THE RATIONAL SOLUTION OF THE DIOPHANTINE EQUATION

$$
\boldsymbol{Y}^{\mathbf{2}}=\boldsymbol{X}^{\mathbf{3}}-\boldsymbol{D}
$$

By
J. W. S. CASSELS
of Manchester.

Addenda and Corrigenda.

1. I overlooked that theorem IV was first published by Nagell (my reference [32]).
2. Dr. E. S. Selmer tells me that my conjecture I of $\S 25$ cannot be correct, e. g. for $D=-61^{2}, y^{2}=x^{3}+61^{2} t^{6}$. Here a possible μ is the unit $\eta=1-16 \delta+4 \delta^{2}$ where $\delta^{3}=61$ and the congruence

$$
x+t^{2} \delta^{2} \equiv \eta x^{2}
$$

is soluble modulo any power of 2 (the only relevant modulus), indeed with $x=1$, $t=2$. On the other hand Dr. Selmer has proved that $y^{2}=x^{3}+61^{2} t^{6}$ is insoluble.
3. An ingenious method of investigating the generators of $Y^{2}=X^{3}-D$ using only the properties of quadratic fields has just been given by V. D. Podsypanin (Mat. Sbornik 24 (1949) 391-403). He gives a table of generators for $|D|<90$ but a.comparison with my table for $|D| \leq 50$ shows a number of errors:-
(i) For $D=48$ Podsypanin gives two generators $(4,4,1),(73,595,3)$ but actually the parameter of the second solution is just 3 times that of the first.
(ii) No generators are given by Podsypanin for $D= \pm 43,50$ and insufficient generators for $D=-15,+39$.
4. The following two misprints have occurred:-
(i) Page 265, proof of lemma 10: For " $\nu H a^{2}=e^{2}+2 e f-f^{2}=(e+f)^{2}-2 f^{2}$ "read" $\nu H a^{2}=e^{2}+2 e f-2 f^{2}=(e+f)^{2}-3 f^{2}$ ".
(ii) Page 271, line 6: For "units for all in Wolfe" read "units for all $D \leq 100$ in Wolfe."

