23) (J,  ~-J, •  ~ (F2, ~-(2), • �9 

Theorem 12 may  now readily be proved.  Since F(~ z) is a complete Boolean ring 
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it follows from (8.20) and the definition of completeness t h a t  F (Z) is a complete - - p  

p-ring. As for the converse par t  of Theorem 12, if S is a complete p-ring, its idem- 

potent  Boolean sub-algebra is isomorphic with a direct power of F 2, say F(~ Z~ 

However the idempotent  sub-algebra of the p-ring F(p Z~ is isomorphic with F(2 zo), 

by the Lcmma.  Hence S and F(p Z~ are two p-rings with isomorphic Boolean sub- 

algebras, from which it follows tha t  they  are themselves isomorphic, by Theorem 10, 

(8.24) S ~ F (z~ ~ - - p  . 

This completes Theorem 12. 

Since the idempotent  Boolean sub-algebra of a finite p-ring is necessarily finite, 

and since a finite Boolean algebra is alwuys complete, Theorem 12 has the 

Corollary 1. A f in i te  p-ring S is always isomorphic with a direct power of F p, 

(8.25) S ~ F p X F p X  �9 - - X F p  . 

Again, for an arbi t rary  p-ring, its idempotent  Boolean algebra may  be im- 

bedded in a complete Boolean algebra, say F(2 z). Applying Theorem 12 to F (z) p , 

an obvious construction yields the fur ther  

Corollary 2. Each p-ring is isomorphic with a sub-ring of a direct power of Fp. 

These two Corollaries are precisely the results of Mc Coy and Montgomery 

in [8], (see introduction).  

By direct use of Theorem 8, formula  (7.16), the normal  components ( a - ~ - b ) i  , 

(a-{-b)2, . . .  of the sum a + b  in a p-ring are given as a polynomial  in a + b ,  

(8.26) (a-{-b)~ = ( p - -  1)(kP-2(a-{-b)+k(P-3)(a@b)e+ . . .  -[-]c~ p-~) . 

By combining (8.26) with Theorem 9, and using both (8.14) and (8.15), we have the 

T h e o r e m  13. I f  a and b are elements of a p-ring S, and i f  {ak: a 0, a 1 . . . .  , ap_l} 
(bk: bo, bl . . . .  , bp_~} are the normal idempotent components of a and of b, then for 

k =  1,2, . . . , p - - l ,  

(p - -  1) (kP-2(a-{-b )-{-lcv-'~(a+b )2-{- . . . -{-k~ ) p-l) 

(8.27) . +(=+j) 

r+s=k ( m o d  p) r+s=k ( r o o d  p ) .  

The idempotent  elements of a p-ring S are those for which a = a 1 

= a 3 . . . . .  ap_ 1 =  0). F rom the 

Note 1. 

(i. e. for which the normal  components a 2 

17 --  6 4 2 1 3 8  Acta mathematica. 8 4  
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isomorphism established in Theorem 9 (or else from an easily given independent 

argument), in a vector p-ring the idempodent vectors are those and only those of 

the form 

(8.28) ( a, 0, o, 0 . . . .  , o ) = [a*, a,  o, 0, o . . . .  , 0 ] .  

Also capable of ready direct proof (independent of Theorem 9) is the unique normal 

decomposition theorem in (j<p-l> .{., •  

<al, a2, . . . , % _ 1 )  = < a ,  o , o ,  . . . , o ) x <  1, o , o ,  . . . , o )  

(8.29) -{-(a2, 0, 0 . . . .  , 0 ) X ( 0 ,  1, 0 . . . .  , 0 ) +  (a3, 0, 0, . . . ,  0) 

x ( o ,  o, 1, o, o, . . . ,  o ) + . . . + ( % _ ,  o, o, . . . ,  o ) x ( o ,  o . . . .  , o, 1 ) ,  

which is the formula (7.13) applied to vector p-rings. In this way, by use of (8.28), 

(8.29) and (4.24), as a kind of converse to Theorem 8, the normal decomposition 

(7.13) in an abstract p-ring S could be made to follow from an (independent) know- 

ledge of the equivalence ( ~  isomorphism) of the concepts of abstract and vector 

p-rings. 

Note 2. I t  is further observed that  the vector formula (8.29) continues to be 

true in a general vector ring (j<~-l>, + ,  •  (jEll, + ,  •  even when n is 

composite. In this case, however, the idempotent vectors given by (8.28) will not, 

in general, be the only idempotent vectors of the ring, and, as a consequence, 

a vector (a l ,  a2, . . . ,  a~_~ } may have more than one normal decomposition, (8.29). 

If  in the normal decomposition (7.13) we write 

(8.30) a - -  al + ( a 2 + a ~ ) + ( a 3 + a 3 + a 3 ) +  . . . 

and if we sum the arithmetic progression 1 + 2 + 3 + . . . + ( p - - 1 ) ,  we have as an 

interesting corollary the 

T h e o r e m  14. I n  a p-ring (S, + ,  •  each element a of S may  be expressed as the 

sum,  + ,  of P ( P ~  l) idempotent elements of S. 
2 

For 2-rings (p = 2), which are coextensi~ve with ordinary Boolean rings, 

Theorem 14 degenerates to a simple restatement of the familiar definition of Boolean 

ring (Stone [9]). 

9. Re la t ion  to ord inary  vector  addi t ion .  

In a p-ring (S, + ,  • ), it may happen tha t  the sum of special elements a, b 

reduces to the traditional vector sum +ve~ or +v 
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(9.1) a - l - b  = a - [ - v b  , 

t h a t  is, t ha t  the normal  components  of the sum reduce to the sums of the respect ive 

normal  components ,  

(9.2) [a-bb]i  - -  al-bb ~ . 

In  this connect ion we prove the  

T h e o r e m  15. I n  a p-r ing (S, -b,  • ), a necessary and suf f ic ient  condit ion for  the 

s u m  of  two elements to reduce to the ordinary  vector sum,  

(9.3) a- i -b  = a -bvb  ~- ( al-~bl, a2-{-b 2 . . . . .  a~)_l-[-bT,_ 1 ) 

is  that the elements a, b be "d i s jo in t " ,  

(9.4) a X b  : O .  

Th i s  in  turn is equivalent to the pa irwise  d i s junc t ion  of  all normal  components  

(9.5) a~b i, = 0 (i, i '  = l ,  2 . . . .  , p - - l )  , 

As a consequence of (9.5) we note  t h a t  the  4- in ( , } in (9.3) could be replaced 

by  ~- ~ -  - ~ j  Of the  idempoten t  sub-algebra J of S, (al-~-bl,  a 2 ~ b ~ , . . .  ~. 

P r o o f  of Theorem 15. (9.5) implies (9.4) since each component  (other t han  

the  0 TM) of a • b, namely  

(9.6) 

is pa ten t ly  = 0 if (9.5) holds. 

q- 

[a • b]i ~ ,~, arb 8 
r s  = i (modp)  
r ,  8=1 ,  . . . ,  p--1 

( i =  1,2 . . . .  , p - - l )  

Conversely (9.4) implies (9.5). For,  if (9.4) holds we have 

+ 

(9.7) ~ arb s ~- 0 (i = 1, 2, . . . ,  p - - l )  . 
rs  i (mo(t  p) 

Each  of the  ( p - - l )  2 quanti t ies  aebi(i,  i ' =  1, 2 . . . . .  p - - l )  occurs in (exactly) one 

of the ( p - - l )  equat ions  (9.7), and moreover  its coefficient is l. Hence if the  equat ion 

containing aibe, is mult ipl ied by  aib e, one has the desired result  (9.5), as follows 

f rom the  pairwise dis junct ion of the a i and the  same for the  b i. We have  therefore  

shown tha t  (9:4) and (9.5) are equivalent .  The  Theorem will be complete if we 

establish t ha t  (9.3) and (9.5) are equivalent .  

Fo r  the  l, 2, . . . ,  (p--1)  s t  normal  components  of a - b b  we have respectively,  
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(9.8) 

aobl  " t -a lbo '~ 'a~b  p-1 "]-aabp- 2 J r "  " " 

aob 2 - l -a lb  l-~-a2b o - l -a3b  p_ l . t -  . . . 

a o b a ' l - a l b 2 + a 2 b l  + a a b o  " { - ' "  

If  (9.5) holds, the ith component  of a + b  thus becomes simply 

(9.9) a o b i + a i b  o - ( l m a l - - a  ~ . . . . .  a p _ l ) b i + a i ( 1 - - b l - - b  2 . . . . .  bp_l )  = a i + b  i . 

Hence (9.5) implies (9.3). 

Conversely, if (9.3) holds, we have equations 

(9.10) 

a o b l + a l b o + a 2 b p _ l + a a b p _ ~ -  t -  . . . . .  a 1 + b  1 

a o b 2 + a l b l + a 2 b o  + . . . .  a 2 + b  ~ 

a o b 3 + a l b 2 + a 2 b  1 - t -aab o -]- . . . .  a , a T b  3 . 
�9 . 

By mult iplying the i TM row in (9.10) by a ib  i, (where i ' ~  0, i ' ~  i), we get 

(9.11) a ib  i, = 0 ( i ' ; ~  i )  . 

Tha t  one also has 

(9.12) a ib  i = 0 

is seen upon mult iplying tt~e (2i)th row of (9.10) by a ib  c Here (9.11) and (9.12) 

correspond to (9.5), and therefore (9.3) implies (9.5). This completes Theorem 15. 

The Theorem may  easily be extended to more t han  two elements. 

Note. For  the special case p = 3 one may  directly verify the formula:  for 

any  elements a, b of a 3-ring, 

(9.13) ( a + b ) i  = ( a + v b ) i - ] - a b  (i = 1, 2) . 

F r o m  (9.13) the equivalence of (9.3) and (9.4), only of course for the ease p = 3, 

follows as an evident  corollary. 

The results of this paper, in combination with earlier work on the K-al i ty  

theory,  etc., lend themselves to various interesting applications, part icular ly to 

logic, (see [4] and [1] for the tr i-ali ty theory  in 3-valued logic), probabil i ty  theory  

and geometry.  I t  is expected tha t  these extensions will be presented in the near 

future.  
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