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In this paper, we shall be mainly concerned with the integer solutions of the

homogenous Diophantine equation

(1)

ax®+ by + c2®=o,

where a, b and c¢ are rational integers, which we may suppose cubefree and

coprime in pairs. —— In the Introduction, I give a brief survey of the paper.
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Chapter I treats more general topics such as:
The Weierstrass normal form for the curve (1), and the connection between
this curve and the more special form (Theorem I, § 2)

(2) XS+ Y3 = AZ% abe=A.

An extended field of rationality for the coefficients and unknowns of (1),
2ni

in particular K(o), ¢ =¢ ® .

The exceptional points of the curves (1) and (2).

The finding of new solutions from other, known points on the curve (r).

The method of Casseus [1]! for proving the insolubility of (2). I have
found some cases where his necessary conditions for solubility turn out to be
wnsufficient.

Chapter II deals with the elementary solubility-conditions for the congruence
corresponding to (1):
(3) ax® + by + cz=o0 (mod p%),

and also the more general case

(4) Ax®+ Bxly + Cxy® + Dy*= Ez* (mod pY),

for different primes p and all exponents d. For p = 3 or any prime dividing
the coefficients — and in the second case also the discriminant of the left hand
side — it is clear that we can form simple necessary criteria for solubility of
the corresponding equations. The more difficult part of the problem is to show
that the congruences are always soluble for all other primes p.

I also mention the more general congruence

n

Z a;xi =0 (mod p9),

=1

which is always soluble if » = 7. The corresponding equation can be proved
soluble for » = o.

! Numbers in square brackets denote references, see end of the paper. Cassels’ results were
published quite recently, but I was fortunate to have access to his paper in manuseript. — I
must also express my gratitude to Dr. Cassels for correcting the English of the present paper,
and for valuable help and suggestions during my work on it. I further owe my warm thanks to
Prof. Skolem and Prof. Mordell, whose lectures on Diophantine analysis incited my investigations
in this field. ’
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If we multiply the equation (1) by a® and replace ax by — x, we get an
equation
(5 2 —myt = ns?
(where no longer necessarily (m, ») = 1). Chapter I1I deals with the corresponding

3__.
ideal-equation in the purely cubic field K(Vm) = K(9):
lx —y 3] =nad

where 1 is an ideal from a finite set. This equation can sometimes be proved
impossible by class-number considerations, the simplest case occurring when the

class-number h =3 and n is not a principal ideal. If such an exclusion is not
possible, we are led to a finite number of equations between integers of K (J):

x—yd=puat=(e+fI+ gI)(u+ vI + wI?s

Equating the coefficient of 9* to zero, we get ‘“‘the resulting cubic equation” in
u, v and w; this is considered in Chapter IV. The insolubility of this equation
can again be proved by congruence considerations, which now become rather
complicated. To facilitate these considerations, an extensive theory of cubic
residues in the cubic field K () is developed in Chapters V and VI. By means
of this theory, I can add new necessary conditions for solubility of (1) to the
elementary congruence conditions drawn from (3) (Theorems II—VI. The condi-
tions are also sufficient for solubility of the congruence corresponding to the re-
sulting cubic equation.)

This is one of the main results of the paper. It is well known that the
- congruence conditions — together with solubility in real numbers — are suffi-
ctent for solubility of a homogenous quadratic equation (in any number of
variables). It is further easily shown by elementary means that they are not
sufficient in the quartic case, cf. my report [1]. But as far as I am aware, it
has never been shown before that .the elementary congruence conditions are not
sufficeent for solubility of a homogenous cubic equation. (SxkorLem [1] has proved a
similar result for snhomogenous equations, cf. my report [1].)

The equations that can be excluded by my new methods are quite frequent,
in average about 30 % of those of the examined equations jwhich are possible
for all moduli. The simplest example is

32+ 4y + 528 =o0.

The results of my extensive calculations are given in Chapter VII, and in
Tables 2*° and 4°. I have treated systematically all equations (5) with
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—

2=m<n=s50, mand n cubefree, and also the form (1) with abc = 500. 1 can
not prove the sufficiency of my new conditions (in the case of » =1 in (g), it
is even possible to show their insufficiency for most m), but 1 have found solu-
tions of nearly all equations which I cannot exclude. Some methods of numerical
solution are indicated.

Two striking empirical facts emerge from the caleulations:

1. In the case (5), with 2 =< m < » = 50, all excluded equations have been
8 3
proved insoluble in both fields K (Vm) and KVn). — A single exception would
have shown the insufficiency of my conditions in oune field K(V;s_a) alone.

2. For a given cubefree integer A, we form all possible equations (if any)
of the type (8). Then the excluded equations seem to occur in groups of four, with
the same value of 4. This is more precisely expressed in the conjectures of Ch.
VII, § 4.

My methods also apply to the more general cubic equation corresponding
to (4). As an example, Chapter VIII deals with Sylvester’s equations

(6) w? —3uiv + v* = 3pwd

(7) u® —~ 3u%v + 0¥ = pwd

where p is a prime = t 1 (mod 9), or a product of such primes. These equations
can be proved insoluble for several primes p= + 1 (Table 3}, the smallest one
in the two cases being p = 73 and p = 271 respectively, although the corresponding
congruences are soluble for all moduli. — Under certain conditions (Theorem
VII, § 5), the equations (6) and (7) cannot be simultaneously soluble.

The concluding Chapter IX deals with the equation X® 4+ Y® = A4 Z® This
has been studied by Syuvestr [1], PErin [1]—[3] and others, and many inter-
esting results about insolubility are known. (The trivial solution with Z =o is
not considered.) Most of the earlier proofs work with the theory of quadratic
Sorms, which makes it necessary to treat the cases 4 Z odd or even differently;
further every residue of 4 mod 9 must be considered separately. Hurwirz [1],
Nacerr [1] and Fappeev (1] have indicated how the first distinction can be

2mi

avoided when working in the field K (o), ¢ = ¢ 3. 1 carry this through system-
atically, and have found that all residues of 4 mod 9 can also be included in
one formula. By means of this simplification and the cubic law of reciprocity,
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I can give short proofs of all earlier results and add many of my own. As an
application, I have treated all cubefree 4 = 500 systematically (Table g4).
The method is one of “infinite descent’, which takes 3 different forms:

1. If A is not of the forms 2. or 3. below, solubility of X® + ¥Y3=4 Z7*
implies solubility of at least one of the equations (Th. IX, § 4):

(8) ax®+ by +ceP=0,abc=A, 1=a<b<e (a b =I[ac)=(bc) =1

The original equation X*® + Y®= A4 Z® is insoluble — I call it shortly “4 is
insoluble” — if all equations (8) are. This can in some cases be shown by con-
gruence considerations (if an equation (8) exists at all); this leads to Theorem
VIIL, § 2 (Sylvester, Pépin), see Table 4°. But I can exclude several more
equations (8) by my methods; these give 22 new insoluble values of 4 < goo
(Table 4°).

2. If A=pis a prime=1 1 (mod g), a product of such primes or g times
such a product, there is also another form of descent which leads to the equa-
tions (6) or (7) (Theorem X, § 5). Even if these can be proved insoluble for
several primes p =+ 1 (mod ), this does not necessarily imply the insolubility
of A, since there are still other ways of descent in this case. (But see 3. below.)

3. If A contains one or more primes =+ 1 (mod 3), there are further pos-
sibilities depending on the fact that such rational primes are no longer primes
in K{g). The superiority of working in K (p) instead of with quadratic forms is
now clearly demonstrated. All earlier results in this case turn out to be parti-
cular cases of my two general Theorems XI (§ 8) and XII (§ 10), but I also
give other, more special criteria for insolubility.

This descent leads to equations of the form (9.6.3):

(9) bu® + 3{a — b)u”v—3auv”+bv?’=§2Aiw3,

where i =3 or é and 4 = 4,-(a®*—ab -+ b?). (The équations (6) and (7) corre-

spond to a =0, b=1, 4 = 4,) The excluded values of 4 =< 500 in Tables 44
(Th. XI—XII) and 4° are cases where (9) can be proved insoluble by congruence
considerations. But these fail in the cases mentioned at the end of 2. above.
For complete exclusion, I then have to extend the methods of Chapter VIII to
the non-purely cubic fields defined by the left hand side of (9) (Table 4%).
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A complete list of the excluded values of A in Tables 4> is reproduced
in Table 4%; these are all the cubefree values of A = 500 which hdve been proved
insoluble in the present paper (indeed so far as I know all which have been
proved insoluble at all).

Table 5 contains the equations (9) with 4 = 500 which I cannot exclude
one way or other; a solution is found in nearly all cases. — As in Tables 22—
and 3, I believe that my solutions are the simplest possible, and that the unsolved
equations are all soluble.

The concluding §§ 15—18 deal with the number g of generators (basic solu-
tions) for an equation X® + Y%= A Z® This has been studied by Fapprev [1],

both in the field K (];Z) and in the field K(g), but in the latter case only when
A is a prime or the square of a prime. His methods in KX (¢) can be immediately
extended to all cases where there are no soluble equations (8) (Th. XIII, § 15).
By an improvement of his methods, I can also include this possibility of descent
(Th. XIV, § 16). It turns out that the number of generators can be found simply
from the number of soluble descents 1.—3. above. (The descents 2. and 3. must then
be counted together.)

By means of Tables 2°, 3 and 5, I have calculated the basic solutions in Table 6,
which contains all cubefree 4 < 500 not proved insoluble (Table 48). The only
cases where no solution is found are given by (cf. 7.4.2 and o.11.1):

(10) A =283, 337, 346, 382, 409, 445, 473, 499.

SyrLvester ([1] pp. 313 and 316) stated that he knew whether or not any
number 4 = 100 ‘is a sum of two cubes, c¢f. my historical remarks to 9.4.5
and 9.17.1.

The basic solutions of Table 6 for A < 50 are also given by Fappeev (but
I choose the solutions for 4 = 19 and 37 differently). Some of the remaining
solutions in Table 6 were given by Lexuarr (see Dicksox [1], Ch. XXI, ref.
186), but most of them have been found by me.

It turns out that there are at most two generators for all A < 500. The smallest
value of A with g > 2 is A = 657, where g = 3 (cf. 9.17.2—3).
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CHAPTER I. General Remarks.

§ 7. The main object of the present paper is to examine the rational points
on the cubic curve

I.1.1 ax® + by  +c=o0, abc#0, a, b and ¢ rational,

or, what is the same, the integer solutions z, ¥ and z (not all zero) of the homo-
genous indeterminate equation
1.1.2 ax®+ by® + c2® =o.

We may clearly suppose a, b and ¢ to be positive, cubefree integers (since any
cubed factor can be absorbed in the unknowns), and coprime in pairs:

1.1.3 (@, ) =(a,¢)=(b,c)=1,
if we exclude equations of the type (p any prime)
1.1.4 a,2® + pby® + p*e,2* =0, pta,be,

which are clearly insoluble. (We conclude in turn that p divides z, y and 2. —
The insolubility of this type of equation had been noted by Evrer, see Dick-
sox [1], Ch. XXI, ref. 144.) If 1.1.2 is not of the type 1.1.4, and

a=pia‘1r b=pibh p*albIC, =1 or 2,
then p|z, z = pz,, and

a, 2 + by -+ pPP~ics} = o,

where no longer two of the coefficients have the common divisor p.

When a, b and ¢ are cubefree, we may also suppose that the unknowns are
coprime in pairs:
115 (@, y) = (@, 2) =y, ) = 1.

§ 2. There is a close connection between 1.1.2 and the equations

1.2.1 X3+ Y®*=abeZ® (homogenous form)

1.2.2 n® = 48— 27a*4*c* (inhomogenous form).

The ¢nvariants g, and gy of both 1.1.2 and 1.2.1 are {cf. NacELL (2], § 1)

27 27 1
p=—T8=0 - T=oare

14 - 842127 Acta mathematica. 85 imé lo 11 avril 1951,
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(the ‘“‘equianharmonic”’ case, with g, = 0). Since rational 6™ powers can be re-
moved from g;, both equations can be transformed birationally into the Weier-
strass normal form 1.2.2. The transformation of the general equation 1.1.2 is
carried through by Nacerun {3], pp. 30—33. The coefficients can be made
rational only if a rational point on the original curve is known. This is always
the case for 1.2.1, with (X, Y, Z)=(1, — 1, 0), and the corresponding trans-
formation into 1.2.2 is given by (ef. Ch. IX, § 15):

_n abe )
X+Y

£
1.2.3 32" 9X~T

~—

The verification is immediate if we write 1.2.1 as

(X+YP+3(X— Y (X+ Y)=4abecZ?,

or
N (2{2"2_ B (_Z_)”
tes X+Y)‘4“ ‘\xX+ 7

As an important consequence of the above relations, we see that 1.1.2 and
1.2.1 can be transformed into each other birationally with rational coefficients
if one rational solution of 1.1.z is known. In particular, we have the important

Theorem I. A rational solution of the equation

ax®+ by® +¢ez®=0, abe # 0,
with zyz # 0, leads to a rational solution of
X*+ Y=abeZ®

with Z# o (i.e. X + Y 52 0. The converse of this theorem is false, c¢f. the con-
cluding remark of Ch. VII, § 4.) The actual formulae are given by

X+ Y=—9gabcx®y®2® (## o)
1.2.4 X—Y=(ax®—by®) (by® — c2’)(cz®— ax’)
Z=3abx®y® + bey®2® + ca®x®)xye.

These were first (in slightly different form) given by EvLkr, see Dicksow [1],
Ch. XXI, ref. 183. We shall find the same result later (Ch. IX, § 4), when
applying enfinite descent to the equation 1.2.1.
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A permutation of the terms ax® by® and c¢z® leaves the same solution 1.2.4
(possibly with an interchange of X and Y); this follows at once from the symmet-
rical form. — Tt is also easily verified that the conditions 1.1.3 and 1.1.5 imply

(X, Y)=(X,Z2)=(Y,Z)=1 or o.
There is an interesting birational connection between 1.2.2 and the equation
1.2.5 Pm=48+abc

cf. Biruing (1], Ch. V. The transformation 1.2.4 can be obtained rather simply

by writing 1.2.5 as
(m +abde)(n, —abe) =48

and drawing some immediate conclusions about the factors of the left hand side.

§ 3. Throughout this paper, we shall suppose the coefficients a, b and ¢
in 1.1.2 to be rafional integers, and the same for z, ¥ and 2. From some points

of view, it may seem more natural to extend the domain of the unknowns to
the field

27t

KV=3)- Kl e-e’ - —-V3.

2

There are two main reasons for this:

1. When examining the congruence conditions for solubility of 1.1.2, we
must use cubic residues, and the cubic law of reciprocity takes the simplest
form in K (o).

2. We shall work systematically in the purely cubic field K (l};n), where m
is a rational integer. This is not a Galois field, but becomes one by adjunction
of ¢. (The resulting field is considered in Ch. IV, § 4.)

The question of solubelity of 1.1.2 is, however, not affected by adjunction of
¢ to the field of the unknowns. Such problems-have been studied by several
writers; for references, see Biruine [1], Ch. T, and NaceLL (4], § 10. — If (=, 9, 2)
is a solution of 1.1.2 in K (g), then a chord through this point and the conjugate
point (Z, 7, z) will cut the curve in a third rational point, provided the coefficients
are rational (cf. 1.5.3).

§ 4. The question of exceptional points of the curve 1.1.2 is easily dealt
with. Tt was shown by Hurwrrz [1] that the curve

1.4.1 ax® + by + e2* + dayz = o,
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where a, b and c are squarefree rational integers, and coprime in pairs, has the

following exceptional points:

~.

1. None, if at least two of the numerical values |al, |b| and |c| are > 1.

2. The one exceptional point (x,y,2)=(1, —1,0) if a=b=1, |c|>T1,
except in the cases ¢ + d + 2 =0 and 4¢ + d * 1 =0, when there are two such
points.

The method is as follows. We define the weight of a solution (z, ¥, 2),
where z, y and 2 are coprime integers, to be |zyz|. We then show that the
tangential of (x,y, z) (i.e. the point at which the tangent at (z, y, 2z) cuts the
curve again) has a greater weight than (x, ¢, 2).

- The condition of squarefree coefficients is only necessary to make certain
that «, y and z are coprime in pairs. In the case d = o, i.e. the equnation 1.1.2,
we have seen that this condition is automatically satisfied if a, b and ¢ are
cubefree, and Hurwite' result holds in general for this equation. :

If d =0, then 2. above shows that the equation X% + Y3 = A Z* has the only

exceptional point (1, — 1, 0) when | A| > 2 (and cubefree). For A = 2, the equation

1.4.2 X2+ Yi=228

has the additional exceptional point (1, 1, 1), and for A ~ 1 it is well known
that the equation

1.4.3 X3+ Y3=78

has the three exceptional points with X Y Z = 0. These are all the rational points
in the last two cases.

1. above still holds after adjunction of ¢ to the field of the unknowns. This
follows from Naerrn [3], Théordme 22 (p. 3), but can also be proved directly
for the field K(g¢) by a simple generalization of Hurwitz’ proof, and this time
when both unknowns and coefficients are integers of K(g) (if now || means mo-
dulus). The generalization also shows that the only exceptional points in K (o)
occur in the following cases:

The equation X® + Y%= 473 where A€ K(g), A cnbefree and # + 1 and
+ 2: Three points with X?=1, Y=—1, Z=o0.

The equation 1.4.2: The same three points, and in addition the nine points
with X3=Y3=1, Z =1.

The equation 1.4.3: Nine points with X Y Z = o.
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Finally the equation
1.4.4 2+ oyt + 0¥ =0

with the nine exceptional points with x* = y® =1, z = 1. These are all the ra-
tional points in K(p) in this case, since it is easily seen that any other solution
of 1.4.4 would lead to a solution of 1.4.3 in K(¢) with X Y Z 4 0, by 1.2.4.

§ 5. The homogenous ternary cubic equations, both the general form and
the more special forms 1.1.2 and 1.2.1, have been studied by many earlier writers.
Apart from some results about the equation X® + Y3 = A Z*% to which we shall
return in Ch. IX, most of the papers deal with the finding of new solutions
from other, known points on the curve (tangentials, third intersection of the
chord etc.). Full references are given in Dicksox [1}, Ch. XXI, under the

following headings:

Two equal sums of two cubes.
Three » > > »
I1.5.1 Binary cubic form made a cube.
Numbers the sum of two rational cubes: z® + y® = Az%

| Homogenous cubic equation F(z, y, 2) = o.

For completeness, I quote the following results for the curve 1.1.2 (DEs-
BOVES [1], p. 552 and p. 565): The tangential to a point (x,, ¥, 2;) is given by

1.5.2 Ty =2, (byl —cal), 9y =y (el —aad), 2z =z (aal— by,

and the third intersection of the chord through the points (x;, y,, 2,) and (1, ¥1, 21)
(cf. Ch. IX, § 16, Lemma 5):

1.5.3

.y 9 B 2
e =XrYr1&1 — X 1Y18, Y= Y1811 — Y14, %y,
_Z2 ;s 9
ZLy=aniYr — 2121 Y.

Both formulae 1.5.2—3 are valid also for the more general cubic curve 1.4.1.
In close connection with these questions stands the problem of a basis for
the rational solutions (in the Mordell-Weil sense), in particular the number of
generators. If the curve 1.1.2 has one rational point, we have seen in § 2 that
it can be transformed birationally with rational coefficients into any of the two
curves I.2.1—2, and consequently has the same number of generators of infinite

order as any of these.
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The number of generators for X®+ Y3 = A4 Z® has been studied by Fap-
pEEV (1], who gives a complete list of basic points in all soluble cases with
A = 50, reproduced as the first part of my Table 6. — I return to his methods
in Ch. VII, § 6 and Ch. IX, § 13s.

The finding of a basis for the equation 1.2.2, or rather the general equian-

harmonic case
1.5.4 772=§3i D’

is treated by Birrine [1], who gives a table for all D = 25. In a recent paper,
Cassers [1) has given some far-reaching theorems about the number of gener-
ators for the same curve, together with a table for all D =< 50. (Cf. § 6 below.)

Independently Popsyepawin [1] has given a table of generators for D = 8o,

making an interesting use of the connection between the equations
72 =48 —D and n*=458+27D.

(But see corrigenda in Cassgrs [2].)

Among earlier writers, there has been a tendency to distinguish between
positive and negative solutions, especially of the equation X® + Y®= A Z% We
may clearly suppose A and Z positive, and there is the question of expressing
the number A4 as the sum of or the difference between two positive rational
cubes. It is well known that these two problems are equivalent, see the first two
references in 1.5.1. I will just point out the connection between this problem
and a result of Hurwrrz [1], who has shown that if a cubic curve has an in-
finity of rational points, then the infinite branch is densely covered by these. (See
also NaeeLL [5].) And the curve x® + y* = A (like the more general curve 1.1.1)
consists only of an infinite branch.

In what follows, I do not distinguish between positive and negative solu-

tions.

§ 6. The insolubility of an equation X®+ Y® = A Z®% and thereby (Th. I)
of all equations ax® + by® + ¢2® = 0, with abe = A4, can also be proved by the
methods of Cassers [1]. 1.2.2 and 1.2.5 show that we may consider instead the
equation

N=48+ 4% or ¢y =2z"+2"4=2"—D,

ie. D =—2*4% in Cassels’ notation. He works in the purely cubic field

3

KWD) - KVFL) - KWz &) = KV74).
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This means a gimplification if 4 iseven, 4 =24, K (Vﬁ) =K (VATI) Since the
factor 2% can be removed from D, we get (|| means “exactly divides’):

1.6.1 2|A—>24D, 2®||4~2%||D, 244 2¢|D.

The first two cases are covered by Cassels’ Theorems VIII and XI respec-
tively. When D s + 1 (mod 9) and not a perfect cube, his methods can never lead
to a proof of insolubility if one of the possible u's (different from 1) is a quadratic
residue of 4. The generalization of his Lemma 6 shows that this is always so
if the class-number h s even.

I have verified several insoluble values of A by Cassels’ methods, and have
also found cases with an even class-number, i.e. cases where his conditions are not
sufficient. (As Cassels mentions at the end of his paper, the conditions turn out
to be sufficient for all' | D| < 50.) The simplest cases, representing the first two

possibilities 1.6.1, are given by

A=122=261, A =61, hy=6, & =1—169 + 49*
A=116=12%29, A, =58, hg=6, egg=1— 89+ 29

The insolubility of A = 122 and A = 116 follows from my Theorems XI
(Table 4°) and VIII (Table 4%) respectively. The fundamental units &, and &
are given by NacerrL [6]. Since &, =1 (mod 4) is a quadratic residue of 4, it
follows from Cassels’ Lemma 6 that h;; must be even. ~— The class-numbers
have been calculated by me and checked by Cassels.

CHAPTER 1I. Congruence Counsiderations.

§ 7. The impossibility of an equation 1.1.2 can often be decided immediately
by simple congruence considerations mod 9 or mod p, where p is a prime dividing
one of the coefficients a, b or ¢. — We exclude once and for all the equations
of the type 1.1.4, which are insoluble mod p*.

First a trivial remark: Let p * 3 be a prime. If the congruence

2.1.1 Flx,y,2)=ax®+ by’ + cz®=o0 (mod p)

is soluble, then it is soluble mod p? for all positive integer exponents 6. Because

! He conjectured in [1] that his conditions were sufficient for all D), but retracted this in an
addendum (2], after I had shown him my counter-examples.
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of the conditions 1.1.3 and 1.1.5, p can divide at most one of the terms of

F . .
F(x,y, 2). If for instance (p, ax) = 1, then % = 3az? is prime to p, and we

can come from the modulus p to p’ for any d > 1 by varying z only.

This does not hold when p = 3, because of the factor 3 in g But it is

easily seen that solubslity mod 9 is sufficient for solubility mod 3%, d > 2. (Cf.
SxovLEM |i], p. 8.)

If (a,b) =(a, c)=(b ¢c) =1, the insoluble equations mod 9 are typified by
(arbitrary signs):

fi
I+

1, b=+ 2 e==+

2.1.2 T 2, T4
’ b=t o } (mod ).

a
2.1.3 a

f
0o

This is a consequence of 0 and + 1 being the only cubic residues mod 9. In
particular, the equation is always possible mod g if one of the coefficients is exactly
dzvisible by 3.

For all other primes, we have to distinguish between the two types

2.1.4 g=—1, r=+1 (mod 3).

Throughout this paper, q and r denote only such primes, while p is any prime.
All rational integers are cubic residues of ¢, and the congruence 2.1.1 18

clearly soluble for all p = q, since we can choose for instance y and z arbitrarily

and determine x uniquely mod ¢ from the resulting congruence, provided

(a7 Q) = L.
A complete system of residues mod r (o excluded):

y—1
+1,i2,,..~l_-—2

b

r—1 . .
elements: One class K of cubic residues

consists of three classes, each with

and two classes K’ and K" of non-residues. The elements of each class occur
in pairs with opposite sign. The rules of multiplication are given by the table

ENENES

K ‘ K | & 'K"

2.1.5 K’ K’ K” K
K’/ | K/’ K |Kl
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In particular, a and az® belong to the same class mod 7 if (r, ax) = 1, and
a congruence
2.1.6 ax®+ by!=0 (mod 7), rtad,

is soluble if and only if @ and & belong to the same class, i.e. if they are what
I shall call “equivalent mod »”, and denote by

2.1.7 a~b (mod 7).

This implies that ab='~ ab® is a cubic residue of r, which will be denoted by
2.1.8 ab®(R)r.

Cubic non-residuacity is similarly denoted by (). I reserve symbols like ( ); or
[ ] for the field K(g) (Ch. IX); such symbols for rational primes have no simple
rules of multiplication, and can only cause confusion.

If p=r divides for instance c¢ in 2.1.1, we get the congruence 2.1.6 and
hence the necessary and sufficient condition 2.1.7 or 2.1.8 for solubility mod r in

this case. — Similarly for all other primes r dividing one of the coefficients.
As mentioned in the Introduction, we shall treat the equation 1.1.2 in the

form (5):

2.1.9 22— my® = nes.

The above conditions for solubility then take the form:
m=t2ifn=+t4;, m=ztgif n==+2 (mod 9
Mod 9:{m =oor 1 if n=0; n=o0or *+ 1if m=0 (mod g)
my ==+ n (mod 9) if m = 3m,, n = 3n, 3¥mn,.
m(R)r if rin, rdm

Mod »: yn(R)r if 7|m, r¥n

mni(R)r if m=1rm, n=1rin,i=1o0r2 rifmmn.

2.1.10

I have treated systematically all equations 2.1.9 with 2=m <n=350, m
and % cubefree. The equations which can be shown insoluble by elementary
congruence considerations (including the type 1.1.4) are indicated by horizontal
lines in Table 2+

We note that the elementary congruence conditions cannot prove the insolubslety
of an equation

X+ Y3 =427

Jor any value of A. (Cf. my report [1].)
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§ 2. In order to show that the conditions of the last paragraph are also
sufficient for solubility for all moduli, we must prove that the congruence

2.2.1 ar® +by* + ce®=0 (mod r), rtabe,

is always soluble. Skorem [1] has shown (pp. 6—7) that this is always possible
for r > 7, and even with
2.2.2 xyz#=0 (mod 7).

With this restriction, 2.2.1 is insoluble when 7 = 7, and for instance

]

22.3 b=+a, c¢c=+3a (mod 7).

But in this case the congruence is clearly soluble with z= 0 (mod 7), which

suffices for our purpose. (This remark is often very useful in the numerical solu-
tion of such an equation, cf. 6.7.2.) '

Skolem’s proof is based on a result of Hurwirz [2] about the number of
incongruent solutions of 2.2.1. If we abandon the condition 2.2.2, it is possible
to prove the solubility of 2.2.1 very simply, using the first step of an (unpublished)
argument of Prof. Marshall Hall, Jr.}:

If two of the coefficients, for instance @ and b, belong to the same class
mod r, we can put z=o0 and get the soluble congruence 2.1.6. The difficulty
arises when a, b and ¢ belong to the three different classes X, XK' and K".
Since ax® can take all values in the class to which a belongs, it suffices to show
that we can find elements %k, % and k” from the three classes, such that for
instance
2.2.4 k+% =k (mod 7).

In order to prove this, we form a table

! (Added later.) Dr. Cassels has pointed out to me that similar arguments were used by
Gauss [1] (Art. 358, pp. 445—09).
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in the following way: To each element of the class K (left colomn) we add the
number 1, and group the sums in the classes K, K’ and K" (heading), in num-
bers @, 8 and y respectively. Similarly we add 1 to the elements of K’ and K.
Then

2.2.5 o+ +y ="+ +y = ,r——é—v

(the number of elements in each class). But

2.2.6 a+5+y=7:3~—1——1,

since — 1 belongs to K, so that we lose the sum —1 + 1 = 0. v
B is the number of elements %* of the form % = 1 + k. Since a change of

sign leaves the class unaltered, this can also be written as # = 1 + %', and con-

sequently § = «’. Multiplication with (£)"'€ K" gives still another equation

KF'=1+%", ie. 8=¢ =y"”. Similarly we find y = 8 = «”’, and a comparison

with 2.2.5—6 shows that y = 8" =a+ 1= 1. Consequently " =1+ ¥/, ie.

2.2.4, is possible in at least one way.

In the next paragraph, I show the solubility of 2.2.1 (without the restric-
tion 2.2.2) by still another simple method. The advantage of Marshall Hall's
proof is, however, that ¢t holds equally well in any algebraic number-field 8, for
any prime-ideal modulus p (prime to 3 and to the coefficients, which together with
the unknowns are then supposed to be integers of Q). The number of residue-
classes in 2 mod p and prime to p is given by N(p) — 1, and Fermat’s theorem

holds:
E¥W-1=1 (mod p) if pt+E& ELeQ.

As in elementary algebra, we can find a primitive rool of p and establish a
system of indices (logarithms), from which we deduce the theory of cubic residues
mod p. If N(p)— 10 (mod 3), then all integers of 2 are cubic residues mod b,
and the congruence

2.2.7 e+ 80+ yP=o0 (mod p), pt3efy

is of course always soluble. If however N(p)— 1 =0 (mod 3), the numbers of
2 (prime to p) are divided in the same classes K, K’ and K" as above, with
the rules of multiplication given by 2.1.5. Marshall Hall’s argument still shows
that 2.2.7 is then always soluble. — We shall make use of this remark in
Ch. IV, § 4.
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§ 3. For applications in Ch. VIII and IX, we shall also consider the more
general cubic congruence

2.3.1 Flx,y) = Ax® + Baly + Cay® + Dy*= Ez* (mod p?).

We denote by o the discrimenant of the left hand side.

The prime p = 3 must be treated separately in each special case. For all
other primes, solubility mod p is usually sufficient for solubility mod p?, d > 1.
If p4 Ez, this can be obtained by varying z only. If pt 4, at least one of
oF
oz
oF . . . .
@ =0 leaves 4 =0), and in this case variation of & or y gives the same re-
sult. Common divisors of F and o cause extra difficulties; all other divisors of

a
and %5—1 must be =0 (mod p) (since elimination of g between 5;1—;—‘ =0 and

E and o will obviously lead to simple conditions, which are easily dealt with in
each given case. (A more special form of the congruence 2.3.1 will be treated
in detail in Ch. IX, § 7.)

The problem is again all other primes p, such that p+3EA. Ifp=qg=—1
(mod 3), the term Ez® makes the congruence always soluble if ¢+ E. If
p =r=-+ 1 (mod 3), we can use a result of vox Sterneck [1]: If r+ A(B*—3A40),
the cubic polynomial
2.3.2 flo)=Ax*+ Bx*+ Cx + D

2r + 1

(the left hand side of 2.3.1 for y = 1) takes different values mod r. Since

the right hand side Ez°® takes ’”—“3;1 + 1 values (included zero), and

2r + 1 r—1
+———Ft1=7r+1>7,
3 3

the two sides of the congruence will have at least one value mod r in common,
i.e. a solution.

If r|A(B2—34C) but »4 D(C*— 3 BD), we can argue similarly with = 1.
Any common divisor of B*—34C and C®*—3BD divides , and must be
treated separately in any case.! But we may also have to consider the primes r
dividing 4 or D.

The result is therefore that we only have to examine the congruence 2.3.I
for the following primes:

! A common divisor r of B and (, such that r £ ADE, leads to a soluble congruence of
the type 2.2.1.
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2.3.3 p=3; p=gq if q|E; p=vr if r|ADEJ,

and for ¢ > 1 only when p = 3 or p|(&, ). The last point can be facilitated by
the results of Kantor [1], who discusses the values of the polynomial 2.3.2
mod p° for all p and 4.

The above considerations lead to a very simple proof for the solubility of
2.2.1. Here r cannot divide both a + b and a — b, and after a change of sign for
b and y if necessary, we may suppose a + b=0 (mod 7). The substitution
y=ux + y, gives

(@a+b)x®+ 362y, + 3bxyt + by =—c2® (mod 1),
which is of the form 2.3.1, with
A(B*—3AC)E =9(a+ b)abe=0 (mod r),

and consequently soluble.

Just before I found the reference to von Sterneck’s paper, I wrote to Prof.
Marshall Hall asking about the congruence 2.3.1 in the cases where p=r+ ADE 4.
It turned out that he had found the same result about 2.3.2 independently (and
his proof is in some respects simpler than von Sterneck’s). Prof. Marshall Hall
also communicated to me an additional argument, using the ideas of § 2 above,
by which he can prove that the function f(x) of 2.3.2 will represent all three
cubic classes mod r, i.e. the congruence 2.3.1 mod r is soluble with z =0, provided
f(x) cannot be transformed linearly mod # into the form A"%'® + (' «'.

§ 4. 1 have also examined the congruence conditions for the more general
cubic equation

n
2.4.1 Z a;x! = o,
=1

with all a; cubefiree and 7 o. It turns out that the corresponding congruence
mod p? is soluble for all p and § when

2.4.2 nzg if p=3; n=4 if p=¢q; n=y7 if p=r

If p=g=—1 (mod 3), and » = 4, then at least two of the coefficients,
e.g. a, and a,, are exactly divisible by the same power ¢, 7 = 0, 1 or 2. Putting
a, = ¢'ay, ay = ¢'ah, x; =2z, =0 (mod ¢°), we get the soluble congruence

a123 + aazi=o0 (mod ¢*9), g¢4aian
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If p=r=+1 (mod 3), and n =7, at least three of the coefficients are
exactly divisible by the same power #'. Arguing as above, we get the soluble
congruence

a1ad + dyad + asad=o0 (mod %%, riadiaras

Similar arguments, a little more complicated, hold for p = 3, » = 5. — The

numbers n in 2.4.2 are minimal, as seen from the following insoluble congruences:

2B+ 228+ 425+ 9ai=0 (mod 39
{mod 2%

(mod 73).

|

2+ 2a + 23 =

I

0
B+ 2ay+ 7@+ 22+ 7@+ 228 =0

All congruence conditions are therefore automatically satisfied for 2.4.1 when
nz= .. — A slight modification of the Hardy-Lettlewood approach to Waring’s
problem (Laxpavu [1], part 6) shows that the equation 2.4.1 has always an in-
fintty of solutions when n = 9, and the wx; can all be taken positive if the a; are
not all of the same sign. — I owe this remark to Dr. Cassels, who says that
the fact had previously been noted by Prof. Davenport.

It may seem surprising that » = 7 is the minimum number of variables for
the congruence corresponding to 2.4.1. MorpELL [1] has given examples of in-
soluble cubic congruences in g variables, but these contain product terms.

The congruences in §§ 1—3 represent only particular cases of ternary cubic

forms. The general homogenous cubic congruence
2.4.3 Sz, y,2)=0 (mod p)

has been treated by MorpErLn [2], who shows that the number N of solutions

(in the inhomogenous form, with z = 1), is in general given by
2.4.4 N=p+ 0(p”).

Consequently 2.4.3 is soluble for all sufficiently large p. The constant of the
O-symbol is absolute, but the formula 2.4.4 only holds if f;(z, v, 2) is absolutely
trreducible mod p. If the invariant S of 2.4.3 (cf. Nacerw (2], § 1) is = o (mod p),
2.4.4 is replaced by the stronger form

2.4.5 N=p+ 0(ph)

The determination of the constant involved seems to become difficult. For

the simpler Weierstrass normal form:
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2.4.6 y¥'=42"—gox—yg; (mod p),

the constant has been determined by Hasse [1], who finds
2.4.7 [N —p|=2Vp,

provided the right hand side of 2.4.6 has no maultiple root mod p.
A particular case of the general cubic congruence 2.4.3, containing all
possible terms (10 in all), will be dealt with in Ch. IV—VIL.

CHAPTER III. The Equation in the Cubic Field.

7. As already mentioned, we transform the cubic equation ax® + by® +
+ ¢2* = 0 into the form

3 3 3
3.1.1 2 —my® = ng’

where no longer necessarily (i, ) = 1. We suppose that the congruence conditions
2.1.10 are satisfied, and shall treat the corresponding equation in the purely cubic

87
field K (Vm). Most of the necessary information about this field, including refer-
ences, is given by Cassevs [1]. In particular, I make use of his table of class-
numbers and units for m = go.

3 3

I shall use the notation Vm = 3, K(Vm) = K(9), where we may suppose &
to be the real cube-root. The integers of K($) are given by @ = u + v + w 9%
where usually %, v and «w are rational integers. If m is not squarefree,

3.1.2 m = m,mi (my, my) = 1, m; and m; squarefree,

then w has a denominator m,. In this case I sometimes use the notation

3 3

3
—— — 9
3.1.3 Vim =Vmymi = 3, Vmdmy = 3, = 2.

The fields K(3,) and K (9,) are identical.

If m=+1 (mod 9}, a denominator 3 can occur in the coefficients «, v
and w. This case will be treated in more detail in §§ 3—4.

I denote prime ideals of the 1st and 2nd degree by p and g respectively.
Conjugate ideals are indicated by dashes. When giving the basic elements, ideals
are denoted by square brackets. More precisely, we have (with the notations
2.1.4, 2.1.8 and 3.1.3):
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plm:[p] =[p, 31 =9
plmgz[p] = [p, % = Py
p=34mm=1t1 (mod 9): [3] = [3, % —m]’ = pi.

} p any prime.

p=q+m,d®*=m (mod q):
lq] = ¢, ® — d)lg, 9* + A9 + d*] = D, q,.
p=rdm m(R)r, ®=d*=d">=m (mod 7):
(rl=10r.9—dlfr,9—d1[r,¢—d"] = p.prp/.
p=rt+m, m(N)r:[r] a prime ideal.

3.1.4

§ 2. In the field K(9), the left hand side of 3.1.1 factorizes
3.2.1 [ —my?] =[x — y I [z® + 2y I + y*I?]
A common factor of the ideals on the right hand side must divide
2+ xyd + It —(x—y I =32y ie 33,

since (x, y) = 1. The factors of 33 are all ideals of the first degree; let any of
these be p,, corresponding to the rational prime p. Then

W{F&@—yd) > hled&m—>pledm > plu;
bp = Ps|3 but 34m > Pyl >3]z >34y >at&y’ =
=+ 1 (mod g) >m=+ 1 (mod g),

a case which will be treated in the next paragraphs. In all other cases, it follows
that we must have
3.2.2 [z —y9] = pua’,

where a is some ideal, and p, is a product of prime ideal divisors of n. Since
3-2.3 Glz—yd—>qlzky,
3.2.4 p&Yr—yd>r|lx—yd&ix—yd)~>r|lx&y,

and since a comparison between 3.1.1 and 3.2.2 shows that the norm N (pn} = n,
the ideal p, has the following factors ( || means ‘‘exactly divides”):

pillp. if 3'flm, i=1 or 2

(in the case ¢ =2 we must have 3®|m, since m =+ 1 (mod ¢) is excluded in

this paragraph),



The Diophantine Equation ax® + by® + ¢2® = 0. 295
pillpa it g'lln, =1 or 2

and similarly if »|%». In this case either r|m or m(R)# (if the congruence con-
ditions 2.1.10 shall be satisfied), and consequently [r] is always the product of
three ideals of degree 1. If 4 m, these ideals are all different, and only one
of them can divide x—y & at the time by 3.2.4; we thus get three different
equations 3.2.2 cofresponding to each such prime 7.

§ 3. We now come to the case m =4 1 (mod 9) Throughout this chapter,
I will suppose that
3.3.1 m=+ 1 (mod 9),
in order to simplify the formulae. The results for m =— 1 (mod 9) can always

be obtained by changing the sign of 9.
The integers of K(J) are now given by

wu+vd+wI? ;
3.3.2 a=—~3——, u=v=1w (mod 3),

where u, v and w are rational integers if m is squarefree, and w has a de-
nominator my in the case 3.1.2.

The ideal [3] is no longer a perfect cube, but

P +I+1)? P+ 9 —2
333 [3] = [37&—11 —\—3“—"—] '[3)'9'_Ia _‘_“3-‘“] =t2§.

In particular, we have
3.34 8 =[3, % —1].
According to their form and divisibility by t or 8, Marxorr [1] divides the
integers 3.3.2 into 6 classes, with the following properties:
Class 1, 3le:
a=u+vI+ wd® u=v=w (mod 3).
Class 2, t3|e, 34 a:
e=u+vd+wd, u=rv=w=u (mnod 3)

Class 3, t|e, 84a:

+vd + wd?
a=u3 Y u=v=w=o (mod 3), v+ w— 24 =0 (mod 9).

156842127 Acta mathematica. 85
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Class 4, 8|a, t4ea:
. 2
Q,:'ﬁ_t”_‘??%’ﬂi’ u=v=w0 (mod 3), u+ v+ w=o0 (mod ).
Class 5, (£3, ) = 1, no denominator 3:
e=u+vd+ wI? with two and only two of the coefficients congruent
mod 3.

Class 6, (v8, @) = 1, denominator 3:
u+vd+wdt

a=——3-—-, w=v=w=0 (mod 3),

but with none of the other conditions under the classes 3 and 4 satisfied.

Markoff also shows the following relations: If & is any integer from the
class ¢, then

4 ’
=.3.5 Qg * G = @, Qg* g = 3.

(Ib avoid the term group for Markoff's classes, since they are not ‘“‘groups”
in the strict sense of this word. There can be no confusion with the ideal-classes
of the field K(3).)

The above class-conditions have a much simpler form than those originally
given by Markoff. We must bear in mind that « and v are always integers, but
w has a denominator m, = 0 (mod 3) in the case 3.1.2. — A similar classifica-
tion also holds for the é¢deals in K(3) (but we cannot then distingnish between
the classes 5 and 6. When these classes are mentioned separately in the next
paragraph, it is in order to get complete analogy with the corresponding equa-
tions between vntegers of K(9).)

§ 4. We shall now consider the equation 3.1.1 when m =+ 1 (mod 9), and
the corresponding ideal-equation 372.2. We can argue as in § 2 for the ideal
divisors p, and p, of n, and their product will be denoted by p,. But the factors
of 3 need a special treatment. We must consider the different residues of »
mod g separately:

1. =14 (mod o), ie 3}z, x=y=0 (mod 3), 18 =[3, 9~ 1]|x—yI.

Since 1*3 = [3]|lz -y > 3|2 &y, and 3| N{x —yI) = 2* — my®, we must have
r8'|le —yd. If 37t')|z, >0, the additional power 3% can be absorbed in a,
and consequently we have

3.4.1 [x—y9] =18 p.a’ a €class 4, 5, or 6; N(r82p,) = 3°n.
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2. n=1= 3 (mod 9): The same argument as under 1., but an additional §

from 7, and the resulting 8° can be absorbed in a®:
3.4.2 [x —y9] = tpna® a € class 4; N(tps) = n.

3. n=+ 2 (mod 9): One possibility as under 1., but also the possibility

r=—y=0, 2% 0 (mod 3), and so
3.4.3 [x —y 3] = pna®, a €class 5 or 6; N(p,) = n.

4. n=7=1 1 (mod 9): The same two possibilities as under 3., but the second

case when 2y =0, z=0 (mod 3).

5. n=0 (mod g): Arguing as under 1., we get the only possibility
344 [x—yI3] =13pna®, a€class 4, 5 or 6; N(t§p,) = n.

§ 5. We have seen that the equation 3.1.1 leads to a finite number of
equations

3.5.1 [x—y9] =na’

in the field K(3). If in particular n contains no prime divisors r =+ 1 (mod 3)
such that r4m, and if n=0, 3 or + 4 when m =+ 1 (mod g), there is only
one possible tdeal 1.

By an unpublished argument used by Mordell and (independently) by Marshall
Hall in similar cases, we can often show that 3.5.1 is impossible by class-number
considerations. 'The simplest example is that of the class-number h, = 3, in
which case a® is always a principal ideal. The equation 3.5.1 is then impossible
if 1 4s not a principal vdeal.

But a similar argument can also be used when h, = 3k, £> 1. Let us for
simplicity suppose that the group of ideal-classes is cyclic (this is always the
case for m = 50), and let all classes be powers of a class I. Then the equa-
tion 3.5.1 is impossible if n does not belong to any of the classes I%
2=0,1,2,...k—1.

As already mentioned, I have treated systematically all equations 3.1.1 with
m and n cubefree, =2z and = 50, and the result is given in Table 2% where
crosses stand for equations which are possible for all moduli but which have
been excluded one way or other in the cubic field. The cubefree m = 50 with
3| hm are
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3.5.2 m =7, 13,14, 19, 20, 21, 22, 26, 28, 30, 31, 34,35, 37, 38, 39, 42, 43, 49, 50

(of which only hy = 6 and hy, = 12 are > 3). Nearly all excluded equations in
these cases have been proved insoluble by class-number considerations.’

§ 6. We shall now construct the equations between infegers of K (%) cor-
responding to 3.5.1, when this cannot be excluded by class-number considera-
tions. — Let first hn = 1; we then immediately get

3.6.1 z—yd =nvdd

where 7, » and « are integers of K (%), # a unit and » any number such thatn
is the principal ideal [»], i.e. N(n) = N{#) = n or 3*n (where 3*n occurs only in
the cases 3.4.1).

If &, is the fundamental unit of K(&), then

n==+ell t=o0,1,2,3,....

The sign can be absorbed in o® and the same holds for any maultiple of 3 in ¢
We therefore have to consider only the three possibilities % = 1, &, and &n:

3.6.2 x—yd=1¢cva®, i=0,1,2

{or with &' instead of &)). It will obviously suffice that e s not the cube of
another unit. Some of the units given by Cassels have not been shown to be
fundamental; for his purpose he has checked that they are not squares, and 1
have checked that they are not cubes of other units. This check can be per-
formed quickly by the theory of cubic residues which is developed in Ch. V and
VI; &n cannot be a cube if it is a cubic non-residue to an appropriate modulus.

Already here I will insert a remark which is very useful in many numerical
examples. It often happens that the number » in 3.6.1 can be very complicated
and difficult to find, but that we can obtain easily an expression for the product
of » and some cube in K(J). A striking example is the equation

x’—33y" =22,

with the’one corresponding ideal-equation in K (Vﬁ) = K(39):

3.6.3 [x —y 9] = p,a’

L Dr. Cassels kindly lent me his calculations in connection with the determination of the
class-numbers 2, ‘for m = 50. His notes were of very great use to me daring my own calcula-

tions in the cubic fields.
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The class-number kg = 1, but the fundamental unit g, has very big coefficients,
and it seems to be the same for the basic number », of p,. But we see at once

that
N@®—1)=33—1=25%1ie 1—29 + 9% =9,0°%y,

where 7 is a unit. If we replace 3.6.3 by
3.6.4 z—yd=2¢,(1—29+ 3

then « is no longer necessarily an integer in K (3), but has in its denominator
only powers of v,.

The principle for exclusion of the equations 3.6.2 18 to show them tmpossible
Jor certain moduli, by a theory of cubic residues in K(3). The modified equation
3.6.4 can still be treated by the same means, if we now use moduly which are
prome to P, And we shall see in Ch. VI that a first degree ideal divisor of a
prime g =—1 (mod 3) is never used as modulus for exclusions.

Similar arguments, usually not so simple, have been a great help to me in
my extensive numerical calculations. There is no special rule for the use of
such “auxiliary cubes”. They must be prime to at least one of the moduli which
can be used for exclusion, but to find them quickly is a matter of experience.

§ 7. We now come to the cases where h, > 1, and let first 34 hm. The
principles to be used can be illustrated by hm = 2 (which ist he ounly actual case
when m = 50, namely for m = 11, 15 and 47). Let the two classes be I and I’
where IT is the principal class and I'* = IT. ‘

If in 3.5.1 n€rl, then also a€Il, and we are led to an equation 3.6.2 as
before. If however 1 and consequently a are not principal ideals, n&a€rI’, we
must use the argument of “auxiliary cubes’: Let b€TI, where b is an integer
ideal prime to the moduli which can be used by the exclusions. (It is well
known that every class contains ideals prime to any given ideal.) The equation

3.5.1 can be written as

3.7.1 fxr — y3] = nb%(a b1,

where now both nb® and ab~! are principal ideals, the latter fractional. We are
again led to an equation 3.6.2, where the possible denominator of « is prime to
the moduli to be used.

A quick determination of the ideal b is again a matter of experience. As
a simple example, we can consider the equation
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2 —11yd = 1525
or in the field K({/x—x) = K(9):
[x —y 9] = pypsa® = na

Here hy, = 2, py=[—2+ 3]€II, but p,€T, andson€rl. Wecanuseb =p, €T,

and since
N(—1+9)=—1+11%=120=2%13,

we can deal with the equation
3.7.2 x—yd=2¢& (—1+ 3a’

if we use moduli which are prime to b,.

The above remarks can also be useful in the search for a numerical solution
of an equation 2®—my® = nz® which cannot be excluded. We know that p,
the product of first degree prime divisors of 2z, must belong to the same class
as 1 (either IT or I'), and this limits the possible choice for z.

§ 8 Let finally 3,_[&,“ and suppose that 3.5.1 cannot be excluded by class-
number considerations. Let n~'€I, and b a particular ideal such that b*eI"
Using again the form 3.7.1, we must examine the classes to which ab~! can
belong in order that (a6~")® is a principal ideal. Let I', = II (principal class),
Iy, Iy, ... I't—y be all such classes, ie. I'; =11, j =0, 1,2,...k— 1, and let
b, = [1], b, b,, . . . be—; be one representative ideal from each such class. Then

ab-ler; ie. a=0bc, y=0,1,2,... k—1,
where ¢ is a (fractional) principal ideal. The equation 3.7.1 then takes the form
[ — y 9] = nb® b} c?,
where 1nb% 0} and ¢ are all principal ideals, i.e.
3.8.1 nb® =[], b=1[l, c=[e]
We are thus again led to an equation in numbers of K{%), similar to 3.6.2:
3.8.2 x—yd=¢ yra®;7=0,1,2;7=0,1,2,... k—1; y,=1,

where ¢ contains in its denominator only factors of b and the bj’s.
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In the most frequent case im = 3 (cf. 3.5.2), these arguments can however
be simplified considerably. Then n must be a principal ideal, and we can choose
b={[1]. Let the classes be I', I'* and I® = I, and let b, €T, bi = [y]. As the
representatives b; we can then choose

0 =[1]€er b,err and bler:
The equation 3.8.2 consequently takes the form
3.8.3 x—yd=2¢ yve®, ¢and j=o,1,z2,

where [y] is the cube of any ideal which is not a principal ideal. And the equation
can be treated for any modulus prime to y.

In most cases we can even find y as a rational integer, eg. if m=+1
(mod 9) and p, is not a principal ideal:

P =[3]1 =1

Another case is when for instance m = qr, where ¢(N)r. Then b, is not a
principal ideal, and we can choose

v = [a] = )
But there are also other possibilities for rational y, as seen from the example
2 — 309 = 1925

Here hy, = 3, and of the three conjugate ideal divisors of 19, only one belongs to
the principal class, namely

Pio = [19, % + 3] = [19 — 38 — &7].
Since neither p, nor p; are principal ideals in K (V30), we can take y =2 or §.
With y = 2 the equation 3.8.3 becomes
3.8.4 x—yd=28,2(10 -39 —9)e?, 7and j=o0,1, 2,

which can be treated to any modulus prime to 2, and the three values of j need
not be considered separately.

A similar simplification for the y's can also be obtained when 3 |hm, hn> 3,
and the group of ideal-classes is cyclic. As an example, we can consider

3.8.5 x®—399Y° = 442°,
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where hy, = 6; let the classes be I'*, k=0, 1,2,...5. Here p,€I (with an ap-
propriate choice of I'), p,, €I, and so 1 = p3p,; €I® As the b of 3.7.1 we can
choose b = p,€I'® and as the b/s of 3.8.1: [1], p,€I* and pie€ I'’. The resulting
equation is

3.8.6 x—yd=2¢,3(22+ 33+ 3e?, 7 and j=o,1, 2,

since N(22 + 3% + 9°) = 5°-44 = N(nb®). This equation can be treated for any
modulus prime to 3 and p;, and the three values of j need not be considered
separately.

§ 9. In the last paragraph, we have seen how different equations 3.8.3 can
be treated as one by means of rational p's. There is still another important
case where a similar reduction in the number of equations is possible, namely
when

I

3.0.1 m=t1,n=%11 or *+ 2 (mod g)

For the same p, we then have to treat both possibilities 3.4.1 and 3.4.3. But
the former can be written as

[z —y 9] = [9] - palar™?),

since [3] =t*8. The rational factor 9 and the denominator r in the cube do
not influence an argument to a modulus prime to 3, in which case the two equa-
tions can be treated simultaneously in the simplest form 3.4.3.

A simple example of 3.9.1 is

3.9.2 x® — 10y® = 47 2%,
with the corresponding equation 3.4.3 in K (V10):
3.9:3 [2—y9] =pua’, or w—yd=¢l,(3+ 3+ ),

since h,, = 1. — If this can be excluded to a modulus prime to 3, the same also
holds for the more complicated equation corresponding to the other possibility
3.4.1:

3.9.4 [x —y9] =18p,a% or x—yd=¢,(9g—49 + I’

But the same argument can be used when

]

3.9:5 m=+1, n==% 4 (mod 9),
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in which case 3.4.1 is the only possibility. With the same limitation for the
modulus, we can treat this case in the simpler form 3.4.3. — This remark is
equally useful in numerical calculations, since 3.9.5 occurs frequently in excluded
equations.

CHAPTER IV. The Resulting Cubic Equation.

§ 7. We have seen in the last chapter that the equation
4.1.1 22— my® =nz®
leads to a finite number of equations
4.1.2 x—yd=pd
in the field K (i/E) = K($); here
4.1.3 N(u)=n or 3% n, z= N(a) or 3 -Na),

where the last alternative occurs only in the cases 3.4.1. If we put

+ 19+ g3t

ﬂ=e+f19'+gt9’2 or g"—'f‘?—y—“a
s V 2

c=u+vd+wI or %“"_@%jg_@ﬂi

and equate the coefficient of 9* in 4.1.2 to zero, we get for every combination

of u and e:
Fu,v,w) = g+ me® + m*w® + 6 muvw)
4.1.4 + 3f (v + muw? + mo?w)
+ 3e(w’w + uv® + mow?) = o,
where
4.1.5 Ne+fO+g9)=e+mf*+mg*—3mefg=n

or 3*n in some cases when m =+ 1 (mod g¢) (but never 3% since u has no
denominator 3 in the cases 3.4.1). — ‘‘Auxiliary cubes” in u give corresponding
cubed factors in 4.1.5, but it is clear that a solution (u, v, w) # (0, 0, 0) of 4.1.4
will under all circumstances lead to a solution of 4.1.2 and consequently of the given
equation 4.1.1.
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The coefficients ¢ and w are integers only if m is squarefree. If m = m, mj,

we obtain integer coefficients in the expressions

e+ fHH+g9 and wt+vd+wd
(¢f. 3.1.2—3), and the modified equation 4.1.4 for the coefficient of ¢, then
takes the form

F(u, v, w) = g(u® + mymio® + ndmyw® + 6m, myuvw)
4.1.6 + 3mg flulv + muw® + mymy v?w)
+ 3e(wPw + myur® + mymyvw®) = o

(ef. 5.1.3—4), where now

4.1.7 Nie+fF + gFs) =€+ mmi f2+ mimyg® — 3mymeefyg=n,

possibly with the same cubed factors. We shall however use the notation » for
the norms in 4.1.5 or 4.1.7 in any case, to simplify the formulae.

§ 2. We have seen that solubility of 4.1.4 implies solubility of 4.1.1, and
x, ¥y and z are obviously expressed as rational cubic forms in u, v and w. But we
can prove that in this case u, v and w can also be expressed rationally by x, y and z.
Since the curves 4.1.4 and (thereby) 4.1.1 are supposed to have rational points,
they can both be transformed birationally with rational coefficients into a
Weterstrass normal form, and it suffices to show that these forms for the two
curves coincide.

The normal form for 4.1.1 is by 1.2.2
4.2.1 n? = 48— 27m®n®

The snvariants of 4.1.4 (¢f. Nacrrn [2], § 1, with references) are

27 g 27 p___3
4.2.2 Gs 48 0, §s 64T s me 0o

We have the “equianharmonic”’ case, and can remove rational 6th powers from
gs. As the normal form of 4.1.4 we can therefore use

7% =48 + m*n.

But it is well known (ef. 1.2.5) that this can be transformed birationally with
rational coefficients into 4.2.1, q.e.d.



The Diophantine Equation ax® + by® + ¢2® = 0. 235

I have carried through the direct calculation of the invariants S and 7'
from the coefficients of F'(u, v, w). This becomes very tedious, and can be
facilitated by the following linear transformation (with irrational coefficients,
but this does not influence the invariants):

The Hessian of 4.1.4 is »
10F 1 9°F 1 O*F
6 du® 6 0udr 6 dudw

=— (@ +mfP+m*g®—3mefg) (u® + mo®+

l“_— = 2,8 \

6 0vdu 6 0v: 6 dvdw + m*w® — 3muvw)
1 *F 1 0'F 1 0%F =—n -N{u+vd+wd)
6%5@? 6%00 60202

The ¢nflexions of the curve F = o are determined by H = o, and are con-
277
sequently not rational. They lie on the three irrational lines (g =e3 ):
u+vd+wd =0 utved+we®I =0, ut+ve*d+wed =o,

which we choose as new axis by the transformation

[U=u+v&+w32 R S
4.2.3 Ve=u+ved+woed , D=|1 o8 o9 =—3mV—370
]W=u+v923+wg{}2 1 ¢*9 09°

If we denote by one or two dashes the replacement of & by ¢ or ¢*J
respectively, we have V = U’, W = U”. — We shall also nse the notation

{E=e+f0+g32, E =e+ fod + go* ¥,
4.2.4

E'=e¢+ fo®d + go I

Apart from a possible denominator 3, U and E are nothing but « and u of § 1.
The construction of F = F(u, v, w) of 4.1.4 as the coefficient of 3* shows that

we have

EUP=G+HY+FI® EVP=G+ Hod+ Fo*9®, E'W3=G + Hp* 9+ FoI?.
Elimination. of G and H gives

4.2.5 IJ — Iv(u’ v, %’) — ;;E(EU.’S + QE’ -VS + QZEII WS) =
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= AU* + BV®+ CW? (say). The invariants of this form (NaerLr, loc. cit.) are

’ ' n®
S=O7T=A2B202=367i’
since
4.2.6 EEE’"=N(e+ f9+g9*) =n

The invariants of the origiral form F'(u, v, w) are consequently by 4.2.3:
S=D*S =0, T=DT =—33m?n?,

which are the values given in 4.2.2. — We note that a cubed factor for » in
4.1.5 does mot disturb the above argument, since it only leads to an extra

rational 6th power in the expression for g,.

§ 3. I call 4.1.4 (or the modified form 4.1.6) the ‘‘resulting cubic equation” in
uw, v and w. This equation can often be excluded by congruence considerations,
even if the original equation 4.1.1 is possible for all moduli. A closer study of
guch exclusions is the object of this and the next two chapters.

First we can show that 4.1.6 is always possible mod p° for all 3, when p # 3
is a prime divisor of m (and the given equation 4.1.1 is not of the type 1.1.4).
— We consider the congruence mod p:

4.3.1 F,(u, v, w) = o0 (mod p),

and form the three derivatives

01f
;ZFFJI= e(mgt® + 2uw) +  myf(mw® + 2uv) +  g(u®+ 2m, myvw)
10F ’ " »
4.3.2 3" 0,01 = m;myg ) + mg e ) + ms S )
10F, . " "
55;01=mlmzf( )+ mymyg )+ e ).

The only condition for w, » and w is p+u, since p|u &m implies p|z =
= N(u+ v3 + wI?). — We must consider several cases:

1. p{m, p{n, hence pte. With v=0 (mod p), the congruence 4.3.1 takes
the form

4.3.3 u?(gu + 3ew)=o0 (mod p),
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which is always soluble with « == o (whether g = 0 or not). Since %% = 3eu?==0,

we ean come from a solution mod p to a solution mod p’ for any d > 1 by
varying w only.
2. p|lmy, p4n, hence pte, and 4.3.1 takes the form 4.3.3 in any case, i.e.

the same argument can be used.

3. plmy, p|n; hence pdmy, plln, vle, p+f, and 4.3.1 takes the form

434 u*(gu + 3myfv) =o0 (mod p),

Al

7]
which is soluble with « £ o, 01;' = 3m, fu?=o.

4. p|my, p|n, hence p®||n, ple, plg, p4f. Al coefficients of F,(u, v, w)in
4.1.6 are divisible by p. If we remove this factor beforehand and put w=o0
(mod p), the congruence takes a form similar to 4.3.4:

4.3:5 u*(g,u + 3myfv) =0 (mod p)

(where g = pg,, mg = pma, p4mi), and the same argument applies. — This con-
cludes the proof.

It is clear that solubility mod 37 must be treated separately, whether or
not 3|m. This will be dealt with in Ch. V, where I give necessary and sufficient
conditions for solubility mod 3¢ in all cases that can arise.

For any prime p such that p 4 3m, let us examine under which conditions
all three derivatives in 4.3.2 can be =o0 (mod p) simultaneously. There are two
possibilities:

1. myv® =— 20w, mw®=—2uv, u* =— 2m my vw, or multiplying together:

my my u® 0¥ w® =— 8m myu®v?w? hence wvw =o.
But one of the variables #, v or w = o implies all three = o, which is excluded
a priort.
2. D=0 (mod p), where
e my f )

D={mmyg mye mof | = mg(e® + mymif2 + mimgg® — 3m meefg) = myn

mymgf mimeg e
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(cf. 4.1.7). We can therefore expect congruence conditions for all primes p such
that

4.3.6 pln, pt3m.
These conditions — necessary and sufficient for solubility mod p? — are developed
in Ch. VL

§ 4. The difficulty is again all other primes p, such that p4 3mn. The
results of the last paragraph show that it suffices to consider the congruences
mod p. Since (p, m)= 1, it will also suffice to use the simpler form F(u, v, w)
of 4.1.4 (the last remark holds for the primes 4.3.6 as well). We thus have to
study the congruence

4.4.1 £1(%, v, ”") =0 (mOd p)a 1"{'3 mn.

In this case I'(u, v, w) is absolutely irreductble mod p. and we can apply the
results mentioned at the end of Ch. II. Mordell's result 2.4.5 implies that 4.4.1
is soluble for all sufficiently large primes p. If the constant of the O-symbol
was the same as in Hasse's formula 2.4.7, we would be able to conclude about
solubility immediately, since

Nzp—2Vp>o0 forp=s.

And the solubility for p = 2 is easily verified, since e + /9 + g3* =1, 4 or 4*
(mod 2) when m and = are both odd.

But we can prove the solubility of 4.4.1 independently of such considera-
tions. We begin with the case when m is a cubic residue of p, i.e. for all
p=g=—1 (mod 3) and for those p =7 =+ 1 (mod 3) such that m(R)r. We
can then find (at least) one rational integer d such that

4.4.2 d* =m (mod p),

i.e. the prime p factorizes in K (l}_r;z) = K(9).

We first note that it suffices to find a solution of 4.4.1 tn K (p), since a chord
through this point and the conjugate solution (with respect to K(g) will cut
the curve F'=o0 in a third rational point mod p. If p = » = m, 7, (the factoriza-
tion in K(g), it will also suffice to treat the coprime moduli 7, and 7. separately.
We denote any prime 7., 7w or ¢ in K(g) by .

Because of the analogy between 4.4.2 and 9° = m, the equations 4.2.3—5
show that the substitution mod 7:



The Diophantine Equation ax® + by® + cz*® = 0. 239

U=u+vd+ wd? 1 d d?
4.4.3 V=u+voed+we'd, D=|1 od ¢*d'|=—3mV—3=0,
W=uwu+veld +weod 1 0%d od?

after multiplication with 3d®= o will transform F(u, v, w) =0 (mod =) into

444 e+ fd+gd U +ole+ fod+ go®d)V: +
+ o%(e + fo*d + god®) Wi =0 (mod =).

The product of the coefficients is = n 0 (mod n) by 4.2.6. The argument of
Marshall Hall (Ch. II, § 2, in particular the final remarks) then shows that this
congruence is always soluble for U, V and W in K(g), which again leads to a
solution for u, v and w by 4.4.3, since D=0 (mod =)

The resulting cubic equation F{(u, v, w) = 0 in the form 4.2.5:

4.4.5 Flu, v, w) = 158 EU*+oE' V:+ o*E" W% = o,

is really an equation in the field K(f/;{, 0) = K (9, ¢). This will be the field in
which we have to work if the given equation z® —my® = nz® is to be solved
in K(g), ef. Ch. I, § 3. The coefficients are then also supposed to be integers
of K(g).

I have found it convenient to define this field in a slightly different way,
as a field Q(3) over K (o) as the basic field of rationality. Since K (o) is Euclidean,
all usunal results about algebraic number-fields still apply, if we make an appro-
priate use of norm symbols from K (g} in all formulae relating to the norm of
an ideal (cf. 4.4.7).

The primes & of the basic field K (¢) are the ¢, =, and =, mentioned above,
and also A = 1 — ¢ (where 4* = — 39). The factorization of these primes in 2(9)
is' similar to that given in 3.1.4. There is complete analogy for the primes
dividing m; all other primes = 4 such that =4 m will behave like the »’s of
3.1.4, but d’ and d” can be replaced by ¢*d and od:

[=]=[n, ¢ —dl[n, 3 —0*d] (=, & — od]=[n,d — 3] [x, d—0 3] [, d—¢* 3] =

4.4.6 m

= Py Pn by, if [;] =1, d®=m (mod =)

(where I use the notation of Ch. IX, § 1 for cubic residuacity). The norm of a
first degree prime ideal p., i.e. the number of residue-classes mod p,, must be
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defined as the ordinary norm in K(g) of the basic prime =:
447 N (ps) = Ny (),

i.e. the number of different residue-classes mod = in K (o).

The factorization of the prime A = 1 — ¢ if A4 m is much more complicated,
and shall not be treated here. I can only mention that there are four different
possibilities of factorization, corresponding to d = 1, 2, 3 or = 4 in the expression
|[m—1 (if we suppose that m =+ 1 {mod 1), if necessary after a change of
sign for m). There is also a close connection between the value of J and the
form of a basis for 2(3).

The proof for solubility of 4.4.4 is really a proof in the field 2(9), making
use of the fact that [=] factorizes. If however

4.4.8 zdAmn, [—Zz] # 1,

a similar gimplification is not possible. We then have to use the full expression
for F(u, v, w) in 4.4.5. Treating this as a congruence mod =, and using Marshall
Hall's argument again, we conclude as above that the congruence mod 7 has a
solution for u, v and w in 2(9). But I cannot see how to come from this solu-
tion to a solution in K (o).

Returning to rational primes, this means that the congruence 4.4.1 in the
case m(N)p = » must be proved soluble by other methods. I shall give a proof
which is also valid in 2(9) for the primes 7 of 4.4.8, if the r of 4.4.10 is re-
placed by N,(n) in accordance with 4.4.7. With the necessary modifications, the
method can in fact also be used for the primes 4 Amn which factorize in Q(3),
leading again to the substitution 4.4.3.

~ We note that it is equivalent to solve the congruence corresponding to 4.1.2:

4-4.9 z—yd=pd® (mod [r]),

i.e. to show that we can find an integer ¢ of K(J) such that the coefficient of
J* in uc® vanishes mod ». Since m(N)r, the natural prime » remains a prime
in K(9) by 3.1.4. The residues mod [r] and prime to [r] are given by

4410 a=u+vI+wd u, vand w=o0,1,2,...r—1, (v, w) (0,0, 0),

in number 7* — 1 =0 (mod 3). The arguments used in connection with 2.2.7
show that we can divide the integers « in three classes, one of cubic residues
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and two of nonresidues mod [r]. There is a one-one correspondence with the
division of the rational norms N () in classes mod ». First

a; ~ ¢y (mod [r]) > a; = & e; (mod [r]) > N(e,) = N(§)’ N(es) ~ N(as) (mod #)

(with the symbol of equivalence introduced in 2.1.7). Next N(«)(R)r — «(R)[r]
(cubic residuacity in K (1) and K(9) respectively), since a(N)[r] would imply
& ~a' (mod [r]), 2=o0, 1 or 2, and hence N(3) = m(R)r. Finally, as a simple
consequence, N(e,) ~ N{a,) (mod ) —> e, ~ a, (mod [r]).

We notice in particular that a congruence uo®=v, uvs20 (mod [r]) is
soluble if and only if u~» (mod [7]).

The given equation z® —my® = n2z® has at least ome solution (z,, ¥, 2,)
considered as congruence mod »:

4.4.11 2B —myl=nz}~n (mod 7)

(z,=o0 is excluded by m(N)r). But 2} —my} = N(x, —y,9) and = = N{u) (pos-
sibly with cubed factors), and the equivalence 4.4.11 implies that

z, — 49~ p (mod [7]).

Hence 4.4.9 is soluble with z =2z, y = y,. v

This concludes the proof for solubility of the congruence 4.4.1. As a con-
sequence, we can say that the conditions developed in the mext two chapters will
be the mnecessary and sufficient conditions for solubility of the congruence (to any
modulus) corresponding to the resulting cubic equation.

CHAPTER V. Conditions mod 3°.

§ 7. A direct study of the congruence conditions for the equation 4.1.4
becomes very complicated. It is much simpler to consider the corresponding
equation 4.1.2:

5.1.1 x—yd=pd

and examine the form of «® This method has led me to a study of the cubic
residues in the purely cubic field K(3). (The principle has already been used for
proving 4.4.9.)

In this chapter we shall deal with the conditions mod 3% and start with

the case
16 - 642127 Acta mathematica. 85
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5.1.2 m==+ 1 (mod 9), ie. [3] =13 (ps &) =1,

since 342, If we take the general case 3.1.2—3, the equation 5.I.1 can be

written as
5.1.3 x—yd =(e+fI+ g (u+vI + wdy)
where & = &,. — We first apply an argument due to Horzer [1]: The expression

=+ vd +wd)=u*+mmiv’®+mimyw®+ 6mmyuvw
.
514 + 3@y + myuwd + momyvtw)d, + 3w + myur? + mymyvw®) 3,

together with (p,, @) = I, shows that
5.1.5 & =u+vd +wd)P==%1 (mod 3).

Since the product of and ratio between two numbers =+ 1 (mod 3) in K(J)is
always of the same form, we conclude that 5.1.3 is only possible mod 3 if

5.1.6 g = o (mod 3).

It is also clear that the use of an “auxiliary cube’ prime to 3 leaves this condi-
tion unaltered.

Holzer only uses 5.1.6 for the special equation 2® — my® = 2*; an (improved)
account of his results is given in Ch. VII, § s.

For our purpose, we must examine the residues mod 3 of g in the three
different equations 3.6.2:

5.1.7 x—ydH =¢&re®=pa®, i=o0,1,02.
The simplest possibility is the case
5.1.8 ém=1 (mod 3)
(em =— 1 is excluded by N(s») = + 1). This gives the important

Theorem II. The threc equations 5.1.7 are all impossible if m =+ 1 (mod 9),
em =1 (mod 3) and the coefficient g of 9, in v is =0 (mod 3). — I, can be
replaced by 9% whenever m = 0 (mod 9).

The condition 35.1.8 is satisfied for the following cubefree values of m = 50
and =+ 1 (mod ¢) (cf. 6.10.4):

5'1‘9 m = 67 12’ 15’ 187 307 33a 34, 36: 427 45
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(of which only m = 30, 34 and 42 have a class-number h,, divisible by 3). Nearly
all excluded equations (crosses in Table 22) for the values 5.1.9 — and not
already excluded by class-number considerations — have been proved insoluble
by Theorem II. In particular, the equations 3.6.4 and 3.8.4 are both impossible
mod 3, illustrating the cases with 34 hy, and 3|hs respectively. The auxiliary
cube 3 of 3.6.4 and the [y] = [2] = b3 of 3.8.4 are both prime to the modulus 3.

§ 2. If 5.1.8 is not satisfied,
§5.2.1 em #Z= 1 (mod 3),

we can show that fhe condition 5.1.6 is always satisfied for at least one value of
¢ in 5.1.7, and usually for 0?10 value only. In order to get a systematic treatment
of the possible cases that arise, 1 have constructed the Table 7. This shows
the residues mod 9 of the norm

5.2.2 N(@)=Nu+vd +wd) =u®+mo®+ m2ud— 3muvw

when « runs through a complete system of residues mod 3 (or rather half such
a system, since it is unnecessary to consider a change of sign for ). It is clear
that N(e)) = N(a,) (mod g} when ¢, = e, (mod 3). The values m =1, 2, 3 and 4
(mod 9) must be considered separately; from these we come to m=—1, — 2,
— 3 and — 4 only by changing the sign of ¢. A squared factor in m, m = m, m3,
does not influence the argument if my, = 0 (mod 3). If m = 9gm,, 34 m,, we can

avoid the difficulties which arise by operating in the field K(];;;f), cf. § 3
below.

When in the equation x®— my® = nz® the numbers m and = are given
mod g, Table 12 shows the possible forms mod 3 of » and & in 5.1.7, since we
know the norms N () = » and N(en) = 1. An “auxiliary cube” does not influence
this argument, because of 5.1.5. (We can operate mod 3 only if the auxiliary
cube is prime to 3.)

We must combine all m =+ 1 (mod ¢) with all n such that x® — my® = nz®
is possible mod g, cf. the conditions 2.1.10. This becomes a tedious enumera-
tion of cases, and I shall only give a typical example:

m=4, n== 3 (mod 9): The congruence z*— 43° =+ 32% (mod 9) shows

that we must have x =y 2 0 (mod 3), i.e.

z—yd==(—1+ 9) (nod 3).
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Table 1° gives the following possible residues for » and &n:

tryv=—1+3 1—8% or — 3+ 3*
9 (mOd 3)‘
em=1 —1—3% or 1+ 9—9*
Finally 5.1.7 gives the congruence
—1+3=+¢ v (mod 3).
If en=1 (mod 3), the only possible residue of v is & » =— 1 +'¢; this is

nothing but Th. II. If &n, =1 (mod 3), we note that
(—1—9=1+9—-39 (1 +9— I3’ =—1— 9% (mod 3),

so that the three possible residues of em will represent €y = 1, &n and & in some
order, and this holds for all combinations of m and » when &, = 1 {mod 3). —
We form a table of multiplication for the residues of &mn-7 mod 3:

iv\\smé 1 —1—9* I+«9—~3‘2;
—14+9 | —1+3|—3+ I 1—3:‘i
f—9 | =9 | —140 — 9+ 9
P T I

Since N(em?) = N(») = », the products must have the same residues as »
iteelf. But the table also shows that the only values of 5 = & which satisfy
the condition 5.1.6 are

Iiv*:*—r-k# =1
5.2.3 Ftr=1-—9° ip=—1—29*% (mod 3).
livz?—'ﬂ-}-&? =1+ 9—9

This is expressed in condensed form in Table 7%, where the entries under
m=4, n=3 (mod g) show the possible residues mod 3 of » and &». and the
crosses give the possible combinations. The crosses for 5= 1 show the residues
mod 3 of x —y+d (without the double sign).

The rest of Table 1® is constructed similarly; there is usually one and only
one possible 5 for given ». But in the cases

8.2.4 m=2 n=t1, and m=4, n==1 4 (mod 9)
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(we are not yet concerned with m = 1) there are two possible values of 7, i.e.
only one value of 7 in 5.1.7 can be excluded for each » if e, = 1 (mod 3). The
reason for this, e.g. in the first case 5.2.4, is that the congruence »*® — z¢y3= + 2°
(mod o) leaves the two possibilitiesy=oorr=y=0(mod 3),ie.x —yd==+1
or +(—1+ %) (mod 3).

In all occurring cases, the combinations 5.2.4 have been excluded either by
class-number considerations or by the methods of the next chapter. — As
examples of equations where .only one value of ¢ in 5.1.7 is possible mod 3, I
can mention:

1. 2 —5y*=122% m=—4, n=3 (mod 9), where we can use 5.2.3 with
a change of sign for &. The class-number hy; = 1, and the corresponding equa-
tion in K (;/E) = K (%) becomes
5.2.5. z—yd=c{—2+39—99a® & =1—49 + 29*, where

r=1—8% g=1—9— 9, d=—1—9* (mod 3).
Consequently 5.2.3 shows that we must use ¢ = 2, or

5.2.6 x—yd=(398—3619 + 759 e’ ’
We could also have used ¢ = — 1 tnstead of 2z = 2. Since ¢! = 41 + 249 +
+ 14 9% we now get the much simpler equation
5.2.7 r—yd=(8+59+ 39
2. 2* —3y*=222% m=3, n=4 (mod 9). The class-number Az = 1, and
we find
5.2.8 c—yd=2¢e(7+ 3 —49Yc & =—2 + 9% where
y=14+3—9, =149 d=1—23 (mod 3).
Table 1® shows that we must use 7 = 1, or
5.2.9 rx—yd=(—11—149 + 15 3>

§ 3. Table 1® does not contain m =0 (mod g}, m = 9gm, (with 34 m,, since
m is  cubefree), in which case we must have =0 or * 1 (mod 9) by 2.1.10.
A special treatment of this possibility can be avoided if we multiply the equa-
tion a® — gm, y® = nz® by 3m:

5.3.1 (3m9)° — 3mix® = —3mine?,

s 5 __
and work in the field K(V3 mi) =K (9 (identical with K(Vm)). There are two
cases to consider:
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1. n=0 (mod 9), »=9n, 34n,. Then we must have 3|z, x = 3, and

a factor 3* can be removed in §5.3.1:
3 2,3 2 3
5.3.2 (myy)® — 3mial = —min, 2%

which comes under one of the cases in Table 1* with m = 3 (mod 9); we get
the ordinary conditions mod 3. If we had worked with the given equation in

the original form z®-— my® = n¢®, and the corresponding

5.3.3 x—yd =pad’,
it turns out that we have to treat this mod 9 to compensate for the removal
of 3% in 5.3.1; this will be shown in § 3.

2. n=21 (mod 9). In this case the equation 5.3.3 can never be excluded
mod 3, since the coefficient of 9, in u is always = o (mod 3). To show this, we
use the notation 3.1.3:

3 s
5.3.4 9,=Vom, 9, =V3m

A squared factor = o (mod 3) in m, does not influence the argument. For the
same reason, we can replace &, and 4, by & and 9® respectively and find the
possible residues mod 3 of u from Table 1°, with m =3, n =+ 1 (mod 9):

tu=1 1+9% or 1 —I* (mod 3)

And neither of these contains & = <.
The transformed equation 5.3.1 shows that there is a close connection be-
tween the last case and the case

5.3.5 m==3 n=13 (mod g,

where m =+ » (mod 27), cf. 2.1.10. As above, the equation 5.3.3 can never be
excluded mod 3 in this case.
Table 1* gives the a prior: possible residues of » (if m =+ 3 (mod 9)):

+Tyv=93 F+ 3 or $— 9% (mod 3),

and we have to show that the last two cases do not occur under the condition
m =+ n (mod 27). Since 3|m, the norm 5.2.2 has a unique value mod 27 if 3|u:

n=Np=tNI+IH)=+tmtmd)=tm(itml=+2m or 4m (mod 27},
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a contradiction. — The case 5.3.5 is therefore not ¢ncluded in Table 1°. On the
other hand, the table also contains m = 1 (mod 9), for use in §§ 7 and 10.

§ 4 If m=20 (mod 3), we can sometimes obtain further conditions when
operating mod 9. Let us suppose m =+ 1 (mod 3); the case m =— 1 will only
imply a change of sign for . Since 34 m, a squared factor in m does not in-
fluence the argument.

In order to construct a complete system of cubic residues mod 9 and prime
to 3, we have to form ¢® = (4 + v + wI9®)®, where o runs through a complete
system of residues mod 3 and prime to p; = [3, % — 1]. Apart from a change

of sign, such a system for « is given by nine residues, contained in three classes:

5.4.1 I , , 92
5.4.2 1+ 9 , &+ 92 , 1+
5.4.3 I+3—9, —1+3+9 1—9+ 9%

In each class, the different elements can be transformed into each other by
multiplication with % or 9° and the reduction $% = m =1 (mod 3). But from
9* = m it also follows that the influence on the resulting cubic residues of such
a multiplication is only a rational factor prime to 3. All elements of one class
give the same effective cubic residue mod 9, if we define two residues to be effec-
tively equivalent if they differ only by a rational factor prime to the modulus.

There are consequently only three effective cubic residues mod 9 when m =1
(mod 3), and it is easily seen that these are the same for the three alternatives
mod 9 for m:

5.4.4 kat=1,1—393—39% or 1 + 33+ 39* (mod g),

corresponding to the classes §.4.1—3 respectively. Here (k, 3) = 1, ¥ a rational
integer.

Let now the condition 5.1.6, g=o0 {mod 3), be satisfied for an equation
x—yd=npcd® ie p=e+ f9 (mod 3). The possible forms for u (apart from
the sign) for the different combinations of m and » are given by the crosses in
the line for n =1 in Table 1*. Mod 9 we may have

u=e+3e +(f+3£)9+ 39,9 (mod 9),

where e, f; and ¢, have some unspecified values. Multiplication with the three
possible residues 5.4.4 for ke® gives the coefficient mod g for 9% in ua®:
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30, 30, —3le+/f) 39 +3(+/f)
5.4.5 2 s P2 or P

A necessary condition for solubility is that the coefficient can be made = o
(mod 9), and this is always the case for one and only one of the expressions
5.4.5 if e + f= 0 (mod 3). — This remark is useful in the numerical solution of an
equation 4.1.4, since it shows to which one of the classes 5.4.1—3 the residue
of a possible solution # + v.¢ + w 3% must belong.

If however
5.4.6 e+ f=o0 (mod 3),
all expressions 5.4.5 are Eé% (mod ¢), and we get the necessary condition

3¢9, =0 (mod 9), where 3¢, is the coefficient of $* in u. Now 5.4.6 (which
takes the form ¢ —f=o0 (mod 3) if m =— 1 (mod 3)) is satisfied for the following
combinations in Table 1® with 34m, m=+ 1 (mod 9):

5.4.7 m==+2 or +4, n==1 3 (mod 9g),
and we can enunciate the following
Theorem III. If m and n are given by one of the combinations 5.4.7, and
x—yd=(e+fI+gde®=pdd
then g = o (mod 9).

(Remark. The use of an “auxiliary cube’ prime to 3 does not influence
Th. [II. If a possible denominator o of e® is removed, the resulting left hand
side (x — y 9) o} will still have a coefficient =o0 (mod 9) for 9% since the condi-
tion 5.4.6 is satisfied for x —y 9 =+ (e + fI) (mod 3).)

Theorem IIT shows a close analogy with the results of Ch. VI, where we

3 .
get solubility-conditions in K(Vm) for each prime p # 3 such that
5.4.8 pln, ptm,

When p = 3, we always get the condition g =0 (mod 3), but additional condi-
tions only when 5.4.8 is satisfied.

By means of Th. III, I have excluded many equations, among them 5.2.6
{(or the equivalent 5.2.7), since here 5.4.7 is satisfied. But this is nof the case
for the equation 5.2.9, even if 9 =0 (mod g).
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Th. TII can sometimes be used for exclusion when all conditions 5.1.6, 5.1.8
and 5.4.7 are satisfied, so that all three equations 5.1.7 are possible mod 3. 1f we put

5.4.9 tm=3A+1+3B%+ 3092

and form p = &, v = ¢ (e + f9 + g9°), where g =o0 (mod 3), it is easily seen that
the coefficient of 9® in u is =g (mod 9) for ¢ =0, 1 and 2 when the unit
5.4.9 satisfies the condition (corresponding signs):

5.4.10 3B=+3C (mod 9) if m=+ 1 (mod 3),

in which case all three values of © are excluded if g = o (mod 9); one and only
one value of 7 is possible mod 9 if 5.4.10 is not satisfied. — The case g=o0
(mod 3) is' of course covered by Th. IL. The combination for m and » must
be one from 5.4.7; the only such m <350 is m = 34 (cf. 5.1.0), and & =
= 613 — 24 % — 519 satisfies the condition 5.4.10, — 24 =— 51 (mod 9).

A comparison with 5.4.4 shows that §.4.10 is nothing but the necessary and
sufficient condition for em to be an effective cubic residue mod 9 (cf. Ch. VI, § 10).

§ 5. When 3|m, the argument that led to 5.4.4 does not hold. It is in
fact easy to verify that the effective cubic residues mod 9 and prime to 3 are
given by
5.5.1 I, 133, 1133, 1333

(where %, and &, can be replaced by 9 and 9* whenever m =0 {mod g)), i.e.
all possible effective residues mod 9, which are at the same time =1 (mod 3).
This shows that we cannot expect to obtain more mod g than mod 3 in this case.
— The same argument, but with much more calculations involved, shows that
we cannot obtain more mod 27 than mod 9 when 34 m. If we calculate a com-
plete system of effective cubic residues mod 27, we find that it can be deduced
from that mod 9 (i.e. 5.4.4, if we suppose m =+ 1 (mod 3)) by varying it in all
possible ways with + 9, X 94, * 99* or combinations of these.

There is, however, one case where 3|{m and where we can yet operate mod 9,
namely when m=n=o0 (mod g). With the notation 5.3.3—4, we get u =
=e+f +gI9==13 (mod 3),since 9l|n = N(u)=e®+9gm,f*+3mig*—gm efg.

If now
p=3e+(3AHT1NI+ 30,9

is multiplied by the cubic residues 5.5.1, the resulting coefficient of &, is always
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=39, (mod 9) (since 9= 3%, and %, & = 3m,;). Consequently Theorem III
holds also whern m =n =0 (mod 9), if $* is replaced by 9;. But as already re-
marked in § 3, this case can also be treated in the form 5.3.2.

§ 6. We can now show that the necessary conditions given by 5.1.6, Theorem
III and the concluding remark of the last paragraph are also sufficient in the case
m==+ 1 (mod 9) for solubility of the congruence

5.6.1 Fi(u, v, w)=o (mod 37)

for all’d; F, is the function of 4.1.6. The coefficients of F, are all divisible by
3 when the condition g =0 (mod 3) is satisfied; we remove this common factor,
and put g = 3g9,. It will then suffice to find a solution of the congruence

5.6.2 ;Fl (u, v, w) =0 (mod 3),
. 10F, 10F, 10F
such that at least one of the expressions 4.3.2 for 3 on’ 3 B and3 B

is = o0 (mod 3).

The sufficiency in the cases when 3|m is now proved in exactly the same
way as in Ch. IV, § 3, if we replace p by 3, ¢ by 3¢, and divide the left hand
side of the congruences 4.3.3—s5 by 3 beforehand. In the last case we have

3|9, by the final remark of the last paragraph; the factor g in 5.6.2 must then

be replaced by —; .

We then turn to the case 34 m. The condition of Th. III, 9|g, is then
always sufficient for solubility of 5.6.2. We can take #=0, v=w =0, and at
, TOF ot or LOF 1 e — ains -
least-one of 3o = ms fu® or 30w eu® is then = 0 (mod 3). It remains

to show that the condition 3||g is sufficient in the cases where 5.4.6 is not

1

satisfied, i.e. e + f 0 (mod 3) if we suppose m =+ 1 (mod 3). Since m is prime
to 3, we can replace F,(u, v, w) in 5.6.1—2 by the simpler form F'(u, v, w) of
4.1.4, i.e. my = m, My = 1 in 4.3.2. A solution of the congruence 5.6.2 can then
always be found by comparing 5.4.5 with the possible residues 5.4.1—3 for
a=u+vd+ wIt ’

The case 39, =0 (mod g) has already been treated. If 39, —3(e +f)=o0
(mod g), we must choose ¢ from 54.2, eg. u=v=1, w=0 (mod 3),
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;—g—gzeﬁ-f?—éo (mod 3). — If 39, + 3(e + f)=o0 (mod g), we must choose «
from 5.4.3, eg. u=v=1, w=—1, ;ZZ@I; =—(e+ f)=0 (mod 3). — This con-

cludes the proof of the necessary and sufficient conditions mod 3% when
m==+ 1 (mod 9).

§ 7. We now turn to the case
5.7.1 m=+ 1 (mod g).

We will suppose this sign + throughout, since we can always obtain the corre-
sponding formulae for m =-—1 by only changing the sign of 9. — The pre-
paratory remarks are already made in Ch. III, §§ 3—4. As before, we are led

to one or more equations

5.7.2 x—yd=pa’=¢va® =01,z

possibly with a y as in 3.8.2, if 3|hn. Auxiliary cubes may occur in » if by > 1,
cf. 3.7.1. The principles to be used are however clearly demonstrated if we sup-
pose hn = 1, to simplify the notation. We can then put (y a unit):

v=[z], 8 =[o], 70 =37;
5-7-3 { 37

¥n = the product of the first degree factors prime to 3 of [x]
(ie. Ny = n, ;-’n or én in the cases 34, 3||n or 9||n respectively). With the

class-notation of Ch. III, § 3, the equations 3.4.1—4 give the following possi-
bilities for » and « in 5.7.2:

5.7.4 =1 4 (mod 9): » =106, € class 2, ¢€ class 4, 5 or 6.
5.7.5 n=+13 (mod 9): v=1%, € " 3 e¢€ " 4.

5.7.6 n=+1 or + 2 (mod 9): The possibility under 5.7.4,

5.7.7 and also » = v, € class 5 or 6, ¢ € class § or 6.
5.7.8 n=0 (mod 9): v =101, € ' 2 ,e€ 7 4,5 or 6.

Since the integers of class 5 have no denominator 3, the cases where

« € class 3

can be treated by the same means as in §§ 1—6 of this chapter. Two possi-

bilities must be considered separately:
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1. The cases when » € class 2, i.e. 5.7.4, 5.7.6 and 5.7.8, to which we can
add the following variation of 5.7.5:

5.7.0 n=+= 3 (mod 9): » =70%y,€ class 2, ¢ € class 4, 5 or 6.

(This is of course unpractical if it is a question of complete exclusion, but can
be used effectively to semplify a search for numerical solutions. 1f we can exclude
for instance the possibilities « € class 5 and 6, but not « € class 4, we know that
9|z for a possible solution. Similar remarks can also be useful in the other
cases 5.7.4—38.)

With » also & v € class 2, but the earlier results can only be applied if ¢n
has no denominator 3, &m € class 5. But we can avord a denominator 3 in any
cuse if we replace em by nm, where

.7.10 Tm = &m if &n€ class 5; nm = em if em € class 6,

cf. 3.3.5 and the remarks to 3.6.2. — The units & (as given by Cassels) for
cubefree m = 50 and =+ 1 (mod g) are distributed as follows:

lm = 17, 26, 37, 46 : &m € class 3

m = 10, 19, 28, 35,44 : eén€ 7 6
m = 10, 19, 37, 44, 46 * 1m =1 (mod 3)

¥/

I

§.7.11 ]
10, 44, 46 : nm satisfies 5.4.10 (cf. 6.10.4).

We can now apply the condition 5.1.6, in particular Theorem II, and further
the methods of § 4, combined with Table 1* for m =1, n =0 (mod 9) (since
N(») =0 (mod 9) when » € class 2). The possible residues mod 3 of » are given
by the cross of the first line:

e+ fI+g9=+1—39) (mod 3).

Since e + f=o0 {mod 3), the condition 5.4.6 is satisfied, and hence Theorem III
holds when m =+ 1 (mod 9), u € class 2 and « € class 3.
If &n € class 6 (cf. 5.7.11), we can also reach the case

«a € class 6

by the same means, since any such « can be written as

5.7.12 o =¢gna’, o € class 5.
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Substituting this in 5.7.2 (with & replaced by 7a), we get
x—yd =1 enve® i=0,1, 2
But &n = nm, and it is eqﬁivalent to consider the equation

5.7.13 x—yd =1 emve® 7=0,1,2 o€ class s,

which can be treated by the modified Theorems IT and III.

As an application of the above principles, we can consider the example
3.9.4:
5714 x—yd =i, 10 v,e® = gl (9 — 49 + 9)a® = 7, va®, where

J+ 592 ; 0
5.7.15 &= 33,“&2;_519 € class 6, 5,0 = &0 = 181 + 849 + 399°=1 (mod 3).

The modified Th. II shows at once that « € class 5 is here impossible. Since
it is easily seen that ¢,» =9 — I* (mod 3), the equation 5.7.13 shows that «
€ class 6 is also impossible mod 3.

2. The case 5.7.7 must be considered separately. It follows from 3.3.5 that
p and « of 5.7.2 must both belong to either class 5 or class 6, since ua®€ class 5.
If en is replaced by the 7, of 5.7.10, we have the same relation between v and
o, and can consequently use the results from §§ 1—6 when » € class 5. The
case 5.7.7 can then in some cases be completely excluded mod 3 by a modified form
of Theorem II. But Theorem III does not hold, as seen from m=1,n=+ 1 or
+ 2 (mod 9) in Table 1>. None of the possible residues

e+ fIP+g9i=+1, +9 or +(1+ 3 (mod 3)

satisfy the condition 5.4.6, e + f=0 (mod 3).
The condition » € class 5 can always be satisfied if &, € class 6 (cf. 5.7.11).
If we first find a » € class 6, we can replace it by

5.7.16 v =env € class 3

before we examine if the conditions of the modified Th. II are satisfied.
As an application, we can treat the equation 3.9.3 (cf. the last example):

5.7.17 x—yd=n,vze’ =13+ P+ e ne=1 (mod 3),

where already » € class 5. We get complete exclusion mod 3.
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The necessary conditions developed in this paragraph were shown in § 6
to be sufficient for solubility of the congruence 35.6.1.

§ & We must here insert an important remark about the use of “‘auxiliary
cubes” when m==+1 (mod ¢). If we operate mod 3 or ¢, such cubes must be
prime to 3, i.e. chosen from the classes 5 or 6, and it is a question of how the
denominator 3 in class 6 will influence the arguments. (This problem does not

arise if we only use moduli prime to 3 for the exclusion.)

14

If a= Z— is fractional in the equation x —y & = pe? removal of the denom-
1

inator @, (prime to 3) gives

5.8.1 (x—y9)a} =uc

If here «; € class 6, the coefficient of 9° on the left hand side is no longer
necessarily divisible by g or even 3, since «, has a denominator 3. Bui we can

always suppose that a, € class 5, if necessary after multiplication of numerator

!

. . o . .
and denominator in « = — by some integer from class 6 (since a common factor
51

prime to 3 for both sides of 5.8.1 does not influence our arguments mod 39).
And o will then belong to the same class 4, 5 or 6 as is given for ¢ in 5.7.4—09.
If e, € class 5 (no denominator 3), the arguments that led to Th. III, and
in particular the remark to this theorem, show that the coefficient of 9% in
@—yI) e is
=0 (mod 9) in the cases §5.7.4—6 and 5.7.8—9

5.8.2 {Eo (mod 3) in the case 5.7.7.

; None of the conditions found so far for m=+ 1 (mod ¢) are therefore in-
fluenced by the use of auxiliary cubes, and we shall see that the same holds
for the conditions obtained later in this chapter (§ 10). Auxiliary cubes can be
chosen from any of the classes 5 and 6 when we operate mod 3°. — The same
remark holds for the use of y's in 3.8.2—3.

We have seen in 5.7.12 and 5.7.16 that the case « € class 6 can be completely
dealt with by the methods of the last paragraph, provided ey € class 6. If ey € class
5, we can obtain the same by an auxiliary cube from class 6. We only have to
replace an « € class 6 by e,¢/, i.e. u by uel, where a, € class 6 is some fixed
integer of K (). The number «’ will then belong to class 5, and the arguments
of § 7 apply.
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We shall see in a moment that the form of o}, i.e. of the cubic residues in
class 6, is very restricted. Instead of performing the multiplication ue} in each
separate case, it is simpler to unse the theory developed in the next paragraphs,
in particular Table 1°

(The above argument does not apply at all when « € class 4. If we sub-
stitute @ = ¢, ¢’, where e, is a fixed integer from class 4, the number ¢ may
still belong to this class.)

§ 9. We have to examine the forms of the cubic residues in the classes 4
and 6, and shall first define congruences when the numbers involved contain denom-
tnators 3: The congruence

u+vd+wd  wu + S+ w S

LI mod 3°
3 3 { 3%

is to be equivalent to

u=wu, v=uv, w=w, (mod 39+
Note that we define for instance

1+ 9+ 9=0 (mod 3),
o T+ 9+ 92 . .
even if — is an integer in K($) (from class 3) when m =+ 1 (mod 9).

Congruences are to refer to the coefficients only.

w+vd+wIt,

—— i8
3

reduced mod 1, 3 or g if the numerator is reduced mod 3, 9 or 27 respectively.

And we can prove the important

According to this definition, we say that an expression

Theorem IV. There is only one effective cubic restdue mod 9 in each of the
classes 4 and 6. There are further only three effective eubic residues mod 27 in the

elass 4; if one qof these is §(9 + 83 + 3%, the other two are given by

5.0.1 (r+27+6—2nF+tdY, —(r—27+ 6+ 279+ tI?.

W -
W | -

The form of the cubic residues can be obtained by cubing one particular
integer from each class. Putting m = gm, + 1, we find for instance for

5.9.2 Class 4: (Z‘fiﬁiﬁ)az gmi—gm—2—(3m —1)9+ (3m + 1)
3 3
4+9+ 6“‘); gmi+10—(12m —7)8 + (3m + 7) 9

3 3

5.9.3 Class 6: ( (mod 9).
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We begin by proving Th. IV for class 6, since this is the simplest case.
Let an arbitrary integer of this class be denoted by

a_u+v&+w32
3

where we can suppose u, v and w to be rational infegers (all prime to 3), since
a possible denominator m, =0 (mod 3) in w does not influence the argument.
We now vary the coefficients #, v and w of a with multiples of 9, and

examine the influence on «®. The variation can be expressed by

w+vd+ wI
3

5.9.4 + 3(uy + v, 9+ w 9) =a + 34,

where u;, v, and w, are rational integers. Cubing this, we get
5.9.5 @+3APF=a®*+9ga® g+ 270 -4° + 27 4,

where o« and o® € class 6 (denominator 3) and «® € class 5 (no denominator, cf.
3.3.5). Consequently
5.9.6 (@ + 34)=e® (mod 9),

and we get a complete system of cubic residues mod 9 (i.e. mod 27 in the
numerator) by cubing a complete system of residues mod 3 for a.

The congruence conditions defining the different classes in Ch. III, § 3
are all homogenous in %, v and w, and it is clear that the effecisve cubic residues
of @ to any modulus 3’ can be obtained by keeping one of these coefficients
fixed, for instance w = 1. (Cf. the definition of effective residues in § 4 above.)
~— With the limitation % = 1, a complete system of residues mod 3 in class 6
can be represented by

5.0.7 a=4+ﬂ+3‘“’ a,=1+4&+02 a,,_——z—23+02_
e 3 ’ 3 ’ 3

But ¢’ and ¢” can be obtained from ¢ by multiplication with 9 and — 2 9?
respectively and reduction mod 9 of the numerator. This corresponds to multi-
plying the resulting cubes with 9* = m or (— 29%® = — 8m?®, i.e. with rational
integers prime to 3. The only effective cubic residue mod g in class 6 is there-
fore the one given by 5.9.3.

The proof becomes more complicated when o€ class 4. The complete system
of residues mod 3, corresponding to 5.9.7 and with the same limitation w = 1,
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is here given by

—2+3+9F , 1—29+9F ,, 4+ 49+ 9
5.9.8 g=—"""""—, g = ————"——, @ =",
3 3 3

where again o' and o” can be obtained from « by multiplication with 9 and
49*® respectively. But the congruence 5.9.6 now only holds mod 3 (mod 9 in
the numerator), since o® € class 4 of 5.9.5 has a denominator 3. A slight exten-
sion of the argument shows that the basic system to be cubed is now obtained
from the « of 5.9.8 by varying the first two coefficients with multiples of 9
(still keeping w = 1). Such a variation can be performed by successive use of
5.9.4, with 4/ =31 or X+ &, and 5.9.5 shows that

(@+34°=¢c®+9a® 4 (mod o).

2
But o® € class 4, and so o=+ 1+ 9+ 9 (mod 1), which is unaltered by multi-

T3
plication with &. If therefore ‘

s _f(utvd+wdN_ U+ VI+ WH*
then
4 2
@+ 32p=UE9T (Tt +(Wto)d (mod o)

3

(corresponding signs). But these two expressions represent the same effective
cubic residue:
Utg_Vitg9g Wty
U vV W

(mod 27),
since for instance

VUL 9)—U(V+9)==49(V—U)=0 (mod 27).

This concludes the proof of 5.9.2. — It is clear that a similar result holds
for the cubic residues in class 3, but we do not need these here.
We now turn to the second half of Theorem IV. If one of the effective

cubic residues mod 27 in class 4 or 6 is given by ;(r + 59 + t9%), all a priors

possibilities for these residues are

r+2768, + (s + 2708,)9 + t9°
3

, 6, and d, =— 1,0, 1

17 - 842127 Acta mathematica. 85
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(o combinations). A closer examination shows that all these residues are repre-
sented in class 6, and we can consequently not obtain more information mod 27
than mod ¢ in this case. But we only get three of the nine a priori possible
combinations in class 4, and the relation between these three is the one given
by 35.9.1. — I have found no short proof of this; my method has been one of
“enumeration of cases”, which I leave out here. (m=1, 10 and 19 (mod 27)
must be treated separately.)

The effective cubic residues mod g in the classes 4 and 6 for m < 50 are
given in Table 1°; the residue in class 4 is chosen as one of the cubic residues
mod 27. (Note that the expressions in 5.9.1 are replaced by

r+z27+(+27)3+t9* r—27+(s—27)9 +t9*
3 3

when m =— 1 (mod 9). As we shall see later, we do not need the explicit form
of all three cubic residues mod 27.)

The residues in Table 1° are reduced to what I thought were the simplest
possible forms, by multiplication with properly chosen integers prime to 3. The
residues in the classes 4 and 6 for the same m contain the same terms with 9
and 9*; this is possible because (cf. 5.9.2—3):

1z —7 _3mh 7
3Im—1 3my+ 1

mod 27).

§ 10. We now turn to the usual equation

5.10.1 z—y*=1ql(e+fI+g3)e® =1 va’
or ‘

2
5.10.2 x—y&=n;-iﬂf3—uias=nfnva”,

where &, is replaced by the 7, of 5.7.10, and shall examine the conditions arising
when « € class 4 or 6. Here v € class 2 in 5.10.1 and ¥ € class 3 or 6 in 5.10.2.
— Three cases must be considered separately:

1. The equation 5.10.1, with v € class 2, ie. the cases 5.7.4, 5.7.6 and

5.7.8—9. Let ;(1 + & + t 9% be the one effective cubic residue mod g in class

4 or 6, ie.
r+sd+ tg_z
3

k

I

5.10.3 a® (mod o), (%, 3) =1,
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where & is-an unspecified rational integer. Since r, s and ¢ are uniquely deter-
mined mod 27, substitution in 5.10.1 gives

5.10.4 x—yId=k-9 (e, + ;9 + ¢g,9% (mod 9).
The denominator 3 vanishes, since all coefficients of the expression

{(e +fF+ g3 +sI+ ) =er+ mgs+mft+

.10,
5105 +{fr+es+mgt)d +{gr + fs+ et)I9?

% still belongs to class 2.)

are divisible by 3. (ve

We can now apply all earlier results from §§ 1—6 above. In particular, 5.10.4
is insoluble if g, == 0 (mod 3) and 5, = 1 (mod 3) (Theorem II). If nm =1 (mod 3),
one and only one value of the exponent ¢ will give a coefficient =0 (mod 3)
for 9% and 5.10.4 is impossible if this coefficient is 520 (mod 9) (Theorem III).
If 3/l¢g, and nm=1 (mod 3), the equation is impossible if #. satisfies 5.4.10
(ef. 5.7.11).

2. The equation 5.10.2, with » € class 3, o € class 4, i.e. the case 5.7.5. We
must use the three different cubic residues mod 27 to get resulting congruences
of the type 5.10.4 mod 9 (the denominator 9 vanishes, since »e® € class 2). The
three congruences are however all identical mod ¢, since a replacement of
$(r + 59 + t9*) by the other possibilities 5.9.1 will alter the coefficients e,, f;
and g, (deduced from those of 5.10.5 by division by g) with

+3(e—mg), £3(f—e) and * 3(g—f)

which are all = o0 (mod 9) by the class-condition e=f=g (mod 3) for class 3.
The one resulting congruence 5.10.4 mod 9 can now be dealt with exactly
as under I.

3. The equation 35.10.2, with » € class 6, o € class 6, i.e. the case 5.7.7.
Substitution of the only cubic residue mod 9 in class 6 now gives a congruence
mod 3:

5.10.6 x—yd=k-n (e + £, 9+ 9,9% (mod 3)

(the denominator g vanishes, since va® € class 5 by 3.3.5). This congruence is
impossible if ¢, =0 (mod 3) and %, = 1 (mod 3) (Theorem II). 1f 9, = 1 (mod 3},
the coefficient of 9* will be =0 (mod 3) for one or two values of the exponent
4, in the cases n== 2 or + I (mod g) respectively (cf. Table 1*). Nothing more
can be excluded mod higher powers of 3.
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The arguments of § 8, and in particular 5.8.2, show that the above condi-
tions still hold if we use an “‘auxiliary cube” from class 5 or 6. The coefficient
of 9* on the left hand side of 5.10.4 or 5.10.6 is still =0 mod 9 or mod 3
respectively.

It is now simple to prove that the conditions of the cases 1.—3. above are
also sufficient congruence-conditions mod 3% for the resulting cubic equation 4.1.4.
We only have to substitute

u+v9+wd=elu + 09+ w9,

where ¢, is a fixed integer from class 4 or 6. If of = ;(r + 8 + tI?), 4.1.4 is

transformed into a similar equation in ', v" and «’, but with the coefficients
e, f and g replaced by those of 5.10.5, divided by 3 in the case 1. and by ¢ in
the cases 2.—3. The conditions attached to §.10.4 (a coefficient = 0 (mod )
for 9% and 5.10.6 (coefficient = o (mod 3)) représent congruence conditions mod 3¢
for the resulting equation in «’, v" and w’, and were shown to be sufficient at
the end of § 6 above.

As an example of case 1., let us consider the equation 3.9.4. It was shown
in 5.7.14—15 that this is impossible if « € class 5 or 6. To treat ¢ € class 4,
we note that the effective cubic residue mod 9 in this class is (Table 19):

r+sd+t9 14+9—29°
3 3

With the notation of 5.10.4, we get

5 .52
e+t fid+9, 9 =(0—49 +t‘3**)-1—+—'%3—lel =33—5%—79%
Since 7,0, =1 (mod 3), « € class 4 is also impossible.
In the same way we could have excluded « € class 6:

- 2
Lt%_z_t?“: 51_‘._.1319-_._.5'_92‘

e+ i+ 99 =(9—49+ 9%
This means that the equation 3.9.2 has been completely excluded mod 3¢ (cf.
5.7.17)-
As an example of the case 2. above, we can consider the equation

zt —17y* = 302%,
or
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—~5+29+ 9,
3 4

— b 3 _ 2
r—yd=qhrv,va’ =1, ,

where
hyy =1, 10;=¢;=18—79=29 (mod ¢)=1 (mod 3).

Multiplication with the effective cubic residue mod 27 in class 4 (Table 1°) gives

_5+23+32a35k-—5+23+32'32+4{}_32
3 3 3

=k(4 + 39 — 49%) (mod 9).

The only possibility mod 3 is 7 = 1, but
4+393—49)(18—79)=—1—9—39" (mod 9)

is impossible mod 9. The given equation is consequently imsoluble.

CHAPTER VI. Conditions mod ¢q and r.
§ 7. For any prime g =—1 (mod 3) such that
6.1.1 qlne, qg4m,

the equation z* — my® = nz* =0 (mod q) leads to one single possibility for the
ratio z:y mod g:
z=dy, where d®*=m (mod q).

3 pu—
For the corresponding equation in K (Vm) = K(9):

6.1.2 x—yd=2¢va®=pa’
this means that
6.1.3 x—yd=yd—3), y=o0 (mod g),

is divisible by b, = [q, 9 — d], which is of course obvious. We shall make use
of this when treating the equation 6.1.2 mod ¢, by examining the form of of
i.e. the cubic residues mod q.

We first note that

[q] = peao = [q, 9 —dllg, 9* + 49 + @]
by 3.1.4, where a complete system of residues mod p,:

6.1.4 0,1,2,,..¢q—1,
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is only reproduced when forming the cubes. It will therefore suffice to examine
the cubic residues mod qq tn the field K (). Since the exponent 3 is prime to g,
every cubic residue of q, is also a cubic residue of qg for all 6 > 3, and it suf-
fices to treat the simplest case d = 1.

If g|m, we have seen in Ch. IV, § 3, that the resulting cubic equation ‘is
always soluble mod ¢, whether or not q|n. The reason for this, expressed in
terms of cubic residues, is that now

lq] = v; = g, 97,

where a complete system of residues — and also cubic residues — mod b, is
again given by 6.1.4.

A little more care is required to show that no conditions are obtained by
cubic residues when a prime 7|{m. I omit the proof, since the result is in any
case covered by § 3 of Ch. IV.

§ 2. There is a one-one correspondence between the cubic residues mod Qg in
2

K (%) and the cubic residues mod g tn K(p), ¢ = e 3 , expressed by the following

equivalence:

6.2.1 (————td +S&) =1 [t_t_s—g] =1,

Ge 3 q
where I use the notation ( ), and [ ] for cubic residuacity in K () and K (p)
respectively (cf. Ch. IX, § 1). The equivalence is immediately seen when cubing
the expressions
f(vd +udf=d*{w®—3u*v +1°)d—3uv(u—1v)3} (mod g

6.2.2 .
(0 +ug)=ud—3uv + v*— 3uv(u—1)e,

where d® (as a rational integer) is always a cubic residue of g,.
It is well known that a complete system of residues mod ¢ and prime to ¢
in K(g) is given by (cf. Bacamaxn [1], pp. 185—99):

a+be, aand b=o0,1,2,...9g—1, (a,b) (o, 0),

giving in all ¢® — 1 residues, of which only one third form the group of cubic
residues mod ¢. Since all rational integers prime to ¢ are contained in this
group, we can divide out by a coefficient b == o, thus getting a system of effective
cubic residues mod q (cf. Ch. V, § 4):

qg—z

1 and # -+ o, i=1,2,3,...-—3—-
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A list of all such ¢ for ¢ <30 is given in Table 74, which consequently also
gives the effective cubic residues td + 9 mod ¢, in K{(#). To facilitate the eal-
culation with these residues, the table also contains a list of the reciprocals
mod ¢ and the values of d for different m.

The table is constructed by means of 6.2.2. The necessary values of the forms

wWw—3ulv+0° and 3uv(u—v)
were already calculated by me for use in Ch. IX, c¢f. g.11.2.
§ 3. We return to 6.1.2, which by means of 6.1.3 can be written as
6.3.1 y(d—9) =pc® (mod g).
We multiply by 3d$ and note that

(—d+ 9P =—d+m+3d°3—3d9=3d3(d— 9 (mod g),
hence

6.3.2 y(—d+ 9P =3d-9u o (mod [g] = b,q,).

Since —d + % and « are both prime to g, {c¢f. 3.2.3), and the rational integers y
and 34 are cubic residues, we conclude that the given equation is only possible if

du
6.3. (——) =1,
33 % /3

which can be used for exclusions mod q.

If gln, we shall find a simpler form of 6.3.3, but we note that the same
condition must be satisfied if g+ n, qlz. This is of great importance by numerical
solution, since we can exclude a prior¢ certain prime divisors of 2.

If g=—1 (mod g), we know (by 9.1.3) that

[9] =1, i.e. (19—) =1,
q G9/3

in which case the factor 9 can be omitted in 6.3.3.

The condition 6.3.3 will only be #necessary for solubility if g[n, in which
case it can be simplified. Let

e+ f9+ g

6.3.4 p=e+f>+ g9 or 3
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A denominator 3 will not influence the arguments of this chapter, and we leave
it out in the intermediate formulae. From p, = [q, 3 — d]|u, we conclude that

e+ fd+gd*=o0(modg),ie u=ce+f3+ g =(—d)(f+gd+gI) (mod g),

which we substitute in 6.3.1. The common factor 3 —d is divisible by by, but
prime to g,. Dividing out this factor, we thus get

6.3.5 —y=(f+gd+ ge® (mod q,).

We finally multiply this by f— g9 5= 0 (mod qq) (since f==g =0 — ¢ = 0 (mod g)),
and get
6.3.6 —y(f—g9)=(f+f9d + g°d®)c® (wod q,),

where all factors are prime to g, and the first factor on each side is a rational
integer. We therefore have

Theorem V. If gtm, q|n, and x—y9 = pea®, where u is given by 6.3.4,
then f— g9 is a cubic residue of qq:

6.3.7 (./_’:9_12) _,
¢ /s

It is clear that the use of ‘“‘auxiliary cubes” prime to g leaves 6.3.3 and
6.3.7 unaltered; the same remark holds for the corresponding conditions mod r
of § 5.

By means of Table 19, it is easily verified whether f'— g is a cubic residue
of g, Then

f—99=—gtd+9), ie. —fg~ld 1=t (mod ¢
The auxiliary tables for d and m1 give a quick determination of — fg='d™,
which must be one of the values ¢ for the prime ¢ in question. If this is not
the case, the corresponding equation z —yJ = pa® is impossible.
It follows from 6.2.1 that the condition of Th. V can be replaced by

6.3.8 [f———~”_qu"] -1,

which enables us to examine primes q > 50 without the Table 1%. The calculations
involved are then not so simple; f— gdg¢ must be factorized in K (g), and the
cubic character of each prime factor determined by the cubic law of reciprocity
and a small table for cubic residuacity.
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§ 4 We must examine the influence of the wunit &n in 6.1.2, where
n=2¢ v 2=0,1,2. It follows from 6.3.3 that one and only one value of i s
vossible mod q if em ts a cubic non-residue of G, If however &y is a cubic residue,
it suffices to replace u by v in the conditions 6.3.3 or 6.3.7. In this case all
the values of the exponent ¢ are simultaneously possible or impossible mod ¢, and
the calculations are much simplified. — Similar remarks apply to a non-rational
y in 3.8.3.

It is therefore of great importance to examine the cubic character of &,
mod gy, for different combinations of m and ¢. I shall here only give a systematic
account in the two simplest and most frequently occurring cases ¢ = 2 and 5.
(We return to the subject in § 10 below.)

g = 2: This is not included in Table 19, because solubility mod 2 can be
decided immediately. Since ¢ = 24 m, we have d = 1, and

2] =p,0.=[2, 1 + 92, 1 + 9 + &%)

A complete system of residues mod ¢, and prime to g, is given by 1, ¥ and
.1+ %, and the only cubic residue is 1. The condition 6.3.7 implies that the coef-
ficient g of 93* must be even 1f m is odd and n is even (since then P,|u shows
that e and f are odd).

Further en 25 a cubic residue of g, if and only if em = 1 (mod 2). For en =1

(mod g,) implies
en=1 or 1 +(1+ 3+ 3)=39 + 9% (mod 2).

But the latter expression is divisible by {,, which is impossible since & is a

unit. — The odd cubefree values of m < 50 for which &n =1 (mod 2} are (cf.
6.10.3—4):
6.4.1 m =5, 11, I5, 21, 23, 25, 29, 31, 33, 30, 41, 43, 45, 47.

By means of this, we can exclude some of the previous examples (partly
excluded already mod 3 or g). The simplest cases are the equations 3.6.4, 3.8.6
and 5.2.5, which all satisfy the conditions m odd, n even, & = 1 (mod 2), g odd.
(The equation 3.8.6 can also be completely excluded mod 11, since &g is a cubic
residue and f— g9 = 3 — % a non-residue of q;;. — Note in particular that the
auxiliary cube pj in 3.6.4 is prime to qs.)

For the equation 5.2.8, &%= 1 (mod 2), and consequently one value of the
exponent ¢ is possible mod 2. The form of » shows that this is ¢ = o, which has
again been proved impossible to the modulus 3 (for which ¢ = 1, i.e. the equa-
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tion 5.2.9, is the only possibility). The given equation is therefore excluded by
a combenation of two different moduli, a case which frequently occurs.

g =5: A closer examination shows that &n is a cubic residue of ¢; for the
following cubefree values of m =0 (mod 5) and < 50 (cf. 6.10.3—4):

6.42 m=2,4,6, 11, 12, 13, 14, 18, 22, 23, 29, 33, 34 36, 38, 41, 42, 44, 46, 47.

The equation 3.7.2 can be completely excluded mod 5, since & is a cubic
residue and f— g% = — 9 a non-residue of g;. (J is a residue only when g=—1
{(mod 9).)

As an example of ¢>> 5, we can finally consider 3.9.2, where ¢ = n = 47.
This gives rise to the two different equations 3.9.3—4, which were excluded
step by step mod 3 and ¢ in Ch. V, §§ 7 and 10. But we have seen in Ch. III
that they can both be excluded simultaneously in the simplest form 3.9.3; to any
modulus prime to 3. And here ¢, is a cubic residue, but f—gd =1—9 a
non-residue of q,;, i.e. complete exclusion. (If 1 — 4 should be a cubic residue,
we would have (Table 19):

—1+F=td+ P ie t=—d'=—20"1=7 (mod 47),
but this is not one of the values of ¢ for ¢ = 47.)

§ 5. We now turn to the primes p = =1 (mod 3), such that »r4m, »|n.
We can use the earlier formulae developed for p = ¢, with the necessary modi-
fications.

We suppose that the original congruence conditions 2.1.10 are satisfied, i.e.
m(R)r, and hence by 3.1.4:

[r] = prprpy = [, & —dllr, 9 — d][r, $ —d"],
where
AB=d?=d"?=m, d=d =d’ =d (mod 7).

Consequently 6.1.3 is.replaced by
6.5.1 x—yd=yld—43), y(d—3) or y(d' —) (mod 7),

corresponding to the three different equations 6.1.2, which must be treated sepa-
rately. We will suppose P, = [r, 3 —d}|u, i.e. x =dy (mod »). The modulus g,
must then be replaced by the product p;p;7. The argument that led to 6.3.2
still holds:

6.5.2 y(—d + 3P =3d-Fu-a® (mod p;p;)
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But we can no longer conclude that the ratiomal integers y or 3d are cubic
residues, and the treatment becomes different.

Replacing 6.5.2 by two separate congruences mod . and b, and writing
u=u(d, «=a(P), we get the relations

(mod 7)

61 [yl @) st duld) -fold)

y(—d+d")P=3d-d"uld") {a(d")?

between rational integers. Dividing the two congruences, we find the necessary
condition -corresponding to 6.3.3:

6.5.4 d u(d)~d u(d’) (mod r), or g— E ,))( )r
(with the symbol of equivalence introduced in 2.1.7). This condition must be
satisfied when 7|nz such that P,|ue, whether or not »|n. Similar conditions
are of course obtained when P, or p;|ua.

If r|n, p|u, we are again led to the congruence 6.3.5, with the modulus
P, p7. Treating this as in 6.5.3, we get

(—y=(f+gd+gd) (@) =(f—gd) {ald)®
\—y=(f+gd+gd) {a@d)=(f—9d) {e@d)}®

since d + d' + d’ =0 by 6.6.3. Dividing these expressions, we get

6.5.5 (mod »),

Theorem VI. If »4m, r|n, x—yd =pndd p,=[r, 9 —dl|p, where u is
given by 6.3.4, then

6.5.6 Vi L

(It is clear that beth f— gd’ and f— gd’ must be prime to ». If we sup-
pose for instance f— gd =o (mod r), and combine this with p.|e + f9 + g 9%,
ie. et fd+gd®=o0 (mod r), we find e+ fd’' +gd?=gd’(d+d +d’)=o0
(mod r), and so Py [e + £ + g 9% which is impossible.)

It is not difficult to show (ef. 6.9.6) that the condition 6.5.6 is equivalent to

6.5.7 [ﬁ:ﬁﬂ’] =1,

r

in complete analogy with 6.3.8. Here [ ] means the Jacobian symbol, i.e. the
product of the cubic characters
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[f-_gde] and [f~_gdo],
7Ty 7Tr
where 7 = m, 7, is the factorization of r in K{p). But we never need the form

6.5.7, since the simpler original condition 6.5.6 can always be dealt with by the
existing tables of cubic residues.

§ 6. We must also here examine the influence of the unit ¢,. Replacing
u(3) by {em(9)}-»(3) in 6.5.4, we see that one and only one value of the ex-
ponent 7 is possible if en(d’) + en(d”’) (mod ») (“inequivalent”), and all three values
of ¢ are simultaneously possible or impossible if

6.6.1 en(d') ~ em(d’), or

in which ¢ase we can get complete exclusion mod r by considering »(9) only.
In the two other possible cases P, or p;|u, we similarly have to study
the ratios

onld) o en(d)

am(ci'—') em (d')

]

and all calculations become particularly simple if

6.6.2 en(d) ~ en(d') ~ em(d”) (mod r).

We can however show that 6.6.1 aufomatically implies 6.6.2. — Let
em(9) = e, + P + eI

(where possible denominators of the coefficients are prime to 7). If we note that
d, d and d” are solutions of the congruence x® —m = o (mod 7), and so

6.6.3 d+d +d" =0, dd' +dd’ +d'd’ =o0, dd'd’=m (mod 7),
it is easily verified that

em(d) em(d) em(d’) = (6] + mel + m®el — 3me, egey) (mod r)

6.6.4 {
= .N(el + 623 + 8332) = N(em) = 1.

The product is therefore a cubic residue of », and this is only possible if either
én(d), em(d’) and en(d”) all belong to the same class mod 7, i.e. the case 6.6.2;
or they must all belong to different classes:

6.6.5 em(d) + em(d') + em(d”) + &m(d) (mod 7).



The Diophantine Equation ax® + by® + ¢2® = 0. 269

In this case all the ratios

are cubic non-residues of r.

It is easy to show that the condition 6.6.2 is satisfied +f and only if &n s
an eflective cubic residue of r, i.e. if there is a rational integer f and an integer
§ in K(9) such that
6.6.6 em=t-£ (mod 7).

(Nvote that &n is not an ordinary cubic residue of r if #(N)r.) This is in com-
plete analogy with the results of § 4. (Cf. § 10 below.)

If we have to use a non-ratignal y in 3.8.3, the calculations are similarly
simplified if ~

y(@)~y(d)~y(d”) (mod r).

Since N(y) is a rational cube, there is also here only the one other possibility
corresponding to 6.6.5.

Az an application of Theorem VI, we can consider the equation 3.8.5 with
m and » interchanged:
6.6.7 x® —449y® = 392°,

where » = 13. The class-number b, = 7, and
I 17 g8y : 2
e“=5(113—219—?3):3——53——53 (mod 13).
The congruence 2® = 44 (mod 13) gives d =— 2, d =—35, d' =—6, and
£gy(d) = 6, &4 (@)=—6, e4(d")=—4~6 (mod 13),

satisfying the condition 6.6.2. We have the case 5.7.5, where here
N 5 g L __ g2
t~3(17 49 + 3%”w“ﬂ 1+ 49— 9%,

2

’ I 9 e I
Vig = (—1+3+;&-), v13=7+2&+§32.

!
3

We get three possibilities for », each of which must be examined by the con-
dition 6.5.6:
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I
_ ’ —58‘}‘“(—5)
’ g¢ — 58+ _(—6)
(mod 13).
Ay = = Y f—9d _14+5-(—2)
T 3(13_*-149 5'9.)’ f_gd//_l4+5.(_6)‘_3+1
= 2 f—gd —7—1(—2)
A== (13— 79 + 9, —od _ 4
T V13 3(3 7 ) _/_gd __7_1.(__5) 4

All cases are impossible mod 13, and the equation 6.6.7 is consequently
insoluble.

Exclusions mod » do not occur frequently. One reason for this is that the
congruence comditions 2.1.10 are more ‘‘strict” in this case, and most equations
with a factor » in the coefficients are excluded already at this stage. But even
then the percentage of excluded equations is very small. There are about a
hundred equations in Table 2* with a prime » dividing at least one of the
coefficients, and possible for all moduli. Of these only six have been excluded
by the new methods of this paper, against an average of 30 % excluded equa-
tions (possible for all moduli) in Table 22. — This must be explained by the
three different possibilities for the factor p,, which make complete exclusion less
probable in this case.

§ 7. In amnalogy with the remark to 6.3.3, we can also use the condition
6.5.4 to facilitate a search for mumerical solutions when r4 n; the criterion shows
at once whether p,, b, or p; can divide e. (It is obviously necessary to have
m(R)r, so that r factorizes in K (%))

- There is however an important additional remark in this case. Let
p(@)=e+f3+99% Nu = +mfi+m¢g*—3mefg=n=0 (mod r)
(possibly with cubed factors for ). The argument that led to 6.6.4 now shows that

6.7.1 du(d)-d u(d)-d"u(d’)=mn~n (mod r),

since m(R)r. We must distinguish between two cases:

n(R)r: For the three factors on the left hand side of 6.7.1, there are then
the two possibilities corresponding to 6.6.2 or 6.6.5, which means that all factors
Pry Pr or P/ |a are simultaneously possible or impossible mod r. In the latter case,
7|z is consequently excluded.
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n(N)r: Of the factors on the left hand side of 6.7.1, two and only two will
then be equivalent mod », which means that one and only one of p,, p; and by
is possible mod r as factor of a. In this case we can never exclude r|z by our
methods.

The last remark is also of theoretical importance. We have seen in 2.2.3
that in the case
6.7.2 m

1

T, n=2%3 (mod )

we must have 7|z. Since 3(N)7, such equations can never be excluded by
auxiliary considerations mod 7. — But we can find the one possible p,| e, which
gives us a unique value of the ratio xz:y mod 7°® = 343. This is of course a great
help in a search for solutions.

There is still another additional remark in the case when r|#n, and the
condition 6.5.6 is satistied. ¥From 6.5.5 we conclude that

6.7.3 y~f—gd ~f—gd”" (mod 7).

This restricts the choice of y to one third of the residues mod », and hence means
another simplification of a search for solutions.

§ & We can now prove that the conditions of Theorems V and VI are
also sufficient congruence conditions mod p? (p = q or r, p|n, p 4 m) for the resulting
cubic equation 4.1.4. We can even put w =0 (or only =0 (mod p)), in which

case the congruence F'(u, v, w) = o0 takes the form
6.8.1 Flu, v, w)=gu® + 3fu’v + 3eur® + mgv® =0 (mod p).
Using the formula 4.1.5, the discriminant of the left hand side can be written as
(=336 + 6mefg* — 4 g — 4mfg—mg) =
6.82 8 2 2 4 2 2
| =3%{3(mg® —ef)*—4gn} =34 (mg* — e f) (mod p),

since p|ln. — Let p,=[g, $—d] or p,=[r, 3 —dllu=ce+ f9+ g9 ie.
d*=m, e+ fd + gd®=0 (mod p), and consequently

6.8.3 mg:—ef=d(f*+ fgd + ¢g*d*)=0 (mod p)

The last incongruence follows for p = ¢ from f* + fgd + g*d® = No(f—gdo)
(the norm in K(p), which can have no prime factor ¢ unless.q|f & gd. For
p=r, we have f*+ fgd+ ¢*d*=(f—gd)(f—gd’)=0 (mod ») by 6.6.3 and
the remark to 6.5.6.
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It is clear that a solution of 6.8.1 in the case g =0 (mod p) is given by

Al

T ov

=0, V=0 =3 fu’=0 (mod p),

and we only have to consider the case g = o0. From 6.8.2—3 we see that #=0
(mod p), and solubility of 6.8.1 will therefore imply solubility of the corresponding
congruence mod p? for all d > 1 (cf. the beginning of § 3, Ch. II). Since o is
a quadratic residue of p, it follows from a well-known result (cf. SxoLEM [2])
that the congruence 6.8.1 has three solutions mod p if it has one. And the
solubility is now easily shown.

Let first p = q, and the condition 6.3.7 be satisfied. This implies that we
can find two rational integers u, and »,, not both =0 (mod g¢), such that

684 f—g9=(u +v,9=0—3d%u, 23+ mi} + 3(ufv, — du, 139 (mod q,), i.e.
f=ud—3d%u v} + mi, g=3(du;1?—udv) (mod gq).
But e=— fd — gd® (mod ¢), so 6.8.1 can be written as
g —3d%uv® + mv®) = 3f(duv® —u*v) (mod g,

and we see at once that » =w,, v = v, is a solution.
Let next p =, and the condition 6.5.6 be satisfied. This implies that we
can find three rational integers ¢, «, and x,, all prime to 7, such that

6.8.5 f—gd =t f—gd' =ta} (mod 7).
We next define two other rational integers by

w,+ o d =z, u+v,d" =2, (mod 7),
14

which is possible since ::il//

l =d"—d = o0. But then 6.8.5 is equivalent to

S—9g9=1t{u, + v,9)°® (mod p.p; =[r, 9 + d 9 + d%),

in complete analogy with 6.8.4, and as above we see that 6.8.1 is soluble mod ».

This concludes the proof for the sufficiency of the conditions mod ¢ and r.
~— In this connection, it may be worth while noting the almost obvious result
that the class-number conditions of Ch. III and the conditions of Ch. V and VI
mod 3°, q and r contain the original congruence conditions 2.1.10.



The Diophantine Equation ax® + by® + ¢2® = 0. 273

There are no elementary conditions mod any prime ¢, or mod 9 if m=+ 1
(mod g). If m= 1 1 (mod 9), the condition 5.1.6:¢g=o0 (mod 3), i.e.
n=DNe+f3+g%) =+ mf® (mod 9),
shows that 2® — my® = n2® (mod o) is soluble. The case 3|/m, 3||» implies 3]|e,
34/ and so f*=+ 1 (mod 9), m =+ n (mod 27).

“If r|n, r¥m, the prime r does not factorize in K () unless m(R)r. And
if r|m, r¥n, we have n = N(e + f9 + g9 =e*= 0 (mod 7), so n(R)r. In this
case the classmumber ks, is always divisible by 3,and n () r would have been ex-
cluded at the stage of class-number considerations in Ch. I1I. — If finally m = *m,,
n=1'n, i =1 or 2, rtmmn, we must have r|e, »+f, and in the case 7 = 2

also r|g. The norm-expression for n» shows that
ny, =m, f* (mod ¥), ie. m, ~mn,, mni(R)r

If this condition is not satisfied, the equation in K () would again be excluded
by class-number considerations.

The insoluble case 1.1.4 is not dealt with in Ch. IV—VI. If for instance
pl|lm, p®||n, we must have ple, p|f, ptg, and so

x—yd=ge (mod [p] = ;= [p 9]°)
Ag under 1.1.4, we conclude in turn that
bolz, plz; boly, ply; wle, pla
We could also have concluded in turn that p|u, v & w in the resulting cubic

equation 4.1.4.

§ 9. 1 shall finally show how the necessary and sufficient congruence
conditions of this chapter can be deduced directly from the resulting cubic
equation, by means of the field Q2(J) introduced in Ch. IV, § 4. We suppose
that 7 is a prime in K(g) such that

6.0.1 w|n, wim, [gz] =1,
T
and so 7 factorizes in Q(J) by 4.4.6:
[#] = pabapn = [, d — 9]n, d — ¢ 9] [, d — 0* 9].

Then 4.4.5 shows that we must solve the congruence

6.9.2 EU*+ gE'V:+ o E'Wi=0

18- 642127 Acta mathematica. 85
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to the three (coprime) moduli p,, 9, and ;. If now for instance (cf. 4.2.4):
693 Ppa=[m, d—I]|E=e+ f3+ 99 ie. e+ fd+ gd®=o0 (mod =),

then pz|E’, p7| E”, and the necessary and sufficient conditions for solubility of
6.9.2 to the three moduli are respectively

6.9.4 eE ~o*E" (mod p,),
*E’ ~ F (mod p;) and E~oFE (mod ).
It is only necessary to consider the first one, since the two others can be deduced
from this simply by taking conjugates. Substituting in 6.9.4 the expressions
4.2.4 for E' and E”, and further (from 6.9.3) e =— fd — gd? (mod =), we get
e(—fd—gad® + fed + 9o 9%~ *(—fd—gd® + fe*3 + g9
(mod ‘pﬂ = [7':) d— 19‘])a

which gives a condition mod = if & is replaced by d. Dividing out by
de(1 — @)= 0 (mod =), we find this condition:

f—gde
- 2
6-9~5 f—'gdg!.\:f_gdg (mod n), or ‘Z‘__%d_g__ = I.

This will be the only type of condition in the case 6.9.1 if the given equation
x® —my® = ne’ is treated in the field Q(3), leading to an equation x — y & = pe’
with . =[x, d— 9] p.

The earlier conditions of this chapter are now easily deduced from 6.9.5,
when m, f, g.and d are all absolutely rational. If = = ¢, the characters

—_— l . 2
[f yde] and [f 902_9]
q q
have conjugate values in K(g) by 9.1.5, and their quotient is 1 only if both
characters = 1, i.e. the condition 6.3.8. — For a prime r = 7, 7,, we must use

both factors as = in 6.9.5. But with an appropriate choice of the earlier d’ and

d’, we have
de=d, de*=d" (mod n,); de*=d’, de=d" (mod 7,), and so
6.9.6 S—gde :f_gd, (modn) Ef—gd"(mod—ﬁ)

f—gde* f—gd” S—gd

and 7 = 7, or @, in 6.9.5 both lead to the condition 6.5.6.
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I suppose that the conditions mod 3% of Ch. V can also be deduced in
Q2(9) from the form 4.4.5 of the resulting cubic equation, by operating mod
suitable powers of 4 =1 —¢. But such considerations seem to become very
complicated, and 1 have not tried to carry them through.

§ r0o. We conclude this chapter with some remarks about the cubic char-
acter of the units &n. We have seen repeatedly how important it is to study
this character mod 3%, mod q, and mod r for different primes ¢ and . It will
now turn out that cubic residuacity can in most cases be determined without even
knowing the umat. \

Let us consider the field K(9) = K (V2), with the class-number h, = 1. It

follows from 3.1.4 that
ps = [3].

I

But p, is a principal ideal, p, = [»,] (in this case we may choose v, = 1 + 9},

and we conclude that there exists a unit n = & such that
6.10.1 =39 =3é& 347

Since the rational integer 3 is a cubic residue of all q, (¢ = m = 2 is of
course excluded a priori), it follows that the same property holds for the basic
unit &, which is also (by 6.6.6) an effective cubic residue of all primes ». We
shall say that ¢, is of Type 1, ie.: A fundamental unit en is of Type 1 when tt
ts a cubic residue of all g, and an effective cubic residue of all r (¢ and 74 m).

It is clear that e, is of Type 1 whenever m = g or ¢*, ¢==— 1 (mod 9g),
hwm == 0 (mod 3). This covers the following cubefree values of m =< 50:

m = 2’ 4’ 57 II7 237 255 297 4’1’ 47'

We .cannot draw the same conclusion when m = or »? since then always
hwm =0 (mod 3), i.e. P, is not necessarily a principal ideal. When m =+ 1 (mod g),
[3] = 3 is no longer the cube of an ideal.

We next consider the field K(9) = K(V6), hs = 1. Here 6.10.1 still holds,
together with a similar relation deduced from [2] = p3:

6.10.2 V=29 =26, 344.

The factor 3 has disappeared on the right hand side. As a consequence, the basic
unit & will not only have the properties of Type 1, but will also be an (effective)
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cubic residue mod 3° for all exponents d. (Since bere 3|m, this only implies
& =1 (mod 3). For a value of m =0 (mod 3), the additional condition 5.4.10
will also be satisfied. — If m=+.1 (mod 9), &» must be replaced by the nm of
5.7.10.) :

The last argument fails in the first case m = 2, since then », = &, and we
can deduce nothing from the trivial relation 9% = m.

We say that a fundamental unit &n is of Type 2 when ot vs of Type 1 and
is in addition an (effective) cubic residue mod 3% for all 6. Tt is clear that &n is
of Type 2 whenever m is composite (m = p® excluded) and hn = 0 (mod '3). This
covers the following cubefree values of m = 50:

m = 6, 10, 12, 15, 18, 33, 36, 44, 45, 40.

Let next m = 14, where b, = 3. All the ideals p,, p; and P, are non-prin-

cipal, but
Pe P = [—2+ 9]

shows that &, is of Type 7. The same principle (3|hn, m =+ 2 or + 4 (mod o)
and composite) shows that the values

m = 14, 20, 22, 38, §0
are all of Type 1.

But we can also get the stronger Type 2 in some cases when 3|hn, e.g.
when 3||hs» and m has at least three different prime factors (m = 30 and 42),
or in the cases when m is composite and has a prime factor p # 3 such that
Pp is a principal ideal (m = 34).

To sum up, the following cubefree m =< 50 are of Type 1, and it is easily
verified that there are no others:

6.10.3 Type 1 only: m = 2, 4, 3, 11, 14, 20, 22, 23, 25, 29, 38, 41, 47, 50
6.10.4 Type 2: m = 6, 10, 12, 15, 18, 30, 33, 34, 36, 42, 44, 45, 46.

We do not get all m for which &, is a cubic residue of different moduli.
A comparison between 6.4.1 and the odd values of 6.10.3—4 shows that m = 21,
31, 39 and 43 are missing among the latter ones. Similarly m = 13 of 6.4.2 is
missing. But 6.10.4 coincides with the combined values of 5.1.9 and the last
line of 5.7.11.
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CHAPTER VII. Results of the Calculations.

§ 7. As an application of my methods, I have treated systematically all
equations
7.1.1 24+ myP+n=0, 2=m<n=;o,

with cubefree m and n, and the result is given in Table 25. The case n = 1 will
be dealt with later in this chapter (§ 5), and in Ch. IX. Note that z has
changed sign from the equation in the earlier form, 2% — my® = nz®. — The
upper limit 50 is the same as in Cassers’ [1] tables for classmumbers and units
in K(Vm).

It is clear that several of the equations 7.1.1 will be equsvalent, i.e. they

can be reduced to the same equation
7.1.2 ax® +by*+cf=0 1=a<b<ec (a,b)=(a,c)=(bc)=1

(which is not itself included in Table 2¢ if a> 1 or if ¢> 50). For instance,

there is equivalence between the three equations
7.1.3 a4+ 4y + 1228 =0, 2P+ 9yt + 1828 =0, 2P+ 2¢%+ 32 =0,

of which the last one has the form 7.1.2.
When constructing Table 22, I worked in the following steps:

1. T excluded all equations 7.1.1 which do not satisfy the elementary con-
gruence conditions 1.1.4 or 2.1.10 (horizontal lines in Table 22); this was readily

done.

2. T examined the remaining equations for the existence of simple solutions.
In most cases this is quickly done; to facilitate the search, I constructed an

auxiliary table of the products ma® for m < 50, = < 16.

3. For the equations with no simple solutions, I used the class-number
considerations of Ch. IIT and the conditions of Ch. V—VI to see which of them
could be proved impossible (crosses in Table 22). I examined all equations in

8 __ s _
both fields K (Vm) and K (Vn), and it was a striking experience that every ex-
cluded equation could be proved tmpossible 1n both these fields. (Equivalent equations
of the type 7.1.3 were treated as different.) A single exception would have shown

s —_—
the insufficiency of my conditions in one field K (Vm) alone.



278 Ernst S. Selmer.

4. For the remaining equations, I tried to find solutions by the methods
of the two next paragraphs. There are still a few equations of which 1 have
no solution (blank spaces in Table 22), namely the following combinations (m, #):

7.1.4 (11, 43), (17, 41), (29, 47), (41, 46).

3 3 _
None of these can be excluded in either field K (Vm) or K(V»n), and I believe
that they are all soluble.

§ 2. In order to solve numerically an equation which cannot be excluded
by some means, and where a simple solution is not found, I have used two
different methods of “trial and error”’.

The first principle is simply to examine the given equation

3 3 _ 8
7.2.1 2’ —my® = ne’,

draw the possible information about the unknowns z, y and 2, substitute suitable
values of z and y and examine if the left hand side divided by » becomes.a
perfect cube. This sounds an enormous task, but does in fact lead to a quick
solution in many cases, because the choice of z and y is usually very restricted.

For any prime ¢ dividing n, the ratio #:y = d (mod ¢) is uniquely deter-
mined. For a prime r|n, there are three corresponding ratios d, d’ and d”, but
one or two of these may be proved impossible by the criterion 6.5.6. If
m=1 1 (mod g), the ratio z:y or-y:« will also be uniquely determined mod 3,
except in the cases 5.2.4. If m =+ 1 (mod 9), we can sometimes (if » =+ 3 or
+ 4) conclude that 3|z, and by the remark to 5.7.9 even 9|z, which will give
the ratio x:y mod a higher power of 3. — In the case 6.7.2, we have also seen
that the ratio z:y is uniquely determined mod 7® Further 2.2.3 shows that
7|z if m=+n=% 2 (mod 7). '

The result of these simultaneous congruences for «:y is a usually unique
value d such that
7.2.2 x=dy (mod 3*7'n), i=0,j=0,1 or 3.

We next examine the possible prime divisors of z and y. In the case of z,
we can sometimes conclude mod ¢ that 3|z or 34 x, and further 2 must be
prime to m and » if (m, n) = 1 and divisible by an (m, #) > 1; these conditions
will already be partly contained in 7.2.2. Apart from this, the only prime factors
of x which can be shown impossible from 7.2.1 are the primes =1 (mod 3)
such that r4mn, m+ »n (mod 7).
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For the prime divisors of y, we can sometimes conclude mod g that 3|y or
34y, and 2.2.3 shows that 7|y if m=+ 3, » == 1 (mod 7). Further y must
be prime to n (even if (m, n) > 1, since then (m, n)|x, and (z, y) = 1). The pos-
gible prime factors »|y must be snch that »(R)r; if »|n, the remark 6.7.3 is
also useful. But we can usually obtain more information about y if we write
7.2.1 as
7.2.3 2 —ned = my®

and operate in the field K (Vn).
We can never exclude common factors of ¢ and m, since then 7.2.3 would

be completely excluded in K(Vn). For the primes ¢ =— 1 (mod 3) such that
gt mn, the criterion 6.3.3 gives several ¢ for which ¢}y is impossible. The most
useful case is ¢ = 2, i.e. m and n odd. It is of course a great help to know

that y must be odd. If we can alsoc exclude 2|z (from the original form 7.2.1,

s._.
in K (Vm)), we know that x must be even. (A similar conclusion is not possible
if ¢ >2.) — For the prime divisors r|y, r4{mn, we have already noted that
we must have n(R)r. It follows from § 7 of Ch. VI that we can then exclude

|y in K(Vn) only if also m(R)r.

If n=+1 (mod 9), the methods of Ch. V (cf. the remark to 5.7.9) will
sometimes give us only one of the three possibilities 3+ y, 3|{y or 9]y. In the
first case we may also be able to restrict a« to one of the classes 5 or 6, which
will further limit the choice of y if &, € class 5 (no denominator 3).

We can finally get a limitation for y by class-number considerations when
h.> 1, cf. the concluding remark of Ch. IIT, § 7, for the case when 34k, A
similar limitation can be obtained when kn, = 3% > 3.

§ 3. My other method is to examine the resulting cubic equation 4.1.4 (or
4.1.6) for solutions. It is much more difficult to systematize this search, and it
can only be a question of finding comparatively small solutions in %, v and w.
(But even then the corresponding solution in z, y and ¢ may be rather big.)

The earlier results about x, ¥ and 2z do not help us very much. If we can
show by some means for the equation 7.2.1 that for instance ¢4z, then all we
can say is that

7.31 P,=[0,9 —dlte=u+vI+ w9 and so u + vd + wd®=0 (mod g¢),

in addition to the obvious condition
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7.3.2 Gq=1[q, 9 +dI + d* ]t e, and so u=vd =wd® (mod q) not satisfied.

If ¢ is big, such conditions do not give much information, and it becomes rather
complicated to combine the conditions for several primes. But 7.3.1—2 are of
course very useful if ¢ = 2.

We can also obtain information mod 3 or g. If m == 1 (mod 9}, the meth-
ods of Ch. V will often restrict the choice of « to one of the classes 4, 5 or
6, in which case we can use the class-conditions of Ch. III, § 3. If 3|m, the
obvious condition 342z implies 34u. And if m=+ 2 or + 4, n=2+ 3 (mod o),
i.e. 5.4.6—7 not satisfied, the condition that the coefficient 5.4.5 of 9% must be
=o0 (mod 9) gives us one and only one of the classes 5.4.1—3 to which the
residue of ¢ mod 3 can belong.

The most important congruence condition for the resulting equation, and the
one that has led» me to all the big solutions in Tables 22-P, is, however, obtained
from the relations 6.3.6 or 6.5.5. — Let first » =1 (mod 3) be a prime such
that 4 m, »|n. The conditions 6.5.5 must then be satisfied. Dividing the two
expressions, we get Th. VI as before, but also the relation

{Z E?)}szﬁ ZZ:, (mod 7).

If we determine three rational integers #; such that

ta_f_‘.qd

P ="7—"—5; (mod 7), £ =1, 2,
(which is possible by 6.5.6), and substitute « = u + v & + w 3% we get three

linear homogenous congruence conditions for the unknowns u, v and w:
7.3.3 wt+vd +vwdi=¢t (u+ vd + wd® (mod 7), <=1, 2, 3.

One of these conditions must be satisfied for any solution of the resulting
equation.

Let similarly ¢ =— 1 (mod 3) be a prime such that ¢4+ m, ¢|»; the condi-
tion 6.3.6 must then be satisfied. The only cubes of K(3) which are congruent
mod g, to a rational integer are congruent mod ¢ to one of the forms %, (y 9y
or (z9%? =z, y and z rational. If therefore a« = @, is determined such that

734 o= +v,9+ wIP={u—wd+ v —wddN =tf—g9 (modq,)
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(t rational), the possible forms of ¢ mod q, can differ from e, only by a factor
of the type x, yJ or 29°. We thus get three linear homogenous congruence con-
ditions, one of the form
u—wd® _ v—wd
w,—w, d> v, — w,d

(mod g),

and two similar conditions when ¢, = u, + v; 9 + w, 9* is multiplied by 3 or 9%
(In the numerical applications, I have found it convenient to determine the «,
of 7.3.4 in the field K () instead of K (), using the correspondence 6.2.1.)

§ 4 1 have also systematized the treatment of the more general equation
7.1.2:
7.4.1 ax® + by +cel=0, 1=Za<b<e (a,b)={a,¢c) = ¢ =1,

with cubefree coefficients, and the result is given in Zable 2°. This contains all
‘equations 7.4.1 with abe¢ = A = 500, which cannot be excluded by the elementary
congruence conditions 2.1.10, or by the methods of Ch. III, V and VI. This
means that several soluble equations from Table 22 will be repeated. Note that
the equations x® + y® + 42° = 0 are not included in the list, because of the
condition a < b <e.

To exclude an equation 7.4.1 with @ > 1, it must be transformed into the
type a3 — my} = nzl, m < n, by multiplication by 4% b* or ¢®. In the cases where
this is not covered by Table 22, i.e. when » > 50, I have completed the exclusion

only in the one field K(ls/;z) (but even then I sometimes had to work in a field
with m > 50).

Blank spaces in Table 2P in the column for z, ¥ and ¢ mean that I have
not been able to find a solution. These unsolved equations all have ¢ = 1 in
the form 7.4.1; the corresponding combinations (b, c) are:

7.4.2 (2, 173), (2, 191), (5, 89), (11, 43).

Of these only the last one is common with 7.1.4. All the other equations have
a small b = m (with Ay = 1), and ¢ = n > 50 is a prime ¢ =— 1 (mod 3). I have
checked in all cases that the methods of Ch. V and VI do not lead to exclusion

3
in K(m); mod ¢ = »n this was done by the criterion 6.3.8. I have also checked

3
the conditions in all the fields K (Vn) when n > so. I believe that the equations
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7.4.2 are all soluble, in particular because of the first conjecture later in this
paragraph.

Before I give the results about the excluded equations 7.4.1, we must study
the number of such equations for given abc = A which are possible for all
moduli — T shall say simply possible. We call this nuomber N4 (the equation
x® + y® + A2* = o is possible for all moduli, but is not counted in N4); it is clear
that N, will depend on the number ny4 of different prime factors in A. In all
cases I have treated, we have 74 =< 4.

The number A is supposed cubefree. To avoid a distinction between the
primes and their squares, I shall use the following notation:

P =p or p° p any prime
7.4.3 Q=gq or ¢* g=—1 {(mod 3) a prime
R=7r or 7}, r=1 (mod 3) a prime.

Different primes of the same type will be denoted by indices. I shall further
use the abbreviated notation

7.4.4 {a, b, ¢}
for an equation ax® + &y® + c2® = o.
The cases n4 = I, 2, 3 and 4 must be treated separately:
ng =1, A = P: Obviously N4 = o.

ng = 2, A = P, Py: There is one a prior: combination

7-45 , {1, P, Py,

which may or may not be possible (for all moduli), and so N4 =o0 or 1.

ng = 3, A = Py Py P,: There are four a prior: combinations

746 {I: P17 PEPS}) {I: P2’ P1P3}v {I) P37 PIPZ}) {Pl) PS; P3}

We have seen in Ch. II, § 1, that there are no congruence conditions mod
any ¢, and none mod g if 3|/ 4. If therefore P, = 3, the combinations 7.4.6
are all possible mod 9, and similarly if P, =9, P,=+ P, =+ 1 (mod 9). If
however P, =9, but the last condition not satisfied, it is easily verified that
one and only one of the combinations 7.4.6 is possible mod 9. (Cf. 2.1.3 and
9.10.2—s5.) — If finally 34 A4, all four combinations are possible mod g if either
(arbitrary signs) P,=1 P,=+ P, =+ 1 (mod 9), or (for instance) P, ==+ P, =
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=+ Py (mod o); in all other cases only one combination is possible mod o.
(Cf. 2.1.2 and 9.10.6—8.)

If only one combination is possible mod g, this may or may not be pussible
mod some 7 such that r|4. If however all combinations are possible mod o,
and for instance P, = R, the solubility mod r (cf. 2.3.8) will depend on the

cubic character of
P, P, PP, and P} P,

of which always only one or all four are cubic residues mod ». 1t is therefore
clear that N4 =0, 1 or 4 if ns = 3.

ng =4, 4 = P PyP,P,;: There are 13 a priori combinations, 12 of which

can be obtained from the combinations 7.4.6 by inserting the factor P, in all
possible places, and the additional combination {1, P,, P, P, P;}. — This prin-
ciple can be used for general induction, leading to the number of a priori com-
binations for arbitrary #4:

{ ny—1 __
7.4.7 53" 1).

In particular, all 13 combinations for n4 = 4 are possible (for all moduli) if

7.4.8 4 =30 ¢ s

A tedious investigation of all other cases that can arise shows that we still get
Ni=0,1,4 or 13. — It would be an interesting combinatorial problem to

examine whether the result can be generalized to

fiA

7.4.9 Ni=2(31—1), 1=<mn

R4,
2

cf. 7.4.7. We have seen that this holds for n4 = 4; 1 have not examined further
cases.'

It follows from my Theorem XIV (Ch. IX, § 16) that the number of soluble
equations 7.4.1 is always of the form 7.4.9. Without exception, however, my
numerical caleculations have led me to the following stronger

Conjectures.

1. When N4 = 1, the one possible equation 7.4.1 is always soluble. — A weaker
form, and one very probably easier to prove, would be to say “can not be excluded

! (Added later). The formula 7.4.9 can be proved by group-considerations, using the ideas of
Ch. IX, § 16.
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by the methods of the present paper”. (ANl equations 7.4.2, and all but the last
one of 7.1.4, are of this type. The weaker form of the conjecture holds for all
equations I have examined.)

2. When N4 = 4, all four possible equations 7.4.1 are stmultaneously soluble or
insolublée. — This holds for all abc = A =< 500. The values of 4 with four pos-
gsible but insoluble equations 7.4.1 are given in Table 4% (22 such values below
500. — The last equation of 7.1.4 has Ny = 4.)

3. When N4 = 13, one and only one of the 13 possible equations ts soluble. —
This holds for 4 = 1000; the corresponding values of 4, together with the one
soluble equation, are given in Table 2°. (5 such values below 1000, all of the
type 7.4.8. The one soluble equation for 4 = 330 is also included in Table 2b.)

The values A of Table 4P all have ny = 3, i.e. N4 = 4 is maximal. None
of the A’s are divisible by 9 or any prime r =1 (mod 3). The smallest value of
A with r| A, N4 = 4, and giving rise to excluded equations, is

7.4.10 A =1570=2-3-519,
with the four possible but insoluble combinations
i1, 19, 30}, {2, 3, 95}, {2, 5, 57}, 13, 5, 38}.
The first value of A where correspondingly 9|4, is
7.4.11 A =990 = 2:5-9-11,
with the four excluded equations
{1, 10, 99}, {1, 18, 55}, {2, 11, 45}, {5, 9, 22}.

All excluded equations (crosses) in Table 2* correspond to. N4 = 4 or 13.
In the cases with A > 500 and N4 = 4, I have verified that at least one of the
other possible equations can also be excluded by my methods.

The equations with N4 = 13 (3rd conjecture and Table 2¢) demonstrate the
important fact that the converse of Theorem I (Ch. I, § 2) is false, even if we
suppose the equation az® + by® + ¢2® = o possible for all moduli.

§ 5. When an equation x* — my® = nz® cannot be excluded by some means,
I know of no finite method to decide whether or not the equation is soluble.
We have seen that the elementary congruence conditions 2.1.10 are not sufficient
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for solubility. My new conditions are of course stronger, but they also represent
congruence conditions for a homogeneous cubie equation (the ‘“‘resulting equation”
of Ch. IV), and there is no a priori reason why they should be sufficient. We
shall now even prove their insufficiency in most cases when n = 1, i.e. for the
equation

7.5.1 x®— my® = 25

It was mentioned in connection with the elementary comgruence conditions
2.1.10 that these can never exclude an equation 7.5.1. On the other hand, we
can obtain rather strong conditions for solubility in the field K (¢); this is shown
in detail in Ch. IX. From Table 4% we find the following cubefree values
2 <m = 50 for which 7.5.1 is insoluble:

7.52 m=3,4, 5, 10, 11, 14, 18, 21, 23, 25, 29, 36, 38, 30, 41, 44, 45, 46, 47.

The trivial solution ¥ =2, y = o is not considered. All the corresponding
equations were already proved insoluble by SyrvesTer [1] and Ptrin [1]—[3].

We shall treat 7.5.1 in the ordinary way in K (]s/i) = K(3). — It is at
once clear that class-number considerations will never lead to exclusion when
n=1; there are further no primes ¢ or r dividing n, thus giving rise to the
conditions of Ch. VI. The only possibility is to work mod a power of 3.

As already mentioned in Ch. V, § 1, this method was first used by Hovrzer [1].
But his treatment is incomplete, since he only considers the casesm=+ 2, + 3
or + 4 (mod 9), m squarefree or a complete square, and the class-number h, 0
(mod 3).

When m=+ 1 (mod g), and 34 hm, the ordinary equation x —y 3 = ge®
now takes the form

7.5.3 z—yd =8t =¢c (u+vd+wdkp i=o01,2
m m 1

The case ¢ = 0 is here completely different from the two other possibilities 7 = 1
or 2, and leads to the simple resulting equation 4.1.6:

.g. udw -+ myuv® + momgvw® = o.
2 Y 1 2

This can never be excluded by congruence considerations, but by énfinite descent.
It had been noted by Krawer (cf. Dickson [1], Ch. XXI, ref. 145) that a solu-
tion of 7.5.4 (at least with m squarefree, i.e. m, = 1) will lead to a smaller solu-
tion (x, ¥, 2,) of 7.5.1 than the one which originally gave rise to 7.5.4. The
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general case m = m,mj is treated by Fapprev (1], who shows that a solution
(x,y, 2) which gives rise to an equation 7.5.3 with 7 = o, will be the “#riplica-
tion”’ of another solution (x, ¥, 2;) (ef. Ch. IX, § 15). In particular:

y=3x,92 @l —alz+ 2§, and so o <|y, | <|y|

We can suppose that we start off with the solution of 7.5.1 for which |y|> o
is minimal; the possibility ¢ = o is then excluded. (Holzer's principle of descent
is for the expounent d of 3%|y.)

We therefore have to examine the equation 7.5.3 with z =1 or 2. It is
clear that this cannot give the trivial solution x =2 =1, y = o, since then
£ = N(a) = 1 shows that « is a unit, « = ¢, and we get the impossible equation
et =1,

If m=o0 (mod 9), we have seen in Ch. V, § 3, 2. that this case can never
be excluded mod 3. — If m=+ 2, + 3 or + 4 (mod 9), the only possibility for
excluding 7.5.3 is that neither &n nor &, have a coefficient divisible by 3 for 92,
(We/cannot operate mod 9, since the condition 5.4.7 is not satisfied.) Table 1®
(the residues for 7) shows that this condition is satisfied when

7.5.5 m=+3 or + 4 (mod g), ew==1 (mod 3),

but never when m =+ 2 (mod 9), since then at least one of ¢, and & has a
coefficient = o0 (mod 3) for 92. (What Holzer calls “condition B’ is consequently
never satisfied when m =+ 2 (mod 9).)

If m=+1 (mod 9), there are the two possibilities 3|z and 342z In the
latter case, we can replace &, in 7.5.3 by the nn of 5.7.10; @ must then be
chosen from class 5 (no denominator 3). Complete exclusion is again ¢mpossible,
since Table 1> shows that at least one of 5m or on has a coefficient = o (mod 3)
for 9®. — The case 3|2, i.e. 5.7.6, implies an additional factor z¢® on the right
hand side of 7.5.3, and can often be proved impossible by the methods of Ch. V,
§§ 7—10. This might be helpful in a search for numerical solutions.

A class-number h, =o0 (mod 3) was not treated by Holzer, but we shall see
that the equation 7.5.1 can never be excluded by his methods in this case. We
must introduce at least one y in 7.5.3:

7.5.6 x—yd=¢ yilutvd +wdy)? <andj=o,1,2,

cf. 3.8.3. This will represent all possibilities when h, = 3; there may also be



The Diophantine Equation ax® + by® + ¢2* = 0. 287

other values of y if hwm = 34> 3, but the factor ¥/ (j = o, 1, 2) can in any case
be made to represent three of the possible y; of 3.8.2.

It is clear from the case j = 0 that we can only hope to get complete
exclusion in the cases 7.5.5. The norm N(y) is a rational cnbe, and so =+ 1
(mod 9), and the possibilities for y mod 3 are the same as for em:

y==%1, fea or * e (mod 3)

We can therefore suppose y == 1 (mod 3), if necessary after multiplication by

a properly chosen power of &n (which is =2 1 (mod 3} by 7.5.5). The only pos-
sibility mod 3 in 7.5.6 is then ¢ = o:

x—yd =yl =yilu+vI +wdk) j=o01,2,

but here orly j = 0 can be excluded (by infinite descent). This holds even when
we can find a rational y. The resuiting cubic equation then gets the same simple
form 7.5.4 for all values of j, but the conditions for infinite descent are no longer
satisfied for j > o, since then a can be fractional. (If this was not so, we could
for instance exclude the case

m=22=4 (mod 9), hy =3, &p=23+33—491 (mod 3), y=2

But the equation 2® — 224® = 2° is soluble, ¢f. Table 6.)

The improvement of Holzer's method is therefore mainly negative. Apart
from extending the principle of descent to non-squarefree m, I have shown
systematically that the method of exclusion only applies when the class-number
hns=0 (mod 3), and the conditions 7.5.5 are satisfied (i.e. under the conditions
which were considered by Holzer).

But the results of Ch. VI, § 10 lead to still another limitation of the ex-
cluded values. 1f hy 320 (mod 3) and m has at least two different prime factors,
then the unit &, will be of Type 2, ie. in particular &, = 1 (mod 3). m must
consequently be a prime or the square of a prime. Since m = r or r® implies 3 | hm,
the only excluded values of m are therefore given by

{m=3; m=g=5 (mod 9) or m =g’ g=2 (mod g)

7:5-7 where kg0 (mod 3) and & =1 (mod 3),

which are all particular cases of Theorem VIII. — For the values 7.5.2, this
means that we can exclude only
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758 m =3, 4,5, 23, 41

(which all have hy = 1).

The negative results of this paragraph show that we can find an infinily of
resulting cubic equations which are possible for all module but insoluble in integers.
These equations will usually contain all possible terms (10 in all) in u, v and w,
and they cannot be deduced trivially (e.g. by linear substitutions) from insoluble
equations z® —my® = nz® or the more general type Az®+ Bzly + Czxy® +
+ Dy? = E2* (to which my above methods of exclusion also apply, cf. Ch. VIIIL
and Ch. IX, §§ 12—14).

3

§ 6. The equation z®—my® = £® has also been treated by Fapprrv [1],

both in the field K (Vm) = K(9) and in the field K(g). I return to his methods
in Ch. IX, § 15, and shall here only indicate his results in the field K(9). In-
stead of my equation 3.8.2 for n = 1:

761 x—yd=2¢yed=pue®; i=0,1,2;j=0,1,2,...k—1; pp=1

(also combined with the additional factor zo® of 5.7.6 when m ==+ 1 (mod 9)),
Faddeev considers the equation

7.6.2 9w — 2w —y9) =& y;8° = 4% 348° or 9Ap

(the two last possibilities only when m =+ 1 (mod 9)). The left hand side is
the cube of an integer of K(J) if and only if (x, y, 2) is the triplication of an-
other solution (cf. Ch. I1X, § 15). The number % of 7.6.1, and consequently also
the number of a priore possible equations, is always a power of 3. The same
holds for 7.6.2, but in this form Faddeev can prove (by groupk-considerations)
that the number G of soluble equations is also of the same type:

7.6.3 G =39

Here g is the number of generators (basic solutions) of the corresponding equa-
tion 2*— my® = 2* (in the Mordell- Weil sense). — In order to prove the insolu-
bility of such an equation, it will therefore suffice to prove that G < 3. I will
show that this principle can also be applied to 7.6.1 in some cases where there
is a one-one-correspondence between the equations 7.6.1 and 7.6.2.

Such a correspondence will obviously depend on the factor (x — 2)®. — If
we substitute z =X, y= 2, 2=— Y, m = A, the equation 2* —my® = 2* is.
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transformed into
7.6.4 X+ Y3 = AZ8

which is considered in Ch. IX (this is also the notation used by Faddeev). It
follows from 9.3.3 and 9.6.1 that we can put

7.6.5 x—z=X+ Y =sd,w? A|A,
where s is given by 9.3.4. In particular, 4, contains all prime factors q=—1
(mod 3) of 4. '

The detailed study in Ch. IX further restricts the choice of s and 4,, but
we shall here only use the simplest results (obtained by treating 7.6.4 as a
congruence mod 9):

If A = m contains no prime factor » =+ 1 (mod 3), then

m=t3or +4(mod g)>s=9, 4;,=A=m, y=Z=0 (mod 3)
766 (“case 1" of 9.3.4);

m =+ 2 (mod 9) — either case I, or s =1, 4, = 4 = m,

X=Y=% Z0 (mod 3) (“case IT").
If m=4 3 or + 4, then 7.6.5 takes the form
z—z=9mw® =9It
showing that there is a one-one-correspondence between 7.6.1—2, expressed by
7.6.7 i=p, B=98wa

In this case we can therefore conclude the insolubility of x®— my® = 2 if the
number of non-excluded equations® 7.6.1 is less than 3. It is however easily seen
that this principle will cover all the values m of 7.5.7, but no others, and no
new information is obtained in this way.

The other case of 7.6.6, m =% 2 (mod g), will not only lead as above to
the correspondence 7.6.7, but also to z — 2z = mw® = 3*w®, which leaves an extra
factor 9 when comparing 7.6.1—2. Now [g] = pb§, which will introduce a unit
n# 1 if p, is a principal ideal [»,], i.e. 9 = 75:

7.6.8 A=nqu, B=»nItuwia

A y is introduced if p, is non-principal.
! The case 4 =1 is now counted as not excluded.
19 - 842127 Acta mathematica. 85
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The result for m =+ 2 (mod 9) demonstrates that one soluble equation
7.6.1 may lead to several soluble equations 7.6.2. In the case just treated, an
additional consideration can however show a one-one-correspondence all the same
under certain circumstances:

Let as before m =+ 2 (mod o), and further km =0 (mod 3), &n = 1 {mod 3)
and so m = ¢ or ¢° by the same argument that led to 7.5.7. The u of 7.6.1 is
then u=¢l, 2 =0,1,2. From Table 1 (the entry for m =2, n =1 (mod o)) it.
follows that one and only one value of u # 1 is possible mod 3, and for this

value:
r—yd=peb=tpu=+(—1+9), ie y=o0 (mod 3).

This excludes the first possibility 7.6.6 (the correspondence 7.6.7), and leaves the
one-one-correspondence 7.6.8 between the equations 7.6.1—2. Since the number
of non-excluded equations 7.6.1 is less than 3, we conclude that the given equa-
tion is insoluble under the above conditions.

Combining this result with 7.5.7, we see that the equation X*® + Y3 =mZ?
has only the trivial solution with Z = o when

p m=3; m=gq or ¢°,, ¢g=—1 (mod 9), where hy =0 (mod 3)
7:09 and & =1 (mod 3).

Like 7.5.7, this result is still a particular case of Theorem VIII. — For the
values 7.5.2, this means that we can now exclude

7'6‘10 m=374) 5’ II’ 23’ 25? 293 4I$ 47

(the values 7.5.8 are repeated).

The remaining m of 7.5.2 all give rise to at least 3 non-excluded equations
7.6.1, and can consequently not be proved insoluble by similar auxiliary con-
siderations.

For completeness, I shall finally quote Faddeev’'s formulae for the exponent
g of 7.6.3. The number % of y's in 7.6.1—2 is a power of 3:

k= 3%
representing the number of different ideal-classes I of K () such that I®is the
principal class. It follows that the number of a prior: possible equations 7.6.2
equals 3*t! when m =+ 1 and 3**? when m =+ 1 (mod g). Faddeev does how-

ever state that not all these equations can be soluble when m == o (mod 3), and
so for cubefree m:
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7.6.11 {g§s+l when m=o0, + 1 or + 3 (mod o)
6.1

g=s when m=-+ 2 or + 4 (mod o).

For m =< 50, this implies insolubility (¢ = 0) only in the cases 7.6.10, m = 3
excluded. We further get too great a maximum number of generators (g < 2

instead of g = 1) for
m = 26, 28, 35, 42.

CHAPTER VIII. The Equation u’ —3u’v + v* = aw’.

§ 7. When applying infinite descent to the equation X% + Y® = 4 Z% of
the next chapter, one of the possible equations to which we are led is

8.1.1 ud— 3ude + 0% = 3puwd

if A=p is a prime ==+ 1 (mod 9}, or a product of such primes (Theorem X,
§ 5). If 4 =9gp (with the same meaning of p), the right hand side is replaced
by pu®, cf. § 4 below. The equation 8.1.1 was already studied by SyLvesrer [1];
the corresponding inhomogenous equation (with w = 1) has been treated by
LsuneereN (1]

As an application of my methods to an equation which is not purely cubic,
I will treat 8.1.1 a little more in detail. I prefer to deal with the equivalent
form

8.1.2 2 —3xy +y*=3p2

The corresponding congruence ts soluble for all moduli. — We have the case
2.3.1, with the discriminant # = 3% and therefore (by 2.3.3) only have to examine
the solubility of the congruence mod 3¢ and mod p. It is known (cf. Piriv [4))
that the congruence
8.1.3 22— 32+ 1 =0 (mod p)

is soluble when p is a prime == 1 (mod 9). Substitution of z =— y + 3, in
8.1.2 and division by 3 gives the new equation

9u —gaty + y* = p2,

which is possible mod 3¢ for all d, since the corresponding congruence mod 9
is soluble with ¥ and 2z =f o (mod 3).
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We shall treat 8.1.2 in the well.known field K (f) defined by
8.1.4 #—36+1=o0.

This is a Galois field (the discriminant o = 3* is a perfect square), and the con-
nection between the three {real) roots 6, &' and 6" is given by (cf. 8.1.11):

_0——1

— fH2
g =0 2.

8.1.5 O =—_ 1 =90+, 0"

The class-number h = 1, and a basis for the integers of K (6) is given by (1, 0, 6%).
Since 4 >0, there are two fundamental units; we may choose these as 6 and 0',‘
or as

8.1.6 g =0, g=0—1

(the first of these has a norm — 1, but this does not influence our arguments).
The natural primes =+ 2 or + 4 (mod 9) remain primes in K(f). The
factorization of 3 is

8.1.7 3=(—1—8°F(—1—0+6) ie. p,=[1+ 0]
unit

The primes p =+ 1 (mod g) factorize into three different, conjugate ideals:
8.1.8 [p] = [p, 0 —dllp,0 — d'llp, 0 —d"] = pp0p ¥},
where d, d’ and d” are the three solutions of the congruence 8.1.3. In particular:

81.9 d+d +d’' =0, dd +dd" +d d"=—13, dd'd’=—1 (mod p);
d—1

8.1.10 d= =d?—2, d'=—-——=—d*—d + 2 (mod p).

The last formulae are analogous to 8.1.5. The values of d' and d” are appar-
ently given in the wrong order, but the conjugates of an ideal p, = [p, 0 — d]
are really determined by

f

’ ’ - d_‘
b= (00 —dl = [0 —gto—a] - (p a0—a+ 1= |p o -2

={p)6—d']1
| 60— 1

pp=1[p, 6" —dl=|p,— —d]=[p’(d*1)0+Ilz[p’l“di‘]:

= [p, 6§ — d"].
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The relations 8.1.5 follow at once from the automorphisms of the binary
cubic form z®— 324® + ¢%:

r’”

8.1.11 x =—y, y'=x-—y; x"=——x+y, y =—

The norm of an integer in K (6) is expressed by

8112 {N(oz)=N(u+1)49+wﬂi’)=u”-—v"’~I-w”~f-6u”w——3uv2

+ouw+ 30w+ 3uvw,
and the cube of an integer:

A =u+v0+wdP=U+TVO0+ WO =
o =ud— 0+ w—gvw® —6uvw
LI
3 + 3 —2wd + wlv—uw?—vlw + ovwi+ 6uvw)d

+ 303w+ utw + uv® + 3uwd + 300w — vw?)6®.

§ 2. To simplify the calculations, I will suppose that the factor p of 8.1.2
is a prime =+ 1 (mod 9), or the square of such a prime. (Any cubed factor
can be absorbed in 2%). The equation 8.1.2 will then in the ordinary way lead
to three different ideal-equations in K (6):

8.2.1 [x —y6] = pybpa® = nad,

where P, is one of the three factors of 8.1.8 (squared if p is a square. The
product of two different ideals p,, P, and p, cannot divide x — y8.)

The automorphisms 8.1.11 show that the three equations 8.2.1 are simul-
taneously soluble or insoluble; in order to prove an equation 8.1.2 impossible, it
will therefore suffice to exclude only one of the equations.8.2.1. (If p contains
several different prime factors, and one of them is p,, it will similarly suffice
to exclude all those combinations for n in 8.2.1 which contain only the one
factor p,, of [p,].)

The equation in integers of K (f) corresponding to 8.2.1 is in analogy with
3.6.2:

8 2.2 { x—yl =¢elva® = eefle, + £,0 + 9,0 e =
=puat=(e+fO0+g®®)(u+v0+wb® ¢andj=o,1,?2

where N(u) = N(») = 3p, and where the units are given by 8.1.6. We thus have
to consider nine different equations, but we shall see that ¢t suffices for complete
exclusion to prove one of them only insoluble.
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As in Ch. IV, we are led to a ‘‘resulting cubic equation’ by equating the
coefficient of 6® to zero in 8.2.2:

8.2.3 gU+fV +(e+39)W=o,

cf. 8.1.13. By operating in the field K (6), we shall (as in Ch. V and VI) obtain
solubility conditions for the equation 8.2.2. It can be shown that these repre-
sent congruence conditions for the resulting cubic equation 8.2.3, but I will not
go into details with this.

We first deduce the condition 5.1.6 again:

8.2.4 g=o0 (mod 3).

For e =u+v0 + w6 =0 (mod p,) (since p,le—~3|z—>3|x&y), and 8.1.13
shows that then ¢*=+ 1 (mod 3).

If we cube a complete system of residues mod 3 and prime to 3, we find
that all possible effective cubic residues mod 9 are represented:

1, 1+30, 136 1+30+36°

{ef. 5.5.1), which shows that we cannot expect to obtain stronger conditions
mod 9 than mod 3. It is also easily verified directly that 8.2.4 is the sufficient
congruence condition mod 3%, 4 = 1, for the resulting equation 8.2.3.

Since p, = [3, 1 + 6]]|e, + f10 + 9,0° ie. e,—fi + g, =0 (mod 3), there are
only three possibilities:

+(e, +f,0+90)=1+6 1—6 or 6+ 6 (mod 3)

(the fourth possibility 1 —8 + *=1 + 26 + 6 = (1 + 0)® is divisible by p3), and
these can all be transformed into each other mod 3 by multiplication by suit-
able powers of the unit & = 6. Doing this beforehand, we may assume that we
have the first possibility, i.e. 9, =0 (mod 3) in 8.2.2. We can then only use
those combinations 7 = &&f which leave this condition satisfied, and these are

n=1 =¢¢&=0{0—1) or =¢ie;=06"(0—1)%
This limits the number of possibilities in 8.2.2 to three, given by
8.2.5 x—yl=16(0—1)li(e, + 1,0+ 9,00 =pve*=pnad®, (=01, 2,

provided g, = o (mod 3).
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§ 3. We now come to the conditions mod p, corresponding to those of
Ch. VI. From p, = [p, 6 — d}| z — y 0, we conclude that x = dy, x—y 0= y(d — 6)
(mod p), and we are led to a congruence

8.3.1 yld—0)=pe® = p(0) {a@)}® (mod pppy).
The two separate congruences mod P, and b, give

y(@—d)=uld){e(d)), yld—d")=pd") {a(@”)}® (mod p),
which combined give the condition

d—d u(d)

8.3.2 i—d " u (@) (mod p).

In particular, we must examine the influence on this condition of
n=0(0—1)=75(0) in 8.2.5. Using the formulae 8.1.10, we find that
n(d) d'(@d —r) _(1~d

sy~ () ot s

ie. a perfect cube. It will therefore suffice for exclusion mod p to consider only
i =0 in 8.2.5, and u of 8.3.1—2 can be replaced by v = ¢, + f,0 + ¢,6% g, =0
(mod 3). In particular, 8.3.2 takes the form

SH

—d v (@)
. dlr (dll)

8.3.3 (mod p).

S

-

If this is not satisfied, the given equation is insoluble. Since all rational num-
bers are cubic residues when p = ¢ =— 1 (mod o), the method will only lead to
effective conditions when p = r =+ 1 (mod 9).

Replacing p by some other prime p, =+ 1 (mod o), 8.3.3 will represent a
necessary condition for p,|z. If however p is the prime of the given equation,
we have p,=(p, 6 —dl|lv=e, + f,0 + g,6°. The argument that led to 6.5.5
still holds (cf. 8.1.9), and 8.3.1 — with u replaced by v — leads to exactly the
same condition as 6.5.6:

f; A a’ , —
834 fl — g, dn(R)p) .91 =0 (mOd 3)’

which will be a necessary condition for solubility of the given equations 8.1.1—2,
whern p ts a prime or the square of a prime. — We shall see in the next para-
graph that the condition g, = 0 (mod 3) can be omitted when 3(R)p.
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As an example, let us consider the smallest value of p that can be excluded,
p=73:
8.3.5 2 —3xy+ yd=3-732%

The solutions of the congruence 2® — 3x + 1 =0 (mod 73) are d = 39, d' = 48,
d" = 59, corresponding to the prime factors of 73:

p73 = [73; 0_39] =[5 - 20]3 p‘,IS = [73) 0—48] = [2 + 36]v
prs = [73,60 — 59] = [3—56].
We choose the first factor p;;, and multiply by p, = [1 + 6]:

(1+6)(s—260)=5+36—26

To get g, =0 (mod 3), we must multiply by 6 (the next paragraph will show
that this is not really necessary, since 3(R)73):
0(s + 30 —260%)=2—0+ 30°=¢ + f,0 +g,0°, where
17348 145 1

fl‘“!]ld'_
Si—gd' —1—3-359 178 32

which is not a cubic residue; the equation 8.3.5 is comsequently insoluble. (Cf.
the end of § 5 below.)

The results of my calculations are given in Table 7, where I treat all equa-
tions 8.1.1 (in this form, with %, v and w) for which p < 500. Apart from
primes, the list contains the squares 17® and 19? and the product 17-19. Crosses
stand for equations which have been proved insoluble by the criterion 8.3.4. In
all  other cases a solution is found. It is rather striking that all non-excluded
equations with p=+ 1 (mod 9) have a solution with w= 1. (I found these
solutions, the bigger ones by the continued fraction for 6, before 1 excluded
the remaining equations. To decide the cubic character of the fractions 8.3.4,
I used the table of indices in Kraircurk [1]. — The solutions with w > 1 were
found from the resulting equation 8.2.3.)

Because of the automorphisms 8.1.11, the solutions will always occur in
groups of three, with the same value of w. Table 3 only gives the one solution
in each group for which «, v and w are all positive.
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§ 4 For use in the next chapter (Th. X, § s5), Table 3 also contains the
equation
8.4.1 wt— 3wt + v = puwd

for 9p < 5oo (with the same meaning of p as above). Simple solutions are found
in all cases. I shall sketch briefly how the earlier considerations must be modi-
fied for this equation, which I will treat in the form corresponding to 8.1.2:

8.4.2 2 —3xy’ +yt=p2t

This is possible for all moduli. The ideal-equation 8.2.1 now takes the form
[x —y6] = p,a®>. We suppose that p is a prime or the square of a prime; it
will then suffice to exclude one of the three corresponding equations.

8.2.2 can be used as it stands, if N(u) = N(») = p. Since p, 1 », there are
now nine different possibilities mod 3: ‘

+ (e, + £,0 +9,00)=1 , 6 , @
1—8 , 86—86° , I+ 6 (mod 3),
1+60+6, 1—0—6° 1+60—¢6°

which can all be transformed into each other mod 3 by multiplication with suit-
able powers of the units ¢ = 6 and ¢ = 6§ — 1. Doing this beforehand, we may
again suppose that we have the first possibility, i.e. f; =g, =0 (mod 3)in 8.2.2.
The condition 8.2.4 is still necessary, and the only values of 7 = & ¢ which
leave this condition satisfied are

8.4.3 n=1, 5 =06, n=0—1.

The condition 8.3.2 remains the same, and is only effective if p = r=+ 1
(mod g). We then have to examine the influence of the factors (cf. 8.1.10):

[t nld) & a—ip

Yogld”) 4" dd—1) d{d—1)

8.4.4 @ @ 2@ 1) (mod p).
_ s _a —-1_ — U, —

ltg - ng(d") - dn —1 - d3 d(d I)

The exclusion will therefore depend on the cubic character mod p of d(d— 1).

The congruence
(d* —1)*=3d(d—1) (mod p)
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shows that 3 and d(d — 1) are simultaneously cubic residues or non-residues. [f
therefore 3(N)p, one and only one of the three units 8.4.3 ¢s always possible mod p,
since then 1, ¢, and ¢, all belong to different classes mod p. If however

8.4.5 3(R)p, ie. d{d—1)(R)p,

all three units are simultaneously possible or tmpossible. From 8.1.9 we conclude
that
dd'd’=—1(R)p, (d—1){d —1)(d" —1)=1(R)p,
and 8.4.4 shows that the condition 8.4.5 is equivalent to
8.4.6 d~d ~d', d—1~d —1~d"—1 (mod p).

But then the condition 8.3.2 is independent of the use of any unit
elel = 60— 1). The given equations 8.4.1—2 are therefore insoluble if p s a
prime =+ 1 (mod 9) for which 3(R)p (or the square of such a prime), and if the
condition 8.3.4 s not satisfied for an arbitrary v = ¢, + f,0 + g,6°. — The only
equations 8.4.1—2 with p < 500 which can be excluded correspond to

b =271
cf. the end of the next paragraph.
It is clear that when 3(R)p, the criterion 8.3.4 is independent of the use
of units also for the equation 8.1.2, and the additional condition g, = 0 (mod 3)

can then be omitted.
§ 5. There is an interesting connection between the two equations

8.5.1 ' —3xyt+y*=p2’
8.5.2 2 —3zy?+ 9y =3p2b
expressed by the following

Theorem VII. If p=+ 1 (mod o) is a prime which has 3 as a cubic residue
(or the square of such a prime), then at most one of the equations 8.5.1—2 s soluble
if d is a cubic non-restdue of p.

We note that the choice of d among the roots of the congruence 8.1.3 is
irrelevant, because of 8.4.6. — Let p, = [»(6)], so that the equations 8.2.2 cor-
responding to 8.5.1—2 take the form

x—yl=n-v0)a® and x—yf=1n(1 +0)v(6)-



The Diophantine Equation ax® + by® + ¢2® = 0. 299

respectively. We use the criterion 8.3.2, which is now independent of the unit

1]

7 (since 3(R)p), and we have to compare - with
v(d) 1+d v(d)
W) P @)

But these expressions belong to different classes mod p, since

1+d _ 3d
1+d’ (1+d")8

~3d ~3d (mod p),

which is a cubic non-residue by the conditions of the theorem. This concludes
the proof.
The primes p=+ 1 (mod g} and < 500 for which 3(R}p, with the corre-

sponding values of d, are
p=73 d=39; p=271, d=283; p=307, d=—86.

In all cases, d is a cubic non-residue of p. Since the following equations are

soluble:
—3zy*+yt =732 tax=3 y=2 z=1

22—3xyt+yd=3072 x=12 y=7 z=1

2 —3xyi+ iyt =3-2712" tx =17, y=10, 2=1,

it follows from Th. VII that 8.5.1 is insoluble for p = 271 and 8.5.2 for p = 73
and 307 (cf. Table 3 and the example 8.3.5). But Th. VII will of course nof

cover all ingolublé equations 8.5.1—2.

CHAPTER IX. The Equation X® + Y* = 425

§ 7. We have seen in Ch. VII, §§ 5-—6, that a treatment of the equation

X34 Y® = AZ® in the field K(VA4) led to incomplete results about the solubility
of such an equation. The object of the present chapter is to improve the results

2ni

by a treatment in the field K(g), e = e ® , as already indicated by Huvrwirz [1],
Nacern [1] and Faopeev [1]. (See the Introduction.)

I shall make use of the cubic law of reciprocity, and quote the following
results from Bacumanwy [1], pp. 185—099 and 220—24:
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As already mentioned in Ch. IV, § 4, the primes of K(g) are A= 1—p
(where 1% = — 3 ¢), the rational primes ¢ =— 1 (mod 3) and the conjugate factors
of the rational primes » =+ 1 (mod 3), » = 7z, #,. I denote by n = a + be any
prime ¢, m, or 7, By multiplication by a properly chosen unit ¢ from K (g)
(e=+1, £ o or * ¢%, we can always put = in the primary form:

9.1.1 a=—1, b=o0 (mod 3)

For any integer v of K({g), we have

N(n)—-1
v 3 =1, g or of (mod #), if (v, #n) =1,

where N means the norm in K (g); and we define the cubic character of v mod = by

¥ 4
[;]=1, ¢ or p*

respectively; the first alternative corresponds to the ‘cubic residues mod n. The

ENEE)

The cubic law of reciprocity states that

[2]-15]

when = and n’ are two different primes in primary form. — We also need

symbol is mulliplicative.

some supplementary results:

0 N(m) -1
9.1.3 LA 3
HEIRE

which shows that ¢ is a cubic residue of = only if z = ¢=—1 (mod 9), or if

w = m,, where r = n, i, =+ 1 (mod 9).

R
HEEREY
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The value of the cubic character [ ] is replaced by its conjugate (i.e. ¢ replaced

'

by ¢°) if both ‘“numerator’ and ‘‘denominator’ are replaced simultaneously by
their conjugates. — Finally two conjugate primes are always cubic residues of

each other:
b3 7
9.1.6 [E] = [;] = I.

The main formula ¢.1.2 still holds if the definition g.1.1 of the primary
form is replaced by the weaker definition

9.1.7 b=o0 (mod 3).

This is nof the case for 9.1.4, but the equivalence g|b=3(R)r is of course still
valid. — If nothing else is said, “primary form’ will throughout this chapter
only refer to the weaker definition 9.1.7.

§ 2. As already mentioned in the Introduction, the equation
9.2.1 X+ Y*=AZ®

was proved insoluble in many cases by Syrvesrer (1], Pépix [1]—[3] and others;
for complete references, see the fourth heading 1.5.1. The most important resuit is

Theorem VIII (Sylvester, Pépin). The equation X® + Y% = A Z® has only the
troveal solution with Z = o ¢f A has one of the following jforms:

9'2_2 {37 . ql (> 2)7 Q27 q?v ng 9q1; 9sz 9_‘[?7 9g37

ql qs, q% qu QI Qi21 QS Q?,

where ¢, =q1=12 and ¢; = ¢a =5 (mod 9) are primes.

The cubefree 4 < 500 covered by this theorem are given in Table 42 —
The insolubility of A = 3 and 4 had been proved earlier by LreexbrE (1], who
also stated that 4 = 5 and (erroneously) 4 = 6 are insoluble. The well-known
simplest cases 4 = 1 and 2 are mentioned in 1.4.2—3.

The values 9.2.2 are all those with no prime factors » =1 (mod 3) which
were proved insoluble during the 19th century. (Cf. the comments to 9.4.5.)
There are also some earlier results about insolubility when A contains one
prime factor r; the most important of these results are

SyrvesTer (1], Pepin (3]:

9.2.3 A= 3r or 37 where 3(N)r.
9.2.4 A =127 4r, 27® or 47°, where A=+ 1 (mod 9}, 2(N)r.
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Piérin [3] (Dicksoxn (1], Ch. XXI, ref. 207):

9 2 5 { A = 18 . (7‘1, 'rsa 7.47 T%y Tga 7‘3)1
e . . 2 2
A = 36 * ("1’ Fay Tgy 71, rg) 74))
where 7y, ..., are primes which can be expressed in the forms

ri=(0m+ 4+ 3(gn + 4)°, ro=(gm+ 1)* + 3(0n + 1)},
rg=(om+ 2)* + 3(9n =+ 2)% r,=m?+27(3n + 1)

We shall need later the residues mod g:
9.2.6 r=1, rg=4 and 7,=7 (mod g),

and the cubic characters of 2 and 3:

2 { 2 (N) T, 2 (N) Te, 2 (IV) Ty 2 (R) T4
927 3(B)ry 3R 3(B)ry 3(N)7,

This follows from some well-known equivalences (cf. SyrLvmster [1], p. 346):
Let » = f* + 3¢ be a prime; then

3lg=2(R)r, olg or olft g=3(R)r.

The values 4 of 9.2.5 all have the prime factors 2 and 3, and the varying
factor ». Pkrin [3] also gives some results of insolubility when the factor » is
fixed and the other factors vary. I shall quote his results for the smallest value
r=7. (There is not full accordance between Pépin's introduction and his later
proofs, and there are several errors. The formulae below are the correct ones.)

We group the primes ¢ =— 1 (mod 3) by their residues mod 126 =2-7-9
in the following way:

[q1=126h+29, 83 gs = 126 h + 41, 113

o gs = 126 h + 47, 63 gs = 126 h + 11, 101
9‘2 ’
1q4 =126h + 5, 23 qs =126 h + 59, 95
q; = 126k + 17, 53, 89, 107.

! There is a misprint in Pépin (copied in Dickson): %* = 72 should be replaced by @® = 2.
— There are several misprints and inaccuracies in Pépin's paper.
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Then the following values are proved insoluble by Pépin:

9.2.9 7-(gs @5 03 04, 05 @) 77 (@ O dw @b s 43),

9.2.10 2:70a @), 2% 7 (a5 @) 277 (g5 @), 2°-7°-(d] @)
To these I can add

9.2.11 2:7-(gs ad) 2*-7°-(e5 )

9.2.12 { 9'7'(Q11 qu 9s, qg) qu qéa q;'lz’ 44 qf, q;v 9s: q%),‘

9-77(ay, 4, s, G5 ¢ B &5, 63, G4 9D, 45 ).

We shall need later the residues mod 9 of the primes 9.2.8, and their cubic
character mod 7:

U=G=@G=2 G=¢==35, ¢=28 (mod 9);
9.2.13 g, and ¢ (R)7; g5, @5, Qs g« and g5 (N)7;
G~ q~2, gs~qi~3+2 (mod 7).

Pépin also gives similar (incomplete) results for
r =13, 19, 31 and 37.

I omit them here, as they are all covered by my general Theorems XI (§ 8)
and XII (§ 10).

§ 3. In the field K(p), the left hand side of 9.2.1 factorizes as
9.3.1 X+ YVP=(X+Y)(X+Yo(X+ Yp*) =428

(where of course X and Y are supposed to be rational infegers). We must have
(X, Y)= 1, since we only consider cubefree values of A. Any common divisor
of the three factors of 9.3.1 must divide the differences

Y(t—e), Y(1—e¢%) and Y(e—e?)
and the only possible common factor is therefore
9.3.2 =1—¢, if X+ Y=0 (mod 3), ie. 3/4Z.

It is further clear that X + Yo or X + Y ¢ cannot be divisible by a rational
integer > 1, i.e. in particular not by A% = — 3.
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Treating X® + Y* = 4 Z* as a congruence mod g, we see that we must have
3|Z, ie. the case 9.3.2, if A== 3 or + 4 (mod 9). When 4 =+ 2 (mod 9),
there is also the alternative possibility X =Y =4 Z=0 (mod 3), and if
A=+ 1 (mod o) the possibility X Y =0 (mod 3).

We will first suppose that A contains no prime factors r =1 (mod 3). As all
primes ¢ = — I remain primes in K (p), and hence cannot divide (X + Y ¢)(X + Y¢%),
9.3.1—2 give us the following possibilities:

Case I: 3| Z (the only possibility when 4 =+ 3 or * 4 (mod 9)):
X+Y=9Aw®, X+ Yo=ch(u+ve)®, Z=3w - Nu-+ve)

Case II: 34 Z, A=+ 1 or + 2 (mod g):
X+Y=Auw®, X+ Yo=c¢(u+v0? Z=w-Nu+vo)

Case III: 34 Z, A =0 (mod 9):

X + Y=§Aw3, X+ Yo=cilu+v0 Z—w Nu+wve)

Here ¢ stands for some unit 1, ¢ or ¢ of K (o) (a negative sign can be
absorbed in u + vg). The expression for X + Y ¢® is always the conjugate of
X + Yo. u and v are rational integers, and the norm N (u + ve) = u®>— uv + v°
In all cases we must have Atwu + vg, or u+ v=0 (mod 3). The condition
(X, Y) =1 implies {u, v) = 1.

The cases above will be referred to throughout as I, I1 and III, without
further reference. In order to avoid a separate treatment of each case, we note

that &{(u + vo)® of case Il can be replaced by é & A(u, + v,0)%, where still

(ug, v,) = 1, but now u, + v, =0 (mod 3), i.e. |u; + v,i0, 9 = 0A*||A(u; + v, 0)%,
and where ¢, is some properly chosen unit. This device may seem artificial, but
it means a great simplification of the calculations. The equations in the cases
I—III can now all be included in the one formula:

s——_
933 X+ Y=sd4uwd, X+ Yo=tedlu+vo)® Z=V3stt -(u®—uv+ ) w,
where
[Case I: s=9, t=1, u+v=0 (mod 3).

Case II: s=1, t=-, u+v=0, w0 (mod 3).

O | =~

Case ITI: s=-, t=1, u+v=0, w0 (mod 3).

L
3
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§ 4. We can draw some immediate conclusions from 9.3.3, by substituting
A =1—p, and comparing real and complex parts for the three possibilities e =1,

¢ and o%:

e=1: X =t(u®+ 3uv—6urv®+ 19
Y=—tw—6u*v+ 3urv’+ 1% and so
X+ Y=9tuv(iu—ov) =sduw

This is ¢mpossible in case III, since then 3| s A w®. In both cases I and II,

we have s = 9f, and

uv(u—v) = 4w

The factors of the left hand side are coprime in pairs (since (%, v) = 1), and we
conclude that there must exist a factorization of A = abe, and three rational

integers z, y and 2z, so that (the negative sign for « is convenient):
9.4.1 u=—ax® v=0by" u—v=ce®;, w=—uzye,
or by addition of the three first equations:

ax®+ by +ce* =0, abe=A4, (a,b) =(a,¢)=(,c)=1.

If this is soluble, so is the given equation X*® + Y* = 4 Z*. Going through
the calculations, we find that X, Y and Z are expressed in terms of x, y and 2
by the formulae 1.2.4 of Theorem I

One possibility of factorization is of course:

9.4.2 a=b=1, ¢= A,

ie. the same equation 9.2.1, but with a smaller numerical value of Z (cf. § 13,

Lemma 1). For
Z=V3ist-—uv+ o) =—V3sf Nu+ve) aye.

We will suppose 4 > 1, ie. xy % 0, and further 4 2, i.e. xy > 1, |zy|> 1.

i

In case I' we have V3st®=3, N(u+ve)=1, and in case II V3is'7t”=§

N(u + vg) = 3 (since L|u + vg). In both cases we find

9.4.3 Izl <|Z]

20 - 642127 Acta mathematica. 85
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We can consequently use the argument of “iufinite descent”: If the original
solution (X, Y, Z) is the one for which |Z|> o has the minimal value, then
the possibility 9.4.2 is excluded.

We shall see in a moment (§ 5) that the other possibilities ¢ = ¢ or ¢” are
excluded if 4 is not a product of primes =+ 1 (mod g), or 9 times such a
product, and we can therefore enunciate the following

Theorem IX. If A > 2 s cubefree and contains no prime factor r =+ 1 (mod 3),
and if in the cases A=o0 or + 1 (mod 9) A contains at least one prime ¢ =— 1
(mod o), then solubility of X* + Y3 = A Z>® implies solubility of at least one of the
equations

944 ax®+by*+c2®=0, abe=A4, 1=a<b<e¢, (a,b)=(a,¢)=(bc)=1

(not necessarily all of these, cf. the 3rd conjecture of Ch. VII, § 4). If all
such equations can be proved insoluble (in particular, if no such equation
exists, i.e. when A4 is a prime ¢=— 1 (mod g) or the square of such a prime),
then X®* + Y3 = A Z® has only the trivial solution with Z = o.

The values of A for which the equations 9.4.4 (if existing) can be proved
impossible by elementary congruence considerations are given by Theorem VI1I
8 2)’; they all correspond to n4 =1 or 2 in Ch. VII, § 4. In the latter case,
the equation 7.4.5 can be proved impossible mod g by 2.1.2—3.

We have seen in Ch. VII that all equations 9.4.4 can sometimes be excluded
by my new methods when N,=4. The corresponding values of 4 < 500 (22 in
all) are given in Table 4°; they satisfy the conditions of Th. IX, and consequently
represent tnsoluble equations X® + Y*® = A Z3.

The smallest value of A in Table 4 is

9-4.5 4 = 60,

which was stated by Pépin to be insoluble (in a communication to Lucas, cf.
SyLvestErR [1] p. 316). Sylvester could not verify this by his methods, and I
doubt if Pépin possessed a valid proof. There are two direct errors in the same
communication, namely the insolubility of A = 31 and-67, which are both soluble
by Table 6. (But the insolubility of these was ‘‘verified” by Sylvester!)

The argument that led to 9.4.3 is easily extended to the cases 4 = 1 and 2,

giving the well-known results mentioned in connection with 1.4.2—3.
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We noticed that ¢ = 1 was impossible in ease III. An interesting corollary
is that if 4 =0 (mod 9), and the conditions of Th. IX are satisfied, then all solu-
tions of X® + ¥* = A Z® must have Z=o0 (mod 3).

We can further note that ¢ = 1 for 4 = abe=+ 1 (mod 9) is possible only
tn case I, since it is easily seen that we must then have w = — xyz = o (mod 3).
If therefore 4 =+ 1 (mod g), and the conditions of Th. 1X are satisfied, then
all solutions of X3 + ¥3 = 4 Z% must have Z =0 (mod 9).

§ 5. If we put ¢ = ¢ in 9.3.3 and compare the real and complex parts, we
find (Z is included to avoid repetition in Th. X):

(X = t(u® —6ulv + 3uv? + %)
9.5.1 IY=t(2u3——3u2v—3uv2+2v3)

Z = 3‘3/3*9?@9 —uv + v*)-w, and

9.5.2 X+ Y =3tu—3udv+ 1) =sdu’

The form f(u, v) = 4® — 3u*v + v® was treated in Ch. VIII. We have seen

that it cannot be divisible by ¢ if {(, ) = 1; and obviously 3] f{%, v) if and
only if #+v=o0 (mod 3). This shows that 9.5.2 is impossible in case I, since

then 3it= 3 and u + vs=0 (mod 3). Further f(u,v) can only contain prime

factors 7 3 which are all =+ 1 {mod 9); the same holds for 4 if g.5.2 shall
be possible. Inserting the right values of s and ¢, we get

Theorem X (Sylvester). Let the cubefree integer A > 1 be a product of primes
=+ 1 (mod 9). A solution of the equation

9.5.3 W —3utv + 0° =3 Au®
will lead to the solution 0.5.1, with s =1, ¢t = é, of X3 + Y3 = A Z3; and a solution of
9.5.4 u— 3ude + 0% = 4w

will lead to the same solution, with s = ;, t=1,0f X3+ Y3 =942

Since we have the cases IT and III only, we notice that all solutions given
by 9.5.1 will have Z =0 (mod 3).
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The case ¢ = g¢® need not be treated separately. Instead of the equation

9.3.3, X + Yo =t*i(u + vo)®, we can consider the (equivalent) conjugate one:
9.5.5 X+ Yo =tod(u + vop,
where 1=1—0%=—9%(1 — @) = — 0®2, (u + v0®?® = (v + wg)®, and multiplication

by ¢ in 9.5.5 gives
9.5.6 Y+ Xo=toh(—v—ugh

This corresponds to the case ¢ = ¢, if we interchange X and Y and replace u
by —v, v by —u.

The conditions under which & 7 1 is possible can also be deduced zndepen-
dently of the properties of the form flu, v) = u> — 3u’v + 1. Subtraction of the
two first equations 9.3.3 gives

9.5.7 Yi=sAuw?—ted(u + vop.
In case I we have s =9 = gA* ¢t =1, Atu + vo, hence (u + vg)P =+ 1 (mod A%),
and

Y=+ ¢ (mod 4%, ie. mod 3),

which is clearly impossible if ¢ = ¢ or %
Let next p % 3 be a prime divisor of 4, so pt Y. It follows from 9.5.7 that

Y=—te(u+voP? so Y=—1&(u+ vo®’® (mod p)
by taking conjugates. Dividing these expressions, we see that

(B)p,

which is only possible with ¢ 1, -~ = ¢ or ¢% if p=+ 1 (mod 9) {(cf. 9.1.3).

)

A list of solutions for the equations 9.5.3—4 is given in Zable 3, ¢f. Ch. VIIL.
Several equations 9.5.3 have bLeen proved insoluble when A is a prime r=+1
(mod g), or the square of such a prime. This does not necessarily imply insolu-
bility of the corresponding equation X? + ¥3 = A Z3 since there are also other
possibilities of descent (§ 6) in this case. (But see §§ 12—14 below.)

If A=¢@=gq or ¢® (in the notation 7.4.3), ¢ =—1 (mod g), the equation
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9.5.3 represents the only possibility of descent. And the methods of exclusion in
Ch. VIII do not apply, since the condition 8.3.4 is only effective for a prime
p=r=+1 (mod 9).

The last remark also holds if A =9 Qor A = Q, @, where gq=¢q, =g, =—1
(mod g). But then the one equation 7.4.5 is also possible for all moduli, and
cannot be excluded by the methods of this paper, if the weaker form of the first
conjecture in Ch. VII, § 4 is true. This remark holds for any combination
A = @, Q, which is not covered by Th. VIII (§ 2), and we can consequently
enunciate the following negative result: :

Let A (cubefree) contain at most two different prime factors, and no prime
r=+ 1 (mod 3). If the weaker form of the first conjecture tn Ch. VII, § 4 s
true, then Theorem VIIT will give all such values of A, for which the equation
X3+ Y3 = AZ® can be proved insoludble by the methods of the present paper.

§ 6. If A contains one or more prime factors r =+ 1 (mod 3), the above
possibilities of descent stzll exist, giving rise to the Theorems I and X. But
there is also another possible descent in this case, depending on the fact that
the primes » = m, 7, factorize in K (9). In addition to 9.3.3, we now get one or

more systems
X+ Y=s4,u® X+ Yo=1tAa+bo)lu+ veP,

9.6.1 . a+be#A+ 1, To =%
Z = V;é:fé(W-u@ + v?)-w, where 4 = 4, N(a + b‘g),

with the values of s and ¢ given by 9.3.4. — Here a + be is a product of
primes 7, such that 7| A. The unit ¢ is absorbed in a + b, for which there are
consequently three a prior: possibilities for each choice of the factors m,. The
conditions (X, ¥) =1 and Afa + be imply (e, b) = 1 and a + b=o0 (mod 3).

If 4 contains several primes », the number of possible combinations a + be
may become considerable (some of these factors » can of course divide 4,, which
must contain all prime factors ¢ of A). But there are some important simpli-

fications in this connection:
1. a + bo can never be divisible by two conjugate primes n, and 7, i.e. by 7.

2. The equations 9.6.1 for two conjugate values a + be and a + be® are
equivalent, and it suffices to treat one of these possibilities. For instead of the

equation
X+ Yo =tala+ bo)(u+ vef,
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we can consider the conjugate one:
X+ Yo =tAa+ bo)(u + ve?)P.

The argument that led to /9.5.6 shows that this can be written as
Y+ Xo=tAla+ bo)(—v—uoP,

which is equivalent to 9.6.1.

3. If A (cubefree) is divisible by a square 7% then =, |a + bo — nt|la + b,
since the possibility = ||a + bo, r|| 4, implies the common factor =, of X + Yo
and X + 7.

As an important corollary of the above results, we see that apart from the
chotce of unit, there is only one possible system 0.6.1 if A contains just one prime
r=1 (mod 3) (to the first or second power).

Comparing the real and complex parts in 9.6.1, we find (Z is included for

convenience):
X 3 2 2 3 3 2 2 3
7=a(u +3utv—6uv? + %) + bW —6uPv+ 3uv? + 07

9.6:2 %=——a(u3~6uﬂv+3u02+v3)+b(2u3—3ugv~3uv’+zvs)
lZ=V3st2-(u2—uv+1;2)-w, and

9.6.3 3auv(u—v)+b(u3—3u2v+vs)=%-A1w3=A2w3 (=X3+tY)'

A solution of this equation will consequently lead to the solution 9.6.2 of
X3+ Y%= AZ® where A= A,-(a®—ab + b®). The values of s and f are given
in 9.3.4. We note in particular that we get the same equation 9.6.3 in the

two (most important) cases I and II, since then % = 3.

§ 7. The mecessary and sufficient conditions for solubility of the congruence
corresponding to 9.6.3:

9.7.1 3auviu—v) + bw® — 3utv + 19) E—;-t-Alw‘* = A4,%° (mod p9),

SJor all primes p and all exponents 8, are given by:

9.7.2 gl 4, ie. q|4,: [a +qbg] =1
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atbe
_ S la+be? a+be
9.7.3 ¥ = 7T 7'51'|A2- T =1, Or ;I—b‘E(R)T

9.7.4 nr|la+be, ie. r|N(a+bo): b*A4y(R)r, or b~ A, (mod 7).

The above conditions are the same in all cases I—III. To obtain the con-
ditions mod 37, these cases must be treated separately:

9.7.8 Case I,if 344: b=o0 (mod 3).

9.7.6 " ", if 3|4:  b=o0 (mod 9).

9.7.7 Case II, 344,: b—2a=+ 4, (mod 9).
9.7.8 Case I1I, gll4,, 34 4;: b=+ 4, (mod 9).

To prove the conditions 9.7.2—8, we need the results of Ch. II, § 3, in
particular 2.3.3. We note that the discréminant of the left hand side of 9.7.1 is

9.7.9 4 =3"Na+bof=3"(a"—ab+ b}

which has no prime factor 5 3 in common with A, (by 3. of the last paragraph).
For all p 7 3, it will therefore suffice to treat 9.7.1 with d = 1.

With the notation of 2.3.1, we find for g9.7.1 that 4 = b, B = 3(a— 1),
C=—3a, D=1b, E= A, and the primes p 3 which must be considered are
by 2.3.3 and 9.7.9:

p=gq if q|d,; p=7r if r|bA4,(a® —ab + b,

i.e. the primes of 9.7.2—4, and in addition the primes s such that »|b. But it
is clear that in the latter case, the congruence 9.7.1 for § = 1 is always soluble
with u =v=0, w =0 (mod »). And since r4a, i.e. r+ o, we can find solutions
for any ¢ > 1 by varying « or v only.

Let next p %3 be a prime factor of 4,, so p4 Y. Subtraction of the two
first equations -9.6.1 and division by 2 = 1 — ¢ shows that

—Y=tla+bo)(u+veP, so —Y=tla+ be®(u+ ve*® (mod p)

by taking conjugates. If p = ¢g=—1 (mod 3), Y and ¢ (rational) are both cubic
residues of ¢, and we get the necessary condition 9.7.2. If p ==+ 1 (mod 3),
division of the two expressions for Y similarly gives the condition g9.7.3. To
show the sufficrency of these conditions, we note that they both imply the
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existence of three rational integers w,, v, (not both = o0 (mod p)) and ko0
(nod p) such that
a+bo==kv, + u0? (mod p), or

a=k(uw—3ulv, +d), b=—k 3u v (4 —v) (mod p)

Since p| A, we have a solution w = u,, v =1, of 9.7.1 (with ¢ = 1, which suffices
since p & A).

Let finally 7|A be one of the primes which have been used for forming
a+bo, ie m|a+bo, r|Nla+be)=a>—ab+b* rtbd rtd,wd. After multi-
plication with % the congruence g.7.1 (with ¢ = 1, which suffices since r 4t 4,)
can be written as

(bv—aul® + [(a + b)u®— 3buv]-(a® —ab + b%) = b 4,0 (mod 7),
hence (bv— au)®=b? 4,4 (mod 7).
The necessity and sufficiency of 9.7.4 is an immediate consequence.
We now turn to the conditions mod 3% and treat the simplest cases

9.7.7—8 first. In case 1I we have 34 4, and gg—t = 3. Since u + v=o0 (mod 3),
we substitute © = —u + 3, in 9.7.1, and find after division by 3:
(b—2a)u® + 9au’v,—9(a + blurl+ gbvd = A, u® (mod 371),

for which clearly 9.7.7 is the necessary and sufficient condition for solubility for
all 4.

In case III we have gl| 4; and ;—t = ;, s0 34 A;. From u + v o0 (mod 3)
we conclude that
9.7.10 uv(u —v)=o0 (mod 3), «®*—3u*v++* == 1 (mod g),

which proves 9.7.8.

In case I we have 3it=~3 and u + v 0 (mod 3). Since 4 and 4, are

exactly divisible by the same power of 3, the necessity of the conditions 9.7.5—6
is clear from 9.7.10. I omit the verification of their sufficiency here; the proof

is an elementary, but tedious enumeration of cases.

§ & The conditions 9.7.5—8 show at once that we must have b = o (mod 3)
in case I, b2 0 (mod 3) ¢n case II]. But we can also deduce similar properties
in case II, namely: For A=+ 1 or + 2 (mod 9) ¢n case Il, we must have b=o0
or b =0 (mod 3) respectively.
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We notice that At a + be implies a + b=0b— 2a = 0 (mod 3), which leaves
the following possibilities for a2 + bg (in all cases):

9.8.1 b=0, a=o0 or a—b=o0 (mod 3).

These can all be obtained from one by multiplication with properly chosen
units 1, ¢ or g%
We suppose that we have case II, and let first b= 0 (mod 3), then

a*—ab+b*=(b—2a°—3ala—b)=(—2a) (mod 9).
But then 4 = A4,(a® —abd + %)= A4,(b — 2a)?, and
Ab—2a)=A4,(b—2a =1 4, (mod 9),

which coincides with 9.7.7 if and only if 4 =+ 1 (mod o).
Let next 5=o0 (mod 3), then

a*—ab+ b =—2b—24a+9ga®—gab+ 3b*=—2(0b—24a)* (mod 9),
and we conclude similarly that
A(b—2z2a)=+24, or A== 2 (mod 9).

Consequently we must have b= o0 (mod 3) for all A=o0 or + 1 (mod 9). If
in particular a + bg is a prime =,, or the square =7, this means that 7z, must
have the prémary form 9.1.7. For a prime ¢ such that q| 4, we can use the
cubic law of reciprocity 9.1.2 on the condition 9.7.2:

-1
q q1 7Ty ‘
The same holds for any 4 if ¢=—1 (mod g), i.e. [g] =1 by 9.1.3. We thus

get the important condition:®

982 gld, A=o0 or +1 if ¢g=—1 (mod 9), a + be =n or zi—>gq(R)r.

If g(N)r, the equation 9.6.3 is then impossible. If A contains only ome
prime factor », there are no other possible equations of the same type. If

! A similar condition is easily deduced from 9.7.3:

ry#Er, ri| A, A#0 or F1 if ry¥+1 (mod 9}, at+de=m, or nZ->r(R)r.



314 Ernst S. Selmer.

further A contains only one prime ¢, and 344, i.e. A = QR in the notation
7.4.3, then the only a priori possible equation 9.4.4:

9.8.3 2+ Qy*+ R2=o0

is excluded mod r if ¢(N)r. If we suppose A =+ 1 (mod 9), then at least one
of the primes ¢ and » is 2 + 1 (mod ¢}, and the descent of § 5 is also excluded.
The corresponding equation X3 + ¥Y® = 4 Z3 is consequently insoluble.

Before we formulate this as a theorem, we shall find a similar result in the
case 4 = 3R, R =1 or r?, where 3(N)r. From 9.1.4 we conclude that the con-
dition 9.7.6 is not satisfied. (Note that

9.8.4 9|lb=9|b, if a+be=nr = (a; + b0)?)

The equation 2® + 3%® + R2z® = 0 is also insoluble, and the descent of § 5 ex-
cluded. — We can therefore state the following

Theorem XI. The equation X3 + Y3 = A Z3® has only the trivial solution with
Z =0 if A has one of the following forms:

9.8.5 A=3r or 374 3(N)r;
9.8.6 A =qr, gr*, ¢*r or ¢®r}, A=+ 1 (mod 9), q(N)r,
where ¢ =-—1 and r=-+ 1 (mod 3) are primes, and (N) denotes cubic non-residuactty.

The case 9.8.5 is nothing but Sylvester’'s result 9.2.3, and is included in the
theorem for convenience. The general result 9.8.6 does, however, seem to be
new. Sylvester's values 9.2.4 represent the special case ¢ = 2, and Pépin’s values
9.2.9 give all possibilities with r = 7 (this is easily verified by 9.2.13). As already
mentioned, Pépin also proves similar (incomplete) results for » = 13, 19, 31 and
37, but not the general theorem.

The cubefree values of 4 < 500 which can be proved insoluble by Th. XI
are given in Table 4.

We can combine the above results with Th. IX (§ 4) to the following
generalization of Th. XI: Let A be cubefree and =0 or + 1 (mod 9). If A
contains exactly ome prime factor r =+ 1 (mod 3), and at least one other prime p
such that p(N)r, then solubility of X3 + Y3 = A Z3 implies solubility of at least
one of the equations 9.4.4.
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This does not lead to any new insoluble values of 4 = s00. The smallest
excluded A which is not covered by Th. XI is 4 = 570 = 2-3-5- 19 (ef. 7.4.10),
where 2, 3 and 5 are all cubic non-residues of 19.

The equation 9.6.3 is also impossible for the values 4 of 9.8.6 under the
modified condition |

9.8.7 A=QR, q=—1, r=+ 1 (med 9), g(N)r.

This follows at once from 9.8.2. — The equation 9.8.3 is excluded mod r in this
case, but the descent of § 5 is a priori possible.

§ 9. We shall show the following negative result about the strength of the
conditions 9.7.2—8 (cf. the corresponding enunciation at the end of § 5 above):
Let A (cubefree) contain at most two different prime factors, of which at least
one is a prime r =+ 1 (mod 3). The possibility 9.6.3 of descent can then be com-
pletely excluded by congruence considerations only in the cases 9.8.5—7, and in the
additional case
9.9.1 A=9r or 97, r=+4 1 (mod o), 3(N)r.

(But then of course the descent of § 5 is possible, and the methods of exclusion
in Ch. VIII do not apply, since 8.4.5 is not satisfied.)

We begin by proving the following lemma:
9.9.2 a+be=m or m, b=o0 (mod 3)—>9b(R)r, ie. 3b°(R)r

This is a consequence of 9.1.6:

LB L B
la+bet a+ be® a+ bo? a+ bg? a+ bo*

(Jacobian symbols if @ + be = n7). NaeeLn ([7] pp. 16—17) has proved the more

general result that every prime factor of % (and also of b— 2a4) is a cubic

residue mod 7.
The condition b= o0 (mod 3) én 9.9.2 can be omitted if » =+ 1 (mod 9), since
then ¢ is a cubic residue of =, and 7, by 9.1.3. — Let a + bg be one possible

form; the other forms (irrespective of the sign) are then

09.3 ela+tbo)=—b+@—Dbe=a +be o*latde=b—a—ae~=
= a, + byo, where
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el - el - ] - [255]
a+ be a+ be a+bo a+bel
bl )

a+beo a+bo a+bo

9.9.4

This shows that the three possibilities for b are all equivalent mod » if r =1
(mod 9), and all inequivalent.if » 3 1 (mod g). '
The lemma 9.9.2 also holds in the more general case a + bg = n,, 7w, (pOs-

sibly with squared factors), provided

e -2
9.9.5 o, , le. -y | 7 for, o,

We still get 36*(R)r, & 7, if b =0 (mod 3). The proof is similar, since now

[m _ [1] . [n_] _
Tr, Tr, Tr, )

We now consider the different forms of 4 with at most two prime factors,

for instance

which are not covered by 9.8.5—7:

1. A=R=yrors”: If r=4 or 7, and so BR=+ 1 (mod 9), we have seen

that the conditions 9.7.5 or 9.7.7 are satisfied if and only if =0 (mod 3). In

both cases I and Il we have gs—t =3, A, =1, 4, = 3 in 9.6.3, and the only ad-

ditional condition 9.7.4 is automatically satisfied by 9.9.2. The same holds if
r=1 (mod 9), even if we must then have b= o0 (mod 3) in case IL (but still of
course b =0 in case I, i.e. when 3|Z).

We note that there is no equation 9.4.4 if 4 = R. The descent of § 5 is
a prior: possible only if » = 1 (mod o).

2. A= 3R, where 3(R)r (the complement of 9.8.5): We have case I, with

4, =3, 4, = 9, and the condition 9.7.6 is satisfied if a + &g is in primary form
(cf. 9.1.4). Further 3* 4, = 9b*~ 3b2(R)r, so 9.7.4 also holds. — We note that
in this case the one equation 2® + 39® + Rz® = 0 is possible for all moduli.
The descent of § 5 is excluded.

3. A=9R: As in 2., we conclude that case I is possible if and only if

3(R)r. In case IIT we have A, =1, and the conditions 9.7.4 and 9.7.8 take
the form ‘

9.9.6 b2 (R)r, b=+ 1 (mod 9).
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Let first v =1 (mod 9), hence 3b%(R)r for all forms of @ + bg. This con-
tradicts the first condition 9.9.6 if 3(NV)r, i.e. the excluded case 9.9.1. If how-
ever 3(R)r, i.e. 9|b in the primary form, it follows from R = N(a + bg) =
=a®*—ab+b'=1 that a==+ 1 (mod 9), ie. b, and b=+ 1 (mod 9) in the
two non-primary forms 9.9.3, which are consequently both possible for all moduli.

Let next 7 =4 or 7 (mod ¢), in which case we have seen from 9.9.4 that
the three possibilities for & all belong to different classes mod #; hence only
one of them satisfies the first condition 9.9.6. If this is the primary form, i.e.
if and only if 3(R)r, the conditions 9.9.6 give a contradiction; but then case I
is possible for all moduli. — It remains to show that both conditions 9.9.6 are
satisfied semultaneously if 3 (N)r.

We suppose that R = r, and let = = g, + b, ¢ be the primary form in the
strict sense 9.1.1. We must use one of the non-primary forms a + b¢ defined
by a, + bo = ¢'(a + bo), 2 =1 or 2. It follows from 9.9.4 that

[ b ]:[ o' b, ]:[ by ] ,-.%1
997 a; + bye as + bye a;+ be ¢ ’

¢f. 9.1.3. On the other hand, it follows from 9.9.2 and 9.1.4 that

[ 343 . b, 3 20, b i{r=1)+25,
a1+b19]—1’ e [“1+b1(’]—[al+b1g]~93’ [m]—g ’ ’

where 7 must be chosen so that this expression equals 1 (since b(R)» by the

first condition 9.9.6), hence
i(r— 1)+ 25, =0 (mod g).

We have supposed r=4 or 7 (mod g), b, =0 (mod 3) but =0 (mod 9) (since
3(N)7), and get the four possible combinations (all congruences are taken mod 9):

r=4, bhy=3, 1=1, o, =—1; r=4, b=—3, 1 =2, a,=—4;

i

r=7, =3, 1=2, e, =2 ; r=7, b=—3, =1, g, =—1.

I have added the corresponding residues of a,, which are uniquely determined
from r = N(a, + b,0) = a2 —a, b, + b3 =a? —a, b, (mod g) and ¢, =— 1 (mod 3)
(by g.1.1). It follows from 9.9.3 that b =—aq, if 7 =1 and b =a, — b, if 7 = 2,
hence in all cases & =+ 1 (mod g), which is the second condition 9.9.6.

I omit the case B = r*; only a slight modification of the above proof is

necessary.
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We finally note that when 4 = 9 R, the descent of § 5 is a priors possible
if r=1 (mod 9), and the one equation a® + g9y® + Rz® = o is possible for all
moduli if also the additional condition 3(R)r is satisfied.

4. We now turn to the complement of 9.8.6, where A = QR. Let first
A=+ 1 (mod 9), g(R)r. We must have the primary form b= o0 (mod 3), and

e [252] ]

s0 9.7.2 is satisfied. Further A, = @, 4, = 3Q (case I or II), and 9.7.4 takes
the form 3b%Q(R)r, which is also satisfied by 9.9.2 and ¢(R)r. — We note
that the equation 9.8.3 is possible for all moduli (the combination 2.1.2 implies
A=+ 1 (mod 9)), but the descent of § 5 is excluded.

Let next A=+1, g=—1, r=+ 1 (mod 9). The case ¢(N)r is already

dealt with in ¢.8.7. If ¢q(R)r, we conclude as above that case I (3]|b) and case
II (34 D) both satisfy the conditions 9.7.2 and 9.7.4; in case II this follows from

[g] =1 and 9.9.4. Further the descent of § 5 is a priori possible; the equa-

q

tion 9.8.3 is possible for all moduli if ¢(R)7r.
Let finally A=+ 1, ¢ and r=+ 1 (mod 9). The one equation 9.6.3 then

represents the only possible descent (since 9.8.3 has the form 2.1.2). We notice
that 9.9.2 is satisfied only if 3|3, and that [g] 7 1, hence only one form of

a + bo is possible in 9.7.2. This is the primary form (case I only) if ¢(R)r,
and the condition 9.7.4, 3b® Q(R)r, is then also satisfied.

If however ¢(N)», the only possible form of a + be is non-primary (case
II only), 3b%(N)r, and the difficulty lies in showing that the condition 9.7.2
implies 9.7.4 also in this case:

9.9.8

As under 3. above, we introduce the primary form a, + b0 = ¢'(a + be), i =1
or 2; further @ = ¢/, j = 1 or 2, and let first B = », n, = a, + blg.' We suppose
that ¢ is chosen so that the first condition 9.9.8 is satistied, and shall deduce
the second one:
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28] [t b bt
- . . h
ay + byol L, + bie] La, + be a; + bel’ where

1_TJa+bie]l _fa+d i - 21
q _ et bie =[ 9],[€]=1.9’ 5 (by 9.1.3),

[a; + b0 L g q q

v 1 . b ] st

o+ bl la+oel? ° (by 9.9.7), and so

. 3b2Q T _ [ 3b§ T .Qij-%l+2i-g= IQZ'M_L;):M
a, + b0 ja; + b, 0]

by 9.9.2, since 3|b,. But for all possible combinations of j, ¢ and » such that
A4 =¢r=+1 (mod g):

q=2, 7'54)j=1; q=2, 7457,]’?2;

qES7 TE47.7.=2; qES’ 7~E7’j:I)
it is seen that

Jjl@—1)+ 2(r—1)=0 (mod g), ie. [af)—i:)?—g] =1, 3b*Q(R)r,
q.e.d. — In the case R = r? it is easily verified that the numerator of the ex-
ponent is replaced by j(¢® — 1) + (r — 1), which is =0 (mod 9) for the combina-
tions of ¢, » and j which now occur.
For later use, I shall also quote another result which is proved in exactly
the same way: If R = N(a + bg) ==+ ¢ (mod 9), then

9.9.9 [a—i-qj—q] =135 Q*(R)r.

As above, this result is an immediate consequence of 9.9.2 only if ¢(R)7.
5. The last case is 4 = R, R,, R, = r, or 7}, R, = r, or r3. There are then

Jowr a priori possible values for a + bo:
9.9.10 TCryy Ty, 70r, 76, aNd 7Ty, 7y,

possibly with squared factors. (The conjugate values need not be treated sep-
arately by 2. of § 6.) There are many possibilities to consider, and I shall
only indicate that the primary form can never be completely excluded. The condition
9.7.5, b=o0 (mod 3), is satisfied for the combinations 9.g.10 if 7, and =, are
in primary form, and we must show that the conditions 9.7.3—4 can then always
be stmultaneously satisfied.
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It follows from 9.1.z and ¢.1.5 that the relations between 7, mr, 7, and

ity, can be characterized by
a2l IO Y R U D Y R
[ﬂrz] [”r,] e | 7Tr, | [ﬂrl] ¢

0.11 -

9 9 ﬁrl 7Kr2 —_ ’—ﬁh 7—vf r3 —g 3
—t=1=l=e% |ZI=|="]|-¢"% ie
71:7! 7[1-, \_757'2_‘ ﬂrl

)l e [ 2 e [72] — ees ’_]= —ath)
[n"z] Q ’ [ﬁ" 7’2] 9 ’ o ﬂ:ﬁ— Q ’ ﬁri 9

Three typical cases must be considered separately:

a =850 (mod 3), 5o, (R)ry, r3(N)r,. Wecanthenusea + bo =, 4,= 37,
a+be

: 2 _ 2. B2 ) ‘ aroe 7
since b2 A4, = 3b%r, ~ 3% (R)ry by 9.9.2, and . ﬁn(R)rl by 9.9.11.

a=0, =0 (mod 3), so 7, (N)ry, 7,(N)r;. We can use a + bo = 7, 7r,
As = 3, since 1* A4, = 3b*(R)r, & r, by 9.9.5, and there is no condition k9.7.3 in
this case.

e = =0 (mod 3), so 7, (R;) 7y, 7,(R)r;. Combining the arguments of the other
cases, we see that all combinations '9.9.10 are possible. — This is the only case where
the equation 2® + R,y® + R,2z° = 0 is possible for all moduli (if not of the tjpe
2.1.2). The descent of § 5 is @ priors possible only if », =, =1 (mod 9).

This concludes the proof of the enunciation at the beginning of this para-
graph.

§ 70. We now turn to the cases where A contains three diflerent prime
Jactors. For simplicity, we will suppose that only one of these is an r =+ 1
(mod 3). We shall further consider systematically only those cases where all
Jour equations 7.4.6 can be proved impossible by elementary congruence considerations
mod g and mod r. (Otherwise we cannot formulate any general result about in-
solubility of X3 + Y®= A4 Z%) We shall make use of the results for 74 =3 in
Ch. VII, § 4, without further reference.

If all four equations 7.4.6 are possible mod 9, then at least one of them
will be possible mod r. In particular, this is the case if 3]| 4. We therefore
consider only the cases 9||4 and 34 A4, and find those combinations for which
only one equation 7.4.6 is possible mod 9.

1. 4A=9QR, §=gqor ¢’ R=r or r>. Of the four equations
9.10.1 {1, 9, @R}, {1, @ 9R}, {1, R, 9@}, {9, @ R},
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only one is possible mod ¢ in the following cases:

9.10.2 @Q=+1, R=+1 (mod 9) : {1, @, 9R}; ¢{N)r
9.103 @=+1, R=+1 (" {1, B 9@} 9@(N)r
9104 QR=+1,Q&R=+1(" "):{1, 9, QR}; 3(N)r
9.105 @=f Rz=+1 (7 "):{o, @& B }; 3Q@(N)r.

The possible combination mod ¢ is given in each case, and also the condi-
tion under which this is impossible mod ». — We shall see that the one a priors
possible equation 9.6.3 is insoluble in all cases 9.10.2—5. Since this also holds
for the equations 9.10.1, and since the descent of § 5 is clearly impossible in
all cases, we conclude that the corresponding values of A = 9 Q R represent insoluble
equations X® + Y3 = A 73,

The insolubility of 9.6.3 for the first form 9.10.2 follows at once from 9.8.2,
since ¢g=—1 (mod ¢) and ¢(N)r. — For the other forms 9.10.3—5, we have
the a priori cases I and III (since 9| A4), and begin by showing that case I is
impossible. Then 9[b, 3(R)» by 9.7.6, and as in the proof of 9.8.2 we also con-
clude that ¢(R)r. But these simultaneous conditions are not satisfied for any
of the forms g9.10.3—35.

In case IIT we have :—;% =-, A4,=9Q, 4, =@, and the condition 9.7.4

becomes

b2 Q(R)r.

The form 9.10.3 bas » =1 (mod ¢), i.e. 3b*(R)» for all forms of a + bo by
9.9.4. From this and 9 Q(N)r we conclude that 3% @ ~ b2 Q(N)», which is im-
possible.

For the form 9.10.4, the conditions of 9.9.8 hold. But from 3% @(R)r and
3(N)r we get the same impossibility 5®Q(N)r. For 9.10.5, the formula 9.9.9
together with 3 ¢ (N)7r leads to the same result.

This concludes the proof, which implies the insolubility of the values 4 in
9.2.5 and 9.2.12 as special cases; the impossibility of the four equations 9.10.1
for these A is easily verified by 9.2.6—7 and 9.2.13. The values 9.2.5 have
g = 2, with r varying (but not all possible primes 7). The values g.2.12 give all
combinations with r = 7 and varying g.

2. 4=Q,Q,R: Of the four equations 7.4.6, one and only one is possible

mod g in the following cases:
21 - 642127 Acta mathematica. 85
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9.106 @ =*+1, QR=+1, Q& R=+1 (mod 9) : {1, @, @ R}; %(N)T
9307 BR=+1, @==+1, Q& @=+1(" 7):{1, R, @ @}; @ Q:(N)r
9108 =t @Q=FR=11 (7 ") :{Qy @, B}; Q1Q,(N)r,

where as above the condition for insolubility mod » is added. We shall see that
also here the corresponding equations 9.6.3, and thereby the given equations
X3+ Y3 = AZ3 are insoluble.

We note that 9.10.6~8 all have 4 == 1 (mod 9), and the one equation

9.6.3 must be treated in the cases I and I, which both give 3it =3, 4, = 3Q,Qs,

and the condition 9.7.4:
36° Q @y (R)r.

The impossibility of 9.10.6 follows at once from 9.8.2, since ¢, =— 1 (mod 9)
and ¢,(N)r. — For 9.10.7 we conclude from 9.9.4 and r = 1 (mod 9) that 3 b*(R)r
for all forms of a + be, which together with @, Q,(N)r gives the impossibility
302 Q, Q:(N)r. Finally 9.9.9 shows that for 9.10.8 we have 3% Qi(R)r, which
together with @i Q,(N)r gives the same impossibility.

This concludes the proof, which implies the insolubility of the values A in
9.2.10—11, giving all cases with ¢, = 2, » = 7 and varying ¢,. The impossibility
of the corresponding four equations 7.4.6 is easily verified by g.2.13.

As already mentioned, the case 3|4, 4 = 3 QR, will lead to at least one
equation 7.4.6 which is possible for all moduli. We can therefore express the
above results in the simple and general

Theorem XII. Let A (cubefree) contain three different prime jfactors, one and
only one of which vs an r =+ 1 (mod 3). The equation X® + Y3 = A Z® has then
only the trivial solution with Z = o if the four possible equations

0109 ax*+byP+cf =0, abe=A4, 1=5a<b<e (a,b)=(a,c)=(bec)=r1,

can all be excluded by elementary congruence considerations mod 9 and mod r.
The insoluble cubefree values of A = 500 covered by this theorem are given
in Table 44

§ zz. If A has three different prime factors, of which at least two are
primes » =+ 1 (mod 3), Th. XII does no longer hold. Simple counter-examples
of different types are
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I

Ad=9- 7-37=2331 =10°+ 11®

59\°_ (33)°
3°19 494 , 7
A=7-13-19 = 1729 = 13 + 128

for which it is easily verified that all four equations 7.4.6 can be excluded by
elementary congruence considerations in each case; the descent of § 5 is equally
impossible.

One can prove some general results also when 4 has two prime factors r.
I omit this here, and will just indicate the methods by treating those 4 = 500
which can be proved impossible. In each case the four equations 7.4.6 and the
descent of § 5 are easily excluded. We must consider the four a priori possible
combinations 9.9.10 for a + bg in the equation 9.6.3.

i. A=266~=2-7-19: Since 4 =—4 (mod g), we must use case I, with

the primary form of a -+ bo. From 2(N)7, 2(N)19 we see that a + bo = =, or
7, is excluded by 9.8.2. Since

T R e N el R R e B S M H B
2 2 2 2 e 2 2 2 ¢
the only combination 9.9.10 which satisfies 9.7.2 is

a+bo=rm my=(1+30(2—30=11+120

But 4, =2, 4,=3-2, and b® 4, = 2°- 3%~ 2? is a cubic non-residue of both 7
and 19; the condition 9.7.4 is consequently not satisfied.

In exactly the same way we can exclude 4 = 364 = 2%-7-13, where 2(N)7
and 2(N)13.

2. A=434=2-7-31=2 (mod 9), so we must use the primary form of

a+ bo. Again 2(N)7, but 2(R)31, which shows that the only possibility satis-
fying 9.7.2 is

a+bo=m,~=1+60.

Here A, =2-7, Ay=3-2-7, b°4;,=6%-7~7(N)31, contrary to 9.7.4. — The
impossibility of ¢ + b¢ = 1 + 6 ¢ could also have been shown by the condition 9.7.3:
a+be 1+60 1—p 1

a+b9221+69221—92=1+g:—g(mOd 7)

i.e. a cubic non-residue of 7.
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The insolubility of A = 455 = 5-7-13, where 5(N)7, 5(R)13, is proved in
the same way. — The four values of A found in this paragraph are listed in
Table 4¢. They are all paréicular cases of the following general result:
A=QR,R,>=+* 1 (mod 9} ?s ¢nsoluble if the four possible equations 9.10.9 can all
be excluded by elementary congruence conditions mod r, and r,. (The conditions
mod 9 are always satisfied when 4 =0 and + 1 (mod 9).)

The Tables 4°—= contain the values of A = 500 for which the equation 9.6.3
can be proved insoluble by congruence considerations only. By extending the
methods of Ch. VIII to this equation (§§ 12—14 below), we can prove the in-
solubility of a few more values of 4, given in Table 4% Finally a complete list
of the excluded values of A in Tables 421 is reproduced in Table 48; these are
all the cubefree values of A = 500 which have been proved insoluble in the present
paper (indeed so far as I know all which have been proved insoluble at all).

The non-excluded equations 9.6.3 for 4 < 500, corresponding to all possible
descents g.6.1, are listed in Table 5. It follows from § 6, 2. that conjugate
values @ + b and a + bo® need not be considered separately. The case a + bo = p
(§ 5) is covered by Table 3, and consequently not repeated.

A solution is found in nearly all cases of Table 5. The only unsolved
equations represent the following values of 4:

9.11.1 283, 337, 400, 499 (all primes); 473 = 11-43.

The corresponding equations 9.6.3 (all of case I) are possible for all moduli, and
cannot be excluded by the methods of §§ 12—14 below. I believe that they are
all soluble.

In order to find the solutions of Table 5, I have computed the cubic forms
9.11.2 wuv(u—v) and w®—3ulv+ o3
for several pairs of values w, v. It suffices to use the pairs such that for instance
o=v=u, (u,v)=1,

since a change of sign for » and v does not influence the calculations, and the
automorphisms of both forms 9.11.2 are (cf. 8.1.11):

9.11.3 wW=—uv vV=u—v;, ' =v—u v=—un

This follows at once from 9.6.1, which is unaltered if we replace u + vg by

olut+vg)=—v+(u—ov)g or o®(u+ve)=v—u—up.
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Because of the automorphisms, it is also possible to choose a solution with
w, v and w all positive (or zero. The condition v =< u must then be abandoned.)
This is done in Table 5, cf. the coneluding remark of Ch. VIII, § 3. — By an
appropriate choice between the two conjugate values of a + bg, we can also get
a and b both positive in all cases.

The choice of w and v in an equation 9.6.3 can always be limited also by
simple congruence constderations, which greatly facilitate the search for solutions.

§ 72. When A is a prime r =+ 1 (mod 9), or the square of such a prime,
it follows from § o, 1. that there are three different equations 9.6.3 which are
possible for all moduli (four if we include 9.5.3, corresponding to a + bg = g.
As usual, conjugate values a + bp and a + bg® are not considered separately.)
These equations for the excluded values (crosses) of Table 3 are given by (— be-

fore ¢ and @° is included for convenience):

A= 73:a+bp= 1+ 9o, —o( 1+ 9p)= 9+ 8p and —g*( 1+ gg)=— 8+
A=109:a+bp= s5+1290, —0( 5+129)=12+ 70 7 —@*( s5+i129)=— 7+
A=181:a+bp= 4+150, —o( 4+150)=15+110p ~ —p*( 4+150)=—11+
9.12.1 Y A=199:a+be= 2+150, —o( 2+15¢0)=15+130 ' —0( 2+15¢0)=—13+
A=307:a+bp= 1+18p, —p( 1+180)=18+170 7 —@*( 1+18p)=—17+
A=487:a+bo=—2+219, —p(—2+21p0)=21+239 " o®(—2+z210)= 23+
A=192:a+bo= s5+210, —o( §+210)=21+160 ~ —p*( 5+2Ig)——16+

In all cases 4, = 1, i.e. 4, = 3. The first value of @« + bg for each A corresponds
to case I (primary form), the last two to case II (non-primary form).

None of these equations have simple solutions, and we shall see that they
can all be proved insoluble by an extension of the methods of Ch. VIII. This im-
plies that the corresponding values of A are also insoluble (T'able 4).

We must distinguish between primary and non-primary forms. In the primary
case we put b = 35, and can remove a common factor 3 in the equation 9.6.3
(i =3 in case I and II). Multiplication by !} and the substitution b,u = u,
will transform this equation into

9.12.2 W+ (a—3b)uiv—abuv® + 8% =114,0°

(we consider the general case, with 4, = 1).
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We shall treat this equation in the corresponding non-purely cubic field K (&)
defined by
9.12.3 B+ (@a—3b)8—abt+0b=o

The discriminant of this equation,
d(§) = {b,- Na + 30,0},

is a perfect square (¢f. 9.7.9), and K (§) is consequently a Galois field; this also
follows from the awfomorphisms 9.11.3.

We can obtain a basis for the integers of the field K (%) by the method of
Woronos; an account of this is given in Sommer [1], pp. 257—62. An applica-
tion to 9.12.3 shows that the basis is given by

_ a_éﬁf)

9.12.4 (1, £ w b,

provided N(a + 3b,0) is squarefree and (a, b)) = 1. 1f #*|| N(a + 3 b, 0), the prime
» will oceur in the denominator of w, and the determination of the numerator
becomes more complicated. I leave it out here; the only actual case of g.12.1
is 4 =-19%

If N{a + 3b,0) is squarefree, the discriminant of the field K (&) is given by

9.12.5 4 = Na + 3b0)"
The conjugates of an integer ¢ = x + y& + zw are

e {a'=x+2b1y+(a+5b1)5+(2y+72)§—(y+32)w
9:-12. Tzt (b —ay+(—2a+4b)z— @By +72E+ (y + 22) .

The rules of multiplication take the form

i {§2=—a§+b1w, Ew=—W—2af+ 3b 0,
P27 | = —ab,— 300 —(6a+ b)E+ (a+9b,)w,

and lead to the important formulae

ad’e” = N(e)=Nx+yE+zo)=a®+(—a+ 3b)x’y—abxy®—
X —By¥+(—a+ob)xle+ (—2a®+ab, +6b)xe? +
9.12.
+(—z2ab, + )2 —(2ab} + 39?2z —(a®b, + 5ald)ys® —

—(@®+3ab—3W)zyz,
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S=@+yt+z0l=2>—8By —3(ab + 38— 9biy*s —
—3(abl+obd)yz? — (@b, + 6abl + 2680)e® — 6bixyz +

+ {32y —3axcy’ + (a®*—2ab)y®*—3(6a + b)x2® +

0.12.9 3 + 3(2a®—6ab,—W)y’2 + 3(4a®—18ab, —382)y2? +
+(6a?—353ab,—9gtd)e® —12axye) E+ {3b,xy? +

+(—aby + 30y +32%2+ 3(a+9b)xz® + 3(—2ab, + 9b})yz +
+3(—3ab + 26 y2® + (a®—ab, + 75022 + 18b, 2y 2} - 0.

The natural primes r such that |4 are cubes of ideals in K(§):

—_ - 3
9.12.10 ] = [r, £+ 4 33 b‘, w+2 39 b‘] = p;.

All other primes either remain primes or factorize into three different, comjugate
vdeals:

9.12.11 [pl =1[p, §—dl-Ip, E—dT-[p, E—a"] = pphp ¥},

where d, d’ and d” are the solutions of the congruence mod p corresponding to

9.12.3, and where -
r:_b1(b1“—d) r
d = P d

W
b —d

fl

(mod p).

If in particular p|b;, we get the factors

[pp=[17,§,w]: pl’iz[pa§+aaw+2a], PZ=[P,§yw‘a],

9.12.12 ”
where P9y = [p, £].

This also holds for p = 3, which remains a prime if 34 6,.

Only slight modifications are necessary if we consider a non-primary form of
a+bp, ie. 34b. No common factor 3 can then be removed in the equation
9.6.3, which after multiplication by 5* and the substitution b« = u, now takes
the form

9.12.13 i+ 3(@a—bulv—3abu v+ b3® =3074,4°

(or = ébgAlw3 in case I[I), leading to a field K (&) defined by

9.12.14 B+ 3(a—b&—3abi+ 1 =o0.
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Most of the earlier conclusions and formulae are still valid 4f a ¢s replaced
by 3a and b, by b throughout. The discriminant of ¢.12.5 should now be written as

9.12.1§ 4 =3"Nfa+ bg)?,
and the natural prime 3 és now a perfect cube:
9‘12‘16 (3] = [37 g + b) @ — b]3 = pga where pg = [31 g— W — b]

Since the diseriminant o > o, the fields K(§) have two fundamental units &,
and &, which can be chosen as conjugates.

§ 77. We now form the ¢deal-equation corresponding to 9.12.2 or 9.12.13:
9.13.1 [u, — vE] = nad
where 1 is an ideal from a finite set, such that Norm n = 4} 4, (primary form),
= 3b* A, (non-primary form in case 1I) or = é b®* 4, (non-primary form in case

ITI). The prime factors of A, are easily dealt with in the usual way. It is
further clear that p,||n for the non-primary form in case I, since 9.12.16 shows
that 12 cannot divide [w, —vE] if 34w, and v. But the prime factors of b (if
any) need a special treatment. This is the same for the primary and the non-
primary form, and I give the formulae in the former case only.

It is quite possible that a solution (u, v) of the original equation 9.6.3 has
a common factor of v and b,. All such solutions occur in triplets of conjugates
(by ¢.11.3), and we can always choose one solution of each triplet such that
(v, b)) = 1, at least provided b, has at most two different prime factors (this holds
in all cases 9.12.1). With this limitation, and because of the substitution

#; = b,u, we may therefore suppose that
9.13.2 wy—vE=—vf (mod b,), (v,5,)=1.

Let p be any prime such that p|b,. From 9.12.12, 9.13.2 and p+a we con-

clude that
Pp Py | [y —vE], but bp 4 [uy — vE]
Further, if p||5,:

v 1'1,2: [0 B =—ak+ bywl 4 [u,— v,

from which we conclude that b, and pj (|1, since additional powers of P, or P,
must occur with such exponents that they can be absorbed in a2
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If p*||b;, it follows that
po v’ = [p% &l (s — 8], but P30,° =[p°, —ad + byw]tu, — vé],

and so P2 and p,%||n. So far the choice of ideal factors from &, is unique.
If however p®| b, ie.

pob” = [0° 8| [y — v§], but pppy* = [p', —ak + by 0] 4 [u, — vé],
there are three possibilities for the choice of corresponding factors in u:

1. b} and p,%||n (as before)
2. Polin, potm, polla
3 ptlln potn, pylla

The factors of n are all cubed, and can consequently be absorbed in a3
But to get analogy with the earlier formulae, we may suppose that we have
case I. This differs from 2. and 3. only by cubes of ideals, and will also cover
these cases by the principle of “auziliary cubes’.

A similar argument applies also when J, contains a prime p to still higher

powers. 1 will contain the product P», P, if we define

‘pbl = II ‘p;)

Pi” by

The ideal n of 9.13.1 is therefore uniquely determined if A, has at most one
prime factor (cf. the remarks to 8.2.1). In particular, 4, =1 in 9.12.1, and

consequently

9.13.3 1 = Py, Pp, (primary form) or = P;PyPs (non-primary form)

(where b, is replaced by b for the latter form).

As in Ch. TII, § 5, it is also here possible to exclude some of the equations
9.12.1 by class-number considerations, namely the non-primary cases for 4 = 73
and 307 (the only primes where 3(R) A, i.e. 3|b, in the primary form). In both
cases for 4 = 73 and in the first non-primary case for A = 307, we find a class-
number h = 9, with a mon-cyclic group of classes, Hence a® of 9.13.1 is a prin-
cipal ideal, and the same turns out to be the case for P and py. But p, is non-
principal, and the equations are consequently insoluble. The exclusion is similar
in the last case for 4 = 307 (b = 1 and P; non-principal), but the class-number
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is h = 63, the group of ideal-classes having two generators of order 3 and one
of order 7.

When the equation 9.13.1 cannot be excluded by class-number considera-
tions, we are as usual led to several equations between integers of K(§). — In

all prémary forms of 9.12.1 we find 2 = 1, and get at once:
9.13.4 w,—vE=clefva® =ue®, 7and j=o0,1,2,

where ¢, and ¢, are two fundamental units, and 1 = P, b5, = [v]. — In all non-
primary forms, except for A = 73 and 307, we find & = 3. We must consequently

introduce a y as in 3.8.3:

9.13.5 w,—vE==celyve® =ped, 4, jand k=o, 1,2,

where 1= P, P95 = [v], and [y] is the cube of any ideal which is not a prin-
cipal ideal. Such an equation can be treated to any modulus prime to .
When h = 3, three conjugate ideals (e.g. Ps, P» and py) will always be equi-
valent. Consequently 1 = p, Py ¥y is principal if and only if p; and P, belong to
the same class, which is non-principal in all the non-primary cases mentioned
above (4 # 73 and 307). This leads to a quick and general determination of y,

since it is easily verified that

popy = [—&l, P =[—0b+E], ie (bops)?=[E(0— 8],
and we can choose

9.13.6 y=Eb—8 =03Ba+di—bow

We conclude this paragraph with an important remark about the funda-
mental units & and &, where we can suppose & =g¢, & =¢, and where

¢ = (e&')"! (since N(¢) = e&’¢” = 1). Under what conditions can two other units
p=emem and g = &mm = gngmon

be used as fundamental units? This implies that 7 9% = &'¢&', or

9.13.7 mx—ny =1, nx+ (m—n)y=7,

must be soluble in integers z and y for all integer pairs (7, j), i.e. that the
determinant

m —n

9.13.8 =m?*—mn+n®=N(m+np)=1.

n m—n
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This gives m + ng ==+ 1, £ g or £ ¢*=7F (1 + g), and so

n =&t () or (€))7 = (")F,

i.e. only trivial cases.

When however ¢ and ¢, are to be used in equations such as 9.13.4—¢, it
will clearly suffice to replace the equations 9.13.7—8 by congruences mod 3 (cf.
the remarks to 3.6.2). And N(m +ng)=1=2m +n=0 (mod 3). If we form
the ratio

7 9 n—
L= 8m+"'€2" m,

n

this will be the cube of another unit if and only if m + n =0 {mod 3). Any

unst n such that :77 ts a cubic non-residue to an appropriate modulus will therefore

suffice for owr purpose.

§ 74, We must study the possibilities of excluding equations of the type
9.13.4—5. It is not difficult to see that no prime factor % 3 of the discriminant
9.12.5 (or 9.12.15) can be used for exclusion; the same can be shown for the
factors of 4. — A prime ¢ or r dividing 4, will lead to conditions similar to
8.3.4 (which are only effective for primes 7). But 4, = 1 in our equations, and
the only remaining possibility is to work mod a power of 3.

We first consider the primary cases, i.e. the equations 9.13.4. It is easily
verified that o® of 9.12.9 runs through a complete system of residues mod 3
with «; no exclusions can therefore be obtained mod 3. But the cubic residues
mod g are comparatively much more limited in number, since we only have to
cube a complete system of residues mod 3 and prime to 3 for «. Apart from a
change of sign, there are 13 such residues: four triplets of conjugates and in
addition « = 1. The corresponding (effective) cubic residues mod 9 must be
calculated in each case (which is a rather tedious job).

In all primary ecases 9.12.1, it turns out that & and & are effective cubic
restdues mod g, which means that it suffices to consider p=v in 9.13.4. Each
v must be multiplied in turn by all the corresponding cubic residues mod 9.
In the cases where 34 b, (i.e. when A4 > 73 and 307), all resulting coefficients of
o are #0 (mod 9), and we conclude as usual that the equations are insoluble.

If however 3|b,, it suffices for exclusion that the coefficients of w are all
=0 (mod 27) (even if we still operate with the cubic residues mod g). Since
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now » is divisible by P, ps = [3, £], it must have the form
v=34+ Bt{+3Cw, 34B.

If b, =3b,, and e®*= X + Y&+ Zw is a cubic residue mod 9, the coefficient of
w in »a® is

=3{0X+»BBY+(A+ 3B+ alC)Z} (mod 27),

which is wunaltered mod 27 if X, Y and Z are varied with multiples of 9. — In
this way the primary forms for A = 73 and 307 are excluded.

We then turn to the non-primary cases which have not already been ex-
cluded by class-number considerations (the equation 9.13.5). From p;4e and
9.12.9 it follows that in this case

9.14.1 a®*=+ 1 (mod 3),

and we can apply the principles of Theorem IL. But we get a considerable
improvement of the method by the following additional argument:
Since P, ||v, the possible residues of » mod 3 are given by

9.14.2 +tyv=b+¢ E+w or b—w (mod 3).

If u = v, the equation 9.13.5 is only possible mod 3 if » has the first one of
these forms (with a coefficient = o (mod 3) for w).

Among the residues mod 3 and prime to 3, the following ones are unaltered
when taking conjugates:
9.14.3 1, *E—w), Fb+E— o).

The product of two such residues is another residue from the same group (the
rules of multiplication are the same as for the group + 1, *+ ¢, + 0%. And the
residues 9.14.2 are, apart from a possible change of sign, unaltered mod 3 when
multiplied by a residue from 9.14.3 (which contains all residues with this prop-
erty). . :
It follows immediately that the equation 9.13.5 4s insoluble if v <s not of the
first form 9.14.2, and if both & = ¢ and y are of the type 9.14.3. But the y of
0.13.6 satisfies this condition, and it suffices to examine the forms of » and e.
— In this way the non-primary cases of 9.12.1, 4 = 73 and 307 excluded, have
been proved insoluble.

If we include a + bo = g (§ 5), the values of 4 in g.12.1 (Table 4 all have
Jour possible but insoluble descents 9.6.1. And the soluble values of the com-
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bined Tables 3 and 5 all have one or four such descents. The result is in
striking analogy with the rst and 2nd conjecture of Ch. VII, § 4. (See also
Th. XIV, § 16)

§ z5. The concluding paragraphs deal with the number of generators (basic
solutions) of infinite order for the equation X® + Y® = A Z3 and are based on the
ideas of Fapperv [1]. I have already (Ch. VII, § 6) mentioned briefly his

methods in the field K (f/Z) = K(9). In this paragraph, I shall give a more
detailed account of his methods in K(g) (partly modified to fit in with my nota-
tion and earlier results).

It follows from 1.2.2, with abe = A, that the Weierstrass elliptic p-function

corresponding to 2® + y® = A is given by

p=p(; o, 274%

(the “equianharmonic”’ case, with g, = 0. To avoid confusion with my earlier
notation, I use { instead of the ordinary w to denote the elliptic argument).
Further from 1.2.3:
94 +p'Q) Y 94 —p'(§)
7:@':% = o Y = = =«
Let the periods of p({) be w (real) and wp; we then get all the real points
on the curve 2® + »® = 4 if 0 ={ < w. In particular, { = o corresponds to the

3
point at infinity (Z =o0); { = ;—w and §w give the inflexions (V4, o) and

(0,VA); and ¢ = éw gives the point (]/‘/51, ]/;—1) If A is cubefree and # 1

and 2 (and always supposed positive), it follows from Ch. I, § 4 that all rational
points with Z 52 0 have a { incommensurable with w (no exceptional points).
Changing the sign of § corresponds to interchanging X and Y (keeping Z
fixed). — When nothing else is said, an elliptic argument ; will correspond to
the point (X;, Y: Zi).
The tangential (argument — 2§,) to a point (X,, Y¥,, Z,) is given by 1.5.2,
which can be written as

9.15.1 X, =— X, (X3 +2Y), Y,=Y,2X{+19, Z - Z,(¥i— X
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By direct calculation, we find the third intersection of the chord (argument
— £, —&,) through the points (X, Y,, Z,) and (X,, Y,, Z,):

X = AZ1Z2(X2Z1“‘X1Z2)+ Y1 Ye(Xl Yz_X2 Y1)
9.15.2 Y=AZ Z, (Y, Z,— Y, Z)+ X, X, (X, Y, — X, T,)
Z= X, X,(X,Z,—X,Z,) + Y, Y (Y, Z, — Y, Z,).

Desboves' formulae 1.5.3 are usually more convenient for numerical computations.
— Combining his formulae with 9.15.1, we find the #réplication (argument 3&,)
of a point (X,, Y,, Z,):

X, =Xi+6X3 V7 +3X3Y7— ¥}
0.15.3 Y, =— X +3X¢YP+6 X3 Y8+ Y7

Zy=3X, YV Z,( X} + X Yi + Y3

For use in the field K (p), Faddeev gives the following, easily verified rela-

tions:

0.15.4 {Xz+ Y2=(Xl+ Yl)(yl"'Xl)s

X, + Y0 = (Xl + Y, Q)(YN.’““ X1)3,

3K+ V(X + TY(E + ¥) = A[Z(X, + T,) — Z,(X, + TP
WH{ﬂ&+ﬂw&+EMX+HFAmKﬁYM~Zm+EMi

[Xy+ Yy = 0A XI¥I 2

.15.6
915 VX, + Yyo=2(Xlo— ¥ (A=1—0)

If (X,, Y,, Z,) are coprime in pairs, so also are usually (X,, Y, Z,) and
(Xy, Y5, Z;). But if X, = Y, =0 (mod 3), i.e. in case II when 4 = + 2 (mod g),
then (X,, Y,, Z,) have a common factor 3 and (X,, Y, Z) a factor 9. — There
is usually a rather great common factor in the formulae 9.15.2, ¢f. 9.18.7.

Lemma 1. A solution (X, Y, Z) is the triplication of another solution (x, y, 2)
if and only if the ordinary descent in K{p), applied to (X, Y, Z), leads to the
same equation z® + y> = Az, — We have seen that this descent then must take
the form 9.3.3, with ¢ = 1:

9.15.7 X+ Y=s4u®, X+ Ypo=1tiu+ veP?
and further the condition 9.4.2 must be satisfied:

0.15.8 a=b=1, ¢=A4.
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Substituting this in the formulae 1.2.4 of Th. I, we find that they take the
form 9.15.3. — On the other hand, it follows from 9.15.6 that a triplication
will lead to the descent mentioned.

For a given solution (X, Y, Z), we now introduce the corresponding ‘‘Fad-
deev-constant” ¢ defined by

9.15.9 (X+Y)P(X + Yo)= ¢-0°4%c®, e € K(g).

We shall say that two solutions (X, ¥, Z,} and (X,, Y, Z,) are F(addeev)
equivalent if and only if the ratio between their constants ¢, and ¢, is a (pos-
sibly fractional) cube in K(p), and we express this by

9.15.10 P, = @;.

The sign of equivalence thus denotes equality when cubes of K (o) are ignored.

We can now prove

Lemma 2. A solution (X, Y, Z) will lead to a descent 9.15.7 if and only if
0.15.11 Q=1

— It is at once clear that 9.15.7 implies 9.15.11, if we substitute the different
possibilities 9.3.4 for s and ¢ in 9.15.9 and use the relation 4> =—30. — On
the other hand, if we substitute ¢ = 1 and ¢« = U + Vp in 9.15.9, we find by
comparing the real and complex parts:

X(X+ YR=A(—UP+30°V—V3, Y(X+ YP=AN—UB+3UV— 19,
ie. (X+YP=A(—20%+30V+3U0VE—27V3).

This shows that A|X + ¥, and we must consequently have a descent of the
type 9.3.3. Substituting this in 9.15.9 (with ¢ = 1), we see that ¢ = 1 is the
only possibility, q.e.d.

Faddeev considers only the case A = p or p?, p 3 a prime. There are then

no equations of the form
9.15.12 az® + by +cf =0, abe=A, 1=a<b<e, (ab)=(a c¢)=(0D c) =1,

and the descent 9.15.7 will then lead only to the case 9.15.8, i.e. a triplication.
But Faddeer’s method applies without modifications whenever all equations 9.15.12.
(if any) can be proved insoluble one way or other.
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We shall say that the descent 9.15.12 (and the corresponding solutions
(X, Y, Z)) are of Type I, and then have

Lemma 3 (Faddeev). When no descent of Type I exists, then 9.15.11 s the
necessary and sufficient condition for (X, ¥, Z) to be the triplication of another
solution.

Let next (X,, Y, Z,) and (X,, Y, Z,) be two solutions with elliptic argu-
ments £, and {, respectively. We form the solution (X, Y, Z) with the argument

C1—§2='—(—Cl)_’§2

by means of the formulae 9.15.2, applied to (Y3, X,, Z,) and (X,, Y3, Z,). From

the two formulae 9.15.5 (the first one squared) we conclude that

FPX + TP+ X0 (X, + TP (X + L) (X + YP(X + Yo) = o, a€Kl)

But
(X + THX, + o)X, + Y08 =X} + Yi=4Z],
and so

(X2‘+ Y2)2(X2 + Ye@)
V(X1 + Yl)2(X1 + ¥, Q)

a 3

3AZ(X + X))
=02 A%a}, «, €K (g)

(X + TRX + Yo) - gw{

A comparison with Lemma 3 gives

Lemma 4 (Faddeev). When no descent of Type I exists, then 9.15.10 is the
necessary and sufficient condition for [, — L, to give the triplication of another solu-
tion. — It is further an easy deduction that addition of elliptic arguments cor-
responds to multeplication of Faddeev-constants.

We can now divide the solutions of X2 + Y3 = A Z3 in classes according to
their Faddeev-constants; two solutions belong to the same class if and only if
they are F-equivalent. (We still suppose that no descent of Type I exists.). The
relations 9.15.4—5 show that the classes form an abelian group, isomorphic with
the multiplicative group formed by the corresponding Faddeev-constants.

We know that the number of basic solutions of X® + Y% = A Z3 represented

by the elliptic arguments
Ci Gor - - - Lo

is finite. (Faddeev gives a special proof for this, independently of earlier, general
proofs. We return to this in § 18 below.)
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If we consider the elliptic arguments
9.15.13 8+ me e+ F mgly, my,me, .. .mg=0,1,2

in number 39, it is clear that they all represent snequevalent solutions. On the
other hand, any solution m,{, + my{, + - + my{, differs from one of the forms
0.15.13 by the triplication of a solution, on taking the residues mod 3 of
my, My, . . . mg. There is consequently a one-one-correspondence between the elliptic
arguments 9.15.13 and the classes of solutions; in particular, the number of
such classes is always a power of 3.

The number of classes is now easily found by counting the soluble descents
different from 9.15.7 (cf. 9.6.1):

JX-!— Y=s4,u®, X+ Yo=ti(a+bo)lu+voP® a+bo#+r1,

g.15.14 | Where A=A4,-N{a + bp). A change of sign for a + bp is not
considered, and conjugate values a -+ bp and a + be® are not

counted separately.

We shall say that this descent (and the corresponding solutions (X, Y, Z)) are
of Type Il. — There can be no confusion with the & and b of g9.15.12.

We have seen that this descent will lead to an equation 9.6.3 (Table 5),
where we must now include the possibility @ = 0, b= 1, ie. the equations
9.5.3—4 (Table 3).

It is clear that the different cases I-—III of 9.3.4 (for the same value of
a + bp) will not themselves lead to different classes, since the values s*¢ = 3% 37?2
and 372 (cf. 9.15.9) differ only by cubes. (Such a combination of cases can occur
only when 4 =+ 2 (mod 9}, i.e. a + bg in primary form, when both cases I and
II are possible, cf. the beginning of § 8 above.) But different values of a + bp
will obviously correspond to different classes. So will also conjugate values, hence
each possibility 9.15.14 must be counted fwice. Finally there is always one de-

scent 9.15.7 (the triplication case), and we can therefore enunciate the following

Theorem XIII'. When no soluble equation 9.15.12 exists, the number of soluble
descents 9.15.14 is always of the form

9.15.15 (39 —1),

SRR

! The second sentence of this theorem is due to Faddeev, and the first is an immediate
consequence of his methods.

22— 642127 Acta mathematica. 85
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where g is the number of generators for the equation X3 + Y2 = A Z3. If in partic-
uwlar A = p or p*, p £ 3 a prime, then

g=o for p=2 or ; (mod o)

)

9.15.16 g=1 " p=4, 7 or 8

» ’»

g=2 p=1

The cases p = 2 or 5 are covered by Th. VIII, p=4 or 7 by § 9, 1. (Table
5), =238 by Th. X (Table 3) and p =1 by a combination of the last two cases.
We never find ¢ = 1 when p=1 (mod 9) and 4 = 500 (but g = o for the values
of Table 4. In no case have I been able to show that g = 0 when p =4, 7
or 8 (but there are some unsolved equations with 4 = p = 4 and = 500 in 9.11.1).

The number 9.15.15 takes the values 0, 1,4,13,.... For A =< 500 (the
combined Tables 3 and 5), the maximum attained is 4.

§ 76. Faddeev's method fails when there are soluble equations 9.15.12 (de-
scents of Type I). We must then find a way of classifying such equations, ana-
logous to Faddeev-equivalence for the descents 9.15.14 (Type II).

I define by

9.16.1 ¥ =

the “‘characteristic ratio” (c.r.) for an equation az® + by® + ¢2® =0, abe = 4.
The sign of equivalence stands for equality when rational cubes and powers of
A are ignored. Thus for instance

The u and v are those of g.4.1.

A cyclic permutation of the terms ax® by® and cz® leaves both the c.r. and
the formulae 1.2.4 unaltered. (This corresponds to using the automorphisms 9.11.3
in the descent 9.15.7.) But a transposition of the terms implies inversion of the
c.r.,, and at the same time an interchange of X and Y in 1.2.4, which means
a change of sign in the elliptic argument . (This corresponds to replacing
% + vp by its conjugate, combined with an automorphism if necessary.)

It is clear that two different factorizations 4 = abe¢ correspond to inequi-
valent c.r. Each such factorization gives two (reciprocal) values, except in the

case 0.15.8, when the only value is » ~ 1.
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We can say that x is the c.r. also for the solution (X, Y, Z) leading to the
descent ¢.15.7. It then follows from Lemmas 1—2 that the conditions 9.15.11
(p = 1) and
9.16.2 x~1

are the necessary and sufficient conditions for (X, Y, Z) to be the triplication of
another solution.

Let us first suppose that no soluble descent of Type 11 exists; the condition
0.15.11 is then automatically satisfied. — We have already noticed that a change
of sign in the elliptic argument { corresponds to znversion of the characteristic
ratio x. We shall also see that addition of elliptic arguments corresponds to
multzplication of characteristic ratios. This follows from the

Lemma 5. Let (x,, y,, 2,) and (x,, y,. 25) be solutions of the equations

a2+ byt +e22=0, abe=A, and

Ay x® + byy® + ¢,2> =0, a,bye, =4

respectively, and let P, (X,, Y,, Z,) and Py(X,, Y,, Z,) be the corresponding points
(by 1.2.4) on the curve X3 + Y3 = AZ3 Then

2 2 _ 2 2
0.16.3 { =@ X1Ye 23 — A3 XY 2, Y = bz, — by 2 2y,

2
z=c 2wy, — bz, y,
is a solution of the equation
28 v 53
+ +
a,a, bbby  ce

9.16.4 = 0.
Further the corresponding point P(X, Y, Z) on X® + Y® = A Z® is the third inter-
section of the chord through P, and P, (This lemma is of course valid whether
or not descents of Type II exist.)

The multiplicative property of the characteristic ratio is an immediate con-
sequence, since the c.r. for the equation 9.16.4 is

I
_ayay; 1 1

= 3

I ay Ay %y %

and the elliptic argument { of P equals
£=— (Cl + gz)

22% — 642127
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It is easily verified by straightforward calculation that 9.16.3 gives a solu-

tion of the equation 9.16.4. The product of the coefficients is here ALZ, = %,
and the equation can thus be given the form a, 2’ + by + ¢;2' = 0, ay by ¢ = 4,
(ag, by) = (a5, c5) = (bg, ) = 1. — We note that 0.16.3 coincides with Desboves’

formulae 1.5.3 when @, =a; =a, b, = by = b and ¢, = ¢; = ¢.

The last sentence of the Lemma can also be verified by straightforward
calculations. These become very tedious, but can be facilitated by means of the
second formula 9.15.5, where we substitute

X, + Yi0=24u +v,0° Xs+ Yo0=2~2us+vy0?2 X+ Yo=Ci(u+ voP;
Zy = 3w, - N(u, + v10), Zs= 3wy Nuy + vy0)

Here C = (X, Y) is the unknown common factor of the formulae g.15.2. We can
always use the values s = g, t = 1 of case I, if we keep a common factor 9 in
a solution of case II.

It follows from 9.15.5 that C is divisible by 9 4 (ef. 9.18.7), and further
from a comparison of the cubes that

9.16.5 C,'(“ + v o) = waluy + v, o®) (g + v, 9)2 — w, (u, + v, 92)(“2 + vy 9)2;

where (' is some unspecified rational integer. A possible unit ¢ = 1, ¢ or ¢*
can be absorbed in w + vg, because of the automorphisms 9.11.3.

The relation 9.16.5 is now rather easily verified on equating real and com-
plex parts and making the substitution

_ 3 _ 3 _ . _ 3 _ 3 - .
Uy =0T, V= byl Wy =X Y2y Uy = Gy, Uy = byYs, Wy = X3Ys &y

1
U =— (alxg?lzzz"‘aexg?h 31)3» v = bb (blyfzsxz’"be?/gzxxl)b‘:
109

ay as
cf. 9.4.1 and 9.16.3—4. — This concludes the proof of Lemma ;5.

The formulae 9.16.3 fail in the duplication case (since then z=y=z=0).
But it is easily verified by means of 1.5.2 and 9.15.1 that corresponding solutions
(by 1.2.4) of the two equations a2® + by® + ¢2®* =oand X3 + Y®=abcZ®= A Z®
have corresponding tangentials. (As above, the verification can be simplified by
use of the second formula 9.15.4.) The multiplicative property of x still holds,
since a tangential for X3 + Y3 = A Z® has an elliptic argument —2{=+7{

(mod 3).
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Like the Faddeev-constants ¢ of the last paragraph, the characteristic ratios
x thus form a multiplicative abelian group. In particular, we conclude in analogy
with Lemma 4 that x, ~ %, ¢s the necessary and sufficient condition for [ — G, to
give the triplication of another solution.

The classification of the soluble equations aa® + by® + ¢2® = 0 is now com-
plete, and the arguments that led to Th. XIII can be repeated. They show
that when no descent of Type II exists, the number of soluble equations 9.15.12 s
always of the form

9.16.6 (39—1),

N |-

where g is the number of generators for the equation X3 + Y% = A Z3.
We must finally combine the Types I and II of descent, and divide the
basic solutions (in finite number) between the two types:

Cly CQv"-Cgl; GyC;’"'C;h'
Type I Type II

We first note that the Types I and II have a Faddeev-constant ¢ = 1 and
@’ # 1 respectively. It follows that when there are descents of Type II, there
must be at least one generator {. We can further suppose that all the {’ are
F-inequivalent, since {; and {3 = {1 can be replaced by i and & — s, where the
latter is of Type I.

1f we consider the elliptic arguments 9.15.13:

C: nlCI + o+ nglggl + n;-g’l + ot n;}zc;h’
9.16.7 Type I Type II

I4 ’
nl,...ngl, 'nl,.../l’lgz==0,l,2,

then the Faddeev-constant ¢ of { will depend only on the coefficients #', and
not on the n. Further ¢ =~ 1 (Type I) if and only if all »’ = 0. The arguments
that led to Th. XIIT can now be repeated, showing that the number of soluble
descents of Type TI is still of the form 9.15.15 (with g = g,).

Equating all the »' to zero, we can then study the distribution of the
generators of Type I by varying the coefficients #. (There must be at least one
generator {, when there are descents of this type.) We are again led to 9.16.6
(with g = g,), and can consequently enunciate the following
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Theorem XIV. The number of soluble equations 9.15.12 and the number of
soluble descents 9.15.14 are always of the forms

(3n—1) and (32—1)

[ SR

1
2

respectively. Here
g=9+ 9

is the number of genevators of infinite order for the equation X3 + Y3 = A Z3 The
basic solutions can be chosen so that there are g, and g, generators respectively
resulting from the two different types of descent.

Of course other choices of generators are possible when g, g, > 0, cf. the
concluding remarks of the next paragraph.

The solutions of Type I, together with the triplications, are characterized
by @ = 1, and thus form a subgroup of the group of all solutions. It is very
striking that such an arithmetically defined subgroup should exist.

§ 17. The basic solutions of X+ Y3 = AZ® for (cubefree) 4 =< 500 can
now be found by Th. XIV from Table 2° (Th. I), Table 3 (Th. X) and Table ;5
(the formulae 9.6.2). A list of the basic solutions is given in Table 6, which
also contains a column for the maximum number g of generators. This number
is obtained in nearly all cases; the only undecided (unsolved) equations, given
in (10) of the Introduction, correspond to 7.4.2 and 9.11.1. Since these have
A =473 = 11-43 in common, g = 2 in this case. In the remaining undecided
cases, g = 1. As stated earlier, I believe that the maximum number of generators
es really obtained in all cases. ‘

In particular, I can decide solubility and the number of generators in all
cases when
9.17.1 A < 283.

Syuvester ([1] pp. 313 and 316) stated that he knew whether or not any number
A =100 is a sum of two cubes, except perhaps 4 = 66 (which is insoluble by
Table 4°; also proved by Cassers [1]). Sylvester's statement is partly based on
the inaccurate communication from Pépin, mentioned above in connection with
9.4.5. But there is one insoluble value of 4 = 100, namely 4 = 73 (Table 47),
which has never been noticed in earlier papers. I suspect that Sylvester has
taken the solubility of 9.5.3 with 4 = 73 for granted.

The basic solutions of Table 6 for A < 50 are also given by Fapperv [i]
(but I choose thesolutions differently for 4 = 19 and 37). Some of the remaining
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-solutions in Table 6 were given by Lexmart (see Dickson [1], Ch. XXI, ref.
186), but most of them have been found by me.

There are never more than 2 generators when A =< 5oo. The smallest value of
A with ¢> 2 is
9.17.2 4 =657 =973,
where 3(R)73 (cf. § 9, 3.). We then get the one soluble equation 2® + 9¢® + 73 2% = o,
and four soluble descents 9.15.14, corresponding to a + bg = g, 7y, 07y and
@®7.5. There are thus three basic solutions, which can be chosen as

9.17.3 (X, Y, Z)= (10, —7, 1), (17, 7, 2) and (2971, — 2890, 147).

Most of the soluble A = 500 have g = 1, resulting from one equation in
Table 2P, 3 or 5. The values of 4 =< 500 with 2 generators are distributed as
follows:

Table 2> alone gives rise to g = 2 (4 equations) in 13 cases, and Table 5
alone in 3 cases (4 = 91, 217 and 469, all of the form A =r,7,=1 (mod 9),
r; and 7,5 1 (mod ¢) and not both cubic residues of each other).

The combined Tables 3 and 5 give ¢ = 2 (4 equations) for 8 primes r=+ 1
(mod 9), ef. 9.15.16.

The values 4 = 153 and 477 (both of the form 4 =gq, g=— 1 (mod 9))
have g = 2, resulting from one equation in each of the Tables 2¢ and 3.

The remaining cases with g = 2 all result from one equation in each of the
Tables 2° and 5:

5 values 4 = 3 R, 3(R)r;

12 values 4 = QR =+ 1 (mod g), ¢(R)r (and possibly also 4 = 473 = 11-43,
where no solution has been found); and finally

7 values of A with 3 different prime factors.

In the cases where there are two basic solutions, resulting from one equa-
tion in Table 2> and one in Table 3 or 5, the solution of the latter equation
(Type II) will usually lead to the smaller basic solution (X, Y, Z). In most
cases the smallest values of the second basic solution, as given in Table 6, is
calculated from another solution of the same type of descent (not given in Tables
3 or 5). The solution (X, Y, Z) resulting from Table 2" (Type I) then usually
corresponds to one of the elliptic arguments =+ , + £,.

§ 78. We must also ensure that the solutions of Table 6, found by the
descents 9.15.12 and 9.15.14, are really basic. — The prinéiples to be used are
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given by Faddeev, in his proof that the number of generators is finite. His
result is as follows:

Let (Xi, Y:, Z), i =1, 2,...37— 1, represent one solution from each of the
classes defined by 0.16.7; the triplication class (all » and »" = o) need not be
considered. Let further L denote the maximum of all | X;|, | Y| and | Z:|. Any
solution (X, Y, Z) can then be expressed as a combination (in elliptic arguments)
of the solutions (X, Yi Z) and a finite number of other solutions (X', Y’, Z')
such that
9.18.1 | X' |+ | Y| < 4 AT8 L3,

The possible basic solutions not contained among the (X;, Y;, Z;) can thus
be found in a finite number of steps.

Faddeev's inequality 9.18.1 is based on rather rough approximations. I will
show that his method can be refined, leading to an improvement of both coeffi-
cient and exponent in 9.18.1.

I prefer to deal with the norm N(X + Yg) = X*— X Y + Y? of a solution
(X, Y, Z), instead of with |X| and | ¥Y|. For a solution of Type II, resulting
from a descent 9.15.14, we have

9.18.2 N(X+ Yo)=38 N{a+bg) N(u+ vof,

where # and v are the solutions of the corresponding equation 9.6.3.
For a solution of Type I, resulting from a descent 9.15.7 and leading to
an equation 9.15.12, we have by 9.4.1:

9.18.3 N(X+ Yo)=38 Nu+ vl =38 N—azx®+ by}

For both types of descent, the value of N(u + vg) for a known solution
must be calculated anyway as a factor of Z in 9.3.3 or 9.6.1. The value of ¢
to be used (cf. 9.3.4) depends on the solution (X, Y, Z).

It is further easily seen that we have the inequalities:

0.13.4 Max {|u], |v|} = ]/gN(u + vp); in particular
9.18.5 Max {|a2®|, |b9®], |ce®|} = ]/‘;N(— ax® + by o).

Let (X3, Yy, Zi), 2=1,2,...37— 1, have the same meaning as above, and
let now

M = Max {N(X; + Yip)}.
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Let further (X, Y, Z), with elliptic argument {, be any solution different from
(1, —1,0) and from the (X; Y; Z:), and not a triplication of another solution
(x,y,2). (If (X, Y, Z) is such a triplication, we deal with (z, y, ) instead.) There
is then always one (X, Y; Z:), with argument ;, such that { —§;=— (— ) — &
gives the triplication (X,, Y, Z;) of another solution. Since (X,, Y;, Z;) can be
obtained by applying 9.15.2 to (H, Z) and (Xi, Y3, Z;), we get from 9.15.5:

9.18.6 3(Y + Xo)l{Xi + Yi0)(X; + Yg0) = A[Z:(Y + Xo)— Z(X; + Y:0)P.

As already mentioned, the formulae 9.15.2 will usually give a rather big
common factor C. 1t is easily seen that C is always divisible by

9.18.7 C, = greatest common factor of all s4,

(in the expression for X + Y) in all soluble descents 9.15.7 (where 4, = 4) and
9.15.14. In particular, C, will contain all prime factors ¢g=—1 (mod 3)of 4. —
It follows from 9.15.5 that possible factors of C prime to 34 always occur as
cnbes, but nothing more can be said in general about such factors.

Let (X3, Y3, Zs) be the solution with the factor C removed. Since
| Y + Xo|=|X + Yo, 9.18.6 gives the inequality

3lX+ I'QI-IXL'-F Y,-gl-IX'3+Y$Ql§C;lA[|Z,-|-|X+ YQ|+|Z|'IX1'+ Yi@l]s.

Further
gp o [XE X6 YLIX 4 Yol _a|X o+ YoP |
A A ’= A o

3

3/___ . _ i
|z|§]/ 20X+ Yel, |zi|g]/%'lx,-+ Yol
Substituting this, we find that
\ \
| X5 + Yéglé%C,‘"[X,--f— Yiol | X + Yol

Now the norm is the square of the modulus, and so

A

0.18.8 N(Xs+ Yap) =502 M2 N(X + Yol

3

Let (X3, Y3, Z3) be the triplication of a solution (x, y, 2), given by the ex-
pressions 9.15.3. It is easily verified by the second formula 9.15.6 that N(x + y )
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has a maximum for fixed N(X; + Y;3p) when
x=—y, N(xz+yo)=32°, N(Xz+ Yso) =32

But we must remember that the formulae 9.15.3 can give a common factor 9
when A=+ 2 (mod 9). Since the possibility z = — y is excluded, we thus get

an inequality:

—_— i, where
3

9.18.9 Co=1 if A=+2, C(C,=3* if A=+ 2 (mod g)

N(x+yg)<'l/0 N(X5 + Yio)

Combining this with 9.18.8, we see that

8, .6, 1
N+ yo) < {2300
G

woite

.N(X + Yop.

We now apply the same process to the solution (x, %, 2), and can continue
with this principle until we get, either to one of the given solutions (X, Y3, Z),
or to a solution (X', Y’, Z') such that
9.18.10 NX + Y o)< {f—%‘lﬁ}}M“?

1
Here C, and C, are given by 9.18.7 and 9.18.9. — This is the improved form of
the inequality 9.18.1.

When the limit of 9.18.10 has been calculated, the search for possible solu-
tions (X', Y’, Z') can be quickly performed by the formulae 9.18.2—3. These
will in most cases give very narrow limits for the || and |v| of 9.18.4, or for
the |aa®|, |by®] and [c2®| of 9.18.5. The value of ¢ to be used in these in-
equalities is usually uniquely determined by the type of descent and the residue
of 4 mod 9. The only ambiguity arises for 4 =+ 2 (mod 9), when both cases

I and II are possible; we must then use the most unfavourable value t=é

(case II) in the expression for N(X' + Y'p).

We have seen that g = 1 or 2 for all soluble 4 < 500. When ¢ = 2, the
solutions of the descents 9.15.12 and/or 9.15.14 are usually so simple that the
basic ones are easily recognized. When however g = 1, the one basic solution
(Xy, Yy, Z,) is sometimes big, and must be checked by 9.18.10. The solutions
(Xs, Y4, Z:) can then be chosen as (X,, Y,, Z,) and (X,, Y, Z,) = (Y,, X,, 7)),
ie. M=N(X, + Y, o).
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Table 1°.

The residues mod g of N{u + v& + w0wd?) = «® + mo® + m*w® — 3muvw.

1] B9 x+d| 1—0 [14+9 | 1—9 | O4+9 | B —9® | 14+0+92 | 1 —0—B* |1 -0+ | 14+0—B°

m=1{modg) |1|1]| 1 o 2 o 2 o o —4 4 4
m=2 12| 4 3| —1 | —4 | —3|—3]| —2 1 —2 o —4
m=3 13 o —2 X 1 3 3 4 —2 —2
m=y4 1|4 |—2—4| —3 | —1 3 2 | —3 o —4 —2 I
Table 1°.
Possible combinations mod 3 of » and 5 = & .
n=o (mod 9) n=1 (mod 9) n=2 (mod 9)
y={1—8&| 1—9* H—92 1 9 P 1+48 119 B+92
7751 X X X
m=1 (mod 9) 17519 X * x
775192 x x X
n=1 (mod 9) n=2 (mod 9) n=3 {mod 9)
v={ 1 | —1+® (1+84+8Y & — 3+ |13 1 +d | -1+ BB
nN=1 X X X
m=z (mod o} | p=—1+ x X X X
n=1+9+ 9* X X %
n=1 (mod 9) n=2 (mod 9) n=4 (mod 9)
v=| 1 149 | 11— || —148 | 18+ |-1+ 8-9%| 14+ |1+8+ 1 +8-—D
=1 X X X
m=3 (mod o) | =1+ H? x % x
77———1—'(92 X X X
n=1 (mod 9) n=3 {(mod 9) n=4 (mod 9)
v=l. 1 | —1—*1+0— —1+8| 1—0* | -0+ 4 —1—9 | -1+ 9+ H?
=1 x x x
m=4 (mod 9) 7]5—1—192 X X
77=1+?9—192 x X x
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Table 1°.
Effective cubic residues for m =+ 1 (mod 9).
m=10 m=17 m=19 m=26 m=28
Class 4 1+ 89—z 9 32+ 49—0% |—1+20+89% 16—+ 109 | 20—0+89°
(mod 27) 3 3 3 3 3
Class 6 7+ P—28 | 84+ 40— |—7+20+89 4—OF+10® s—3+89°
(mod 9) 3 3 3 3 3
m=35 m=37 m=44 m==46
Class 4 1Fud+P® | 3i—59+9* | 3x+50+9% | 1— ¥+
(mod 27) 3 3 3 3
Class 6 g+ 119+ 1—s5 9+ 9? 1+58+9 | p—1r 9+
(mod o) 3 3 3 3
Table 14
The cubic residues td + & (mod q,) in K ().
17 3% 3 t+ 9 (mod q) » K(Q).
m=011213|4|5{6]7!8]9gltol1x|12]13(14]|15{16|17]|18]19!20{21]22{23
- m~ 1 -23| 16 12| 19] 8|-20, 6 21|-14)-17| 4|-I8}-10| 22| 3|-11,-13] 5{-7] 9| 1512
=4 d 1| 21|19 18| —8[-23] 16| 2{-15| 20|-12]-13| TO| 7| II| —5] 4] 14! ~6{-3}~22|-17|-9
=41 m i1 |20 14/-x0| -8 7| 6| —5| ~9| —4| 15/~17| 19| 3| II| I8|-12| 16| 13|--2
174 d 1| 5|-14/-16| 20| 12]~17{ 2{ —9| 18] 6| 19| 15 3| 7| 10|~13| —4{ 11| 8
- m~ 1y ~-14{ 10| ~7{ 6 5| —4 11| 13| 3} 8-x2{ 9O -2
2729 1| 311 of —7] 4l-13 5| —8-14/-12| 6| 10 Values of t:
g=123 m 1 l11| 8 6 -9 4} 10| 3| -5 7| -2 g=35t= 3
d 1| ~7-11} 3| —4/ 8 -9 2| 6| 5l 10 g=11:1= 3, 6, 9
~1
g=x7\" I “: 6 4 g 3) 512 g=17: 1= o, 1, 2, 9, 16
1 A 2 e -1 s g=23:t= 3, 4, 10, 12, 14, 20, 21
T s 3} -2 e o
=11, r| -4l 2l 3| 3 g=29: ¢t= 5, 8, 10, 12, 15, 18, 20, 22, 23
m Wil -2 g=41: t= 4 5 8, 12, 14, 17, 21, 25, 28, 30, 34, 37, 38
175 1, Il - 94=47: t= 8, 9, 10, 13, 17, 18, 23, 24, 25, 30, 31, 35, 38, 39, 40
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Table 20,
Non-excluded equations aa® + by® + ¢2® =0

500;

=
a<b<e, (a,0) =(a,c)=(b,c) = I.
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Table 2P (continued).
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Table 2P (continued).

4 a b c k4 y z A a b c z Yy z
460 4 5 23 1 -5 3 1 483 I 71 69} -5 2 I
462 1 6 77 -5 2 1 484 1 4 | 121 -5 1 I

I 21 22 I b -1 490 2 5 49 -3 s 1
2 7 33 2 5 -3 493 I 17 29 32 7 —IX
3 11 14 1 —I 495 I 9 55 —4 I X

465 I 15 31 | —22 1 7 | 497 I 7 71 4 1 ~TI
466 I. 2 233 119 138 —3I 498 1 2 | 249 I -5 1
468 4 13 I 1 ~I I 3 | 166 | —II I
473 1 1r 43 I 6 | 83 67 | —38
474 2 3 79 1 -3 1 2 3| 8 I 3 -I
477 I 9 53 -5 2 I

Table 2¢.

Values of 4 <1000 with 13 possible equations aa® + by® + ¢2® = 0, abc = A4, only
one of which is soluble.

A a b c x Y z
330=2"3°5" 11 5 6 1T I I -1
510=2"3°'5"17 2 15 i7 1 I -1
660=3-4"'5"11I 4 iI 15 I 1 —I
690 =2°3"'5"23 I 2 345 7 I -1
870=2-3°5"29 1 29 30 1 1 -1

Table 3.

The equation u® —3u®v + v® = 3*pw?, 1 =0 or 1, g'~*p =< 500.
Crosses : 1nsoluble equations.

P u v w P % v w P % v w
b 1 2 I 163 X 8 1 j17-19] II I 1
17 5 I 1 179 283 86 17 359 49 731 71
19 7 2 1 181 X 19? x
37 1 5 1 197 20 31 I 379 25 1
53 29 10 b 199 x 397 13 1
A=1 71 8 13 b 233 77 | 118 I 431 11 19 I
73- x 251 38 13 ax 433 1 II I
89 2 7 I 269 | 2189 | 757 37 449 5 13 1
107 8 I b 271 10 17 I 467 23 7 1
109 X 172 4 11 I 487 %
127 16 5 1 307 X
A= o{ 1 o 19 1 3 I 53 1 4 I
17 4 1 o 37 5 8 I
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Table 4.
Cubefree values of 4 = 500 for which the equation
X3+ Y3=423

has only the trivial solution with Z = o.

4. Values covered by Theorem VIII.
A=3
A=¢,; =2 (mod 9): (2), 11, 29, 47, 83, 101, 137, 173, 191, 227, 263, 281, 317, 353,
389, 443, 461, 479
A=¢,=5 (mod 9): 5, 23, 41, 59, 113, I3I, I49, 167, 239, 257, 293, 3II, 347, 383,

401, 419, 491
A =q:'1>: 2%2=4, 112 =121
A=g5: st=25
Other combinations.
2 9 1z 5° 29 47 ! 83 101
2% — 36 44 100 116 188 332 ' 404 l
5 10 45 55 - 145 235 415 {
9 18 — 99 225 261 423
23 46 207 253
41 82 | 369 | 451
59 118
113 226
112 | 242
131 262
149 298
167 334

239 | 478

4% Values of 4 with 4 possible equations
ax® + by® + ¢ =0, abe =4,
which have all been proved insoluble (Theorem IX).

60, 66, 102, 138, 150, 165, 174, 204, 220, 230, 255, 276, 290, 300, 318, 340, 354, 374,
410, 426, 470, 492
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234=9-2 13
252:9:22. 7
315=9°5 * 7

154 =2 "11 * 7
1902 * 5 'I9
260=2%- 5 -13
350=2 * 5% 7
406=12 29 - 7
44272 "17 *13
476=22-17 - 7

4°. Combinations covered by Theorem XI.
2 3 2? 5 I ) 17 23 l 5 47 53

7 I4 21 —_ e 77 l 119 - 175 329 371
13 — 39 52 — — 1 221 299 —
19 38 57 76 95 | — — | 437 | 475
31 - 93 b I55

37 74 Iz 148 185

43 — | 120 — —

72l — | 147 | 196 | 245

61 122 —_— — —

67 — — 268 —

73 | 146 — | 292 | 365

79 | 158 | 237 —

97 194 291 —
103 — - 412
109 — | 327
127 — 381
139 - 417
I51 302 _—
157 — 471
163 | 326 | 489

13| 338
181 362
199 | 398
241 482
4% Values of A4 covered by Theorem XII.

4°. Values of 4 with two prime factors r= 1 (mod 3).

266=2-7"19

_ 2
364=2"-7"13

434=2°7"31

455=5'7"13

353



354

Ernst S. Selmer.

4. Values of 4 with four possible but insoluble descents 9.6.1, including
a+ bg = p (identical with the crossed values of Table 3).

52,
100,
149,
204,
261,
300,
362,
401,

475,

#.

4,

55,
101,
150,
207,
262,
302,
364,
404,
476,

5,
57
102,
154,
220,
263,
307,
365,
406,
478,

10,

59,
109,
155,
221,
266,
311,
369,
410,

479,

73, 109, 181, 199, 307, 487 (all primes); 361 = 192

II,

60,

111,
158,
225,
268,
315,
374,

412,

482,

14,
66,

113,
165,
226,
276,
317,
374,
415,
487,

18,

73,
116,
167,
227,
281,
318,
381,

417,
489,

21,

74
118,
173,
230,
290,
326,
383,
419,
491,

23,

76,
119,
174,
234,
2071,
327,
389,
423,
492

25,
77,
121,

175,

235,
292,

329,
398

426,

29,
82,

122,

181,

237,
203,

332,

434,

36,
83,

129,

185,

239,
298,

334,

437,

38, 39, 41, 44,
93, 95 99

131, 137, 138, 145,
188, 190, 191, 194,

242, 245, 252, 253,
299

338, 340, 347, 350,

442, 443, 451, 455,

A complete list of the insoluble values in the Tables 32—,

45, 46,

146, 147,

196, 199

255, 257,

353, 354,

461, 470,

148,

260,

361,

471,
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Table 5.
Non-excluded equations 3auv(u —v) + b(w® — 3u2v + v%) = 3%.41 wd
with 4 = 4;- N (a + bp) cubefree and =500, a +bo# £ 1, + o, + ¢?
(conjugate values a + bp and a + bo? not considered separately).
fvt =3 in Case I and II, — g in Case III (Ch. IX, §§ 3 and 6).

A alblAdy; Case |u! v | w A a|b |4, Case | u| v w

7 1] 3| r{LIT{x|2;jrxl(r2y 13| 6| 1 I I 6 2
13 4| 3| 1 I 1jofx 6|13| 1| II 1 2 1
19 5! 3| 1 I 1{0|x 131 71 1| II 51 4 1
3].5| 1y II 2|11 f133=7"19 st 31 i LII| 2 I I

51 2 1| IX 2| 1}|2(134=2"67 gf 2| 2| II 2 1 2

26=2"13 1| 4| 2| II 1|2 71139 13( 3| 1 I It o T
28=22.4 3! 20 4 II 21| 1}143=11"13 1] 4l¥rz| II 5 1 2
31 1| 6| 1 I 311 | 2(151I 14 9| 1 LII| 3 2 3
35=5"7 3] 1} 5 1 2| 1| 1157 13(12| 1 I 43| 132 28
37 71 31 1 I 1ol x||161=17"23 3| ri23| II 5 4 1
3 71 1| IX 1241|163 14| 3| 1 I I o 1

71 41 1] II 15| 2 3|14 11 II 1 2 2

43 716 1| LIE|2]1]2 14|11 1] II 7 5 1
49=7?2 81 3] 1 I 1]/o} 1 169=132 8lisi 1| L II | 2 I 1
61 50 9] 1| LIL |2 1]1i172=2% 43 71 6 4| I 3 2 1
62=2" 31 I| 6f 2 1 10| |182=2"7"13 x| 6| 2| I, II 1 o 1
63 =327 3| r} of III | 1|0 | 1|183=3" 61 41 9] 37 I X o 1
65 =513 4! 3| 51 LIX 2|1} 1193 16| 9 1 1 44| 227 | 129
67 2.9 1| I 3({8!9(zor=3"67 2| 9} 3/ 1 1] o] 1
79 10 3t 1{LII{z1{01{203=7"29 1} 3729 I 4 I 1
86=12"43 7| 6] 2 I 10| 1 |206=2"103 1ir| 2| 2} II 1| 17 5
91 =17"'13 1| 3|13 I I{3¢1I|209=11"19 5| 3|1z LII| 3 2 1
40 1| 71 II 2| 1|1 |21x 1|15) 1 I 2| 15} 25

rj1o0| 1| II I (2| 2(215=5"43 i 71 5| I I 2 I

sy 1} II 1|2 1|217=7"31 3| z|3r; II 7 2 2

97 11| 3] 1| LI |01 6 5| 7] II 2 1 1
98 =2-72 3| 8| 2| II 121 8lr7| 1| II I 2 1
103 11| 9| 1 I 11413 16| 3] 1 I b¢ o I
117 =3% 13 4 1| o| III 1|o| 1}218=2"109 s|l12) 2| L,IX | 1 2 1
124 =2% 31 1 6] ¢/ LIT|1|2|1{|210=3"73 1/.91 3 I 1 o 1
126 =237 30 2[18| III | 1| o] 1 {223 17 6| 1| L,IT| 3| 2| 4
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Table 5 (continued).

Ernst S. Selmer.

i ————

A a|blA;| Case | u| v | w A a| b |Ay| Case | u | v w
229 17(12) I I 1| 4| 2|[387=3%"43 71 1 9| III 1| o I
241 1615 1) L II| 3| 2| 1|388=2% 97 11| 8] 4| II 41 17 7
244 = 2% 61 9] 4| 4| I | 5| 4| 2)1395=5"79 3|10| 5 II |13) 23| 2
247 =13 19 171 3] 1 I 1{ of 1}397 23|12] 1 I 4] 3 4
254 =2 127 13| 6 2| LIL| 1{ of x 12|23 1} II 2| 1 1
250 =7"37 5(18f 1/ LII| 1} 2| 2 23(xx{ | I l1y| 71| 29
271 19 9] I I 1] 6] 3|399=3"7 19 13 9! 3 I 1| o ¢
9i19| 1| II 1| 2| 1{403=13"31 4{ 3|31 | LII|{ 1| 5 I
19|10| 1| II 14| 1(22[|407=11"'37 70 3l | LIL| 2 1 1
273=3°7 13 10| 9| 3 1 1| of 1400 23|15| 1 1
277 19|12 x| LII| 1| 5| 4| 413=7"59 3| 2{509] II 5] 22 2
278=12"'139 13(10) 2} 11 2| 1] 2} 421 |2r) 1] I, II| 8| 19 | 29
279 =13%" 31 6 ri o IIL I} o) 14222211 i5(14) 27 1T 2| 1 2
283 19| 6] I I 427 =7 61 22( 3{ 1 I 1| © b
287 =17" 41 1| 341 I I| 4| 1433 111244 I I 1| o 2
1301 =743 2( 343 I 50 2| 1 24)1r| 1| II [13( 77 | 11
305 =5"61 9! 5| 5 II 1| 5{ 1 24|13 1| II I{ 5 1
300 =3 ‘103 1] 9| 3 I 1| ol 1(436=22 109 5|12 4 I I o 1
313 19] 3| 1] LII| 1§ o] 1439 23|18 1| LII| 7] 5 2
314= 2" 157 13)12) 2 I 3] 2] 1ll491=32"7% 5| 8| of IIX 1| o 2
316 =2%: 79 310!l 4 IX 1) 2) 11446~ 2" 223 7] 6] 2 I 1| o I
325 =5%"13 4| 3725( 1 3] 1| z{453=3 151 141 9j 3} 1 1] o} 1
331 1ol2r| 1| LIT| 1| 2| 1|457 7124 1| LIL{ 1| o 2
335=5"67 2] 9| 5/ LIl | 1| 2| 1| 458=12"-229 17|12 2 I 43| 31 | 22
337 8l21| 1 I 463 22|21 1 I 1| 3 I
341 =1I"3I 6| 1|11| II 2| 1] 1([468=122-3%2-13 | 3| 4|36 III 1{ © 1
342=2"3%" 19 5| 2|18| IIX I| of I|469=17"67 3| 2(67] II 1) 11 2
349 200 3] 1| LI} 17y 0] 1 9] 7| 7] 11 71 5 I
367 22| o9y 1{ L II |23] 1)35 13725 1] II 2] I I
370=2'5"37 71 4|10 II 2( 1| 1 23| 31 1 I 1| o 1
373 4(21] 1 I 5( 2| 1({473=11"43 71 6111 I
377 =13 29 3( 4|29| II 4111 | 2(481=13"37 5(24] I I 1| o 2
379 22 15| I I 1| 4| 1)/485=5"97 3(11| 5| II 1| 2 1
15|22 1| II 2| 1| 2|j494=2"13"'19 51 2{26| II 5( 4 ¢
22| 71 1] II 35| 1]30ll497=7"71 1 3{71| LIl 57 1 1
386=12"193 9t16} 2| II 2| I| 1|499 25(18 I
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Table 6.
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The number ¢ of generators and the basic solutions of the equation X3 4 Y3 = 4 23,
A cubefree and = 500.

A4y (X, Y, 2) Adig (X, Y, 2)
6 | 1 |(37, 17, 21) 90| 1 | (1 241, —431, 273)

711 |2, -1, 1) 91| 2 |(4, 3, 1), (6, ~35, 1)

91 {2 1, 1) 92| 1 {25903, -3 547, 5733

12 | 1 |(8g, 19, 39) 04| 1 | (15642 626 656 646 177,

1311 ({7,2, 3 —15 616 184 186 396 177,

15 | 1 | (683, 397, 204) 590 736 058 375 050)

171 1|18, —-1, 7) 97| 1 | (14, -5, 3)

19 | 2 ({3, -2, 1), (5, 3, 2) 98| 1 (5, -3, 1)

20 | 1 |(x9g, 1, 7) 103| 1 |(502, —349, 117)

22 | 1 | (25469, 17299, 9 954) 105 1 | (4033, 3527, 1014)

26 | 1 [(3, -1, 1) 106| 1 | (165 889, ~140 131, 25 767)

28 | 1 |(3 1, 1) 107| 1 |(90, 17, 19}

30 | 2 (163, 107, 57), (289, ~19, 93) 110{ 2 { {181, —71, 37), (620, 251, 134)

31 | I [(137, —65, 42) 114/ 1 ({9 109, —go1, 1 878)

33 | 1 | (1853, 523, 582) 115 1 | (5266097, —2 741 617, I 029 364)
34 | 1 (631, —359, 182) 117 1 |{5, —2, 1)

35 | 1 |(3, 2, 1) 123| 1 |(184 223 499 139, 10 183 412 861,
37 {2 |{g, -3, 1), (10, -1, 3) 37 045 412 880)

42 | 1 |{449, =71, 129) 124| 2 | (5, -1, 1), {479,.-443, 57)

43 | 1 |(7, 1, 2) 126! 2 | (5, 1, 1), (71, —23, 14}

49 | 1 | (11, ~2, 3) 127| 2 | (7, -6, 1), {121, —120, 7}

50 | 1 |(23 417, -11 267, 6 111) 130| 1 | (52 954 777, 33 728 183, 11 285 694)
51 | 1 {730 511, 62641, 197 028) 132| 2 | (2 089, —goI, 399), (39 007, ~29 503, 6 342}
53.| 1 |(x 872, -1 819, 217) 133| 1 |(5, 2, 1)

58 | 1 {{28 747, ~14 653, 7083} 134 1 {lg, 7, 2)

61 | 1 |(5, -4, 1) 139| 1 | (16, —7, 3)

6z | 1 [(11, 7, 3) 140, 1 | (27397, 6623, 5301)

63 ¢ 1 ({4, -1, 1) 141| 1 |(53 579 249, —52 310 249, 4 230 030)
65 | 2 |(4, 1, 1), {191, —146, 39) 142| 1 |(2 454 839, 1 858 411, 530 595)

67 | 1 |(5353, 1208, 1323) 143| 1 | (73, 15, 14)

68 | 1 | (2538163, —472 663, 620 505) 151 1 |(338, —95, 63)

69 | 1 |(15409, —10 441, 3 318) 153] 2 | {70, ~19, 13}, (107, —56, 19)

70 | 1 | (53, 17, 13) 156 1 |(2 627, —1 223, 471)

7t | 1 {197, —126, 43) 157 1 {{19 964 887, —19 767 319, I 142 148)
75 | 1 [{17 351, —11 951, 3 606) 159| 1 | (103 750 849, 2 269079, 19 151 118)
78 | 1 | (5563, 53, T 302) 161| 1 | {39, -16, )

79 | 1 ({13, -4, 3) 163| 2 | (11, -3, 2), {17, -8, 3)

84 | 1 | (433, 323, 111) 164] 1 | (311 155 001, -236 283 589,

85 | 1 | (2570129, —2 404 889, 330 498) 46 913 867)

86 | 2 |(13, 5, 3), (10067, ~10 049, 399) 166 1 | (1 374 582 733 040 071,

87 1 1 | {1176 498 611, —007 929 611, 216 266 610) —1 295 038 816 428 439,

89 | 1 [(53, 36, 13) 136 834 628 063 958)
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Table 6 (continued).

4 |g (X, Y, 2) Alyg (X, Y, 2)

169 | 1 | (8, -7, 1) 244 1llog, 67, 14}

170 | 1 |(26 353, 14957, 5031) 246| 2|{571 049, —511 271, 59 787),

171 | 1 (37, 20, 7) (2 043 883, -1 767 133, 230 685)

172 | 1 | (139, —103, 21) 247 1{(20, -11, 3}

177| 1 | (2 419 913 540 753, 1 587 207 867 247, 249| 1|(275 657 307 291 045 075 203 684 958 997,
468 227 201 520) -275 522 784 968 298 556 737 485 593 813,

178 | 1 | (110623 913, 8065063, 19668 222) 4 974 480 998 065 387 679 603 368 524}

179 | 1 |(2 184 480, ~1 305 053, 357 833) 251] 1|(4284, —4 033, 373)

180 1 |(go1, 719, 183) 254| 2| (19, -1, 3}, (587, 437, 104}

1821 2 | (11, 5, 2), (17, 1, 3) 258| 1|(2 195 839, —2 047 231, 198 156)

183] 2 | (14, 13, 3), (205 579, —190 171, 46 956) | 259 1|(13, —5, 2)

186 | 1 |{56 182393, 15590 357, 9911 895!} 265 1/(36 326 686 731 109 813,

187 | 1 | (336 401, ~140 491, 57 070) 9 746 422 253 537 867,

193 | 1 | (135477 799, —116 157 598, 16 825 599) 5691 827 727 610 864)

195 | 1 | (68 561, ~54 521, 9 366) 267 1| (861 409, ~342 361, 130 914}

197 1 | (2339, —2 142, 247) 269! 1|(800 059 950, —786 434 293, 45 728 263)

198 1 |{1 801, ~19, 309) 271 2|{10, -9, 1), {487, —216, 73)

201 | 2 |(16, 11, 3), (3251, 124, 555) 273| 2|(19, 8, 3), (190, —163, 21}

202 | 1 | (2884067, 257 437, 491 652) 274! 1|(111 035 496 427 236 122 887,

203 | 2 | (229, 32, 39), (2 426, —2 165, 273) —43 257 922 194 314 055 637,

205 1 | (8191, -6 551, 1094} 16 751 541 717 010 945 845)

206 | 1 (5211, —4 961, 455) 275 1| (424 560 439, —309 086 839, 55 494 828)

209 | 2 | (52, ~41, 7), (125, —26, 21) 277\ 1{(209, ~145, 28)

210 2 |(1 387, 503, 237), (3961, —2 071, 633) 278 1|(13, 3, 2)

211 | 1 | {74 167, 66 458, 14 925) 279 1{(7, -4, 1)

212 1 {(337 705 939 853, —315 091 652 237, 282] 2{(117 217, ~96 913, 13 542),
32 429 956 428) (2 814 607, 1571057, 452 772)

213 | 1 | (64313 150 142 602 539 525 717, 283(=1
46 732 739 212 871 851 099 283, 284] 1/(7 722 630 462 000 896 449 941 136 589,
12 000 095 230 802 028 099 750} -1 293 813 622 621 939 303 367 931,

214 | 1 |(307 277 703 127, —244 344 663 377, 1 174 877 194 362 780 234 594 343 698)
40 697 090 945) 285 1{(18 089, 1 531, 2 886)

215| 1 |(6, ~1, 1} 286] 1/(323, -37, 49)

217| 2 | (6, 1, 1), (9, -8, 1) 287| 1|(248, -121, 39)

218 2 | (7, —5, 1), (279 469, —61 469, 46 270) 289] 1|(199, go, 31}

219| 2 {17, 10, 3), (168 704, —36 053, 27 897) 204] 1i{124 559, —103 391, 14 118)

222 1 | (5884597, 858653, 972 855) 295| 1|(34 901, —16 021, 5068)

223 | 1 |(509, 67, 84) 3o1| 1/(382, 5, 57)

228 | 1 | (46 323 521, 27 319 949, 7 024 059) 303| 1[(z 659949, 67051, 396 030)

229 1 |{745, —673, 78) 305/ 1/(86, -81, 7)

231 1 | (818 567, —369 503, 129 186) 306 1|(6697, —3 943, 921)

233 | 1 | (124 253, —124 020, 3 589} 308 1|(199, 109, 31

236 | 1 |(248 957, 209 827, 47 106) 309| 2j(20, 7, 3), (272 540932,

238 | 1 |(53 927, 3907, 8703) 142 217 089, 38 305 371)

241 | 1 |(292, ~283, 21) . 310| 1|(50II 613, ~190 493, 740 484)
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A f g ' (X, 7, 2) Alyg (X, Y, Z)
313| 1|(22, ~13, 3) 385| 1|(20 521, —17 441, 2054)
314 | 1|{241, —223, 21) 386 1j(g, -7, 1)
316 | 1/{7, -3, 1) 3871 1/(8, -5, 1)
319 | 1|{6 462 443 919 765 751 305 499, 388 1|(4650, -3 287, 553)
-6 182 025 219 604 143 438 499, 390| 2|(3043, 467, 417), (4373, ~863, 597)
472 407 353 310 304 561 590) 391} 1| (590 456 252 06T 289,
321 1/ (13 755 277 819, 8 670 272 669, —171 359 229 789 289,
2 164 318 002) 80 084 103 077 160)
322 1;(1873, 703, 278) 393} 1) (4045451 855513 988 711 059,
323| 1|(252, 71, 37) 2 369 372 172 284 459 347 309,
325 | 1I|(128, 97, 21) 587 046 969 413 536 968 336)
330} 1) (1621, 1349, 273) 304] 1}(1439 245 403, —573 627 403,
331} 1|(11, 10, T) 192 088 390)
333] 1, (397, —286, 49) 395| 1|(7801, —7 851, 266)
335| 2|(7. -2, 1), (390997, 260 243, 61 362) 396| 1){(46 789 273, ~37 009 657, 5074 314)
337|=1 397 2|(12, —11, 1), (360, 37, 49}
339] 1| (r 392007 139, —345 604 139, 399| 2|(22, 5, 3), (401, 328, 63)
198 626 610) 402 1|(585699 417 548 405 371,
3411 1/l6, 5, 1) 102 798 361 240 815 491,
342 2|{(7, -1, 1), {x 253, —1 205, 86) 79 502 362 839 530 631)
345] 2] (16543, 8297, 2454), 403} 1/(53, ~22, 7)
(389 699, —190 979, 53 292) 407| 2|(7, 4, 1), (33733, 33 634, 939)
346 |=1 409| =1
3481 2|(40283, —15227, 5622), 411| 1| (186 871 897, 49 864 103, 25 292 280)
(2 706 139, 425 861, 385 230) 413] 1|(2575, —2 103, 266}
349) 1[{23, -14, 3) 414 1/(68073 157, 32 528 843, 9 454 410)
355| 1|(2903959, 2617001, 492 516) 418| 1| (76 267, 25307, 10 323)
3561 I/(15026630 492 061 476 041 947 013, 420| 2|(z213, 1567, 327),
4709 632 110 OLI 335 573 393 177, (10 459, -6 679, I 263)
2 008 221 141 580 681 446 554 58¢) 421 1|(19 600, 4699, 2639)
3571 1(19207, 6497, 2 742) 422| 1|15, 1, 2)
358 | 1|{(7951661, 2922589, 1 138 095) 425 1|(2393, 1007, 326)
359 1{(77517 180, 50972869, 11 855 651) 427| 1|(25, —16, 3)
363] 1|(1909 159356457, 428 1|(1 204 057, —1 190 053, 104 013}
—I 746 345 039 913, 420| 1|(16739, 14149, 2 598)
165 073 101 648) 430 1/(5989 967, 3 449 393, 841 204)
366 | 1|(2087 027, —1 675 277, 228 885) 431 1|(701, —270, 01)
367 | 1|(42 349, 526. 5915) 433| 2/(37, 35, 6), (223, —222, 7)
370| 2/(7, 3, 1), (70523, 19387, 9891) 435 2| (32779, —I 459, 4 320),
372| 1/(2 717893, 630 107, 379 470) (3 784 049, 2 981 071, 570 276)
373| 1|(1604, -1595, 57) 436| 2|(r9, 17, 3),
377| 1){469, —237, 62) (1 330019, —1 224 071, 105957)
379| 2|{15, =7, 2), (917, —008, 39) 438| 1[(12636 764083, 11127850973,
380 1y(1009, —629, 127) 1 979 215 602}
3821=1 439l 1|(571, ~563, 26)
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Table 6 (continued).

A4 \|yg (X, 7Y, 2) PA g ! (X, Y, Z)
441 1 (13, 11, 2) 465/ 1[(1 212356942047, —1 197 072 217 207,
444 | 1){4 174 254 535 499, ~726 500 109 131, 52 307 828 958)
546 201 297 768) 466| 1| (464 540 708 319 337 302 841,
445 |21 88 708 763 256 715 446 551,
446 | 2|(23, -5, 3), (4 286 417, —4 285 265, 52 212) 60 057 801 943 830 995 598)
447 | 1|{(4 405 301, —382 301, 576 030) 467, 1|{1 170, ~703, 139)
449 | 1|{323, 126, 43) 468] 2|(7, 5, 1), (859, —763, 74)
450 | 1{({21079, 11321, 2 886) 460! 2z|(13, —12, 1), (26, —17, 3)
452 | 1[(851 498 679 025 552 420, 473 =2
224 535 817 897 760 0771, 474] 1|(568 871, —453 689, 57 627)
111 626 729 681 785 675) 477| 2|(89, 70, 13), (12 040, —11 881, 523)
453 | 2|(23, 4, 3), 481| 1|(43, 29, 6)
(50 167 097, 39 331 207, 7 447 188) 483! 1{(2 401 741, 1 045 259, 352 830)
454 | 1|(753 389 202 595 029 867 852 290 484| 1[(236 521, ~176 021, 25 235)
245 746 241 110 629, |1485! 1|8, -3, 1)
—204 264 638 826 527 324 892 641 490| 1](193 229, ~74 159, 24 039)
927 694 862 943 879, 1(493| 1[(8 432 715268 961, —1 057 596 310 369,
97 368 775 947 767 167 139 892 1066 758 076 384)
682 703 702 288 385)  |1494! 1|{350, —33, 7)
4571 1/{41, 31, 6) 495| 1)(342 361, —57 241, 43 212)
458 | 1/(953 039, ~761 375, 97 482) 497 2|(55, 16, 7). (7 411, 6 772, 579)
460 | 1|(248 768 189, 234 795 689, 17 466 345) | 498| 2|(611 137, —490 123, 60 543),
462 2|(3 779, 379, 489), (11 969, ~7 811, 1 389) (15811 001, —15 250 751, 933 765)
463 | 1/{403, ~304, 21) 499|<1
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