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The paper is concerned with certain aspects of a theory of critical points 

of a scalar (i.e., a real valued funct ion)  i(5) defined in a Hilbert  space H, especi- 

ally with the relation of the cr i t ica l  points to the gradient  field of i(~). More- 

over, applications to the theory of non-linear integral  equations are made. 

Le t  V be a bounded open convex set of H,  and S its boundary.  We sup- 

pose t ha t  i(~) is defined in an open region V' conta ining V + S in its interior.  

I f  i(5) is wri t ten in the form 

i) = ]J ll:/2 + 1(5) 

where I[~ll denotes the norm in the space H we will always assume tha t  

O (~)= grad 1(5) (Definition 2.2) exists and is completely continuous.  Moreover, 

i f  a critical point is defined as a point  ~ for which 

(I. 2) grad i (5) = ~ (5) : ~ + G (5) = 0 

i t  will be assumed tha t  such a point  is no t  degenerate  (definition 3 . 2 ) a n d  does 

not  lie on the boundary  S of V. 

Under these assumptions i t  can be proved (theorem 3. I) tha t  there are at 

most  a finite number  of cri t ical  points in V, say al, a.,, . . .  as. For  each crit- 

ical point  a~ there will be defined a non-negative in teger  ro, the type of the 

critical point a~ (definition 4. I). I t  will be proved tha t  the "quadrat ic  form" 

giving the second differential  at  a~ can, by the use of a proper base of H,  be 

wri t ten as a sum of squares mult ipl ied by + I, the number  of those mult ipl ied 



74 E . H .  Rothe. 

by - - I  be ing  ro ( theorem 4. I). I f  j,=j(a~) is the  index ~ of the  poin t  g =  a~ 

as solut ion of equa t ion  ( i .2) ,  t hen  Lheorem 5. I asser t s  t h a t  j(ao)~(--~)~. I n  

a g r e e m e n t  wi th  the  defini t ions used in the finite d imens iona l  case ~ we define 

" of  the cri t ical  po in t  ao by fo r  a - ~ I ,  2, . . .  s the  i 4 h  type  n u m b e r  m~ 

Moreover ,  we call 

i i 
gJ~a ~ (~r a (~ K r o n e c k e r  symbol).  

a = l  

the  i- th Morse n u m b e r  of the scalar  i(~) in V. I f  now Z = Z ( $ ,  S) denotes  the  

charac te r i s t i c  of the g r ad i e n t  field g on the bounda ry  S of Y, if  u = u(g, S, o) 

denotes  the  order  of the  zero point  o of H with  respec t  to the  image  of S under  

the  m a p p i n g  g(~), and  if finally 7 ~ 7 ( g ,  S, o) is the  m a p p i n g  degree  of g(~) 

(considered as m a p p i n g  of V) in the  point  0, t hen  as is well known,  ~ 

(I.S) z = u = r .  

T heo rem  6. I of the present  pape r  asser ts  then  

(I .6)  7~ ~ i t = y =  ~ ( - - I )  t o =  Z ( - -  I)iMi" 

This  connee t ion  be tween  the Morse n u m b e r s  of  i ( ~ ) i n  V and the  char- 

ac ter is t ic  Z of t h e  g rad ien t  field on S has  a n u m b e r  of consequences.  As an 

immed ia t e  eonsequenee,  we no~e the  es t imate  

(1:7) s ~ l z ]  

for  the  n u m b e r  s of cr i t ical  points  in V. 

More  definite s t a t e m e n t s  can be made  in special  eases. I f  

(I. 8) ,-~ - =  r.~ ~ . . . -  , ' ,  (rood 2), 

(I.  6) yields 

(i.9) *=lzl .  

1 For the definition of an index see [zl, p. 470 in the finite dimensional ease, and [9], P- 54 
or [Iol, p. 188 in the c~se of a Banach space. (Numbers in brackets refer to the bibliography at 
the end of the paper.) 

[I6], p. 33. 
[I], chapter 12 in the finite dimensional ease, and [io], Satz 4 and the beginning of w 3, 

in the Banach space case. 
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Let  d2(~, ~, ~) be the second differentiaU of the scalar i(~). Then it follows 

immediate ly  from the  definition of the ro tha t  (I. 8) (and therefore  (I.9)) is cer- 

tainly true if the quadrat ic  form d~ (~, 1), ~) is non-negative in all critical points  

= a~ since in this case all r~----o. (Corollary 6. I). 

I f  d2(~, ~, ~) satisfies the s t ronger  condi t ion of being uniformly positive de- 

finite in V, i.e., if there  exists a posit ive c such tha t  for all ~ in V 

(,. ,o) d~ (~, O, ~) >---- o 11 ~ I1" 

it  will be proved tha t  Z-~ I if V is a sphere which has the origin 0 as center  

and whose radius R is greater  than [Ig(o) ll/c (lemma 6. I). This toge ther  with 

(I.9) shows tha t  in such a sphere there  is exactly one critical point. 

In  section 7, the preceding theory is appl ied to uniqueness and existence 

questions concerning a system of non-linear integral  equat ions  of the form 

( , . I I )  yj*(s) + f ~ K i ; ( t , s ) ~ ( t , y , ( t ) , . . . y , , ( t ) ) d t ~ o  ( j =  I, 2 , . . .  n) 
D O i ~ l  

for the  "conjuga te  n-tuples" (definition 7. I) yi(t), y](t) (j = I . . . .  n). I f  (besides 

certain regular i ty  condit ions concerning the j~ and Kij) ~ f~ (t, u~ . . . .  u~) dui is a 
i ~ l  

total  differential  then a certain scalar i(~) the  " Ha mme rs t e in  scalar ''~ (definition 

7.2) can be defined in a sui table I t i lber t  space of elements ~ together  with two 

mappings  �9 : ~ -~ (y~ (t), . . . y~ (t)) and (P* : ~ ~ (y~ (t), . . . y~ (t)) such tha t  the  con- 

juga te  n-tuple ~)(~), q)*(~) is a solut ion of (I. I I)  if and only if ~ is a crit ical 

point  of the scalar i($). Thus the quest ion of existence and uniqueness  of a 

solution of (I. I I) is reduced to the  invest igat ion of the critical points of  i(~). 

Now under  the assumptions  of theorem 7. I3 the second differential  of i (~ ) tu rns  

out  to be uni formly  positive definite. Therefore  the  character is t ic  of the gradient  

field of i(~) on the surface of a large enough sphere V is I and such a ' sphe re  

contains one and only one cri t ical  point  a of i(~), and a turns  out  to be an 

absolute  minimum (theorem 7.I). Since an es t imate  for  the  radius of such a V 

1 In  t h e  sense  of Fr4chet .  See [2], [61 or [8]. 

2 For  t h e  m o t i v a t i o n  of t h i s  n a m e  see t h e  i n t r o d u c t i o n  to [I5]. I n  t h e  ease  t h a t  t h e  s y s t e m  

( l , I I )  cons i s t s  of one s ing le  equa t i on  (n = I), t h e  cond i t ion  a b o u t  t h e  to t a l  d i f ferent ia l  is obv ious ly  
a l ways  sat isf ied.  

8 I n  t h e  case of one e q u a t i o n  (n = I) t h e  m a i n  condi t ion  (7.2I) of t h i s  t h e o r e m  s t a t e s  t h a t  
t h e r e  e x i s t s  a pos i t ive  c o n s t a n t  ~ such  t h a t  m i n  Of/O u >~ - - c  I/~ 1 where  11 is t h e  g r ea t e s t  cigen- 

va lue  of  t h e  (not  neces sa r i l y  s y m m e t r i c )  ke rne l  of t h e  i n t eg ra l  equa t ion .  
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can be given, theorem 7.2 concerning the system I. 11 (including an estimate 

for the solution) follows now easily. 

I f  the system (r. I I) is symmetric and positive definite then y~ (t)= yj(t) which 

proves that  the system 

(I. I2) yj(8)-[- f s .y~(t))dt=o ( j = , , z , . . . n )  
Do i=1 

has one and only one solution (theorem 7.3), a result which was first obtained 

by 1~I. Golomb. 1 

2. Differentials and Gradients. 

The following notations will be used throughout: points of the real Hilbert  

space H will be denoted by German letters; o especially denotes the zero point 

of H. Correspondingly ~(~) is a mapping of the point ~ ~ H into the point 

[(~) < H while i(~) or I(~) denote scalars, i.e., real valued functions. The vector 

field associated with the mapping ~(~)2 will also be denoted by [(~). V is a convex 

open bounded set of H, and S its boundary. All mappings, vector fields, and 

scalars will be supposed to be defined in some open set V' which contains V + S 

in its interior. (L ~) is the scalar product of the points ~ and t) of H, and 

[[~[I = + V(L~) the norm of 5. 

Definition 2.1. The scalar i (~) is said to be differentiable in the point ~o 

if there exists a linear 3 functional d (i, ~o, ~ ) =  d(~o, ~) of ~ such that  if r(~o, ~) 

is defined by the equation 

(2.  I )  

then 

(2.2) lira o. II ll- 

d(~o, I)) is called the (Fr~chet-)differential of i(~) at ~o. 

points 5 of a neighborhood of 5o 

d~(L ~, ~ ) i n  ~o, then ds(~o, ~, t) is 

at 50.* 

I f  d (5, I)) exists for all 

and, as function of ~, admits a differential 

called the second differential of the i(5) 

[4], Satz i. 
[xo], w167 i and 3. 

8 Linear means  addi t ive  and con t inuous .  
* [2], [6], [8]. 
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Since d(~0, ~) is l inear  in h i~ can be wri t ten (in a unique way) as a scalar 

product,  i.e., there  exists one and only one g = g(50) in H such tha t  

(2 .3 )  d = I5o), [9). 

Definition 2.2.  The g (~o) defined by (2.3) is called the gradient  of i(5) at  

go. I f  i(g) is differen~iable in V (i.e., at  all points of Y) then the  mapping  

t) = g (~) defined by (2.3) for all ~ in V is called the  gradient  mapping of i (~). 

The vectorfield associated with the mapping  ~ is called the  gradient  field of i(g). ~ 

L e m m a  2.1. g (~) is completely continuous i f  and only i f  d (~, ~) is completely 

continuous considered as mapping of 5 < H into the element l (~)= d(~, ~) of the 

space of linear functionals. 

Proof. The proof follows easily f rom the fact  tha t  on the one hand  by 

(2.3): I d (~ - -  5', [9)[ ----<, [[ g (~) - -  g (5')[I [[ ~ [[, and  tha t  on the  o ther  hand  the  inequali ty 

I d ( ~ - - ~  ', [9) 1 ~ ~111911 for all [9 implies, again by (2.3): 

(g ($) - -  g (5'), g (5) - -  g (if)) G e II g (~) - -  g (~')[[, i.e., [Ig (g) - -  g (g')II ~ r. 

Definition 2.3,  The mapping t ) ~  ~(~) (or the  associated veetorfield) is said 

to be differentiable at  the poin~ ~o if there  exists a mapping  [(~o, [ ) =  l([, 5o, D, 

l inear in f, such tha t  if r(~, [) is defined by the  equat ion 

~(~o + ~) --  ~(~o) = f(5~, ~) + r (~, t), (2 .4)  

then 

l" r(~0, l) 

l(go, I) is ealled the  differential  of ~(~) at ~o. 

Lamina 2.2.  I f  the mapping ~(~) has the differential I(~o, f) at ~o, then the 

scalar f(g) = (~(~), [9) has (.for each [9) a &fferential at 5o, and this d(gerentiat equaZs 
the scalar product (1 (50, L, [9). 

Proof. By 2.4:  

(2.6) f(~o + f) --f(~o) = (f(~o + ~) --  ~(5o), [9) = (I%, ~), [9) + (r(~o, l), ~). 

Since (1(5o, ~), I?) is l inear  in ~ and since because of (2.5), r(5o, ~)=(r(~o, ~), [9) 

divided by II~ll approaches zero as ~-* o, (2.6) show tha t  the lemma is an ira- 

' [)o], w 3. 
"~ [3], w 6 and [~3]. 



78 E . H .  Rothe. 

mediate  consequence of Definition 2. I together  with the fac t  tha t  the differential  

is uniquely determined.  1 

Lemma 2.3.  I f  g (~)=  grad i($) has a differential ~(~o, ~) at ~o, then i(~) has 

a second differential d~ (~o, ~, f) at ~o, and 

(2. .7)  as  = 

Proof.  Because of definition 2.2 we have only to apply 1emma 2.2 with 
= 

Definition 2.4. The real valued function q(~, r) of the pair of points ~, 

of H is called bilinear if it is linear in ~ and in ~. q is called degenerate if 

there exists a ~0#o such that q(~,~o)-~o for all I)<H. If no such ~o exists 

q is called non-degenerate, s 

L e m m a  2.4.  I f  q(~, t) is positive definite (i.e., i f  q(~, D ~ o and the equal sign 
holds only for ~-~ o) then q (~, ~) is not degenerate. 

Proof.  I f  there  would exist a ~o#O such tha t  q ( ~ , ~ o ) ~ 0  for  all ~, then 

we would have q (~o, ~o) = o which is impossible if q (~, ~) is posit ive definite. 

Definition 2.5.  The differential  I (g I) of definition 2.3 is called non-singular  

at  ~o if the equat ion for  

( 2 . 8 )  t) = o 

has only the solution t = o. 

Lemma  2.5.  The differential I(g ~) of ~ (~) = grad i (~) is non-singular at ~o 
i f  and only i f  the second differential d, (~o, ~, ~) of i (~) considered as bilinear form 
in ~, ~ is non-degenerate. 

Proof.  The lemma is an immediate  consequence of (2.6). 

3. Critical Points .  

Definition 3 .1 .  Le t  the  scalar i (~) be differentiable at  ~ = a. a is said to 

be a crit ical point  of i(~) if the differential  d(a, ~) of i(~) at  a is the zero func- 

tional, i.e., if d(a, ~)== 0 for  all ~ < H.  Clearly this is equivalent  to saying tha t  

i [6], lemma I I . I .  

' I t  is immediately seen that  in the finite dimensional ease of a form X X qtjhikj the 
i=l j=l 

above definition of degeneracy coincides with the usual one tha t  the determinant of t h e  matrix 

(qij) is zero. 
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(3. ~) g (a)---- 0 

where g (~) is the  grad ien t  of i(~). 

Definit ion 3.2.  The critical point a of i(~) is called non-degenerate  if the 

gradient  g(~) of i(~) has a differential  l(a, 3) at  $ : a and if the  second differential  

d~(a, ~, 3) of i(~) at a (which by lemma 2.2 exists ) considered as bilinear form 

in ~ and ~ is non-degenera te  in the sense of definition 2.4. 

Using the notat ions explained in the first paragraph  of section 2 we make 

now the  following assumptions:  if i($) is wr i t ten  in the  form 

(3.~) i(~) = ll~ll-'12 + S(~) 

then : 

Hypothesis  3. i. I(~) has a differential  D (~, ~) for  all ~ < V'. 

By definition 2.2, I($) has then also a gradient  (~(~) for all ~ < V' and 

(3.3) D (~, ~) -~ ((~ (~), ~) (~ < r ' ) .  

Hypothesis  3.2. The gradient  (~(~) is completely cont inuous  in V'. 

Hypothesis  3.3. I f  a < V is a critical point  of i(~) then  a is a non-degener- 

ate crit ical point  (definition 3. z). 

Clearly the existence of differentials for i(~), g(~) is equivalent  to the  ex- 

istence of differentials for 1(~), (~(~) respectively. Therefore  Hypothesis  3.3 im- 

plies the existence of the  differential  ~ (a, D of the grad ien t  ~ (~) a t  $ = a. 

Hypothesis  3.4. The l inear operator  on 3, ~(a,  3) giving the  differential  of  

(~) at  a cri t ical  point  ct is completely continuous.  

Hypothesis  3.5. There  are no critical points of i(~) on the boandary  S 

of V. 

L e m m a  3.1. Under the hypotheses 3. I--3.  5 we have in a critical point a of V 

(3.4) [(a, 3) = ~ + ~(a, 3). 

Moreover, f(a, [) is non-singular (definition 2.5), and ~(a, 3) is completely continuous 
in 3. 

Proof.  Since grad J]~]!~/2 ~ ~ and since the  differential  of ~ is 3, equation 

(3.4) is an immediate  consequence of the definitions. Tha t  2(a, ~) is completely 

cont inuous is a r e s ta tement  of hypothesis  3.4. Finally the non-singulari ty o f  

[(a, 3) follows from hypothesis  3.3 and definition 3.2 toge ther  with lemma 2.5. 
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Lemma 3.2. Under the hypotheses 3. I - -3 .5  a critical point a of V is 

isolated. 

Proof. g (5) has at a a differential l (a, 3) of the properties indicated in [emma 

3. I. By [I2], lemma 3 these properties imply that a is an isolated root of the 

equation (3. I). 

Theorem 3.2. Under the hypotheses 3. I - -3 .5  the scalar i (~) has at most a 

finite number of critical points in V. 

Proof. For each critical point a equation (3. I), i.e., a + (~(a)~-o, holds. 

The complete continuity of (~(~) shows immediately that  a bounded set of solu- 

tions of this equation is compact. Therefore if there were  infinitely many solu- 

tions in V they would have a limit point % is V + S. Because of the continuity 

of (~(~)~ a 0 would also be a solution of g($)----0, i.e., be a critical point. By 

hypothesis 3.5 % could not lie on S. Therefore % would be a non-isolated 

critical point of V in contradiction to lemma 3.2. 

4- Type Numbers  of  a Critical Point .  

We first add to the hypotheses 3 .1 - -3 .5  the following: 

Hypothesis 4. i. I f  a < V is a critical point of i(~) then there exists a 

neighborhood N~ of a such that at all points of Na the gradient (~(5) of 1(5} 

has a differential s 3) which, moreover, is continuous in 5. 

Lemma 4.1. Under the hypotheses 3. I - -3 .5  and 4. I the differential s 3) 

of the gradient ~3 (5) of 1(5) at the critical point a < V is a linear, completely con. 

tinuous and symmetric operator in 3. 

Proof. The linearity and complete continuity are obvious from Hypothesis 

3.4. To prove the symmetry we note that (~(5) = grad 1(5) and that therefore 

by lemma 2.3 

(4. I )  D.~ (5, ~, 3) = (s ~), ~) 
is the second differential of 1(5) in each point ~ in which s 3)exists. By 

Hypothesis  this is the case for all ~ ~ Na, and, by the same hypothesis, s [), 

and therefore by (4. I) also D~(~, ~}, 3), is continuous in ~ for ~ ~ NQ. But it is 

well known that the continuity of a second differential in the neighborhood _At, 

of a point ~I implies its symmetry in ~, ~ for the point a. 1 Therefore, we have 

from (4. I) 

I [5], theorem 8; [8], Satz I.  
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(a,  7), = (a,  7) = (7, ca, 

which, by definition, is the symmetry  of ~(a, 7) as operator  on ~. 

I t  follows f rom lemma 4. I t ha t  g(a,  7) has a finite or eountably infinite 

number  of eigenvalues and tha t  in the la t ter  case o is the i r  only l imit  point.  

In  any case there are at  most  a finite number  of eigenvalues less then  -- I. 

Moreover, we prove 

L e m m a  4.2.  - -  i is not an eigenvalue of ~ (a, 7). 

Proof. Otherwise there would exist a 70 ~ o such tha t  ~(a, 7 0 ) = -  70, or 

I (a, 70) = 70 + ~ (a, 70) = o. By lemma 2.5 this is a contradict ion to hypothesis  3.3- 

D e f i n i t i o n  4.1.  Le t  r be the number  of eigenvalues of ~(a, 7 )which  a r e  

less than  --  I, each counted according to its mult ipl ici ty.  ~ Then r is called t h e  

type of tile critical point  a, and m i ~ m i ( a ) = 6 i r  (~ the Kronecker  symbol; 

i = I, 2 , . . . )  is called the i-th typenumber  of the critical point  a. (By lemma 

4.2, r may be also defined as the number  of eigenvalues not  greater  than  - - I . )  

T h e o r e m  4.1.  With  the assumptions and notations of lemma 4. I and defini- 

tion 3.2 there exists a normed orthogonal basis e,, e,. . . . .  of  H and positive numbers 

P~, P2, �9 �9 �9 such that 

(4.3) d,(a, 7,7) + 
~ = 1  ~ r + l  

where k, = (r 7) and where r is the type number of the critical point a. ( I f  r = O ,  

the symbol ~ is understood to mean o in (4.2) and o in (4.3)). 
~,~1  

Proof.  Le t  r e~ . . . .  be a complete normed system of eigenelements of 

t h e  l inear symmetr ic  and completely cont inuous operator  ~(a, 7), and t t ] , /~ ,  . . .  

t h e  corresponding eigenvalues. Then 

(4.4) ~ (a, 7) = ~ / ~ "  (e:, 7) e' .  

1 The multipl icity of an eigenvalue is the number of linearly independent eigenfunetions 
belonging to it. 

6-  642127 Aeta rear.mat/ca. 85 
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Le t  now e~,, e.)', . . .  be a normed ortogonal  system such tha t  the e',, e~' together  
f t  t t f  p f  

span H and such tha t  (e~, ee) ~ 0 for all e~, %. We set #~ = 0. We now bring 
v !  P rp  

the e~, e~ and, correspondingly,  the #~ , /~  in a simple order and call them 

e~, e.,, . . .  and  #~, # ~ , . . .  in this  order. (4.4) remains then  true if we replace 

e'~, #', by e,, #~ respectively. I f  we add to the equat ion thus  obtained the equa- 

--2 t ion ~ (e~, ~)e, we obtain 

(4.5) I(ct, ~) = f + ~(a, t) = ~ ( t  + /z,)(e,, ~)e,. 

This proves tha t  [(a, ~) ean be wri t ten in the form (4.2) since by definition 4. I 

exactly r of the numbers  I + /~ ,  are negative and since by lemma 4.2 none of 

them is zero. Finally,  (4.3) is a consequence of (4. 2) and (2.7). 

5. T y p e  N u m b e r  a n d  T o p o l o g i c a l  I n d e x .  

T h e o r e m  5.1.  With the same assumptions as in theorem 4. I let r be the type 

of the critical point a. Denote by j (a) the index of a as solution o f  the equation 

(3-I) .1 (Because of lemma 3.2 the index exists.). Then 

(5. i) j (a) = ( -  

Proof. g(~) has the differential  I(a, ~) at a. I t  follows from the properties 

of th i s  differential  described in lemma 3. I tha t  t h e  index j(a) of a as solution 

of g (~) = o is the same as the index of ~ = o as solution of the equat ion l(a, ~)=-0. * 

This la t ter  index is by definition the order u([, Se, o) of the  point  o wi th  re- 

spect to the image under  the mapping l = [ ( a ,  f) of the sphere So: [ l~ l l=q .  3 

Therefore,  

(5.2) j (a) = u (~, S e, o). 

I f  now e~, e~, . . .  is the normed orthogonal  base of H used in theorem 4. I, 

if  L = ( e , ,  I(a, ~)),. and, as is theorem 4. I, k, = ( e , ,  ~) then  (4.2) shows tha t  the 

mapping k-*  I(a, ~) is given by 

l~, = - - p v ~ ' ,  = k~, + ( - -  I - - p , , ) ~ ' , , ,  V ~ -  I ,  2 . . . .  r 

(5.3) 
1, = p ,  k ,  = k ,  + (p, - -  I ) k , ,  v = r + I, r + 2, . . .  

I For  t h e  p rope r t i e s  of an  i n d e x  in a B a n a e h  space  see  [9], [IO], [I2]. 

2 [9], P. 55/56. For  a de ta i led  proof  see II2], l e m m a  3. 
t Since 1 is l inear ,  t h e  size of  t he  r a d i u s  @ of So does no t  ma t t e r .  
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Comparison with (4. 5) shows tha t  p ~ - - I  = / ~ ,  for v > r .  Since lira ~ - - 0  it 
~ d o  

follows tha t  there exists a v 0 > r such tha t  

(5.4) o < ~ = [(P~-- I)] < ~/e for v _--> v o 

where ~ is the distance of the image of Sr under  the map (4.5) from the point  o. 

Wi th  such a % we define a mapping ~-+ 1 ' =  ~ [:e, where 

l: - -  = p~k~ for v :  i, . . . r  

(5.5) l::p~k, ,, v - ~ - r +  I . . . .  v o 

l~ ~ ]C~ >~ V ~ VO + I ,  v 0 +  2 . . . .  

(5.3), ( 5 . 5 ) a n d  ( 5 . 4 ) s h o w  tha t  for  [ < S e ,  i.e. [[~H=Q 

I1 '-Ill ( z : - z , )  - ( p , -  < = < I lII l" .  
* = 1  ~ = * o + 1  

This est imate together  with the theorem of Roach6 ~ proves tha t  

5.6) u ([, S~, 0 ) =  u ([', S~, 0). 

I f  E ~o is the space spanned by e~, e ~ , . . ,  e,o, (5.5) shows tha t  [ ' - - f ~ / ! :  *o, i.e., 

~hat [' is a " layer  mapping"  with respect to /~'o.2 By the definition of the order 

of a layer mapping,3 the order u([', S 0, o) is therefore equal to the order of o 
�9 ~ o - -  1 __.~, with respect to the image of the intersect ion ~r - - _ e A E  "o under  the  mapping 

of E *o into itself given by the first v o of the equations (5.5). But  this order is 

equal to the sign of the de te rminant  of these equations. This de te rminant  is 
~o 

( - - l ) r  H p~ and its sign is ( - - I )  r since all p ,  are positive. Thus u([', S t, o ) =  

= (-- I) ~ which because of (5.6) and (5.2) proves (5. I). 

6. Morse Numbers  and P r o p e r t i e s  o f  t h e  G r a d i e n t  F i e l d .  

By theorem 3. I, there are at  most  a finite number  s of critical points of 

i(~) in V. We denote them by al, % , . . .  ct~. 

Definition 6.1. For  i-----i, 2 . . . .  the i-th Morse number  M s of V is de- 

fined by 

1 F o r  t h e  f i n i t e  d i m e n s i o n a l  case  see  [I], p.  459,  for  t h e  B a n a c h  s p a c e  c a s e  see  [ I I ] ,  t heo-  

r e m  4. 

2 F o r  t h e  d e f i n i t i o n  of a l a y e r  m a p p i n g  see  e.g.  [ I I ] ,  p. 374" 

[I I], d e f i n i t i o n  I .  
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8 

(6. i) 
a = l  

where m ~ :  m;(ao) is the  i-th type number  of the cri t ical  point  ao (definition 4. I). 

Obviously ~/i is the number  of crit ical points  in V of type  i, and 

(6.2) 
i 

T h e o r e m  6.1.  With the usual notations assumptions let Z ~ Z(~, S )be  the 

characteristic of the gradient .field g on the boundary S of V, let u = u(~, S, o) 

be the order 1 of o with respect to the image of S under the mapping g, and let 

7---7(g, S, ~) be the mapping degree'- in o of the mapping ~ (considered as map- 

ping of V). Then 

( 6 . 3 )  Z=U=)'=~(--Ilra-----Z(--I)'M' 
a = I  i 

where ro denotes the type of the critical point a~ (definition 4. !). 

Proof.  T h a t  Z ~ u ~ 7  is known, a Tha t  the  two sums in (5.3) are equal 

is ~n immedia te  consequence of definit ion 6. I. I t  remains  to prove t h a t  

O = 1  

8 

But  this equat ion  is by (5. I) equivalent  to the equat ion g = ~ j ( a ~ )  which is 
o = 1  

known to be true.  4 

We  formula te  the fol lowing obvious consequences of theorem 6. I as 

0 o r o l l a r y  6 .1 .  Le t  s o be the  number  of cri t ical  points of even type  and 

s~ the number  of cri t ical  points  of odd type  in V. Then  

(6.4) Z = s 0 - - s l ,  s = s  o + s , .  

Therefore ,  s >1%],  and the  equal i ty  sign hold if  and  only if  the types of all 

cri t ical  points are of the  same par i ty .  This  is cer ta inly the  case if none of the 

eigenvalues of the l inear  operators  ~(a , ,  I) (a = I, 2 , . . .  s) is less t han  - -  I (or, 

1 See [ IO] ,  definition I I for the definition of "order"  in Banach spaces, and [ I O ] ,  beg inn ing  

of w 3, for the  definition of "character is t ic"  in such spaces. 

2 The m a p p i n g  degree in Banach spaces was  in t roduced in [9]. 

a [IO], Satz 4 asser ts  u ~ ~. The  equat ion X ~ u is the  definition of X; el. [IO], w 3. 

' [IO], Satz 5. 
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what  is the same, if all second differentials d 2(ao, ~, ~) become positive definite 

quadrat ic  forms for  ~ ~ ~) since then by definition 4. I the types of all crit ical 

points  are zero. 

Before  s ta t ing theorem 6.2 we give the fol lowing 

Definition 6. 2. A bil inear form (definition 2.4) q (5, 3, [) in 3, 1 is called 

uniformly posit ive definite in a set  W < H if there  exists a positive constant  

c such tha t  for  all ~ < W 

(6.5) q (5, ~, ~) _-> e I1~11'. 

A linear operator  ~(5, f) of ~ is called uniformly positive definite in W if the 

associated bil inear form q (~', 3, ~)=-(I(5, ~); 3) is uniformly positive definite in W. 

Theorem 6.2.  In addition to the hypotheses 3. I - - 3 . 4  and 4. I we assume 

that the second d~l]'erential d~ (5, 3, ~) of the scalar i (~) is uniformly positive definite 

in V + S and that V is a solid sphere of  center o and of radius R with 

(6.6) R > II ~(o)IlIr 

where the positive constant c satisfies (6. 5) with q-= d~. Then i(5) has exactly one 

critical points in V and none on the boundary S of V. Moreover, i f  R = R o satisfies 

(6.6) and i f  M(Ro) is an upper bound for ]i(5)[ in ][5[[ <= Ro', then for a~y m > I  

(6.7) i (5)>~(I - - I /m)c[[5[[{Ro--[[~(o)][ lc} - -M(Ro}  for  [[~[[>=mR o. 

Before proving this theorem we first s ta te  and prove 

L e m m a  6. 1. Let ~(5)= 5 + ~(5) with completely continuous ~ be a vector 

field ~ which is differentiable in V + S (definition 2.3)- We suppose that the dif- 

ferential [(~, [) of t~(5) is uniformly positive definite in V + S (definition 6. 2). I f  

then c is a constant satisfying (6.5) with q : ([(5, D, 3) and i f  V is a solid sphere 

with center o whose radius R satisfies the inequality 

(6.8) R > I1' (, ' ) I l ls, 

then ~ (5) does not vanish on S and the characteristic ~ of the field ~ (5) on S squab 

+ I. Moreover, for any 5 whose norm R = 115 II satisfies (6.8) w e  ha~'e 

(6.9) (t~ ~), b -->--- c II 5 II ill 5 II - -  I1' (o)II/~)- 

1 Such a finite M(Ro) exists since i(~)--~ = I(~) is completely continuous. 
t~ ~) is not necessarily a gradient field. 
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(6.  I I )  

We now set ~ = ~. 

then 

P r o o f i  We recall t ha t  if v (~) is an arbi t rary scalar which is differentiable 

in a convex domain conta in ing the two points ~0 and ~, then  

1 

(6. ~o) ,, (~) - ~ (~0) = f ~ (~0 + ~ - ~0) t, ~ - ~0) d t 
0 

where d(~, ~) is the differential  of v(~). ~ We apply this  equality to ~(~)=(~(~),~) 

wi th  ~0= o, and  take  for ~ an arbi t rary  point  of S. Lemma 2.2 shows tha t  

(6. ~o) then  becomes 
1 

o 

On account of the assumptions made about  c, (6. I I) yields 

o r  

1 

0 

( ,  (~), ~) _--- ~ R  ~ -  [ (~ <o), ~)l->- CR ~ -  II~ (o)[[ R : R ~ ( R  - - I I ,  (o)[I/~)- 

This proves (6. 9)- Moreover, we see now from (6.8) tha t  (~(~), ~ ) >  0 for ~ ~ S. 

This shows tha t  ~ ( ~ ) ~ o  for ~ S .  I t  also shows tha t  in no point  of S the 

field ~ (~) can have the direct ion of the inter ior  normal  since otherwise by de- 

finition of the term " inter ior  normal"  ~ there would exist an ~ ~ S and a positive 

Q such tha t  IJ ( ~ ) : -  Q S, and this point  would render  (1~(~), ~ ) = - - Q  ][ ~[]" nega- 

tive. This proves tha t  Z-= I since it is known tha t  a vectorfield 13 (~)=~ + !~ (~) 

with completely continuous ~(x)  which is non-vanishing on S and which has 

no inter ior  normal  on S has the characterist ic + I. a 

Proof  of theorem 6.2. On the one hand,  the application of lemma 6. I to 

(~)=g(~)  shows tha t  g ( ~ ) ~ o  for ~ S  and tha t  the characterist ic Z of the 

gradient  field g(~) of the scalar i(~) on S is equal to + I. Since, on the other  

hand,  the second differential  d+ (L ~, 2) is uniformly positive definite the quadrat ic  

forms d~(a~, 3, 3) are cer ta inly positive for all critical points ao (o = I, 2, . . .  s) of 

V and corollary 6.1. shows tha t  s = l z I .  Thus I = Z  = s .  

To prove (6.7) let B o>] lg (0 ) l ] / c ,  let  m be a given number  > I and ~ be 

such tha t  II~l] > m R  o. We set ~o = ~/m. Since (g(~), I~) is the differential  of 

i(~) we obtain f rom the general  formula  (6. Io) 

1 [5], theorem 5. 
[IO], w I, no. 4. 
[IO], part b of Satz 7. 
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(6.  12)  

1 lira 1 

i (~)-  i ( o ) = f ( ~ ( t ~ ) ,  ~)dt  = f (a (t~), ~)dt + f(s(t~), ~)dt. 
o o l/ra 

Now using the substitution s - - t m  one sees easily that  

1. 'm 1 

f (s(t~), ~ ) d t  = f (u(,~o), ~o) d ,  = i ( ~ o ) -  i (o) .  
o o 

Therefore, we see from (6. I2) that  

(6. I3) 
1 1 

I 
r = r + f (s<t~), ~)dt >-_ f t U(t~, t~)dt - -  M(Ro). 

1Ira lira 

Now for t : > I / m  we have t[[ ~ [[ ~ I] ~ I_J :> Ro > I[ ~ (o)II/c. Therefore, we can apply 
?n 

lemma 6. I with I~(~)= ~(~) and obtain from ( 6 . 9 ) f o r t ~  ! 
m 

(~ t, ~ t) >__ c II ~ II t (ll ~ II t - II s (0)II/~) --> c il ~ II t (Ro - II s (0)II/e). 

Substit.uting this in (6. I3) we obtain (5. 7). 

Corollary to theorem 6.2. I f  i (~) is defined and satisfies our usual assump- 

tions for all ~ < H, and if d, (~, ~, ~) is uniformly positive definite in H, then 

i(~) has one and only one critical point a in H, and i ( a ) i s  an absolute mi- 

nimum. 

Proof. I t  is an obvious consequence of (6.7) that  there exists an R 1 >/go 

such that  

(6. I4) i(~) > i(0) for II~il > Sl .  

Now in the sphere V deft ned by ll~H ~ R, the scalar i(~) takes an absolute min- 

imum in some point a' by a previous theorem ([I4], theorem 4.2). Because of 

(6. I4), i (a ')  is then an absolute minimum for the whole space H. Likewise by 

(6. I4), a' is an interior point of P and, therefore, a critical point of i(~). Con- 

sequently a' must coincide with the unique critical point of theorem 6.2. 

7- Applications. 

The general purpose of this section has been explained in the introduction. 

Let E r be the r-dimensional Euclidean space, let K q ( s ,  t) ( i , j  = I, 2 , . . .  n) be 

admissible kernels defined for pairs of points s and t of an admissible domain 
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D o ~ Er. 1 Le t  E n be the  Eucl idean space of n-tuples U = (u~, us, . . .  u,) ,  and 

f~.(t, ul ,  . . .  u,) (i ~ I, 2 . . . .  n) be n funct ions  defined and cont inuous  in the  pro- 

ductspace D o • E n and for  which 

U n 

(7. i) u ) =  f v,, . . .  
0 i = 1  

is a func t ion  of the upper  l imit  U = (ul, . . .  u~) alone. 

W e  now recall  the definit ion of the  H a m m e r s t e i n  scalars connected  with 

the  Kij (s ,  t) and the 9~. ~ 

For  i = o ,  I . . . .  n - - I  let  Di denote  the  domain obta ined  f rom D O by the  

t rans la t ion  i ,  do where the  t rans la t ion  vector  do is such tha t  no two of the do- 

mains Di have a non-zero intersect ion.  W e  then  obtain the  admissible kernel  
n - - 1  

K ( s ,  t) defined for  s , . t ~  1 ) =  ~_jDi  by se t t ing  (in obvious notat ion)  
i ~ 0  

(7.2) K ( s ,  t) = K,+x,j+~(s - -  ido,  t - - j d o )  for  s < D,,  t < Dj 

( i , j  = o, I , . . . . -  I ) .  

Likewise  we obta in  a one to one correspondence  between the  ordered  n-tuples 

y~( t ) , ,  i .  y~(t) of func t ions  defined in Do and the funct ions  y (t) def ined in D 

by se t t ing  

(7.3) y(s)  = Y,+ l (s - -  i do) for  s < D,,  (i = o, I, . . .  n - -  I). 

This  correspondence will be indica ted  by wri t ing  

(7.4) y (s) ~-- (y, (s), . . .  y~ (s)). 

Le t  now q~, (s), 9~*(s) (u = I, 2 , . . . )  be a complete  sys tem of pairs of normed  

o r thogona l  e igenfunct ions  of the  (not necessari ly symmetric)  kernel  K ( s ,  t), and 

,~, the corresponding eigenvalues.  8 The  ~, may, and will, be assumed to be 

posit ive and to be a r ranged  in ~ot  increas ing order.  The Hi lbe r t  space H we 

deal with will t hen  be the space of all sequences ~ ( x l ,  x , ,  . . . ) f o r  which 

Z , x ;  converges with the scal~r p roduc t  (~, t)) of ~ with t) --(YI, Y~,-.-) de- 

fined by 

1 T h e  w o r d  "admiss ib le"  has  t h e  s a m e  m e a n i n g  as in [ I 5 ]  , def in i t ion  2.I. 

2 For  deta i l s  we  refer to [I5] , s ec t ions  2 and 3. 
B The  so-called S c h m i d t  e igenva lues  of an u n s y m m e t r i c  kerne l .  T h e  n o t a t i o n  differs from the 

one used by Schmidt ,  t t a m m e r s t e i n  and others  in  t h a t  A~ is  replaced I[Av. 
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(7- 5) (~, to) = ~ z, x, y,. 
q/ 

By //1 we denote  the  subspace of those t o ~ H for which ~ y ~ ,  converges 1, by 
q~ 

L ~ the space of those funct ions y(t) for  which y~(t) is summable over D, and 

by M and  M* the  subspaces of L 2 spanned by the functions q~l (s), q~2(s) . . . .  

and r  (s), q~,] (s) . . . respectively. The mapping //1 -~ M which assigns to the 

e lement  to----(Yl, Y~, - . . )  of H 1 tha t  e lement  y(t) of M whose component  with 

respect  to r  is y,,  is called @~:y(t)= q)l(Y). Correspondingly a mapping 

y* (t) = ~ (y) of / /  onto the space M* is defined by using the system 9~* (~) instead 

of the  system 9~ (t). ~1, q)~ and y(t), y* (t) are  called pairs of conjugate  mappings 

. �9 $ t and funct ions respectively. Also the  ordered n-tuples y~ ( t), .. yn ( t) and y~ ( t), .. y,~ ( ) 
associated by the  correspondence (7.3), (7.4) with y (t) and y* (t) respectively are 

called conjugate.  This terminology is i n  agreemen~ with the following general  

Definition 7.1.  The funct ions y(t), y*(t) of L ~ are called conjugate  if  

(i) f v , ( t )y ( t )d t  = f~*(t)y*(t)dt (~=  ~, z , . . . ) ,  and (ii) y(t)<21I, y*(t)<M*. T h e  
D D 

n-tuples (yl(t), . . .  y,,(t)) and (y~(t), ...y,*~(t)) are conjugate  if the funct ions y(t), 
y*(t) corresponding to them by the correspondence (713), (7.4) are conjugate.  

q)l(~)) and ~ (to) are mappings of the  subspace Hj  of H into L ~. We define 

now mappings  q)(~) and q~*(~) of all of H into L ~ in the following manner :  if 

~ (x~, x~, . . . )  is an arbi t rary  e lement  of H we set to = (Zl x~, ~.~x2 . . . .  ). Since 

~ converges, to is in //1, and  ~Pl (to), $~ (to) are defined. We set then 

( 7 . 6 )  y (t) = a~ (~) = a~ (to), y* (t) = r (~) = q ~  N ) .  

Definition 7.2.  L e t  Y(t) be the point of E ~ whose coordinates are 

where ~his n-tuple is the one associated by (7.3), (7.4) with y(t) = ~ (~), let  Y* (t) 

be defined in the corresponding way be us ing y*(t) = ~* (~), and let  F(t, U) be 

the funct ion defined by (7. ~). Finally set 

(7.7) I(~) = f tr(t, Y(t))dt ,  I*(~) = f F(t ,  Y* ( t )d t .  
Do Do 

1 W e  reca]l  that  ~ - - >  0 such that  H 1 is  ac tua l l y  a subspace  of H .  
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Then 

(7.8) ~(~) = 11~11~/2 + s(~), i*(~) = 11~11:/2 + s*(~) , '  

are called Hammerstein scalars. 

i(~) and i*(~) are defined for those ~ < H for which the integrals in (7.7) 

exist. The conditions imposed in all of the following lemmas and theorems will 

insure that  they exist for all ~ ~ H. I t  follows moreover from [I5], theorem 

3. I that  for all ~ ~ H the scalar I(~) has a continuous differential D(L ~) 

given by 

(7.9) D ( L  ~) = 2 f k ' ( t ) f ' ( t ,  y l ( t ) , . . ,  ynCt))dt 
i = l  Do 

(k~ ( t ) , . . .  kn (t)) = k (t) = �9 0I) 

if only the .1~ are continuous functions of their arguments t, u~ . . .  u~ and if the 

following assumption A) is satisfied: 

Assumption A. There exists a constant C such tha t  

( 7 . ' o )  , ~ Z ,  go:( t)  ~ C 2 f o r  all t < D . '  
,y  

A corresponding statement holds for 1"(~) with the same constant C. 

Our next goal is to show that  under certain additional conditions the scalars 

i (~) and i* (~) satisfy all assumptions of theorem 6.2. We first prove 

Lemma 7.1. Let  the f~ be continuous functions of  their arguments and let 

assumption A be satisfied. Then the scalar I(~) has a completely cintinuous gradient 

g~ (~) fo r  all ~ < H given by 

(7. ~ ~) e~ (~) = (G,  (~), G,  (~), . . . )  

where G, (~) is the v-th Fourier coefficient of  

f ( t ,  y ( t ) )= (fa (t, y~ (t), . . .  y~(t)), . . . f,, (t, y~ (t), . . . y~(t))), i.e., 

(7.,2) G,(~) =- f qD,(t)f(t, y ( t ) ) d t =  2 f q % ( t ) j ~ ( t ,  y , ( t ) ,  . . . y, ( t ) )dt  
I) i=1 ~o 

(go,, (t), . . . (p,,, (t)) = r  (t) , ~ , = ~ , 2 , . . . ) .  

A corresponding statement holds for  1" (~). 

' We recall that 11~112= ~2 x,x~; cr. (7.5). 

As to the significance of the assumption A, s e e  [ 1 5 ]  , footnote to (3.7). 
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Proof. We obtain from (7. ,2), (7.9) using the definition (7-5) of the scalar 

product  and observing that  k ( t ) ~  q)(~)< M 

(~, 9)= ~ Z, G,h,-- ~ G,k,----- f f(t ,  y(t))k(t)dt-~ 
,y ,i, D 

: ~ fk,(t)j~(t, y~(t),.., y~(t))dt= D(~, 9). 
i = l  D(~ 

Thus ((~ (~), ~) = D(~, ~) which by definition 2.2 proves that  @ (~) is the gradient  

of I($). Observing tha t  by [I5], theorem 3.2, D(~, 9) is completely continuous, 

the complete continuity of (~(~) follows from lemma 2. ,. T h e p r o o f  for the 

s ta tement  concerning I* (~) is analogous. 

L e m m a  7.2. Tn addition to the assumptions of lemma 7. ' let the derivatives 
Ofi/Ouj exist and be continuous in all points t, ua , . . ,  u, of the product space 

Do • E ~. Then for all ~ ~ H 
(i) the gradient $ (~) of I(~) has a continuous differential ~(~, 9 ) :  (L1, L,  . . . .  ) 

with 

j ~ l  i~1 Do 

where the k, (t) and the q~,~ (t) have the same meaning as in (7.9) and (7. I2). 
(ii) I(~) has a continuous second d,~[ferential D, (~, ~, 9") given by 

(7. ' 4) = k , ( t )  k i ( t )  ( t ,  y , ( t ) ,  . . 
i = 1  j = l  

where k' (t) = (kl (t), k~ (t) . . . .  k~ (t)) = �9 (h'). 

(iii) For fixed ~, ~ (~, ~) is completely continuous in ~. 

P r o o f .  I f  we define /7, be setting 

(7- ' 5) G, (~ + ~) -- G, (x) -- L,  (~, 9) + R,  

where L~(~, t)) is given by (7. I3) one sees easily tha t  R, may be writ ten in 

the form 

(7. '6) R , = R , ( ~ ,  I), ,~) ~_~ fq~,~(t)ai(t)dt ( o < # <  ,) 
i = l  D o 

where 
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(7.17) ai(t) = ~ kj( t ){  ~ ( t ,  y~(t) + ,~ k~(t), . . . y,(t)  + ,~ k,,(t))-- 
j = l  

O f~ (t, y, (t), . . .  y ,  (t))}. 

To prove (i) it will be sufficient to show: if 

m = m (~, ~, ,~) = (R , ,  R , ~ , . . . ) ,  

then there exists to given e > o a positive h o such that  

(7.18) II ~ (~, t), ,9)II < e II I) II for  [[ 1~ II < ho and o _--< ~ _--< I. 

We  recall t ha t  by [~5], lemma 3. I y~(t) and k~(t) are cont inuous  funct ions  whose 

absolute  values are bounded  by C]]~ H and C[[~] [ respectively where C is the 

constant  of the inequal i ty  (7. Io). Since the Of,./Ouj are cont inuous  it follows 

immediate ly  tha t  there  exists an h o to the  given ~ such tha t  

(7.'9) a~(t)=< Z[,,,~__.~ Iky(t._ =< Z~.y=,-- k;(t) for I1~11 < ho and o ~ , ~  I .  

I f  we set a ( t ) ~ ( a l ( t )  . . . .  a~(t)), then (7.16) shows tha t  B ,  is the Four ie r  coef- 

ficient of a(t) with respect  to ~,(t),  and we obtain  by the use of Bessel 's  in- 

equali ty and (7. I9) 

Ilmll~--~ z,R: <= z, ~ R: < z, f a~( t )d t  = L, 
~' ~' D 

"221 < k~ (t)d 

This proves (i). To prove (ii) we have only to 

f a;(t)dt 
i = I  Do 

s~ f k ~ ( t ) d t < = ~ , l l h l [ ~ .  t ~  Do 

show tha t  the expression given 

by (7. I4) is the  scalar product  (~(~, ~), ~'). W e  omit  this verification which is 

similar  to the one used in the  proof  of lemma 7. I. 

Finally,  to prove (iii) we notice tha t  the mapping  @(~)=  k(t) is completely 

con t inuous )  Therefore,  it will be sufficient to show tha t  the  mapping k(t)-~ 

is continuous.  In  other  words we have to show tha t  ~ as operator  on k(t) is 

bounded.  To do this we note first that ,  as already mentioned,  the y i ( t )are  con- 

t inuous.  Therefore,  the  z~_(t,  y l ( t ) , . . ,  y,(t)) are likewise cont inuous funct ions  of u uj 

[ I5],  lemma 2.2. 
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t and consequently bounded in  D 0. I f  M is an upper b.ound for their  absolute 

values in Do, and if we set 

j=, b~u, k~ (t)' b (t) = (b, (t) . . . .  b,  (t)), 

we have 

(7.zo) Ib,(t)l~=< M I~j(t)l <=M'n k~(t). 
j=l j=l 

On the other  hand,  we see f rom (7. I3) t ha t  L ,  is the Fouriercoefficient  of b(t) 

with respect to 9o,(t). Therefore,  we obtain f rom the Bessel inequal i ty and (7.2o) 

I, "r D 

=i,.~ f b~(t)dt<=Z,M'n f ~k3(t)dt=*,M'n f k*-(t)dt 
i = l  Do i)o j = l  -Do 

which proves the required boundedness of L since the last  in tegral  is the square 

of the norm of k(t) in L e. 

Theorem 7.1.  Let tt = tt (t, u) be the smallest eigenvalue of  the matr ix  (0jS/0ujp, 

and, as always, il the greatest of the eigenvalues of  the (not necessarily symmetric) 

kernel K(s ,  t) defined by (7.2). In. addition to the hypotheses of lemma 7.2 we assume 

that there exists a positive constant 6 such that for  all t, u~ . . . .  un in the product 

space D o • E '~ 

(7.2I) # >--_ -- ~ >  -- I / i~ .  

Then: (i) the Hammerstein scalar i(~) has exactly one critical point  a, ( i i ) for  the 

norm [l all of  this critical point the estimate 

(7.22) Ilall" < 

i,7s f f(t, o,... o)dt 
i = 1  -Do 

(i - -  eZy 

holds, and (iii) i(a) is an absolute min imum in H. 

n 

1 T h i s  m a t r i x  is s y m m e t r i c  s ince  ~ f i d u  i is  a to ta l  d i f f e r e n t i a l , , n a m e ] y  t he  d i f ferent ia l  of  
i = 1  

the line integral (7.I). 
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Proof. Since it is easily seen tha t  the gradient  of 1[~[['2/2 ~ ~Z~x~/2  is 

given by (xl, x~ , . . . )  and the  second differential  by ~ h ~ h ~  it follows frDm 

lemmas 7-I and 7.2 tha t  the gradient  ~(5) of i(5) = H5]['~ + I(5), the differential  

(~, ~) of  g (5), and  the second differential  d.~ (L ~, ~') of i (5) exist, and tha t  g (5) and 

d, are given by 

(7.23) g (~) = (x~ + V~ (~), x~ + G2 (~) . . . .  ) 

2 2  os, (7.24) d2 (~, 0, ~') = Y~ x~ h, hl + f k~ (t) kj (t) Oujuj (t, y, (t), . . .  y ,  (t)) d t 
i : l  j : l  Do 

where  the G,(~) are defined by (7. I2). 

We  want  to show first tha t  d2(L ~, ~') is uniformly positive definite in H 

in the sense of definition 6. z. By a well known property of the smallest eigen- 

value of a symmetr ic  matr ix  ~ it follows from (7.2I) tha t  

2 2  - -  - -  - , 2  (7.2S) ]r O'S(t, y~(t), .. y~(t))> c ~_jk~(t). 
i=1 j = l  ~ U j  " i=1 

Observing that  

/k~.(t)dt---- fk~(t)dt= Z (X,h,)=__< X, ll~ll' 
i=]  Do 1)o 

and tha t  the first sum in ( 7 . 2 4 ) f o r  ~-----~' equals H~H "2, we see f rom (7.24), 

(7- 25) tha t  

d., (5, ~, ~)_->. II ~11" - -  eX, lib II" ----I1~ I I"( ,  - -  e Z , ) .  

This shows tha t  (6.5) (for q = d~) is satisfied with 

(7.26) c = I - -  ~ .  

Therefore,  d 2 is uniformly positive definite in H since c > o by (7.2I). 

I t  follows from lemma 2.4 tha t  d~ is not  degenerate  and, therefore,  f rom 

lemma 2.5 tha t  the differential  i(L ~) of g(5) is non-singular.  By lemmas 7-] ,  

7-2 it is now obvious tha t  the hypotheses 3. I ~ 3 . 4  and hypothesis  4. x and, 

consequently,  all assumptions of theorem 6.2 and its corollary are satisfied. I t  

follows, therefore,  f rom this theorem and the corollary tha t  i(~) has exactly one 

cri t ical  point a, ~hat i(5) is an absolute min imum and tha t  

i See e.g. COURANT--HILBERT, Methoden der m a t h e m a t i ~ c h e n  Phys ik ,  2nd ed., I93 o, vol. l .  
C h a p t e r  I, w 3. 
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(7. z7) I!all < llu(o)ll/c 

where c is defined by (7.26). 

I t  remains to prove the estimate (7.2z). Using (7.23), (7. I2) and Bessel's 
inequality we see tha t  

II ~ +)II 2 = II + (o)I1: = ~ X: G: (o) _--< ~x ]~ e,~ (o) 

~t 
<-_z, f f 2 ( t , o )d t=X ,Z  f f : ( t ,o , . . . o )d t .  

D i ~ l  D~, 

Combining this inequali ty with (7.27) we obtain (7.22). 

Theorem 7.2. Under the same assumptions as in theorem 7. I, there exists one 

and only one pair of  conjugate n-tuples y (s)=(y~ (s) . . . .  yn (s)), y* ( s ) :  (y~ (s) . . . .  y* (s)) 

(def. 7. I) satisfying the system (r. I I). ~ For this solution the following estimates hold 

f / : ( t , o  . . . .  o)dt 
(7.~s) 2 f y~(t)dt= 2 f y*:(t)dt< ::: ~~ 

(7.29) 
V )~, ~_~ ff:(t ,  o, . . .  o)dt 

ly(t)l ~ < c ' = '  "~' 

where C is the constant of  Assumption A (see (7. IO)) and 5 the constant appearing 
in the inequality (7.2I) .2 

Proof. Since by definition the eigenfunctions 9,(s), 9*(s) satisfy the linear 
integral  equation 

We draw a t t en t ion  to t he  defini t ion 7.I of con juga te  n- tuples .  I~ one asks for so lu t ions  of 
( I . ] I )  sa t i s fy ing  condi t ion  (/) b u t  no t  necessar i ly  (ii/ of th is  defini t ion,  t h e n  the  un iqueness  asser- 
t ion of theorem 7.2 is no  more  true.  If  e.g. (I . Ix)  cons is t s  of one s ingle  l inear  equa t ion  whose  
kernel  K admi t s  an e igenfunc t ion  n( t )  to  t he  e igenvalue  o, i t  is easi ly seen t h a t  wi th  g(t), y*(t)  
also 9(t)-}-n(t), y*(t) is a pa i r  of so lu t ions  of ( i . I I )  sa t i s fy ing  condi t ion  (i) of def ini t ion (7.1). If,  
however ,  t he  kerne l  of ( I . i  I) is closed, i.e., M =  M* = L ~, condi t ion  (i/) of def ini t ion 7.I is automat i -  
cal ly sat isf ied,  and the  un iqueness  asser t ion  is t rue.  

We finally r emark  t h a t  t h e  y*-par t  of a so lu t ion  i s  a lways  un i que l y  de t e rmined  since the  
S c h m i d t  expans ion  theo rem shows  t h a t  for a so lu t ion  y(f), y*(t), t he  func t ion  y*( t ) i s  a lways  
in M * .  

We  note  t h a t  if  t he  so-called bi l inear  series for t he  kerne l  converges,  we m a y  take  
Max I K(s, s}l for C, and t h a t  in case of one s ingle  in tegra l  equa t ion  c may  be t aken  as 
rain Of(t,  u)[O u. 
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we obtain from (7. I2) 

and since 

z, q~, (t) = f K(t,  s)~* (s) ds 
D 

;t, G, = f q~* (s) f K(t, s)f(t, y(t)) dt ds,. 
1) D 

D 

we have for the components g~ of the gradient g(~) of i(~) 

(7.3o) g~g~ = g ,x ,  + ~ G, = f r (8) [y* (s) + fK(t,s)f(t,y(t))dt]d,. 
2) D 

Now for the critical point ~---- a whose existence is assured by theorem 7. I, we 

have ~ ( a ) : o .  Therefore, (7.3 o) shows that  for y(t)=~O(a),  y* (t) ----- O* (a) all 

Fourier coefficients of the quantity contained in the bracket of equation (7.3 o) 

are zero, and this quantity itself will be shown tO be zero once it is proved to 

be an element of the space M* spanned by the qg*(s). But this is true since 

y* (s) ~ M* by the definition of y* (s) and since by the Schmidt expansion theorem 

f K(t, s)f(t, y(t))dt 

can be expanded according to the q~*(s). This proves the existence of a solution 

of (I. 1 I) since the n-tuple formed by the left members of these equations is just  

the n-tuple associated with the quantity in the bracket of (7.3 o) by the rule given 

in (7.3), (7-4) and by the definition of f(t, y(t)) given in lenima 7. I. 

The uniqueness follows easily from the fact that  because of (7.3 ~ ) the con- 

jugate pair y(t)= 0(~), y*(t)= q)*(~)is a solution of (I.1I) only if 6(~)~--o, i.e., 

if ~ is a critical point  of i(~) since by theorem 7. I there exists only one crit- 

ical point. 

I t  remains to prove the estimates (7.28), (7.29). Since 

j , ( t ) d t =  f y~(t)dt ~_j(f y(t)qD'(t)dt) ~ -  
i =  1 D~, 1) .; D 

and since the corresponding inequality holds if y(t) is replaced by y*(t), (7.28) 

follows from (7.22) since as already obsei'ved, ~ is the critical point a of i(~) if 
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(~) = y (t), q)* (~) = y* (t) is the solution of (I. I I). To derive also (7.29) f rom 

(7.22) we have only to recnll t h a t  Cl i f f [  is an upper  bound for [y(t)[ and [y*(t)[ 

([I5], lemma 3. I). 

The fol lowing theorem was first obtained by M. Golomb. 1 

T h e o r e m  7.3.  I f  in addition to the assumptions of  theorem 7.2 the kernel 

K(s,  t) defined by (7.2) is symmetric and posiffve definite, then the system (I. I2) 

has one and only one solution y ( t ) : ( y t ( t ) , . . ,  yn(t)), and this solution is continuous. 

P r o o f .  Under  the present  conditions we may assume ~ , ( s ) :  99"(s). There- 

fore, y~ (s)-----y~ (s) and  ~he theorem follows immedia te ly  from the preceding theorem 

7.2 and the final remark  made in the footnote  to theorem 7.2 concerning the  

uniqueness. 

B i b l i o g r a p h y .  

I. ALEXANDROFF. and HOPF, Topologie, Berlin, x935. 
2. FRI~CHET, La notion de diffdrentielles dans l'analyse ggn6rale, Annales de l']~cole 

Normale Supdrieure, (3) vol. 42 (1925), 293--323. 
3. M. GOLOMB, Zur Theorie der nichtlinearen Integralgleichungen, lntegralgleichungssysteme 

und allgemeinen Funklionalgleichungen, Mathematische Zeitschrift, vol. 39 

(1934), 45--75.  
4. ~ ,  ~ber Systeme yon nichtlinearen Integralgleichungen, Publications Math~matiques 

de l'universit6 de Belgrade, vol. V (i936), 52--83 . 
5- L. M. Graves, Riemann integration and Taylor's theorem in general analysis, Trans- 

actions of the American Mathematical Society, vol. 29 (i927) , x63--I77.  
6. L. M. GRAVES and T. H. HILDEBRANDT, Implicit functions and their differentials in 

general analysis, Transactions of the American Mathematical Society, vol. 29 
(1927), 126--I53.  

7" A. HAMr~ERs'rE~rL Nichtlineare Integralgleichungen nebst Anwendungen , Acta mathe- 
matiea, vol. 54 (x93o), I~8- - i76 .  

8. M. KERNER, Die Differentiale in der allgemeinen Analysis, Annals o f  Mathematics,  

(2) vol. 34 (I933), 546--572- 
9. ft. LERAY and M. SCRAUDER, Topologie et dquations fonctionneUes, Annales de l'l~cole 

Normale Sup6rieure, vol. 57 (~934), 45--78.  
70. E. H. ROTHE, Zur Topologie der topologischen Ordnun# und der Vektorfelder in Ba. 

naehschen .Raume,, Compositio Matematica 5 (I937), x77--197. 
i i. - - - - ,  The theory of topological order in some linear topological spaces, Iowa State Col- 

lege Journal of Science, vol. 73 (i939) , 373--390. 

t [4], S atz~ I. The  condit ions  of the  present  theorem 7-3 are s l ight ly  less restrictive (regarding 
the  kernels  ) than  in [4] as fo l lows from [15] , l e m m a  5-I .  

7 - 642127 Act~ mathematica. 85 



98 E . H .  Rothe. 

x 2. E. H. RO~Hg, Topological proofs of uniqueness theorems in the theory of differential 
and integral equations, Bulletin of the American Mathematical  Society, yol. 

45 (1939), 6 o 6 - - 6 1 3 .  
, Gradient mappings in Hilbert space, Annals  of Mathematics,  vol. 47 (J 946), 

5 8 0 - - 5 9 2  . 
, Gradient mappings and extrema in Banaeh spaces, Duke Mathematical  Journal ,  

vol. 15 (1948), 4 2 1 - - 4 3 1  . 
- - - - ,  Weak topology and non.linear integral equations, Transact ions  of the American 

Mathemat ica l  Society, vol. 66 ( i949) , 7 5 - - 9 2 .  
16. SEIFERT und THRELFALL, Variationsrechnung im Grossen ( Theorie von Marston Morse), 

Teubner,  Leipzig und  Berlin, 1938. 

13. 

1 4  . 

15 �9 


