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1. I n t r o d u c t i o n .  Many of the  remainders  R ( x ) ~  R x  in the  theory  of ap- 

proximat ions  re la ted  to  a funct ion x ~ x(s), 0 ~< s <_ l, are functionals  which are 

linear on C n or Cn_ 1 and zero whenever  x is a polynomial  in s of degree n - -1 .  (Defi- 

nit ions are given in sections 2,3 below.) Accordingly the following known theorems 

[5; 2 ; 7 ; l l ]  are of impor tance .  

M a s s  t h e o r e m .  Suppose  that R x  is a func t iona l  l inear on C n and zero for  degree 

n - - 1 .  T h e n  there is  a f unc t i on  fl(s) c o]2 such that 

(. ,1 

R x  = ..toX"(s)dfl(s) , x e C~ I 

Here  xn(s ) stands for the  n th  der iva t ive  of x. A fuller  s t a t emen t  is t heorem 

(4:3) below. 

K e r n e l  t h e o r e m .  Suppose  that R x  is  a f unc t iona l  l inear o n  Cn_l, n > 1, and 

zero for  degree n - - 1 .  T h e n  there is  a f unc t i on  f ( s )  ~ o)) such that 

SlXn R x  = (s)f(s)ds , x ~ C~ . 

A fuller s t a t emen t  is t heo rem (4:15). 

The present  paper  extends  the  above theorems to funct ionals  on spaces of 

funct ions of several  variables.  Theorems (5:11), (6:11), (9:5), and (9 : l l )  afford 

direct  access to integral  forms of remainders  in te rms of par t ia l  der ivat ives  of order  

n, and,  fur thermore ,  complete ly  character ize the  cases in which the  integral  forms 

1 The  a u t h o r  g ra t e fu l ly  acknowledges  f inanc ia l  suppo r t  received f rom the  Office of Nava l  Research ,  
u n d e r  con t r ac t  wi th  Queens  College, F lush ing ,  N. Y. 
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are valid. The integral  forms lead, among other  things,  to  appraisals of remainders  

and to cri ter ia  of best  approx imat ion  (section 8). 

The charac ter  of our  results is indicated by  the following theorem,  which is a 

consequence of theorem (6:11) and lemma (6:3). The  space Bp, q of funct ions  

x = x(s, t) is defined in section 6. 

Kernel theorem.  Let p, q be positive integers and a, b f ixed numbers, 0 ~ a, 

b ~ 1. Put  n = p+q.  Suppose that Rx  is a functional linear on Bp_l,q_ 1 and zero 

whenever x is a polynomial in (s, t) of degree n--1 .  Then there are functions: fi(t), 

i < p; g(s, t); hi(s), j < q, all in o f ,  such that 

61 ~.I 1 

Rx =--- --~" foxi. n_i(a, t)fi(t)dt~-I I,, xp'q(s' t)g(s, t)dsdt 
i ~ p  o 

,1 

4- . ~  ~foxn-j'j(s' b)hJ(s)ds , x E Bp, q . 
) < q  

The terms in this equat ion  cannot  be combined since there  are funct ions 

x ~ Bp, q for  which one and only one of the  n ~ - I  te rms will be different  f rom zero. 

An i l lustrat ion is given in section 7. 

Th roughou t  we shall consider spaces of funct ions defined on the  uni t  hyper -  

square U" :  the  set of points in euclidean m-space with coordinates all between 

0 and l, end values included. Our theorems t rans form in the  na tura l  way to spaces 

of funct ions defined on a hyper- rec tangle  with sides parallel to the axes. The fact  

t ha t  our  theorems refer to funct ions defined on U m ra the r  t h an  on a general compact  

metr ic  space leads to the following advan tage :  the relat ions defining the kernels 

and the masses are simpler t h an  they  otherwise would be [6; 10]. 

The funct ionals  Rx to which our theorems apply  need not  involve all of the uni t  

square Urn; for example,  Rx  might  be defined on a space of funct ions x defined on 

a subset of U m, for  then  Rx is defined, a f o r t i o r i ,  on a space of funct ions defined 

on  U m. 

The spaces B(p) and A(p) are interest ing in themselves,  as the  complete  core 

of a funct ion in ei ther  space is a unique charac ter iza t ion  of the  funct ion i n t e r m s  of 

independent  elements.  

2. Linear funct ionals .  Riesz 's  theorem.  A functional Rx,  defined on a space 

X of elements  x, is a correspondence f rom X to the  real numbers .  Suppose t h a t  X 
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is a n o r m e d  l inear space.  The  func t iona l  R x  is said to  be  l inear  if i t  is add i t ive :  

R ( x ~ - y )  -~ R x - ~ R y  , x,  y ~ X ,  

and  cont inuous  a t  one point ,  say the  origin:  

R x - + O  whenever  [ lxl[->0,  x E X .  

Observe  t h a t  the  add i t i v i t y  implies t h a t  R0 ---- 0. I n  each par t i cu la r  space X t h a t  

we consider, we define the  norm ]lxl[ explici t ly.  A l inear  func t iona l  R x  is cont inous  

a t  eve ry  point ,  and  homogeneous :  

R(cx)  -~ c R x ,  c a real  number ,  x ~ X . 

The  above  usage of the  word  " l i i i ear"  is t h a t  of F.  Riesz and  Banach .  [1, 

pp. 23, 26-27, 36-37]. 

All spaces X t h a t  we consider are spaces of funct ions  of real  var iab les ;  addi t ion  

and  scalar  mul t ip l ica t ion  of e lements  of the  space are to  be under s tood  as addi t ion  

and  scalar  mul t ip l ica t ion  of the  funct ions.  

The  space C~ is the  space of funct ions  x = x ( s l  . . . . .  sin) cont inuous  on the  

uni t  square  U m, wi th  n o r m  

[Ixl] = I lxl lc~ '  = m a x  ]x(s 1 . . . . .  sin) I . 
(8) ~ U m 

A func t ion  y ~- y ( s l , . . . ,  sin) is of bounded var ia t ion  on U m if i t  has  the  following 

proper t ies  : i) Fo r  all subdivis ions of U ~ into a f ini te  n u m b e r  of rec tangles  wi th  sides 

paral lel  to  the  axes,  ~ ' ] A 1 . . . A ~ [  is bounded,  ii) F o r  one pa r t i cu la r  va lue  s o 

of each a r g u m e n t  sv, ~ is a func t ion  of bounded  va r i a t ion  in the  remain ing  m - - 1  

var iables .  Condit ions i) and  ii) imp ly  t h a t  for any  f ixed va lue  s o of s v, v ---- 1 . . . . .  m, 

is a funct ion  of bounded  va r i a t ion  in its remain ing  m - - 1  var iables .  We  use the  

symbo l  c/) to  denote  the  class of funct ions  of bounded  va r i a t ion  in the i r  var iables ,  

w i thou t  regard  to the  n u m b e r  of var iables .  

(2:1) R i e s z ' 8  t h e o r e m .  S u p p o s e  that R x  is  a f u n c t i o n a l  l inear  on C~. P u t  

�9 t ! 

(2:  2) r ( s l , .  � 9  s ~ ) ~ =  , , 
ROsi(sl). . .08m(Sm) i f  S l . . . S r~  > 0 , 

where 

(2: 3) 08, = O,,(s) = ! 
1 if 8 =< 8 t 

! 0 if s > s ' .  

21 -- 642138 A c t a  mathemat ica .  84 
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T h e n  7 � 9  ~fi, a n d  

f I (2:4) R x  . . . . .  x ( s l , . . . ,  s,~)dT(s 1 . . . .  ,Sm),  X �9 C '~ .  
0 0 

Conversely ,  i f  7(s,  . . . .  , s in) �9  (2:4) de f ines  a f u n c t i o n a l  wh ich  is l inear  

o n  C ~ .  

The definit ion (2: 2) involves an extension of the  defini t ion of R, since the 

a rgument  of R is not  a cont inuous funct ion.  Such an extens ion can be made  in 

m a n y  ways;  one such way, which is direct  and consistent  with the  extension of 

(2:4) as a Lebesgue-Stiel t jes  integral,  is the  following. Le t  

(2:5) O~,,~(s) , k = l ,  2 . . . .  

be, for  each s', a sequence of cont inuous funct ions which converge m o n o t o n e l y  to 

0~,(s). Then  the  sequence RO~,~, ~1(s l ) . . .  0/~, k,,(sm) converges as ( /c l , . . . ,  k~) -+ 
! t 

(cx~ . . . .  , ~ ) ;  its l imit is t aken  as the  defini t ion of 7 for  s l . . . s  m > 0. Wi th  this 

definit ion 7 will be cont inuous f rom above for posi t ive a rguments :  

(2:6) 7(s lq-O . . . . .  Sm~-O) : 7(s l , .  . . ,  sin), s 1 . . .sm > 0 . 

The following conditions de te rmine  7 in (2 : 4) uniquely  : i) ~, �9 ~ l / and  vanishes when- 

ever  one of its a rguments  vanishes, ii) (2:4) and (2:6) hold. [8; 9; 4, pp. 262-271; 

1, p. 61; 3]. 

3. C o n v e n t i o n s  a n d  f u r t h e r  n o t a t i o n .  We say t h a t  funct ions a(s  1 . . . . .  s.~) 

and  f l ( s l , . . .  , sin) are equal  w i t h  countable  except ions ,  and we wri te  this:  

06 ~ -  f l ,  w . c . e .  , 

if ~ and/~ are equal  except  when s, is one of a countable  set of values, v ---- 1, 2 . . . . .  

or m .  (Thus ~ and fl are equal except  on a countable  n u m b er  of (m--1)-planes  

perpendicular  to the axes.) "Coun tab le"  is to  be unders tood  as " coun tab ly  infinite,  

finite, or zero".  

E q u a t i o n s  m a r k e d  *, such as (4 : 8), are to be unders tood  as follows. The funct ion 

or fl defined in the equa t ion  is zero whenever  any  one of its a rguments  is zero; 

the  funct ion  is as wr i t ten  whenever  all its a rguments  are positive. 

We say t ha t  a funct ional  R x  is  zero f o r  degree n - - 1  if R x  = 0 whenever  x is a 

polynomial  of degree n - - 1  in all its variables.  

E x p o n e n t s  will fl i icate,  not  powers, bu t  powers divided by  the  factorial  of 
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the  exponen t :  
s ~  1, s 1 - = s , s  ~ = s ' s / 2  . . . .  , s  ~ - ~ s  m - l " s / m  . . . . .  

Ind ices  are non-nega t ive  integers,  excep t  where  otherwise  indicated.  

4. F u n c t i o n s  of one  var iable .  Let C~ be the  space of funct ions  x = x ( s )  

with  cont inuous  n t h  der iva t ive ,  s e U 1, the  n o r m  being 

Itxll = Ilxlle~ = m a x  Ixi(s)]. 
s ~  U 1 

i = 0 ,  . . . , n  

For  consis tency of no t a t i on  wi th  la ter  sections, we define the  spaces B n, A n as 

follows : 

B n = C n ;  A n = B n _  1 - - -Cn_  1, n > 1 .  

Le t  a be  a f ixed n u m b e r  0 < a __< 1. 

(4:1) T a y l o r ' s  f o r m u l a  o n  B n. I f  x e B  n, n > 1, then 

8 

x(s) = ~ ( s - -a) ix i (a)  + ~ ( 8 - - 8 ) n - l x n ( 8 ) d ~  , 8 e U 1 �9 

i < n  r 

More general ly  (4: 1) holds if x has  an  absolu te ly  cont inuous ( n - - 1 ) t h  der iva t ive .  

The  core of a funct ion  x in Bn is the  n t h  de r iva t ive  x~(s); the  complete core is 

the  core toge the r  wi th  the  n n u m b e r s  xi(a ), i < n. Tay lo r ' s  fo rmula  (4: 1) m a y  be 

used to express  all the  der iva t ives  of x of order  less t h a n  n in t e rms  of the  comple te  

core of x. Hence [[X][Bn and  the  m a x i m u m  of the  absolu te  values  of the  e lements  

in the  comple te  core of x are equ iva len t  no rms  in the  sense t h a t  each is a t  mos t  a 

cons tan t  t imes the  other .  

The  comple te  core of x e B~ m a y  be t h o u g h t  of as the  independen t  p a r t  of x 

and  as an  independen t  var iable .  

(4:2) L e m m a .  B n c A n = B~_I, n > I . 

IlXilB~ > ilxtlA~, x e B n .  

A funct ional  l inear on A N is a fortiori  l inear on B,,. 

(4 : 3) M a s s  t h e o r e m  o n  B,, .  Suppose  that R x  is a func t ional  l inear on B n and  

zero for  degree n - - 1 .  T h e n  there is a func t ion  fl(s) ~ Q]) such that 

1 

(4: 4) R x  ~- IoXn(s)dfl(s) , x e B n . 

2 1 " -  642138 Acta mathematica. 84 
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Conversely, given a func t ion  fl ~ 9 ,  (4: 4) defines a func t iona l  which is l inear 

on B,~ and zero for  degree n - - 1 .  

The  mass fl m a y  be defined as follows: 

(4:5) fl(s') = R (s--~)~-lOo,(~)d~, n _>- 1 , * ,  
a 

(4:6) fl(s') = ROs,(s ) , n = O, * 

The asterisks * indicate t ha t  the formulas (4: 5), (4: 6) apply for s' > 0 and  

tha t  fl(0) --~ 0. We call fl a mass even though fl m a y  be decreasing. 

P roo f .  The theorem is a corollary to Riesz's theorem (2:1) for functions of 

one variable. For  n ---- 0, the theorem is Riesz's theorem itself. For  n ~ 1, Taylor 's  

formula (4: 1) implies t h a t  

( 4 : 7 )  R x  = R I : ( s - - 8 ) n - l x n ( 8 ) d ~  , z E B n ,  

since R x  is zero for degree n- -1 .  Now the second member  of (4:7) is defined and 

addit ive for x n e Co 1. Fur thermore  I[xn]Iv~ -+ 0 implies t ha t  

i s  Bn (8--8)n-lxn(8)d'8 --> 0 
a 

and hence tha t  R x  --+ O. Hence the second member  of (4: 7) is a linear funct ional  

on C~ for x~ e Co 1. Hence by Riesz's theorem (4:4) and (4:5) hold. 

As in Riesz's theorem the relations (4:5), (4:6) involve an extension of R x  

onto a space t h a t  includes the a rgument  of R in (4: 5), (4: 6). The extension m a y  be 

made in m a n y  ways;  for preciseness we unders tand  (4:5) as a definition by mono- 

tone limits : 

(4: 8) fl(s') = lim R (S--'~)n-~08,, k('~)cl~ , * ,  
k .---~ eQ Ca 

where 08, ,k(s) is a sequence (2:5). The l imit  (4:8) exists and  f l(s '+O) = fl(s'), s ' >  O. 

The relation (4: 6) is unders tood similarly. This completes the proof, as the converse 

par t  is immediate .  

I f  the funet ional  R x  is linear on B~_~, n ~ 1, (henee on Bn), the relat ion (4:5) 

m a y  be used wi thout  (4:8), since the a rgument  of R in (4:5) is an element of Bn_ P 

The relations (4: 5) and (4: 8) will then  be eonsistent,  since 

I8 I8 Bn-1 
(4:9) lim (s--~)n-lo,,(~)d~ - (s--i)n-~os,,k(~)d~ = 0 . 

k-->  oo a a 
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Fur thermore  (4: 5) implies t h a t  

(4: 10) fl(s') = R ( s - - s ' ) ' % , ( s )  . 

For, an asterisk is not  needed af ter  (4: 10), since the a rgument  of R in (4: 10), 

when s' ~- 0, is shOo(s) -~ 0 for all s > 0. Also, 

S (4: 11) (s--~)n-lOs,(g)d~ = (s--s ' )~Os,(s)-{-[(s--a) '~--(s--s ' ) '~]O.,(a) ,  n > 1 , 
a 

8 8 8 t 
a s  m a y  b e  s e e n  bY w r i t i n g  I = f ~ - i  ~ S i n c e  t h e  l a s t  t e r m  of  (4:  1 l )  is a p o l y -  

a 8" a 
nomial in s of degree n- -1 ,  (4: 5) does indeed imply (4: 10). 

(4: 12) An e x t e n s i o n  of R.  Once the funct ion 8 has been defined, we may  extend 

the R of theorem (4::3) as follows. P u t  

(4: 13) R+x -~ t Xn(S)dS(s ) , x e B + , 
J u 1 

where Bn + is the space of functions x with n th  derivative Lebesgue-Stieltjes inte- 

grable relative to 8 and, if n > 1, with absolute by continuous (n--1) th  derivative. 

Then B n c B + and R x  ~ R + x  for x e B~. Fur thermore  

S (4: 14) 8(s ' )  ~-- R + (8~-8)n-lOs,(i)di  , n > 1, w . c . e . ,  * 
a 

For, the a rgument  of R + in (4: 14) has the n th  derivative 08,(s ) for s # s' and  there- 

fore is an element of B + except when s ~- s' is a discont inui ty  of 8(s).  Hence by 

13), the second member  of (4:14) equals I 08,(s)dS(s) = 8(s ' )  whenever s' is a (4: 
d U 1 

cont inui ty  of 8, t ha t  is, with only countable exceptions. By  (4: 11), (4: 14) m a y  be 

wri t ten  
8 ( s ' )  = R + ( s - - s ' ) ~ O A s )  , w .  c.  e . ,  * 

(Here the case n ---- 0 is valid also). 

(4:15) K e r n e l  t h e o r e m ,  S u p p o s e  that R x  is  a f u n c t i o n a l  l inear  on A,~ ~ Bn_ 1, 

n > 1, a n d  zero f o r  degree n - -  1. T h e n  there is a f u n c t i o n  f ( s )  e G]) such  that 

(4: 16) R x  : I Xn(S)f(s)ds , x e B ++, 
U 1 

where  B ++ is  the space  o f  f u n c t i o n s  x w i th  absolute ly  con t inuous  (n- -1) th  derivat ive .  
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Conversely, given a func t ion  f(s)  e ~ (4: 16) defines a func t ional  which can be 

extended so as to be linear on A n and  zero for  degree n - - 1 .  

The  kernel f (s)  m a y  be defined as follows: 

(4: 17) f(~) = R+(s--~)n-l~a,~(~),  w . c . e . ,  * ,  

where 
1 if a<=~<s ,  

(4:18) Wa,~(~) ---- O~(a)--O~(s) ---- --1 if s __< g < a ,  

0 otherwise ; 

O~ is defined in  (2:3), and R + is the extension (4: 12) with n replaced by n - - 1 .  

Observe tha t  Bn c B ++ c An; so tha t ,  in particular,  (4: 16) holds for  x e B n. 

Actual ly B~ ++ is now the  same space as B + defined in (4: 12), bu t  this fact  is not  used 

in the proof or the application of the  present theorem. 

The relation (4: 17) m a y  be wri t ten in the  following al ternat ive  forms, often 

useful for calculation: 

(4: 19) f(~) -~ --R+(s--~)n-lO~(s) ----- R+(s--~)n-x[1--O~(s)] , w. c. e., * ,  

since R+x is zero for degree n- -1 .  

I f  R x  is linear on An_l, n ~ 2, the relations (4:17 and  19) hold with R + replaced 

by R and with w. c. e. deleted. 

P r o o f :  One proof is to apply the  mass theorem (4:3) on Bn_ 1 and  thereaf ter  

integrate by parts  [7; 11]. Here we follow Peano's  original suggestion [5] as this 

leads to the simplest proof in the case of several variables. 

By  (4: 18) Taylor 's  formula (4: 1) m a y  be wri t ten 

x(s) : ~ (s--a)ixi(a)  + I (8--8)n- l~l)a ,s(8)Xn(8)ds  , X e B ++ . 
i < n  r U 1 

Hence 

(4: 20) R x  = R I . . . . .  ' x e B ++ u I d 8 ( 8 - - 8 )  n l~a,s(8)Xn(8)  0 

Now 
1 

(4: 21) R x  ----- fodfl(S)Xn_l(s) , x e Bn_ 1 , 

where fl ~c/),  by the mass theorem (4:3) with n replaced by n- -1 .  Apply (4:21) 

to (4: 20). Then 

1 dsy)a,s(8)Xn(8 ) = Iuld~xn(~)i~ldfl(s)wa,,(~),  x e B~ ++ , R x  = fodfl(s) i w  
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by  Fubini ' s  theorem since Xn(8)~)a,s(8 ) i s  integrable d~d~(s). Hence 

Irjld~xn ++ R x  = (~)f(~) , x e B ,  , 

where 

(4:22) f(s) : f l i O~(s)dfl(s)= - f l ( ~ + O )  uI[O~(a) - -  O~(8)]dfl(8) = - -  U 1 , 

1 
since I dfl(s) ~ 0 by  (4:21) with x equal  to the  polynomia l  8 n-1.  Since f l e  c]~, f ~ p  

d 0 

also. This proves the  first pa r t  of the  theorem.  

Le t  R + be the  extension (4: 12) of R with n replaced by  n - - l :  

I U l x n -  1 R+x ---- (s)dfl(s) , x e B~_ l +  . 

Now ~0~,,(~) as a funct ion  of s is constant  except  when s = ~,  by  (4:18). Hence  

( 8 - - 8 ) n - - l ~ a  8(8) + , ~ Bn_ 1 except  when ~ is a d iscont inui ty  of ft. Hence  

R+(8--8)n-ly~a,s(~) = I ~)a,*(k)df l (s)  -~ f(~) , w. c. e. , 
,1 U 1 

by (4:22). This establishes (4:17), 

To prove the converse, suppose t h a t  f ( s ) e  ~1;, Define the funct ional  R as 

R x  = f(s)dx,~_~(s) -~- f(1)x~_~(1)--f(O)Xn_~(O ) + (s)df(8) . 
U z 

++ This funct ional  is l inear on An, reduces to (4: 16) for x e B~ , and vanishes for  

degree n - -  1. 

This completes the  proof of the  theorem.  

(4 : 23) R e m a r k .  Suppose t h a t  a funct ional  R*x  is l inear on B n or A m b u t  not  

necessarily zero for degree n - -1 .  One can const ruct  a re la ted funct ional  R x  which 

will be zero for degree n - - 1  as follows: 

R x  = R * x - - ~  ~ c~xi(a ) , 
i < n  

where c~ = R*(s - -a )  i, i < n. T h a t  R x  is zero for degree n - - 1  follows f rom the fac t  

t ha t  x(s) = ~ (s--a)~xi(a) whenever  x is a polynomial  of degree n - -1 .  Now R x  is 
i ~ n  

l inear on B~ or A~ whenever  R*x  is. T h u s  the  mass or kernel theorems m a y  be 
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applied to  R x  to  give a form for R ' x :  

R*x  : R x  + ~ cixi(a ) . 
i<~ n 

5. F u n c t i o n s  of  t w o  v a r i a b l e s .  T h e  s p a c e  Bp, q. Let  a, b be f ixed numbers ,  

0 _< a, b ~ 1 ; and  let 19, q be f ixed non-negat ive  integers,  P u t  

n ~ p + q .  

We define the  space Bp, q as the  space of funct ions x ~ x(s, t) whose der ivat ives  

(5:1) 
xi, n_i(a, t ) ,  i < 1 9 ,  

%,  q(s, t) ,  
x._j,j(s, b) , j < q ,  

exist  and are cont inuous in t, (s, t), s, respectively,  (s, t) �9 U s. Here  x~,j s tands for 

the  par t ia l  der iva t ive  Oi+Jx/OsiOt j according to  the  following convent ion  as to  the  

order  of d i f ferent ia t ion:  

(5 : 2) Xi,j ~-- 

Oi-Pxp,j/O8 ~-p if i > p, j ~ q ,  

OJ-qx i q/otJ-q if i g p, j > q ,  

0 *+3" ;-nXp, q/Osi-POt j-q if i > p, j > q 

the order  of d i f ferent ia t ion being otherwise unrest r ic ted.  Thus  in the  last case of (5: 2), 

the  different iat ions in xp, q m a y  be in any  order,  and  the  last  i ~ - j - - n  different iat ions 

m a y  be in any  order.  Also, the  order  in x~,j is unres t r ic ted  if i ~ p, j ~ q. We shall 

describe (5:2) as the  convent ion  of Bp, q. 

The core of a funct ion x in Bp, q is the  set of der ivat ives  (5: 1); the  complete core 

of x is the  core toge ther  with the  numbers  x~,j(a, b), i~- j  < n. Thus the  complete  

core consists of 1 func t ion  of two variables;  n funct ions of one variable,  and n ( n +  1)/2 

constants .  In  order  for  the  core of x �9 Bp, q to  exist  cer ta in  der ivat ives  of x of lower 

order  mus t  exist  and be cont inuous;  we say t h a t  the  la t te r  der ivat ives  are covered 

by  the  core. 

Thus for  Bp, q, 

lowing: 

(5: 3) 

the  der ivat ives  in the  core or covered by  the  core are the  fol- 

x~,j(s, t) , i ~ p , j ~ q ; 

xi, j(a, t ) ,  i + j  ~ n ,  j > q ; 

x i j (s ,  b), i + j  ~ n ,  i > p .  
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The norm of x in Bp, q, denoted  by  IlXllBp, q, i s  defined as the ma x imum of the  

absolute  values of the  derivat ives (5:3), (s, t) e U ~. 

(5:4) T a y l o r ' s  formula  o n  Bp, q. I f  x e Bp, q, 
t 

x(s, t) = ~ (s--a)i(t--b)Jxi,j(a, b ) ~ - ~  (s--a) i I (t--t)n-i-lxi'n-i(a' t)dt 
i+j<n i < p  b 

8 

~- ~ (t--b)J I (8--8)n-j-lxn-j'j(8' b)d~+T,  (s, t) E U ~ , 
j<q  a 

where 
s t 

l ( 8 - -8 )p -1d8  I ( t - - t ) q - l x p  q(8, t ) d t ,  
a b ' 

i" T = (s,~)P-lXp, o(~, t)d~ , 
~a 

ftb(t--t)q-lXo, q(s, t)dt , 

Xo, o(S, t) ,  

p > : l ,  q_>_l ;  

p___l ,  q = 0 ;  

p----0,  q ~ : l ;  

p : - q : - O .  

P r o o f .  Suppose tha t  p ~ 1, q >: 1; x E B p ,  q. By Taylor 's  formula (4:1),  

t 

(5: 5) x(s, t) = ~ (t--b)Jxo, j(s, b)+ fb(t--t)q-lXo, q(S, t)dt, 
j < q  

l" (5:6) Xo,j(s, b) = ~ (s--a)ixi j(a, b)+ (8- -8)n- j - - lXn j j(i, b)d~ , j < q ,  
~<n--j ' va -- ' 

(5: 7) xo, q(s, ~) = ~ '  (s--a)%i,q(a, ~)+ ~)di . 
i < p  

We will subs t i tu te  (5:6), (5:7) in (5:5). This will lead among other  things to terms 

involving 
t 

I (t--t)q-lxi, q(a, t)dt, i < p .  
b 

Now this quant i ty  vanishes at t = b, together  with its derivat ives as to t of order 

less than  q. I t s  der ivat ive of order j ,  j >=_ q, is xi,j(a, t). Accordingly, by  Taylor 's  

formula (4:1), 
t j t  

(5: 8) I (t--t)q-lx~, q(a, t)dt = 2 "  (t--b)Jxi,j(a, b) ~- Ib (t--t)n-i-lXi, n_i(a, t)dt, i < p . 
b q<=j<n-i 

We now obtain  (5 : 4) by  subst i tu t ing (5 : 6), (5 : 7) in (5 : 5) and using (5 : 8). 

The other  cases of (5:4) are established similarly and more simply. 



330 Arthur Sard. 

Taylor ' s  formula  (5 : 4) expresses x in terms of its comple te  core. Applied to the  

der ivat ives  covered by  the  core, (5:4) and (4: l) express these derivat ives also in 

te rms of the  complete core. Hence I[XlIBp, q and the m a x i m u m  of the absolute values 

of the  elements  in the  complete  core of x are equivalent  norms in the  sense t h a t  

each is a t  most  a cons tant  t imes the other.  

For  each x e Bp, q there  is a complete  core. Conversely,  g iven  n ( n ~ -  1)/2 cons tan t s :  

c i ' j ,  i ~ - j  < n;  p c o n t i n u o u s  f u n c t i o n s  o f  t: z i' n-i(t), i < p ;  q c o n t i n u o u s  f u n c t i o n s  o f  s:  

zn-J'J(s), j < q; a n d  1 c o n t i n u o u s  f u n c t i o n  o f  (s, t): z p' q(s, t); there is  a u n i q u e  f u n c t i o n  

x ~ Bp,  q h a v i n g  these e lements  as  i t s  comple t e  core: 

x l , j (a ,  b) -~ c i ' j  , i - ~ j  < n ,  

Xi, n_ i (a , t )  = z i 'n- i ( t )  , i < p , 
(5:  9) 

%,q(s, t) = zP' q(s, t) , 

x,~_j,j(s, b) = z~J 'J ( s )  , j < q . 

This may  be established as follows. P u t  t h e  given elements into the  second member  

of (5:4), using (5:9). The second member  of (5:4) t hen  defines the  funct ion  x. The  

convent ion  as to  the  order  of different ia t ion enters  here. To i l lustrate  the  point ,  

consider a typica l  t e rm:  

. t  

y -= y (s ,  t) = ( s - - a )  p-I I ( t--t)qzP-1'q+l(t)  d~ , p ~ 2, q ~ 0 m 

.) b 

Then  Yo~ q+l( s, t) ~ ( s - - a ) P - l z  p-l 'q+i(t).  Since z p-l 'q+l is merely continuous no fu r the r  

different iat ions as to t are necessarily possible here. However  yp_2,q+~(a, t), for  

example,  exists. For  

yp_~,q+~(a, t) ~-- ~ y p _ 2 , q ( a ,  t) - -  ~ ( s - - a )  zP-l 'q+l( t)dt  : 0 . 
b ~ s = a  

The reader  may  ver i fy  t ha t  y e Bp, q and t h a t  the complete core of y vanishes, except  

for  yp_l,q+l(a, t) which equals zP-~'q+l(t). 

An essential point  here is t h a t  each integral  in (5:4) is differentiable at  least p 

t imes as to s and q t imes as to t. 

Thus the  complete core of x e Bp, q m ay  be though t  of as the independent  

pa r t  of x and as an independent  variable.  

(5:10) L e m m a .  Bp, q c Bp_l,q, p ~ 1 . 

llxllB~,~ >= IIx[IB~_~,q , x e Bp,  q . 
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A functional linear on Bp_s is afortiori linear on Bp, q. 

Likewise for Bp, q-l, q ~ 1. 

The convent ions as to different ia t ion in Bp, q and Bp_l, q are consistent  with 

one another ;  bo th  arc to be followed at  the  same t ime where necessary.  

(5: 11) Mass  t h e o r e m  o n  Bp, q. Suppose that Rx  is a functional linear on Bp, q 
and zero for degree n--1.  Then there are functions fli,] E '~]) such that 

(5: 12) Rx =.~__~ SlXl, n~i(a, t)dfli'n~i(t)-~- ll SloXp, q(s, t)dfl~',(s, t) 

1 

+- .--'~ ~loxn-j'J(S' b)dfl'~-J'J(s) , x Bp, q . 
J < q  

Conversely, given masses fli, j e cl? ' (5 :12)def ines  a functional which is linear on 
Bp, q and zero for degree n--1.  

The masses fli, j may be defined as follows: 
t 

fl~'~--i(t') = R(s--a)~l  (t--t)n-~-lOt,(t)d-t, i < p ,  * 
b 

i" fln-J,J(s') = R(t--b)J (s--i)'~-J-lO~,(i)di, j < q,  *,  
a 

(5:13) 
R I (s-~)'-%,(~)d~I (t--~),-%(~)d~, p > 1, q > 1, *, 

Ca db 

ROt, ( t  (8 - -8 )p-10s , (8 )ds  , p ~ 1, q = O ,  * 
[3p' q ( s ' ,  t ' )  = o 

t 
RO~,(s) \ (t--t)q-lOt,(t)dt , p = O, q ~ 1, 

b 

ROs,(s)Ot,(t ) , p = q = O, * 

The asterisks indicate t ha t  the  relat ions (5: 13) hold for posit ive a rguments  only, 

and t ha t  each mass fli' j is zero if one of its a rguments  is zero. A theorem of C. A. 

Fischers 's  [2] is re la ted to the  present  theorem for p = q = 1 and R e m a r k  (6: 18) 

below. 

P r o o f .  The proof is similar to  t h a t  of the  mass theorem on B n, Consider t h e  

case p >__ 1, q > 1. By  Taylor ' s  formula  (5:4), 

f: (t--t)n-i-lx i n~i(a, I: !: (t--t)q-lxp, ,(~, Rx  = ~ ,  R(s--a)  i t)dt-b R (s--8)p-ld8 t)dt 

(5: 14) _~_ /x, R( t_b)  j f 8 (s__~)n J--lXn_j ' j(~, b)dg, x ~ Bp, q. 
2"<q a 
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Since the core of x ~ Bp, q may  be any  continuous functions, the terms of (5 : 14) are 

defined and addit ive on the spaces of continuous functions of t, (s, t), and s, respec- 

tively, the independent  variables being the core of x. Fur thermore  each te rm of 

(5:14) is continuous on C~ or C~, since Rx  is continuous on Bp, q. Hence Riesz's 

theorem applies to each term, and  (5:12), (5:13) are established. 

The other cases are t rea ted similarly. 

As in (4:5 and 6), we unders tand  the definitions (5: 13) as definitions by mono- 

tone limits. For  example, 

I~( P-IO~,, I t -q-~ot,,t-- (5:15) flP'q(s',t ')=- lim R s--Y) k(~)d~ (t--t) (t)dt, 
k, 1 --> (oo, co) ~a b 

p > l ,  q > l ,  * 
where 0,,  k(s) is a sequence (2:5). 

I f  the funct ional  Rx  is linear on Bp_l, q, p > 1, (hence on Bp, q), those relations 

(5: 13) in which the a rgument  of R is an element of Bp_~,q ( tha t  is, the first two 

relations of (5: 13)) m a y  be used directly, consistently with their  interpretat ion as 

definitions by monotone  limits. This is proved as was the similar fact  for B~_I 

and  B n (cf. (4:9)). Likewise for Bp, q_~, q > 1. I f  Rx  is linear on Bv_~, q_~, p > 1, 

q > 1, all the  relations (5: 13) may,  equivalently,  be used directly. In  these cases 

the relations (5: 13) m a y  be t ransformed by the use of (4:11). In particular,  the 

masses fll, j t ha t  are functions of a single variable take on the simpler form: 

fl~' ~ ( t ' )  = R(s--a)~(t--t')~-iOt,(t), i < p ,  
(5: 16) 

fl~-J,a'(s' ) --  R(s--s')~-J(t--b)JO~,(s), j < q .  

(5: 17) A n  e x t e n s i o n  o f / t .  Once the masses /5 i ' j  have been defined we may  

extend the R of theorem (5: l l )  as follows. Pu t  

(5:18) = z  f S / P  q(s, t) 

+ 2," f x,~i,  j(s, b)dfl n-j' J(s), x e By, q, 
j < q  U 

where B~, q is the space of functions x for which Taylor 's  formula (5:4) holds with 

integrable n th  derivatives and whose derivatives in ( 5 : 1 8 ) a r e  Lebesgue-Stie]tjes 

integrable relative to their  corresponding masses fli, j. Then Bp, q c B~, q, and R x = R + x  

for x ~ Bp, q. Fur thermore  the relations (5:13), with R replaced by R +, are valid with 

countable exceptions [13]; the relations (5: 13) thus  modified m a y  be t ransformed 

by the use of (4:11). 
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6. F u n c t i o n s  of  t w o  v a r i a b l e s .  T h e  s p a c e  .Zip, q, p ~_~ 1, q >: 1. 

In  order to obtain a kernel theorem with  converse, we introduce the space 

Av, q, 19 > 1, q > 1, defined as follows: Av, q is the space of functions x = x(s, t) 
whose derivatives 

Xi, n_i_](a, t) , g < 19--1 , 

(6 : 1) Xp_l, q_1(8, t) , n -~ 19+q, 

x~_j_~,j(8, b) ,  j < q--1  , 

exist and are continuous in t, (s, t), s, respectively, (s, t) e U 2. The order of differen- 

t ia t ion in xi, j shall be restr icted according to the  convention of Bp_l, q_~. 

The core of a funct ion x in Ap, q is the set of derivatives (6 : 1) ; the complete core 

of x is the core together  wi th  the  numbers  xi, j(a, b), i -~j  < n - - l ,  ( i , j )  # (19-- l, q - - l ) .  

In  order for the core of x EAv,  q to exist, certain derivatives of x of lower order must  

exist and be continuous;  we say t h a t  the la t ter  derivatives are covered by the core. 

Thus in Ap, q the derivatives covered by the core are precisely the following: All the 

derivatives in the core of Bp_l, q-l, except Xp_l ,q_l (8  , t ) ,  and all the derivatives 

covered by the core of Bv_~, q-1. 

The norm of x in Ap, q, denoted by [IX[lAp, q, is defined as the max imum of the 

absolute values of the derivatives of x in the  core or covered by the  core, (s, t) e U 2. 

(6:2) T a y l o r ' s  f o r m u l a  o n  Ap, q. I f  x ~Ap,  q, 
t 

x(s, t) = ~ (s--a)i(t--b)Jxi, j(a, b)-~ ~ (s--a)i I (t--t)n~-~xi,,~_i_l(a, t)dt 
i+j<n--1 i<p--1 b 

(i,j) # (p-~, q--D 

+ ~ (t--b)J 18 (s-- 8)n--J--2Xn_j_i, j ( i ,  b)di + T ,  (s, t) e U s , 
j<q--1 ~a 

where 

T = 

8 t 
t ( s -~ )p -2d i l  (t--t)q-2xp-l,q-~(i, t)dt ,  19 > 2, q ~ 2 ,  
*)a *)b 

i8 P~-2XP -1 , (s--g) o(i, t )d i ,  19 > 2, q = I ,  
a 
t 

Ib(t--t)q-2Xo, q_l(s, t)dt ,  19 = 1, q > 2 ,  

Xo, o(S, t) , 1 9 = q =  1.  

This formula is established in the same way as Taylor 's  formula (5:4) on By, q. 

T a y l o r ' s  formula (6:2) expresses x in terms of its complete core inAp, q. Applied 

2 2 -  642138 Acta mathematica. 84 



3 3 4  A r t h u r  Sard .  

to  the  der ivat ives  covered by  the core, (6:2) and  (4: 1) express these der ivat ives  

also in te rms of the  complete  core. Hence  I lxl lAy, q and the  m a x i m u m  of the  absolute 

values of the  elements  in the  complete core of x are equivalent  norms in the  sense 

t h a t  each is a t  most  a constant  t imes the  other.  

For  each x � 9  q there  is a complete  core. Conversely,  given constants: c i'j, 

i~- j  < n - - l ,  ( i , j)  # ( p - - l ,  q - - l ) ;  continuous functions of t: zi'n~-l(t), i < p - - l ;  

continuous functions of s : z n-j-i' J(s), j < q--  1 ; and a continuous function of (s, t) : 

z p-I' q-l(s, t) ; there is a unique function x �9 Ap, q having these elements as its complete 

core. This is unders tood  and  established precisely as was the  similar fac t  (5:9) 

for By, q. 

Thus the  complete core of x �9 Ap, q m a y  be though t  of as the  independent  pa r t  

of x and as an independent  variable.  

(6: 3) L e m m a .  

A functional linear on Av, q 

is afortiori  linear on Ap, q. 

Bp, q ~ Ap, q c Bp_I, q-l" 

][Xt[Bp, q ~ [IX][Ap, q ~ [lX[IBp_l,q_l �9 

is a fortiori linear on Bp, q; a functional linear on By_l, q-1 

(6:4) L e m m a .  Ap, q c Av_l ,q ,  p > 2 .  

IIxtli~,q > IlxltA~_l,a. 

A functional linear on Ap_l, q is afort iori  linear on Av, q. 

Likewise for Av, q-l ,  q > 2. 

(6: 5) M u s s  t h e o r e m  o n  Ap, q. Suppose that Rx  is a functional linear on Ap, q 

and zero whenever x is a polynomial in (s, t) of degree n - - 2  that is free of the term 

8P-lt q-1. Then there are functions o~ i' j e ~fl such that 

(6:6) Rx  ---- ~ llx~, ~_i_l(a, t)do~"~-i-l(t)-~-11 tlxp_l, q_l(s, t)d~p--1,g-l(8, t) 
i<p-1  "20 *)0 "10 

~- ~ flxn_j_l.i(S, b)d~n-J-l'J(s) , x e A p ,  q. 
j < q--1 vO 

Conversely, given masses ~i,j �9 9 ,  (6:6) defines a functional which is linear on 

Ap, q and zero whenever x(s, t) is a polynomial of degree n - - 2  that is free of the term 
8P--lt q-1" 

The masses oJ "i may be defined as follows: 
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(6:7) 

t 
al, n-i-l(t '  ) --__ R ( s - -a )  i Ib(t--t)n-i-~Ot,(t)dt , 

is n-j-2Os' o~n-j--l'J(8 ') ~-- R( t - -b )  j (s--g) (g)dg, 
a 

0J~- l ,  q--l(.~', t") = 

i < p - - 1 ,  * ,  

j < q - - l ,  * ,  

R l'~( ~) (~)d~ I t - -)d- s - -  P-~O~,  (t--t)q-2Ot,(t t ,  p > 2, q > 2 * 
a b 

ROt,(t ) s--g)  (g)dg, p > 2, q = 1 ,  * 
~ a  

t 
ROs'(S) l (t--t)q-~Ot'(t)dt ' p = 1, q > 2 , * 

b 

RO~,(s) Ot,(t ) , p = q : 1 ,  * 

The proof is similar to that  of the mass theorem (5: 11) on Bp, q. 

The definitions (6:7) are understood as definitions by monotone limits (cf. 

(5:15)). 
If the functional R x  is linear on Ap_~, q, p ~ 2, (hence on Ap, q), the first two 

relations (6:7) may he used directly, consistently with their interpretation as 

definitions by monotone limits. Likewise for Ap, q--i, q ~ 2. I f  R x  is linear on Av_~, q-l, 

p ~ 2, q ~ 2, all the relations (6:7) may, equivalently, be used directly. In these 

cases, the relations (6:7) may be transformed by (4: 11). In particular, 

~%i, n--i--l(t, ) ~ R(s__a)i(t__t,)n-i-lOt,(t) , i < p - - 1  ; 
(6: 8) 

o~-J-]'J(s ') : R(s~s') '~-J-l(t--b)JOs,(s),  j < q - -1  . 

(6:9) An ex t ens ion  of R.  Once the masses eci, j have been defined, we may 

extend the / t  of theorem (6: 5) as follows. Put  

(6:10) 
i<p-i 

§ X I xn -J - l 'Y ( s ' b ld~ -J - l ' J ( s ) '  x e A ; , q ,  
j<q-1 U 

where A +, q is the space of functions x for which Taylor's formula (6 : 2) holds with 

integrable derivatives and whose derivatives in (6: 10) are Lebesgue-Stieltjes inte- 

grable relative to their corresponding masses ~'~. Then Ap, q c A~, q and R x  ~ .R+x 

for x e Ap, q. Furthermore, the relations (6:7), with R replaced by R +, are valid 

with countable exceptions; the relations (6: 7) thus modified may be transformed 

by the use of (4:11). 
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(6: 11) K e r n e l  t h e o r e m .  Suppose that R x  is a functional linear on Ap, q 

zero for degree n - -1 .  Then there are functions fi, j such that 

(6: ~2) 

and 

Rx = i ~  fu lxi' n-i(a' t)fi'n-i(t)dt -~ I fu/t)' q(8, t)fP'q(8, t)dsdt 

§ ~ "  I x,~_j,j(s, b)ff-J'J(s)ds, x �9 B;:~q, 
<q U 

where B+,+q is the space of functions x whose Bp, q core derivatives are integrable and for 

which Taylor's formula (5: 4) holds. The kernels f i 'J  �9 ~ .  The two particular kernels 

fp-1, q+l(t ) and fp+l, q-l(s ) vanish at 0 and 1 and are integrals of functions in o]). 

Conversely, given a set of kernels fi, j with the properties listed in the preceding 

paragraph, (6: 12) defines a functional R x  which can be extended so as to be linear on 

A p' q and zero for degree n - -1 .  

The kernels may  be defined as follows: 

(6 : 13) 

f~, n-i(~) ~_ R + ( s _ a ) i ( t _ ~ ) n - i - l ~ b  ' t(t), i < p, 

fn- j , j (~)  : R+(s__~)n-j-i(t__b)J~a,s(~), j < q ,  

fP'  q(~, t) -~  R + ( s - - ~ ) P - l ( t - - t ) q - l v 2 a ,  s(8)~Yb, t(~) , 

W, C, e.~ 

w.c.e.~ 
w.c.e.~ 

where R + is the extension (6:9) of R, and ~ is defined in (4:18). 

Observe tha t  Bp, q c B~,+q c Ap, q; so tha t ,  in part icular,  (6:12) holds for 

x �9 Bp, q. Actual ly  B~,+q is now the same as B~, q defined in (5: 18), bu t  this fact  is 

not  used in the  proof or the  applicat ion of the  present  theorem. 

The relations (6: 13) may  be wri t ten  in al ternat ive forms, by  the use of (4: 18). 

In  particular,  

(6: 14) f l ,  n-i(~) : __R+(s__a)i(t__~)n-i-lo~(t ) = 

R+(s--a)i(t--t)n-i-l[1--O~(t)], i < p ,  w .c .  e , 

with the  dual  relat ion for f~-J'i(~), j < q. 

If Rx  is linear on Ap_l,q_l, p ~ 2, q __~ 2, the  relations (6:13 and 14) hold with 

the  q- and w. c. e. deleted. 

Observe tha t  R x  is surely linear on Ap, q if it is linear on Bp_l, q-l, by  lemma 

(6:3). 

P r o o f  of  t h e o r e m .  Since R x  is linear on Av, q, we ma y  write R x  in the form (6: 6). 

++ Taylor 's  formula (5:4), (4: 18), and the  fact  tha t  R x  is Suppose tha t  x �9 Bp, q. 

zero for degree n - -1  imply tha t  
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(6: 15) Rx = ~ R(s--a) i fu(t--t)n-i-~y~b,t(t)xi, n_i(a, t)dt 

~- R f fu~ ( s -  ~)v ~(t--t)q-~Y~' ~(S)~fb't(t)xp' q('~' t)d~dt 

- -8 )n -3 -1~a  ' s(8)Xn_j , j (8,  b )d~ , 
j < q  

§ x ~ Bp, q 

The derivation of (6: 12) from (6: 15) amounts  to the  interchange of R and the  integral  

operator  in each t e rm of (6: 15). Consider one of the  terms,  for example:  

The a rgument  of R in W is an element of A~), q whose core in Ap, q is zero except  

for its derivat ive of index p - - l ,  q--1.  Hence, by (6:6) and Fubini 's  theorem, 

W ~ f10 fl0d~P-l'q-l(8, t)flud~dt~f~, ~(~)y~b,t(t)xp, q(~, t ) :  

where 

(6:16) f(8, t) = l IU~a,s(8)Y~b,t(t)do~P-l'q-l(8, t) . 

I t  follows from (6:16) tha t  f(s, t ) e ~ ,  since ~p-1, q--1 ~ .  (One may  actual ly evaluate  

the integral  (6:16), by using (4: 18)). 

Fur thermore ,  .fP'q defined in (6: 13) equals f with countable exceptions. For, pu t  

y ~-- y(s, t) -~ (s--~)P-~(t--t)q-~y~, ~(s)YJb, t(~) �9 

As a funct ion of s, Fa, 8(~) is continuous and constant  except  at s = ~, by (4: 18). 

Also Fa, a(~) ~ 0. Hence the derivat ive yp_l,q_l(s, t) exists and equals ~a, 8(s)yJb, t(t) 

when s 4 ~, t ~= t; and the  other  Ap, q core derivatives of y exist and vanish. Now 

Fa,~(~)~b,t(t), s ~= ~, t =4= t, is integrable daP-l'q-l(s, t) except  when ~ or t is a disconti- 

nui ty  of ~p-l,q-1. Also Taylor 's  formula (6:2) applies to y, since (s--5)P-l~fa, 8(~) 

++ q l(s, t) has discontinuities at  only countably m a n y  is an element of B~)_a. As ap-1, 

s and t [13], it follows tha t  y e A~,q with countable exceptions. Hence,  by (6: 10), 
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~> = ~ = ..ii ~ a . ( ~ ) ~ , , ( ~ > ~  ~ -~ '~ ( ' ,  '> = i(~, ~), w ~ ~ f~, U 

A similar t r e a t m e n t  of the other  te rms of (6: 15) establishes (6:12), (6: 13). 

We now show tha t  fp-1, q+l(t ) vanishes a t  0 and 1 and  is an integral  of a funct ion  

in c,~. The kernel  fP+l'q-l(8) is t r ea ted  similarly. Thus,  

(6: 17) f p - 1 ,  q+l(~) __~ R(s_a)p-l(t_~)qWb ' t(~) ; 

we write R instead of R + as in (6: 13) because the a rgument  of R in (6: 17) is an 

e lement  of Ap, q; we have suppressed the w. c. e., as we may.  Note  t h a t  

fp-l,q+l(O ) = R(s_a)P-ltq[Oo(b)_Oo(t)] = 0 - -0  = O, 

since tOo(t ) is zero for  all t ~ 0. Also (4: 18), (6:6), and Fubini ' s  theorem imply t h a t  

d~l i1 fp-l,q+l(~) = --R(s--a)p-l(t--~)qo-t(t) = --  ~ (t---t)Oi(t)do? -~'q-~(s, t) = 
0 0 

where 

Thus  h e G];, since a ~G]~. Finally,  f P - l ' q + l ( 1 ) =  0 by  (6: 17) since Wb, t ( 1 ) =  0. 

I t  remains to prove the  converse. We consider the  te rms of (6:12) separate ly  

and in tegra te  by  parts .  Fo r  example,  given t h a t  fP' q E cp, consider the  t e rm  

U U 
fP'q(1, 1)Xp_l,q_l(1 , 1)--fP'q(1, O)Xp_l,q_l(1 , O)--fP'q(o, 1)Xp_l,q_l(O, 1) 

-F-fP'q(o,O)xp_l,q_l(O,O)--IiXp_l,q_l(1, t)dfP'q(1, t)-~-IiXp_Lq_l(O,t)dfP'q(o,t ) 

-- f lXp-l ,q_l(s,  1)dfP'q(s, 1)~-flxp_l,q_l(s,O)dfP'q(s,O) 

1 1 

+ Io I0 "-~,,-~(''')':'''(''')' "~;,+. 
The last member of this equation is a linear functional on Ap, q, which reduces to W 

for  x ~ Bp,+q and  vanishes for  degree n - - 1 .  
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The o ther  te rms of (6 : 12) are t r ea t ed  similarly b u t  more  simply, except  for  the  

two neighbors of W. Consider one of these. Given t h a t  fP - l ' q+l ( t )=  f~h(t)dt  and 

vanishes a t  1, where h e o]). Th en  
i .  0 

I uXp_I t)fP-1, q+t(t)dt ~- - -  q(a, t)h(t)dt = --  (t) (a, t) -~ 
u 

i 

--h(1)xp_l,  q_l(a, 1)-~h(0)Xp_l, q_l(a, O) -~- IoXp_l, q_l(a, t)dh(t) , x ~ B~,+q . 

But  the  last expression defines a funct ional  l inear on Ap, q and zero for degree n - - 1 .  

(6: 18) R e m a r k .  Suppose t h a t  a funct ional  R * x  is l inear on Bp, q or Ap, q bu t  

not  necessarily zero for degree n - -1 .  As in (4:23), one m ay  cons t ruc t  a re la ted  

funct ional  R x  which will be zero for degree n - - 1 :  

R x  = R * x - - ~  ci, jxi ,  j (a  , b) , 
i ~ j < n  

where ci, i ~ R*(s - -a ) i ( t - -b )  j, i + j  < n. The funct ional  R x  is l inear on Bp, q if R * x  is. 

Note ,  however,  t h a t  given R * x  l inear on Ap, q, R x  will be l inear on Ap, q if and only 

if cv_~, q -~ cv, q-1 ~ O, 

7. I l l u s t r a t i o n .  A simple i l lustrat ion of the  kernel  theorem (6:11) is the 

following. The  fundamen ta l  rectangle is - -1  ~ s, t < 1; 

R x  = x(1, 1 ) - -x ( - -1 ,  1)-~x(1, - - 1 ) - - x ( - - 1 ,  - -1)- -4xl ,0(0 ,  0) . 

Thus  R x / 4  is, among other  things,  the  remainder  in the  approx imat ion  of the  deri- 

va t ive  x~,0(0, 0) by  the  indicated  combinat ion  of the  corner  values of x. 

The funct ional  R x  vanishes for  degree 2; R x  is l inear on B1, 0, hence on A2, l, 

for all (a, b) ; R x  is l inear on B0,1, hence on A1, 3, if and only if b = 0. 

The form of R x  on B ++~, 1 is . 

(7:1) Rx = I Xo,~(a, t) f~ xl ,~(a, t ) fx '~( t )dt-4-II  x~'l(s' t ) f f ' l (s '  t)dsdt 

[--l, 1] [--1, 1] --1 ~ 8, t ~  1 

I , B ++ Jr X3, o(S, b)ff '~ x E 2, 1 ' 

[ - - I ,  13 

where, for  all a, b, 

and  
f~ = O, f l ' z ( t )  = 2(I--It[) ,  f f '~  = 2(1--[sl) 2 , 
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I (1--1sl) s ignum (st) if a = b = 0 ,  
y'1(8, t) / 1 - - s - -4 ~  if a = b = - - l ,  

equal ing one if s < 0, t < 0 and zero otherwise. 

The form of Rx  on B ++ ( a , b ) - -  (0,0),  is 1,2~ 

(7 : 2) 

where 

Rx  = I xo, 3(O, t)g~ 47 I I x1,:(s, t)gi'2(s, t)dsdt 
[--1, 1] --1 --< s, t _~ 1 

-@ X2, 1( 8, 0 ) g  2' 1(8) d8 Jl- X3, 0(8, 0 ) g  3' ~ x 1, 2 , 

I-i, i] I - i ,  i ]  

g~ = g~'l(s) = 0; g"~(s, t) = 1--]tl ;  g3'~ = 2(1--1sl) 2. 

The  coefficients in f3, 0 and ga' 0 are 2 instead of 1 because of our  convent ion  about  

exponents .  

8. A p p r a i s a l s  and  b e s t  a p p r o x i m a t i o n s .  I f  Rx  is a remainder ,  we m ay  be 

in teres ted  in its appraisal.  We m a y  appraise the  separate  terms in (5:12) or in 

(6: 12) in the  cus tomary  ways. Such separate  appraisals are efficient, since the  

elements  of the core of x in Bp, q are independent .  

Al te rna t ive ly  we may  appraise (6:12) as follows by  a general izat ion of HOlder's 

inequal i ty .  Le t  K i'j be the  set on which the  kernel  f i ' J i s  not  zero; let [Ki'J{ be the  

measure  of K i ' j  in the  t, (s, t), or s space, as is appropr ia te ;  and let K = ~Y' IKi'Jl. 
i+j=n 

Exclude  the  case K = 0, for then  R x  = 0 and no appraisal  is needed.  Then  

(s: 1) 

where 

[Rxl ~ K i ~  2 7 ]3Ci, n- i (a ,  t)l~dt-~ Ixp, q( s, t)l r 
i<p  

Ki, n--i KP, q 

+ 2 2  b)l d8 i o ,  x 
j < q  

Kn-], j 

Ki, n-i KP, q 

I �9 . , 11/e' 1 1 § Ifn-J'J(s)l* ds , - §  j 
j < q  e 

Kn--], ) 

n l ,  e > l ,  
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and exponents  are unders tood  as powers in the ord inary  sense. Now M~ is indepen- 

dent  of x, and the  mult ipl ier  of M~ in (8:1) is an average of the  absolute value  of 

the core derivat ives of x in Bp, q. Fix  e and n. Suppose tha t  one has the choice of 

several  formulas (6: 12) (which m ay  be different  formulas for the same remainder  

Rx or formulas for  different  remainders ,  all in terms of n th  derivatives.)  Suppose 

tha t  one intends to  appraise by  (8: 1) and tha t  one has no reason to prefer  the  

average of the absolute value of the  n th  der ivat ives  on one class of sets K ~'j to the  

average on another  class of sets K i'j. Then it  is reasonable to  say tha t  t ha t  formula  

(6:12) is best which minimizes M~ [12]. 

In  the  usual way we m a y  admi t  the values e = 1 and e = oo in (8: 1). The  

appraisal  (8:1) may  be adjus ted  to assign different  weights to the  core derivatives.  

In  pract ice,  the  calculat ion of M,  is of ten decisively simpler t h an  t h a t  of Mr, 

e 4 : 2 .  

For  the  i l lustrations of section 7, M 2 has the  following values:  (176/5) ~/2 for 

(7:1) with a = b = 0; (496/5) 1/~ for (7:1) with a ~ b = - -1 ;  (52/5) 1/~ for (7:2). 

In  a similar fashion, we m a y  appraise (5:12) by  a general izat ion of the theorem 

of the mean:  

(8:2) [Rxl ~ m a x e s s  sup [Ixl, n_i(a,t)l,  [xp, q(s,t)l,  Ix~_j,/(s,b)l]M, x ~ B ; , q ,  
i<p,j<q (s,t)@ U~ 

where the  essential sup remum of each der ivat ive  is t aken  relat ive to its corresponding 

mass fli,j, and 

~/Z ~ ~ I Idfl i'n-i(t) l -]- I I [aft p'q(s, t), + ~ I ' d~n-j'j(s) l �9 
i < p  .) U 1 e) e) U 2 j <  q ~ U 1 

If  the  appraisal  (8:2) is to be used on a class of formulas  (5: 12), it  is reasonable to 

say t ha t  t ha t  formula  is best for  which M is least. 

The  appraisals (8 : 1 and 2) are efficient in the sense t h a t  any reduct ion  of their  

second members  would make  the  inequalities false. This is t rue  of (8: 2) because, 

by construct ion,  the  masses fl~'J are cont inuous on the r ight  for posi t ive arguments .  

9. F u n c t i o n s  of m v a r i a b l e s .  The results of the previous section ex tend  to  

funct ions of several variables.  For  the  most  pa r t  the proofs are direct  generalizations 

of the earlier proofs. Here  we s ta te  the principle facts.  For  m ~ 1 or 2 the concepts 

and theorems of the  present  section are those of the  preceding sections. 

Le t  (a) : (a 1 . . . . .  am) be a f ixed point  in Urn; and let (p) : (Pl . . . . .  Pro) be 

f ixed non-negat ive  integers. P u t  

n = p ] + . . .  +Pm �9 
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W e  def ine  t he  space B(p) ----- B m ..... p~ as t he  space of f u n c t i o n s  x = x(s)  - -  x (s  1 . . . . .  sin) 

whose  d e r i v a t i v e s  

(9: 1) xil  . . . . .  i r a ( a 1 , . . . ,  a m )  , i x @ ' ' .  @ i  m ~-- n , 

all  ex is t  a n d  are  c o n t i n u o u s  in  t h e i r  va r i ab l e s  on  U m, where  av, v = 1 . . . . .  m, is 

e i the r  the  c o n s t a n t  a v or t he  v a r i a b l e  s~, a cco rd ing  to  t he  fo l lowing  i n d u c t i v e  rule ,  

wh ich  we call  t he  ru le  of B m ... . .  pra: 

F o r  m = 1, a l  = sl �9 

(9:2)  F o r  m > 1, (al . . . . .  am_z) --~ (a I . . . . .  am_l) a n d  a m = s m if i m > P m  ; 

(a I . . . .  am_l)  is d e t e r m i n e d  b y  t he  ru le  of B m ..... p~_~ if i m ~ Pm a n d  

a m = s m if i m = Pro, am = am if i m < P m  �9 

W e  shal l  use  t he  ru le  (9:2)  to  d e t e r m i n e  (a) = (al . . . . .  am), g i ve n  i 1 . . . .  , i m, i n  cases 

in  which  i l -  k �9 �9 �9 q- i  m => P lq - "  �9 " -kPm. The  o rder  of d i f f e r e n t i a t i o n  i n  xjl  ..... j~, w h e n  

x is cons ide red  as a n  e l e m e n t  of B m ..... p~, is r e s t r i c t e d  as follows. P u t  qv = m i n  (Pv,Jv), 

v = 1 . . . . .  m. T h e n  xjl ..... j~ is to  be  u n d e r s t o o d  as a d e r i v a t i v e  of xql ..... qa; all  orders  

of d i f f e r en t i a t i ons  in  xq~ ... . .  q,~ are a l lowed a n d  all  orders  of the  r e m a i n i n g  d i f f e ren t i a -  

t i ons  neces sa ry  to  ca r ry  xq~ ... . .  qra i n t o  Xjl ..... ]~ are a l lowed.  

The  core of a f u n c t i o n  x in  B(p) is t he  set  of d e r i v a t i v e s  (9: 1); t he  complete  core 

of x is t he  core t o g e t h e r  w i t h  t he  n u m b e r s  Xjl ..... jm (al . . . . .  am), j l - k "  �9 �9 - k jm < n. 

(Cf. I l l u s t r a t i o n  (9 : 8) below.)  I n  o rder  for  t he  core of x e B(p) to  exis t ,  c e r t a i n  deri-  

v a t i v e s  of x of lower  o rder  m u s t  exis t  a n d  be c o n t i n u o u s ;  we say  t h a t  t he  l a t t e r  

d e r i v a t i v e s  are  covered b y  t h e  core. 

The  n o r m  of x in  B(p), d e n o t e d  b y  [IXl[B(p), i s  def ined  as t he  m a x i m u m  of the  

a b s o l u t e  va lues  of the  d e r i v a t i v e s  of x in  the  core or covered  b y  t he  core, (s) e Um. 

A b a r y c e n t r i c  d i a g r a m  of t he  d e r i v a t i v e s  of o rder  n is usefu l  i n  cons ide r ing  t he  

core of x in  B(p). 

(9 : 3) T a y l o r ' s  f o r m u l a  o n  B(p).  I f  x ~ B(p), 

X(8)  = s ( s l - - a l ) i l . . .  ( 8 m - - a m ) i m x i l  . . . . .  ira(a) + ~ 1 1 1 2 . . . I m X i l  ..... ira(3) , 
i 1 + "  �9 �9 +irn < n i 1 + "  " �9 +im : n 

(s) e U m , 

where  (3) = (31 . . . . .  3m) is  de f ined  i n  t erms  o f  (a), d e t e r m i n e d  by (9:2) ,  as fo l lows:  

{ sv i f  a~ = s~ a n d  i v >__ 1 ,  
Ty ~-- 

a v o therwise;  

a n d  the operators  I v are de f ined  as fo l lows:  



Remainders: Functions of Several Variables. 343 

( sv - -av )  i" i f  ~v = av , 

sv( i r - l  dsv I v =  s v - ~  v) i f  ~ v = ~ ,  ~ = 1  . . . . .  m .  
~ a y  

1 i f  ~v = 8~.  

(9:4) L e m m a .  S u p p o s e  that  Pv >= 1, v = 1 . . . .  , or m .  T h e n  

Bpl ,  ....  pv . . . . .  P m  ~ Bp~ . . . .  , p v - 1  . . . . .  P m  ; 

the n o r m  on the larger  space  i s  at  mos t  the n o r m  on the sma l l e r ;  a f u n c t i o n a l  l i near  

on  the larger  space  i s  a f o r t i o r i  l i n e a r  on the smal le r .  

(9 : 5) Mass  t h e o r e m  on B(p). S u p p o s e  that  R x  i s  a f u n c t i o n a l  l i n e a r  on  B(p) a n d  

zero f o r  degree n - - 1 .  T h e n  there  are  f u n c t i o n s  fli~ . . . . .  ~'~ ~ ~ such  that  

(9 : 6) R x  = ~ . .  �9 ..., i ra (a1 , . . . ,  am)dfl  ~1 . . . . .  *'((r 1 . . . . .  am) , x e B(p) , 
1 1 4 - .  � 9  + i r a  = n 0 

where  each in tegra l  i s  re la t ive  to the i n d e p e n d e n t  var iab les  i n  (a) a n d  (a) i s  d e t e r m i n e d  

by  (9:2). 
Converse l y ,  g i v e n  f u n c t i o n s  fli~ ..... i"(a) ~ ~;,  (9:6) de f i ne s  a f u n c t i o n a l  w h i c h  i s  

l i near  on  B(p) a n d  zero f o r  degree n - - 1 .  

T h e  m a s s e s  flr . . . . .  r m a y  be de f i ned  as  f o l l o w s :  

(9:7) fl*~ ..... ~'~(a') = RF~?2...(pro, * ,  
where  

/ (iv--av)~v if (r v = a v , 
. s v  _ i v - - l o  _ _ 

c p v =  (%--Sv)  ~'(sv)d % if av s v and i v ~ 1 ,  
'~ a v 

O~'(sv) i f  % = s v and i v = 0 ,  

! 

v = 1 . . . . .  m ;  (a) i s  d e t e r m i n e d  by  (9:2), a n d  (a') = (a) w i t h  each s v rep laced  by  s v. 

The relation (9:7) is to be understood as a definition by monotone limits. If R 

is linear o n  Bp l_  1 . . . . .  pin-1' Pv >= 1, V = 1 . . . . .  m , the relations (9:7) may, equiva- 
lently, be understood directly. 

We define the space A(p) = A p ,  . . . . .  p,v Pv ~ 1, v =- 1 , . . . ,  m ,  as follows. The 

t en ta t i ve  core of x in A(p) is the set of derivatives xj~ ..... jm(a), where, for each i x . . . . .  ira 
such tha t  ix- t - . . . -~i  m = n, (a) is determined by (9:2) and 

{ i~, if % = a v , 

J v ~  i v - 1  if a v = s  v .  
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Cer ta in  de r iva t ives  in t he  t e n t a t i v e  core can be de r i ved  f rom de r iva t ives  of lower  

o rde r  in the  t e n t a t i v e  core by  d i f fe ren t i a t ions  and  s u b s t i t u t i o n s  of the  t y p e  a ,  for  s v. 

We  exc lude  such  de r iva t ives .  The  core of x in A(p) consists  of the  t e n t a t i v e  core  less 

the  exc luded  der iva t ives .  De r iva t i ve s  are  u n d e r s t o o d  acco rd ing  to  the  c o n v e n t i o n  of 

Bpl-1 . . . . .  pro-1 as to  the  o rde r  of d i f fe ren t i a t ion .  T h e  space  A(~) consists  of all f unc t ions  

x - ~  x(sl . . . .  , s,~) whose  core in A(p) exis ts  and  is con t inuous  in U ~. 

(9: 8) I l l u s t r a t i o n .  F o r  m = 3, we use the  a lphabe t i ca l  n o t a t i o n :  (s, t, u) = 

(s 1, s2, s~), (a, b, e) - -  (al, a2, a3), (p, q, r) = (Pl, P2, P3). T h e  core of x in B1,1,.o con- 

sists of the  de r iva t ives :  

Xo, o,4(a, b, u), xo, l,3(a, b, u), x~,o,3(a, b, u), 

xo,2,2(a, t, u), x~,l,:(s, t, u), x2,o,,(s, b, u), 

Xo,3,1(a, t, c), xl,~,l(a, t, c), x2,1,1(s, t, e), x3,o,l(s, b, c), 

Xo,~,o(a, t, c), xl,3,o(a, t, c), x2,:,o(a, t, c), x3,1,0(s, t, c), x4,0,0(s, b, c) . 

T h e  core of x in A~,I, ~ consists  of the  de r iva t ives :  

xo, o,l(s, t, u), X:,o,o(S, t, c), xo,3,o(a, t, c), xl,:,o(a , t, c) . 

(9:9) L e m m a .  Bpl . . . . .  pm ~ A p l  . . . . .  pm c B p l _ l  . . . . .  pra-1 �9 

The norms on these three spaces are non-increasing, f rom left to right. A funct ional  

l inear on X ,  one of the above spaces, is a for t ior i  linear on the above subspaces of X .  

( 9 : 1 0 )  L e m m a .  Suppose that Pv ~ 2,  ~ = 1 . . . . .  or m. Then 

A p l  . . . . .  pv  . . . . .  pm c A p  1 . . . .  , p v - 1  . . . . .  pm ~ 

the norm on the larger space is at most the norm on the smaller; a funct ional  linear on 

the larger space is a fo r t i o r i  linear on the smaller. 

( 9 :1 l )  K e r n e l  t h e o r e m .  Suppose that R x  is a funct ional  linear on A(p) and 

zero for degree n - -1 .  Then there are funct ions f i x  . . . . .  ira such that 

(9: 12) R x  = )_) . . .  ..,ira(a)f 11 ..... i ' ~ ( a ) d a l . . . d a m ,  x c B(+~, 
11+" ' "+ira = n 

where (a) is determined by (9:2) ,  day = 1 i f  a~ = a r, w is the number of variables in  

(a); and the space B(+p~ is the space of funct ions  x whose B(p) core derivatives are inte- 

grable and for which Taylor's  formula (9 : 3) holds. The kernels f i x  . . . .  ira are in ~]j and 
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have certain other properties not described here. (But see (9 : 14) for a complete description 

in the case m = 3.) 

Conversely, given a set of kernels with these properties, (9 : 12) defines a functional 

Rx  which can be extended so as to be linear on A(~,) and zero for degree n - -1 .  

The kernels may be defined as follows: 

(9: 13) f f l  ......... (~) = R+o~l. . .c%,,  w.e .  e ,  

where 
/ (8~--a~) ~ /f ff~ = a~, 

O ) y  z 8 - i v - 1  - ~ = 1 , . . . ,  m ; 

and (~) = (a) with s~ replaced by "~,. Here R + is the extension of R on A(+~), analagous 

to (6: 9). 

I f  Rx  is l inear  on  Apl_,..~ .,pro-l, P~ ~- > 2, v ~ 1 , . . . , m ' ,  t he  re la t ions  (9:13)  

ho ld  wi th  t he  q- a n d  w. c. e. de le ted .  

(9:14) Description of the kernels  f , i , k  in theorem ( 9 : 1 1 ) i n  the case 
m - -  3. T h r o u g h o u t  i @ j q - k  = n; f i ' J ' k E ~ .  I f  k ~ r@l, f i 'J 'k(( t )  vanishes  a t  0 and  1 

and  is t he  in tegra l  of a i u n c t i o n  in ~]9. Likewise  fo r f i ' J ' k ( t )  i f /c  ~ r - - l , j  ~ q + l  or if 

j ~ - q - ~ l ,  k < r - - 1 .  L ikewise  for  fi,j,k(~) if k ~ r - - 1 ,  j ~ q - - 1  or if j ~ - q - - 1 ,  

k < r - - 1 .  F u r t h e r m o r e  fp-l,q-l,~+~(~) vanishes ,  t o g e t h e r  w i th  its f i rs t  de r iva t i ve ,  

a t  0 and  1 and  is t he  two- fo ld  in t eg ra l  of a f u n c t i o n  in ~) .  L ikewise  f o r f  ~-~'q+2'~-1 

(t) and  fp+~,q-l,~-l(~). Las t ly ,  p u t  

h I = hI(~, ~) : fp-1, q+l, r(~, ~t) +gOb, 0(hf~ -1, q' r+l(?~)  , 

hII = hII(~, ~) = fp+l, q-l, r(~, ~) -]-gOa, 0(s)f~ ' q-~' ~+~(*~) , 

h l I I =  hnI(~, ~) = fp+l, q, r-l(a ' ~) -~gOa, 0(a)f~' q+~''-~(t) �9 

T h e n  h i ( l ,  ~) ---- 0, hi(0, ~) = --f~-~'q'~+~(~/), and  hi(t, ~) is t he  in tegra l  wi th  r e spec t  

to  t of a f u n c t i o n  in c]) as r ega rds  (t, ~). L ikewise  for  h ~I and  h III. 

(9 : 15) R e m a r k .  For m >= 3, there are spaces similar to B(p), A(p), but different 

f rom them, for which mass and kernel theorems are valid. I n  fac t ,  if m = 3, t h e r e  

are  (p q- 1) ! (q q- l) ! (r q- 1) ! d i f f e ren t  spaces,  all ana lagous  to  Bp, q, ~ wi th  or igin (a, b, c). 

T h e  core in these  spaces  consists  of xp, q,~(s, t, u) and  o t h e r  de r iva t i ve s  as follows. 

T h r o u g h o u t  i q - j q - k  = n. F o r  each  k < r t h e r e  is a pa i r  of indices i~,j~ such  t h a t  

i~ ~ p, j~ ~ q. T h e  core inc ludes  xi~,j~,~(s , t, c); xi, j , k (a  , t, C) if j > j ~ ;  x~,j,~(s, b, c) if 

i > i~. Likewise  for  each  j < q and  for  each  i < p. These  speci f ica t ions  are  cons i s t en t  

and  lead to  ( p ~ l ) !  ( q ~ l ) !  ( rq-1) !  spaces,  of which  B~,r r is one. Of these  spaces  

two  are  s y m m e t r i c a l  in t he i r  re la t ions  (which Bp, q, ~ is not ) .  F o r  m ~ 4 t he r e  is no 

space  s y m m e t r i c a l  in i ts re la t ions .  
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