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I n t r o d u c t i o n .  

I n  th i s  pape r ,  we sha l l  be m a i n l y  c o n c e r n e d  w i t h  t h e  i n t e g e r  s o l u t i o n s  of  t h e  

h o m o g e n o u s  D i o p h a n t i n e  e q u a t i o n  

(I) ~l,X 3 + b y  a + c z  a = o, 

w h e r e  a, b a n d  c a re  r a t i o n a l  i n t e g e r s ,  w h i c h  we m a y  suppose  c u b e f r e e  a n d  

c o p r i m e  in  pairs .  - -  I n  t h e  I n t r o d u c t i o n ,  I g i v e  a b r i e f  su rvey  of  t h e  pape r .  
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Chapter I treats more general topics such a s :  

The Weierstrass normal form for the curve (I), and the connection between 

this curve and the more special form (Theorem I, w 2) 

(2) X a+ y s = A Z  8, a b c = A .  

An extended field of rationality for the coefficients and unknowns of (I), 

in particular K(q), q = e a 

The exceptional points of the curves (i) and (2). 

The finding of new solutions from other, known points on the curve (t). 

The method of Cxss~Ls [I] ~ for proving the insolubility of (2). I have 

found some cases where his necessary conditions for solubility turn out to be 

insufficient. 

Chapter I I  deals with the elementary solubility-conditions for the congruence 

corresponding to (I): 

(3) axa + bY ~ + c z s - ~ ~  (modp~), 

and also the more general c a s e  

(4) A x  8+ B x ~ y  + C x y  ~ + D y  a-~ E z  s (modp~), 

for different primes p and all exponents d. For p = 3  or any prime dividing 

the coefficients - -  and in the second case also the discriminant of the left hand 

side - -  it is clear that  we can form simple necessary criteria for solubility of 

the corresponding equations. The more difficult part  of the problem is to show 

that  the congruences are always soluble for all other primes p. 

I also mention the more general congruence 

~ a i x ~ o  (modpS), 
i ~ l  

which is always soluble if n ~ 7. The corresponding equation can be proved 

soluble for n ~ 9. 

1 N u m b e r s  in  s q u a r e  b r a c k e t s  deno te  re fe rences ,  see  end  of t h e  paper .  Casse l s '  r e s u l t s  were 

p u b l i s h e d  qu i t e  r ecen t ly ,  b u t  I was  f o r t u n a t e  to h a v e  access  to h i s  p a p e r  in  m a n u s c r i p t .  - - I  
m u s t  also e x p r e s s  m y  g r a t i t u d e  to Dr. Casse l s  for co r rec t ing  t h e  E n g l i s h  of t h e  p r e s e n t  paper ,  
a n d  for va l uab l e  he lp  a n d  s u g g e s t i o n s  d u r i n g  m y  work  on it .  I f u r t h e r  owe m y  w a r m  t h a n k s  to  

Prof .  Skolem a n d  Prof .  Mordell, whose  l ec tu res  on D i o p h a n t i n e  a n a l y s i s  inc i ted  m y  i n v e s t i g a t i o n s  

in  t h i s  field. 
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I f  we multiply the equation (I) by a s and replace a x  by - - x ,  we get an 

equation 
(5) x 3 - -  mY  3 = nzS 

(where no longer necessarily (m, n) = I). Chapter I I I  deals with the corresponding 

ideal-equation in the purely cubic field g ( V ~ n ) =  Z(~) :  

[ x  - = 1 1 a ' ,  

w h e r e  11 is an ideal from a finite set. This equation can sometimes be proved 

impossible by class-number considerations, the simplest case occurring when the 

class-number h = 3  and 1I is not  a principal ideal. ] f  such an exclusion is not 

possible, we are led to a finite number of equations between integers of K(~) :  

x - - y ~ = # a  s = ( e + f ~ + g ~ ) ( u +  v ~ + w a ~ )  s. 

Equating the coefficient of ~2 to zero, we get "the resulting cubic equation" in 

u, v and w; this is considered in Chapter IV. The insolubility of this equation 

can again be proved by congruence considerations, which now become rather 

complicated. To facilitate these considerations, an extensive theory of cubic 

residues in the cubic field K ( ~ )  is developed in Chapters V and VI. By means 

of this theory, I can add new necessary conditions for solubility of (I) to the 

elementary congruence conditions drawn from (3) (Theorems I I - - V I .  The condi- 

tions are also sufficient for solubility of the congruence corresponding to the re- 

suiting cubic equation.) 

This is one of the main results of the paper. I t  is well known that  the 

congruence conditions - -  together with solubility in real numbers - -  are suffi- 

cient for solubility of a homogenous quadratic equation (in any number of 

variables). I t  is fur ther  easily shown by elementary means that  they are not 

sufficient in the quartic case, cf. my report [I]. But as far as I am aware, it 

has never been shown before that  .the elementary congruence conditions are not 

sufficient for  solubility of  a homogenous cubic equation. (SKOLgm [I] has proved a 

similar result for inhomogenous equations, el. my report [I].) 

The equations that  can be excluded by my new methods are quite frequent, 

in average about 3 ~ % of those of the examined equations ~vhich are possible 

for all moduli. The simplest example is 

3 x S + 4 y S +  5 z S = o .  

The results of my extensive calculations are given in Chapter VII ,  and in 

Tables 2 a-~ and 4 b. I have trea~ed systematically all equations (5) with 
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2 ~ m < n ~  5 o, m and n cubefree, and also the form(I)  w i t h a b c ~  500. I c a n  

not prove the sufficiency of my new conditions (in the case of n = I in (5), it 

is even possible to show their insufficiency for most m), but I have found solu- 

tions of nearly all equations which I cannot exclude. Some methods of numerical 

solution are indicated. 

Two striking empirical facts emerge from the calculations: 

I. In  the case (5), with 2 ~ m < n ~ 5 ~ , all excluded equations have been 
8 8 

proved insoluble in both fields K(Vm)  and K(Vn).  - -  A single exception would 
3 

have showe the insufficiency of my conditions in one field K(Vm)  alone. 

2. For a given cubefree integer A, we form all possible equations (if any) 

of the type (8). Then the excluded equations seem to occur in groups of four, with 

the same value of A. This is more precisely expressed in the co~jectures of Ch. 

vii ,  w 4. 
My methods also apply to the more general cubic equation corresponding 

to (4)- As an example, Chapter VI I I  deals with Sytvester's equations 

{6) 

(7) 

u S - - 3 u ~ v +  v 3 =  3pw3 

U S - -  3Ug"V ~ V 3 = _ p W  ~, 

where p is a prime ~ +_ I (rood 9), or a product of such primes. These equations 

can be proved insoluble for several primes p ~ + x (Table 3), the smallest one 

in the two cases being p = 73 and p =- 27~ respectively, although the corresponding 

congruences are soluble for all m o d u l i . -  Under certain conditions (Theorem 

VII, w 5), the equations (6) and (7) cannot be simultaneously soluble. 

The concluding Chapter IX deals with the equation X S +  y 3 =  A Z  8. This 

has been studied by SYLV~STEg [1], P~PIN [I]--[3 ] and others, and many inter- 

esting results about insolubility are known. (The trivial solution with Z = o is 

not considered.) Most of the earlier proofs work with the theory of quadratic 

forms, which makes it necessary to treat the cases A Z odd or even differently; 

further every residue of A mod 9 must be considered separately. HURWITZ [~], 

NAG~LL [I] and FADDEEV [I] have indicated how the first distinction can be 
2z~i 

avoided when working in the field K(0), 0 = e~- I carry this through system- 

atically, and have found that  all residues of A rood 9 can also be included in 

one formula. By means of this simplification and the cubic law of reciprocity, 
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I can give short proofs of all earlier results and add many of my own. As an 

application, I have treated all cubefree A ~ 50o systematically (Table 4). 

The method is one of "infinite descent", which takes 3 different forms: 

I. I f  A is not of the forms z. or 3. below, solubility of X 3 +  Y ~ = A Z  ~ 

implies solubility of at least one of the equations (Th. IX, 8 4): 

(8) a x S + b y S - ~ - e z 3 = o ,  a b e = A ,  I ~ a < b < c ,  ( a , b ) = ( a , e ) = ( b , c ) =  i. 

The original equation X ~ +  y s =  A Z ~ is i n s o l u b l e -  I call it  shortly " A  is 

insoluble" - -  if all equations (8) are. This can in some cases be shown by con- 

gruence considerations (if an equation (8) exists at all); this leads to Theorem 

VIII ,  8 2 (Sylvester, I)~pi~), see Table 4 a. But I '  can exclude several more 

equations (8) by my methods; these give 22 new insoluble values of A ~ 5oo 

(Table 4b). 

z. I f  A = p  is a p r i m e - - •  I (too4 9), a product of such primes or 9 times 

such a product, there is also another form of descent which leads to the equa- 

tions (6) or (7) (Theorem X, 8 5). Even if these can be proved insoluble for 

several primes p ~ + I (rood 9), this does not necessarily imply the insolubility 

of A, since there are still other ways of descent in this case. (But see 3. below.) 

3. If  A contains one or more primes-~ + I (rood 3), there are further pos- 

sibilities depending on the fact that  such rational primes are no longer primes 

in K(Q). The superiority of working in K(0) instead of with quadratic forms is 

now clearly demonstrated. All earlier results in this case turn out to be parti- 

cular cases of my two general Theorems XI  (8 8) and X I I  (8 io), but  I also 

give other, more special criteria for insolubility. 

This descent leads to equations of the form (9.6.3): 

(9) bu 3+ 3(a--b)  u ~ v - 3 a u v  ~+ by a=3ts Aiw3 ' 

8 I �9 

where 3 t  = 3 or 9- and A = A  1 . ( a ~ - a b  + b~). (The equations (6) and (7) corre- 

spond to a = o ,  b =  I, A = A r )  The excluded values of A ~ s o o  in Tab les4  c-a 

(Th. X I - - X I I )  and 45 are cases where (9) can be proved insoluble by congruence 

considerations. But these fail in the cases mentioned at the end of 2. above. 

For complete exclusion, I then have to extend the methods of Chapter V I I I  to 

the non-purely cubic fields defined by the left hand side of (9) (Table 4~). 
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A complete list of the excluded values of A in Tables 4 ~-t is reproduced 

in Table 4g; these are all the cubefree values of A ~ 5oo which have been prob:ed 

insoluble in the present paper (indeed so far as I know all which have been 

proved insoluble at all). 

Table 5 contains the equations (9) with A ~ 500 which I cannot exclude 

one way or other; a solution is found in nearly all eases. - -  As in Tables 2 a--~ 

and 3, I believe that my solutions are the simplest possible, and that the unsolved 

equations are all soluble. 

The concluding w167 15--I8 deal with the number g of generators (basic solu- 

tions) for an equation X s + y s =  A Z  s. This has been studied by FADv~.~v [I], 
3 

both in the field K(V~4) and in the field K(Q), but in the latter case only when 

A is a prime or the square of a prime. His methods in K(Q)can be immediately 

extended to all cases where there are no soluble equations (8) (Th. XI I I ,  w I5). 

By an improvement of his methods, I can also include this possibility of descent 

(Th. XIV, w I6). I t  turns out that  the number of generators can be found simply 

from the number of soluble descents I .~3 .  above. (The descents 2. and 3. must then 

be counted together.) 

By means of Tables 2 b, 3 and 5, I have calculated the basic solutions in Table 6, 

which contains all cubefree A ~ 5oo not proved insoluble (Table 4g). The only 

cases where no solution is found are given by (cf. 7.4.2 and 9.II.1): 

(,o) A = 283, 337, 346, 382, 409, 445, 473, 499- 

SYLVESWER (Ix] pp. 3X 3 and 316) stated that  he knew whether or not any 

number A ~ Ioo i s  a sum of two cubes, cf. my historicM remarks to 9.4.5 

and 9. I7. I. 

The basic solutions of Table 6 for A ~ 5o are also given by FADD~.EV (but 

I choose the solutions for A = 19 and 37 differently). Some of the remaining 

solutions in Table 6 were given by LESnART (see D~cKsoN [I], Ch. XXI, ref. 

I86), but most of them have been found by me. 

I t  turns out that  there are at most two generators for all A ~ 5oo. The smallest 

value of A with g > 2 is A = 657, where g = 3 (cf. 9.I7.2--3). 
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C H A P T E R  I. G e n e r a l  R e m a r k s .  

w i .  The  main object  of the  present  paper  is to examine the ra t iona l  points  

on the cubic curve 

I . I . I  a x  ~ + b y  ~ + c = o, a b c  ~ o, a, b and c ra t ional ,  

or, what  is the same, the  in teger  solutions x, y and z (not all z e r o ) o f  the  homo- 

genous inde te rmina te  equat ion  

I . I . 2  a x  ~ + b y  s + c z  s = o. 

W e  may clearly suppose a, b and c to be posi t ive ,  cubefi'ee in tegers  (since any 

cubed fac to r  can be absorbed in the  unknowns),  and copr ime  i n  p a i r s :  

I . I .  3 (a, b) = (a, c) = (b, c) = I, 

if  we exclude equat ions  of the  type  (p any prime) 

I . x . 4  a l x  s + p b ~ y  3 + p ~ c l  z a = o ,  p X a ~ b l c l ,  

which are  clearly insoluble. (We conclude in tu rn  tha t  p divides x, y and z . -  

The insolubil i ty of this  type of equat ion  had  been no ted  by EVL~R, see DICK- 

SoN [I], Ch. X X I ,  ref.  I44.) I f  I . i .2  is no t  of the  type  I.~.4, and 

a = p t a ~ ,  b = p i b ~ ,  pXa~b lc ,  i =  x or 2, 

t h e n p ] z ,  z = p z l ,  and 
a l x  s + b l y  "~ § p 3 - ~ c z ~  = o, 

where no longer  two of the  coefficients have the  common divisor p. 

W h e n  a, b and  c are cubefree,  we may also suppose tha t  the unknowns  are 

coprime in pairs :  

(x,  y) = (x,  z) = (.v, z) - -  

w 2. There  is a close connect ion  between I.x.2 and the  equat ions  

1.2.I  X s + y s _ ~  a b c  Z s (homogenous form) 

1.2.2 ~]s = 4 ~a _ z7 a s b 2 c s ( inhomogenous form). 

The  i n v a r i a n t s  g2 and gs of both  I . I .2 and 1.2.I are (cf. NAGELL [2], w ~) 

2 7 I 
g~ = - -  2-~7 S = g3 = 6 4  T = -~" 27 a2 b~ c~ 

1 4 - ~ 2 1 s T  ~ ~ u , , ~ , . s 5  ir,~ h, H avr i l  1951. 
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(the !'equianharmonie" case, with g~ = o). Since rational 6 th powers can be re- 

moved from gs, both equations can be transformed birationally into the Weier- 

strass normal form 1.2.2. The transformation of the general equation 1.1.2 is 

carried through by blAGELI, [3], PP" 3O--33 �9 The coefficients can be made 

rational only if a rational point on the original curve is known. This is always 

the case for 1.2.1, with (X, Y, Z ) =  ( I , -  I, o), and the corresponding trans- 

formation into x.2.2 is given by (of. Ch. IX, w 15): 

1.2. 3 
~1 abe  

3 z 9 ( X - -  Y) X +  Y 

The verification is immediate if we write 1.2.1 as 

o r  
( X +  y ) 8 +  3( X _  Y ) ~ ( X +  Y ) = 4 a b c Z  ~, 

( 1 I + 3 ~ X +  Y ]  = 4 a b e  -X--+~-Y " 

As an important consequence of the above relations, we see that  1.1.2 and 

1.2.1 can be transformed into each other birationally with rational coefficients 

if one rational solution of I.I.2 is known. In particular, we have the important 

Theorem I. A rational solution of  the equation 

axS + byS + e z S = o ,  abc  ~ o, 

with x y z  ~ o, leads to a rational solution of  

X s + y3 = a b c Z  ~ 

with Z # 0 (i.e. X + Y # o. The converse of this theorem is false, cf. the con- 

cluding remark of Oh. VII, w 4.) The actual formulae are given by 

1.2.  4 

X ~- Y = - - 9 a b c x a y 3 z  s ( ~ o )  

X - -  Y ~- (ax  a by 3) (by a - -  czS)(cz s -  a x  ~) 

Z = 3 ( a b x S y  ~ + bcySz  ~ + c a z S x a ) x y z .  

These were first (in slightly different form) given by EuL~R, see Dlcgsos  [I], 

Ch. XXI, ref. I83 . We shall find the same result later (Ch. IX, w 4), when 

applying infinite descent to the equation 1.2.I. 
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A permuta t ion  of  the  terms a x  a, by  ~ and cz  ~ leaves the same solution 1.2.4 

(possibly with an in te rchange  of X and Y); this follows at  once f rom the  symmet-  

r ical  form. - -  I t  is also easily verified t h a t  the condit ions 1.1. 3 and I .I .  5 imply 

1.2. 5 

cf. BILHNG [I], Ch. V. 

by wri t ing  1.2.5 as 

(X, Y ) =  (X, Z) = (Y, Z) = , or 9. 

There  is an in teres t ing  b i ra t iona l  connect ion  between !.2.2 and the  equat ion 

~2~ = 4 ~ + a ~ b~ c2, 

The t r ans fo rma t ion  1.2. 4 can be obta ined r a th e r  simply 

(~, + abe) (7  h - - a b e ) =  4 ~  

and drawing s o m e  immedia te  conclusions about  t h e  factors  of the lef t  hand side. 

w 3. T h r o u g h o u t  this  paper,  we shall suppose the coefficients a, b and c 

in I . I .2 to be rational integers,  and the  same for  x, y and z. F rom some points  

of view, i t  may  seem more na tura l  to extend the  domain of the unknowns  to 

the field 

K (1/~-~ 3) = K (e), 

There  are two main  reasons for  this :  

- i + il/  
~ = e  3 - 

2 

1. W h e n  examining  the  congruence condi t ions for  solubili ty of I .I .2,  we 

must  use cubic residues, and  the cubic law of rec iproci ty  takes the  simplest 

fo rm in K(O ). 
3 

2. We  shall work systemat ical ly  in the purely cubic field K ( V m ) ,  where m 

is a ra t ional  integer.  This is not  a Galois field, but  becomes one by ad junc t ion  

of q. (The resu l t ing  field is considered in Ch. IV, w 4.) 

The  ques t ion  of solubility of I.~.2 is, however,  no t  affected by ad junc t ion  of 

Q to the  field of the unknowns.  Such p r o b l e m s  have been studied by several  

wri ters;  for  references,  see B I L L I N G  [I] ,  Ch. I,  and •AGELL [4], ~ IO. - -  I f  (x, y, z) 

is a solut ion of 1.1.2 in K(Q), then  a chord t h ro u g h  this point  and the  conjugate 

point  (~, ~, 5) will cut  the curve in a th i rd  ra t ional  point,  provided the  coefficients 

are ra t ional  (cf. 1.5.3). 

w 4. The quest ion of  exceptional po in t ;  of the curve i . i .2  is easily deal t  

with. I t  was shown by HURWITZ [I] t ha t  the curve 

1.4.I a x  3 + by  3 + cz  ~ + d x y z  = o, 
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where a, b and c are square~'ee ra t iona l  integers,  and coprime in pairs, has the 

fol lowing except ional  p o i n t s :  

I. None, i f  at least two of  the numerical values [a], {b I and I c[ are > I. 

2. The one except ional  poin t  (x, y , z )  = (I, - -  I, O) if a =  b =  1, ] c ] >  I, 

except  in the  cases c + d__+ 2 = 0 and 4 c  + d_+ 1 = o, when there  are  two such 

points.  

The me thod  is as follows. We define the  weight  of a solut ion (x, y ,z ) ,  

where x, y and z are coprime integers,  to be ]xyz] .  W e  then  show t h a t  the 

tangential of (x, y, z) (i.e. the  point  at  which the t an g en t  a t  (x, y, z) cuts the  

curve again) has a grea ter  weight  t han  (x, y, *). 

The  condi t ion of squarefree  coefficients is only necessary to make  cer ta in  

tha t  x, y and z are  coprime in pairs. In  the  case d = o, i.e. the  equat ion  1.1.2, 

we have seen t ha t  this  condi t ion is au tomat ica l ly  satisfied if  a, b and c are 

cube free, and Hurwi tz '  result holds in general for  this equation. 

I f  d = 0, then 2. above shows tha t  the equation XS + y s  = A Z a has the only 

exceptional point (I, - -  I, o) ,vhen ]A ] > 2 (and cubefree). F o r  A = 2, the equat ion 

1.4. 2 X 3 + y s = 2 Z  3 

has the addi t ional  exeept ional  point  (I, I, I), 

t ha t  the equat ion 

1.4.3 X s + y 3 =  Z 3 

and for  A = I i t  is well known 

has the three except ional  points with X Y Z  = o. These are all the ra t iona l  points  

in the  last two cases. 

1. above still holds a f t e r  ad junc t ion  of Q to the  field of the  unknowns. This 

follows f rom NAG~LL [3], Th~or~me 22 (p. 3), bu t  can also be proved di rec t ly  

for  the field K((~) by a simple genera l i za t ion-of  Hurwi t z '  proof,  and this  t ime 

when both unknowns  and coefficients are in tegers  of K(e) (if now [[ means mo- 

dulus). The  general izat ion also shows tha t  the  only except ional  points  in K(Q) 

occur in the fol lowing cases: 

The equat ion  X s +  y 3 = A Z  s, where A E K ( e ) ,  A cubefree  and # + i and 

+ 2: Three  points with X 3 =  i, Y = - - i ,  Z = o .  

The  equat ion 1.4.2: The  same th ree  points,  and in addi t ion the  nine points  

wi th  X 8 =  y 3 =  I, Z =  I. 

The  equat ion 1.4.3: Nine  points with X Y Z  = o. 
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Final ly the equation 

1.4.4 x s +  Qy8 + (~z a = o  

with the nine exceptional points with x s :  yS=  I, z : I. These are all the ra- 

t ional  points in K(Q) in this case, since i t  is easily seen tha t  any other solution 

of 1.4.4 would lead to a solution of 1.4.3 in K(e )  with X Y Z #  o, by 1.2.4. 

5. The homogenous te rnary  cubic equations, both the general  form and 

the more special forms 1.1.2 and 1.2.I, have been studied by many earlier writers. 

Apar t  f rom some results about  the equat ion X s + y3 = A Z a, to which we shall 

re turn  in  Ch. IX,  most  of the papers deal with the finding of new solutions 

f rom other, known points on the curve (tangentials,  third intersection of the 

chord etc.). Ful l  references are given in DICKSON [I], Ch. XXI ,  under  the 

following headings : 

Two equal sums of two cubes. 

Three >> >> >> >> >~ 

1.5.1 I B i n a r y  cubic form made a cube. 

| N u m b e r s  the sum of two rat ional  cubes: x s + yS = A zS. 

[Homogenous  cubic equation F ( x ,  y, z) = o. 

For completeness, I quote the fol lowing results for  the curve 1.1.2 (DFs- 

BORES [I], p. 552 and p. 565): The tangential  to a point  (x~, y~, z~) is given by 

1.5.2 xs = xj (by~ - -  ez~), Yz = Y l  ( eg31 - -  ax31), g2 : El (ax~ - -  bye), 

and the th ird  intersection o f  the chord th rough  the points (x~, Yl, zl) and (x~, y'l, z'l) 

(cf. Ch. IX,  w 16, Lemma 5): 

1.5.3 
2 P P v 2  , v v 2 

X~ : x l y l Z l - - X l Y l Z l ,  Y2 = y ~ Z l X l - - y l Z I X l ,  

z~ = ~ xl  yl - -  z'~ x i  Yl. 

Both formulae 1.5.2-- 3 are valid also for the more general  cubic curve t.4.1. 

In  close connection with these questions stands the  problem of a basis for 

the rat ional  solutions (in the Morde l l -We i l  sense), in part icular  the number o f  

generators. I f  the curve 1.I.2 has one rat ional  point,  we have seen in w 2 t h a t  

i t  can be t ransformed birat ionally with ra t ional  coefficients into any of the two 

curves 1.2.1--2, and consequently has the same number of  generators o f  infinite 

order as any of these. 
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The number of generators for X a +  Ya= A Z 3 has been studied by FAD- 

DEEV [I], who gives a complete list of basic points in all soluble cases with 

A ~ 50, reproduced as the first part of my Table 6. - -  I return to his methods 

in Ch. VII,  w 6 and Ch. IX, w 15 . 

The finding of a basis for the equation 1.2.2, or rather the general equian- 

harmonic case 

1.5.4 ~ = ~ 3 +  D, 

is treated by BH, HNG If], who gives a table for all D ~ 25 . In a recent paper, 

CaSS~LS [I] has given some far-reaching theorems about the number of gener- 

ators for the same curve, together with a table for all D ~ 5 o. (Cf. w 6 below.) 

Independently PODSYPA~IN [I] has given a table of generators for D ~ 89, 

making an interesting use of the connection between the equations 

~ ]~=4~3- -D  and ~ = 4 ~ 3  + 27D. 

(But see corrigenda, in CASSELS [2].) 

Among earlier writers, there has been a tendency to distinguish between 

positive and negative solutions, especially of the equation X ~ +  y s =  A Z ~. We 

may clearly suppose A and Z positive, and there is the question of expressing 

the number A as the sum of or the difference between two positive rational 

cubes. I t  is well known that  these two problems are equivalent, see the first two 

references in 1.5.I. I will just point out the connection between this problem 

and a result of HVRWITZ [I], who has shown that  if a cubic curve has an in- 

finity of rational points, then the infinite branch i8 densely covered by these. (See 

also NAt, ELL [5]') And the curve x 8 + yS = A (like the more general curve I.I .I)  

consists only of an infinite branch. 

In what follows, I do not distinguish between positive and negative solu- 

tions. 

w 6. The insolubility of an equation X 8 + y s =  A Z  3, and thereby (Th. I) 

of all equations a x  3 + by  ~ + cz  ~ = o, with a b c =  A, can also be proved by the 

methods of CASSELS [I]. 1.2.2 and 1.2. 5 show that  we may consider instead the 

equation 
V ~ = 4 ~ +  A2, or y~ = x 3+  24A s = x  ~ - D ,  

i.e. D = - - 2 4 A  ~ in Cassels' notation. He works in the purely cubic field 

3 3 .3 8 

K(V ) = K(V ) 
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This means a simplification if  a is even, A = 2 A,, K (  = K(I/A1). 

factor  26 can be removed from D, we get (1[ means "exactly  divides"): 

1.6.1 2 l l A ~ 2 r  2 * I l A ~ 2 2 ] ] D ,  2 X A ~ 2 ' I I D .  

215 

Since the 

The first two cases are covered by Cassels' Theorems V I I I  and XI  respec- 

tively. W h e n  D ~ + I (mod 9) and not  a perfect cube, his methods can never lead 

to a proof of insolubili ty if one of the possible tt's (different from I) is a quadrat ic  

residue of 4. The general izat ion of his L e m m a  6 shows tha t  this  is always so 

i f  the class-number h is even. 

I have verified several insoluble values of A by Cassels' methods,  and have 

also found cases wi th  an even class-number, i.e. cases where his conditions are ~ot 

sufficient. (As Cassels ment ions at  the end of his paper, the condit ions tu rn  out 

to be sufficient for  all ~ I D [ ~ 5o.) The simplest cases, represent ing the first two 

possibilities 1.6.i, are given by 

A = I~2 = z.61, A~ = 6x, 

A = 116 = 2~.29, A 1 = 58, 

h61-~6, ~6, = I - - I 6 , 9 + 4  @~ 

h 5 8 ~ 6 ,  e58= I - -  8 ~ 9 +  2,.9 ~. 

The insolubili ty of A = I22 and A = i i 6  follows f rom my Theorems X I  

(Table 4 c) and V I I I  (Table 4 a) respectively. The fundamenta l  units  ~8 and e6, 

are given by NAG~LL [6]. Since ~6, ~ I (rood 4) is a quadrat ic  residue of 4, i t  

follows f rom Cassels' Lemma 5 tha t  /Te, must  be e v e n . -  The class-numbers 

have been calculated by me and checked by Cassels. 

C H A P T E R  I I .  C o n g r u e n c e  C o n s i d e r a t i o n s .  

x. The impossibility of an equation I .I .2 can often be decided immediately 

by simple congruence considerations rood 9 or rood p, where p is a prime dividifig 

one of the  coefficients a, b or c. - -  We exclude once and for all the equations 

of the type I.I.4, which are insoluble mod 10 s. 

Firs t  a trivial  remark:  Le t  p ~ 3 be a prime. I f  the congruence 

2 . I . I  F ( x ,  y, z) = a x  s + by  3 + c z  s -~ o (rood p) 

is soluble, then  i t  is soluble rood pJ for  all positive integer  exponents 5. Because 

1 He conjec tured  in  [I] t h a t  h is  condi t ions  were suff icient  for al l  D ,  but  retracted th i s  in  an 

addendum [2], a f te r  I had s h o w n  h i m  m y  counter -examples .  
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of the conditions l . I .  3 and I.I.5, p can divide at  most  one of the terms of 

OF 
/ ? ( x , y , z ) .  I f  for instance (p, a x ) =  I, then ~ =  3 a x '  is prime t o p ,  and we 

can come from the modulus p to p~ for any ~ > I by varying x only. 

O F  
This does not  hold when p = 3, because of the fac tor  3 in ~xx" But  i t  is 

easily seen t h a t  solubility rood 9 is sufficient for  so lubi l i ty  mod 3 ~, ~ > 2. (Cf. 

SxoLEM ],], p: 8.) 
I f  (a, b ) =  (a, e ) =  (b, c ) =  i, the insoluble equations rood 9 are typified by 

(arbitrary signs): 

2.I.2 a ~ - +  I, b~___ 2, c----_ 4~ (rood 9). J 2 . I .  3 a~--o,  b ~ +  e 

This is a consequence of o and • I being the only cubic residues mod 9. In 

part icular ,  the equation is always possible rood 9 ~f one of the coefficients is exactly 

divisible by 3. 

For  all other primes, we have to dis t inguish between the two types 

2.I.4 q------ i, r - - +  I (rood 3). 

Throughout this paper, q and r denote only such primes, while p is any prime. 

All ra t ional  integers are cubic residues of q, and the co~gruenee 2.i . I  is 

clearly soluble for all p = q, since we can choose for  instance y and z arbitrari ly 

and  determine x uniquely rood q from the resul t ing congruence, provided 

(a, q) = I. 

A complete system of residues rood r (o excluded): 

r - - I  
+ i , + 2 , . . +  - -  

2 

r - - I  
consists of three classes, each with - -  elements:  One class K of cubic residues 

3 
and two classes K '  and K "  of non-residues. The elements of each class occur 

in pairs with opposite sign. The rules of mult ipl icat ion are given by the table 

2 . I .  5 

K K'  

K K K'  

K '  K'  K"  

K"  K" K 

K,, 

K p t  

k __l 
K' i f 
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In  particular,  a and a x  s belong to the same class rood r if (r, a x )  = I, and 

a congruence 

2. I .6  a x  8 + b y  s ~ o (rood r), r X ab,  

is soluble if  and only if  a and b belong to the same class, i.e. if they  are what  

I shall call "equiva len t  rood r" ,  and denote by 

2.I. 7 a ~ b (rood r). 

This implies tha t  a b -1 ~ a b s is a cubic residue of r, which will be denoted by 

2. I .8  a b S ( R ) r .  

Cubic non-reslduacity is similarly denoted by (N). I reserve symbols like ( )8 or 

[ ] for the field K(Q) (Ch. IX);  such symbols for ra t ional  primes have no simple 

rules of multiplication,  and can only cause confusion. 

I f  p = r divides for instance c in 2.I . I ,  we get  the congruence 2.I.6 and 

hence the necessary and su f f ic ien t  condition 2 . I .  7 or 2.I.8 f o r  solubi l i ty  rood r in  

this  case. - -  Similarly for all other  primes r dividing one of the coefficients. 

As ment ioned in the In t roduct ion,  we shall t rea t  the equation I.~.2 in the 

form (5): 

2 .  I .  9 ~c 8 - -  m y  8 = n ~  8. 

The above conditions for solubility then take the form:  

2 . I . IO  

[ m  ~_+ 2 if n - ~ •  m ~ _ 4  if n~__+ 2 (mod 9) 

Mod 9 : [ m  ~-~o or _ I if n ~ o ;  n ~ o  or + I i f m ~ o  (rood9) 

rn l ~ + n  I (mod 9) if m =  3ml, n = 3nl, 3~'rnlnl .  

/ m ( R ) r  if r l n  , r X m  

Mod r:  n ( R ) r  if  rim, r X n  

[ m  ln~(R) r if m = r ' m l ,  n = 7 ' n  1, i =  I or 2, r4m17,1. 

I have t reated systematical ly all equations 2.I. 9 with 2 < m < n<= 50, m 

and n cubefree. The equations which can be shown insoluble by elementary 

congruence considerations (including the type I.I.4) are indicated by horizontal  

lines in Table 2". 

We note t ha t  the e lementary  congruence conditions cannot  prove the insolubi l i ty  

o f  an equation 
X s + y 8  = A Z 3 

f o r  any  value o f  A .  (Cf. my report  [I].) 
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2. In  order  to show th a t  the  condi t ions  of the last  pa ragraph  are also 

sufficient for  solubility for  all moduli, we must  prove t h a t  the congruence  

2.2.I a x  ~ + by ~ + cz  3-~ o (rood r), r Xabc ,  

is always soluble. S K O L ~  [I] has shown (pp. 6- -7)  t h a t  this is always possible 

for  r >  7, and even with 

2.2.2 x y z  ~ o (mod r). 

Wi th  this res t r ic t ion,  2.2.I is insoluble when r = 7, and for  instance 

22.  3 b=~+_a, c=--+__3 a (rood 7). 

But  in this case the  congruence  is clearly soluble with z ~ 0 (rood 7), which 

suffices for  our  purpose.  (This r emark  is of ten  very useful  in the  ~umerical solu- 

tion of such an equation,  cf. 6.7.2. ) 

Skolem's  proof  is based on a resul t  of Hu•wiwz [2] about  the  number  of 

i ncongruen t  solutions of 2.2.I. I f  we abandon  the condi t ion 2.2.2, i t  is possible 

to prove the  solubili ty of 2.2. I very simply, us ing the  first step of  an (unpublished) 

a rgumen t  of Prof .  Marshall Hall, Jr .  1: 

I f  two of the  coefficients,  fo r  ins tance a and b, belong to the  same class 

rood r, we can put  z--~ 0 and  get  the  soluble congruence  2.I.5. The  difficulty 

arises when a, b and c belong to the  three  dif ferent  classes K,  K '  and K " .  

Since a x  s can take all values in the class to which a belongs, i t  suffices to  show 

tha t  we can find e lements  k, k' and k"  f rom the three  classes, such tha t  fo r  

ins tance  

2.2. 4 k + k' -~ k" (mod r). 

I n  order  to prove this, we form a table 

K 

K '  

g ,r 

K 

v 

K '  K,, 

7 _ _ _  

7 

)/ '  

x (Added later.) Dr. Cassels has pointed out to me that similar arguments were used by 
GAuss [I] (Art. 358, PP. 445--9). 
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in the following way:  To each element of the class K (left column) we add the 

number  I, and group the sums in the classes I f ,  K '  and K "  (heading), in num- 

bers a, fl and 7 respectively. Similarly we add I to the elements of K '  and K " .  

Then 

' " 7 "  r -  1 2.2.5 a ' + f l ' +  7 = a  + f l " +  = - - - -  
3 

(the number  of elements in each class). But  

2.2.6 a + fl + 7 I ,  
3 

since --  I belongs to K,  so t ha t  we lose the sum -- I + I = o .  

is the number  of elements k' of the form k' = I + k. Since a change of 

sign leaves the class unaltered,  this can also be wri t ten as k = I + k', and con- 

sequently fl = a'. Mult ipl icat ion with ( k ' ) - I E K  '' gives still another  equation 

I t " =  I + k " ,  i.e. ~ = a ' = 7 " .  Similarly we find 7 = f l ' = a ' ,  and a comparison 

with 2 . 2 . 5 - - 6  shows tha t  7' = fl" = a + I >= I. Consequently k"  = I + k', i.e. 

2.2.4, is possible in at  least one way. 

In  the next  paragraph,  I show the solubility of 2.2.I (without the restric- 

t ion 2.2.2) by still another  simple method. The advantage of Marshall  Hall ' s  

proof is, however, tha t  i t  holds equally well  in  any  algebraic number-field ~, for 

any prime-ideal modulus p (prime to 3 and to the coefficients, which together  with 

the unknowns are then  supposed to be integers of ~2). The number  of residue- 

classes iu ~2 rood p and prime to p is given by N ( p ) -  I, and F e r m a t ' s  theorem 

holds : 

As in elementary algebra, we can find a pr imi t i ve  root of p and establish a 

system of indices (logarithms), f rom which we deduce the theory of cubic residues 

rood p. I f  N(p) --  I ~ o (rood 3), then all integers of ~2 are cubic residues rood p, 

and the congruence 

2.2. 7 a~ 3 + fl~7 3 + s  (rood p), P X 3 a ~ 7  

is of course always soluble. I f  however N ( p ) - -  I -~ o (rood 3), the numbers of 

~2 (prime to p) are divided in the same classes K ,  K" and K "  as above, wi th  

the rules of mult ipl icat ion given by 2.i.5. :Marshall Hall 's  a rgument  still shows 

tha t  2.2. 7 is then  always soluble. - -  We  shall make use of this  remark in 

ca .  IV, w 4. 
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w 3. Fo r  appl ica t ions  in Ch. V I I I  and I X ,  we shall  also cons ider  the  more  

genera l  cubic congruence  

2.3.1 F ( x ,  y) = A x  3 + B x ~ y  + C x y  ~ + D y  8 -  E z  3 (rood p~). 

W e  denote  by J the d i s c r i m i n a n t  of the le f t  h a n d  side. 

The  pr ime p = 3 m u s t  be t r e a t ed  separa te ly  in each special  case. F o r  all 

o the r  pr imes,  solubi l i ty  rood p is usual ly  sufficient for  solubi l i ty  rood p~, ~ > I. 

I f  p XEz, this  can be ob ta ined  by va ry ing  z only. I f  p X J,  at  leas t  one of 

O F  and O F  O x ~ y  mus t  be ~ o (mod p) (since e l imina t ion  of x be tween  0 F y 0xx ----- o and  

0 F  
O y ~ o leaves H ~ o), and in this  case va r i a t ion  of x or  y gives the  same re- 

sult .  C o m m o n  divisors  of E and  H cause ex t r a  difficult ies;  all o the r  divisors  of 

E and  H will obviously lead to s imple  condit ions,  which are easily deal t  wi th  in 

each  g iven case. (A more  special  f o r m  of the  congruence  2.3.I will be t r e a t ed  

in de ta i l  in Ch. IX ,  w 7.) 

The  p rob lem is aga in  all other pr imes  p, such t h a t P X 3 E H .  I f p  = q ~ - -  I 

(rood 3), the  t e rm E z  s makes  the  congruence  a lways  soluble if  q X E .  I f  

p = r ---- + I (mod 3), we can use a resu l t  of v o s  STERNECK [I]  : I f  r X A (B 2 - -  3 A CO, 

the  cubic po lynomia l  

2.3.2 f ( x )  = A x  3 + B x  ~ + C x  + D 

2 r +  i 
(the lef t  hand  side of 2.3.1 for  y = I) takes  - -  d i f feren t  values rood r. Since 

3 

the  r i g h t  hand  side E z  a t akes  r - - I  ~- I values  (included zero), and  
3 

2 r +  I r - - I  
- - + - - - - +  I = r +  I > r ,  

3 3 

the two sides of  the  congruence  will have  a t  leas t  one value rood r in common,  

i.e. a solut ion.  

I f  r]  A (B 2 - -  3 A C) but  r 4 D (C 2 - -  3 B D ) ,  we can a rgue  s imi lar ly  wi th  x = I. 

Any  common  divisor  of B ~ - - 3 A C  and  U ~ - - 3 B D  divides H, and  m u s t  be 

t r e a t ed  separa te ly  in any  ca se J  Bu t  we may  also have  to consider  the  p r imes  r 

d iv id ing A or D. 

The  resu l t  is the re fo re  t h a t  we only have  to examine  the  congruence  2.3.1 

fo r  the  fo l lowing p r imes :  

i A common divisor r of B and C, such that r X ADE,  leads to a soluble congruence of 
the type  2.2.I. 
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2.3.3 P = 3 ;  P = q i f  q [ E ;  p = r i f  r [ A D E ~ ,  

and for  d :> I only when p = 3 or p [ ( E ,  J ) .  The  last  point  can be fac i l i ta ted  by 

the resul ts  of KANTOR [I], who discusses the values of the  polynomial  2.3.2 

mod p6 for  all p and  d. 

The  above considerat ions  lead to a very simple proof  for  the solubil i ty of 

2.2.I. Here  r canno t  divide both  a + b and a - -  b, and a f te r  a change  of sign for  

b and y if  necessary,  we may suppose a + b ~ o  (rood r). The  subs t i tu t ion  

y - - x + y ~  gives 

(a + b)x ~ + 3bx~y~ + 3bxy~  + by~------cz 3 (rood r), 

which is of the form 2.3.I , wi th  

A ( B  * - 3 A C )  E = 9 ( a +  b) a b e ~ o  (rood r), 

and consequent ly  soluble. 

Jus t  before I found  the  re fe rence  to yon Sterneck's paper,  I wrote  to Prof .  

Marshall Hall  asking about  the  congruence  2. 3. I in the  cases where p = r 4" A D EL/ .  

I t  t u rned  out  t ha t  he had  found  the same resul t  about  2.3.2 independent ly  (and 

his proof  is in some respects  s impler  t han  yon Sterneck's).  Prof .  Marshall  Hal l  

also communica ted  to me an addi t iona l  a rgument ,  using the ideas of w 2 above, 

by which he can prove tha t  the  func t ion  f ( x )  of 2.3.2 will represent all three 

cubic classes rood r, i.e. the congruence 2.3.x rood r is soluble with z ~ o, provided 

f ( x )  cannot  be t r ans fo rmed  l inearly rood r into the form A'(X'3+ C'x ' .  

w 4. I have also examined the congruence condit ions for  the more  genera l  

cubic equat ion 

2.4.I 

with all ai cubefi'ee and ~ o. 

a i  x~. ~ O,  
t ~  1 

i t  tu rns  out  tha~ the cor responding  congruence  

rood p~ is soluble for  all p and ~ when 

2.4.2 n ~  5 if P = 3 ;  n-->--4 if  p = q ;  n>=7 if  p = r .  

I f  p = q------- I (rood 3), and n = 4, then  at  least  two of the  coefficients,  

e.g. a 1 and as, are exact ly  divisible by the  same power  qi, i = o, I or 2. P u t t i n g  
i ' = q i  ' a~ ,-- q ai, a~ a2, x a -~ xa ------ o (rood q~), we get  the soluble congruence 

t t 8 , v 

al xl a + aa x2 - -  o (rood qe-i), q ~" al a2. 
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I f  p = r ~ +  I (mod 3), and n =  7, at  least three of the coefficients are 

exactly divisible by the same power r i. Arguing as above, we get the soluble 

congruence 
" 3 ' 3 ' 3 al xl + a~ x~ + aa xa = o (mod re-i), r X at' a2" a3. 

Similar arguments ,  a little more complicated, hold for p = 3, ~* = 5. - -  The 

numbers n in 2.4.2 are minimal, as seen from the following insoluble congruences:  

x~ + 2 x ~ + 4 x ~ +  9 x ~ - ~ o  (mod 33 ) 

x~+  2 x ~ +  2~x~ -~---o (rood 2 a) 

z ~ +  2x= a +  7(aa a +  zx4 a) + 7 ~(x~+ 2 a ~ ) ~ o  (mod 7'). 

All congruence condit ions are therefore automatical ly satisfied for 2.4.I when 

n ~ 7- - -  A slight modification of the Hardy-Littlewood approach to Waring's 

problem (L/~NDAU [I], part  6) shows tha t  the equation 2.4.I has always an i~- 

finity of solutions when n = 9, and the xi can all be taken positive if the a~ are 

not  all of the same sign. ~ ] owe this remark to Dr. Cassels, who says t ha t  

the fact  had previously been noted by Prof. Davenport. 

I t  may seem surprising tha t  n = 7 is the min imum number  of variables for 

the congruence corresponding to 2.4.I. ]~ORDELL [I] has given examples of in- 

soluble cubic congruences in 9 variables, bu t  these contain product lerms. 

The congruences in w167 I - -  3 represent  only par t icular  cases of te rnary  cubic 

forms. The gene ra l  homogenous cubic congruence 

2.4.3 f~(x, y, z) ~ o (rood p) 

has been t reated by MORDELL [Z], who shows tha t  the number  N o~ solutions 

(in the inhomogenous form, with z = I), is in general  given by 

2.4. 4 N = p + 0 (p~l,). 

Consequently 2.4.3 is soluble for all sufficiently large p. The cons tant  of the 

0-symbol is absolute, but  the formula  2.4.4 only holds if f~(x, y, z) is absolutely 

irreducible rood p. I f  the invariant  S of 2.4.3 (cf. NaaELL [2], ~ I ) i s  ~ O (mod p), 

2.4.4 is replaced by the s tronger  form 

2.4.5 N = p + 0 (pa). 

The determinat ion  of the constant  involved seems to become difficult. For  

the simpler Weierstrass normal form: 
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2.4.6 Y~ --= 4 x ~ - -  g2 x - -  g3 (mod/9), 

the cons tan t  has been de te rmined  by HASSE [I], who finds 

2.4.7 I N - v l  =< 

provided the r ight  hand  side of 2.4.6 has no mult iple  roo t  rood p. 

A par t icu la r  ease of the  general  cubic congruence 2.4.3, eon ta in ing  all 

possible te rms (IO in all), will be deal t  with in Chl I V - - V I .  

C H A P T E R  I I I .  The Equation in the Cubic Field. 

w z. As a l ready ment ioned,  we t r ans fo rm the cubic equat ion a x  s + b y  ~ + 

+ c z  3 = o into the form 

3.1.1 X 3- raft3 ~ •Z 3, 

where no longer necessarily (m, n)= I. We suppose that the congruence conditions 

2.1.1o are satisfied, and shall treat the corresponding equation in the~urely cubic 
3 

field K(Vm). Most of the necessary information about this field, including refer- 

ences, is given by CASSELS [I]. In particular, I make use of his table of class- 

n u m b e r s  a n d  u n i t s  for  m _--< 5 o. 
.3 8 

I shall use the no ta t ion  1/m = ~, K(1/m) = K(~) ,  where we may suppose 

to be the r e a l  cube-root.  The  integers  of K ( ~ )  are given by a = u + v ~  + w ~  ~, 

where usually u, v and w are ra t ional  integers.  I f  m is no t  squarefree,  

3 . I . 2  m = m t m  22, (ml, m.2) = I, mi and m s squarefree,  

then  w has a denomina to r  m~. In  this ease I sometimes use the  no ta t ion  

3 8 

3 . I . 3  ~ m  = ~ /mlrn~  = ~1,  V m ~ m ~  = ~2 = OA" 
m2 

The fields K(&~) and K(~2) are identical .  

I f  m ~ +  I (rood 9), a denomina to r  3 can oecur  in the coefficients u, v 

and w. This  case will be t r ea t ed  in more detai l  in w167 3- -4 .  

I denote  prime ideals of the Is t  and 2nil degree by p and q respect ively.  

Conjuga te  ideals are indicated by dashes. W h e n  giving the  basic elements,  ideals 

are denoted  by square brackets.  More precisely, we have (with the  nota t ions  

2.1.4, 2.1.8 and 3,I,3): 
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" v l . ~ t  : [p]  = [p,  a , ]  ~ = ~ 
p lrn 2 [p] [p, &~]3 P; [ p any prime. 

P = 3 4 m ,  m ~ •  ~ (mod 9): [3] = [3, & - m ]  ~ = P~. 

p = qXm, d ~ - m  (mod q): 
3.t .4 

[q] = [q, & - -  d] [q, 4 ' +  d& + d 2] =pqqq. 

p =  rXm,  m(R) r, d 3 - = d  ' s - ~ d  ' ' 3 ~ m  (rood r): 

[r] = [r, & -- d] Jr, ~ --  d'] [r, & -- d"] = p,. p; Pr. 

,p  = r 4 m, m ( N ) r  : [r] a p r i m e  ideal .  

w 2. In  the field K(,,~), ' the lef t  hand  side of 3.I.I  factorizes 

A common factor  of the ideals on the r ight  hand  side mus t  divide 

x ~ + x y &  + y ~ - - ( x - - y O ~ )  ~ = 3xy,~,  i.e. 3~ ,  

since (x, y) = t. The factors of 3"~ are all ideals of the first degree; let  any of 

these be pp, corresponding to the ra t ional  prime p. Then 

p,l,~ & ( x - - y a )  ~ P p l x & m - > p l x & m  -~ p[,,,; 

Pp = P s i 3  but  3 X n - + p ~ ] z a - + 3 ] z - > 3 4 x & y - + x S & y ~  

--~• I (rood 9 ) - + m ~ •  I (rood 9), 

a case which will be t rea ted in the  next  paragraphs.  In  all other eases, it  follows 

tha t  we must  have 

3.2.2 [x  - -  y & ]  = Pn tl s, 

where a is some ideal, and p.  is a product  of prime ideal divisors of n. Since 

3.2.3 % ] x - - y &  -+ q l x & y ,  

3.2.4 P~&P;Ix - -ya- ->  r l ( x - - y d ) & ( x - - u d ' )  ~ r l x & y ,  

and since a comparison between 3.I .I  and 3.2.2 shows tha t  the norm N ( p , ) =  ~, 

the ideal p, has the following factors ( II means "exactly divides"): 

p~[{p, if 3 i][n, i =  I or 2 

(in the case i =  2 we mus t  have 3 ~l[m, since m ~ •  I (rood 9) is excluded in 

this paragraph), 
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Pq[IP- if  qi[In, i =  I or 2, 

and similarly if r ln. In  this case ei ther  r i m  or m (R) r (if the congruenc e con- 

ditions 2.I.IO shall be satisfied), and consequently [r] is always the product  of 

three ideals of degree I. I f  r q~rn, these ideals are all different,  and only one 

of them can divide x - - y &  at the t ime by 3.2.4; we thus get  three d~#'erent 

equations 3.2.2 corresponding to each such prime r. 

w ?.  We now come to the case m ~_+ I (rood 9). Throughou t  this chapter,  

I wiU suppose tha t  

3.3.x m ~ + i (rood 9), 

in order to simplify the formulae.  The results for m ~ - -  I (mod 9) can always 

be obtained by changing  the sign of & 

The integers of K(&) are now given by 

3.3.2 a = 
u + v& + w& ~ 

3 
u ~ v ~ w  (rood 3); 

where u, v and  w are ra t ional  integers if m is squarefree, and w has a de- 

nomina tor  m~ in the case 3.I.2. 

The ideal [3] is no longer a perfect  cube, but  

~ + ,9 + I ,g2 
~. 3 ,&__  I 3.3.3 [3] = 3, & -  I, , ~. 

3 3 

In  par t icu lar ,  we have 

3.3.4 rg = [3, & - -  i]. 

According to their  form and divisibility by r or ~, MaRrOF~ [Z] divides the 

integers 3.3.2 into 6 classes, with the fol lowing properties:  

Class r, 3Its: 

a = u + v # + w , 9  a, u ~ v ~ w  (rood 3). 

Class 2, r~lct  , 3 X a :  

u = u  + v &  + w &  ~, u ~ v ~ w ~ u  (rood. 3). 

Class 3,  rice, ~)fct: 

u + v &  + w &  ~ 
a =  , u ~ v ~ w ~ o  (rood 3), v +  w - - 2 u ~ o  (rood 9)- 

3 
15-  642127 A d s  mathemat/ea. 85 
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Class 4, ~ [ ~ ,  r 4 ~ :  

u + v ~  + w ~  ~ 
a =  , u ~ v ~ w ~ o  (mod 3), u + v + w ~ o  (rood 9). 

3 

Class 5, (~ ,  a ) =  I, no denominator 3: 

a = u + v ~ + w ~',  with two and only two of the coefficients congruent 

mod 3. 

Class 6, (r~, a ) =  I, denominator 3: 

u + v ~  + w ~  ~ 
a =  , u - ~ v ~ w ~ o  (mod 3), 

3 
but with none of the other conditions under the classes 3 and 4 satisfied. 

the following relations: I f  at is any integer from the 

(I  avoid the term group for Markoff's classes, since they are not "groups" 

in the strict sense of this word. There can be no confusion with the ideal-classes 

of the field K(~).) 

The above class-conditions have a much simpler form than those originally 

given by Markoff. We must bear in mind that  u and v are always integers, but 

w has a denominator m2 ~ o (rood 3) in the case 3.I.2. - -  h similar classifica- 

tion also holds for the ideals in K (~) (but we cannot then distinguish between 

the classes 5 and 5. When these classes are mentioned separately in the next 

paragraph, it is in order to get complete analogy with the corresponding equa- 

tions between integers of K(~).) 

w 4. We shall now consider t h e  equation 3. I.I when m - -  + I (rood 9), and 

the corresponding ideal-equation 3:2.2. We can argue as in w 2 for the ideal 

divisors pq and Pr of n, and their product wil l  be devoted by On. But the factors 

of 3 need a special treatment. We must consider the different residues of n 

rood 9 separately: 

I. ~ - + 4  (rood 9), i.e. 3]z, x = y ~ o  (mod 3), v $ = [ 3 , ' a - - I ] [ x - - Y  & 

S i n c e  r ~  = [3] I x - -  ,uo -~ 3 I ~ ,  aria 3~1N(~ --  UO) = ~ - -  ,~y~, w e  m u s t  h a v e  

r ~ [ x ~ y ~ .  I f  3~+1[]z, i > 0 ,  the additional power ~3~ can be absorbed in a n , 

and consequently we have 

3.4.I [ x - - y , ~ ]  = r ~ p n a  a, a e class 4, 5, or 6; N(rCO,)  = 3"~n. 
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2. n ~_+ 3 (mod 9): The  same a rgumen t  as under  I., but  an addi t ional  

f rom n, and the resul t ing  ~3 can be absorbed in as: 

3.4.2 [ x - - y ~ ]  = r p ,  aa, a E class 4; N ( r p , )  = n. 

3. n ~ - 4 - 2  (rood 9): One possibil i ty as under  I., but  also the  possibili ty 

x ~ - - y ~ o ,  z ~ o  (rood 3), and so 

3.4.3 [ x - - y a ]  = p n a  ~, a E class 5 or 6; N(O~)= n. 

4. n - -=_  I (rood 9): The same two possibilities as unde r  3., but  the second 

ease when. x y  ~ o, z ~ o (rood 3). 

5. n - - o  (mod 9): Arguing  as under  I ,  we get  the only possibility 

3.4-4 [ x - - y O ' ]  = r ~ p ~ c t  ~, n E  class 4, 5 or 6; N ( r ezp , ) - -  n. 

w 
equat ions 

3.5.I 

We have seen tha t  the equat ion 3.I .I  leads to a finite number  of 

[ x  - -  y a ]  = a a 3 

in the field K(#) .  I f  in part icular n eontai~s no pr ime  divisors r ~  + I (rood 3) 

such that r X m, and i f  n ~ o, +_ 3 or •  when m------+ I (rood9),  there is o~ly 

one possible ideal ft. 

By  an unpubl i shed  a rgumen t  used by Mordell  and ( independently)  by Marshal l  

Hal l  in similar cases, we can of ten show th a t  3.5.I is impossible by class-number 

considerations. The  simplest  example  is t h a t  of the class-number h~ = 3, in 

which case a 8 is always a pr incipal  ideal. The equation 3.5. I is then impossible 

i f  rt is not a pr inc ipal  ideal. 

But  a similar a rgumen t  can also be used when h m =  3k, k >  I. Le t  us for  

simplicity suppose tha t  the group of ideal-classes is cyclic (this is always the  

ease for  m ~ 5o), and let  all classes be powers of a class I'. Then the equa- 

t ion 3.5.I is impossible if n does not  belong to any of the classes F ai, 

i = 0 ,  I, 2 , . . .  k - - 1 .  

As already ment ioned,  I have  t r ea ted  systemat ical ly  all equat ions  3.1.I with 

m and n cubefree,  ~ 2 and ~ 50, and the resul t  is given in Table 2% where 

crosses s tand for  equat ions which are possible for  all moduli  bu t  which have 

been excluded one way or o ther  in the cubic field. The  cubefree m =  < 50 with 

3lh~ are 
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3.5.2 m -- 7, I3, I4, I9, 20, 2I, 22, 26, 58, 3o, 3 I, 34, 35, 37, 38 , 39, 45, 43, 49, 50 

( o f  which only hs9 = 6 and h43 -- 12 are ~ 3). _Nearly all excluded equat ions  in 

these  cases have been proved insoluble by class-number considerat ions.  1 

w 5. We  shall now cons t ruc t  the equat ions between i~tegers of K(&) cor- 

responding  to 3.5.1, when this cannot  be excluded by class-number considera- 

tions. Le t  first hm-- I ;  we then  immediate ly  get  

3.6. I x --  y ~ = ~(~a, 

where 7, u and a are in tegers  of K(~) ,  ~ g uni t  and v any number  such t h a t  11 

is the principal  ideal [r], i.e. N(n) = N(r)  = n or 3an (where 3"n occurs only in 

the cases 3.4. I). 

I f  em is the  fundamen ta l  uni t  of K(3"), then  

= + r +-t t =  o, 1 , 5 , 3 ,  
- -  m ~ . . . .  

The  sign can be absorbed in a s, and the  same holds for  any  mult iple of  3 in t. 

We  there fore  have t o  consider  only the three  possibilit ies ~/= x, rm and e~,,: 

3.6.5 x - - y ~ = r i ~ a  3, i = o ,  1 ,2  

(or wi~h ~ instead of ~,,). I t  will obviously suffice tha t  ~ is not the cube of 

another unit. Some of the uni ts  given by Cassels have not  been shown to be 

fundamen ta l ;  for  his purpose he has checked tha t  they  are no t  squares, and I 

have checked t ha t  they  are not  cubes of o ther  units.  This check can be per- 

formed quickly by the theory of cubic residues which is developed in Ch. V and 

V] ;  r,~ cannot  be a cube if i t  is a cubic non-residue to an appropr ia te  modulus.  

Already here  I will inser t  a remark  which is very useful  in many  numer ica l  

examples.  I t  of ten happens tha t  the number  �9 in 3.6. I can be very complicated 

and difficult  to find, but  t ha t  we can obtain easily an expression for  the produc t  

of ~ and some cube in K(~) .  A s t r ik ing example is the equat ion  

x a - - 3 3 Y ~ =  2 z  ~, 

3 

with t h e ' o n e  corresponding ideal-equation in K ( V 3 3 ) =  K ( ~ ) :  

3.6.3 [x - -  y a ]  = p~ a S. 

1 Dr. Uassels k i n d l y  l en t  me  h is  ca lcu la t ions  in  connect ion  w i t h  the  d e t e r m i n a t i o n  of  the  

c lass -numbers  h m for m ~ 5o. Hi s  notes  were  of very  great  use  to me  d u r i n g  m y  o w n  calcula-  

t ions  in  the  cubic  fields. 
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The  c lassmumber  ha3 = I, but  the  fu n d am en ta l  un i t  es~ has very big coefficients, 

and it  seems to be the same for  the  basic number  v.~ of P2. But  we see at  once 

tha t  
N ( a - - I ) =  3 3 - - I  = 25, i.e. I - - 2 ~ +  a "~ =v~(~)avj, 

where ~/ is a unit.  I f  we replace 3.6.3 by 

3.6.4 x - - y a  = ~.~ (I - -  2 a  + a ' ) a  8, 

then  a is no longer  necessari ly  an in teger  in K(~) ,  but, has in its denomina to r  

only powers of ~. 

The principle for exclusion of the equations 3.6.2 is to show them impossible 

for certain moduli, by a theory  of cubic residues in K(~) .  The modified equat ion 

3.6.4 can still be t r ea ted  by the same means, if we now use moduli which are 

prime to p~. And we shall see in Ch. VI  t h a t  a first degree ideal divisor of a 

prime q ~ - -  I (mod 3) is never  used as modulus  for  exclusions. 

Similar  arguments ,  usually no t  so simple, have been a grea t  help to me in 

my extensive numer ica l  calculations. There  is no special rule for  the  use of 

such "auxiliary cubes". They must  be pr ime to at  least  one of the moduli  which 

can be used for  exclusion, bu t  to find them quickly is a m a t t e r  of experience.  

w 7. We  now come to the cases where hm > I, and let  first 3 r The  

principles to be used can be i l lustrated by hm = 2 (which ist he only actual  case 

when m~<5 o, namely for  m =  I I ,  I5 and 47). Le t  the  two classes be H and F 

where / / i s  the pr incipal  class and F ~ = / / .  

I f  in 3.5.t U E H ,  then  also a E / / ,  and we a re  led to an equat ion 3.5.2 as 

before. I f  however  It and consequent ly  a are no t  pr incipal  ideals, I t & s E E ,  we 

must  use the  a rgumen t  of "auxiliary cubes": Let b E F, w h e r e  fi is an in teger  

ideal pr ime to the moduli  which can be used by the exclusions. (It  is well 

known tha t  every class conta ins  ideals prime to any given ideal.) The equat ion 

3.5.t can be wr i t t en  as 

3.7.1 I x - -  y a ]  = l tSs(ab- l )  3, 

where  now both  lib a and ab  -1 are principal  ideals, the  la t ter  f r a c t i o n a l  W e  are 

again  led to an equat ion  3.6.2, where the possible denomina to r  of a is pr ime to 

the  moduli  to be uued. 

A quick de te rmina t ion  of the ideal 1} is again a m a t t e r  of experience.  As 

a simple example ,  we can consider  the equat ion  
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X 3 -  3I  y3 = 35Z3,  

3 

or in the field K ( V T I )  = K(,9): 

Ix - -  y a ]  = p3 P5 a3 = n a a. 

Here  h n = 2, p ~ =  [ - - 2  + ~ 9 ] e H ,  bu t  ~o~EF, and s o u e F .  W e  can u s e b = p 2 e F ,  

and since 
N ( - -  I + t9 "~) = - -  I + II I~ = I20 = 23. 35, 

we can deal with the equa t ion  

3.7.2 

if  we use moduli  which are prime to p,. 

The  above remarks  can also be useful  in the search for  a numerical solution 

of an equa t ion  x ~ -  rny 3 =  n z  3 which canno t  be excluded.  W e  know th a t  pz, 

the  p roduc t  of first degree pr ime divisors of z, mus t  belong to the same class 

as It (ei ther H or /I), and this  l imits  the possible choice f o r  z. 

w 8. Le t  finally 3[h~,  and suppose tha t  3.5.3 canno t  be excluded by class- 

number  considerat ions.  Le t  n-~E F, and  b a par t icu la r  ideal  such tha t  53E F. 

Using again  the form 3.7.1, we must  examine the  classes to which a5 -1 can 

belong in order  t ha t  (a b-x) 3 is a pr incipal  ideal. Le t  F o = H (principal  class), 

/'1, F ~ , . . .  I~-1  be all such classes, i.e. F ~ . = H , j = o ,  1 , 2 , . . . k - - 3 ,  and let  

50 = [I], hi, 5_~,...  5k-~ be one representa t ive  ideal f rom each such class. Then  

aS-le/~j, i.e. a = b S j c ,  j = o ,  1 ,2  . . . .  k - - 3 ,  

where c is  a (fractional) pr incipal  ideal. The equat ion 3.7.I then  takes the  form 

[x  - y ~ ]  = ~ 5  3. 5~. c 3, 

where lib 3, b~ and c are all pr incipal  ideals, i.e. 

3 . 8 . I  I t 5  3 = [V], 5 3 = [~j], C = [a] .  

We are thus  again led to an equat ion in numbers of K(,9), s imilar  to 3.6.2: 

3 . 8 . 2  x - - y ~ 9  = e ~ 7 j v a a ;  i = o,  I, 2" j = o ,  I, 2, k - -  I" 7o = I, 

where a contains  in its denomina to r  only factors  of b and the 5fs. 
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I n  the  mos t  f r equen t  ease h y_~ = 3 (cf. 3.5.2), these  a r g u m e n t s  can however  

be s impl i f ied considerably.  Then  rt m u s t  be a pr inc ipa l  ideal, and  we can choose 

b =  I l l .  Le t  the  classes be F, F s and 1 ̀8 = H,  and  let  b~EF, bY -- [7]. As the  

represen ta t ives  I~j we can then  choose 

b ~  [ I ] E H ,  b l E / "  and  b y e F  -~. 

The  equat ion  3.8.2 consequent ly  takes  the  f o r m  

3.8. 3 x - - y & =  ~ T i ~ a  s, i a n d j  = o, 1 ,2 ,  

where [7] is the cube of any ideal which is not a principal ideal. And  the equat ion  

can be t r ea t ed  for  any modulus prime to 7. 

I n  mos t  cases we can even find 7 as a ratioualinteger, e.g. if  m ~ +  I 

(rood 9) and  Pa is no t  a pr incipal  ideal :  

P~ = [3] = [7]- 

A n o t h e r  case is when  for  ins tance  m ~ - q r ,  where  q(N)r .  Then  pq is not  a 

pr inc ipa l  ideal, and  we can choose 

= [ q ]  = 

Bu~ ~here are  also o~her possibil i t ies for  r a t iona l  7, as seen f rom the example  

x s w 3oY .~ = 19za. 

He re  h3o = 3, and  of the three co~jugate ideal dirisors of I9, only one belongs to 

the principal class, namely  

= [ I 9 ,  a + 3]  = - 3 a - a - ' ] .  

Since ne i the r  p~ no r  P5 are pr inc ipa l  ideals  in K ( V ~ ) ,  we can take  7 = 2 or 5. 

W i t h  7 = 2 the  equa t ion  3.8.3 becomes  

3.8.4 x - - y ~  = ~io 2 J ( I9  - 3 ~ - -  ~.~)a s, i and  j = o, I, 2, 

which can be t r ea t ed  to any  modu lus  p r ime  to 2, and  the three values of j need 

~wt be considered separately. 

A s imi la r  s implif icat ion for  the  7's can also be ob ta ined  when 3[h~,  hm > 3, 

and  the  g r o u p  of  ideal-classes is cyclic. As an example ,  we can consider  

3.8.5 x ~ -  39Y s = 44 zs, 
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where h s g = 6 ;  let  the classes be F k, k = o ,  1 , 2 , . . .  5. Here ,O~EF (with an ap- 

propriate choice of F), ,OnEF, and so tt = pgpnEFS: A s t h e  b of 3.7.I we can 

choose b = OsEFS, and as the bj's of 3.8.I: [i], OsEF ~ and OgEF ~. The resul t ing 

equat ion is 

3.8.6 x - - y  ~ = eia~ 3J(22 + 3 ~ + '9~)aS, i and j = o, ~, 2, 

since / Y ( 2 2  ~- 3 ~ -~ ~ )  = 5s .44  -- N(ttbs). This equat ion can be t reated for any 

modulus prime to 3 and p~, and  the three values of j need not  be considered 

separately. 

w 9- I n  the last  paragraph,  we have seen how different equations 3.8.3 can 

be t rea ted  as one by means of ra t ional  7's. There is still ano the r  impor tan t  

case where a similar reduct ion in the  number  of equations is possible, namely 

when 

3-9. I ~n ~ -[- I ,  n ~ -[- I or + 2 (mod 9). 

For  the same ,On we then  have to t rea t  both possibilities 3.4.I and 3.4.3. 

the  former can be wr i t ten  as 

[x - -  y a] = [9]" P, (a r- l)  s, 

But  

since [3] = r25. The ra t ional  factor  9 and the denominator  r in the cube do 

not  influence an a rgument  to a modulus pr ime  to 3, in which case the two equa- 

tions can be treated simultaneously in the simplest form 3.4.3- 

A simple example of 3.9.1 is 

3.9.2 x s -  i o y  s = 47 zs, 

8 

with the corresponding equation 3.4.3 in K(V~o) :  

3.9-3 [ x - - y a ]  =p~Tas, or x - - y - ~  = e~o(3 + a + a s) a s , 

since h~o = I. - -  I f  this can be excluded to a modulus prime to 3, the same also 

holds for the more complicated equat ion corresponding to the other  possibility 

3.4. I : 

3.9.4 [ x - - y ~ ]  = r ~ p 4 7 a  s, or x - - y ~ =  ~ 0 ( 9 - - 4 ~ +  ~ ) a s .  

B u t  the same argument can be used when 

3.9.5 m ~ ~__ I ,  n ~ - [ - 4  (mod 9), 
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in which case 3.4.1 is the  only possibility. W i th  the  same l imi ta t ion  for  the 

modulus,  we can t r ea t  this  case in the simpler fo rm 3.4.3. - -  This  remark  is 

equally useful  in numer ica l  calculations,  since 3.9.5 occurs f requent ly  in excluded 

equations.  

C H A P T E R  IV. T h e  R e s u l t i n g  C u b i c  Equation. 

w z. We  have seen in the last  chapter  t h a t  the  equat ion 

4. I . I  x 8 _ m y  s = n z  8 

leads to a finite number  o f  equat ions  

4. I.2 x - -  y & = tea 8 

$ 

in ~he field K ( } / m ) =  K(&);  here  

4. I.3 N ( / x ) = n  or 3a .n ,  z = N ( a )  or 3 .N(a ) ,  

where the  last  a l te rna t ive  occurs only in the cases 3.4.I. 

tt = e + f & + g @ ~  or 
3 

u + v& + w ~  ~ 
a = u + v & +  u , ~  or 

I f  we put  

e + . f a  + g ~ 2  

and equate  the coefficient  of ~2 in 4.1.2 to zero, we get  for  every combinat ion 

of /~ and a:  

�9 F ( u ,  v, w) = g (u 3 + m :  + , :  w ~ + 6 m u v w) 

4. I. 4 + 3 f ( u ~ v  + m e w  ~ + m v 2 w )  

+ 3e(u~w+uv ~+mvw 2)=o, 

where 

4.1.5 N ( e  + f &  + g~" )  = e 3 + m f  a +  m ~ g ~ - -  3 m e f  g = ~ 

or 3an in some cases when m~-__+ I (mod 9) (but never  3 ~, since tt has  no 

denomina tor  3 in t h e  cases 3.4.I). - -  "Auxi l ia ry  cubes" in tt give corresponding 

cubed factors  in 4.I.5, but  i t  is clear t h a t  a solution (u, v, w ) #  (o, o, o) of  4.I .4 

wil l  under all circumstances lead to a solution o f  4.1.2 and consequently o f  the given 

equation 4. I . I .  
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2 The coefficients g and w are integers only if m is squarefree. I f  m = m, rn2, 

we obtain in teger  coefficients in the expressions 

e + f @ l  + g & ~  and u + v~ l  + w ~  

(cf. 3.I .2--3),  and the modified equat ion 4.I .4 for  the coefficient of ~,~ then 

takes the form 

6 [ F~ (u, 
4. I. 

(cf. 5.I.3--4), where now 

V, W) = g ( u  a q- ml~'n~v a q- ~t21m.~w3 + 6 m l m ~ u v w  ) 

+ 3ra~f(u~v  + n h u w  ~ + mlm~v~w)  

+ 3 e (u s w + m.2 u v 2 + gJ~ 1 gn 2 V W ~) = 0 

4.~.7 N ( e  + f # l  + gS.2) = e ~ + m l m ~ f  3 + n ~ m , g  "~-  3 n h m , . , e f g  = n, 

possibly with the same cubed factors.  We shall however use the nota t ion  n for 

the norms in 4.:.5 or 4.I.  7 in any case, to simplify the formulae.  

w 2. We  have seen t h a t  solubility of 4.I .4  implies solubility of 4 . I . : ,  and  

x, y and z are obviously expressed as rational cubic fo rms  in u, v and w. But  we 

can prove t h a t  in this  case u, v and w can also be expressed rationally by x,  y and z. 

Since the curves 4.1.4 and (thereby) 4.1.: are supposed to have rat ional  points, 

they  can both be t ransformed birat ional ly with ra t ional  coefficients into a 

l$~eierstrass normal  form, and it  suffices to show tha t  these forms  for  the two 

curves coincide. 

The normal  form for 4 . : . I  is by :.5.2 

4.5. I 72 = 4 ga __ 27 m s n~. 

The invariants  of 4.I .4 (of. N*G~LL [2], ~ I, with references) are 

4 . 2 . 2  
57 36 = - - 2 7 S  = o, gs = T = - - - -  n ~. 

g~ 4 64 26 rn~ 

We have the "equianharmonic"  case, and can remove ra t ional  6th powers from 

gs. As  the normal  form of 4.1.4 we can therefore use 

But  i t  is well known (ef. 1.5.5) t h a t  this  can be t ransformed birationally with 

ra t ional  eoefficients into 4.2.I, q.e.d. 
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I have carr ied t h rough  t he  direct calculation of the invar iants  S and T 

from the coefficients of F (u ,  v, w). This becomes very tedious, and can be 

facil i tated by the fol lowing linear t r a n s f o r m a t i o n  (with i rrat ional  coefficients, 

but  this does not  influence the invariants) :  

The H e s s i a n  of 4. x .4 is 

H =  

O a F  ~ O~F x O~F 

6 0 u  ~ 6 0 u O v  6 O u O w  

OaF ~ OaF ~ O a F  

6 0 v O u  6 0 v  ~ 6 0 v O w  

x OaF I O~F ~ O~F 

6 0 w O u  6 0 w O v  6 0 w  ~ 

= - -  ( e3 + m f  "~ + me g~ - -  3 m e f g ) .  (u" + m v s + 

+ m 2 w  s - 3 m u v w )  

= - - ~  . N ( u  + v,~ + ,w~') .  

The in f lex ions  of the curve F = o are determined by H = o, and are con- 

sequently not  rat ional .  They  lie on the three i r ra t ional  lines 0 = e 8 ] :  

u + v ~  + w ~  "~ = o, u + vQ~  §  a-= o, u + vQ~v q +  wQ~'* = o, 

which we choose as new axis by the t rans format ion  

U = u + v ~ + w ' ~  2 

4.2.3 ' V u + v 0 ~  + w ~ , ~  ~ , D = 

I W u + v o a , ~ +  w o ~  a 

I ~ ~2 

= -  3 m V - ~ 3  r  

I f  we denote by one or two dashes the replacement  of ,,~ by Q,,~ or Qa~ 

respectively, we have V = U', W = U". - -  We shall also rise the no ta t ion  

~a E' E = e + f , ~ + g  , = e + f Q 3  + g Q a 3 " ,  
4"2"4 E "  = e + f q ~ , ~  + g q, ,~.  

Apar t  f rom a possible denomina tor  3, U and E are no th ing  but a and tt of ~ I. 

The construct ion of F = F(u,  v, w) of 4 . I .4  as the coefficient of #* shows tha t  

we have 

E U  ~ = G + H , ~  + F , ~  a, E ' V  ~ = G + H Q , ~  + FQ~,~ ~, E " W  s = G + H Q 2 , ~ +  F Q ~  a. 

El imina t i on  of G and H gives 

4 . z . 5  F = F(u, v, w) = : 2 ~ ( E U 8  + eE'  V 8 + e a E  '' W s) =- 
3 w -  
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= A U "~ + B V 8 + C W ~ (say). The invariants of this form (NAGEIA., loc. cir.) are 

since 

4;.2.6 

S ' = o ,  T ' - - A  ~ B ' C  2=  
n s 

3~m ~' 

E E ' E "  = N(e  + f ~  + g ,~ )  = n. 

The invar iants  of the original form F(u,  v, w) are consequently by 4.2.3: 

S = D  4 S ' = o ,  T = D  6 T ' = - 3 3 m  sn s, 

which are the values given in 4.2.2. - -  We note that  a cubed factor for n in 

4.1.5 does not disturb the above argument, since it only leads to an extra 

rational 6th power in the expression for ga. 

d. I call 4.1.4 (or the modified form 4.1.6) the "resulting cubic equation" in 

u, v and w. This equation can often be excluded by congruence considerations, 

even if the original equation 4.I.I  is possible for all moduli. A closer study of 

such exclusions is the object of this and the next two chapters. 

First we can show that  4.1.6 is always possible rood p~ for  all (t, when p ~ 3 

is a prime divisor of m (and the given equation 4.I.I is not of the type I.I.4). 

We consider the congruence mod p: 

4.3.I FI (u, v, w) - o (moo p), 

and form the three derivatives 

I 
I O F  

3 0 u  

i OF, 
4.].2 3 0 v  - mlm~g(  

I OF~ _ m l m ~ f (  
3 d w  

e (ms v' + 2 u w) + 

~y 

m 2 f ( n h  w '  + 2 u v) + g (u s + 2 m,  m2 v w) 

) + re, e(  " ) + m,  f (  " ) 

) + , * , m s g (  " ) + ~( " ). 

The only condition for u, v and w i s p X u ,  s i n c e p l u & m  i m p l i e s p l z =  

= N ( u  + v,~ + w ~s). __ We must consider several cases: 

i. plml,  pXn,  hence p 4 e .  With v ~ o  (rood p), the congruence 4.3.I takes 

the form 

4.3.3 u ' (gu  + 3 ew) --  o (mod p), 
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OF1 
which is always soluble with u ~ o (whether  g ~ o or not). Since Oww ------ 3 eue ~ o, 

we can come f rom a solut ion rood p to a solut ion rood p~ for  any ~ >  I by 

vary ing  w only. 

2. p i m p ,  p X ' n ,  hence p . ~ e ,  and 4.3.1 takes the form 4.3.3 in any case, i.e. 

the  same a rgument  can be used. 

3. P lm: ,  Pln~ hence pXm~, p[ In ,  p i e ,  p X f ,  and 4.3.1 takes the form 

4.3.4 u~ (g u + 3 m ~ f  v) ~ o (,nod p), 

OT'~ -= 3 m J  us ~ o. which is soluble with u ~ o, 0 v 

4. 2 9 ] rn~, p ] n, hence p2 I] n, p]  e, p ] g, p Xf. All coefficients of F~ (u, v, w) in 

4.1.6 are divisible by p. I f  we remove this  fac tor  be forehand  and pu t  w------o 

(rood p), the congruence  takes a fo rm similar  to 4,3.4: 

4.3.5 u~ (gl u + 3 ~n'~f v) ~ o (rood p) 

(where g = Pg l ,  ms = P  m'2, p Xm~), and the  same a rgument  applies. - -  This con- 

eludes the  proof. 

I t  is clear t ha t  solubility mod 3 ~ mus t  be t rea ted  separately,  whe ther  or 

not  31m. This will be deal t  with in Ch. V, where I give necessary and  su f f ic ien t  

condi t ions for  solubil i ty rood 3 ~ in all cases t h a t  can arise. 

For  any prime p such tha t  pX 3 m, let  us examine under  which  condi t ions  

all t h r e e  derivat ives in 4.3.2 can be ~ o (rood p) s imul taneous ly .  There  are two 

possibilities : 

1. m., v 2 ~ - -  2 u w, m~ w 2 = - -  2 u v, u" ~---- 2 m~ ms v w ,  or mul t ip ly ing  toge ther :  

m imou sv ~w s ~ - S m  lmsu  sy~w ~, hence u v w - - o .  

But  one of the variables u, v or w------o implies all three  ~ o, which is excluded 

a pr ior i .  

2. D - -  o (rood p), where 

e m ~ f  g 

D =  m l m s g  m~e m ~ f  = ms(e  s + m l r a ~ f  ~ + m~m s g 3 -  3 m x m s e f g )  = m~n  

m l m ~ f  m l m ~ g  e 
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(of. 4.1.7). 

t h a t  

4.3.6 

Ernst  S. Selmer.  

We can the re fore  expect  congruence condit ions for  all primes p such 

p i n ,  p X  3 rn. 

These condit ions - -  necessary and sufficient for  solubili ty mod jo ~ - -  are developed 

in Ch. VI. 

w 4- The difficulty is again all other primes p, such t h a t  P 4 3 m n .  The 

results  of the last  pa ragraph  show tha t  it  suffices to consider the congruences  

rood p. Since (p, m) = I, i t  will also suffice to use  the  simpler form F(u,  v, w) 

of 4 . I .4  (the last  r emark  holds for  the primes 4.3.6 as well). W e  thus  have to 

s tudy the  congruence 

4.4. I F ( u , v , w ) ~ o  (m o d p ) ,  p X 3 m n .  

In  this case /"(u,  v, w) is absolutely irreducible mod p, and we can apply the  

resul ts  ment ioned  at  the end of Ch. I I .  Mordell's resul t  2.4. 5 implies tha t  4.4.1 

is soluble for  all sufficiently large primes p. I f  the cons tan t  of the 0-symbol 

was the same as in Hass.els fo rmula  2.4.7, we would be able to conclude about  

solubility immediately,  since 

N ~ p - - 2 V p ~ o  for  p ~  5. 

And the solubil i ty for  p = 2 is easily verified, since e + f ~  + g ~  ~= I, ~ or ~ 

(rood 2) when m and n are both  odd. 

Bu t  we can prove the solubili ty of 4.4. I independent ly  of such considera- 

tions. We begin with the case when in is a cubic residue of p, i.e. for  all 

p = q --~-- I (rood 3) and for  those p = r ~ + I (mod 3) such tha t  m (R)r.  W e  

can then  find (at least) one ra t ional  in teger  d such t h a t  

4.4.2 d a ~ m (mod p), 

8 

i.e. the  prime p factorizes in K ( V m )  = K(~) .  

We first note  tha t  it suffices to find a solution of 4.4.I in K(Q), since a chord 

t h r o u g h  this point  and the conjuga te  solution (with respect  to K(0)) will cut  

the curve F ~-- o in a th i rd  ra t ional  point  mod p. I f  p = r = 7gr  7gr (the factoriza-  

t ion in K@),  it  will also suffice to t r ea t  the coprime moduli  7gr and ~,. separately.  

W e  denote  any pr ime zr,, ~ or q in K((~) by z .  

Because of the analogy between 4.4.2 and ~ s =  m, the equat ions 4 .2 .3--5  

show tha t  the subst i tu t ion rood ~r: 
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I U ~ u + v d + w d  ~ I d d ~ 

4.4-3 V = u + v # d + w # * ' d  ~ , D =  I e d  #~d ~ ~ - ~ 3 m V Z 3 ~ o ,  

W ~ - u  + vQ~d + wQd ~ I Q~ Qd" 

after multiplieation with 3 d2 ~ o will transform s v, w) ~ o (rood ~r) into 

4-4.4 (e + f d + g d ~) U 3 + e (e + f e d + g e ~ d ~) V ~ + 

+#~(e + f e  * d + g # d  2) W s - ~ o  (rood z~). 

The product of the coefficients is ~ n ~ o (mod ~r) by 4.2.6. The argument of 

Marshall Hall  (Ch. n, w 2, in particular the final remarks) then shows ~hat this 

congruence is always soluble for U, V and W in K(e), which again leads to a 

solution for u, v and w by 4.4.3, since D ~ o (rood ~r). 

The resulting cubic equation /"(u, v, w ) =  o in the form 4.2.5: 

4.4-5 F(u,  v, w) = I---(EUZ + q E ' V  s + q~F'" W s) = o, 
3~9 ~ 

3 

i s  really an equation i n t h e  field K(V~, ,  e ) =  K ( # ,  #). This will be the field in 

which we have to work if the given equation x s - m y  s = nz  3 is to be solved 

in K(Q), cf. Ch. I, w 3. The coefficients are then also supposed to be integers 

of g(e). 
I have found it convenient to define this field in a slightly different way, 

as a fiehl ~2(~) over K(#) as the basic field o f  rationality. Since K(e) is Euclidean, 

all usual results about algebraic number-fields still apply, if we make an appro- 

priate use of norm symbols from ~7(Q) in all formulae relating to the ~wrm of  

an ideal (cf. 4.4.7). 

The primes ~v of the basic field K(Q) are the q, zc~ and z~ mentioned above, 

and also )~ = I - - e  (where 2 ~=  - - 3  e)- The factorization of these primes in ~(#)  

i s  similar to that  given in 3.I.4. There is complete analogy for the primes 

dividing m; all other primes z ~ 2 such that z J(m will behave like the r 's of 

3.I.4, but  d' and d" can be replaced by 02d and ed:  

/ [~]  = [~r, ~- - ,d ] [~r , , - -QO"d][~r ,~ - -Qd]=[~r ,d - -~] [~r ,d - -Q#][~ ,d - -q* '# ]=  

~n a 

(where I use the notation of Ch. IX, w I for cubic residuacity). The norm of a 

first degree prime ideal p,~, i.e. the number of residue-classes rood p,~, must be 
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defined as the  ordinary norm in K(Q) of the basic prime z :  

4.4.7 N(p.~) = N e (~), 

i.e. the number  of different  residue-classes rood ~ in K(Q). 

The fac tor iza t ion  of the pr ime ;~ = I - -Q if  ;~ ' rn  is much more complicated,  

and shall no t  be t r ea ted  here. I can only ment ion  tha t  there  are four different  

possibilities of factor izat ion,  corresponding to 8 = I, 2, 3 or ~ 4 in the expression 

~tgl[m--x (if we suppose t h a t  m ~ + I (mod L), if necessary a f t e r  a change  of 

sign for  m). There  is also a c lose"connect ion between the  value of ~ and the 

fo rm of a basis for  $2 (~). 

The proof  for  solubility of 4.4.4 is real ly a proof in the .field $2(~), making 

use of  the fac t  that [~] factorizes. I f  however  

4.4.8 z X  ~,mn, lm] # I, 

a similar simplification is no t  possible. W e  then  have to use the full  expression 

for  F(u ,  v, w) in 4-4:5. Trea t ing  this as a congruence  rood ~, and using Marshal l  

Hal l ' s  a rgumen t  again, we conclude as above t h a t  the congruence  rood z has a 

solution for  u, v and w in /2(,,~). But  I c an n o t  see how to come f rom this  solu- 

t ion  to a solut ion in K(Q). 

Re tu rn ing  to ra t ional  primes, this means tha t  the congruence  4.4.1 .in the  

case m ( N ) p  = r must  be proved soluble by o the r  methods.  I shall give a proof  

which is also valid in ~2(~) for  the primes z of 4.4.8, if  the  r of 4.4.IO is re- 

placed by hre(z ) in accordance  wi th  4.4.7. W i t h  the necessary modifications, the 

me thod  can in fac t  also be used for  the  primes ~r X ~ m n which factor ize  in s (~), 

leading again  to the  subst i tu t ion 4.4.3. 

W e  note  tha t  i t  is equivalent  to solve the congruence  corresponding to 4. I.2 : 

4.4.9 x - -  Y'~ ~ / *  a8 (rood [r]), 

i.e. to show tha t  we can find an in teger  a of K(,~) such t h a t  the  coefficient  of 

,,~ in .us s vanishes rood r. Since m ( N ) r ,  the na tu ra l  pr ime r remains  a prime 

in K ( 8 )  by 3.r.4. The residues rood [r] and prime to [r] are given by 

4.4.IO a = u + v ~ + w &  ~, u, v and w = o , r , z , . . . r - - I ,  ( u , v , w ) ~ ( o , o , o ) ,  

in number  r s -  I ~ o (mod 3). The  a rguments  used in connect ion  with 2.2. 7 

show tha t  we can divide the  in tegers  a in three classes, one of cubic residues 
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and two of non-residues mod [r]. There is a one-one correspondence with the 

division of the rational norms N(a)  in classes rood r. F i rs t  

a, ~ a2 (rood [r]) ~ a, -- ~s a2 (rood [r]) ~ N(a~) ~ N(~) s N(a~_) ~ N(cq) (rood r) 

(with the symbol of equivalence introduced in 2.1.7). Next  N(a)(R)r- -> a(R)b ' ]  

(cubic residuacity in K(1) and  K(~)  respectively), since a(N)[r]  would imply 

& ~ a  ~ (rood [r]), i = o ,  I or 2, and hence N ( ~ ) = m ( R ) r .  Finally,  as a simple 

consequence, N(al)  ~ N(a~) (rood r )  -~ a s ~ a~ (rood [r]). 

We notice in par t icular  t ha t  a congruence # a  s =  v, / t v ~ o  (rood [r]) is 

soluble if and on ly  if # ~ v (mod [r]). 

The given equat ion x a - - m y  s =  n z  a has at  least  one solution (xl, yl, zl) 

considered as congruence rood r :  

4.4.I I xal my~ ~ nz~ ~ n (rood r) 

( z t ~ o  is excluded by m(N)r) .  But  x ~ - - m y ~  = N ( x  t - y t , $ )  and n = N ~ ) ( p o s -  

sibly wi th  cubed factors),  and the equivalence 4.4.i I implies tha t  

- y ,  a ~ ( r o o d  [ ,-]) .  

Hence 4.4.9 is soluble with x -  x 1, y -  y~. 

This concludes the proof for solubility of the congruence 4.4.I. As a con- 

sequence, we can say tha t  the conditions developed in the next  two chapters will  

be the necessary and sufficient conditions for solubility o f  the congruence (to any 

modulus) corresponding to the resulting cubic equation. 

C H A P T E R  V. 

w z. A direct s tudy 

becomes very complicated. 

equat ion 4- t .2 : 

5.I .I  

C o n d i t i o n s  m o d  3 ~. 

of the c o n g r u e n c e  condit ions for the  equation 4.I.4 

I t  is much simpler to consider the corresponding 

x - - y &  = #as ,  

and examine the form of a s. This method  has led me to a s tudy of the cubic 

residues in the purely cubic .field K(,~). (The principle has already been used for 

proving 4.4.9.) 

I n  this  chapter  we shall deal .with the condit ions rood 5 ~, and star t  with 

the case 
16-  642127 A e ~  maShemat~ea. 85 
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5.x.2 

since 

wr i t ten  as 

5.~.3 

where ~ = ~ .  

Ernst S. Selmer. 

m ~ •  I (mod 9), i.e. [3] =P~, (Ps, a ) =  ~, 

3Xz.  I f  we take the genera l  case 3 .~ .2~3 ,  the equat ion 5.I.~ can be 

x - -  y ~ = (e + f ~  + g as)  (u + v a~ + w ~..)~, 

We first apply an a rgument  due to H o ~ z ~  [~]: The expression 

{ a ~ = (u + vO', + w6~_) 3 = u s + mlrn~v ~ + m [ m ~ w  ~ + 6 m l m ~ u v w  

5"I'4 + 3(u~v + n h u w  z + m ~ m ~ v ~ w ) ~  + 3(u~w + m ~ u v  ~ + mim2vw~)~2 ,  

toge ther  with (Ps, a ) =  I, shows that  

5.~.5 ~ = (u + v a ~  + wa~)~ - - -  - • ~ (rood 3). 

Since the product  of and rat io between two numbers  ~ __+ I (rood 3) in K( ,~) i s  

a lways of the  same form, we conclude tha t  5.I. 3 is only possible rood 3 ( f  

5.I.6 g ~ o (mod 3)- 

I t  is also clear tha t  the use of an "aux i l iary  cube" prime to 3 leaves thi  s condi- 

t ion unaltered.  

Holzer  only uses 5.1.6 for  the  special equat ion x s - -  m y~ = z 8; an (improved) 

account  of his results  is given in Oh. VII ,  w 5- 

For  our purpose, we must  examine the residues rood 3 of g in the three 

different  equat ions 3.6.2: 

5.I.7 x - - y ~ l  = e ~ va  8 = ~ a  3, i = o ,  I 2. 

The simplest  possibili ty is the  case 

5.I.8 *m ~ I (mod 3) 

(~, = - - i  is excluded by N(~m)= + i). This gives the impor tan t  

Theorem II.  The three equations 5.I.7 are all impossible i f  ~ ~ +_ I (rood 9), 

era---- x (rood 3) and the coefficient g o f , ~ .  in ~, is ~ o  (rood 3). - -  ~ can be 

replaced by ~ whenever  m ~ o (rood 9). 

The condit ion 5.I.8 is satisfied for  the  fol lowing cubefree values of m ~ 5o 

and ~___ i (mod 9) (cf. 6.IO.4): 

~.I. 9 m ---- 6, I~, 15, 18, 3 o, 33, 34, 36, 42, 45 
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(of which only m = 30, 34 and 42 have a class-number h,,, divisible by 3). Nearly 

all excluded equat ions  (crosses in Table  2 a) for  the values 5 . I . 9 -  and no t  

already excluded by class-number considerat ions  - -  have been proved insoluble 

by Theorem II .  In  part icular ,  the  equat ions  3.6.4 and 3.8.4 are both  impossible 

rood 3, i l lus t ra t ing  the cases with 3 q'h,, and 3]hm r e s p e c t i v e l y .  The auxil iary 

cube p~ of 3.6.4 and the [7] -: [2] = t~ of 3.8.4 are bo th  prime to the modulus 3. 

2. I f  5.I.8 is no t  satisfied, 

5.2,I ~ m ~ I  (mod 3), 

we can show tha t  the condition 5.I.6 is always satisfied for  at least one value of  

i in 5.I.7, and usually for  one value only. In  order  to get  a systematic  t r e a t m e n t  

of the possible cases tha t~ar i se ,  1 have cons t ruc ted  the Table ~ .  This shows 

the residues rood 9 of the norm 

. 2 . 2  N ( , ~ )  = ~V(u  + v a  + w a  ~-) = , ~  + m y  ~ + m ' a  ,~ - 3 m u ~ , w  

when a runs  t h rough  a complete  system of residues rood 3 (or r a t h e r  ha l f  such 

a system, since i t  is unnecessary  to consider  a change of sign for  ~). I t  is c lear  

t ha t  _/Y(a,)~ ~T(~) (rood 9) when ~1 ~ ~'2 (mod 3). The  values m ~ I, 2, 3 and 4 

(rood 9) must  be considered separa te ly ;  f rom these we come to m ~ - - I ,  - - 2 ,  

- - 3  and - - 4  only by ehanging  the sign o f ~ .  A squared fae to r  in m, m = m  lm~, 

d o e s n o t  influence the  a rgumen t  if m 2 ~ o  (rood 3). I f  m = 9nh ,  3 ~'nh, we can 
.q 

avoid the difficulties which arise by opera t ing  in the field K(V3.m~), cf. w 3 

below. 

W h e n  in the equat ion  x s -  my 3 =  n z s the  numbers  m and n are given 

rood 9, Table  i ~ shows the  possible forms rood 3 of ~ and e,~ in 5.I.7, since we 

know the norms N(~) = n and N(em) = I. An "auxi l ia ry  cube" does not  influence 

this a rgument ,  because of 5.I. 5. ( W e  can operate rood 3 only ( f  the a~lxiliary 

cube is prime to 3.) 

We mus t  combine  all nz~__  I (rood 9 ) w i t h  all n such t h a t  x 3 -  my ~=  //z 3 

is possible rood 9, cf. the condit ions 2 . I . Io .  This becomes a tedious enumera-  

t ion of cases, and I shall only give a typical  example:  

m - - 4 ,  n ~ - +  3 (rood 9): The congruence  x S - - 4 y S ~ +  3 z3 (rood 9) shows 

tha t  we must  have x ~ - y  ~ o (rood 3), i.e. 

- y a -~ _+ ( -  ~ + ~ )  (rood 3). 
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Table  i ~ gives the  fo l lowing possible residues for  v and  ~.m: 

, , , -~  I ,  - -  I - - # *  or I + # - - ~ "  J (rood 3). 

Final ly  5.I .7 gives the congruence  

i v  (rood 3). - - l  + "9------+ ~ 

I f  *~ ~ I (rood 3), the  only possible res idue of v is + v -------- I +, ,9;  th is  is 

no th ing  bu t  Th.  I I .  I f  , ~  ~ I (rood 3), we note  t h a t  

( -  ~ - "9:)~ = -  i + :~ - :~, (, + ~ - ~ : ) :  - - ,  - "9: ( , n o d  3) ,  

0 ~ 9. so t h a t  the three ~ossible residues, of e~ ~i:ill represent *m I, e~ and *m in some 

order, and  this  holds  for  all  combina t ions  of m and  n when  ~m ~ I (rood 3). - -  

We  f o r m  a table  of mul t ip l i ca t ion  fo r  the  residues of em-v rood 3: 

v I' + \ \ * ~  [ 
i - -  I - - ' 9 ~ -  

- -  I + ~9, - -  I + , 9  - - , 9  + ,9 ~ I - - , 9  -~ 

I - - ~ :  I - - , 9  ~ - -  I + , 9  - - ' 9  + "9: 

- - , 9 + ' 9 :  - - ~ 9 +  &~ I - - & ~  - - I  + &  

I + ' 9 - - ' 9 :  

Since _N(e,~v)= N ( v ) =  n, the  products  mus t  have  the  same residues as 

which sat isfy itself. Bu t  the  table  also shows t h a t  the only values of  , ) =  ~ 

the  condit ion 5.1.6 are 

5.2.3 + v ~  I - - ' 9 :  : ~ - -  I - - ~ 9 :  (rood 3). / 
+ v = - - - - & + ' 9  ~ : ,?--~I + & - - ' 9 :  

This  is expressed  in condensed fo rm in Table # ,  where  the  entr ies  under  

m ~-4 ,  n - ~  3 (rood 9) show the  possible residues m o d  3 of v and  ~ ,  and the  

crosses give the  possible combinat ions .  The  crosses for  ,~ ~ I show the residues 

rood 3 of x - - y ' 9  (wi thout  the  double  sign). 

The  res t  of Tab le  I b is cons t ruc ted  s imi lar ly ;  there  is usual ly  one and  only 

one possible  r/ fo r  g iven v. Bu t  in the  cases  

5.2.4 m ~ 2, n --~ + I, and  m ~ 4, n ---- _+ 4 (rood 9) 
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(we are not  ye t  concerned  with m--~ I) the re  are  two possible  values  of r~, i.e. 

only one value of i in 5.1.7 can be excluded f o r  each v if ~m ~ I (rood 3)- The  

reason f o r  this,  e.g. in the  first case 5.2.4, is t h a t  the  congruence  x ~ - -  2 ys ~ __+ z 8 

(rood 9) leaves  the  two possibi l i t ies  y - -  o or x - -  y ~ o (rood 3), i.e. x - -  y @ --= +_ I 

or + ( - -  I + a)  (rood 3). 

I n  all  occur r ing  cases, the  combina t ions  5.2.4 have  been excluded e i ther  by 

c lass -number  cons idera t ions  or  by the  me thods  o f  the nex t  chapter .  - -  A s  

examples  of  equat ions  where  o n l y  one value of i in 5.1.7 is possible rood 3, I 

can ment ion  : 

I. x ~ - - 5 y a =  I2Z a, m 2 - - 4 ,  n - - 3  (rood 9), where  we can use 5.2.3 wi th  

a change  of sign fo r  &. The  c lass -number  h5 = I, and the  cor responding  equa- 
3 

t ion in K ( V s ) =  K ( a )  becomes 

5.2. 5 x - -  y & = e~ ( - -  2 + 3 ,.9 - -  ,,~) a s, e5  = I --4~~ + 2,~ ~, where  

v ~  I - - ~ ,  e 5 ~  I - - & - - ~ ,  e ] ~ - -  I - - & ~  (mod 3). 

Consequent ly  5.2.3 shows t h a t  we m u s t  use i = 2, or  

5.2.6 x - - y ~  = ( 3 9 8 -  361 & + 7 5 ~ ) a  s. 

W e  could also have  used i = - -  I i n s t e a d  o f  i =  2. Since e7 ~ = 4 I  + 24 ~ § 

+ I 4 ~ " ,  we now get  the  much  s impler  equa t ion  

5.2.7 x - - g O "  = (8 + 5 & + 3~s)  aa. 

2. z s - 3 y s  = 22z  a, m ~ 3 ,  n ~ - 4  (rood 9). The  c lass -number  h a =  I, and  

we find 

i(7 + & - - 4  &2) as, ~3 = - - 2  + ~2, where  5.2.8 x - - y , 9  = ~, 

Table  1 b shows t h a t  we m u s t  use i =  I, or  

5,2.9 x - - y ~  = ( - -  I I - -  14& + 15&~)ct s. 

w 3. Table  I b does no t  conta in  m - -  o (rood 9), m = 9 m I  (with 3 4 m l ,  since 

m i s  cubefree),  in which case we m u s t  have  n - - o  or  +_ I (rood 9) by 2.1.~o. 

A special  t r e a t m e n t  of this  possibi l i ty  can be avoided if we mult ip ly  the  equa- 

t ion x a - 9 m l y 3 = n z  s by 3m~: 

5.3.! (3 relY)  s "-- 3 n'*~ xa = - -  3 m~ nza ,  

3 $ 

and work in the field K(V3-~) = K(a) (identical with K(Vm)). There are two 

eases to consider :  
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I ,  I1 ~ O (rood 9), n = 9 u~, 3 4 n~. Then we m u s t  have 3 ] x, x = 3 x~, and 

a f a c t o r  33 can be r emoved  in 5.3.I :  

5.3.2 (m~ y)~ - -  3 m [ x ~  = - -  m ~ , ~  z ~, 

which comes under  one of the cases in Tab le  I b wi th  m ~ 3 (rood 9); we ge t  

the  o rd ina ry  condi t ions  m o d  3. I f  we had  worked  with  the given equa t ion  in 

the  or iginal  f o r m  x ~ -  m y  s =  ~ z  3, and  the  co r re spond ing  

5-3.3 x - -  y 8~ = # a ~, 

i t  t u rns  out  t h a t  we 

of 3 3 in 5.3.I ;  th is  will be shown in w 5. 

2. ~ ~ + '  1 (mod 9). I n  this ease the equation 5.3.3 can 

rood 3, since the eoeffieient o f  8 2 in t~ is always ~ o (rood 3). 

use the  no ta t ion  3 . I .3 :  

5.3.4 8a = ] /9ml,  8~ = V3 rn~. 

have  to t r e a t  th is  rood 9 to compensa te  for  the  r emova l  

never be excluded 

To show this,  we 

A squared fac to r  ~ o  (mod 3) in m I does not  influence the a rgumen t .  Fo r  the  

same reason,  we c a n  replace  82 and  81 by 8 and  8 ~ respect ively  and  find the  

possible residues mod  3 of # f rom Table  ib; wi th  m ~ 3, n ~+,,  I (rood 9): 

_____ ~ ------ I ,  I + 8 2 or  I - -  8 ~ ( rood  3). 

And  ne i the r  of  these  conta ins  8 = 82. 

The  t r a n s f o r m e d  equa t ion  5.3.I shows t h a t  there  is a close connec t ion  be- 

tween  the  last  ease and  the  case 

5.3.5 m ~ +  3, n ~ •  3 (rood 9), 

where  m ~ + _ n  (rood 27), ef. 2.I .IO. As above, the equation 5.3.3 can never be 

excluded mod 3 in this case. 

Table  I a gives the  a priori  possible residues of r (if m ~ + 3 (rood 9)): 

•  8 +  8 ~ o r  ~ - - 8  ~ ( r o o d  3), 

and  we have to show t h a t  the  las t  two cases do no t  occur  under  the  condi t ion 

m - ~ •  (mod 27). Since 31m, the  n o r m  5.2.2 has  a unique value mod  27 i f 3 1  u:  

n =N(v)-~+__ N ( a + & ~ ) = • 1 7 7  ~ ' ) = •  • m ) ~ •  2 m  o1" + 4 m  (mod27) ,  
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a contradict ion.  - -  The  case 5.3.5 is the re fore  not included in Table  I b. On the 

o ther  hand,  the  table also contains  m--~ I (rood 9), fo r  use in ~ 7 and  m.  

w 4. I f  m ~ o (rood 3), we can sometimes obta in  f u r t h e r  condi t ions when 

opera t ing  rood 9. Le t  us suppose m ~  + I (rood 3); the  ease m - - - - t  will only 

imply a change  of" sign for  `9. Since 3 4 m, a squared fac tor  in m does no t  in- 

fluence the a rgument .  

I n  order  to cons t ruc t  a complete system of cubic res idues  rood 9 and prime 

to 3, we have to form a s = (u + v`9 + w `92)s, where a runs t h rough  a complete  

system of residues rood 3 and prime to Ps = [3, , 9 -  i]. Apa r t  f rom a change  

o f  sign, such a system for  a is given by nine residues, conta ined  in three  classes: 

5.4.I I , `9 , `98 

5.4.2 I + `9 , `9 + ,,9 '~ , I + `98 

5-4.3 I + ` 9 ~ ` 9 " ~  - -  I + ` 9 + ` 9 8 ,  I - - ` 9 + ` 9 8 .  

In  each class, the  different  elements  can be t r ans fo rmed  into each o ther  by 

mul t ip l icat ion with `9 or `90 and  the reduct ion  ,9 s -- m = I (rood 3). Bu t  f rom 

,93 = m it  also follows tha t  the  influence on the  resul t ing  cubic residues of  such 

a mul t ip l ica t ion  is only a ra t iona l  f ac to r  pr ime to 3. All  e lements  of one class 

give the same effective cubic residue ~Jzod 9, i f  we define two residues to be effec- 

tively equivalent i f  they differ only by a rational factor prime to the modulus. 

There  are consequent ly  only three effective cubic residues rood 9 when m----- t 

(rood 3), and i t  is easily seen t h a t  these are the same for  the  three  a l te rna t ives  

rood 9 for  m: 

5.4.4 lea 3 ~  I, I ~ 3 , 9 - - 3 ` 9 ~  or ! + 3 ` 9 +  3`98 (rood 9), 

corresponding to the classes 5 .4 . Iw3  respectively.  H e re  (k, 3 ) =  I, k a ra t ional  

integer .  

Le t  now the  condi t ion 5.I.6, g-------o (rood 3), be satisfied for  an equat ion 

x - -  y ,9  = # a s, i.e. # ----- e + f #  (rood 3). The possible forms for  # (apart  f rom 

t h e  sign) for  the  different  combinat ions  of m and n are given by the crosses in 

the  line for  ~-----I in Table  I b. Mod 9 we may have 

# - - e +  3el + ( f +  3 f~) `9+3g~`9~  (mod 9), 

where et f l  and  qt have some unspecified values. Mult ip l icat ion wi th  the  three  

possible residues 5.4.4 for  k a s gives the coefficient rood 9 for  `98 in p aS: 
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5.4.5 3 g~ 3 g~ - - 3  (e + .f) 3 g, + 3 (e + f )  
k '  k or k " 

A necessary condit ion for solubility is tha t  the coefficient can be made -~ o 

(rood 9), and this  is always the  case for one and only one of the expressions 

5.4-5 if e + f ~  o (rood 3). - -  This remark is useful in the numerical solution of an 

equat ion 4.I.4, since i t  shows to which one of the classes 5 . 4 . I ~  3 the residue 

of a possible solution u + v ~ + w ~ must  belong. 

I f  however 

5.4.6 e + f ~  o (rood 3), 

all expressions 5.4.5 are - - 3 g l  (rood 9), and we get the necessary condit ion 
k 

391 = o  (rood 9), where 391 is the coefficient of ~ in /~. :Now 5.4.6 (which 

takes the form e - - f ~  o (rood 3) if  m ------- I (rood 3)) is satisfied for  the following 

combinat ions in Table I b with 3"I'm, m ~ +  I (rood 9): 

5.4.7 m~__+ 2 or -+4, n ~ _ +  3 (rood 9), 

a n d  we c a n  enunciate  the following 

Theorem I I I .  I f  m and n are given by one of the combinations 5.4.7, and 

x - - y ~  = (e + f ~  + g , ~ ) a  s = ~ a  s, 

then g-~ o (rood 9). 

(Remark.  The use of an "auxiliary cube" prime to 3 does no t  influence 

Th. I I I .  I f  a possible denominator  a~ of a s is removed, the  resul t ing left  hand  

side ( x - - y ~ ) a ~  will still have a coefficient ~ o (rood 9) for ~ ,  since the condi- 

t ion 5.4.6 is satisfied for x - -  y ~ ~__+ (e + f ~ )  (rood 3).) 

Theorem I I I  shows a close analogy with the results of Ch. YI, where we 

get  solubility-conditions in K(l/mm) for  each prime 19 ~ 3 such t h a t  

5-4-8 p[n ,  p 4 m .  

When 19 --- 3, we always get  the condit ion g ~ o (rood 3), but  addi t ional  condi- 

t ions only when 5.4.8 is satisfied. 

By means of Th. I I I ,  I have excluded many equations, among them 5.2.5 

(or the  equivalent  5.2.7), :since here 5-4.7 is satisfied. But  this is not the  case 

for the equat ion 5.2. 9, even if  g ~ o (rood 9). 
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Th.  I [ I  can sometimes be used for  exclusion when all condi t ions 5.I.6, 5.1.8 

and 5.4.7 are satisfied, so tha t  all three equations 5.1.7 are possible rood 3- I f  we pu t  

5.4.9 ~m = 3 A +  I + 3 B & +  3 C &  ~ 

i e L (e + f ~  + g ~ ) ,  where g = o (rood 3), it  is easily seen tha t  and fo rm ~ = ~,,v = 

the coefficient of ~ in tt is ~ g  (rood 9 ) f o r  i = - o ,  1 and 2 when the  uni t  

5.4.9 satisfies the  condi t ion (corresponding signs): 

5.4.1o 3 B ~ + -  3 C  (mod 9) if  m - ~ _  I (rood 3), 

in which case all three values of  i are excluded i f  g ~ o (rood 9); one and only 

one va lue  of  i is possible rood 9 if 5.4.IO is no t  satisfied. - -  The  case g ~ o  

(rood 3) i s  of course covered by Th. I I .  The  combinat ion for  m and n must  

be one f rom 5.4.7; the  only such m ~  50 is m = 34 (el. 5.I.9), and ~u = 

= 613 - -  2 4 ~  - -  51 ~9 ~ satisfies the condi t ion  5.4. Io, - -  24 ~ - -  51 (mod 9)- 

A comparison with 5.4.4 shows t h a t  5.4.10 is no th ing  bu t  the necessary and 

sufficient condition for  , , ,  to be an effective cubic residue rood 9 (cf. Ch. VI,  w IO). 

w 5- When  3[m,  the a rgumen t  tha t  led to 5.4.4 does no t  hold. I t  is in 

fac t  easy  to Verify t h a t  the effective cubic residues rood 9 and prime to 3 are 

given by 

5.5.1 I, 1 + 3&~, I -b 3a91, I ___+ 3~91 -[- 3~q~2 

(where ~9 t and &~ can be replaced by ~9 and ,98 whenever  m ~ o (rood 9)), i.e. 

all possible effective residues rood 9, which are a t  the same t ime ~ I (rood 3). 

This  shows t ha t  we cannot expect to obtain more rood 9 than rood 3 in this  ease. 

- -  The same argument ,  but  with much  more  calculat ions involved, shows t h a t  

we cannot  obtain more  rood 27 t h an  rood 9 when 3 ): m. I f  we calculate a com- 

plete system of effective cubic residues rood 27, we find tha t  i t  can be deduced 

f rom t h a t  rood 9 (i.e. 5.4-4, if  we suppose m -~  + I (rood 3)) by vary ing  i t  in all 

possible ways with __+ 9, --+ 9"9, + 9 "$z or combinat ions  of these,  

The re  is, however,  one ease where 3 ]m and where we can yet  opera te  rood 9, 

namely when  m ~ n  ~ o  (rood 9). W i t h  the  no ta t ion  5 ,3-3~4,  we get  # = 

= e + f,9~ + g a~ ----- __+ ,9~ (mod 3), since 9 II n = N(/~) = e 8 + 9 m l f  s + 3 ~n~ gs-- 9 nh e f t .  

I f  now 
= 3e~ + (3fl  +-- l)~gt + 3 gt,9, 

is mul t ipl ied by the  cubic residues 5.5.I, the  resul t ing  coefficient of ~9 s is always 



250 Ernst S. Selmer. 

~ 3 g ~  (rood 9) (since ~ =  3~9~ and , 9 ~ s =  3rn~). Consequently Theorem I I I  

holds also when m ~ n ~ o (mod 9), if ,9 ~ is replaced by ,9~. But  as already re- 

marked in w 3, this case can also be t reated in the form 5.3.2. 

w 6. We can now show tha t  the necessary conditions given by 5.I.6, Theorem 

I I I  and the concluding remark of the last paragraph are also sufficient in the ease 

m ~ _+ I (mod 9) for solubility of the congruence 

5.6.1 F1 (u, v, w) --= o (rood 3 ~) 

for all 6; tr~ is the funct ion of 4.1.6. The coefficients of ~'~ are all divisible by 

3 when the condit ion g -~ o (rood 3) is satisfied; we remove th is  common factor,  

and put  g = 3 gt. I t  will t hen  suffice to find a solution of the congruence 

5.6. 2 _I/e 1 (u, v, W) ~ O (mod 3), 
3 

I O F  t I O F  t I 0 F  1 
such tha t  at  least  one of the expressions 4.3.2 f o r ~  o -O-u-u ' 3 ~ and 

3 0 w  
is ~ o  (moO 3). 

The sufficiency in the cases when 3]m is now proved in exactly the same 

way as in Ch. IV, w 3, if  we replace p by 3, g by 3 gl and divide the lef t  hand  

side of the congruences 4.3.3--5 by 3 beforehand.  In  the last case we have 

3 ]g, by the final remark of the last  paragraph;  the fac tor  i . - in 5.6.2 mus t  then  
3 

be replaced by I .  
9 

We  then tu rn  to the case 3 ~ m .  The condit ion of Th. I I I ,  9[g,  is then  

always sufficient for  Solubility of 5.6.2. We can take u ~ o, v-----w-----o, and a t  

I O F  1 least~one of I OF1 ~rn~fu~ or ----eu~ is then  ~ o (rood 3 ) . -  I t  remains 
3 0 v  3 Ow 

to show tha t  the condit ion 3[[g is sufficient in the cases where 5.4.6 is no t  

satisfied, i.e. e + f ~  o (rood 3) if we suppose m ----- + I (rood 3). Since m is prime 

to 3, we can replace Ft(u , v, w) in 5.6.1--2 by the  simpler form F(u, v, w) of 

4.1.4, i.e. m t = m, m s = i in 4.3.2. A solution of the congruence 5.6.2 can then  

always be found by comparing 5.4.5 with the possible residues 5 .4 . I - -3  for 

g = u +  v ~ 9 +  w ~ 9  ~. 

The case 3 g ~ o  (rood 9) has already been treated.  I f  3 g , - - 3 ( e + f ) ~ ~  

(mod 9), we must  choose a from 5.4.2, e.g. u =  v =  I, w-----=o (mod 3), 
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i O F  
= e + f ~  o (rood 3). - -  I f  3.q, + 3 (e + f )  --= o (rood 9), w e  m u s t  c h o o s e  

3 O w  
i O I e  

f rom 5.4.3, e.g. u ~ v ~ 1, w ---=-- I, = (e + f )  ~ o  (rood 3). - -  This eon- 
3 0 w  

eludes the proof of the necessary and sufficient condit ions rood 3 ~ when 

m ~ +  ~ (mod 9). 

w 7. We  now tu rn  to the case 

5.7.I m ~ +  I (mod 9). 

We will suppose this sign + th roughout ,  since we can always obtain  the corre- 

sponding formulae  for  m =----- I by only changing  the sign of &. - -  The pre- 

para tory  remarks  are already made in Ch. I I ] ,  w167 3- -4 .  As before, we are led 

to one or more equat ions 

= . i  ~/0;3 i = O, I ,  21 5 . 7 . 2  x - -  y ~ = / ~  a 3 ~ . . . .  

possibly with a 7 as in 3.8.2, if 3 Ihm" Auxil iary cubes may  occur in v if h~ > I, 

of. 3.7.1. The principles to be used are however  clearly demons t ra ted  if we sup- 

pose hm = 1, to simplify the notat ion.  We  can then pu t  (~ a unit):  

/ r = [~], ~ = [a], ~ ~ = 3 ,~; 

5.7-3 [r~ = the product  of the first degree factors  p r i m e  to 3 of [n] 

I I 
(i.e. N(~,,) = n, - n or - n in the eases 3 4 n, 3 II- or 9 II- respectively). W i t h  the 

3 9 

class-notation of Ch. I I I , w  3, the equations 3 . 4 . I - - 4  give the fol lowing possi- 

bilities for  �9 and a in 5.7.2: 

5.7.4 

5.7.3 

5-7.6 

5.7.7 

5.7 .8  

~ + 4  (mod 9): ~ - - z o  2 ~ E  class 2, aE class 4, 5 or 6. 

n~__+ 3 (mod 9): ~ = ~ e " 3, aE " 4. 

n ~ +  I or + z (rood 9): The possibility under  5.7.4, 

and also v = ~nE class 5 or 6, a e  class 5 or 6. 

~ o  (mod 9): ~ = ~av,~E " 2 , aE " 4, 5 or 6. 

Since the integers  of class 5 have no denomina to r  3, the cases where 

aE  class 5 

can be t reated by the same means  as in w167 1 - -6  of this chapter.  Two possi- 

bilities must  be considered separa te ly :  
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I. The  cases when ~ E c l a s s  2,  i . e .  5 .7 -4 ,  5.7 .6 and  5.7.8, to which we can 

add the  fo l lowing var ia t ion  of 5.7.5: 

5.7.9 n ~ + 3  (mod 9): ~ = z a s ~ , , E  c lass 2, aE  class 4, 5 or 6. 

(This is of course unprac t i ca l  if i t  is a quest ion of comple te  exclusion, but  can 

be used  effectively to  simplify a search for numerical solutions. I f  we can exclude 

fo r  ins tance  the  possibil i t ies c~ E class 5 and  6, but  not  a E class 4, we know t h a t  

91 z for  a poss ib le  solution.  Simi lar  r emarks  can also be useful in the  o the r  

cases 5.7.4--8.)  

u E class 2, bu t  the  ear l ier  resul ts  can only be appl ied if rm Wi th  ~ also %~ 

has  no d e n o m i n a t o r  3, rm e class 5. Bu t  we can avoid a denominator 3 in any 

case i f  we replace ~,~ by ~m, where 

5.7.Io ,2 , ,= rm if  ~mE class 5; 7 ,*=  ~ if  ~,~E class 6, 

el. 3.3.5 and  the  r e m a r k s  to 3 . 6 . 2 . -  The  uni ts  r~ (as g iven by Cassels)for 

eubefree  m =~ 5 o and  ~ + I (rood 9) are d i s t r ibu ted  as fol lows:  

5 .7 . I t  

m = 17 , 26, 37, 46 

m = Io, I9, 28, 35, 44 

m = Io, I9, 37, 44, 46 

m = io, 4 4 , 4 6  

: r.~E c l a s s  5 

: ~m E " 6 

: ~7,, ~ I (mod 3) 

" V,n satisfies 5 .4.Io (el. 6.IO.4). 

W e  can  now apply  the  condi t ion  5. I ~6, in pa r t i cu la r  Theorem I1, and  f u r t h e r  

the  me thods  of w 4, combined  with  Table  t b for  m ~ I, n ~ o  (rood 9) (since 

N(v) ~ o (mod 9) when  ~ E class 2). The  possible residues mod  3 of ~ are given 

by the  cross of  the  first l ine:  

e + f , , ~  + g, ,~ --=_+ (I - - ,~ )  (rood 3). 

Since e + f ~ - o  (mod 3), the  condi t ion 5.4.6 is satisfied, and  hence 1'he0rem I I I  

holds when m ~ + I (mod 9), # E class 2 and a E class 5. 

I f  e~ E class 6 (cf. 5 .7 .II) ,  we can also r each  the  case 

a E c l a s s  6 

by the  same means ,  since any  such a can be wr i t ten  as 

'E  5.7.I2 a = ~,~a', a c l a s s  5 
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Subs t i tu t ing  this in 5.7.2 (with ~m replaced by '2~), we get  

x - - y 3 = V ~  '8, i = o , I ,  2. 

But ~ = V~, and i t  is equivalent  to consider  the  equat ion 

t ~' t 3 t 5.7.I3 x - - y & = ~ m ~ m  a , i = o ,  1 ,2 ,  E class 5, 

which can be t r ea t ed  by the  modified Theorems  I I  and  I l I .  

As an applicat ion of the above principles,  we can consider the  example 

3.9.4 : 

5.7.I4 x--ytg=l]lozar~t: = ~ , o ( 9 - - 4 3 +  = * h o r n  ~, where 

23 + I I , 9 +  53.92 
5"7"I5 * to= E class 6, *ho=*~o= I8I + 8 4 ~  + 3 9 3 - ' ~ I  (rood 3). 

3 

The modified Th. I I  shows at  once t h a t  aE class 5 is here  impossible. Since 

it  is easily seen t h a t  e 1 0 v ~ 3 - - 3  ~ (rood 3), the  equat ion 5.7.13 shows t h a t  a 

E class 6 is also impossible mod 3. 

2. The  case 5.7.7 must  be considered separately.  I t  follows f rom 3.3.5 t h a t  

# and a of 5.7.2 must  both belong to either class 5 or class 6, s ince /*a3E class 5- 

I f  e~ is replaced by the  V,n of 5.7.1o, we have the  same relat ion between v and 

a, and  can consequent ly  use the  resul ts  f rom w167 I ~ 6  when v E class 5- The  

case 5.7.7 can t h e n  in some cases be completely excluded rood 3 by a modified f o r m  

o f  Theorem I I .  But  Theorem I I I  does no t  hold, as seen f rom m - - = I , n ~ : +  I or 

+ 2 (rood 9) in Table  I b. None  of  the possible residues 

e + f 3 + . q 3  " ~ 4 -  t, 4 - ~  or + ( I  + 3 )  (rood 3) 

sat isfy the condi t ion  5.4.6, e + f ~ o  (rood 3). 

The  condi t ion v E elass 5 can always be satisfied if  e,, E ela,~s 6 (cf, 5.7. I I). 

I f  we first find a v E class 6, we can replace it  by 

5.7.16 v ' = e ~ v  E class 5 

before we examine if  the condi t ions of the  modified Th. I I  are satisfied. 

As an applicat ion,  we can t r e a t  the  equa t ion  3-9.3 (cf. the  las t  example):  

5.7.17 a ~ - - y 3 =  V,o~" v47 as = ~h,,~ (3 + ~'~ + 3-~ ~, V,o ~ I (rood 3), 

where a l ready v E class 5. W e  get  complete  exclusion mod 3. 
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The necessary condi t ions developed in this pa ragraph  were shown in w 6 

to be sufficient for  solubility of the congruence  5.6.:.  

,~ 8. W e  must  here  inser t  an impor t an t  remark  about  the use of "auxiliary 

cubes" when m =:___ : (rood 9). I f  we operate  rood 3 or 9, such cubes must  be 

prime to 3, i.e. chosen f rom the classes 5 or 6, and i t  is a quest ion of how the 

denomina to r  3 in class 6 will influence the  arguments .  (This problem does not  

arise i f  we only use moduli  prime to 3 for  the exclusion.) 

I f  a = - -  is fractional in the equat ion  x - - y ~  = / ~ a  8, removal  of the denom- 

ina to r  a 1 (prime to 3) gives 

5.8.: (x 

I f  here  a t 6 class 6, the coefficient of ~ on the lef t  hand  side is no longer  

necessari ly divisible by 9 or even 3, since a~ has a denomina to r  3. But  we ca~ 

always suppose that a~ 6 class 5, if necessary a f te r  mul t ipl icat ion of numera to r  
a p 

and denomina tor  in a = - -  by some in teger  f rom class 6 (since a common fac tor  

pr ime to 3 for  both sides of 5.8. I does not  influence our  arguments  rood 34). 

And a' will then  belong to the same class 4, 5 or 6 as is given for  a in 5.7.4--9.  

I f  a 1 e class 5 (no denomina to r  3), the a rguments  tha t  led to Th. I I I ,  and 

in p a r t i c u l a r  the remark  to this theorem,  show th a t  the coefficient of ~ in 

ya).  is 

~ o (mod 9) in the cases 5 .7 .4--6 and 5 ,7 .8--9  
5.8.2 I o (mod 3) in the case 5.7.7. 

None  of the condi t ions found  so far  for  m ~ •  I (mod 9) are the re fore  in- 

f luenced by the use of auxi l iary cubes, and we shall see t h a t  the same holds 

for  the condit ions obta ined la te r  in this  chapter  (w lo). Auxiliary cubes can be 

chosen fi'om any of the classes 5 and 6 when we operate rood 3 4 . The  same 

remark  holds for  the use of 7's in 3 .8 .2- -  3 . 

We  have seen in 5.7.12 and 5.7.I6 t h a t  the case c~ E class 6 can be completely 

dealt with by the methods of the last paragraph, provided ~,~ E class 6. I f  em 6 class 

5, we can obtain the same by an auxiliary cube fi'om class 6. W e  only have to 

replace an a E class 6 by  aja', i.e. /~ by /~a~, where  a: e class 6 is some fixed 

in teger  of K(8) .  The number  c/ will then  belong to class 5, and the a rguments  

of w 7 apply. 
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We  shall see in a m o m e n t  t h a t  the  fo rm of a~, i.e. of  the cubic residues in 

class 6, is very restr ic ted.  Ins tead  of per forming  the  mul t ip l icat ion pa~ in each 

separate  case, i~ is s impler  to use the theory  developed in the  nex t  paragraphs,  

in par t icu la r  Table  ]r 

(The above a r g u m e n t  does not  apply at  all when a e class 4. I f  we sub- 

s t i tu te  a = e~u', where a~ is a fixed in t ege r  f rom class 4, the n u m b er  a'  may  

still be long to this class.) 

w 9. We  have to examine  the  forms of  the cubic residues in the  classes 4 

and 6, and shall first  de.fine congruences when the numbers involved contain dehorn- 

i~ators 3: The  congruence  

u + v ~  + w ~  "~ 

3 
is to be equivalent  to 

U ~ U l ,  V ~ Vl) 

Note  tha t  we define for  ins tance  

=u~ + v ~ + w ~ ' ~  

3 
(mod 3 ~) 

w ~- w x (rood 3r 

I § 1 6 2  (rood 3), 

I + ,9 + , 9  ~ 
even if is an in teger  in K(,9) (from class 3) when m ~ + I (rood 9)- 

3 
Congruenees are to refer to the coefficients only. 

u + v,9 + w,9 2 
According to this definition, we say tha t  an expression is 

3 
reduced mod I, 3 or 9 if the  n u m era to r  is reduced rood 3, 9 or 2 7 respectively.  

And we can prove the impor t an t  

T h e o r e m  IV. There is o~ly o~e effective cubic residue rood 9 in each of  the 

classes 4 and 6. There are fur ther  only three effective cubic residues rood 27 in the 

ctn.~s 4; i f  one o f  these is ~ (r + s ~ + t ~2), the other two are given by 
3 

~- (r + e7 + (,~-- ZT)~ + t~z), ~ (r - -  e7 + (s + ~7)a + t~ ) .  5"9"z 3 

The  form of the  cubic residues can be obta ined by cubing one par t icu lar  

in teger  f rom each class. P u t t i n g  m = 9m~ + I, we find for  ins tance for  

5.9.2 Class 4: = 
3 3 

[4 + & + f f '~ '  9rr'r + l O - - ( I 2 m ,  7)'0 ~ q- (3 m' -~- 7)a9 "~ 
5.9.3 Clas~ 6: (mod 9). 

3 3 
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We begin by proving  Th. IV  for  class 6, since this  is the  simplest  case. 

Le t  an a rb i t ra ry  in teger  of this class be denoted  by 

u + v ~  + w ~  s 

3 

where we can suppose u, v and  w to be ra t iona l  i~tegers (all Pr ime to 3), since 

a possible denomina to r  m s ~ o (mod 3) in w does no t  influence the a rgument .  

W e  now vary the coefficients u, v and w of a with mult iples of 9, and 

examine the  influence on a s. The  var ia t ion  can be expressed by 

u + v ~  + w ~  s 
5.9.4 + 3(ul + v l ~ +  wl,9"~) = a + 3 J ,  

3 

where ui, vl and w I are r a t iona l  integers.  Cubing this, we get  

5-9.5 (a + 3 J )  a = a s + 9 a S . J  + 2 7 a . J  ~ + 27 Js, 

where a and a s e class 6 (denominator  3) and a ~ e class 5 (no denominator, cf. 

3.3.5). Consequent ly  

5.9.6 (a + 3 j ) s  ~ a~ (rood 9), 

and we get  a complete system of cubic residues rood 9 (i.e. rood 27 in the 

numerator )  by cubing a complete system of residues rood 3 for a. 
The congruence condi t ions  defining the different  classes in Ch. I I I , w  3 

are all homogenous  in u, v and w, and i t  is clear t ha t  the effective cubic residues 

of a to any modulus 3 ~ can be ob ta ined  by keeping one of these coefficients 

fixed, for  ins tance w = I. (Cf. the definit ion of effective residues in w 4 above.) 

W i t h  the l imi ta t ion w = I, a complete  system of res idues  rood 3 in class 6 

can be represented  by 

r pp - - 2 - - 2 ~ +  5.9.7 a - 4  + ~ + ~ ,  a = I + 4 , , ~ + ~ ' ,  a = ~2 
3 3 3 

But  a'  and a" can be obtained f rom a by mul t ip l ica t ion with ~ a n d -  2 #  s 

respect ively and reduct ion rood 9 of the n u m e r a t o r .  This corresponds to multi- 

plying the resul t ing  cubes with ~s = m or ( - -  z ~ )~  = - -  8 m s, i.e. wi th  ra t iona l  

in tegers  prime to 3. The  only effective cubic residue rood 9 in class 6 is t h e r e -  

fore  the one given by 5-9.3. 

The proof  becomes more complicated when a E class 4- The  complete system 

of residues mod 3, cor responding  to 5.9.7 and with 'the same l imi ta t ion w = I, 
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is here given by 

- - 2  + 0`+0`3 ct' x - - 2 & +  0`2 a" 4 +  40` 'e  0`~ 
5.9:8 a = , = , = , 

3 3 3 

where again a'  and a" can be obtained f rom a by mult ipl icat ion with 0` and 

40` 3 respectively. But  t h e  congruence 5.9.6 now only holds rood 3 (rood 9 in 

the numerator),  since a2E class 4 of 5.9.5 has a denominator  3. A sl ight  exten- 

sion of the a rgument  shows tha t  the basic system to be cubed is now obtained 

from the a of 5.9.8 by varying the first two coefficients with multiples of 9 

(still keeping w = I). Such a variat ion can be performed by successive use of 

5.9.4, wi th  A = + I or + 0`, and  5.9.5 shows tha t  

( a + 3 L / )  s ~ a 2 + 9 a s ' A  (rood 9). 

But  a 2 e class 4, and so a s -  + 

plication with &. I f  therefore 

1 - I - 0 ` + 0 `  2 
(rood I), which is unal te red  by multi- 

then 

as = (u + v0` + w , ~ ' ) 2  

3 

U +  V ~ +  W #  2 
(rood 9), 

(a + 3 A) 2 ~ 
U _+ 9 + ( V •  9)0, + (W+__ 9)0` 2 

(rood 9) 

(corresponding signs). 

cubic residue : 

since for  instance 

But  these two expressions represent 

U _ + 9 =  r + 9  W _ + 9  (rood z7), 
U V -- W 

the same effective 

V ( U  +_ 9) - -  U ( V  +- 9) = --- 9 ( V - -  U)------- o (rood 27). 

This concludes the proof o f  5.9.2. - -  I t  is clear tha t  a similar result  holds 

for the cubic residues in class 3, but  we do no t  need these here. 

W e  now turn  to the second half  of Theorem iV.  I f  one of the effective 

I 
cubic residues rood 27 in class 4 or 6 is given by 3 (r + ~0` + t0`2), all a pr ior i  

possibilities for  these residues are 

r + 2 7 d l  + ( s +  276~)0`+ t0`2 
, d~ and 8~ = - - I ,  o, I 

3 
17- 642127 Aet~ mathemat/ea. 85 
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(9 combinations).  A closer examinat ion  shows t h a t  all these residues are repre-  

sented in class 6, and we can consequent ly  not  o b t a in  more in fo rma t ion  rood 27 

t han  rood 9 in this case. But  we only get  three of  the nine a p r i o r i  possible 

combinat ions in class 4, and the re la t ion between these th ree  is the  one given 

by 5.9.I. - -  I have found  no shor t  p roof  of th i s ;  my m e th o d  hus been one o~ 

"enumera t ion  of cases", which I leave out  here. (m == I, I o a n d  I9 (rood 27) 

must  be :treated separately.)  

The  effective cubic residues rood 9 in the  classes 4 and :6 for  m ~ 5 ~ a re  

given in Table z ' ;  the residue in class 4 is chosen as one of the  cubic residues 

rood 27. (Note t ha t  the expressions in 5.9. I are replaced by 

r + 2 7  + ( s +  2 7 ) ~ +  t &~ r - -  27 + ( s - -  27),~ + t &~ 

3 3 

when m -~ - -  I (rood 9). As we shall see later ,  we do no t  need the explici t  form 

of all th ree  cubic residues rood 27. ) 

The  residues in Table  I r are reduced to wha t  I t h o u g h t  were the  simplest  

possible forms,  by mult ipl icat ion with proper ly  chosen in tegers  pr ime to 3. The 

residues in the  classes 4 and 6 fo r  the  same m contain the same terms w i t h  

and  &~', this is possible because (cf. 5.9.2--3):  

I 2 m  1 - 7 _ 3 m l  +. 7 (mod 27). 
3 m l - - I  3 m ~ +  I 

w io .  W e  now tu rn  to the usual equat ion  

5 .10 .  I 

o r  

5.Io.2 

x - - y &  = vm(e + ' f &  + g&~)a  s i 

e + f ~  + g&~aS i x - -  y & = ~ . = ~m u a s, 
3 

where ~ is replaced by the  ~m of 5.7.Io, and shall examine the condi t ions arising 

when a E  class 4 or 6. Here  ~E class 2 in 5.IO.I and ~E class 3 o r 6 i n  5.Io.2. 

Three  cases mus t  be considered separa te ly :  

I. The  equat ion  5 . to . I ,  wi th  ~ E class 2, i.e. the  cases 5-7.4, 5.7 .6 and 

5.7.8--9.  Le t  ~(r  + s ~  + t , ,  ~ )  be the one effective cubic residue rood 9 in class 

4 or 6, i.e. 

5.Io.3 a a ~ k  "r  + s &  + t~9 ~ (rood 9), (k, 3) = I, 
3 
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where k is 'an unspecified rat ional  integer.  Since r, s and t are uniquely deter- 

mined rood 27, subs t i tu t ion  in 5,IO.I gives 

i e 5.I~ x - - Y * 9 ~ k ' ~ m (  ~ + fi*9 + g1.9~) (mod 9). 

The denominator  3 vanishes, since all coefficients of the  expression 

~ ( e + f *9 + g *9 ~ ) ( r + s *9 + t *9 ~ ) = e r + rags  + r a f t  + 
5,1o.5 

+ ( f r  + e8 + . gt)*9 + ,(gr + f 8  + et)*9 

are divisible by 3. ( vas still belongs to class 2.) 

W e  can now apply  all earlier results f r o m  ~ z - - 6  above. In  part icular ,  5.Io.4 

is insoluble if g~ ~ o (rood 3) and ~)~ ------ I (rood 3) (Theorem II). I f  ~ ~ I (rood 3), 

one and only one value of the exponent  i will give a coefficient ~ o  (rood 3) 

for  .9~, and 5.IO.4 is impossible if this coefficient is ~ o  (rood 9) (Theorem III) .  

I f  3]lg~ and ~ m ~ I  (rood 3), the  equat ion is impossible if ~ satisfies 5.4.1o 

(cf. 5.7.II). 
2. The equat ion 5.1o.2, with v E class 3, a E class 4, i.e. the case 5.7.5. W e  

mus t  use the  t h r e e  different  cubic residues mocl 27 to get  resul t ing congruences  

of the  type  5.Io.4 rood 9 (the denomina tor  9 vanishes, since va  s E class 2). The  

three congruencev are however all identical  rood 9, since a replacement  of 

~ (r + s*9 + t*9~) by the other  possibilit ies 5.9. i will a l ter  the coefficients el, fx 

and g~ (deduced from those of 5.Io.5 by division by 9) with 

+ 3 ( e - - r a g ) ,  _ 3 ( f - - e )  and + 3 ( g - - f ) ,  

which are all ~ o  (rood 9) by the  class.condit ion e ~ f - ~ g  (rood 3) for  class 3. 

The one resul t ing congruence 5.Io.4 rood 9 can now be dealt  wi~h exact ly  

as under  I. 

3. The equat ion 5.Io.2, with ~ E class 6, a E class 6, i.e. the  ease 5.7.7. 

Subst i tu t ion of the  only cubic residue rood 9 in class 6 now gives a congruence 

rood 3 : 

5. IO.6 x - -  y .9 ~ k- ~ (e I + f1,9 + g, *9') (mod 3) 

(the denomina tor  9 vanishes, since vas  E class 5 by 3.3.5). This congruence  is 

impossible if g~ ~ o (rood 3) and ~]m ~ I (rood 3) (Theorem II). I f  w ~ ~ (rood 3), 
the  coefficient of .9" will be ~ o (rood 3) for  one or two values of the  exponen t  

i, in the  cases n ~ + 2 or + I (rood 9) respectively (of. Table  lb). Noth ing  more 

can be excluded rood higher  powers of 3. 



260 Ernst  S. Selmer. 

The a rguments  of w 8, and in par t icu lar  5.8.2, show th a t  the  above condi- 

t ions still hold if  we use an "auxiliary cube" f rom class 5 or 6. The  coefficient  

of  ~ on the  left  hand  side of 5.ro.4 or 5.Io.6 is still ~ o  rood 9 or rood 3 

respectively.  

I t  is now simple to prove tha t  the  condi t ions  of the  cases I . - -  3. above are 

also sufficient congruence-conditions rood 3 a for  the resu l t ing  cubic equat ion 4.I.4. 

W e  only have to subs t i tu te  

u + v #  + w#~ -- a l (u '  + v ' ~  + w ' ~ ) ,  

I ( r +  s ~  + t ~ ) ,  4.I .4 is where a I is a fixed in teger  f rom class 4 or 6. I f  a ~ = 3  

t rans formed  into a similar  equat ion in u', v' and w', but  with the  coefficients 

e, f and g replaced by those o f  5.IO.5, divided by 3 in the case I. and by 9 in 

the  cases 2 . ~ 3 .  T h e  condit ions a t tached  to 5.Io.4 (a coefficient ~ 0 (rood 9) 

fo r  ~ )  and 5. Io.6 (coefficient -~ o (rood 3)) represent  congruence  condi t ions rood 3 a 

for  the  resul t ing  equat ion  in u', v' and w', and were shown to be sufficient a t  

the  end of w 6 above. 

As an example of case :., let  us consider  the equation 3-9.4. I t  was shown 

in 5 . 7 . : 4 - - I  5 t ha t  this is impossible if  a E class 5 or 6. To t r e a t  a G class 4, 

we note  tha t  the effective cubic residue rood 9 in this class is (Table :r 

r + s #  + t , ,  ~" 

3 

W i t h  the  no ta t ion  of 5.:o.4, we get  

e ~ + A  # + g , # ' = ( 9 - 4 # + - * ~ ) "  
: + # - - 2 #  s 

= 3 3 - - 5 # - - 7  #~. 

Since ~ho-~ I (rood 3), a E class 4 is also impossible. 

In  the  same way we could have excluded a G class 6: 

. . . .  5I - -  1 3 # - - 5  #2 �9 
3 

This  means tha t  the equat ion  3.9.2 has been completely excluded mod 3 r (ef. 

5.7.I7). 

As an example of the case 2. above, we can consider the equat ion 

x s - I 7 . y  s =  3oz  s, 
o r  
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where 

x - -  y "9 = V~7 * v2 v5 a 3 = V~7 
--  5 + 2"9 + "9" 

h17= I, W7 =eJ7 = 18--7"9------2"9 (rood 9 ) ~ I  (mod 3). 

Multiplication with the effective cubic residue rood 27 in class 4 (Table i r gives 

- - 5 + 2 " 9 + ' 9  -o 5 + 2"9+'9"* 3 2 + 4 , 9  -0 
- -  - - ' 9  - ~ k ( 4  + 3 " 9 - -  4"9')  ( m o d  9). 

3 3 

The only possibility rood 3 is i = I, but 

(4 + 3 a - - 4 a * ) ( I 8 - - 7 # )  ~ - - I  - - ' 9 - - 3  "92 (mod 9) 

is impossible rood 9. The given equation is consequently insoluble. 

C H A P T E R  VI. C o n d i t i o n s  rood  q a n d  r. 

w I. For any prime q--=-- I  (rood 3) such that 

6.1.i q l n z ,  q X m ,  

the equation x a -  m y  a = n z  3 =  o (rood q) leads to one single possibility for the 

ratio x : y  rood q: 

x ~ d y ,  where  d 3 ~ m  (rood q). 

3 

For the corresponding equation in K ( V m ) =  K( '9) :  

x - - y ' 9  = ~ ,~a  s = ~ a  s, 6 .  I . 2  

this means that  

6.t.3 x - - y ' 9 - ~ y ( d - - ' 9 ) ,  y ~ o  (mod q), 

is divisible by pq = [q, " 9 -  d], whidh is of course obvious. W e  shall 'make use 

of this when treating the equation 6.I.2 rood q, by examining the form of a 8, 

i.e. the cubic residues rood q. 

We first note that  

[q] = p q q q =  [q, "9 - ,  d] [q, "92 + d a +  d ~] 

by 3.1.4, where a complete system of residues rood pq: 

6.I.4 o ,  I ,  2~ . . . q -  I~ 
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is only reprod~,ced when forming the cubes. I t  will therefore suffice to examine 

the cubic residues rood qq in the field K(~).  Since the exponent 3 is prime to qq, 

every cubic residue of qq is also a cubic residue of qq~ for all (i > I, and it suf. 

rices to treat  the simplest case ~ = I. 

I f  q Ira, we have seen in Ch. IV, w 3, that  the resulting cubic equation i s  

always soluble mod q, whether or not q]n. The reason for this, expressed in 

terms of cubic residues, is that  now 

[ q ] = p ~ =  [q,a]  ~, 

where a complete system of residues ~ and also cubic residues ~ mod pq is 

again given by 6. I.4. 

A little more care is required to show that  no conditions are obtained by 

cubic residues when a prime r im.  I omit the proof, since the result is in any 

case covered by w 3 of Ch. IV. 

w 2. There is a one-one correspondence between the cubic residues rood qq in 
2 ~ i  

K(~9) and the cubic residues rood q in K(e), Q = e :~ , expressed by the following 

equivalence : 

where I use the notation ( )3 and [ ] for cubic residuacity in K(~)  and K(Q) 
respectively (cf. Oh. IX ,  w J). The equivalence is immediately seen when cubing 
the expressions 

t ( v d + u ~ )  3 - d ~ t ( u  ~ - 3 u ~ v + v ~ ) d - 3 u v ( u - v ) a }  (mod qq) 
6.2.2 [ ( v + u e ) 3 = u 3  3 u ~ v + v a .  3 u v ( u ~ v )  e ' 

where d 2 (as a rational integer) is always a cubic residue of qq. 

I t  is well known that  a complete system of residues rood q and prime to q 

in K(e)is given by (cf. BACn~NN [I], pp. I85--99): 

a + b q ,  a and b = o , I ,  2 , . . . q - - I ,  ( a , b ) # ( o , o ) ,  

giving in all q ~ - - I  residues, of which only One third form the group of cubic 

residues mod q. Since all rational integers prime to q are contained in this 

group, we can divide out by a coefficient b ~ o, thus getting a system of effective 

cubic residues rood q (of. Ch. V, w 4): 

I and & + e ,  i = I , 2 , 3 , . . . - q - - 2  
3 
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A list of all slxch t for  q <  5 ~ is given in Table z d, which consequently also 

gives the effective cubic residues t d  + ~ rood qq in K(~). To facilitate the cal- 

culation with these residues, the table also contains a list of the reciprocals 

rood q and the values of d for different m. 

The table is constructed by means of 6.2.2. The necessary values of the forms 

u 8 - 3 u  s v §  ~ and 3 u v ( u - - v )  

were already calculated by me for use in Ch. IX, cf. 9.II.Z. 

3- We return to 6. I.2, which by means of 6.I.3 can be written as 

6.3. I y (d - -  a )  ------ ~ a s ( rood q). 

We multiply by 3 d & and note that  

( - - d + ~ 7 )  s - - - d  s + m +  3d~ ~ - 3 d ~ 2 ~ 3 d ~ ( d - ~ )  (rood q), 

hence 

6.3.2 y ( - -  d + a) a ~ 3 d. & / t . a  a (rood [q] = pqqv). 

Since -- d + ~ and a are both prime to qq (of. 3.2.3), and the rational integers y 

and 3 d are cubic residues, we conclude tha t  the given equation is only possible if 

~tL ~ i 

which can be used for exclusions rood q. 

I f  qln, we shall find a simpler form of 6.3. 3, but we note tha t  the same 

condition must be satisfied if q X n ,  q[z .  This is of  great importance by numerical  

solution, since we can exclude a pr ior i  certain prime divisors of z. 

I f  q ~ - - I  (mod 9), we know (by 9.I.3) that  

3 

in which case the factor ~ can be omitted in 6.3. 3. 

The condition 6,3. 3 will only be necessary for solubility if q In, in which 

case it can be simplified. Let 

e +  f ~ +  g ~  a2 
6.3.4 t t =  e + f ~ + g ~  or 

3 
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A denominator 3 will not influence the arguments of this chapter, and we leave 

it out in the intermediate formulae. From pq = [q, ,a -- d] [g, we conclude that  

e + f d  4- g d ~ =_ o (rood q), i.e./~ = e + f 3  + g 3 ~ ~ (a -- d) ( f  + g d + g 3) (mod q), 

which w e  substitute in 6.3.I. The common factor 3 -  d is divisible by l)q, but 

prime to qq. Dividing out this factor, we thus get 

6.3.5 - - y - - ( f +  gd + g 3 ) a  ~ (rood %). 

We finally multiply this by f - -  g 3  ~ o (rood qq) (since f ~  g ~ o ~ e ~ o (mod q)), 

and get 

6.3.6 --  y ( f - -  g 3) --= ( f  + f g  d + g~ d ~) a '  (rood @, 

where all factors are prime to qq, and the first factor on each side is a rational 

integer. We therefore have 

Theorem V. I f  qXm,  qln,  and x - - y 3  = # a  s, where ~t is given by 6.3.4, 

then f - - g  3 is a cubic residue of qq: 

6.3.7 \ qq ]a 

I t  is clear that  ~he use of "auxiliary cubes" prime to q leaves 6.3.3 and 

6,3.7 unaltered; the same remark holds for the corresponding conditions rood r 

o f w  S. 

By means of Table i d, it  is easily verified whether f - -  g a  is a cubic residue 

of qq. Then 
f - - g 3 - - - - g ( t d  + 3), i.e. - - f g - l d - ~ = - - t  (rood q). 

The auxiliary tables for d and m -1 give a quick determination of - - f 9  -~ d -1, 

which must be one of the vaiues t for the prime q in question. I f  this is not 

the ease, the corresponding equation x -  y 3  = ?ta 3 is impossible. 

I t  follows from 6.2.I that  the condition of Th. V can be replaced by 

6.3.8 I f - - g - d o 1  = I, 
I_ q J 

which enables us to examine primes q > 50 without the Table z ~. T h e  calculations 

involved are then not so simple; f - - g d e  must be factorized in K(q), and the 

cubic character of each prime factor determined by the cubic law of reciprocity 

and a small table for cubic residuacity. 
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4. We must  examine the  influence of the unit  ~,~ in 6.1.2, where 

/ , = e ~ v ,  i = o ,  1,2.  I t  follows from 6.3. 3 tha t  one and only one value o f i  is 

possible rood q i f  ~,~ is a cubic non-residue of  qq. I f  however  em is a cubic residue, 

i t  suffices to  replace /~ by v in the condi t ions 6.3.3 or 6.3. 7 . In  this case all 

the values of the  exponen t  i are simultaneously possible or impossible rood q, and 

the calculat ions are much  simplified. - -  Similar  remarks  apply to a non-ra t ional  

7 in 3.8.3. 

I t  is the re fore  of grea t  impor tance  to examine the cubic charac te r  of ~m 

rood qg, for  different  combinat ions  of ~n and q. I shall here  only give a systematic 

account  in the two simplest  and most  f requen t ly  occurr ing cases q = 2 and 5. 

( W e  r e tu rn  to the  subject  in w IO below.) 

q = 2: This is not  inc luded in Table  I d, because solubil i ty rood 2 can be 

decided immediate ly .  Since q = 2 4m,  we have d = I, and 

[2]  = ~350~ = [2, I § ~q'] [2, I § ~q" § ~P']. 

A complete system of residues rood % and prime to q~ is given by I, ~ and 

I + ~, and the only cubic residue is I. The  condi t ion 6.3. 7 implies t h a t  the coef- 

ficient g of  ,9 ~ must be even i f  m is odd and n is even (since then  P2[~ shows 

tha t  e and f are odd). 

F u r t h e r  ~m is a cubic residue o f  q~ i f  a~d only ~f ~m ----- I (rood 2). For  em ----- I 

(rood q._,) implies 
�9 m------ I or I +{I  + # + 3 ~ ) ~ a + 3 ~  (mod 2). 

But the latter expression is divisible by p~, which is impossible since ~ is a 

unit.  - -  The odd cubefree values of m < 5o for  which ~m = I (rood 2) are (cf. 

6. IO.3--4):  

6.4.I m = 5, I I ,  I5, 2I, 23, 25, 29, 3I, 33, 39, 41, 43, 45, 47. 

By means of this, we can exclude some of the previous examples (partly 

excluded already rood 3 or 9)- The  simplest  cases are the  equat ions  3.6.4, 3.8.6 

and 5.2.5, which all sat isfy the  condit ions m odd, n even, ~m ~ I (mod 2), g odd. 

(The equat ion 3.8.6 can also be completely excluded rood I I, since ~s9 is a cubic 

residue and f - -  g ~ = 3 --  ~ a non-residue of q,,: - -  Note  in par t icu la r  t h a t  the  

auxi l iary cube p~ in 3.6.4 is pr ime to %) 

Fo r  the  equat ion  5.2.8, e~ ~ I (rood 2), and consequent ly  one value of the 

exponent  i is possible rood 2. The  fo rm of v shows t h a t  this is i = o, which has 

again been proved impossible to the modulus  3 (for which i = I, i.e. the  equa- 
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t ion 5.2-9, is t he  only possibility). The  g iven  equat ion is bherefore excluded by 

a combination of two d~]erent moduli, a case which f requen t ly  occurs. 

q = 5 :  A closer examina t ion  shows tha t  ~ is a cubic residue of q5 for  the 

fol lowing cubefree values of m ~ o  (rood 5) and < 5 ~ (cf. 6 . Io .3 - -4 ) :  

6.4.2 m = 2, 4, 6, I I, I2, 13, I4, I8, 22, 23, 29, 33, 34, 36, 38, 4I ,  42, 44, 46, 47" 

The equat ion  3.7.2 can be complete ly  excluded rood 5, since ~,1 is a cubic 

residue and f - -  g 3  = - -  ~ a non-residue of %. (3 is a residue only when q ~ - -  I 

(rood 9).) 

As an example of q > 5, we can f inal ly  consider  3.9.2, where q = n = 47. 

This gives rise to the two different  equat ions  3.9.3~4~ which were excluded 

step by step rood 3 and 9 in Oh. V, w167 7 and IO. Bu t  we have.seen in  Ch. I I I  

t h a t  they  can bo th  be excluded siraultaneously'in the  simplest fo rm 3.9.3; to any 

modulus pr ime to 3. And here  s,o is a cubic residue, bu t  f - - g , , ~  = I - - ~  a 

non-residue of q47, i.e. complete  exclusion. (If  I -  3 should be a cubic residue, 

we would have (Table Id): 

- -  I "~ O" - ~  t d q- 3 ,  i .e .  t ~ - -  d -1 ~ - - -  20  -1  -~ 7 (rood 47),  

but  this  is no t  one of the values of t for  q = 47.) 

w 5. W e  now turn  to the  p r i m e s p = r E  I (rood 3), such t h a t  r 4 m ,  r [ n .  

W e  can use the earl ier  fo rmulae  developed for  T = q, with the necessary modi- 

fications. 

W e  suppose t ha t  the  or iginal  congruence  condit ions 2.I . lO are satisfied, i.e. 

m (R) r, and hence by 3.I .4:  

[r] = ~,  ~'r ~7 = [,-, a - d] It ,  a - -  d']  [,-, a - -  d" ] ,  
where 

d s - d  '3-~d ' 's-~m, d ~ d ' ~ d " ~ d  (rood r). 

Consequent ly  6.I.  3 is replaced by 

6.5. I x --  y 3 ~ y (d - -  3), y (d' - -  3) or y (d" - -  ,~) (rood r), 

cor responding t o  the three different equations 6.x.2, which must  be t r ea t ed  s~a- 

rately. W e  will suppose p~ = [r, ,,~ - -  d] Ire, i.e. x ~ dy  (rood r). The  modulus qq 

must  then  be replaced by the  product  p;p~'. The  a r g u m e n t  t h a t  led to  6.3.2 

still  holds : 

6.5.2 y ( -  d + a)~ -~ 3d.a~.,,~ (rood ~;t~;'). 
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But we can no longer conclude that the rational integers y or 3d  are cubic 

residues, and the treatment becomes different. 

Replacing 6.5.2 by two separate congruences rood p'r and Pr, and writing 

= ~ ( 9 ) ,  a = a(~), we get the relations 

d + 
6.5.3 [v(_ d + r  = 3 �9 , ( d " )  {~ (d")}  3 d d" (rood r) 

between rational integers. Dividing the two congruences, we find the necessary 

condition corresponding to 6.3.3 : 

6.5.4 d' d"lz d'#(d') . # (d') ~ (d") (rood r), or d"/* ( ~ ) ( R ) ,  

(with the symbol of equivalence introduced in 2.I.7). This condition must be 

satisfied when v l n z  such that p~l#a,  whether or not r[n. Similar conditions 

are of course obtained when p~ or P~'l>a. 

If  t i n ,  P,I#, we are again led to the congruence 6.3.5, with the modulus 

PrP~'. Treating this as in 6.5.3, we get 

- - y ~ ( f  + gd + g . { a ( d " ) } s ~ ( f - - g d  ") "{a(d")} 3 

since d + d' + d" ~ o by 6.6. 3. Dividing these expressions, we get 

Theorem VI. I f  r g m ,  r ln, x - - y ~ = ~ a  3, p , = [ r , ~ - - d ] ] ~ ,  where # is 

given by 6.3.4, then 

6.5.6 . f - - g d '  (R)r: 
f - - g d "  

(It i s  clear that  both f - - g d '  and f - - g d "  must be prime to r. I f  we sup- 

pose for instance f - -  g d' ~ o (rood r), and combine this with pr I e + f,,~ + g 9"*, 

i.e. e + f d +  gd ~ o  (rood r), we find e + f d " +  gd ' ' ~ g d ' ' ( d +  d ' + d " ) ~ o  

(rood r), and so P7 [e + f ~  + g ~*, which is impossible.) 

I t  is not. difficult to show (cf. 6.9.6) that  the condition 6.5.6 is equivalent to 

6.5.7 = I, 

in complete analogy with 6.3.8. Here [ ] means the Jacobian symbol, i.e. the 

product of the cubic characters 
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7~r ~:r 

where r = z ~ ,  is the factor izat ion of r in K(#). But  we never need the form 

6.5.7, since the  s impler  original condit ion 6.5.6 can always be dealt  with by the 

exist ing tables of cubic residues. 

Replacing w d. We  must  also here examine the influence of the  uni t  ~ .  

~(~)  by {~m(~)}~.~(~) in 6.5.4, we see that  one and only one value of  the ex- 

ponent  i is possible if ~,~ (d') + e~ (d") (rood r) ("inequivalent") ,  and all three  values 

of i are s imultaneously possible or impossible if 

6.6.I em (d') - e~n (d"), or ~ (d"----~ (It)r, 

in which Case we can get  complete  exclusion rood r by considering ~(~) only. 

In  the two other  possible cases p~ or PT[#, we similarly have to s tudy  

the ratios 

~ ( d " )  and --7~.,,,~ (d) 

and all calculat ions become part icular ly  simple if 

6.6.2 ,,, (d) ~ ~ (d') ~ , ,  (d") (rood r). 

We  can however  show tha t  6.6.I automatically implies 6.6.2. - -  Let  

* ~ ( a ) = e l + e s b + e  3as 

(where possible denominators  of the  coefficients are prime to r). I f  we note  tha t  

d, d' and d" are solut ions of the  congruence x S - - m  ~ o (mod r), and so 

6.6. 3 d + d' + d " - ~ o ,  dd '  + d d "  + d ' d " - ~ o ,  d d ' d " - ~ m  (mod r), 

i t  is easily verified tha t  

6.6.4 ~ em (d)" em (d')" s,~ (d") ~- (e~ + m e] § m * e] - -  3 m eL es es) (rood r) 
( = .x(e  + + e , a  = = 

The produe~ is therefore  a cubic residue of r, and this is only poss ible  if e i ther  

~(d) ,  ~ (d ' )  and 6~(d") all be long to the  same class rood r, i.e. the  case 6.6.2; 

or they mus t  all belong to different  classes: 

6.6.5 tin(a) + *m(d') 4- *m(a") 4- r  (rood r). 
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In  this case all the ratios 

, . (d')  ,.,(d) and "(d)  
,m , .  (d") (d') 

are cubic non-residues of r. 

I t  is easy to show tha t  the condition 6.6.2 is satisfied i f  and only i f  ,.~ is 

an effective cubic residue o f  r, i.e. if  there is a ra t ional  integer  t and an integer  

in K(&) such tha t  

6.6.6 ~m -~ t '  ~s (rood r). 

(Note tha t  ~ is no t  an ordinary cubic residue of r if t(~V)r.) This is in com- 

plete analogy with the results of w 4. (Cf. w IO below.) 

I f  we have to use a non-ratiqnal 7 in 3.8.3, the calculations are similarly 

simplified i f  
7 ('~) ~ 7 (d') ~ 7 (d") (rood ,'). 

Since N(Z ) is a ra t ional  cube, there is also here only the one other  possibility 

corresponding to 6.6.5. 

As an application of Theorem Vl,  we can consider the equat ion 3.8.5 with 

m and n in te rchanged:  

6.6.7 xS --  44 yS = 39 zs, 

where r =  13. The class-number h44 = ~, and 

I ( I I 3  - -  2 a 9 " - -  17~q'2) ~ 3 - -  5 " ~ -  5 ~2  ( r o o d  I3) .  vr ~ 3 2 

The congruence x S ~  44 (rood 13) gives d = -  2, d ' = -  5, d"  = - - 6 ,  and 

~,,(d) ~ 6, , , ,(d')  ------ 6, e,,(d") ~ - -  4 ~ 6 (rood I3), 

sat isfying the condit ion 5.6.2. We have the case 5-7.5, where here 

I _ I 
* =  3- ( -  I 7 - - 4 ~ 9 +  25~9z)' v13-- 3- ( -  I + 4~9--~9~), 

, I I ,, I ~9~. vx3 = - ( - -  I + ~9+'--,9"~ vl3 = 7 + 2~9 + -  
3 2 2 

We get  three possibilities for  v, each of which must  be examined by the con- 

di t ion 6.5.6 : 
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I ( 2 1 x -  58,~__ ~ a , )  ' f - - g d '  
z '~ , s  = -3 f - - g d "  

, = - I ( i  3 + I 4 # - - 5 & ' ~ ) ,  "s " ~I~ 3 

pf I 

z'~l.s = - ( 1 3 - -  7 a  + ~ ) ,  
3 

f q g d  
f _ g--d ~ 

f - - g d  
f - - g d '  

All cases are impossible mod I3, 

insoluble. 

- 5s + i ( _  5) 
2 

~ 6 + I  

- 5 8  + - ~ ( - 6 )  
2 

~4 + 5 . ( - 2 )  
I 4 +  5 " ( ~ 6 )  3 +  I 

- 7 - I . ( - 2 )  
_ _ 7 _ _ i . ( _ _ 5  ) -  4 + I  

(mod 13). 

and the equation 6.6.7 is consequently 

Exclusions mod r do not  o c c u r  frequently.  One reason for this is t ha t  the 

congruence conditions 2.I.1o are more "s t r ic t"  in this case, and  most equations 

with a fac tor  I" in the coefficients are excluded already at  this stage. But  even 

then  the percentage of excluded equations is very small: There are about a 

hundred  equations in Table 2 a with a prime r dividing at  least one of the 

coefficients, and possible for all moduli.  Of these only six have been excluded 

by the new methods  of this  paper, against  an average of 3o % excluded equa- 

t ions (possible for all moduli) in Table 2 a. - -  This must  be explained by the 

three different  possibilities for the factor  Or, which make complete exclusion less 

probable in this  case. 

w 7. In  analogy with  the remark to 6.3. 3 , we can also use the condit ion 

6.5.4 to facilitate a search for numerical solutions when r 4 n;  the cri terion shows 

at  once whether  Or, P~ or p~' can divide a. (It  is obviously necessary to have 

m (R)r. so that  r factorizes in g ( a ) . )  

There is however an impor tan t  addit ional  remark in this case. Le t  

(a) = e + f a  + g a ~, ~T(~,) = e ~ + m f  + m ~ g~ - 3 n~ e f g  = ,  ~ o (moa  ,-) 

(possibly with cubed factors for n). The a rgument  tha t  led to 6.6.4 now shows tha t  

6.7.I d~(d).d'~(d') .d"l~(d") ~ mn ~ n (mod r), 

since m(R)r. We must  dist inguish between two cases: 

n(R)r:  For  the three factors on the lef t  hand s ide  of 6~7.I, there are then  

the two possibilities corresponding to 6.6.2 or 6.6.5, which means  t ha t  all factors  

p,,; p~ or p~' [ a  are simultaneously possible or impossible mod r. In the la t ter  case, 

r [ z  is consequently excluded. 
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n ( N ) r :  Of the factors on the lef t  hand  side of 6.7.I, two and only two will 

then  be equivalent  rood r, which means t h a t  one and only one of Pr, p'r and p~' 

is possible mod r as  fac tor  of a. I n  this case we can never exclude r l z  by our 

methods. 

The last  remark  is also o f  theoret ical  importance. We  have seen in 2.2. 3 

t h a t  in the case 

6.7.2 m ~ 4 -  ~, n ~ 4 -  3 (mod 7), 

we must have 7[z.  Since 3(N)7,  such equations can never be excluded by 

auxil iary considerations rood 7. - -  But  we can find the one possible P7[a, which 

gives us a unique value of  the ratio x : y rood 73= 343. This is of course a great  

help in a search for  solutions. 

There is still another  addi t idnal  remark in the case when r] n, and the 

condit ion 6.5.5 is satisfied. From 6.5. 5 we conclude tha t  

6.7.3 y ~ f - - g d ' ~ f - - g d "  (mod r). 

This restricts the choice of  y to one th i rd  of the residues rood r, and hence means 

another  simplification of a search for solutions. 

w o ~ We can now prove tha t  the  condit ions of Theorems V and VI are 

also sufficient congruence conditions mod p~ (p = q or r, ~v ] n, p X m) for the resul t ing 

cubic equation 4.I.4, We  can even put  w = o (or only ~ o (rood p)), in which 

case the congruence F(u ,  v, w)-~ o takes the form 

6.8.I F(u ,  v , w ) ~ g u  s +  3 f u r y  + 3 e u  v~ + m g  v s ~ o  (mod p). 

Using the formula  4.I.5, the discr iminant  of the left  h'and side can Se wri t ten as 

J = 38(3 e~ f 2 + 6 m e  f g ~ -  4 e3 g ~ 4 ra f S  g - -  m~ g 4) = 

6.8.2 = 3 3 { 3 ( m g ~ - - e f ) ~ - - 4 g n } - ~  3" (m g~ - -  e f )  * (rood p), 

since p i n .  - -  Let  p q =  [q, ~ - - d ]  or p~=  [r, ~ - - d ] l t t  = e + f ~ + g ~ ,  i.e. 

d s ~ m, e + f d  + g d  ~ ~ o (rood p), and consequently 

6.8. 3 m g ~ - - e f ~ d ( . f ' + f g d + g ~ d ~ ) ~ o  (modp) .  

The last  incongruence follows for p = q  f r o m f ~ + f g d  + g 2 d  ~ = N o ( f ~ g d q )  

(the norm in K(O)), which can have no prime fac tor  q unless q ] f & g d .  For  

p = r, we have f ~  + f g d  + g~d ~ ~ ( f - - g d ' ) ( f - - g d " )  ~ o  (rood r) by 6.6. 3 and 

the remark to 6.5.6. 
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I t  is clear tha t  a solution of 6.8. x in the  case g ~ - o  ( mo d p )  is given by 

OF 
u ~ o, v -~ o, Ovv ~- 3 f u~ ~ ~ (modp) ,  

and we only have to consider the case g ~ o. From 5.8.2--3 we see t ha t  J ~ o  

(rood p), and solubility of 5.8. I will therefore imply solubility of the corresponding 

congruence rood p* for all $ > I (cf. the beginning of w 3, Ch. II). Since z/ is 

a quadrat ic  residue of p, i t  follows from a well-known result  (cf. SKOL~.M [2]) 

tha t  the congruence 5.8.1 has three solutions mod p if  i t  has one. And the 

solubility is now easily shown. 

Let  first P = q, and the condit ion 6.3.7 be satisfied. This implies t ha t  we 

can find two rations] integers ui and v~, not both ~ o (rood q), s u c h  tha t  

3 d ~ v ~ + m v ~ + 3 ( u ~ v l ~ d u  i v ~ ) # ( m o d q q ) , i . e .  6.8.4 f - -  g ~ ~ (ul + V 1 ~)3 ~ U l  - -  3 Ul 

f=---uZ,--3d~u~v~ + mv~, g ~ 3 ( d u ~ v ~ - - u ~ v l )  (rood q). 

Bu t  e ~ - - f d - - g d  2 (mod q), so 6.8.1 can be wri t ten as 

g( u s -  3 d~uv~ + mv~) ~ 3 f ( d u v " - -  u~v) (rood q), 

and we see at  once tha t  u ~ ul, v ~ V 1 is a solution. 

Le t  next  io = r, and the condition 6.5.6 be satisfied. This implies t ha t  we 

can find three ra t ional  integers t, x~ and x 2, all prime to r, such t h a t  

6.8.5 f - - g d ' ~ t x a ,  f _ g d , , ~ t : c ~  (rood r). 

We next  define two other ra t ional  integers by 

Ul+Vld ' - - - -x l ,  u l + v l d " ~ x 2  (rood r), 

which is possible since Ii d"  = d " - -  d' ~ o. But  then  6.8.5 is equivalent to 

f - - g  ~ =- t(ul + vl ~)s (rood p~ P7 = [r, ~ + d ~ + d~]), 

in complete analogy with 6.8.4, and as above we see tha t  6.8.1 is soluble rood r. 

This concludes the proof for the sufficiency of the  condit ions rood q and r. 

I n  this  connection, i t  may be wor th  while no t ing  the almost obvious r e s u l t  

t h a t  the class-number conditions of Ch. 111 and the conditions of Ch. V and VI  

raod 3 ~, q and r contain the original congruence conditions 2.I.IO. 



The Di0phantine Equation ax  3 + by 8 + cz a = O. 278 

There  are no e lementary  condi t ions rood any pr ime q, or  rood 9 if  m = • I 

(rood 9). I f  m ~ !  i (rood 9), the condi t ion  5.1.6:g-------o (rood 3), i.e. 

. = 2v(~ + f ~ ,  + ~ ~ , )  - ~s + ~ f  (rood 9), 

shows t h a t  X s -  m y S ~  n z  s (rood 9) is soluble. The  case 3 }]m, 3 ]In implies 3 le, 

3 ~'f, and s o j "  --~ + I (mod 9), m ~ • n (rood 27). 

I f  t i n ,  r ) fm ,  the  prime 1" does not  factor ize  in K ( ~ )  unless m ( R ) r .  And 

if  r[m,  r X n ,  we have  n = 1g(e + f a  + g ~ 9 ~ ) - = - d ~ o  (mod r), so n ( R ) r .  In  this  

case the class-number hm is always divisible by 3, and n (N)!" would have been ex- 

cluded at  the  stage of class-number considerations in Ch. I I L  - -  I f  finally m = rim1, 

n = tin1, i =  I or  2, r X m l n l ,  we must  have  r [e ,  r~ ' f ,  and in the case i =  2 

also r i g .  The norm-expression for  n shows tha t  

n~- -  m , f  s (rood ~'), i.e. m, ~ n~, mln~(R)r .  

I f  this  condi t ion is no t  satisfied, the equat ion in K ( # )  would again  be excluded 

by class-number considerat ions,  

The  insoluble case I . I .4  is not  deal t  wi th  in Ch. I V - - V I .  I f  for  ins tance  

~0 II ~ ,  p* II.,  w e  must  have p i e ,  p If, P X g, and so 

x - -  y ,~ ~ g a s a s (mo4 [p] = p~ = [p, a]s). 

As unde r  I .I .4,  we conclude in tu rn  tha t  

We  could also have concluded in tu rn  t h a t  p lu, v & w  in the resul t ing  cubic 

equa t ion  4.1.4. 

9. I shall  finally show how the necessary and sufficient  congruence  

condi t ions  of this chap te r  can be deduced direct ly f rom the resul t ing  cubic 

equation,  by means of the field ~2(#) in t roduced  in Ch. IV, @ 4. We suppose 

tha t  ~ is a prime in K(q) such tha t  

6.9.I 

and so vr factorizes in ~2(~) by 4.4.6: 

[~] = p~ p~ ~: = [~,  d - -  a ]  [~, d - -  q a ]  [~, d - -  ~ a] .  

Then 4.4.5 shows thab we must  solve the  congruence  

6.9.2 E U s + q E '  V s + q~ E "  W a ~  o 

1 8 -  642127 Aeta mathemat'/ea. 85 
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to the three (coprime) moduli p~, p,~ and p~. I f  now for instance (ef. 4.2.4): 

6.9.3 P~= [ ~ , d - - * 9 ] l E = e + f * 9 + g * 9 ~ ,  i.e. e + f d + g d  ~ o  (mod z), 

then p'~IE', p~]E" ,  and the necessary and sufficient conditions for solubility of 

6.9.2 to the three moduli are respectively 

6.9.4 q E '  ~ Q~ E "  (mod p~), 

0 ~ E ' ' ~ E  (rood p~) and E ~ 0 E '  (rood p~). 

I t  is only necessary to consider the first one, since the two others can be deduced 

from this simply by taking conjugates. Substituting in 6.9. 4 the expressions 

4.2.4 for E'  and E " ,  and fur ther  (from 6.9.3) e--- - - - f  d - -  g d ~ (rood z), we get 

e ( - -  f d - -  .q d~ + f q *9 + g e ~ .9~) ~ e~ (--  f d - -  .g d ~ + f e ~ .9 + g e *9 ~) 

(mod p, = [z, d -- .9]), 

which gives a condition rood z if ,9 is replaced by d. Dividing out by 

d o ( I - - Q ) ~ o  (rood ~), we find this condition: 

[ . [ f - -gde '~  

6.9.5 f - - g d e  z f - - g d e  (rood z), or [ - ] - g ~ e ~ l  

This  will be the only type of  condition in the case 6.9.I i f  the given equation 

x S - - m y  s =  n z  s is treated in the field ~(.9), leading to an equation x - - y , 9  = iza s 

with p ,  = [z, d - -  *9] [~. 

The earlier conditions of this chapter are now easily deduced from 6.9.5, 

when m, f ,  g a n d  d are all absolutely rational. I f  z = q, the characters 

[f--gdQ]q and [f'gde']q 
have conjugate values in K(e) by 9.I.5, and their quotient is I only if both 

characters = I, i.e. the condition 6.3.8. - -  For a prime r -- g r ~ ,  we must use 

both factors as ~ in 6.9. 5. But with an appropriate choice of the earlier d' and 
d", we have 

t 2 v t  t I" d e ------ d ,  d e ------ d (rood ~ , ) ;  d r - -  d ,  d r - -  d" (rood ~ ) ,  a n d  so 

d ' =_ d"  6.9.6 ~ f - - g  (~ _ f - - g d  , , , f - - g d '  (moo ~,), 

and g = gr or ~r in 6.9. 5 both lead to the condition 6.5.6. 
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I suppose tha t  the  condi t ions  mod 3 e of Ch. V can also be deduced in 

Y~(,,~) f rom the  form 4.4.5 of the resul t ing  cubic equat ion,  by opera t ing  rood 

suitable powers of ~ = I - - Q .  Bu t  such considerat ions  seem to become very 

complicated,  and I have no t  t r ied  to carry them through.  

w zo. We conclude this chapter  with some remarks  about  the  cubic char- 

acter  of the units  ~m. W e  have seen repeatedly  how im p o r t an t  i t  is to s tudy 

this  charac te r  rood 3 e, rood qq and rood r fo r  different  primes q and r. I t  will 

now tu rn  out  t ha t  cubic residuacity can in most cases be determined without even 

knowing the unit. 
8 

Let  us consider  the field K ( ~ ) =  K(V2) ,  with the  class-number h 2 = I. I t  

follows f rom 3.I.4 tha t  
Paa = [31. 

But  p.~ is a pr incipal  ideal, p.~ = [~] (in this case we may choose ~ = I + 8~), 

and we conclude t ha t  there  exists a uIiit ~ = ~ such tha t  

6 . 1 o . I  ~a a = 3 ~  = 3 ~ ,  30( i. 

Since the  ra t iona l  in teger  3 is a cubic residue of all qq (q = m = 2 is of  

course excluded a priori), it  follows t h a t  the same proper ty  holds for  the  basic 

uni t  ~-2, which is also (by 6.6.6) an effective cubic residue of all pr imes r. W e  

shall say tha t  e~ is of Type  I, i.e. : A fundamenta l  uni t  ~,, is o f  Type z when i t  

is a cubic residue o f  all qq and an effective cubic residue o / a l l  r (q and r~ 'm).  

I t  is clear t ha t  em is of Type  I whenever  m =  q or q~, q ~ - - I  (rood 9), 

h~ ~e o (rood 3). This covers the fol lowing cubefree values of m---< 5o: 

m = 2, 4, 5, I I, 23, 25, 29, 41, 47. 

We c a n n o t  draw the same conclusion when  m = r or r ~, since then  always 

hm --= o (rood 3), i.e. pa is not  necessari ly a principal  ideal. W h e n  m ~ _+ I (rood 9), 

[3] = r'~g is no longer  the cube of an ideal. 
$ 

We nex t  consider  the field K ( ~ ) =  K(V6) ,  h 6 = I. Here  6 . io . i  still holds, 

toge the r  with ~ similar  re la t ion deduced f rom [2] = p]: 

6. Io.2 ~,~= 2 7 =  2 ~ ,  3 4 i .  

The fac to r  3 has d isappeared on the r igh t  hand  side. As a consequence,  the" basic 

un i t  ~e will not  only have the  proper t ies  of Type  I, bu t  will also be an (effective) 
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cubic residue rood 3 * for  all  exponen t s  r (Since here  3 Ira, th is  only implies  

~6 ~ i (rood 3). F o r  a value of m ~  o (mod 3), the add i t iona l  condi t ion  5.4.1o 

will also be satisfied. - -  I f  m ~ +~ I (rood 9), ~m mus t  be replaced by the  ~m of 

5.7.m.) 
The las t  a r g u m e n t  fails  in the  first  case m = 2, since then  v 2 = ~,  and  we 

can  deduce  n o t h i n g  f rom the t r iv ia l  re la t ion  ~9 3 = m. 

W e  say t h a t  a fundamental unit *m is of Type 2 when it is of  Type z and 

is in addition an (effective) cubic residue rood 3 ~ for all ~. I t  is clear  t h a t  ,,~ is 

of  Type  2 whenever  m is composi te  (m = p2 excluded) and  h~ ~ o (rood3).  This  

covers  the  fo l lowing cubefree  values of  m ~ 5o: 

m = 6, io, 12, 15, 18, 33, 36, 44, 45, 46. 

Le t  nex t  m = I4, where  h14 = 3. All the  ideals  P2, Ps and  P7 are non-prin-  

cipal,  bu t  

shows t h a t  ~x~ is of Type z. The same  pr inciple  (3[h~, m ~ _ +  2 or + 4  ( rood9)  

and  composi te)  shows tha t  the values 

m = 14, 20, 22, 38 , 50 

are  all of Type  I. 

Bu t  we can also ge t  the  s t ronger  Type 2 in some cases when  31hm, e.g. 

when  3 H hm and m has  a t  least  th ree  different  p r i m e  f ac to r s  (m = 30 and  42), 

or in the  cases when m is composi te  and  has  a p r ime  f ac to r  p ~ 3 such t h a t  

pp is a pr inc ipa l  ideal  (m = 34). 

To sum up, the fo l lowing cubefree  m ~ 50 are of Type  I,  and  i t  is easily 

verified t h a i  the re  are  no o thers :  

6.IO. 3 Type I only:  m = 2 , 4 , 5 ,  i i ,  i4 ,2o,  2 2 , 2 3 , 2 5 , 2 9 , 3 8 , 4 1 , 4 7 , 5 o  

6.1o.4 Type  2: m = 6, io, 12, 15, 18, 3o, 33, 34, 36, 42, 44, 45, 46. 

W e  do no t  ge t  all m for  which e~ is a cubic residue of different  moduli .  

A compar i son  be tween  6.4.I and  the  odd values of  6 . IO .3 - -4  shows t h a t  m - - 2 I ,  

3 x, 39 and  43 are miss ing  a m o n g  the  l a t t e r  ones. S imi lar ly  m = 13 of 6.4.2 is 

missing.  But  6. Io.4 coincides wi th  the  combined  values of  5.1.9 and the  las t  

l ine of 5.7.I I. 
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equat ions 

7.1.1 

C H A P T E R  VII. Results  o f  the  Calculations.  

As an appl icat ion of my methods,  I have t r ea t ed  systematical ly  all 

x ~ +  m y  s +  n~ s =  o, 2 ~ m < n ~  5o, 

with cube free m and n, and the  resul t  is given in Table a ~. The  case n = I will 

be dea l t  with la ter  in this  chap te r  (w 5), and in Ch. IX.  l~ote tha t  x has 

changed sign f rom the equat ion  in the  ear l ier  form,  x s - ~ y S =  n z s . _  The  

upper  l imit  5o is the  same as in Cass~Ls, [I] tables for  class-numbers and  uni ts  
8 

in K ( V ~ ) .  

I t  is clear t ha t  several of the equat ions  7.1.1 will be equivalent, i.e. they  

can be reduced to the same equat ion  

7. I .2  a x  s Jr b y  ~ Jr cg  s = o,  I ~_~ a <  b < c, (a,  b) = (a ,  e) = (b, c) = I 

(which is no t  i tself  included in Table 2 a if  a > I or  if c > 5o). F o r  instance,  

there  is equivalence between the th ree  equat ions  

7.I.3 x 8 + 4 y  s + I2Z s = o, x a + 9 y  3 + I 8 z  a = o, x s § 2 y  8 ~- 3 z3 ~- o, 

of which the  last  one has the  form 7.!.2. 

W h e n  cons t ruc t ing  Table 2 a, I worked in the  fol lowing steps:  

I. I excluded all equat ions  7.I .I  which do no t  sat isfy the  e lementary  con- 

gruence condit ions I . I .4  or 2 . I . I o  (horizontal  lines in Table  2a); this  was readily 

done, 

2. I examined  the remain ing  equat ions  for  the existence of simple solutions. 

In  most  cases this  is quickly done;  to faci l i ta te  the  search, I cons t ruc ted  an 

auxil iary table  of the produc ts  m x  s for  m ~ 5o, x ~ I6. 

3. For  the  equa t ions  with no simple solutions,  I used the class-number 

considerat ions  of Ch. I I I  and the condit ions of Ch. u 1 6 5  to see which of them 

could be proved impossible  (crosses in Table  2a). I examined  all equat ions in 
8 8 

both  fields K(V~n) and K(Vn), and it was a striking experience that  every ex- 

cluded equation could be proved impossible in both these fields. (Equivalent  equat ions  

of the type  7.I.3 were t r ea t ed  as different.) A single except ion would have shown 
$ 

the  insufficiency of my condi t ions  in one field K(V~n) alone. 
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4. For the remaining equations, I tried to find solutions by the  methods 

of the two next paragraphs. There are still a few equations of which 1 have 

no solution (blank spaces in Table 2a), namely the following combinations (m, n): 

7.I.4 (I I, 43), (I7, 4I), (29, 47), (4I, 46). 
3 

None of these can be excluded in either field K ( V m )  or K(Vn) ,  and I believe 

that  they are all soluble. 

w 2. In order to solve numerically an equation which cannot be excluded 

by some means, and where a simple solution is not found, I have used two 

different methods of "trial  and error". 

The first principle is simply to examine the given equation 

7.2.i x 3 - m y  ~ = nz  3, 

draw the possible information about the unknowns x, y and z, substitute suitable 

values o f  x and y and examine if the left hand side divided by n becomes a 

perfect cube. This sounds an enormous task, but does in fact lead to a quick 

solution in many cases, because the choice of x and y is usually very restricted. 

For any prime q dividing n, the ratio x : y  ~ d (rood q) is uniquely deter- 

mined. For a prime r In, there are three corresponding ratios d, d' and d", but 

one or two of these may be proved impossible by the criterion 6.5.6. I f  

m ~ • I (rood 9), the ratio x : y or .y  : x will also be uniquely determined rood 3, 

except in the cases 5.2.4. I f  m~___ I (rood 9), we can sometimes ( i f n ~ •  3 or 

• 4) conclude that  31 z, and by the remark to 5.7.9 even 91 z, which will give 

the ratio x : y rood a higher power of 3. - -  In the case 6.7.2, we have also seen 

tha t  the ratio x : y  is uniquely determined rood 73. Further  2.2. 3 shows tha t  

7 I x  if .rn ~_+ n----• 2 (rood 7). 

The result of these simultaneous congruences for x : y  is a usually unique 

value d such that  

7.2.2 x ~ d y  (mod 3i7Jn), i ~ o , j = o ,  I or 3. 

We next examine the possible prime divisors of x and y. In the case of x, 

we can sometimes conclude rood 9 that  3Ix  or 3Xx, and further x must be 

prime to m and n if (re, n ) =  I and divisible by an ( m , n ) > I ;  these conditions 

will already be partly contained in 7.2.2. Apart from this, the only prime factors 

of x which can be shown impossible from 7.2.I are the primes r--~ i (rood 3) 

such that  r X m n ,  m + n (rood r). 
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For the prime divisors of y, we can sometimes conclude rood 9 that  3 l Y or 

34Y, and 2.2. 3 shows that  7 1 y i f  m~__+ 3, n--=_+ I (mod 7). Further  y must 

be prime to n (even if ( m , n ) >  I, since then (m,n)[x,  and ( x , y ) =  I). The pos- 

sible prime factors r l y  must be such that  n(/~)r; if r]n,  the remark 5.7. 3 is 

also useful. But we can usually obtain more information about y if we write 

7.2.I as 

7.2.3 x s -  n z  s = my  s 
8 

and operate in the .field K (Vn). 

We can never exclude common factors of y and m, since then 7.2.3 would 

be completely excluded in K(I~n). For the primes q ~ - - I  (mod 3) such that  

q X m n ,  the criterion 5.3. 3 gives several q for which q lY is impossible. The most 

useful case is q =  2, i.e. m and n odd. I t  is of course a great help to know 

that  y must be odd. I f  we can also exclude 2 Iz (from the original form 7.2.I, 
$ 

in K ( V m ) ) ,  we know that  x must be even. (A similar conclusion is not possible 

if q > 2 . )  - -  For the prime divisors r ly ,  rXmn,  we have already noted that  

we must have n (R)7". I t  follows from w 7 of Ch. VI that  we can then exclude 
8 

, ' ]y iu K(] /n)  only if also m(R)r .  

If  n ~ _+ I (rood 9), the methods of Oh. V (cf. the remark to 5.7.9) will 

sometimes give us only one of the three possibilities 3 ~Y, 3 [{Y or 9 l Y. In the 

first case we may also be able to restrict a to one of the classes 5 or 6, which 

will further limit the choice of y if s,~ e class 5 (no denominator 3). 

We can finally get a limitation for y by class-number considerations when 

h ~ >  I, cf. the concluding remark of Ch. i I I ,  w 7, for the case when 34hn. A 

similar limitation can be obtained when h~ = 3 k > 3. 

w j .  My other method is to examine the resulting cubic equation 4.1.4 (or 

4.I.5) for solutions. It. is much more difficult to systematize this search, and it 

can only be a question of finding comparatively small solutions in u, v and w. 

(But even then the corresponding solution in x, y and z may be rather big.) 

The earlier results about x, y and z do not help us very much. I f  we can 

show by some means for the equation 7.2.1 that for instance q4z, then all we 
can say is that  

7.3.I ~ q = [ q , , $ - - d ] X a = u + v , 9 + w ~ 9 2 ,  and so u + v d + w d ~ o  (rood q), 

in addition to the obvious condition 
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7.3,2 qq = [q, &o_ + d ~  + d 2] ~" a, and so u =- vd ~ w d ~ (rood q) not  satisfied. 

I f  q is big, such condit ions do not  give much informat ion,  and  it  becomes ra ther  

complicated to combine the condit ions for  several primes. But  7 .3 . I - -2  are of 

course very useful  if q = 2. 

We can also obtain informat ion  rood 3 or 9. I f  m ~ _  I (rood 9), the meth- 

ods of Ch. V will often restrict the choice of a to one of the classes 4, 5 or 

6, in which case we can use the class-conditions of Ch. I I I , w  3. I f  3]m, the  

obvious condi t ion 3 4 z  implies 3 4 u .  And if  m~___ 2 or +_4, n ~ + _  3 (rood 9), 

i.e. 5.4.6-- 7 not  satisfied, the condit ion tha t  t h e  coefficient 5.4.5 of ~2 must  be 

~ -o  (mod 9) gives us one and only one of the classes 5 . 4 . I ~  3 to which the 

residue of a rood 3 can belong. 

The most impor tan t  congruence condit ion for the result ing equation, and the 

one tha t  has led me to all the big solutions in Tables 2 ~-b, is, however, obtained 

from the relat ions 6.3.6 or 6 . 5 . 5 . -  Le t  first r ~  I (rood 3 ) b e  a prime such 

tha t  rXm,  r[n. The condit ions 6.5. 5 must  then be satisfied. Dividing the two 

expressions, we get  Th. VI  as before, but  also the relat ion 

a (d') Is= f__  g_d' (mod r). 
a (d")j -- f - -  g d"  

I f  we determine three ra t iona l  integers tt such tha t  

f - - g d '  
ti ~ f - - g d "  (rood r), i = I ,  2 ,  3 

(which is possible by 6.5.6), and subst i tute  a = u + v ~  + w ~  ~, we 

linear homogenous congruence conditions for the unknowns u, v and w" 

7-3.3 u + v d " + w d ' ~ t i ( u + v d " + w d  ''2) (modr ) ,  i =  1,2, 3. 

get  three 

One of these condit ions must  be satisfied for any solution of the result ing 

equation. 

Le t  similarly q ~ - - I  (mod 3) be a prime such tha t  q4m, qln; the condi- 

t ion 6.3.6 must  then  be  satisfied. The only cubes of K(~)  which are congruent  

mod qq to a rational integer  are congruent  rood q to one of the forms x s, (y~/3 

or (z~)a ,  x, y and z rational.  I f  therefore a = a I is determined such tha t  

7.3.4 a ~ = ( u t + v  l ~ +  w l ~ ) S ~ { u  l _ w l d  e + ( v  l _ w l d ) , ~ } s ~ t ( f _ g ~ )  (rood%) 
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(t rational),  the possible forms of a mod qq can differ f rom al only by a fac to r  

of the type  x, y #  or z,9 ~. W e  thus  get three l i near  homogenous congruence con- 

d i t ions ,  one of the  fo rm 

u - - w d  2 _ v - - w d  (rood q), 
u 1 - -  w I d ~ --  v 1 - -  w 1 d 

and two similar  condi t ions  when aa = ul + v1,9 + wl #~ is mult ipl ied by ,9 or ~9 *. 

(In the  numerica l  applicat ions,  I have  found  i t  convenien t  to de termine  the ~1 

o f  7-3-4 in the field K(t~) instead of K(-a), using the correspondence 6.2.I.) 

w 4- I have also sys temat ized the t r ea tmen t  of the more general  equa t ion  

7. 1.2 : 

7.4.1 a x  ~ + b y  ~ + c z  s = o, I < a < b < c ,  ( a , b ) = ( a , c ) = ( b , c ) =  I, 

with cubef i ' ee  coefficients, and the  resul t  is given in Table  2 b. This contains all 

equat ions 7.4.I wi th  a bc = A < 5oo, which cannot  be excluded by the  e lementary  

congruence  condit ions 2.I.1o, or by the  methods  of Ch. I I I ,  V and YI. This 

means t ha t  several soluble equat ions  f rom Table  2 ~ will be repeated.  Note  tha t  

the equat ions  x s + yS + A z S =  o are not  i nc luded  in the list, because of the  

condi t ion a < b < c. 

To exclude an equa t ion  7.4.1 with a > I, i t  must  be t r an s fo rm ed  into the 

type  x ~ - -  m y  a, = nz~, m < n, by mult ipl icat ion by a *, b*" or c *. I n  the  cases where 

this  is not  covered by Table  2L i.e. when n > 5o, I have completed the  exclusion 
8 

only  in  the one .field K ( V m )  (but even then  I somet imes had to work in a field 

with m > 50). 

Blank spaces in Table  2 b in the column for  x, y and z mean  t h a t  I have 

no t  been able to find a solution. These  unsolved equat ions all have a = I in 

the form 7.4.I; the  cor responding  combinat ions  (b, e) are :  

7.4.2 (2, 173), (2, I91), (S, 89), (1I, 43). 

Of these only the las t  one is common wi th  7.I.4. All the o the r  equat ions have 

a small b = m  (with h,~= I), and c =  n >  50 is a p r i m e q ~ - -  I (rood3). I h a v e  

checked in all cases t ha t  the  methods  of Oh. V and VI  do not  lead to exclusion 

in K(l/mm); rood q = n this  was  done by the  cr i ter ion 6.3.8. I have also checked 
3 

the  condit ions in all the  fields K(IFn)  when n > 50. I believe t h a t  the equat ions 
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7.4.2 are all soluble, in part icular  because of the  f i r s t  conjecture  la ter  in this  

paragraph.  

Before I give the results  about  the exc luded  equations 7.4.I, we mus t  s tudy 

the  number  of such equations for given a b e  = A which are possible for  all 

moduli  - -  I shall say simply possible .  We call this  number  NA (the equat ion 

x s + yS + A z  s = o is possible for  all moduli,  but  is not  counted  in Na); i t  is clear 

t ha t  /Va will depend on the n u m b e r  na o f  d i f f e ren t  p r i m e  f a c t o r s  i n  A .  In  all 

cases I have treated,  we have nA ~ 4- 

The number  A is supposed cubefree. To avoid a dis t inct ion between the 

primes and thei r  squares, I shall use the fol lowing no ta t ion :  

I 
/ ) = p  or p~, p any prime 

7.4.3 Q = q  or q~, q ~  I (rood 3) a prime 

R = r  or r 2, r ~  I (mod 3) a prime. 

Different primes of the same type will be denoted by indices. I shall fu r the r  

use the  abbreviated nota t ion  

7.4.4 {a, b, e} 

for an equat ion a x s + b y  "~ + e z s = o. 

The cases na = I, 2, 3 and 4 must  be t rea ted  separately:  

7.4.5 

na  = I,  A = P :  Obviously  NA = O. 

na = 2, A = P~/)~: There is one a p r i o r i  combinat ion 

{i, /)2}, 

which may or may not  be possible (for all moduli), and so s = o or I. 

na = 3, A = / )1  P~ Ps: There are four  a p r i o r i  combinations 

7.4.6 {I, /)1, P2 Pa}, {I, t)2,/)1/)B}, {I, t)8, P1/)2}, {/)1,/)2, P8}- 

We have seen in Ch. I I ,  w I, t ha t  there are no congruence condit ions rood 

any q, and none rood 9 i f  31[A. I f  therefore /)1 = 3, the combinat ions  7.4.6 

are all possible rood 9, and similarly if P 1 = 9 ,  P 2 ~ • 1 7 6 1 7 7  1 {rood 9}- I f  

however /~ = 9, but  the last  condition no t  satisfied, i t  is easily verified t ha t  

one and only one of the combinat ions 7.4.6 is possible rood 9. (Cf. 2.I.3 and 

9.1o.2--5. ) - -  I f  finally 34A, all four  combinat ions are possible rood 9 if ei ther  

(arbitrary signs) 191 ~ + P2 ~ + P s  :-- + I (mod 9), or (for instance) /)1 ~ -+ P2 
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~ •  LO s (rood 9); in all other cases only one combination is possible rood 9. 

(Of. 2.I .2 and 9 . Io .6~8 . )  

I f  only one combinat ion is possible rood 9, this may or may not  be possible 

rood some r such t h a t  r I A. I f  however all combinat ions are possible rood 9, 

and for instance LOs = R, the solubility rood r (cf. 2 . ; . 8 )wi l l  depend on the 

cubic character  of 
LO,, LO , LO, and 

of which always only one or all four  are cubic residues rood r. I t  is therefore 

clear t ha t  NA = O, I or 4 if na = 3. 

na = 4, A = / )1  P~ P8 194 : There are 1 3 a p r i o r i  combinations, 1 2 of which 

can be obtained f rom the combinat ions 7.4.6 by inser t ing the factor  P4 in all 

possible places, and the addi t ional  combinat ion { I,  P~, 191P~ Ps} .  - -  This prin- 

ciple can be used for  general  induction,  leading to the number  of a p r i o r i  com- 

binations for arbi t rary  na:  

I (3~a_ I _ I). 7.4.7 

In  particular,  all 13 combinat ions for na = 4  are possible (for all modul i ) i f  

7.4.8 A = 3 Q1 Q, Qs. 

A tedious invest igat ion of all other  cases t h a t  can arise shows tha t  we still get  

Na = o, i ,  4 or 13 . - - I t  would be an in teres t ing combinatorial  problem to 

examine whether  the result  can be generalized to 

I 
7.4.9 N a  = ~(3 n-1 - -  I), I ~_~ n ~ hA, 

of. 7.4.7. We have seen t h a t  this  holds f o r  na <= 4; I have not  examined fur ther  
I 

c a s e s .  

I t  follows from my Theorem XIV (Ch. IX,  w I6) tha t  the number  of soluble 

equations 7.4.I is always of the form 7.4.9. Wi thou t  exception, however, my 

numerical  calculations have led me to the fol lowing stronger  

C o n j e c t u r e s .  

I. W h e n  N a  = I,  the one possible equation 7.4. I i s  a lways  soluble. ~ A weaker  

form, and one very probably easier to prove, would be to say "can not  be excluded 

(Added later). The formula 7.4.9 can be proved by group.considerations, using the ideas of 
Ch. IX, w 16. 
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by the methods o f  the present  paper" .  (All equations 7.4.2, and all but the last 

one of 7.1.4, are of this type. The weaker form of the conjecture holds for all 

equations I have examined.) 

2. W h e n  s = 4, all f o u r  possible equations 7.4. I are s imul taneously  soluble or 

insoluble, ~ This holds for all a b c = A ~ 5oo. The values of A with four pos- 

sible but insoluble equations 7.4.1 are given in Table  4 b. (22 such values below 

5oo. - -  The last equation of 7.I.4 has Na = 4.) 

3. W h e n  ~VA = 13, one and  only one oJ the 13 possible equations is  soluble. - -  

This holds for A ~ iooo; the corresponding values of A, together with the one 

soluble equation, are given in Table 2 c. (5 such values below IOOO, all of the 

type 7.4.8. The one soluble equation for A = 33o is also included in Table 2b.) 

The values A of Table 4 b all have nA = 3, i.e. _Ara = 4 is max ima l .  None 

of the A's are divisible by 9 or any prime r ~ I (rood 3)- The smallest value of 

A with r lA,  Na = 4, and giving rise to excluded equations, is 

7.4.IO A =  570=  2"3"5"19 ,  

with the four possible but insoluble combinations 

{i, i9, 3o}, {2, 3, 95}, {2, 5, 57}, {3, 5, 38}. 

The first value of A where correspondingly 91A, is 

7.4.11 A = 9 9 o =  2 . 5 . 9 - 1 I ,  

with the four excluded equations 

{I, Io, 99}, {1, I8, 55}, {2, I1, 45}' {5, 9, 22}. 

All excluded equations (crosses) in Table 2 ~ correspond to._hrA = 4  or 13. 

In the cases with A > 5oo and -ArA = 4, I have verified that  at least one of the 

other possible equations can also be excluded by my methods. 

The equations with Na = 13 (3rd conjecture and Table 2 c) demonstrate the 

important  fact that  the conver se  o f  Theorem I (Ch. I ,  ~ 2) is  fa lse ,  even if we 

suppose the equation a x  8 + b y  s + e z  s = o possible for all moduli. 

w 5. When an equation x 3 -  m y  s =  n z  8 cannot be excluded by some means, 

I know of no f in i te  method to  decide whether or not the equation is soluble. 

We have seen tha t  the elementary congruence conditions 2.1.1o are not sufficient 
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for  solubili ty.  My new condi t ions are of course s t ronger ,  but  they  also represen t  

congruence  condit ions fo r  a homogeneous  cubic equa t ion  (the " resu l t ing  equat ion"  

of  Ch. IV), and there  is no a pr io r i  reason why they  should be sufficient. W e  

shall  now even prove their insuff iciency in  most cases when n = I, i.e. for  the  

equat ion 

7.5. i  x a - m y  s = z ~. 

I t  was ment ioned in connec t ion  with the  e lementary  congruence  condi t ions 

2.I . lO t ha t  these can never  exclude  an equat ion  7.5.1. On the  o ther  hand,  we 

can obta in  r a the r  s t rong  condi t ions for  solubil i ty in the field K(~);  this  is shown 

in detai l  in Ch. IX.  F r o m  Table  4 ~ we find the fol lowing cubefree values 

2 < m ~ 5o for  which 7.5.1 is insoluble:  

7.5.2 m = 3, 4, 5, IO, I I ,  14, 18, 23, 23, 25, 29, 35 , 38 , 39, 4I ,  44, 4 5 , 4 5 , 4 7 .  

The  tr ivial  so lut ion x = z, y = o is not  considered. All the  corresponding 

equat ions  we re  already p roved  insoluble by S~LVXST~ [I] and  P ~ I N  [I]--[3 ]. 
S 

W e  shall t r e a t  7.S.I in the ord inary  way in K ( V ~ n )  = K(,9). - -  I t  is a t  

once clear t h a t  class-number considera t ions  will never  lead to exclusion when 

n = I; the re  are f u r t he r  no pr imes  q or r dividing ~, thus  giving rise ~o the  

condit ions of Ch. VI.  The  only possibil i ty is to work rood a power  of 3. 

As already ment ioned  in Oh. V, w I, this  m e th o d  was first used by HOLZER [I]. 

But  his t r e a t m e n t  is incomplete ,  since he only considers the  cases m ~ _+ 2, + 3" 

or  + 4 (rood 9), m squarefree  or a complete  square, and the class-number h m ~ o  

(mod 3). 

W h e n  m ~ •  I (mod 9), and 3Xh~,  the  ordinary equat ion x - - y ~  = ~ a  s 

now takes the fo rm 

7.5.3 x - - y & , -  emi a3= ~ ( u +  v&l+ w~2) s, i = o ,  1,2. 

The  case i = o is here  completely di f ferent  f rom the two o ther  possibilities i = i 

or  2, and leads to the simple resul t ing  equat ion 4 . I .6 :  

7.5.4 u~w § m 2 u v  ~ + m t m ,  v w  ~ = o. 

This  can never  be excluded by congruence  considerat ions,  bu t  by inf inite descent. 

I t  had  been no ted  by KRA~'~'T (cf. DICKSON [I], Ch. XXI,  ref. I45 ) t h a t  a solu- 

t ion of 7.5.4 (at least  with m squarefree,  i.e. m 2 -- I) will lead to  a smaller solu- 

t ion (x~, Yl, z~) of 7.5,I t han  t h e  one which or iginal ly  gave rise to  7.5.4. The  
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general case m = mlm] is t r ea t ed  by FADDEEV [I], who shows tha t  a solut ion 

(x, y, z) which gives rise to an equat ion 7.5.3 with i = o, will be the "triplica- 

tion" of ano the r  solution (x~, Yl, z1) (cf. Ch. IX,  w I5). In  par t icu lar :  

6 3 Y = 3 x l y l z 1 ( x l - - x l z ~ q - z ~ ) ,  and so o < [ Y l l  < [ y [ "  

We  can suppose tha t  we s ta r t  off with the solut ion of 7.5.I for  which ly l  > o 

is minimal  i the  possibility i = o is then excluded. (Holzer's principle of descent  

is for  the exponent  ~ of 3 ~[[y.) 

We  there fore  have to examine the equat ion 7.5.3 with i = I or 2. I t  is 

clear  t ha t  this cannot  give the t r ivial  solution x = z = I, y = o, since then  

= N ( a ) =  I shows tha t  a is a unit ,  a = ~ t  and we get  the impossible equat ion 
S t + i  _= I .  $ m  

I f  m ~ o  (mod 9), we have seen in Ch. V, w 3, 2. t ha t  this  case can never 

be excluded rood 3- - -  I f  m ~ _  e, +__ 3 or + 4  (rood 9), the  only possibility fo r  

excluding 7.5.3 is t ha t  ne i ther  ~ nor  ~ have a coefficient divisible by 3 for  ~ .  

{We cannot  operate  rood 9, since the condi t ion 5.4.7 is not  satisfied.) Table I b 

(the residues for  7) shows t h a t  this  condi t ion is satisfied when 

7.5-5 m ~ _ +  3 or _+4 (mod 9), e m ~ I  (mod 3), 

$ 
but  never when r n ~ +  2 (rood 9), since then  at  least one of em and e~ has a 

coefficient  ----- o (rood 3) for  8 ' .  (Wha t  Holzer  calls "condi t ion  B ' "  is consequent ly  

never  satisfied when m ~_+ 2 (rood 9)-) 

I f  m ~ +  I (rood 9), there  are the two possibilities 31 z and 3Xz.  In  the  

la t te r  case, we can replace em in 7.5.3 by the  Vm of 5.7.Io;  a mus t  then  be 

chosen f rom class 5 (no denomina to r  3). Complete exclusion is again  impossible, 

since Table  i b shows tha t  a t  least  one of ~7,~ or V~ has a coefficient ~ o (mod 3) 

for  ~ .  - -  The  case 3 ]z, i.e. 5.7.6, implies an addi t ional  fac tor  , a  * on the r igh t  

hand side of 7.5.3, a n d  can of ten  be proved impossible by the methods of Ch. V, 

7--IO.  This migh t  be helpful  in a search for  numerica l  solutions. 

A class-number hm ~-- o (rood 3) was not  t rea ted  by Holzer,  bu t  we shall see 

tha t  the equat ion 7.5.I can never be excluded by his methods  in this case. W e  

must  in t roduce  at  least one 7 in 7.5.3: 

7.5.6 x - - y  ~ = e~7 j(u + v ~1 + w ~)3, i and j = o, I, 2, 

cf. 3.3.3. This will represent all possibilities when hm = 3; there may also be 



The Diopbantine Equation a x  a + by s + ez s ---- O. 287 

other  values of 7 if h,~ = 3 k > 3, but  the factor  7 j (j = o, I, 2) can in any case 

be made to represent  three of the possible 7J of 3.8.2. 

I t  is clear f rom the case j = o t ha t  we can only hope to get  complete 

exclusion in the cases 7-5.5- The norm N(7 ) is a ra t ional  cube, and  so ~ +  ! 

(rood 9), and the possibilities for 7 rood 3 are the same as for e,, : 

r -=-+I ,  _+~, or _+~(mod  3). 

We can therefore suppose 7 ~ - +  I (rood 3), if  necessary af ter  mult ipl icat ion by 

a properly chosen power of ~ (which is ~ I (rood 3) by 7.5.5)- The only pos- 

sibility rood 3 in 7.5.5 is then  i = o: 

x - -  y a = rJ as = rJ (u + v a~ + w a , )  ~, j = o,  ~, ~, 

but  here only j = o can be excluded (by inf ini te  descent). This holds even when 

we can find a rational 7. The resul t ing cubic equation then  gets the same simple 

form 7-5.4 for  all values of j ,  but  the conditions for  infinite descent are no longer 

satisfied for  j > o, since then  a can be fractional. (If this  was not  so, we could 

for instance exclude the case 

m = 2 2 ~ 4  (rood 9), h , ~ = 3 ,  ~ ,~=23  + 3 3 - - 4 # 3 ~ I  (rood 3), 7 = 2 .  

But  the equation x s -  22 y S =  zs is soluble, cf. Table 6.) 

The improvement  of Holzer 's  method is therefore  mainly negative. Apar t  

f rom extending the principle of descent to non-squarefree m, I have shown 

systematical ly tha t  the method of  exclusion only applies when the class-number 

h m ~ o  (rood 3), and the conditions 7.5.5 are satisfied (i.e. under  the  conditions 

which were considered by Holzer). 

Bu t  the results of Cb. VI, w Io lead to still ano ther  l imitat ion of the ex- 

cluded values. I f  h~ ~ o (rood 3) and m has at  least  two different prime factors, 

then  the un i t  ~ will be of Type 2, i.e. in par t icular  ~ - -  I (rood 3). m must  

consequently be a prime or the square of  a prime. Since n~ = r or r ~ implies 3]h~,  

the only excluded values of m are therefore given by 

7.5.7 
m = 3; m = q ~ 5  (rood 9) or m =  q~, q ~ 2  (rood 9) 

where h q ~ o  (rood 3) and e q ~ I  (mod 3), 

which are all particular cases of  Theorem V I I I .  ~ For  the values 7.5.2, this 

m e a n s  t ha t  we can exclude only 
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7.5.8 m = 3, 4, 5, 23, 42 

(which all have h~ = 2). 

The negat ive results of this paragraph show tha t  we can find an i~.finity of  

resulting cubic equations which are possible for all moduli but insoluble in integers. 

These equations will usually contain all possible terms (2o in all) in u, v and w, 

and they cannot  be deduced trivially (e.g. by l inear subs t i tu t ions ) f rom insoluble 

equations x a - m y  a = n z  3 or the more general  type A x  a + B x 2 y  + C x y  ~ + 

+ D y  a= E z  s (to which my above methods  of exclusion also apply, cf. Oh. V I I I  

and Ch. IX,  w167 I2--I4) .  

w 5. The equation x 3 - - m y  s-~ z a has also been treated by FADDEEV [I], 
3 

both in the field K ( V ~ n ) =  K(&) and in the field K(Q). I re turn  to his methods  

in Ch. IX,  w 25, and shall here only indicate his results in the field K(&). In- 

stead of my equation 3.8.2 for n = 2: 

i 7.6.2 x - - y & = e m T j a 3 = ~ a 3 ;  i = o , l , 2 ; j = o , I ,  2 , . . . k - - I ;  7 o = I  

(also combined with t h e  addit ional  factor  ~a ~ of 5.7.6 when m-------_+ I (rood 9)), 

Faddeev considers the equation 

7 .6.2 9 (x -- z) ~ (x --  y -~) = i 3 fla ~TJ f l  =~fl~, 3 ~ or 9).fl ~ 

(the two last  possibilities only when m ~ • 2 (mod 9)). The left  hand  side is 

the  cube of an in teger  of K(~)  if and only if  (x, y, z) is the triplication o f  an- 

other  solution (cf. Ch. IX,  w I5). The number  k of 7.6.2, and consequently also 

the  number  of a priori possible equations, i s  always a power of 3. The same 

holds for 7.6.2, but  in this form Faddeev can prove (by group-considerations) 

tha t  the number  G of soluble equations is also of the same type:  

7.6.3 G = 3 .~ 

Here g is the number of ge~erators (basic solutions) of the corresponding equa- 

tion x ~ --  m ya = z s (in the Mordell- Well sense). - -  In  order to prove the insolu- 

bility of such an equation, it  will therefore suffice to prove tha t  G < 3. I will 

show tha t  this principle can also be applied to 7.6.I in some cases where there 

is a one-one-correspondence between the equations 7.6.I and 7.6.2. 

Such a correspondence will obviously depend on the factor  ( x - - z )  ~. - -  I f  

we subst i tute x =  X, y =  Z, z = - -  Y, r e = A ,  t h e  equat ion  x a - - m y  a = z  a is. 
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t ransformed into 

7.6.4 X a + ya  = A Z  8, 

which is considered in Ch. I X  (this is also the nota t ion  used by Faddeev). I t  

follows from 9.3.3 and 9.6.I t h a t  we can put  

7.6.5 x - - z = X +  Y = s A l w  3, ASIA, 

where s is given by 9.3.4. In  part icular ,  A1 con ta ins  a l l p ~ q m e  f a c t o r s  q ~ - - I  

(rood 3) o f  A .  

The detailed s tudy in Ch. 1X fu r the r  restricts the choice of s and As, but  

we shall  here only use the simplest  results (obtained by t rea t ing  7.6.4 as a 

congruence rood 9): 

J I f  A = m contains no prime factor  r ~  + I (rood 3), then  

m ~ •  3 or •  (rood 9 ) ~ s = 9 ,  As A = m, y =  Z ~ o  (mod 3) 

7.6.6 ("case I "  of 9.3.4); 

m ~_+ 2 (rood 9) ~ ei ther  case I, or s = I, As = A = rn, 

X =- Y - =  + Z ~ o (rood 3) ("case I r ' ) .  

I f  m - - +  3 or _+ 4, then  7.6.5 takes the form 

x - - z =  9 r o w  s = 9 & S w  8, 

showing tha t  there is a one-one-correspondence be tween  7.6.I--2,  expressed by 

7.6.7 ~ = ~t, fl = 9 ~ w ~ a .  

In  this case we can therefore conclude the insolubil i ty of x a -  m y  ~ = z a i f  the 

number  of non-excluded equations 1 7.6.1 is less than  3. I t  is however  easily seen 

tha t  this principle will cover all the values m of 7.5 .7 ,  but  no others, and no 

new informat ion  is obtained in this way. 

The other  case of 7 . 6 . 6 ,  m ~ +  2 (rood 9), will no t  only lead as above to 

the correspondence 7.6.7,  but  also to x - - z  = m w  s =  ,~SwS, which leaves an extra 

factor  9 when comparing 7.6. I - -2 .  Now [9] = P~, which will introduce a uni t  

# I if  P8 is a principal ideal [v,], i.e. 9 = V~a s: 

7.6.8 2, = V ~,  fl = v~ ~ w~ a. 

A 7 is in t roduced if  Ps is  non-principal. 
t T h e  c a s e  /~ = I i s  n o w  c o u u t e d  a s  not excluded. 

19 - 842127 A d a  matbemat/ca.  85 
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The result  for m ~ _+ 2 (mod 9) demonstrates  tha t  one soluble equation 

7.6. I may lead to several soluble equations 7.5.2. I n  the case jus t  t reated,  an 

addit ional  consideration can however show a one-one-correspondence all the same 

under  certain circumstances:  

Le t  as before m------ + 2 (rood 9), and fur ther  h~ ~ o (rood 3), e~ ~ I (mod 3) 

and so m = q  or q~ by the  same a rgumen t  t ha t  led to 7.5.7. The ~ of 7.6.I is 

then u = ~ ,  i = o ,  1,2. F rom Table I b (the entry for m ~ 2 ,  n ~  i (rood 9)) i t-  

follows tha t  one and only one value of ~ # I is possible rood 3, and for this 

value : 
x - - y ~ = i t a S - ~ + l z - ~ + ( - - I  + ~ ) ,  i.e. y ~ o  (mod 3). 

This excludes the first possibility 7.6.6 (the correspondence 7.6.7), and leaves the 

one-one-correspondence 7.6.8 between the equations 7.6.I--2.  Since the number  

of non-excluded equations 7.6.I is less than  3, we conclude tha t  the given equa- 

t ion is insoluble under  the above conditions. 

Combining this r e su l t  wi th  7.5.7, we see tha t  the equation XS + y a =  m Z  8 

has only the trivial solution with Z = o when 

m = 3; m = q or q~, q ~ - -  I (rood 9), where h q ~ o  (mod 3) 
7"6"9 and rq ~ I (rood 3). 

Like 7.5.7, this result  is still a particular case of Theorem V I I I . -  For  the 

values 7.5.2, this  means t ha t  we can now exclude 

7.6.IO m = 3, 4, 5, 11, 23, 25, 29, 41, 47 

(the values 7.5.8 are repeated). 

The remaining m of 7.5.2 all give rise t o  at  least  3 non-excluded equations 

7.6.I, a n d  can consequently not  be proved insoluble by similar auxil iary con- 

siderations. 

For  completeness, I shall  finally quote Faddeev's  formulae for  the exponent 

g of 7.6.3. The number  k of 7's in 7.6.1--2 is a power of 3: 

k =  38, 

represent ing the number  of different ideal-classes F of K(~9) such tha t  I "s is the 

principal class. I t  follows tha t  the number  of a priori possible equations 7.6.2 

equals 3 ~+~ when m ~ +  I and  3 *+2 when m ~ +  I (rood 9). Faddeev does how- 

ever state tha t  no t  all these equations can be soluble when m ~z~ o (rood 3), and 

so for cubefree m: 
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7.6.I I { g ~ s  + I when m~-o ,  _+ I or + 3 (mod 9) 

g N s  when m ~ _ +  ~ or _+4 (rood 9). 

For ~n --_ 50, this implies insolubility (g = o) only in the cases 7 . 6 . I o ,  m = 3 

excluded. We further get too great a maximum number of generators (g ~ 2 

instead of g ~ I) for 
m = 26, 28, :35, 42. 

CHAPTER VIII .  T h e  E q u a t i o n  u s _  3 u Z v  + v s = a w  s. 

w ~r. When applying infinite descent to the equation X S +  y a =  A Z s of 

the next chapter, one of the possible equations to which we are led is 

8.x.x u s -  3 u ~ v  + v s =  3 p w  s, 

if A = p  is a prime - - +  I (rood 9), or a product of such primes (Theorem X, 

w 5). I f  A = 91) (with the same meaning of p), the right hand side is replaced 

by p w  s, cf. w 4 below. The equation 8. I.I was already studied by SYLVrS~ER [I]; 

the corresponding inhomogenous equation (with w = I) has been treated by 

As an application of my methods to an equation which is not  p u r e l y  cubic,  

I will treat  8.I.I a little more in detail. I prefer to deal with the equivalent 

form 

8.I.2 x s _  3 x y ~  + yS = 3 p z S .  

T h e  corresponding  congruence  is  soluble f o r  a l l  modu l i .  - -  We have the case 

2.3.1, with the discriminant z / =  34, and therefore (by 2.3.3) only have to examine 

the solubility of the congruence rood 3 ~ and rood p. I t  is known (cf. P~PIN [4]) 

that  the congruence 

8.I.3 x S - - 3 x +  I ~ o  (rood p) 

is soluble when p is a prime ~ +  t (rood 9). Substitution of x = - -  y +  3xj in 

8.I.2 and division by 3 gives the new equation 

9 x~ - -  2 y s  9 x ~ y  + = p z  s, 

which is possible rood 3 ~ for all d, since the corresponding congruence rood 9 

is soluble with y and z ~ o (rood 3). 



2 9 2  E r n s t  S .  S e l m e r .  

W e  shall t r ea t  8.I.2 in the well-known field K(• defined by 

8. I . 4  O S - -  3 0 + I = O. 

This is a Galois field (the discr iminant  J = 3 ~ is a perfect square), and the con. 

nect ion between the three (real) roots 0, O' and 0" is given by (cf. 8. i . I  x): 

8.I.5 0, I 0 ~ - 0 +  2, 0" O- -  I •  
O - - t  0 

The class-number h = t, and a basis for  the  integers of K(O) is given by (1, 0, 0~). 

Since d > o ,  there  are two fundamental units; we may choose these as 0 and 0', 

or as 

8.I.6 ~, = 0 ,  ~ = 0 - -  I 

(the first of these has a norm --  I, bu t  this does no t  influence our  arguments).  

The na tura l  primes 2 +  2 or + 4 (rood 9) remain primes in K(O). The 

factorizat ion o f  3 is 

8.I. 7 3 = ( - -  I - - 0 )  a - ( - l - 0 + 8 * ) ,  i.e. P a =  [i +0 ] .  

unit 

The primes p ~ + I (rood 9) factorize into three different, conjugate ideals: 

t t t  

8.i.8 [p] = [p, 0 --  d] [p, 8 --  d'] [p, 0 - -  d"] = pppvpp, 

where d, d' and d" are the three solutions of the  congruence 8.I. 3. In par t icular :  

8.I. 9 d + d" + d" -~o ,  dd' + dd" + d' d " ~ - -  3, dd' d " ~ - -  I ( m o d p ) ;  

8.1.to d ' ~ d - -  I _ _ d 2 _ 2 ,  d " =  1 __ d ~ - d +  2 (mod p). 
d d - - I  

The last  formulae are analogous to 8.I. 5. The values of d' and d" are appar- 

ently given in the  wrong order, but  the  conjugates  of an ideal pv = [p, 0 - -  d] 

are really determined by 

I 
0'--d]= p, 0 - - ,  

, [ O--  I 
pv = [p, O" --  d] = [P' 0 

d] = [p, dO"-- d + ~] = [p, O d - - i ] d  

= [p ,  0 - d'],  

= Iv ,  0 -  d"].  
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The relations 8.I.5 follow at once from the automorphisms of the binary 

cubic form x 8 - 3 x y 2  + ya: 

8 . I . I I  x'  = - - y ,  y' = x - - y ;  x"  = - - x  + y, y" = - - x .  

The norm of an integer in K(O) is expressed by 

8. I.12 { N ( a ) =  N ( u + v O + w O 2 ) = u s - v s  + w s  + 6 u ~ w - 3 u v 2  

+ 9 u w  ~ + 3 v w  2 + 3 u v w ,  

and the cube of an integer: 

a 8 = ( u + v O + w 0 2 )  s =  U +  V O +  WO "~= 

= u s v 8 + w t - - 9 v w  ~ 6 u v w  
8.1.I3 

~- 3 (v 2 -  2w3 + u ~ v - - u w ~ - - v  ~w + 9 vw~ + 6 u v w ) O  

+ 3 ( 3 w 3 + u S w ~ - u v  2+ 3 u w 2 +  3 v " w  v w ~)0 2 . 

w 2. To simplify the ealeulations, I will suppose tha t  the factor p of 8.I.2 

is a prime = +  t (rood 9), or the square of such a prime. (Any eubed faetor 

can be absorbed in z2). The equation 8.1.2 will then in the ordinary way lead 

to three different ideal-equations in K(0): 

8.2.I [ x - - y O ]  = psp~a 2 = na  8, 

where Pv is one of the three factors of 8.1.8 (squared if/~ is a square. The 

product of two d(O:erent ideals Pv, P;o and p~ cannot divide x - - y 0 . )  

The automorphisms 8.I . I I  show that  the three equations 8.2.I are simul- 

taneously soluble or insoluble; in order to prove an equation 8.I.2 impossible, it 

will therefore suffice to exclude only one of the equations 8.2.I. (If p contains 

several different prime factors, and one of t h e m  is Pl, i t  will similarly suffiee 

to exclude all those combinations for n in 8.2.I which, contain only the one 

factor pv, of [pl].) 

The equation in integers of K(O) corresponding to 8.2.x is in analogy .with 

3.6.2: 
' , ~ v a  s ie~(e 1 + f l 0 + g l 0 ~ ) a S  

8.2.2 
= g a  s = (e + f O  + gOS)(u + vO + w02) s, i a n d j = o ,  1,2, 

where N(tx) = N(v) = 3P, and where the units are given by 8.I.6. We thus have 

to consider nine different equations, but we shall see that  i t  suffices for  complete 

exclusion to prove one o f  them only insoluble. 
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As in Ch. IV, we are led to a "resulting cubic equation" by equating the 

coefficient of 0 ~ to zero in 8.2.2: 

8.2.3 g U + f V + ( e +  3g) W = o ,  

of. 8.I.I3. By operating in the field K(O), we shall (as in Ch. V and VI) obtain 

solubility conditions for the equation 8.2.2. I t  can be shown tha t  these repre- 

sent congruence conditions for the resulting cubic equation 8.2.3, but I will not 

go into details with this. 

We first deduce the condition 5.i.6 again: 

8.2.4 g ~ O (rood 3). 

For a = u + v 0 + w 0 2 ~ o  (rood p~) (since P 3 l a - + 3 ] z ~ 3 [ x & Y ) ,  and 8.x.I3 

shows that  then a 3 ~ •  I (rood 3). 

I f  we cube a complete system of residues rood 3 and prime to 3, we find 

that  all possible effective cubic residues rood 9 are represented: 

I, I + 3 0 ,  x++_3 0~', I + 3 0 + 3 0  ~ 

(cf. 5.5.I), which shows tha t  we cannot expect to obtain stronger conditions 

rood 9 than rood 3. I t  is also easily verified directly that  8.2.4 is the sufficient 
congruence condition rood 3 ~, 3 ~ I, for the resulting equation 8.2.3. 

Since p~= [3, I + 0 ] [ e  t + f ~ 0 +  gxO ~, i.e. e 1 - f l  + g l ~ o  (mod 3), there are 

only three possibilities: 

•  1 + f a 0 q - g m 0 " ) ~  I +0 ,  i - - 0  ~ or 0 +  0 ~ (rood 3) 

(the fourth possibility ~ - - 0 + 0  ~ I + 2 0 + 0  ~ = ( I  +0)  ~ is divisible bypg), and 

these can all be transformed into each other  rood 3 by multiplication by suit- 

able powers of the unit  ~1 = 0. Doing this beforehand, we may assume that  we 

have the first possibility, i.e. 91 ~ o (rood 3) in 8.2,2. We can then only use 

those combinations ~/= e~e~ which leave this condition satisfied, and these are 

~2 G2 0 2 = I, = ele~,= 0(0--  I) or = cl 2=  (0-- I) 2 . 

This limits the number of possibilities in 8.2.2 to three, given by 

8 . 2 . 5  x - y O  = { o ( 0 -  I ) } ; ( e l  +flO + glO*),? = v ~ , ~  ~ = ~ ,~? ,  i = o ,  ~, 2 ,  

provided g: ~ o (rood 3). 



w  
Ch. VI. 

(mod p), and we are led to a congruence 

8.3.I y(d  - -  8) ~ / ~ c t  s = # ( 8 ) .  {a (8)}  a ( m o d  PvP~). 

The two separate congruences rood p~ and p~' give 

y (d  - -  d') = I~(d')" {a(d')} s, y(d  --  d") ~ ~t(d")-{a (d")} s (rood p), 

which combined give the condit ion 

d - -  d' .  Ad'_A) (rood , )  
8"3"2 d --  d"  g (d") 

In particular,  we mus t  examine the influence on this  condit ion of 

= o ( 8 - -  I) = 7(8) in 8.2. 5. Using the formulae 8.I.1o, we find tha t  

~7(d") = d " ( d " - -  ~ ) -  (rood p), 

i.e. a perfect cube. I t  will therefore suffice for exclusion rood p to consider only 

i --- o in 8.2.5, and g of 8 .3 . I - -2  can be replaced by v = e 1 + f10 + g18 s, 9~ ~ o 

(rood 3). In  part icular,  8.3.2 takes the  form 

d - -  d' v (d') 
8.3.3 d - - d "  v(d") (mod p). 

I f  this  is not  satisfied, the given equation is insoluble. Since all ra t ional  num- 

bers are cubic residues when p = q ~ - -  I (rood 9), the method will  only lead to 

effective conditions when p = r ~ + I (mod 9). 

Replacing p by some other  prime pi ~- _+ I (rood 9), 8.3.3 will represent a 

necessary condit ion for  pale .  I f  however 19 i s  the prime of the given equation, 

we have pv = [p, ~ - - d ] l v  = e~ + f ~ 8 + # 1 8  s. The a rgument  tha t  led to 6.5-5 

still holds (cf. 8.I.9), and 8.3.I ~ wi th  /z replaced by v ~ leads to exactly the 

same condi t ion as 6.5.6: 

.fl - -  .q, d' 
8.3.4 .f~ _ 9 ~ d , , ( B ) p ,  g~ -~ o (mod 3), 

which will be a necessary condition for  solubility of  the given equations 8. I . I ~ 2 ,  

when p is a prime or the square of  a prime. ~ W e  shall see in the next  para- 

graph t h a t  the  condition gl ~ o (rood 3) can be omitted when 3 (B)Jv. 
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We now come to the condit ions rood /9, corresponding to those of 

From pv = [p , /9 - -  d] l x - -  yO , we conclude tha t  x ~ dy,  x - - y S - ~  y ( d - -  8) 
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As an example, let us consider the smallest value of p that  can be excluded, 

P = 73: 

8.3.5 xS 3xy~ + y3 = 3.73zS 

The solutions of the congruence x s -  3 x + I ~ o (rood 73) are d = 39, d' = 48, 

d " =  59, corresponding to the prime factors of 73: 

PTs= [ 7 3 , 0 - - 3 9 ]  = [ 5 - - 2 0 ] ,  P'Ts = [ 7 3 , 0 - - 4 8 ]  = [2 + 30] ,  

P;~= [ 7 3 , 0 - - 5 9 ] =  [3 - -50] ,  

We choose the first factor PTa, and multiply by pa = [t + 0]: 

( , + 8 ) (  5 - 2 0 ) = 5 + 3 8 - 2 0  ~. 

To get gt ~ o (rood 3), we must multiply by 0 (the next paragraph will show 

that  this is not really necessary, since 3 (R)73): 

0(5 + 30 - -20" - )=  2 - - 0 +  30~'=el  + f ~ O + g , O ' ,  where 

f,--g,d" - -  I - - 3 , 4 8  1 4 5 _  I 
2 (mod 73), f, --gld" - - -  I - -  3"  59  178  32  

which is not a 

the end of w 5 

The results 

tions 8.I.I (in 

cubic residue; the equation 8.3.5 is consequently insoluble. (Cf. 

below.) 

of my calculations are given in Table 3, where I treat all equa- 

this form, with u, v and w) for which p < 5oo. Apart from 

primes, the list contains the squares I7 ~ and I9 ~ and the product 17- I9. Crosses 

stand for equations which have been proved insoluble by the Criterion 8.3.4. In 

all other cases a solution is found. I t  is rather striking that  all non-excluded 

equations with p ~ + I (rood 9) have a solution with w = I. (I found these 

solutions, the bigger ones by the continued fraction for 0, before I excluded 

the remaining equations. To decide the cubic character of the fractions 8.34, 

I used the table of indices in KRAITCHIK [l]. - - T h e  solutions with w > I were 

found from the resulting equation 8.2.3.) 

Because of the automorphisms 8 . I . I f ,  the solut ions will always occur in 

groups of three, with the same value of w. Table 3 only gives the one solution 

in each group for which u, v and w are all positive. 



w 4- 
equat ion 

8.4.1 
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For  use in the nex t  chapter  (Th. X, w 5), Table  3 a l so  contains the  

u a - - 3 u ~ v +  v a = p w  a 

for  9P  < 5 ~  (wigh the same mean ing  of  p as above). Simple solutions are found  

in all cases. I shall sketch briefly how the earl ier  considerat ions  must  be modi- 

fied for  this equat ion,  which I will t r ea t  in the form cor responding  to 8.1.2: 

8.4.2 x ~ - -  3 x y ~  + yS = pz.~. 

This is possible fo r  all moduli .  The ideal-equation 8.2.1 now takes the  fo rm 

[ x ~ y O ]  = ppa 8. We suppose t h a t  p is a prime or the square of a pr ime;  i t  

will t hen  suffice to exclude one of the  th ree  cor responding  equations.  

8.2.2 can be used as it  stands,  if /V(ju) = _At(v) = p .  Since p_,4v, there  are 

now nine  different  possibilit ies rood 3: 

+ (e, + Z 0  + 9,0~)= 1 

I - - 0  

I + 0 + 0  ~, 

0 , 0" 

0 - -  0 ~ , I + 0 ~ 

I - - 0 - - 0  ~, I + 0 - - 0  ~ 

(rood 3), 

which can all be t r ans fo rmed  into each o ther  rood 3 by mul t ip l icat ion with suit- 

able powers o f  t h e  uni ts  ~1 = 0 and ,z = 0 - -  I. Doing  this  beforehand ,  we may 

again suppose t ha t  we have the first possibili ty,  i.e. f~ --  g~ ----- o (rood 3) in 8.2.2. 

The  condi t ion  8.2.4 is still necessary,  and the  only values of ~2 = e~ ,~ which 

leave this condi t ion  satisfied are 

8.4.3 ~ = I ,  71 = O, ~ = O - -  I .  

The  condi t ion  8.3,2 remains the  same, and is only effective i f  p = r = + i 

(rood 9). We then  have to examine the influence of  the factors  (cf. 8.1.~o): 

d' (d- - l ) '  
t l -  ~ ( d " ) - ~ ' = - -  d ( d - -  I) d ( d - - 1 )  

8"4'4 | d' (mod p), 
t~ v~(d') - -  I _ d ( d - -  I) I *7~(d") d"  - -  1 4a ~ d ( d -  I) 

The  exclusion will therefore  depend on the  cubic charac te r  mod p of d ( d - -  I). 

The  congruence  
( d* - -  I) 8 ~ 3 d(d  - -  I) (mod p) 
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shows that  3 and d ( d -  i) are simultaneously cubic residues or non-residues. I f  

therefore 3 (N)p, one and only one of the three units 8.4.3 is alwayslaossible mod p, 

since then I, t~ and t~ all belong to different classes rood p. I f  however 

8.4.5 3(R)p, i.e. d ( d - -  I)(I~)p, 

all three units are simultaneously possible or impossible. From 8.I. 9 we conclude 

that  
d d ' d " ~ - -  I(l~)p, (d - -  I ) (d ' - -  I ) (d" - -  I ) ~  I (g)p ,  

and 8.4.4 shows that  the condition 8.4.5 is equivalent to 

8.4.6 d ~ d ' ~ d " ,  d - -  I ~ d ' - -  I ~ d " - -  I (mod p). 

But then the condition 8.3.2 is independent of the use of any unit  

~ ~ 0~(0 - I)i. The given equations 8 .4 . I~2  are therefore insoluble i f  p is a 

prime ~ + I (rood 9) for which 3 (R)p (or the square of such a prime), and i f  the 

condition 8.3.4 is not satisfied for an arbitrary ~ = ei + f t  0 + gl 0~. - -  The only 

equations 8.4. I ~ 2  with p < 5oo which can be excluded correspond to 

p = 27I , 

cf. the end of the next paragraph. 

I t  is clear that  when 3 (R)p, the criterion 8.3.4 is independent of the use 

of units also for the equation 8.I.2, and the additional condition g~ ~ o (rood 3) 

can then be omitted. 

#5. 

8.5.1 

8.5.2 

expressed by the following 

There is an interesting connection between the two equations 

x 3 - - 3 x y ~ +  y8 = p z  s 

x 8 - 3 x y 2 + y 3 =  3PZS, 

Theorem VII. I f  p ~ + ~ (rood 9) is a prime which has 3 as a cubic residue 

(or the square of such a prime), then at most one of the equations 8.5.I--2 is soluble 

i f  d is a cubic non-residue of p. 

We note that  the choice o f  d among the roots of the congruence 8.I. 3 is 

irrelevant, because of 8.4.5. - -  Let pp = [v(O)], so that  the equations 8.2.2 cor- 

responding to 8.5.1--2 take the form 

x - y #  = v . , ( o ) . ,  3 a n d  x - - y #  = + 
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respectively. We  use the criterion 8.3.2 , which is now independent  of the un i t  

d - -  d' 
(since 3(R)p), and we have to compare d - - d "  with 

v(d') and I + d' v(d') 
y(d ' )  I + d"  v(d") 

But  these expressions belong to different classes rood p, since 

i + d '  3d '  
1 + d " - -  (i + d " )  ~ 

~ 3 d ' ~  3 d (rood p), 

which is a cubic non-residue by the condit ions of the theorem. This concludes 

the proof. 

The primes p -~  + 1 (rood 9) and < 500 for  which 3(B)P, with the  corre- 

sponding values of d, are 

P =  73, d =  39; P =  271, d - -  8 3 ; p =  3o7, d = - - 8 6 .  

In  all cases, 

soluble : 

d is a cubic non-residue of p. Since the fol lowing equations are 

x S - - S x y ~ + y a = 7 3 z S  : x = 5 ,  y =  2, z =  I 

x a _ 3 x y ~ + y a =  3o7z3 : x =  I2, y =  7, z =  I 

x 3 - - 3 x y ~ + y 3 = 3 " 2 7 I Z a  : x =  17, y =  1o, z =  I, 

it  follows f rom Th. V I I  tha t  8.5.1 is insoluble for  p = 27I and 8.5.2 for  p = 73 

and 307 (ef. Table 3 and the example 8.3.5). But  Th. V l l  will of course not 

cover all insolubl~ equations 8.5.1--2. 

C H A P T E R  IX. T h e  E q u a t i o n  X3 + y s =  A Z s. 

w z. We have seen in Ch. VII ,  w167 5--6,  tha t  a t r ea tment  of the equation 

X s + y8 = A Z 3 in the  f e ld  K(} /A)  led to incomplete results about  the solubility 

of such an equation. The object of the present chapter  is to improve the results 
2 ~ t i  

by a t r ea tmen t  in the field K(Q), Q = e 3 , as already indicated by HURWITZ [I], 

NXGELI, [I] and F~UDEEV [I]. (See the Introduction.) 

I shall make use of the cubic law of  reciprocity, and quote the following 

results f rom BACnMAN~ [I], pp. I85--99 and 22o--24:  
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As already ment ioned in Ch. IV, w 4, the primes of K(Q) are ~ = t - -Q 

(where ~ = --  3 e), the ra t ional  primes q ~ - -  , (rood 3) and the conjugate  factors 

of the ra t ional  p r imes  r ~ - +  I (rood 3), r = z r ~ r .  I denote by z =  a +  be any 

prime q, ~rr or ~r. By mult ipl icat ion by a properly chosen uni t  ~ from K(Q) 

( ~ = +  ,,  +_e or +_e~), we can always put  z in the primary form." 

9.I . I  a ~ - - , ,  b ~ o  (mod 3). 

For  any i n ~ g e r  �9 of K(Q), we have 

_~'(~ )-1 
a ~ ' ,  e or  e ~ ( m o d  ~r), if (~,Tr) = I,  

where N means the norm in K(e); and we define the cubic character of u rood z by 

[~1 = I, q o r  0 3 

respectively;  the first a l ternat ive corresponds to the cubic residues mod r~. The 

symbol is multiplicative." 

The cubic law of reciprocity states tha t  

9.1.2 

when ~ and ~'  are two different  primes in primary form. ~ We also need 

some supplementary  results:  

9 . ' .3  = Q ~ , 

which shows t h a t  O is a cubic residue of z only if z ~ q - - = - - ,  (rood 9), or i f  

= z~, where r = z , . ~  ~ + , (rood 9). 

Le. 3 is a cubic residue if and only if b ~ o (rood 9). ~ Fu r the r  

9. , .5 [ ~ 1  = [ ~ ]  = [ ~ 1 ' .  
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The value of the cubic character [ ] is replaced by its conjugate (i.e. Q replaced 

by Qs) if both "numerator" and "denominator" are replaced simultaneously by 

their conjugates. - -  Finally two conjugate primes are always cubic residues of 

each other: 

9. I .6 [ ~ ]  : [-~] = I. 

The main formula 9.I.2 still holds if the definition 9.I.1 of the primary 

form is replaced by the weaker  definition 

9.I.7 b ~ o (rood 3). 

This is not the case for 9-I.4, but  the equivalence 9 [ b ~  3 ( R ) r  is of course still 

valid. I f  nothing else is said, "primary form" will throughout  this chapter 

only refer to the weaker definition 9. I.7. 

w 2. As already mentioned in the Introduction, the equation 

9.2.i X a +  y a = A Z  s 

was proved insoluble in many cases by SYLV~SWSR [I], PJiPIN [I]--[3] and others; 

for complete references, see the fourth heading 1.5.I. The most important result is 

Theorem VII I  (Sy lves ter ,  t )6pin) .  The  equation X 3 + y s  = A Z a has onO the 

t r i v i a l  solution w i t h  Z ~ o i f  A has one o f  t h e  fo l lowing  f o r m s :  

3, q~(> 2), q•, q~, q], 9q~, 9q,-, 9q~, 9ql, 
9.2.2 2 2 '2 ql q~, ql q2, ql q~2, q2 q2, 

where  qL ~ q'l ==2 and q~ ~-- q'~ ~ 5 (rood 9) are pr imes .  

The cubefree A ~ 5oo covered by this theorem axe given in Table  4 ~. - -  

The insolubility of A = 3 and 4 had. been proved earlier by L~GE~DRE [I], who 

MSO stated that  A = 5 a n d  (erroneously) A = 6 are insoluble. The well-known 

simplest cases A = x and 2 are mentioned in 1.4.2-- 3. 

The values 9.2.2 are all  those with no prime factors r ~  I (rood 3)which  

were proved insoluble during the Igth century. (Cf. the comments to 9.4.5.) 

There are also some earlier results about  insolubility when A contains one 

prime factor r; the nmst  important of these results are 

SY,.vEsTsR [I], P~PxN [3]: 

9.2.3 A = 3 r  or 3rS, where 3(/V) r. 

9.2.4 A = 2r, 4r ,  2 r ~ or 4r~, where A ~_+ I (mod 9), 2 (N) r. 
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PEPIN [3] (DIcKSON [I], Ch. X X I ,  ref.  2o7): 

A : I8 - ( r l ,  r3, r4, 9"21, r22, T2) 1 
9.2.5 A = 36. ( r l ,  r~, r,, r~, r~, r~), 

where rt, . . .  r4 are primes which can be expressed in the f o r m s  

rl  = (9m + 4) ~ + 3 ( 9 ~  + 4) ~, r ,  = (9m + I) 2 -{- 3 (9 ~  + I) ~, 

r ~ = ( 9 m +  2) ~+  3 ( 9 n +  2) 2, r , = m  s+ 27(3n+_ I) ~. 

We  shall need la te r  the residues rood 9: 

9.2.6 r l =  I, r ~ = 4  

and the cubic characters  of 2 and 3: 

9.2.7 

and rs = 7 (mod 9), 

ra, 2(N) r2, 2(N) ra, 2(R) r4, 

(R),',, 3 (R) 3 (n)",, 3 

This follows f rom some well-known 

Le t  r = f ~  + 3g~ be a pr ime;  then  

equivalences (el. SYLV~S~E~ [I], p. 346): 

3 1 9 ~ 2 ( R )  '', 9[9 or 9 [ f + _ g ~ 3 ( R ) r .  

The values A of 9.2.5 all have the pr ime factors  2 and 3, and the vary ing  

fac to r  r. P~PIN [3] also gives some results  of insolubil i ty when the f ac to r  r is 

fixed and the o ther  factors  vary. I shall quote  his resul ts  for  the smallest  value 

r =  7. (There is no t  ful l  accordance between P6pin 's  in t roduc t ion  and his l a t e r  

proofs, and there  are several  errors. The  formulae  below are the correct  ones.) 

W e  group the  primes q ~ - - I  (rood 3) by the i r  residues rood I26 = 2 . 7 - 9  

in the fol lowing way:  

qa = 126h + 29, 83 q2 = I26h + 4 I, IS 3 

q~ = I 2 6 h  + 47, 65 q~ = I2 6 h  + I I ,  IOI 

9.2.8 Iq4= I 2 6 h +  5, 23 q~= I 2 6 h +  59, 95 

! q s =  I 2 6 h +  I7, 53, 89, Io7. 

1 There is a misprint in P6pin (copied in Dickson/: yj2~ r~ should be replaced by ~ =  r~. 
- -  There are several misprints and inaccuracies in P6pin's paper. 
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Then the fol lowing values are proved insoluble by Pgpin:  

9.2.9 7 "(q3, q~, q~, q~, qs, q~), f "  (q~, q2, q~, ql, qs, ql), 

2s '7" (q~ ,  q~), 2 . 7  ~.(qS, q~), 22" 7 ~.(q~, q~). 9.2.1o 2"7" (q , ,  q~), 

To these I can add 

9.2.I I 

303 

I omit  them here, as 

and X I I  (w I o). 

3. In  the  field K(e ) ,  the lef t  hand  side of 9.2.I factorizes as 

9.3.1 X s + y s  = ( X  + Y ) ( X  + Y o ) ( X  + Y e  ~) = A Z  s 

(where of course X and Y are supposed to be rat ional  integers). W e  must  have 

(X, Y ) =  I, since we only consider  cubefree values of  A. Any common divisor 

of the  three factors  of 9.3.I mus t  divide the differences 

Y(~ - d,  Y(~ - d )  and r ( ~ - -  ~), 

and the only possible common fac tor  is therefore  

9.3.2 2 = I - -  q, if X + Y------ o (rood 3), i.e. 3 [A Z. 

I t  is fu r ther  clear tha t  X + Y0  or X + yq2  cannos be divisible by a rat ional  

in teger  > I, i.e. in par t icular  not  by it j = - -  3 e. 

2 . 7 "  (q~, q]), 2s" 7 ~'(q~, q4), 

9"7"(ql ,  q~, q.*, q~' q~, q~, q~, q,, q~, q~, qa, q~), 
9.2.I2 (9"7~'(ql ,  q[, q~, ql, qs, q~, q~, q~, q;, q2, q~, q~)- 

W e  shall need  la ter  the  residues rood 9 of the  primes 9.2.8, and their  cubic 

character  rood 7 : 

9.2.I3 / 7 q l  and q~ (R) qa, q~, q4, q~ and q~ (N)7; 
q a ~ q 4 ~ 2 ,  q a ~ q ~ ~ 3  ~ 2 (mod 7). 

P6pin also gives similar  (incomplete) results for  

r = I3, ~9, 3I and 37. 

they are all covered by m y  general Theorems X I  (w 8) 
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Treat ing  X s + I rs = . 4 Z  s as a congruence rood 9, we see t ha t  we must have 

3 [ Z ,  i.e. ~he case 9.3.2, if  A ~ _  3 or •  (rood 9). W h e n  A- ~ _ + 2  (rood 9), 

there is a l so  the al ternat ive possibility X = - - Y ~ + _ Z ~ o  (rood 3), and if  

A ~ •  I (rood 9) the possibility X Y ~  o (rood 3). 

We  will first suppose t ha t  A contains no prime factors r --= I (rood 3)- As all  

primes q ~ - -  I remain primes in K(e), and hence cannot  divide ( X +  } ' 0 ) ( X +  Y0~), 

9 .3 . I - -2  give us the following possibilities: 

Case I." 3 [ Z (the only possibility when A ~ _ 3 or • 4 (rood 9)): 

X +  Y = 9 A w  8, X +  Y q - - ~ g ( u + v q )  s, Z = 3 w . N ( u + v o ) .  

Case 11." 3 X Z ,  A ~ •  I or • 2 (rood 9): 

X +  Y = A w  3, X +  Y O = E ( u + v o )  a, Z = w . N ( u + v e ) .  

Case I I I :  3 X Z, A ~ o (mod 9): 

X +  Y =  IAw3,  X +  Y e = ~ Z ( u + v e )  s, Z = w . N ( u + v e ) .  
3 

Here e s tands for  some unit  I, 0 or 0 2 of K(#) (a negative sign can be 

absorbed in u + v Q). The expression for  X + /rqs is always the  conjugate  of 

X +  YQ. u and v are ra t ional  integers,  and the norm 2g (u+  vQ) = u  ~ - u v + v  ~. 

In  all cases we mus t  have 2 ) fu  + v q, or u + v ~ o  (rood 3). The condit ion 

(X, Y ) =  I implies (u, v )=  1. 
The cases above will be referred to th roughou t  as I, I I  and I I I ,  wi thout  

fur ther  reference. In  order to avoid a separate t r ea tment  of each case, we note 

t ha t  ~(u + v Q) 8 of case I I  can be replaced by ~ej2(u~ + vaQ) s, where still 

(u,, v,) --- 1, but  now u 1 + v 1 ~ o (mod 3), i.e. 2 II ~, + v, e, 9 = q ~' II (~, + ~ e)', 

and where e~ is some properly chosen unit .  This device may seem artificial,  bu t  

i t  means a grea t  s implif icat ion of the calculations. The equations in the eases 

I - - I I I  can now all be included in the one formula: 
$ 

X +  Y-~  s A w  s, X +  Y e =  teZ(u + re) ~, Z =  l / 3 s t  ~.(u ~ - u v  + v~) .w, 9-3.3 

where 

9.3.4 

Case I :  s = 9 ,  t =  x, u + v ~ o  (rood 3)- 
I 

Case 11." s =  I, t =  9, u + v~--o, 

I 
Case 111: s =  :, t =  x, u +  v ~ o, 

3 

w ~ o  (mod 3). 

w ~ o (rood 3). 
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w 4. W e  can draw some immedia te  conclusions f rom 9.3.3, by subs t i tu t ing  

= I - -  Q, and compar ing  real and  complex parts  for  the  th ree  possibilit ies e = I, 

Q and Q~: 

e = I :  X =  t ( u  s +  3 u ' ~ v - - 6 u v  2 + v s) 

Y = - - t ( u  a - 6 u  ~ v +  3 u v " +  v s) and so 

X +  Y = 9 t u v ( u - - v ) = s A w  s . 

This  is impossible in ease I I I ,  since t h e n  3 ]1 s A w s. In  both  cases I and I [ ,  

we have s = 9 t ,  and 
u v (u  - v) = A w ~. 

The  fac tors  of the  lef t  hand  side are coprime in pairs (since (u, v ) =  I), and we 

conclude t ha t  there  must  exist  a fac tor iza t ion  of A = ab e ,  and three  ra t iona l  

integers  x, y and z, so t ha t  (the negat ive  sign for  u is c o n v e n i e n t ) :  

9.4.1 u = - - a x  s, v =  by  s, u - - v =  eeS; w = - - x y z ,  

or by addi t ion of the  th ree  first equat ions:  

a x  s + b y  3 + e z  ~ = o ,  a b e = A ,  (a, b) = (a,  c) = (b, c) = ~. 

I f  this  is soluble, so is the  given equat ion X s + y3 = A Z  ~. Going th rough  

the  calculations,  we f ind  t h a t  X ,  Y and Z are expressed in  terms of  x,  y and z 

by the formulae 1.2.4 of  Theorem I .  

One possibility of fac tor iza t ion  is of  course:  

9.4.2 a = b = I ,  c = A, 

i.e. the  same equat ion 9.2.1, but  w}'th a smaller numerical value o f  Z (of. w i 5, 

Lemma  I). Fo r  

z = V 3 s t ~ . ( u ~ - , , v  + v'-).,~, = - u  3s t" .N( ,  + ~,Q).xv,~-. 

We will suppose A >  I, i.e. x y ~ o ,  and fu r t h e r  A ~ 2 ,  i.e. x y #  I, I x y l >  I. 
3 3 

In  ease I ~ we have V 3 s t  ~ =  3, N (u  + v 0 ) ~ >  i, and in case I I  V3-~t ~= I 
3 

N ( u + v 0 )  > 3  (since ~ l u + v Q ) .  In  both  cases we find 

9.4.3 I~1 < Iz l .  
2 0 " 6 4 2 1 2 7  A ~ a  mat t '~na t / ca .  85 
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We can consequently use the a rgument  of "infinite descent": I f  the original 

solution (X, Y, Z) is the one for which [Z[ ~ o has the minimal  value, then 

the possibility 9.4.2 is excluded. 

We  shall see in a moment  (w 5) tha t  the other  possibilities e = Q or Q~ are 

excluded if A is not  a product  of primes --_+ I (rood 9), or 9 t imes such a 

product,  and we can therefore enunciate  the following 

Theorem IX. I f  A ~ 2 is eubefree and contains no p r i m e / a c t o r  r ~ + I (rood 3), 

and i f  in the cases A ~ o  or • I (rood 9) A contains at least one pr ime q ~ - -  I 

(rood 9), then solubility o f  X 3 + y s  = A Z 3 implies solubility o f  at least one o f  the 

equations 

9.4.4 a x  3 + by  8 §  cz  3 -  o, a b e  = A, i ~ a < b < c ,  (a,b) = (a,e) = (b,c) = I 

(not necessarily all of these, cf. the 3rd conjecture of Ch. VII ,  w 4). I f  all 

such equations can be proved insoluble (in particular,  if no such equat ion 

exists, i.e. when A is a prime q ~ - -  ~ (rood 9) or the square of such a prime), 

then  X s + :ya = A Z s has only the trivial solut ion with Z = o. 

The values of A for which the equations 9.4.4 (if existing) can be proved 

impossible by e lementary congruence considerations are given by Theorem V I I I  

(w 2); they all correspond to nA = I or 2 in Ch. VII ,  w 4. In  the lat ter  case, 

the equation 7.4.5 can be proved impossible mod 9 by 2 . I .2--3 .  

We have seen in Ch. V I I  tha t  all equations 9.4.4 can sometimes be excluded 

by my new methods  when N.~= 4. The corresponding values of A ~ 5oo (22 in 

all) are given in Table 4b; they  sat isfy the condit ions of Th.  IX,  and consequently 

represent insoluble equations XS + y s =  A Z 3. 

The smallest value of A in Table 4 b is 

9.4.5 A = 60, 

which was s ta ted by t)dpin to be insoluble (in a communicat ion to Lucas, cf. 

SYLVEST~R [I] p. 316). Sylvester could no t  verify this by his methods,  and I 

doubt  if P6pin possessed a valid proof. There are two direct errors in the same 

comnmnication,  namely the insolubility of A = 3I and-67, which are both soluble 

by Table 6. (But the insolubili ty of these was "verified" by Sylvester!) 

The a rgument  t ha t  led to 9.4.3 is easily extended to the cases A = I and  2, 

giving the well-known results ment ioned in connection with 1.4.2--3. 
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We  not iced t ha t  ~ = I was impossible in case I I I .  An in te res t ing  corol lary 

is t ha t  if A ~ o (mod 9), and the condi t ions  of Th. I X  are satisfied, then all solu- 

t ions of X s + y s  = A Z  ~ must  have Z - - o  (rood 3)- 

We  can f u r t h e r  no te  t h a t  ~ =  I for  A = a b e - - _  I (mod 9) is possible only 

in  case I ,  since it  is easily seen tha t  we must  then  have w = -  x y z  ~ o (mod 3). 

I f  the re fore  A ~ + I (rood 9), and the condit ions of Th. I X  are satisfied, t hen  

all solut ions of X a + ya  = A Z s mus t  have Z=~ o (rood 9). 

w 5. I f  we put  , = q  in 9.3.3 and compare  the  real and complex parts,  we 

find (Z is included to avoid repe t i t ion  'in Th.  X):  

9.5.2 X + 

t(u s - 6 u  ~ v +  3uv  ~ + v  3) 

t ( 2 u  3 -  3 u ~ v  - 3 u v  ~ + 2v 3) 
8 

V3 s t ~- (u" - u v + v~). w, and 

Y = 3 t ( u  ~ - 3 u ' ~ v + v  s ) = s A w  a. 

The  form f ( u , v )  = u  a - 3 u ~ v  + v a was t r ea t ed  in Ch. V I I I .  W e  have seen 

t ha t  i t  c anno t  be divisible by 9 if  (u, v ) =  ~; and obviously 3 I l l (  u, v ) i f  and  

only if u + v ~ o (rood 3). This  shows t h a t  9.5.2 is impossible in  case I,  since 

S 
t hen  ~ = 3  and u + v ~ o  (mod 3). F u r t h e r  f ( u ,  v) can only conta in  pr ime 

fac tors  # 3 w h i c h  are all - - +  I (rood 9); the  same holds for  A if 9.5.2 shall 

be possible. Inse r t ing  the  r igh t  values of s and t, we get  

T h e o r e m  X (Sylves ter) .  Le t  the cubefree integer A > x be a product  o f  p r imes  

+ I (rood 9). A solution o f  the equation 

9-5.3 u S - - 3 u ~ v + v  s = 3 A w  a 

wil l  lead to the solution 9.5.I,  w i t h  s = I, t = ~, o f  X a + y a  = A ZS; and  a solution o f  

9.5.4 u a - - 3 ~ / 2 v  + v a = A w  a 

= I , X s y s  Z 3. wi l l  lead to the .same solution, w i t h  s 3' t = i of" + = 9 A 

Since we have the  cases I I  and I I I  only, we nQtice tha t  all solut ions given 

by 9.5~I will have Z ~ o  (rood 3). 
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The case ~ = Q* need no t  be t rea ted  separately. Ins tead  of the equat ion 

9.3-3, X + Y e  =~tq~Z( u + v q) 3, we can consider  the (equivalent) conjugate  one:  

9.5.5 X + Y O ~ = t ~ ~ (u + v e2) s, 

where ] = I --Q~ = - -Q*( I  --Q) = - - q ~ Z ,  (u + vq~) a = (v + uQ) a, and mult ipl icat ion 

by Q in 9-5.5 gives 

9.5.6 Y +  X Q  = t Q , ~ ( - - v - - u q )  s. 

This corresponds to the case ~ = q, if we in terchange X and  Y and  replace u 

by - -v ,  v by - - u .  

The conditions under  which ~ ~ I is possible can also be deduced indepen- 

dently of  the properties of  the form f (u ,  v) = u s - -  3 u~ v + v 3. Subtract ion of the 

two first equations 9-3.3 gives 

9.5.7 Yi~ = s A w  a -  t ~ ( u  + vQ) 3. 

In  case I we have s = 9  = q~(*, t = I, ~ 4 u + v q ,  h e n c e ( u +  v q ) a ~ •  I (mode4), 

and 
Y ~  + e (rood ~ ,  i.e. mod 3), 

which is clearly impossible if e = e or ~ .  

L e t  next  p ~ 3 be a prime divisor o f  A, s o p X  l r. I t  follows from 9.5.7 t ha t  

Y - - -  t~(u +v~,) ", so ~ - = -  t~(u + ~q*)" (rood p) 

by taking conjugates.  Dividing these expressions, we see t ha t  

~(R)p, 

which is onl~ possible wi th  ~ # I, - = q or ~ ,  if p ~ + I (rood 9) (cf. 9.L3). 

A list of solutions for the equations 9.5.3--4 is given in Table 3, cf. Ch. VI I I .  

Several equations 9-5.3 have been proved insoluble when A is a primv r -~  + I 

(rood 9), or the square of such a prime. This does not  necessarily imply insolu- 

bility of the Corresponding equation X 3 +  y 3 =  A Z 3, since there are also other  

possibilities of descent  (w 6) in this case. ( B u t  see ~ I 2 - - I 4  below.) 

I f  A = Q = q  or q* (in the nota t ion  7.4.3), q ~ I (mod 9); the equat ion 
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9.5.3 represents  the only possibility of descent. And ,the methods  o f  exclusion in 

Ch. V I I I  do not apply, since the condi t ion 8.3. 4 is only effective for  a prime 

p = r ~ +  I (mod 9). 

The last  r emark  also holds if A = 9 Q or A = Q1 Q~, where q---- ql------- q2 ~ - -  i 

(rood 9). But  t hen  the one equat ion 7.4.5 is also possible fo r  all moduli,  and 

cannot  be excluded by the methods  of this paper,  i f  the weaker form of the .first 

conjecture in Ch. VI I ,  w 4 is true.  This  remark  ho lds  for  any combina t ion  

A = QI Q~ which is no t  covered by Th. V I I I  (w 2), and we can consequent ly  

enuncia te  the fol lowing negative resul t :  

Let A (cube~'ee) contain at most two different prime factors, and no prime 

r ~ + I (mod 3). I f  the weaker form of the first conjecture in Ch. VII ,  w 4 is 

true, then Theorem V I I I  will give all such values of A, for which the equation 

X 3 + ya = A Z 8 can be proved insoluble by the methods of  the present paper. 

w 6: I f  A contains one or more prime factors r ~  + I (mod 3), the above 

possibilities of descent  still exist, giving r ise to the  Theorems  I and  X, But  

there  is also ano the r  possible descent  in this case, depending on the  fac t  t h a t  

the primes r = ~ r ~ r  factorize in K(r In  add i t ion  to 9.3.3, we n o w  get  one or 

more  systems 

I X +  Y = s A ~ w a ,  X +  Y Q ~ t ~ ( a + b # ) ( u §  

9.5.1 a + bQ # +_ I, +_ Q, +__ Q~; 

[ Z = V3 s-t ~ . ( u ~ - u v  + v*).w, where A = A t �9 N(a  + bQ), 

with  the values of s and t given by 9 - 3 . 4 . -  Here  a +  b q is a product  of 

primes rcr such tha t  r ] A. The unit  e is absorbed in a + b Q, for  which there  are 

consequent ly  three  a priori possibilities for  each choice of the factors  ~ .  The 

condit ions (X, Y) = I and ZXa  + b~ imply (a,b) = t and a +  b ~ o  (rood 3). 

I f  A contains  several  pr imes r, the  number  of possible  combinat ions  a + bQ 

m a y  become considerable (some of these factors  r can of  course divide A~, which 

must contain  all pr ime fac tors  q of A). B u t  there  are some impor t an t  simpli- 

fications in this connect ion:  

I. a + b ~ can never  be divisible by two conjuga te  p r imes  z~ and ~ ,  i.e. by r. 

2. The  equat ions 9.6.I for  two conjugate values a + bQ and a + bQ~ are 

equivalent, and it  suffices to t r ea t  one of these possibilities. F o r  instead of the 

equat ion 
X +  r e =  t Z ( a +  b e ~ ) ( u + v e ) t  
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we can consider the conjugate one: 

X + Y e  ~ = t~(a  + be)(u + ve~) 3. 

The argument that  led to 9.5.6 shows that  this can be written as 

U +  X e = t z (a  + bQ)( - -v - -u~ , )  ~, 

which is equivalent to 9.6.I. 

3. I f  A (cubefree) is divisible by a square r ~, then z r l a  + b#-~ z~lla + bQ, 

since the possibility ~,.}]a + b#, rl lA, implies the common factor ~r of X + Y# 

and X + Y. 

As an important corollary of the above results, we see that  apart fi'om the 

choice of unit, there is only one possible system 9.6.I i f  A contains just one prime 

r ~  I (rood 3) (to the first or second power). 

Comparing the real and complex parts in 9:6.1, we find (Z is included for 

convenience) : [~ = a ( . '  + 3 "~ v - -  6 .  v ' + v ') + b ( ." - -  6 u ' v + 3 u v ' + v ') 

9.6.2 = - - a ( u  3 - 6 u  ~ v +  3 u v  2 + v  s )+  b(2u a - 3 u ~ v - 3 u v  ~+ zv  a) 
8 

[ z = V 3  s t ~. (u ~ - u v + v ~ ) . w ,  a n d  

s ( x + Y )  
3 a u  v (u - vi + b (u ~ - -  3 u ~ v + v~) = ~ .  As  ~ = A~ w~ 

3 t 
9.6.3 

A solution of  this equation will consequently tead to the solution 9.6.2 of 

X 3 +  y a =  A Z  3, where A = A t . ( a ~ - - a b  + b~). The values of s and t are given 

in 9-3.4. We note in particular that  we get the same equation 9.6.3 in the 

8 
two (most important) cases I and II ,  since then ~ = 3. 

w 7. The necessary and sufficient conditions for solubility of  the congruence 

corresponding to 9.6. 3 : 

S 
9.7.1 3 a u v ( u - - v )  + b(u 3 -  3u2v + v a ) ~ - ~ t . A a w a  A j w  3 (rood p~), 

for all primes p and all exponents ~, are given by: 

9.7.2 q]A,  i.e. q]A,:  I a + bQ1 = I. 
I_ q l 



9.7.3 

9.7.4 

The above condit ions are the same in all cases I - - I I I .  

di t ions mod 38, these cases must  be t reated separate]y: 

The Diophantine Equation ax a + by a + cz a = O. 

a + b  
r = ~ , ~ , I A , :  --  I ,  o r  ( R ) r .  

~ _] a +  b 

,~ , la  + be, i.e. r l N ( a  + b~): b~A, (R)r ,  or b ~ A, (mod r). 

To obtain the con- 
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9.7-5 Case I, if 3 4 A :  b ~ o (rood 3). 

9.7.6 . . . .  , if 3 [ A :  b ~ o (mod 9). 

9.7.7 Case I I ,  3XAI :  b - - 2 a ~ _ A  1 (mod 9). 

9.7.8 Case II , ,  911A1, 3 4" A,:  b =--- _+ A,. (mod 9). 

To prove the condit ions 9.7.2--8, we need the results of Ch. I I ,  w 3, in 

par t icular  2.3. 3. W e  note t h a t  the discriminant of the left  hand  side of 9.7.I is 

9.7.9 J = 34.-Sr(a + b#)' = 3 ' - ( a  ~ - a b  + b*) 2, 

which has no prime factor ~ 3 in common with A~ (by 3. of the last  paragraph). 

For  all p # 3, it  wiU therefore suffice to t rea t  9.7.1 wi th  ~ = I. 

W i t h  the no ta t ion  of 2.3.I , we find for 9.7.I t ha t  A = b, B = 3(a- -b} ,  

C - = - - 3 a ,  D = b ,  E = A 2 ,  and the p r i m e s p # 3  which must  be considered are 

by 2.3. 3 and 9.7.9: 

p = q  if qlA~; p = r  if  r l b A , ( a ~ - - a b +  b~), 

i.e. the  primes of 9.7.2--4, and in addit ion the primes r such tha t  r ib .  But  i t  

is clear tha t  in the la t ter  case, the congruence 9.7.i for ~ = I is always soluble 

wi th  u - - v ~ o ,  w ~ o  (rood r). And since r 4 a ,  i.e. r~ 'A,  we can find solutions 

for any ~ > I by varying u or v only. 

Let  next  p ~ 3 be a prime factor  of A,, so pX 17. Subtract ion of the two 

first equations 9.6.~ and division by s = I - - Q  shows tha t  

- -  Y- - - - - t (a+  b e ) ( u + v # ) a ,  so - -  Y - - - - t ( a +  bQ~)(u+vQ~)a ( m o d p )  

by taking  conjugates.  I f  p = q ~ - -  I (mod 3), Y and t (rational) are both cubic 

residues of q, and we get  the necessary condit ion 9.7.2. I f  p = r ~ + I (rood 3), 

division of the two expressions for Y similarly gives the condit ion 9.7,3. To 

show the sufficiency of these conditions,  we note t ha t  they  both imply the  
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existence of three ra t ional  integers ul, vl (not both ~ o (rood p)) and k ~ o  

(rood p) such tha t  

a + b e --= k (v~ + u~ e) 3 (rood p), or 

a -~ k (u~ - 3 -~ v, + v~), b - - - -  ~ .  3 u, vl ( , ,  - -  v,) (rood p). 

Since plA~, we have a solut ion u ~ u l ,  v ~ v l  of 9.7.I (with 6 = I, which suffices 

since p X J) .  

Le t  finally r IA be one of the primes which have been used for forming 

a + bQ, i.e. ~:rla+ be, r [ N ( a  + b e ) =  a ~ - - a b  + b ~, rXb,  r X A ~ w  a. Afte r  multi- 

plication with b ~, the congruence 9.7.I (with (~ = I, which suffices since r XA~) 

can be wri t ten as 

( b y - -  au)  8 + [(a + b)u  3 - -  3 b u  2v]  "(a ~ - -  a b  + b ~) ~ b ~ A ~ w  3 (rood r), 

hence ( b v - - a u )  a ~ b  ~A~w a (rood r). 

The necessity and  sufficiency of 9.7.4 is an immediate  consequence. 

We  now tu rn  to the condit ions rood 3 g, and  trear the  simplest  cases 

8 
9.7.7--8 first. In  case I I  we have 3~'A~ and ~-~= 3. Since u +  v ~ o  (rood 3), 

we subst i tute  v = - - u  + 3 vj in 9.7.I, and find af ter  division by 3: 

(b --  2 a) u 3 + 9 a u ~ v~ --  9 (a + b) u ~'~ + 9 b v~ ~ A1 w a (rood 3~-~), 

for  which clearly 9.7.7 is the necessary and sufficient condit ion for  solubility for 

all 6. 

In case I I I  we have 9[[A1 and s I - - = - ,  so 3XA~. From u + v ~ o  (mod 3) 
3 t  9 

we conclude tha t  

9.7. I0 u v ( u - - v ) ~ o  (rood 3), uS---3 u * v + v a ~ +  - t (rood 9), 

which proves 9.7.8. 
s 

In  case I we have ~-~ = 3  and u + v ~ o  (mod 3). Since A and .41 are 

exactly divisible by the same power of 3, the necessity of the condit ions 9.7.5--6 

is clear from 9.7,Io. I omit  the verification of the i r  sufficiency here; the proof 

is an elementary,  but  tedious enumera t ion  of cases. 

8L The conditions 9.7.5--8 show at  once tha t  we must  have b ~ o (rood 3) 

in case I, b ~ o (rood 3) in case I I I .  But we can also deduce similar properties 

in case I I ,  namely :  For A ~ _ +  I or + 2 (rood 9) in case I1, we must h a v e b ~ o  

or b ~ - o  (mod 3) respectively. 
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W e  notlce tha t  g X a  + bQ implies a + b---- b - -  2 a  ~ o (rood 3), which leaves 

the fol lowing possibilit ies for  a + b e (in all cases): 

9.8.1 b ~ o ,  a ~ o  or a - - b = o  (mod 3)- 

These  can all b e  obta ined from one by mul t ip l ica t ion  with properly chosen 

units  I, Q or Qs. 

We suppose  that  we have  case II ,  and let first b ~ o (rood 3), then  

a ~ - a b +  b s = ( b - - 2 a )  s - 3 a ( a - b ) ~ ( b - z a )  ~ (mod 9). 

But  then A = A I ( a  ~ - a b + b  ~ ) ~ A ~ ( b - z a )  s, and 

A (b - -  2 a) ~ Al (b - -  2 a) a ~ +  A 1 (mod 9), 

which coincides with 9.7.7 if and only if A ~-__+ I (rood 9). 

Let  next  b------o (mod 3), then 

a s - a b +  b ~ = - 2 ( b - 2 a )  s + 9  a s - 9 a b +  3 b ~ = - - 2 ( b - - 2 a )  ~ (mod 9), 

and we conclude similarly tha t  

A (b - -  2 a) =-- • 2A1, or A ~ +  2 (mod 9)- 

Consequently we must have b - - o  (rood 3 ) f o r  all A ~ o  or + I (mod 9). I f  

this means  tha t  ~r must  in part icular  a + bQ is a prime zr, or the  square z~, 

have the primary  form 9.1.7. For  a pr ime q such tha t  q l A ,  we can use the  

cubic law of reciprocity 9.I.2 on t h e c o n d i t i o n  9.7.2: 

[ ~ ]  = [ q r ]  = [ q ]  = I "  

The same holds for  any A if q ~ - - I  (mod 9), i.e. [ ~ 1 = I  by 9.I.3. We thus  

get  the impor tan t  condit ion:  ~ 

9 .8.2 q lA ,  A ~ o  or _+ I if q ~ - -  I (rood 9), a + be  = z ~  or z~-~q( /~ ) r .  

I f  q(N)r, the equatgion 9.6.3 is then impossible. I f  A contains only one 

prime fac tor  r, there  are no o ther  possible equat ions of the same type. I f  

A s i mi l a r  cond i t i on  is  eas i ly  deduced  f rom 9-7.3: 

- ~ -~ rl (R) r. r l # r ,  r l l A t ,  A ~ o  or + I  if r ~ + I  (mod 9), a + b o = z ~  r or 3 r 
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fu r ther  A contains only one prime q, and 3XA,  i.e. A = Q R  in the nota t ion  

7.4.3, then the only a priori possible equat ion 9.4.4: 

9.8.3 x 3 +  Q y a + R z  a = o  

is excluded mod r if q(N)r .  I f  we suppose A ~ •  I (mod 9), t h e n  at  leas~ one 

of the primes q and r is ~ •  I (rood 9), and the  d e s c e n t o f w  5 is also excluded. 

The corresponding equation X a + ya  = A Z  a is consequently insoluble. 

Before we formulate  this as a theorem, we shall find a similar result  in the 

case A = 3R,  R = r  or r ~, where 3(N)r .  From 9.I .4 we conclude t h a t  the con- 

dit ion 9.7.6 is not  satisfied. (Note t ha t  

9.8.4 9 1 b ~ 9 ] b l  if  a + b o =  u~ = (a, + b,Q)~.) 

The equation x a +  3 Y a + R z  a = o is also insoluble, and the descent of w 5 ex- 

cluded. - -  We can therefore s tate  the following 

Theorem XI.  The equation X a +  y a =  A Z 3 has only the trivial solution with 

Z = o i f  A has one of  the following forms:  

9.8.5 A =  3 I" or 3 re., 3 (N) r ;  

9.8.6 A = q r ,  qr  ~, q~r or q~r ~, A ~ _ +  ~ (rood 9), q(N)r ,  

where q ~ -  i and r ~ + i (rood 3) are primes, and (N) denotes cubic non-residuacity. 

The case 9.8. 5 is no th ing  but  Sylvester's result  9.2.3, and is included in the  

theorem for convenience. The general  resul t  9.8.6 does, however, seem to be 

new. Sylvester 's values 9.2.4 represent  the special case  q = 2, and P~pin's values 

9.2. 9 give all possibilities with r = 7 (this is easily verified by 9.2.I3). As already 

mentioned,  P~pin also proves similar (incomplete) results for r = 13, I9, 3 x and 

37, but  no t  the general  theorem. 

The cubefree values of A ~ 500 which can be proved insoluble by Th. X I  

are given in Table 4 ~. 

We can combine the above results with Th. IX  (w 4 ) t o  the fol lowing 

generalization of Th. X I :  Let  A be cube~'ee and ~ o or +_ I (rood 9). I f  A 

contains exactly one pr ime factor r =- + I (mod 3), and at least one other prime p 

such that p (N)r,  then solubility of  X a + ya  = A Z 3 implies solubility of  at least 

one o f  the equations 9.4.4. 
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This does not  lead to any new insoluble values of A ~< 500. The smallest 

excluded A which is no t  covered by Th. X I  is A = 570 = 2 .3"  5" 19 (cf. 7.4.1o), 

where 2, 3 and 5 are all cubic non-residues of 19. 

The equation 9.6.3 is also impossible for the values A of 9.8.6 under  the 

modified condit ion 

9.8. 7 A =  QR, q ~ - - l ,  r ~ +  I (rood 9), q(N) r. 

This follows at  once from 9.8.2. - -  The equat ion 9.8.3 is excluded rood r in this 

case, but the descent of w 5 is a priori possible. 

9. We shall show the following negative result  about  the s t rength  of the 

condit ions 9.7.2--8 (of. t h e  corresponding enuncia t ion  at  the end of w 5 above): 

Let A (cube free) contain at most two different prime factors, of which at least 

one is a prime r ~ + I (mod 3). The possibility 9.6. 3 of descent can then be com- 

pletely excluded by congruence considerations only in the cases 9.8.5--7, and in the 

additional case 

9.9.1 A = 9 r  or 9r~, r ~ +  I (mod 9), 3(N) r. 

(But then of course the descent of @ 5 is possible, and the methods  of exclusion 

in Ch. V I I I  do not  apply, since 8.4.5 is not  satisfied.) 

We begin by proving the following lemma:  

9.9.2 a + b Q = z ~  or z~, b ~ o ( m o d  3)-+9b(R)r ,  i.e. 3b ' (R) r .  

This is a consequence of 9.1.6: 

1 [ 
+ b e  ~ 

(Jacobian symbols if a + bQ = z~). NAG~LL ([7] PP" I6--17) has proved the more 

general  result  t ha t  every prime factor of b (and also of b - - 2 a ) i s  a cubic 
3 

residue rood r. 

The condition b ~ o (mod 3) in 9.9.2 can be omitted i f  r ~  + I (rood 9), since 

then Q is a cubic residue of z~ and ~ by 9.1.3. - -  Let  a + be be one possible 

form;  the other forms (irrespective of the sign) are then 

9.9.3 r  e ~ ( a + b e ) = b - - a - - a e  = 

= a  2 +  b~t~, where 
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b, a - - b  

- - a  be  

This  shows t h a t  the  th ree  possibil i t ies for  b are all equ iva len t  rood r if  r ~  x 

(rood 9), and  all i n e q u i v a l e n t  if  r ~ I (mod 9)- 

The  l e m m a  9.9.2 also holds in the  more  genera l  case a + bQ = z r ,  zr, (pos- 

sibly with squared  factors),  p rovided  

9.9.5 l 'r,l=T = = = i .  
L:TgroJ ' L ~ r J  ~rl L~r2] l.~r~ J 

W e  still get  3 be(R) r, & ~ if b ~ o (rood 3 ) .  The proof  is similar,  since now 

for  ins tance  

~r, J LTe~,J LZr,J 

W e  now consider  the  different  fo rms  of A with  a t  mos t  two p r ime  factors ,  

which  are no t  covered  by 9 .8 .5 - -7 :  

I. A = R = r or  re: I f  r ~  4 or 7, and so R ~ •  x (mod 9), we have  seen 

tha t  the  condi t ions  9.7.5 or 9.7.7 are sat isf ied if and  only if  b ~ o (rood 3). I n  

8 
both  cases I and  I I  we have  ~ = 3, Aa = I, A 2 = 3 in 9.6.3, and  the  only ad- 

d i t ional  condi t ion 9.7.4 is au tomat i ca l ly  satisfied by 9.9.2. The  same h o l d s  if  

r ~ I (rood 9), even if  we mus t  then  have  b ~ o (rood 3) in case I I  (but still  of 

course b ~ o in case I ,  i.e. when  31Z).  

W e  note  t h a t  there  is no equa t ion  9.4.4 if  A = R. The descent  of  w 5 is 

a priori  possible only if  r ~  I (rood 9). 

2. A = 3  R, where 3 ( R ) r  (the c o m p l e m e n t  of 9.8.5): We  have case I ,  wi th  

A~ = 3, Ae = 9, and  the  condi t ion 9.7.6 is satisfied if a + bQ is in p r i m a r y  fo rm 

(cf. 9.~.4). F u r t h e r  b cA,  = 9 be~  3 be(R) r, so 9.7.4 also holds.  - -  We no te  t ha t  

in th is  case the  one equa t ion  x 3 + 3 Y 3 +  1~z3= o is possible fo r  all moduli .  

The  descent  of w 5 is excluded.  

3. A = 9 R :  As in 2., we conclude t ha t  case I is possible if  and  only if  

3 ( R ) r .  I n  case I I I  we have  A e = I, and  the  condi t ions  9.7.4 and 9.7.8 t ake  

the  fo rm 

9.9.6 b ~ (R)r ,  b --= -4- i (mod 9). 
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Let  first r - -  I (rood 9), hence 3b~(R) r for all forms of a +  bQ. This con- 

tradicts the first condi t ion 9.9.6 if  3 (N)r, i.e. the excluded case 9-9. I. I f  how- 

ever 3 ( R ) r ,  i.e. 91b in the primary form, i t  follows f rom R = N ( a  + bQ)= 

= a  s - a b +  b ~ I t ha t  a-------+ I (mod 9), i.e. b 1 and b~+__ I (mod 9) in the 

two non-primary forms 9.9.3, which are consequently both possible for all moduli .  

Le t  next  r ~ - 4  or 7 (rood 9), in which case we have see.n from 9.9.4 t ha t  

the three possibilities for b all belong to different classes rood r ;  hence only 

one of them satisfies the first condit ion 9.9.6. I f  th i s  is the pr imary form, i.e. 

if  h.nd only if 3 (R)r, the conditions 9.9.6 give a contradic t ion;  but  then  case I 

is possible for all moduli.  - -  I t  remains to show tha t  both condit ions 9.9.6 are 

satisfied s i m u l t a n e o u s l y  if 3 (N)r.  

We suppose t ha t  R = r, and let 7rr = at + blQ be the p r i m a r y  form in the  

strict  sense 9.I.1. We must  use one of the non-primary forms a + bQ defined 

by a 1 + b l Q = ~ i ( a +  bQ), i =  I or 2. I t  follows from 9.9.4 tha t  

b bt ! r - - 1  

O] "e , + b~eJ bl 

cf. 9. I.3. On the other  hand,  i t  follows from 9.9.2 and 9. I.4 tha t  

a, + b tQj i, i.e. a~+-b~ = a t + = qq-' a~ 77- b, = q ~ ' 

where i must  be chosen so tha t  this expression equals x (since b(B)r  by the  

first condit ion 9.9.6), hence 

i ( , -  - i )  + z b~ -= o ( m o o  9). 

We have supposed r ~ 4  or 7 (rood 9), b , ~ - o  (moo 3) but  ~ o  (moo 9)(s ince 

3 (N) r), and get the four  possible combinat ions (all congruences are taken  rood 9) : 

r ~ 4 ,  bl-----3, i =  I, at-------I; r---~4, b 1 ~ - - 3 ,  i =  2, al------~4; 

r ~ 7 ,  b l = ~ 3 ,  i = 2 ,  a 1 ~ 2  ; r ~ 7 ,  bl~-~--3, i =  I, a l ~ - - I .  

I have added the corresponding residues of a~, which are uniquely determined 

from r = N ( a  1 + bt Q ) = a ~ - -  al b ~ + b~ ~- a~ - -  al  b 1 (mod 9) and  a t - - ~ - - I  (rood 3) 

(by 9.1.1). I t  follows f rom 9.9.3 ,that b = - - a  I if i =  I and b = a t - - b t  if i =  2, 

hence in all cases b ~_+ I (rood 9), which is the second condit ion 9.9.6. 

I omit  the case /r = r~; only a sl ight  modification of the above proof is 

n e c e s s a r y .  
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We finally note tha t  when A = 9 R, the descent of w 5 is a priori possible 

if r - -  i (rood 9), and the one equation x a + 9 y a +  R z  a = o  is possible for  all 

moduli  if also the addi t ional  condi t ion 3 (/~)r is satisfied. 

4. We now turn  to the complement of 9.8.6, where A = QR. Let  first 

A ~ +  I (rood 9), q(R)r .  We must  have the pr imary form b ~ - o  (rood 3), and 

q 
q ( R ) r - - - > [ ~ ]  = [ a ~ ]  = I, 

so 9.7.2 is satisfied. Fu r the r  A 1 = Q, A S = 3Q (case I or II), and 9.7.4 takes 

the form 3 b2 Q(R) r, which is also satisfied by 9.9.2 and q ( R ) r . -  We note 

tha t  the equation 9.8.3 is possible for all moduli  (the combinat ion 2.I.2 implies 

A ~ + I (rood 9)), but  the descent of ,~ 5 is excluded. 

Le t  next  A ~ +  i, q ~ - -  I, r ~ +  i (rood 9). The case q(N) r is already 

dealt  with in !7.8. 7. I f  q(R)r ,  we conclude as above tha t  case I (31b) and case 

I I  (3 X b) both satisfy the conditions 9.7.2 and 9.7.4; in case I I  this follows f rom 

I~]  = I and 9.9.4. Fur ther  the descent of w 5 is a priori possible; the  equa- 

t ion 9.8.3 is possible for all moduli  if q(R)r. 
Let  finally A- -_+  I, q and r~___ I (mod 9). The one equation 9.6.3 then  

represents the only 2~ossible descent (since 9.8.3 has the form 2.I.2). We notice 

t ha t  9.9.2 is satisfied only if 3]b, and tha t  [~]  ~ I, hence only one form of 

a + be is possible in 9.7.2. This is the primary form (case I o n l y ) i f  q(R)r, 
and the condit ion 9.7.4, 3 b~ Q(R)r, is then also satisfied. 

I f  however q(N)r ,  the only possible form of a + be is non-primary (case 

I I  only), 3 b~(N) r, and the difficulty lies in showing tha t  the condit ion 9.7.2 

implies 9.7.4 also in this case: 

9:9.8 [ - a ~ ]  = I -+ 3b~Q(R)r. 

As under  3. above, we introduce the primary form a 1 + bj Q = Q;(a + bQ), i = I 

or 2; fu r ther  Q = q J ,  j =  I or 2, and let f i r s t R = r ,  z r = a l +  bje. We suppose 

t h a t  i is chosen so t ha t  the first condit ion 9.9.8 is satisfied, and shall deduce 

the second one: 



The 

[ a l  : b l ~ ]  : 

[a~ b 
+ bl (~] = 

[ 3b~Q 

by 9.9.2, since 3 ]by 

A = qJr~+_ I (mod 9): 

q ~ 2 ,  r ~ 4 ,  j =  I ;  

q ~ 5 ,  r ~ - 4 ,  j = 2 ;  
i t  is seen tha t  

[ 3 "(2 ] j (q~ - - I )  + 2 (r - - I )  ~ O (moo 9), i.e. [ a l +  ~ e = 
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[at 3 b l Q ] ' [ a t : b t o ] 2 " [ a ~  

q L q 3 

[ b ~ ] . Q ,  .'-~ 
a~ + b~e ~ (by 9.9.7), and so 

3 : I " O i'j(q'-l)+2(r-1)3 

But for all possible combinat ions of j, q and r such tha t  

q ~ 2 ,  r = 7 ,  j = 2 ;  

q ~ 5 ,  r ~ 7 ,  j =  I ,  

+ bl , where 

i �9 q2--1 
= I ' e  ~ -  (by 9.I.3), 

I, 3 b ' Q (R)r, 

q.e.d. - -  In  the case R = r ~, i t  is easily verified t ha t  the numera tor  of the ex- 

ponent  is replaced by j (q~- -  I) + ( r - -  I), which is ~= o (rood 9) fo r ' the  combina- 

t ions of q, r and j which now occur. 

For  la ter  use, I shall also quote ano ther  resul t  wbich is proved in exactly 

the  same way:  I f  B = N(a  + be) - -+  (2 (rood 9), then  

[a + bo1 b' Q~(R)r. 9.9.9 I_ q J = I - + 3  

As above, this  result  is an immediate  consequence of 9.9.2 only if q(B)r. 

5. The last  case is A = R 1 R ~ ,  R 1 = r l  or r~, / ~ = r ~  or r~. There are then  

four a priori possible values for  a + b 0: 

9.9. IO ~rr,, r Yt:r, :rgr 2 and ~rr, ~-rr,, 

possibly with squared factors. (The conjugate  values need not  be t reated sep- 

arately by 2. of w 6.) There are many  possibilities to consider, and I shall 

only indicate t h a t  the primary form can never be completely excluded. The condit ion 

9.7.5, b ~ -o  (rood 3), is satisfied for the combinations 9.9.Io if zCr, and z~ 2 are 

in pr imary form, and we must  show tha t  the condit ions 9.7.3--4 can then  always 

be simultaneously satisfied. 
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I t  follows f rom 9.I.2 and 9.1. 5 t h a t  the  re la t ions  between zr,, ~rr~, n~, and 

~-r can be character ized by 

IM = P"I P"I- V'-'I 
L~rJ  L~r,J Lnr~J L~r,J e~' 

/P"I  P"I P*'I = P"I t L~r~/ LTrr, J LS-rrJ L ~ , J  = Q-~' i.e. 

[,-,] [,,1 [,.] [,-.1 
Three  typical  cases must  be considered s e p a r a t e l y :  

a --~ ~ ~ o (rood 3), so r~ (R) r2, r~ (N) ~.  W e  can then  use a + b e -- zr2, A~ = 3 r~, 

since b~A~ = 3b2rl ~ 3b~(R)r~ by 9.9.2, and a + be  _ zr2(R)r  i by 9.9. I I .  
a -k b Q~ nr~ 

a ~ o ,  / ~ o  (mod 3), so r l (N) r2 ,  r2 (N) r  1. W e  can use a +  b ~ =  zc~,Z~r, 

A2 = 3, since b~A~ = 3b~(R)r l  & r2 by 9.9.5, and there  is no condi t ion 9.7.3 in 

this  case. 

a --: fl --  o (mod 3), so r~ (R2)r2, r~(R)r 1. Combining the a rguments  of the  o ther  

cases, we see tha t  a l l  combinat ions  9.9. Io are possible. ~ This is the only case where  

the equat ion  x a + R~ yS + R~ z a = o is possible for  all moduli  (if no~ of the  type  

2.I.2). The  descent  of w 5 is a priori possible only if r~ --  r~ - -  I (rood 9). 

This  concludes the  proof  of the enuncia t ion  at  the beginning of this  para- 

graph.  

w zo. We now tu rn  to ~he cases where A contains  three different prime 

factors. For  simplicity, we will suppose tha t  only one of these is an r-----+ 

(rood 3). W e  shall  f u r the r  consider systemat ical ly  only those cases where all 

four equations T.4.6 can be proved impossible by elementary congruence consideratio,s 

rood 9 and rnod r. (Otherwise we canno t  fo rmula te  any general  resul t  abou t  in- 

solubil i ty of X a +  y a = A Z 3 . )  We shall make use of the  results  for  n ~ =  3 in 

Ch. VII ,  w 4, wi thout  f u r t he r  reference.  

I f  all four  equat ions 7.4.6 a r e  possible rood 9, then  at  least  one of them 

will be possible rood r. I n  part icular ,  this is the case i f  3]IA- W e  the re fo re  

consider  only the  cases 9 IIA and 3 X A, and find those c o m b i n a t i o n s  for  which 

only one equat ion 7~4.6 is possible mod 9- 

I. A = 9 Q R ,  Q = q  or q~, R = r  or r 2. Of the four  equat ions  

9.m.~ {~, 9, q/l}, {~, Q, 9RI,  {~, R, 9Q}, {9, Q, RI,  
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only one is possible mod 9 in the following cases: 

9. IO.2  q~--+ i, . R ~ +  I (rood 9) : {I, Q, 9R};  q ( N ) r  

9.m.3 q~___ I, .R=-b  I ( . . . .  ) :  {I, R, 9Q}; 9 Q ( N ) r  

9.io.4 Q . R - - _  I, Q & R ~ +  I ( . . . .  ) : {I, 9, QR}; 3 ( N ) r  

9.io.5 Q_--+_ ( . . . .  ) :  {9, Q, R }; 3 Q(N)r. 

The possible combination rood 9 is given in each case, and also the condi- 

tion under which this is impossible rood r. - -  We shall see that  the one a priori  

possible equation 9.6.3 is insoluble in all cases 9.Io.2--5. Since this also holds 

for the equations 9.io.I ,  and since the descent of w 5 is clearly impossible in 

all cases, we conclude tha t  the corresponding values of  A = 9 Q 17 represent insoluble 

equations X 3 + ya  = A Z 3. 

The insolubility of 9.6.3 for the first form 9. Io.2 follows at once from 9.8.2, 

since q--=-- x (rood 9) and q(N)r .  ~ For the  other forms 9. IO.3--5, we have 

the a priori  cases I and I I I  (since 91A), and begin by showing that  case I is 

impossible. Then 9[b, 3 (R)r by 9.7.6, and as in the proof of 9.8.2 we also con- 

clude that  q(R)r. But these simultaneous conditions are not satisfied for any 

of the forms 9.IO.3--5. 

In  case I I I  we have s I 3 t = 9 '  A~ = 9 Q ,  A s =  Q, and the condition 9.7.4 

becomes 
b ~ q (~)r. 

The form 9. Io.3 has r ~  I (mod 9), i.e. 3 b~(R) r fo r  all forms o f a  + bq by 

9.9.4. From this and 9 Q ( N ) r  we conclude that  3 a b~Q N b~Q(N)r ,  which is im- 

possible. 

For the form 9. Io.4, the conditions of 9.9.8 hold. But from 3 b~ Q ( R ) r  and 

3(N)r we get the same impossibility b~Q(N)r .  For 9.1o.5, the formula 9.9.9 

together with 3 Q (N)r leads to the same result. 

This concludes the proof, which implies the insolubility of the values A in 

9.2.5 and 9.2.I2 as special cases; the impossibility of the four equations 9.1o.x 

for these A is easily verified by 9.2 .6- -7  and 9.2.I 3. The values 9.2.5 have 

q = 2, with r varying (but not all possible primes r). The values 9.2.12 give all 

combinations with r = 7 and varying q. 

2. A = Q1 Q~R: Of the four equations 7.4.6, one and only o n e  is possible 

mod 9 in the following cases: 
21 - 642127 Aet t t  m a t h e ' m a t ~ t .  85 
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9. IO.6 QI~_+ I, Q e R ~ +  I, ~ ( ~  I (mod 9) : {I, Q1, Q~R}; q l (N)r  

9. Io.7 R ~ = +  I, Q~Q,-=+ I, QI& Q , ~ +  i ( . . . .  ) : { i , /~ ,  Q~Q,}; Q~Q~(N) r 

9.m.8 Q~-___ Q o - - - + R ~ _ +  i ( . . . .  ) : {Q, Q2, R}; Q~Q~(2V)r, 

where as above the condition for insolubility rood r is added. We shall see that  

also here the corresponding equations 9.6.3, and thereby the given equations 

X a + ya  = A Z a, are insoluble. 

We note that  9.Io.6--8 all have A--~+ I (rood 9), and the one equation 

S 
9.6.3 must be treated in the cases I and II,  which both give ~ = 3, As = 3 Q1 Q~, 

and the condition 9.7.4: 
3 b Q, (R)r. 

The impossibility of 9.Io.6 follows at once from 9.8.2, since q~ ~ - -  I (rood 9) 

and q,(N)r.  ~ For 9.Io. 7 we conclude from 9.9.4 and r ~ I (mod 9) tha t  3 b~(R) r 

for all forms of a + b •, which together with Q1 Q~ (N)r gives the impossibility 

3 b~ Q~ Q~(N)r. Finally 9.9.9 shows that  for 9.1o.8 we have 3 b~ Q~(B)r, which 

together with Q~ Q~(N)r gives the same impossibility. 

This concludes the proof, which implies the insolubility of the values A in 

9.2.1o--11, giving all cases with q~ = 2, r =  7 and varying q.~. The impossibility 

of the corresponding four equations 7.4.6 is easily verified by 9.2.I3. 

As already mentioned, the case 3 ]] A, A = 3  QR, will lead to at least one 

equation 7.4.6 which is possible for all moduli. We can therefore express the 

above results in the simple and general 

Theorem XlI.  Let A (cube free) contain three different prime factors, one and 

only one of which is an r ~ +  I (rood 3).. The equation X a+ y a =  A Z a has then 

only the trivial solution with Z = o ~f the four possible equations 

9. IO.9 ax  s +  by a+ cz a =o ,  a b c =  A, I ~ a < b < e ,  (a,b) = (a,c) = (b;c) = I, 

can all be excluded by elementary congruence considerations rood 9 and rood r. 

The insoluble cubefree values of A ~ SOO covered by this theorem are given 

in Table 4 d. 

w H. I f  A has three different prime factors, of which at least two are 

primes r E  + I (rood 3), Th. X I I  does no longer hold. Simple counter-examples 

of different types are 
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A = 9 .  7"37  = 2 3 3 I  = ~oZ+ 113 

A = 2 . 1 3 . 1 9  = 494 . . . .  

A = 7" I3" 19 = x729 = I a + I23, 

for  which it  is easily verified t h a t  all  four  equat ions  7.4.6 can be excluded by 

e l emen ta ry  congruence  cons idera t ions  in each case;  the  descen t  of  ~ 5 is equal ly  

impossible .  

One can prove  some genera l  resul ts  also when A has  two p r ime  fac to r s  r. 

I omi t  th is  here, and  will j u s t  indicate  the  me thods  by t r e a t i ng  those  A ___< 50o 

which can be p roved  impossible.  I n  each case the  four  equat ions  7.4.6 and  the  

descent  of ~ 5 are easily excluded.  W e  m u s t  consider  the  four  apr ior i  possible 

combina t ions  9.9.70 fo r  a + b0 in the  equa t ion  9.6.3. 

~. A =  2 6 6 =  2 . 7 . : 9 :  Since A = - - - - 4  (rood 9), we m u s t  use case I ,  wi th  

the  primary  fo rm of a +  b0. F rom 2(N)  7, 2 (N)  19 we see t h a t  a +  b0 = ~7 or 

z~9 is excluded by 9.8.2. Since 

the only combina t ion  9.9.IO which  satisfies 9.7.2 is 

a + be  = ~7"~19 = (: + 3 0 ) ( 2 - - 3 0 ) =  :: + 120. 

But  A 1 =  2, A2 = 3"2,  and  b ~ A ~ =  25.3  s ~ 2 2  is a cubic non-res idue of both  7 

and  I9 ;  the  condi t ion 9.7.4 is consequent ly  no t  satisfied. 

I n  exact ly  the same way we can exclude A = 364 = 2~.7 �9 I3, where  2 (N)7  

and  2 (N) 13. 

2. A = 4 3 4 =  2 " 7 . 3 1 ~ 2  (rood 9), so we m u s t  use the p r imary  fo rm of 

2 (2V)7 , but  2 ( R ) 3 I ,  which shows t h a t  the only possibi l i ty saris- a +  be. Aga in  

fy ing  9.7.2 is 
a + bQ = ~sl = : + 6 0 .  

Here  A: = 2"7 ,  A2 = 3 " 2 " 7 ,  b2A2 = 6 3 " 7 ~ 7 ( N ) 3  I, con t ra ry  to 9.7.4. - -  The 

impossibi l i ty  of a + b Q = I + 6 Q could also have  been shown by tile condi t ion 9.7.3 : 

a + b o  1 + 6 0  I - -  0 I _ 
a + b Q  ~ -  1 + 6 0  ~ -  1 - - 0  ~ I + Q e (mod 7), 

i.e. a cubic non-res idue  of  7. 
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The insolubility of A = 455 = 5"7"13, where 5(N)7, 5 (R) 13 , is proved in 

the same way. - -  The four values of A found in this paragraph are listed in 

Table 4 e. They are all particular cases of the following general result: 

A = Q R ~ R ~ +  I (rood 9) is insoluble i f  the four possible equations 9.1o.9 can all 

be excluded by elementa~ T congruence conditions rood rl and r~. (The conditions 

rood 9 are always satisfied when A ~ o  and • I (rood 9).) 

The Tables 4 r contain the values of A ~ 5oo for which the equation 9.6. 3 

can be proved insoluble by congruence considerations only. By extending the 

methods of Ch. VI I I  to this equation ( ~  I2 - - I4  below), we can prove tile in- 

solubility of a few more values of A, given in Table 4 ~. Finally a complete list 

of the excluded values of A in Tables 4 a-f is reproduced in Table 4g; these are 

all the cubefi'ee values of A <~ 500 which have been proved insoluble in the present 

paper (indeed so far as I know all which have been proved insoluble at all). 

The non-excluded equations 9.6.3 for A ~ 5oo, corresponding to all possible 

descents 9.6.I, are listed in Table 5. i t  follows from w 6, 2. that  conjugate 

values a + b Q and a + b Q~ need not be considered separately. The case a + b Q = 

(w 5) is covered by Table 3, and consequently not repeated. 

A solution is found in nearly all cases of Table 52 The only unsolved 

equations represent the following values of A: 

9 . I I . I  283, 337, 409, 499 (all primes); 473 = I i  "43. 

The corresponding equations 9.6.3 (all of ease I) are possible for all moduli, and 

cannot be excluded by the methods of w167 I2 - - I4  below. I believe that  they are 

all soluble. 

In order to find the solutions of Table 5, I have computed the cubic forms 

9.11.2 u v ( u - - v )  and u a ~  3u2v + v s 

for several pairs of values u, v. I t  suffices to use the pairs such that  for instance 

O ~:V~'~___~U, (U, V) = I ,  

since a change of sign for u and v does not influence the calculations, and the 

automorphisms of both forms 9.11.2 are (cf. 8.1.II): 

9 .  I I . 3  U t ~ - - V ,  V p ~ U - - Y ;  U tp ~ V - - U ,  V t~ = - - ~ .  

This follows at once from 9.6.1, which is unaltered if we replace u + v 0 by 

( u +  v0) = ~ v + ( u - - v )  0 or 0 ~(u + v 0 )  = v - - u - - u Q .  
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Because of the automorphisms,  it  is also possible to choose a solution with 

u, v and w all positive (or zero. The condition v ~ u mus t  then  be abandoned.) 

This is done in Table 5, cf. the  concluding remark of Ch. VI I I ,  w 3. - -  By an 

appropriate choice between the two conjugate  values of a + bO, we can also get  

a and b both positive in all cases. 

The choice of u and v in an equation 9.6. 3 can always be l imited also by 

simple congruence considerations, which great ly faci l i tate  the search for solutions. 

w .r2. When  A is a prime r----+ I (rood 9), or the square of such a p r i m e ,  

it  follows from w 9, I. tha t  there are three different  equations 9.6.3 which are 

possible for all moduli  (four i f  we include 9-5.3, corresponding to a + be = 0. 

As usual, conjugate values a + b0 and a + b03 are not  considered separately.) 

These equat ions for the excluded values (crosses) of Table 3 are given by ( - - b e -  

fore 0 and 03 is included for  convenience): 

"A= 7 3 : a + b o  = I +  9 0 , - - 0 (  I +  90) = 9 

9. I2.1 

A = I o 9 : a + b p =  

A = I 8 I  : a + b p =  

A = I 9 9 : a + b o =  

A = 3 o 7  : a + b 0 =  

5 + 12 0, --0 

4 + I 5 0 ,  --0 

2 + I 5 0 ,  --0 

I + 18 0, - - 0  

A =487 : a + b o =  --2 + 21 0, --0 

A = I 9 2  : a + b 0 =  5 + 2 1 0 ,  --0 

+ 80 and --03( I +  9 0 ) = - -  8+  

( 5+I20)=12+ 70 " --03( 5 + 1 2 0 ) = - - 7  + 

( 4 + I 5 0 ) = I 5 + I I 0  "' __0z( 4 + I 5 0 ) = - - I I +  

( 2 + I 5 0 ) = I 5 + 1 3 0  " __03( 2 + 1 5 0 ) = - - 1 3 +  

( I + I 8 0 ) = I 8 + I 7 0  " --03( I + I 8 0 ) = - - 1 7 +  

( - - 2 + 2 1 0 ) = 2 1 + 2 3 0  " 0~ (_2 + 210)= 23+ 

( 5 + 2 1 0 ) = 2 1 + I 6 0  " _02(  5 + 2 1 0 ) = - - I 6 +  

In  all cases A 1 = I, i.e. As = 3. The first value of a + b0 for each A corresponds 

to case I (primary form), the last  two to case I I  (non-primary form). 

None of these equations have simple solutions, and we shall see tha t  they 

can all be proved insoluble by an extension of the methods of Ch. V I I L  This im- 

plies tha t  the corresponding values of A are also insoluble (Table 4!). 

We must  dis t inguish between primary and non-primary forms. In  the pr imary 

ease we put  b = 3 bl, and  can remove a common factor  3 in the equation 9.6.3 

(3~ = 3 in case I and II).  Multiplication by /,~ and the subst i tu t ion b, u = u, 

will t ransform this equat ion into 

9. I2.2 ~ +  ( a - - 3 b l )  u ~ v - - a b l u l v  ~ + b~v 8 = b~Alw 8 

(we consider the general  case, with A 1 >= I). 
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We shall t rea t  this equation in the corresponding non-purely cubic field K(g) 

defined by 

9.12.3 ~3 + (a --  3 b~)~ ~ --  ab, ~ + b~ = o. 

The discr iminant  of this equation, 

d(g) = {b , .  N ( a  + 3 b , e ) } L  

is a perfect square (ef. 9.7.9), and K(~) is consequently a Galois field; this also 

follows f rom the automorphisms 9.I i .3 .  

We  can obtain a basis for the integers of the field K(g) by the method of 

WoRoNoj;  an account  of th i s  is given in SOM~E~ [I], pp. 257--62. An applica- 

t ion to 9.12. 3 shows tha t  the basis is given by 

( 9. I2.4 I, ~, ~o - bl 

provided X(a  + 3 b~q) is squarefree and (a, b~) = 1. I f  r~ l ]N(a  + 3 b~o), the prime 

r will occur in the denomina tor  of oJ, and the determinat ion of the numera to r  

becomes more complicated. I leave i t  out  here;  the only aetual  ease of 9.I2.I  

is A = '19  ~. 

I f  N(a  + 3 bxQ) is squarefree, the d iscr iminant  of the field K(~) is given by 

9.12.5 ~I = N ( a  + 3 bl Q)". 

The conjugates of an integer a = x + y ~  + z c o  are 

a' = x + 2 bly + (a + 5 b,)z + (2y + 7z) ~ - (y + 3 z ) w  
9.12.6 

a"  = x + (b, - -  a) y + ( - - 2 a + 4 b , ) z - - ( 3 y +  7 z ) ~ + ( Y +  2z) ca. 

The rules of mult ipl icat ion take the form 

{ ~ = - - a ~  + blr , ~ o = - - b ~ - - 2 a ~  + 3bl~o , 
9'12"7 e o ~ = ~ a b  _ 3 b ~ _ ( 6 a + b , ) ~ + ( a + 9 b ~ ) w ,  

and lead to the impor tant  f o r m ~ a e  

9.I2.8 

a d d '  = N(a)  = N ( x  + y~  + zo~) = x 3+ ( - - a  + 3 b , ) x ~ y - - a b ~ x y  * -  

--b~y3 + ( _ a  + 9bl) x ~z + ( - - 2 a  ~ + ab  1 + 6b~)xz  ~ + 

- -  ~ ~ - -  ( a  ~ b l  + b~) y z ~ + ( - - 2 a  ~b 1 + b~)z a ( 2 a b ~ +  3bx) Y z 5a  - -  

- -  ( a~ + 3 a bl - -  3 b~) x y z ,  
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a a = (x + y ~ +  z w )  a = x  a - b ~ y a - 3 ( a b ~  + 3bY) x z ' - - 9 b ,  s y ~ z -  

- - 3 ( a b e +  9b~ a) y z ~ - (  a'ab~ + 6 a b e +  26b a) z 3 - 6 b ~ x y z +  

+ { 3 x ~ y - - 3 a x y  ~ + (a 2 - 2 a b ~ ) y a - 3 ( 6 a  + b~)xz ~ + 

2 ~ ( 4 a ~ - -  I - - 3  YZ2 9 .12 .9  + 3 (2 a s - -  6 a bx - -  b~) y z + 3 8 a b~ by) + 

+ ( 6a~ - -  53 a bl - -  9b~)z s - -  I2 a x y z } ,  g + {3 bl x Y  ~ + 

2 a x ~ ( a +  b ~ ) x z  2 + 3 ( - - 2 a b ~  + 9b*)Y z +  + ( - - a b l + 3 b ~ ) Y  + 3  z + 3  9 2 

+ 3 ( - - 3 a b ,  + 2 6 b y ) y z  ~ + ( a ~ - - a b ~  + 75 b~) za + I S b ,  x y z }  .co. 

The natura l  primes r such tha t  r [ d  are cubes of ideals in K(~): 

9 . i 2 . i o  [r] [ r , ~ +  a - 3 b *  a --~9 b*] a = , ~ +  - = p ~ .  
3 
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All o ther  primes ei ther  remain  primes or factorize into three different, conjugate 

ideals : 

9. I 2. I I [p] = [p, ~ - -  d]. [20, ~ - -  d ' ] .  [p, ~ - -  d"] = pv p; pp, 

where d, d' and d" are the solutions of the  congruence m o d p  corresponding to 

9.12.3, and where 

d' --: 51 (b~ - -  d) d"  = bY (mod p). 
d ' b L - -  d 

I f  in par t icular  p lb~, we get  the factors  

pp = [p ,~ ,~o ] ,  p~o= [ p , ~ +  a, eo + 2 a ] ,  p~ = [ p , ~ ,  co- -a ] ,  
9"I2"I2 / where ~0ppp = [p, ~]. 

This  also holds fo r  p = 3, which remains a pr ime  i f  3 X bl. 

Only slight modifications are necessary if we consider  a non-primary form of 

a + bQ, i.e. 3~'b. No common factor  3 can then be removed in the equation 

9.6.3, which af ter  mult ipl icat ion by b ~ and the subs t i tu t ion  bu = u a now takes 

the  form 

9.I2.z3 uY+ 3 ( a - - b )  u Y v - - 3 a b u ,  v 2 +  bav a =  3b 2A~w a 

(or = I -b~A ,wa  in case I i I ) ,  leading to a field K(~) defined by 
9 

9. I2 . I4 ~a + 3 ( a - - b ) ~ ' ~ - - 3 a b ~ +  b a = o. 
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Most of the earlier conclusions and formulae are still valid i f  a is replaced 

by 3 a and b, by b throughout. The discr iminant  of 9.I2.5 should now be wri t ten as 

9.I2. I5 J =  3 ~ .N(a  + br 

and the na tura l  prime 3 is now a perfect cube: 

9. I2.I6 [31= [3, ~ +  b, oJ- -b]  a = p], where p ]= , [3 ,  ~ - - c ~  

Since the  d iscr iminant  zr > o, the fields K(~) have two fundamental units e, 

and % which can be chosen as conjugates. 

w z3. We now form the ideal-equation corresponding to 9.12.2 or 9 . I2 . I3 :  

9. I3.I [U 1 - -  V~] = 1t(I a, 

where It is an ideal f rom a finite set, such tha t  Norm n = b~A~ (primary form), 

I 
= 3 b~A~ (non-primary form in case II)  or = -b~A~ (non-primary form in case 

9 
III) .  The prime factors of A~ are easily dealt  with in the usual  way. I t  is 

fu r the r  clear t ha t  P8 [[ rt for the non-pr imary form in case I I ,  since 9 . I2 . I6  shows 

t h a t  p'~ cannot  divide [u~--v  g] if 3 X ul and v. But  the prime factors of b (if 

any) need a special t rea tment .  This is the same for the primary and the  non- 

primary form, and I give the  formulae in the former  case only. 

I t  is quite possible t h a t  a solution (u, v) of the original equation 9.6.3 has 

a common factor  of v and b~. All such solutions occur in triplets of conjugates 

(by 9.I1.3), and we can always choose one solution of each tr iplet  such tha t  

(v, b~) = 1, a t  least  provided b 1 has at most two different prime factors (this holds 

in all cases 9.I2.I). W i t h  this l imitat ion,  and because of the subst i tu t ion 

ua = b~u, we may  therefore  suppose t h a t  

9. I3,2 u j - - v ~ = - - v ~  (mod bl), (v, bl) = I. 

Le t  p be any prime such tha t  p]b r From 9.I2.I2,  9.13.2 and p 4 a w e  con- 

clude tha t  
Pp P; I [u, - - v  ~], but p~ 4 [ul - -  v ~]. 

Fur ther ,  if p ]] bl: 

r f  rp  

f rom which we conclude tha t  pv and pp!llT, since addi t ional  powers of pp or pp 

must  occur with such exponents  tha t  they  can be absorbed in a a. 
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I f  10 ~ H bt, it  follows tha t  

p2 v p~,2 = [p~, ~] [ [u~ --  v ~], but  p3v p~,a = [pa, _ a g + b I co] 4 [Ul - -  V ~], 

and so g and p~'~ [[ It. So far  the choice of ideal factors from b, is unique. 

I f  however pa ]] bl, i.e. 

ps h"a = [p3, ~] [ [u~ --  v ~], but  p~ p~,4 = [p4, _ a ~ + b~ to] X [u, - v ~], p ~ 'p 
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there  are three possibilities for the choice of corresponding factors in rt: 

i. and p;3llIt (as before) 

2.  gllIt, ff4 ,  o;lla 

The factors of it  are all cubed, and can consequently be absorbed in a 3. 

But  to get  analogy with the earlier formulae,  we may suppose tha t  we have 

case I. This differs f rom 2. and 3. only by cubes of ideals, and will also cover 

these cases by the principle of " a u x i l i m T  cubes". 

A similar a rgument  applies also when b~ contains a prime p to still higher  

powers. It will contain the product  Pb, P~',, if  we define 

H L. 
p~ll b, 

The ideal n o f  9.I3.1 is therefore uniquely determined i f  AI has at most one 

pr ime factor  (cf. the  remarks to 8.2.1). In  particular,  A 1 = I in 9.12.1, and 

consequently 

9.13.3 n = p~,p~; (primary form) or = PaPbP~' (non-primary form) 

(where b 1 is replaced by b for the lat ter  form). 

As in Ch. I I I , w  5, it  is also here possible to exclude some of the equations 

9.I2.I  by class-number considerations, namely the non-primary cases for A = 73 

and 307 (the only primes where 3(R)A,  i.e. 31bt in the pr imary form). In both 

cases for A = 73 and  in the first non-primary case for A -= 3o7, we find a class. 

number h = 9, with a non-cyclic group of  classes. Hence n 3 of 9.I3.1 is a prin- 

cipal ideal, and the same turns  out to be the case for Pb and p~'. But  P3 is non- 

principal, and the equations are consequently insoluble. The exclusion is similar 

in the last case for A = 307 (b = I and p~ non-principal), but  the class-number 
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is h = 63, the  g roup  of ideal-classes hav ing  two gene ra to r s  of order  3 and  one 

of order  7. 

W h e n  the  equa t ion  9.13.1 canno t  be excluded by c lass -number  considera-  

t ions,  we are as usual  led to severa l  equat ions  be tween  in tegers  of K(~). - -  I n  

all w i m a r y  fo rms  of 9. I2 . I  we find h = I, and get  a t  once:  

9. I3.4 u l - - v ~ = ~ # v a  8 = t t a  3, i a n d j = o ,  1 ,2 ,  

where  ~l and  ~.o a re  two f u n d a m e n t a l  uni ts ,  and  11 = Oh, ~3~ = [~]. - -  I n  all  non- 

p r i m a r y  forms,  except  for  A = 73 and  307, we find h = 3. W e  m u s t  consequent ly  

in t roduce  a 7 as in 3.8.3: 

9.13.5 u 1 - -  v ~ = s~ e j 7': v a a = tt a a, i, j and k = o, I ,  2, 

where 11 = p~pbp~' = [v], and  [7] is the  cube of any  ideal  which  is not  a prin- 

cipal  ideal. Such an  equa t ion  can be t r ea t ed  to any  modulus  p r ime  to 7. 

W h e n  h = 3, three  con juga t e  ideals (e.g. Oh, P~ and p~') will a lways  be equi- 

valent .  Consequent ly  11 = Oa p~ p~' is p r inc ipa l  if  and  only if p~ and  Pb belong to 

the  same class, which is non-pr inc ipal  in all the non-p r imary  cases men t ioned  

above (A .~ 73 and  307). This  leads to a quick  and general de termina t ion  o f  7, 

since it  is easily verified t h a t  

= [ -  = [ -  b + i . e .  = (b - -  

and we can choose 

9.13 .6 7 =  ~ ( b - - ~ )  = ( 3 a +  b ) ~ - - b o J .  

W e  conclude this p a r a g r a p h  with  an i m p o r t a n t  r e m a r k  abou t  the  funda-  

men t a l  uni t s  at and  s~, where  we can suppose ~ = a, as = s', and where  

t ,  = (8 8')--1 (since N(e) = e e' e" 

be used as f u n d a m e n t a l  un i t s ?  

= t). Under  wha t  condi t ions  can two o ther  un i t s  

a n d  ,), ~ 8Pm~'~n ~ 8 - n  8'm-n 

This  implies  tha t  V~V'Y = e~e 'j, or  

9. I3 .7  m x - - n y  = i, n x  + ( m - - n ) y  = j ,  

m u s t  be soluble i n  in tegers  x and  y for  all in teger  pairs  (i, j), i.e. t h a t  the  

d e t e r m i n a n t  

9.13.8 = n't ~ -  m n +  n ~ = _N(m + n~)  = I. 
n m - - ~ t  
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This  gives m + n Q  = _  I, + ~  or + ~  = T - ( I  + ~), a n d  so 

v = o r  = 

i.e. only tr ivial  cases. 

W h e n  however  ~ and ~ are to be used in equat ions such as 9 .13.4--5,  i t  

will clearly suffice to replace the equat ions 9.13.7-8 by congruences rood 3 (cf. 

the  remarks  to 3.6.2). And N(m + he)  ~ i ~ m  + n ~ o (mod 3). I f  we form 

the rat io  

~]~ ~ 8m+n. $'2n--m 

this  will be the  cube of ano the r  un i t  if  and only if  r n + n - - ~ o  (mod 3). A ~ y  

uni t  ~ such that V~ is a cubic non-residue to an appropriate modulus will  therefore 

suffice for  our purpose. 

z 4. We  must  s tudy the possibilities of excluding equat ions  of the type  

9 . I3 .4 - -5 .  I t  is not  difficult  to see tha t  no prime fac to r  ~ 3 of the discr iminant  

9. t2.5 (or 9.12.I5) can be used for  exclusion;  the  same can be shown for  the 

factors  of b. - -  A prime q or r dividing A~ will lead to condi t ions similar to 

8.3.4 (which are only effective for  primes r). But  A 1 = I in our  equations,  and 

the  only remain ing  possibili ty is to work rood a power of 3. 

We  first consider  the pr imary  cases, i.e. the  equat ions 9.13.4. I t  is easily 

verified tha t  a 3 of 9.12.9 runs  th rough  a complete  system of residues mod 3 

with a; no exclusions can there fore  be obta ined  mod 3. But  the cubic residues 

rood 9 are compara t ive ly  much more l imited in number ,  since we only have to 

cube a complete  system of residues rood 3 and pr ime to 3 for  a. Apar t  f rom a 

change of sign, there  are 13 such residues:  four  t r iplets  of conjugates  and in 

addi t ion a = I. The  corresponding (effective) cubic residues rood 9 must  be 

calculated in each case (which is a r a t h e r  tedious job). 

In  all p r imary  cases 9 . I2 . I ,  i t  tu rns  out  t ha t  ~1 and e2 are e~rective cubic 

residues rood 9, which means tha t  it  suffices to consider tt = v in 9.13.4. Each 

v must  be mul t ip l ied  in tu rn  by all the  corresponding cub ic  residues rood 9. 

In  the cases where 3 X bi (i.e. when A ~ 73 and 3o7), all resulting coefficients o f  

oJ are ~ o (rood 9), and we conclude as usual  tha t  the  equat ions are insoluble. 

I f  however  31b~, it  suffices for  exclusion t h a t  the coefficients of o~ are all 

o (rood 27) (even if we still operate  with the cubic residues mod 9). Since 
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now v is divisible by PsP~' = [3, ~], it  must  have the  form 

~'= 3 A  + B ~  + 3Ceo, 3 4 B .  

I f  bl = 3 b.2, and a 3 ~ X + Y~ + Zoo is a cubic res idue mod 9, the  coefficient of 

co in ~ a s is 

=-- 3 { C X  + b~B Y + (A + 3 bo.B + a C)Z} (mod 27), 

which is unaltered rood 27 if  X, Y and Z are varied with mult iples of 9. - -  In  

this way the pr imary  forms  for  A = 73 and 3o7 are excluded. 

We then  tu rn  to the  ~on-prirnary cases which have not  already been ex- 

cluded by class-number considerat ions  (the equat ion 9. I3.5). F rom PsXa  and 

9.I2. 9 i t  follows tha t  in this  case 

9. I4. I a s ~ -}- I (mod 3), 

and we can apply the principles of Theorem I I .  But  we get  a considerable 

improvement  of the  me thod  by the  fol lowing addi t ional  a rgumen t :  

Since P3 ]]~, the  possible residues of ~ mod 3 are given by 

9.14.2 + r ~ b +  ~, ~ +  ~o or b - - c o  (rood 3). 

I f  # = ~, the equat ion  9.I3.5 is only possible mod 3 if r has the  first one of 

these forms (with a coefficient ----o (mod 3) for  r 

Among  the residues mod 3 and pr ime to  3, the fol lowing ones are u~altered 

when taking conjugates: 

9.I4.3 • I, +_(g--w), +_ (b + g - -w) .  

The produc t  of two such residues is ano the r  residue f rom the same group (the 

rules of mul t ip l ica t ion  are the  same as for  the group + I, + Q, + ~).  And the  

residues 9.I4.2 are, apar t  f rom a possible change  of sign, unaltered rood 3 when 

mult ipl ied by a residue f rom 9.I4.3 (which contains  all residues wi th  this prop- 

erty). 

I t  follows immedia te ly  t h a t  the equation 9.I3.5 is i,soluble i f  ~, is ~wt of the 

first form 9.I4.2, and i f  both rt = ~ a ,d  7 are of the type 9.I4.3. But  the 7 of 

9.I3.6 satisfies this  condit ion,  and it  suffices to examine the forms of ~ and r. 

- -  In  this way the non-pr imary  cases of 9 . I2 . I ,  A = 73 and 307 excluded, have 

been proved insoluble. 

I f  we include a + bo = ~ (w 5), t h e  values of A in 9. I2.I (Table 4 f) all have  

four possible but  insoluble descents 9.6.I.  And  the  soluble values of the com- 
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and 5 all have one or four such descents. The result is in 

with the xst and 2nd conjecture of Ch. VII, ~ 4. (See also 

w I 5. The concluding paragraphs deal with the number of generators (basic 

s~176 of in.finite order for the equation X 3 +  y 3 =  A Z 3, and are based on the 

ideas of FADDEEV [I]. I have already (Ch. VII,  w 6 )men t ioned  br iefy his 

methods in the field K(~/_~)= K(#). In  this paragraph, I shall give a more 

detailed account of his methods in K(0) (partly modified to fit in with my nota- 

tion and earlier results). 

I t  follows from 1.2.2, with abe = A, that  the Weierstrass elliptic ~p-function 

corresponding to , 3 +  y3=  A is given by 

p=~o(~;  o, 27 A~') 

(the "equianharmonic" case, with go = o. To avoid confusion with my earlier 

notation, I use ~ instead of the ordinary u to denote the elliptic argument). 

Fur ther  from 1.2. 3 : 

X 9 A + io'(~) 
z - X = X ( ~ ) -  6p(~) 

Y 9 A  - -  io' =Y=Y(r 

Let the periods of p(~) be w (real) and ~o 0; we then get all the real points 

on the curve x 3 + y 3 =  A if o _ - - < ~ w .  In  particular, ~ = o  corresponds to the 

point at infinity (Z o); ~ z 2 = = - c o  and -w give the inflexions (VA, o) and 
3 3 

3 8 

(o, VA); and ~ = 2 o J  gives the point , . I f  A i s c u b e f r e e a n d  ~ I 

and 2 (and always supposed positive), it follows from Ch. I, w 4 that  all rational 

points with Z ~ o have a ~ incommensurable with o~ (no exceptivnal points). 

Changing the sign of ~ corresponds to interchanging X and Y (keeping Z 

fixed). - -  When nothing else is said, an elliptic argument  ~,. will correspond to 

the point (Xi, Y,., Z,.). 

The ta~gential (argument - - 2  ~1) to a point (X1, I~, Z1) is given by 1.5.2 , 

which can be written as 

9.I5.1 X , = - - X , ( X ~ +  2Y[), I ~ =  I71 (2X[+Y?) ,  Z.o= Z,(Y~--X~).  
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By direct calculation, we find the third intersection of the chord 

- - f f l -  _~2) through the points (X~, Y1, Zj) and (X~, Y2, Z~): 

9.I5.z 

X = A Z~ Z~ (X~ Zl - -  X 1 Z~) + ~1 Y2 (XI ](2 - -  X~ Y1) 

Y A Z 1 Z 2 ( Y~ Z 1 - -  ~(*1 Z~) -~- X 1 Xi~ (X ,  ]?1 - -  X l  ~ )  

Z X 1 X2 (X~ Z 1 - -  X 1 Z2) -J- ~v~l ~v~2 ( Y2 Z]. - -  iF1 Z2). 

(argument 

Desboves' formulae 1.5.3 are usually more convenient for numerical computations. 

Combining his formulae with 9 . '5 . ' ,  we find the triplication (argument 3 ~1) 

of a point (X1, Y1, Z1): 

9.I5.3 Y s = - - X [  + 3 X ~ Y ~  + 6 X ~ Y ~  + Y~ 

For use in the field K(O), Faddeev gives the following, easily verified rela- 

tions : 
X, + Y~ = (X~ + Y1)(Y1-- Xl) 3 

9"15"4 X2 + Iz2e = (X~ + ]~qe)(]~qe-- Xl) a, 

3 (X, + r,)(X~ + Y~)(X + Y) = A [Z~ (Xl + Y,) --  Z, (X, + y.~)]3 
9.,5.5 3 (x1+ Le)(X  + Y,q)(x+ Y,e)] 3, 

[ X~ + Ys = 9 A X~ Y~ Z~ 
9.I5.6 1 

If  (X1, I(1, Z~) are eoprime in pairs, so also are usually (X~, Y~, Z~) and 

(Xs, Y.~, Zs). But  if X ~  Y I ~ o  (mod 3), i.e. in e a s e l I w h e n A ~ _ + _  2(rnod9),  

then (X~, Y~, Ze) have a common factor 3 and (X~, Y~, Z~)a factor 9 . -  There 

is usually a r~ther great common factor in the formulae 9. I5.2, ef. 9.,8.7. 

Lemrna 1. A solution (X, Y, Z) is the triplication of another solution (x, y, z) 

i f  and only i f  the ordinary descent in K(e), applied to (X, Y, Z), leads to the 

same equation x a + ya = A z  a. - -  We have seen that this descent then must take 

the form 9.3.3, with ~ = i:  

9.15.7 X +  Y = s A w  a, X + Y 9  = t2(u + v~) a, 

and further the condition 9.4.2 must be satisfied: 

9.I5.8 a = b- -  I, c = A .  
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Subs t i tu t ing  this  in the formulae  1.2. 4 of Th. I, we find t h a t  they take  the  

form 9.15. 3. ~ On the  o ther  hand,  it  follows f rom 9.15.6 t h a t  a t r ip l ica t ion 

will lead to the descent  ment ioned.  

Fo r  a given solut ion (X, Y, Z), we now in t roduce  the  cor responding  "Fad- 

deer-constant" 9 defined by 

9.15.9 (X  + Y)'3(X + YO) = 9 . e~A~a  3, aeK(e) .  

We shall say t ha t  two solutions (X1, 1v1, Z1) and (X~, Y2, Z~) are F(addeev)- 

equivalent  if  and only if the  ra t io  be tween the i r  constants  91 and 92 is a (pos- 

sibly fract ional)  cube in K(~), and we express this by 

9"15 "1~ 91 ~ 9~" 

The  sign of equivalence thus  denotes  equality when cubes of K(~) are ignored. 

We can now prove 

Lemma 2. A solution (X, Y, Z) will lead to a descent 9.15.7 i f  and only i f  

9"15"11 9 ~ 1. 

- -  I t  is at  once clear t ha t  9.15.7 implies 9.15.11 , if  we subst i tu te  the different  

possibilities 9-3.4 for  8 and t in 9.15.9 and use the  re la t ion 22 = - - 3 ~ -  - -  On 

the o ther  hand,  if we subs t i tu te  9 =  1 and a =  U +  VQ in 9.15.9, we find by 

compar ing  the real  and complex par ts :  

X ( X  + y)2= A S ( _  U 8+ 3 U~ V - -  Va), Y ( X  + Y)~= A2( - U s +  3 U V ~ -  cs), 

i.e. ( X +  Y ) 3 = A 2 ( - - 2 U a +  3 U ~ V +  3 U W - - 2 V a  ). 

This shows t ha t  A I X  + ~, and we mus t  consequent ly  have a descent  of the 

type  9.3.3. Subs t i tu t ing  this  in 9.15.9 (with 9 = I), we see t h a t  t = I is the 

only possibility, q.eM. 

Faddeev considers only the case A = p  or p~, p # 3 a prime. There  are then  

no equat ions  of  the fo rm 

9. I5.I2 ax  a + b y a + c z  3 = o ,  a b c = A ,  l < = a < b < c ,  ( a , b ) = ( a , c ) = ( b , c ) =  1, 

and the  descent  9.15.7 will then  lead only to the case 9.15.8, i.e. a t r ipl icat ion.  

But  Faddeev's method applies without modifications, whenever all equations 9.I5.12. 

( i f  any) can be proved insoluble one way or other. 
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We shall say that  the descent 9.15.I2 (and the corresponding solutions 

(X, I7, Z)) are of Type I, and then have 

Lemma 3 (Faddeev). When no descent of Type I exists, then 9. I5.I I is the 

necessary and sufficient condition for (X, Y, Z) to be the triplication of another 

solution. 
Let next (X1, Y~, Zt) and (X~, I~, Zz) be two solutions with elliptic argu- 

ments ~ and _~2 respectively. We form the solution (X, IT, Z )wi th  the. argument 

C, - ~. = - ( -  C,) - C~ 

by means of the formulae 9.15.2, applied to (I71, X1, Zl) and (X~, Y2, Z~). 

the two formulae 9.15.5 (the first one squared) we conclude that  

From 

3 ~ ( x ,  + ~5)~(Y, + x ,e ) (x~  + Y.)*(x: + ~ e ) ( x  + ] T ( x  + Ye) = .~, 
But 

( X , +  ] ~ ) ( X , +  ] l e ) ( X , +  Y,e ~)= X~+ Y ~ = A Z L  
and so 

(x~ + r~) ~ (x~ + r~ e). ( x  + r)~ ( x  + r e )  = e ~ A ~ { ~ /~ 
(X~ + Y,)~ (X, + Y~ 0) _3 A Z, (X, + Y,)] = 

= q -~ A~a~, 
A comparison with Lemma 3 gives 

e K(e). 

-1 e K (e)" 

Lemma 4 (Faddeev). When no descent of Type I exists, then 9.I5.IO is the 

necessary and sufficient condition for ~ 1 -  ~2 to give the triplication of another solu- 

tion. - -  I t  is further an easy deduction that addition of elliptic arguments cor- 

responds to multiplication of Faddeev-constants. 

We can now divide the solutions of X a + ya = A Z a in classes according to 

their Faddeev-constants; two solutions belong to the same class if and only if 

they are F-equivalent. (We still suppose that. no descent of Type I exists.). The 

relations 9. I5.4--5 show that  the classes form an abelian group, isomorphic with 

lhe multiplicative group formed by the corresponding Faddeev-constants. 

We know that  the number of basic solutions of X a + ya = A Z a, represented 

by the elliptic arguments 

~ , , C ~ , . . . 5  

is finite. (Faddeev gives a special proof for this, independently of earlier, general 

proofs. We return to this in w I8 below.) 
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If  we consider the elliptic arguments 

9.15,13 nl ~1 -1- n~. ~,~ + ' ' "  + 9"lg ~g, FI1, n2 . . . .  'li~q = O, I ,  2, 

in number 3 g, it is clear that  they all represent inequivalent solutions. On the 

other hand, any solution m 1 ~1 + m2 ~ + . . . .  ~- m.~g differs from one of the forms 

9.15.13 by the triplication of a solution, on taking the residues mod 3 of 

ml, m ~ , . . ,  mg. There is consequently a one-one-correspondence between the elliptic 

arguments 9.15.13 and the classes of solutions; in particular, the number of 

such classes is always a power of 3. 

The number of classes is now easily found by counting the soluble descents 

different from 9.15.7 (cf. 9.6. I): 

[ X +  Y = s A 1  wa, X +  Y ~ = t $ ( a + b Q ) ( u + v Q )  a, a + b o # + _ I ,  

9.15.14 )where A = A 1 .N(a  + b~). A chan~e of sign for a +  b e is not 

considered, and values + and + b~ ~ not conjugate a b~ a are 

counted separately. 

We shall say tha t  this descent (and the corresponding solutions (X, ]5, Z)) are 

of Type II .  ~ There can be no confusion with the a and b of 9.15.I2. 

We have seen that  this descent will lead to an equation 9.6.3 (Table 5), 

where we must now include the possibility a = o, b = I, i.e. the equations 

9.5.3--4 (Table 3). 

I t  is clear that  the different cases I - - I I I  of 9.3.4 (for the same value of 

a + b 0) will not themselves lead to different classes, since the values s ~ t  3 ~, 3 -2 

and 3 -2 (cf. 9.15.9) differ only by cubes. (Such a combination of eases can occur 

only when A------- + 2 (mod 9), i.e. a + b~ in primary form, when both cases I and 

I I  are possible, cf. the beginning of w 8 above.) But different values of a + b 

will obviously correspond to different classes. So will also conjugate values, hence 

each possibility 9. i5. i4 must be counted twice. Finally there is always one de- 

scent 9.15. 7 (the triplication case), and we can therefore enunciate the following 

Theorem XIII  ~. When no soluble equation 9.15.12 exists, the nu~nber of soluble 

descents 9.15.I4 is always of the form 

I g 
9.~5.~5 2 ( 3  - ~), 

1 The  second sen tence  of t h i s  t h e o r e m  is  due  to Faddeev ,  and  t he  f i rs t  is  an  i m m e d i a t e  

consequence  of h i s  m e t h o d s .  

22- 642127 Acta mathemat/ca. 85 
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where g is the number of generators for the equation Xa + y a =  A Z a. l f  in partic- 

ular A = p or p*, p # 3 a prime, then 

g =  o for  p ~ 2  or 5 (rood 9) 

9.15.15 g < I " P ~ .4 ,  7 or 8 " 

g=<2  " p~= I " 

The eases p ~ 2 or 5 are covered by Th. V I I I ,  p ~ 4 or 7 by w 9, 1. (Table 

5), P ~ 8 by Th. X (Table 3) and  p ~ I by a combina t ion  of the las t  two  eases. 

W e  neve r  find g =  I w h e n p ~  I (rood 9) and  A<_--5oo (but g = o for  the  values  

of Table  4f). I n  no case have  I been able to show t h a t  g = o  w h e n p - = 4 ,  7 

or 8 (but there  are some unsolved equat ions  wi th  A = p ~ 4 and  < 500 in 9 .1I . I ) .  

The  n u m b e r  9.15.15 takes  the  values  o, 1 ,4 ,  1 3 , . . . .  Fo r  A < 5 o o  (the 

combined  Tables  3 a n d  5), the  m a x i m u m  a t t a ined  is 4. 

w z6. Faddeev ' s  m e t ho d  fai ls  when there  are soluble equat ions  9.15.12 (de- 

scents of Type  I). W e  mus t  then find a way of classifying such equat ions,  ana- 

logous to Faddeev-equiva lence  fo r  the descents  9.15.14 (Type II) .  

I define by 

a b e u 
9.I6.1 z 

b c a v 

the  "characteristic ratio" (c.r.) fo r  an  equa t ion  a x  a + by a + cz a = o, a b c =  A. 

The sign of equivalence s tands  for  equality when rational cubes and powers of 

A are ignored. Thus  for  ins tance  

a tI~S b b 
b ~ = A . \ ~ !  "-e~-e" 

The u and  v are those  of 9.4.1. 

A cyclic permutation of the  t e rms  a x  a, by a and  cz a leaves bo th  the c.r. a n d  

the  fo rmulae  1.2.4 unal tered.  (This corresponds  to us ing  the  automorphisms 9.11.3 

in the  descent  9.15.7.) But  a transposition of the  t e rms  implies  invers ion of the  

c.r . ,  and  a t  the same t ime  an in t e rchange  of X and  Y in 1.2.4, which means  

a change  of sign in the  el l ipt ic  a r g u m e n t  ~. (This cor responds  to rep lac ing  

u + v Q by i ts  conjugate, combined  with an a u t o m e r p h i s m  if necessary.)  

I t  is c lear  t h a t  two different  f ac to r i za t ions  A = a b c  cor respond  to inequi- 

va len t  c.r. Each  such fac to r iza t ion  gives two (reciprocal)values, except  in the  

case 9.15-8, when the  only value is x ~ I. 
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We can say t ha t  z is the  c.r. also for  the  solut ion (X, I v, Z) leading to the  

descent  9. I5. 7. I t  t hen  follows f rom Lemmas  1--2  t h a t  the conditions 9.xS.I I  

(99-~ I) and 

9.I6.z  

are the necessary and sufficient 

another solution. 

Le t  us first suppose t h a t  no soluble descent of Type 11 exists; the  condi t ion  

9. I 5.11 is then au tomat ica l ly  satisfied. - -  We have a l ready not iced tha t  a change 

of sign in the elliptic a rgumen t  ~ corresponds to inversion of the  eharae ter is t ie  

ra t io  x. We shall  also see t h a t  addi t ion  of  ell iptic a rguments  corresponds to 

multiplication of character is t ic  ratios. This  follows f rom the 

L e m m a  5. Let (x~, y~, z~) and (x~, y~: z~) be solutions of the equations 

a l x  a + b l y z  + c~e a = o, a~b~c~ = A ,  and 

aex  a +  b~ya + c.,e a = o ,  a~b2e~ = A 

respectively, and let P~(X~, Y~, Z~) and P~(X2, }~,.Z~) be the corresponding points 

(by 1.2.4) on the curve X s +  y s =  A Z a. Then 

x = a lx~y._z.~-a~xzytzi ,  y = bly~z~x~ bo z - -  . y ~ .  Zl Xl, 
9.I6.3 

is a solution of the equation 
x a ya z a 

9. i6 .4  - -  + + - -  = o. 
al  ~ ~ gl g2 

conditions for (X, Y, Z) to be the h'iplication of 

a 1 a~ I I 
X 

I a 1 a 2 

bl b2 bl b2 

and the  elliptic a rgumen t  ~ of P equals 

22* -642127 

~1 X2 

C = -  + 

Further the corresponding point t ) (X ,  } ,  Z) on X a + ys  = A Z a is the third inter- 

section of the chord through P1 and P~. (This lemma is of course valid whe ther  

or not  descents  of  Type  I I  exist.) 

The  mult ipl icat ive proper ty  of the charac ter is t ic  ra t io  is an immedia te  con- 

sequence, since the c.r. for  the  equat ion 9. i6.4 is 
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I t  is easily verified by s t ra igh t forward  calculat ion tha t  9.I6.3 gives a solu- 

I A 
t ion of the equat ion 9.I6.4. The product  of the coefficients is here A s A ~ 

and the  equation can thus  be given the form a s x  's  + bay  's  + c s z  '3 = o, a 3 b s c  8 = A ,  

(as, bs) = (a~, cs) = (bs, ca) = I. - -  We note tha t  9.I6.3 coincides with Desboves '  

formulae 1.5. 3 when a I = a~ = a, bl = b~ = b and  c I -- c~ -- c. 

The last  sentence of the Lemma can also be verified by s t ra igh t forward  

calculations. These become very tedious, but  can be faci l i tated by means of the 

second formula  9.I5.5, where we subst i tute  

X ~ +  / : l e = ~ ( u ~ + v ~ ) s ,  X ~ +  r ~ Q = ~ ( u ~ + v ~ e )  ~, X +  Y ~ =  C ~ ( u + v ~ ) S ;  

z~ = 3 w, .  2V(u~ + v~ e), z~ = ~ w~. ~v(,,~ + v~ 5). 

Here  C = (X, :Y) is the unknown common factor  of the formulae 9.I5.2. We can 

always use the values s = 9 ,  t =  I of case  I ,  if  we keep a common factor  9 in 

a solution of case I I .  

I t  fo l lows  f rom 9-I5.5 t ha t  C is divisible by 9 A  (cf. 9.18.7), and fur ther  

from a comparison of the cubes t h a t  

9.  6.5 v ' .  ( .  + v = m + e ( . ,  + vl (ul + d)(u  + 

where C' is some unspecified ra t ional  integer.  A possible uni t  e = i ,  Q or ~ 

can be absorbed in u + v~, because of the  automorphisms 9.II .3 .  

The relat ion 9.I6.5 is now ra ther  easily verified on equat ing real and com- 

pl'ex parts  and making the subst i tu t ion 

u l = - - a , x ,  3, v~=b~y~, w~=--x~y~z~; u~=--a~x~, v~=b2y~, w~=--x~y~z~; 

Ia~ (a, x~ I u . . . .  al y~ z~ --  as ~ yj zl) a, v = ~ (b I ~ z~ x~ - -  b~ y~ zl xl) a, 

cf. 9.4.I and  9. I6 .3--4 .  - -  This concludes the proof of L e m m a  5. 

The formulae 9.16.3 fail  in the  d u p l i c a t i o n  case (since then  x = y = z = o ) .  

But i t  is easily verified by means  of 1.5.2 and  9.I5.I  t h a t  corresponding solutions 

(by 1.2.4) of the  two equations a x  a + b y  3 + c z  a = o and X s + y s  = a b c Z  a = A Z  a 

have corresponding tangentials .  (As above, the verification can be simplified by 

use of the second formula  9.I5.4.) The multiplicative property of x still holds, 

since a tangent ia l  for  X s +  y s =  A Z  s has an elliptic a rgument  - - 2 ~ - - +  

(rood 3 ~). 
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Like the Faddeev-constants ~p of the last paragraph, the characteristic ratios 

x thus form a multiplicative abelian group. In particular, we conclude in analogy 

with Lemma 4 that x t ~ x~ is the necessary and sufficient condition for  ~ ~ ~ to 

give the triplication of  another solution: 

The classification of the soluble equations a x  a + by a + c$ a = o is now com- 

plete, and the arguments that led to Th. X I I I  can be repeated. They show 

that when no descent of Type I I  exists, the number of  soluble equations 9.I5.I2 is 

always o f  the form 

9.16.6 _I (3 a __ I), 
2 

where g is the number of  generators for  the equation X 3 + y3 = A Z 3. 

We must finally combine the Types I and I I  of descent, and divide the 

basic solutions (in finite number) between the two types: 

~,, r  ~,; ~ ,  r �9 �9 (~___~. 
Type I Type I I  

We first note that the Types I and I I  have a Faddeev-constant ~ = I and 

~' 4 I respectively. I t  follows that when there are descents of Type II ,  there 

must be at least one generator ~'. We can further suppose that  all the ~' are 

F-iuequivalent, since ~ and ~ ~ ~ can be replaced by ~ and ~ ~, where the 

latter is of Type I. 

I f  we consider the elliptic arguments 9.15.I3: 

9.I6.7 

[ ~ = .n' ~, + . . .  v + ng, ;g,. + - i  (, + ' "  + nk ~L, 
/ Type I , ~ p e  I I  
( n  1,  �9 �9 �9 n g t ;  n l ,  . . �9 c / g ,  ---~ o ~  I ,  2 ,  

then the Faddeev-constant ~ of ~ will depend only on the coefficients c/', and 

not on the n. Further  ~p ~ I (Type I) if and only if all n ' =  o. The arguments 

that  led to Th. X I I I  can now be repeated, showing that  the number of soluble 

descents of Type I I  is still of the form 9.I'5.15 (with g = g~). 

Equating all the n' to zero, we can then study the distribution of the 

generators of Type I by varying the coefficients n. (There must be at least one 

generator ~, when there are descents of this type.) We are again led to 9.I6.5 

(with g = g~), and can consequently enunciate the following 
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Theorem XIV. The number of soluble equations 9.15.12 

soluble descents 9.I5.14 are always of the forms 

respectively. Here 

and the number of 

! (3~ ' - -  I) and ~ (3 ~ -  I) 
2 2 

g = gl + g~ 

is the number of generators of infinite order for the equation X s + ya = A Z a. The 

basic solutions can be chosen so that there are gl and .q~ generators respectively 

resulting fi'om the two different types of descend. 

Of course other choices of generators are possible when gl, g~ > o, cf. the 

concluding remarks of the next paragraph. 

The solutions of Type I, together with the triplications, are characterized 

by ~0 = I, and thus form a subgroup of the group of all solutions. I t  is very 

striking that  such an arithmetically defined subgroup should exist. 

x 7. The basic solutions of X 3 +  y 3 =  A Z 3 for (cubefree) A =< 5oo can 

now be found by Th. XIV from Table 2 b (Th. 1), Table 3 (Th. X) and Table 5 

(the formulae 9.5.2). A list of the basic solutions is given in Table 6, which 

also contains a column for the maximum number g of generators. This number 

is obtained in nearly all cases; the only undecided (unsolved) equations, given 

in (Io) of the Introduction, correspond to  7.4.2 and 9.II . I .  Since these have 

A =473 = I I . 4 3  in common, g=<2 in this case. In the remaining undecided 

cases, g ~ I. As stated earlier, I believe that the maximum number of generators 

is really obtained in all cases. 

In particular, I can decide solubility and the number of generators in all 

cases when 

9.i7.I A <: 283 . 

SYLVESTER ([I] pp. 313 and 316) stated that  he knew whether or not any number 

A ~ IOO is a sum of two cubes, except perhaps A = 66 (which is insoluble by 

Table 4b; also proved by CAss~.Ls [I]). Sylvester's statement is partly based on 

the inaccurate communication from P@in, mentioned above in connection with 

9.4.5. But there is one insoluble value of A <: loo, namely A = 73 (Table 4~), 

which has never been noticed in earlier papers. I suspect that  Sylvester has 

taken the solubility of 9.5.3 with A = 73 for granted. 

The basic solutions of Table 6 for A ~ 5o are also given by FADDEEV [I] 
(but I choose the, solutions differently for A = I9 and 37). Some of the remaining 
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so lu t i ons  in Table  6 were given by LENHART (see DIeKSON [I], Ch. X X I ,  ref.  

I86), bu t  most  of t hem have been found  by me. 

T h e r e  a r e  n e v e r  more  t h a n  2. g e n e r a t o r s  w h e n  A "< 50o. The  smallest  value of 

A with g ~ 2  is 

9. I 7 . 2  A = 657 = 9"73 ,  

where 3 (B) 73 (cf. w 9, 3.). We then  get  the one soluble equat ion x 3 + 9 y  3 + 73 za = o,  

and four  soluble descents  9.15.I4, cor responding  to a + b 0 = 0, zc73, 0z~73 and 

02z~73. There  are thus  t h ree  basic solutions,  which can be chosen as 

9.I7.  3 (X, Y, Z) -- (Io, - -  7, 1), (I7, 7, 2) and (2971, - -  2890, I47). 

Most  of the soluble A ~ 50o have g = i, resul t ing  f rom one e q u a t i o n  in 

Table  2 b, 3 or 5. The values of A _--< 50o with 2 genera tors  are d is t r ibuted  as 

follows : 

Table 2 b alone gives rise to g = 2 (4 equations) in I3 cases, and Table  5 

a lone in 3 eases (A = 91 , 2I 7 and 469, all of the  fo rm A = r l r  ~ I (rood 9), 

rl  and r~ ~ I (rood 9) and not  bo th  cubic residues of each other). 

The  combined Tables  3 and 5 give g = 2 (4 equations) for  8 pr imes r ~ -  + I 

(mod 9), ef. 9.I 5.16. 

The values A = I53 and 4 7 7  (both of the fo rm A = 9q, q------ I (rood 9)) 

have g = 2, resul t ing  f rom one equat ion in each of the  Tables 2 b and 3- 

The  remain ing  eases with g = 2 all resul t  f rom one equa t ion  in eaeh of the  

Tables  2 b and 5: 

5 values A = 3R ,  3(R) r ;  

12 values A = Q R ~ + + _  I (mod 9), q ( R ) r  (and possibly also A = 473 = II "43, 

where no solut ion has been found);  and finally 

7 values of A with 3 different  pr ime factors.  

In  the  cases where there  are two basic solutions, resul t ing  f rom one equa- 

t ion in Table  2 b and one in Table 3 or 5, the solut ion of the  l a t t e r  equat ion  

(Type II)  will usually lead to the smaller  basic solut ion (X, Y, Z). In  most  

cases the smallest  values of the  second basic solution, as given in Table  6, is 

calculated f rom ano the r  solut ion of the same type of descent  (not given in Tables 

3 or 5). The  solut ion (X, Y, Z) resul t ing  f rom Table 2 b (Type I) then  usually 

corresponds t6 one of the ell iptic a rguments  + ~1 -+ ~2. 

xS. We  must  also ensure tha t  the  solutions of Table  6, found by the 

descents  9 . I5 . i2  and 9.I5.I4,  are really basic .  - -  The  principles to be used are 
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given by  Faddeev, in his proof tha t  the number  of generators  is finite. His 

result  is as follows: 

Let  (X~, Yi, Zi), i = I, 2, . . . 3 ~ -  I, represent  one solution f rom each of the 

classes defined by 9.I6.7; the tr ipl icat ion class (all n and n'  = o) need not  be 

considered. Le t  fu r the r  n denote the maximum of all I Xil, I ]~1 and I Z;I. Any 

solution (X, Y, Z) can then be expressed as a combinat ion (in elliptic arguments)  

of the  solutions (Xi,  Yi, Zl) and a finite number  of other solutions (X', Y', Z') 

such tha t  
1 1 

9.I8.1 I x ' l  + [ Y ' I < 4 A ~ L 3 .  

The possible basic solutions not  contained among the (X~, ]7,., Z;) can thus  

be found in a finite number  of steps. 

Faddeev's  inequali ty 9.18.I is based on ra ther  rough approximations.  I will 

show tha t  his method can be refined, leading to an improvement  of both coeffi- 

cient and exponent in 9. I8.I.  

I prefer to deal with the norm N(X-17 YQ) = X ~ X Y + Y~' of a solution 

(X, I(, Z), instead of with I X  I and I YI . For  a solution of Type I I ,  result ing 

from a descent  9.I5.I4,  we have 

9.18.2 N ( X  + Y~)= 3t~.N(a + b~).N(u + v~) a, 

where u and v are the solutions of the corresponding equation 9.6.3. 

For  a solution of Type I, resul t ing f rom a descent 9. I5.7 and leading to 

an equation 9.I5.I2,  we have by 9.4.I :  

9.i8.3 N ( X  + Ye) = 3t2.N(u + re) n = 3 t~ 'N( - a x3 + b~lae) s. 

For  both types of descent, the value of N ( u  + vo) for  a known solution 

must be calculated anyway as a factor  of Z in 9.3.3 or 9.6. I. The value of t 

to be used (of. 9.3.4) depends on the solution (X, Y, Z). 

I t  is fu r ther  easily seen tha t  w e  have the  inequali t ies:  

V 4  N(u + v ~) ; in par t icular  9. a8.4 Max {I.I, I 1} --< 

9. I8.5 Max II.x l, Ibv l, § hugo). 

Let  (Xi, Yi, Zi), i = I, 2 , . . .  3 ~ -  i, have the same meaning  as above, and 

let now 
M -- { l v ( X ,  + r , e ) } .  



The Diophantine Equation a x a + by a + cz a = 0. 345 

Let further  (X, Y, Z), with elliptic argument  if, be any solution different from 

(I, - -  I, o) and from the (Xt, Yi, Zi), and not a triplication of another solution 

(x, y, z). (If (X, Y, Z) is such a triplication, we deal with (x, y, z) instead.) There 

is then always one (Xi, Yi, Z,), with argument ~;, such that  ~ - -  ~. = --  (-- ~) --  ~ 

gives the triplication (Xa, Y~, Zs) of another solution. Since (Xs, Ya, Zs) can be 

obtained by applying 9.15.2 to (Y, X, Z) and (Xt, Yi, Z~), we get from 9.I5.5: 

9.I8.6 3 ( Y +  X e ) ( X , +  Y,e)(Xs + Y s e ) =  A [ Z , ( Y  + X e ) - - Z ( X , +  Y,e)] 3. 

As already mentioned, the formulae 9.I5.2 will usually give a rather  big 

common factor C. I t  is easily seen that  C is always divisible by 

9.I8.7 Cx = greatest common factor of all sA1 

(in. the expression for X + Y) in all soluble deseents 9.I5.7 (where At = A) and 

9.I5.14. In  particular, Ca will contain all prime factors q = - -  I (rood 3) of A. --  

I t  follows from 9.15.5 that  possible factors of C prime to 3A always oeeur as 

cubes, but nothing more can be said in general about such factors. 

Let  (X~, :Y~, Z~) be the solution with the factor C removed. Since 

] Y + X 0 ] = J X + Y 0 i, 9.18.6 gives the inequality 

3 I x +  YqI-IX~+ Y, e l ' l x ~ +  r;el----C7'A[IZ, IIX+ YeI+IZI.IX,+ Y,olP. 

Fur ther  
i z i  3 I x 3 +  Yzl_ I x  + Y~.lx + Yel'~ < 21x 4- Yel 3 

A A = A ' 
8 - -  $ 

Substituting this, we find that  

p / 2 4  

t x ; +  r3el---~c~'.lx,+ Y, e l~ . lx  + YoI'. 

Now the norm is the square of the modulus, and so 

9.18.8 < ~ M s . 2v(x; + r~ e) = 33 c72" N(x  + r~) ~ 

i.e. 

Let (X~, Y~, ~ )  be the triplication of a solution (x, y, z), given by the ex- 

pressions 9.I5.3. I t  is easily verified by the second formula 9.I5.6 that  N(x  + y~) 
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has a maximum for fixed _N(X~ + [Y~) when 

= - y, ~' (x + y e) = 3 ~ ,  N(x~ + r~ q) = 3 x ~8. 

But  we must  remember t ha t  the formulae 9.I5.3 can give a common factor  9 

when A ~ + 2 (rood 9)- Since the possibility x = - -  y is excluded, we thus  get 

an inequali ty : 
_ 9 

N(z  + y e) < I / / ~  2v (x~ + Y; e) where 
3 I / 3 ' 

if  A-----+ 2 (mod 9). 9. I8.9 U~ = I if A ~_+ 2, U~ = 3 4 

Combining this with 9. I8.8, we see tha t  

Yq)~. 

We now apply the same process to the solution (x, y, z), and can continue 

with this  principle until we get, either to one of the given solutions (Xi, Y~, Zi), 

or to a solution (X', Y' ,  Z') such that 

9.~8.io N(X '  + Y'q) < { 2s" 3 ~ �9 
c~ ~ �9 M~-. 

Here C~ and C~ are given by 9.I8. 7 and 9.I8.9. - -  This is the improved form of 

the inequal i ty 9.18.I. 

W h e n  the l imit  of 9.I8.1o has been calculated, the search for possible solu- 

tions (X', Y', Z') can be quickly performed by the formulae 9 . I 8 . 2 ~  3. These 

will in most cases give very narrow limits for the l u[ and I vl of 9. I8.4, or for 

the I , ~ 1 ,  Ibv~i and l c ~ l  of  9.i8.5. The value of t to be used in these in- 

equalities is usually uniquely determined by the type of descent and the residue 

of A mod 9. The only ambigui ty  arises for A ~ + 2 (rood 9), when both cases 

I and I I  are possible; we must  then  use the most  unfavourable  value t = i_ 
9 

(case II)  in the expression for _N(X' + Y'0). 

We have seen tha t  g = i or 2 for all soluble A=<5oo.  When  g = 2 ,  the 

solutions of the descents 9. i5 . i2  a n d / o r  9 . I5 . I4  are usually so simple tha t  the 

basic ones are easily recognized. W h e n  however g = I, the one basic so lu t ion  

(X~, Y~, Z~) is sometimes big, and must  be checked by 9.I8.Io.  The solutions 

(X~, [[~., Z~) can then  be chosen as (X~, I~, Z~) and (X~, Y~, Z2) = (Y~, X~, Z~), 

i.e. M = N(X1 + Yiq). 
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m ~  I (rood 9) 
m ~ 2  

m ~  3 
m =  4 

Table  z ~. 

The residues mod 9 of N (u + v #  + w #  ~) = u 8 + m v  a + m ~ w 3 - -  3 m u v w .  

I 0 102 I + 0  

I I I 2 

I 2 4 0 3 
I 3 4 
1 4 - - 2 1 - - 4  

i - -0  

0 

I 

- - 2  

- - 3  

I + 0 '  

2 

- - 4  
I 

- - I  

I - - - 0  2 

0 

- - 3  
I 

3 

0 + 0 '  

2 

- - 3  
3 
2 

0 - - 0 '  x + / ~ + 0 '  

0 0 

- - 2  I 

3 4 

--3 o 

I - # - 0 '  

- - 4  
- - 2  

- - 2  

- - 4  

I - - 0 + 0 '  

4 
0 

- - 2  

- - 2  

i+0--0 '  

4 

- - 4  

4 
1 

1'able z b. 

Possible combinations rood 3 of v and 7 = ~ .  

m =  1 (rood 9) 

m - = 2  (rood 9) 

m ~  3 (mod 9) 

7----# 

i - -0  

n ~ o  (mod 9) n ~ I  (mod 9) 

I --0' 0--0' 

• 

X 

0 0'  

• • 

• x 

x x 

i+,9 

n ~ z  (mod 9) 

I+#'  0-F0'  

X 

X 

n ~ l  (mod 9) n-~2 (mod 9) n ~  3 (mod 9) 

v--= 0 - - 0 + 0  2 - V # ~ # '  i + #  

7 ~ 1 + 0 2  
7 -  i - - 0  2 

x - - i + 0  I+0+0:  

x x 

x x 

x x 

x 

x 

- - I + # '  --#--/~'  

x 

• 

n ~ I  (rood 9) n ~  3 (mod 9) n--= 4 (rood 9) 

- - I - - O '  r + # - - 0  ~ - - I + 0  I - - 0 '  - - 0 + 0  ~ 0 

X 

X 

X 

m=- 4 (mod 9) 7 ~ - I - ~ 9 2  
~ =  I ~- ~--~92 

x 

x 

- - I - -0  -I+0~0' 

x 

• 

x • 

X 

X 

X 

n ~ - i  (mod 9) n ~ 2  .(mod 9) n ~  4 (mod 9) 

, i - o '  - i + o - i §  
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Table z t  

Effective cubic residues for m ~-+_ I (rood 9). 

Class 4 

(rood 27) 

Class 6 

(rood 9) 

Class 4 
(rood 27) 

Class 6 

(mod 9) 

m = I o  m = I  7 m = I 9  m = 2 6  m = 2 8  

7 + 8 - - 2 ~ 9  ~ 

32 + 4 8 - - 8 t  

8 + 4 8 - - 8  ~ 

- - x + 2 8 + 8 8 2  

- - 7 + 2 8 + 8 8  ~ 

i 6 - - 8  + IO %9 ~ 

4 - - 8  + IO 8 'z 

m = 3 5  m = 3 7  m = 4 4  m ~ 4 6  

3x--58 + 83 i + ix 8 + 8  z 

7 + ~ 8 + 8  z 

3 r+5~9+82  

~--5,~+~ ~ ~+58+~ ~ 

3 3 

x - - i I S + 8 2  

7 - - H  8 + 8  "~' 

2 0 - - 8  + 8 8 z 

5 - - 8 + 8 , 9  ~ 

Table z d. 

The cubic residues t d + D (rood qg) in K (8). 
. . . . . .  t + 0  (rood q) " K (0 ) .  

~b ~ I 

i ~ - - 1  I 

t = 4 7 1 d  I 

29 ~--1  I 

23 ~--I 1" 
7 =  X 

q =  17 I 

q~ I I ! ~  I 
I 

I 
2 3 4 5 6 7 8 9 IO i t  I2 I3 14 15 r6 17118 I9 20 2r 2z I 

z 

I6 -13 5; -23 I6 12 I9 8 6 21 3 - X l  -2o - I 4 - I  7 4 i - I 8 - I O  22 -7  9 !5 

2 1 - 1 9  I 8 - 8 - 2 3 1  2 - 1 5  2 o - I 2 - 1 3 !  IO 7 n -5  4 I 4 ! - 6 ] - 3 - 2 2 - I 7  

--8 - 1 4  - - I 2  .. -3  - I  I IO t : 

- 7 - I I  2 IO q = I i :  t = 3, 6, 9 

q = 2 3 :  t =  3, 4, Io, Iz ,  14, 20, 2I 

_ q =  2 9 :  t = 5,  8,  I 0 ,  12 ,  15,  I 8 ,  20 ,  22 ,  25  

q = 4  I: t =  4, 5, 8, 12, 14, ZT, 2I, 25, 28, 30, 34, 37, 38 
--2 
-2  q = 4 7 :  * =  8, 9, Io, z3, 17, 18, 23, 24, 25, 3 o, 31 , 35, 38, 39, 4 ~ 

--2 

-9 



T h e  Diophantine Equation a x  3 + b y  3 + c z  3 = O. 349  

T a b l e  2 b. 

Non-excluded equations a x a + b y 3  + C Z 3 = 0 

w i t h  a b  c = A c u b e f r e e  a n d  = 5oo ; 

I < a < b < c ,  ( a ,  b)  = ( a ,  c )  = (b,  c )  = I .  

A a b c z A a b y z 

I , 2 

i 3 

i 3 

i 4 

I , 2 
I 

i 3 

i 5 

2 i 3 
i 3 
I 2 

6 

2 

3 

I 2 

I 5 

i 4 

I i 3 

I 3 

2 I 3 

3 4 
I 5 

I l 2 

I 3 

I 9 

I 4 

I 2 

i 7 
I 2 

I 2 

i 5 
I IO 

2 5 

2 3 

i 5 

I 3 

i 4 

2 7 

i 5 

3 

4 

5 

5 

I 

5 
o 

6 

5 
I I  

17 

7 

25  

17 

29  

13 

17 

23 

7 

25 

13 

7 

I 7  

43  

29  

IO 

23 

47  

15 

5 3  

55 

22 

I I  

I I  

19 

23 

41 

31 

9 

26  

X y 

I I 

I I 

--2 I 

I I 

- '3  2 

I --2 

I --3 

I I 

I I 

2 I 

I '2 

I I 

--3 I 

4 --3 

3 I 

2 I 

-5  3 
I --2 

I I 

I 2 

--2 I 

I I 

I 3 

3 2 

i o  - 7  

i i 

- 3  i 

- 6 3  5 ~ 

2 I 

I - 3  

I 3 

- 3  I 

I I 

- 2  

:2 

-7  
16 

3 

I 

- 7  3 

I I 

I - - I  

4 I 

7 -5 
I --I  

I - - I  

'2 

- I  132  

- I  

I 

- I  

I 14o  

I 141 

2 142  

- I  153 
- I  156  

- I  150  

- I  i 6 4  

--I 166  

I 17o  

I 177  

- I  i 7 8  

- i  18o  

I 182  

I 183 

- I  186  

- I  187  

I 195 

- I  198 

- 2  2Ol  

- I  2 0 2  

I 2o  3 

- I  205  

I 2 o 9  

I 2 1 0  

I 

--I 

I 212  

--I 213  

214  

2 1 8  

2 1 9  

2 2 2  

2 2 8  

2 3 I  

2 3 6  

I 

I I 

2 

3 
I 

I 

IO 

3 

2 89  

5 

13 

3 

2 

I I  

5 

9 

3 
2 I O i  

7 
5 

I I  

6 

I 4  

5 

7 

4 

3 

2 IO 7 

2 lO 9 

3 73  

6 37  

12 19 

7 I I  

4 5 9  

c x 

44 - 5  
33 i 
12 I 

I I  I 

2o -3  

4 7  i 

71 - 5  

17 2 

z3 i 

53 7 

41 i i  

83 9 

17 - 3  

5 9  17 

7 
9 I I 

14 I I 

61 - 4  I 

93  - 7  5 

17 5 I 

39  I - 2  

I I  I I 

67  4 I 

3 - 4  

29  3 - e  

41 I 2 

19 2 I 

35 - I i  6 

15 I I 

21 2 I 

IO I I 

53 19 - 1 2  

71 2 5 0  -231 

7 - 1 9  

- 5  2 

2 - 3  

5 -3  

- 7  3 

3 I 

3 2 

3 i 

2 - i  

i - i  

7 -5 
I I 

5 - 2  

3 I 

I - I  

- I  

--2 

I 

- I I  

I 

5 
I 

- I  

- I  

I 

I 

- 2  

I 

- I  

- I  

I 

I 

- I  

--I  

I 

- I  

- I  

- I  

I 

67 

5 
I 

I 

I 

I 

- 2  

- I  

I 

3 

- 7  

3 8 

I 

- 1 6  

- 6  

2 3  - 6 4 2 1 2 7  Acta mathematica. 8 5  
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Tab le  2 b (cont inued) .  

Ernst S. Selmer. 

A a b c x y z A a b c x 

7 
2 

3 
6 

3 

3 
2 

2 

5 

3 
I3 

2 

i i  

2 

3 
6 

3 

4 

5 
i i  

6 

5 

3 
17 

7 

3 
2 

I I  

3 

7 
6 

5 

3 
18 

3 

5 
I5 

5 
2 

3 

4 
I 2  

4 

5 

4 

3 4  I 
123 i 

82 3 

41 r 

4 1  I 

83 , - I  9 

127 I 

129 

53 9 

89 3 
2 1  I 

I37  - 9 

25 

i 4 I  2 

94 i 

47 2 

47 3 

357 

358 

363 

366 

37 ~ 

372 

38o 

382 

385 

39o 

391 

393 

394 

396 

7 
2 

3 

3 
IO 

4 
1 9  

2 

7 

5 

3 
13 

IO 

I7  

3 
2 

9 

I7 

179 
12i  

122 

37 

93 
2 0  

191 

55 

78 

65 

15 

x3 

23 

I31 

197 

44 

7 1  

x9 

13 

49 

59 
I O I  

18 

ix  

lO3 

155 

29 

lO7 

I 

I 

2 

I 

2 

I 

I 

3 
r 

P 

9 

399 
4o2 

4o7 

411 

4 1 4  

418 

420 

, 425 

428 

7 57 

3 134 

I I  37 

3 137 

9 46 

I i  38 

1 5  2 8  

20 2I 

4 35 
7 12 

17 25 

4 1~ 

23 I 

I I  I 

67 2 

113 7 

19 i 

115 i 

69 

23 

23 

I73 
116 

87 

2 9  

29 

71 

89 i 

- - I  4 2 9  

- I  43o 

- I  435 
2 

- - I  

2 

- I  436 

- I  438 

I 444 

445 
-8  446 

t 447 

I 450 

I 452 

I 453 

I I  

2 

3 

5 
15 

5 

4 

3 

4 

5 
2 

3 

9 

4 

3 

13 

215 

I45 

87 

29 

29 

lO9 

I46 

37 
89 

223 

149 

25 

113 

151 

-137  454 2 227 

I71 I 
41 8 

-169 

3 -5  

I 

IO~ 494 

-20331 I5;485 

y z 

I I 

3 - - I  

6 i 

I I 

I - I  

2 I 

I - - I  

2 I 

5 2 

3 I 

I - - I  

- - I  

-15 

4~ 
I 

--o 

- - I  

I I  

I 

I 

--2 

- - I  

4 
- - I  

- - I  

- - I  

I 

I 

I 

- - I  

I 

2 

- - I  

2 

7 

I 

- I  

--2 5 

I 

1627 



The Diophantine Equation a x  a + b y  a + c z  a ~ O. 

T a b l e  2 b {continued).  

351 

A a b c a x 

460 

462 

465 

466 

468 

473 

474 

477 

4 
I 

I 

2 

3 
I 

In  

4 
I 

2 

I 

5 
6 

2 I  

7 
I I  

I5 

2 

9 
I I  

3 

9 

23 

77 --5 
i 

2 2  I 

33 2 

14 ! I 

31 ~ - 22  

233 119 

13 I 

X 

I 

I 

5 
I 

I 

I38 

I 

Y 

-5  
2 

-3  
- - I  

7 
-31  

- I  

z A 

3 483 

I 484 

- I  490 

493 

495 

497 

498 

b c 

7 69 

4 12I 

5 49 
17 29 

9 55 

7 71 

2 249 

3 166 

-5  

-5  

- 3  

32 

- 4  

4 
I 

- I I  

43 

79 

53 

! I 

-5  

- 3  I 

2 I 

6 83 

3 83 

7 
I 

I 

-5  
I 

67 -38  

I 3 

y Z 

2 I 

I I 

I I 

- - I X  

I 

- - I  

I 

2 

7 
- - I  

Values of A <I000 with 
T a b l e  2 c. 

13 possible equations a x  a + b y  a + c z  a = o,  a b c  = A ,  only 
one of which is soluble. 

A a b 

33 o = 2 ' 3 " 5 " 1 1  

5 1 o = 2 ' 3 " 5 ' 1 7  

6 6 o = 3 - 4 ' 5 ' 1 1  

6 9 o = 2 .  3 " 5 - 2 3  

8 7 o = 2 - 3 . 5 . 2 9  

6 

:t5 

I I  

2 

29 

c X 

II I 

Z 7 i 

15 i 

345 7 
3 ~ I 

y Z 

I - - I  

I - - I  

I - - I  

I - - I  

I - - I  

T a b l e  3. 
The equation u S - - 3 u ~ v  + v 3 = 3 a p w  3, 2 = o or I, 91-a~  < 500. 

Crosses: insoluble equations. 
i 

p u v w w p u v 

I 

I7  

19 

37 

53 
7 r 

7 3  
89 

Io  7 

lO9 

127 

I 

x7  

I 

5 

7 
I 

29 
8 

2 

I 

2 

5 
I O  

13 
x 

7 
I 

x 

5 

163 

179 
181 

197 

199 

233 

25t  

269 

27I 

17 ~ 

3o7 

I 

283 

2 0  

77 
38 

2189 

I O  

4 

8 

86 
x 

31 
x 

18 

13 

57 
I7 
I I  

• 

W 

I I 

~i 7 z 
x 

8 i 

2 I 

E 9 i 

r 3 i 

7 I 
x 

I 

0 

I 

5 

19 

37 

i :7" xc 

17 359 
1 9  2 

x 379 

397 
I 431 

'x 433 

37 449 

I 467 

I 487 

I 53 
I 

I I  

49 7 

25 

13 
I I  

5 
23 

I 

15 i 

4 i 
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Table  4. 

Cubefree values of A <_- 5oo for which the equation 

X a + ya = A Z a 

has only the trivial solution with Z = o. 

4". Values covered by Theorem VIII. 
A = 3  

A = q t ~ 2  (mod 9):  (2), I I ,  29, 47, 83, io I ,  137 , 173, 191, 227, 263, 281, 317, 353, 

389, 443, 461 , 479 
A = q ~ 5  (rood 9):  5, 23, 41 , 59, 113, 131, 149, 167 , 239, 257, 293, 311, 347, 383, 

4Ol, 419, 491 
A=d: 2$~4, 1 1 2 = 1 2 1  

A = q ~ :  52=25 
Other combinations. 

2 9 IOI 

22 

5 
9 

23 

41 

59 
113 

112 

131 

149 
167 

239 

IO 

18 

46 
82 

118 

226 

242 
262 

298 

334 
478 

36 

45 

207 
369 

I I  

44 

55 
99 

253 

451 

52 29 

too 116 

- -  145 
225 261 

47 83 

188 332 

235 415 

423 

404 

4 t Values of A with 4 possible equations 

a x  a + b y  a + c z  a = o, a b c  = A ,  

which have all been proved insoluble (Theorem IX). 

6o, 66, IO2, 138 , 15o , 165, i74 , 204, 220, 23o, 255, 276, 290, 3oo, 318, 34 o, 354, 374, 

4 lo , 426 , 47 ~ , 492 



The Diophantine Equation a x  ~ + b y  ~ + c z  3 = O. 353 

4 c. Combinations covered by Theorem XI. 

7 

3 

9 

7 

3 

7 ~ 
I 

7 

3 

9 

2 3 23 52 

7 

1 3  

1 9 

I 7 

I 9 

I I 

I 7 

i 3" 

3: 

I I 

i 9 

2 I 

21 

39  

57  

93  

129  

147  

237  

2 9 I  

3 

3 

4 

5 2 

76  

I 4 8  

196  

2 6 8  

292: 

4 1 2  

5 i i  

- -  77 

95 - -  

155 

~85 

245  

365  

17 23 

119  

221 2 9 9  

- -  4 3 7  

I 
175 

475  

47  53 

3 2 9  371 

4 d . Values of A covered by Theorem XiI.  

234  = 9 " 2 �9 13 

2 5 2 = 9 " 2 3 "  7 

3 1 5 = 9 " 5 "  7 

154  = 2 " I I  7 

19 ~ = z �9 5 19 

260  = 23 �9 5 13 

35 ~ = z �9 52 7 

4 0 6  = 2 �9 29 7 

442  = 2 �9 17 13 

4 7 6  = 22 ' 17 7 

4'. Values of A with two prime factors r ~ I (mod 3). 

2 6 6 ~  2 �9 7 " I 9  3 6 4  = 2~"  7 ' 13 4 3 4  = 2 - 7 " 31 455  = 5 " 7 " 13 
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4 / . Values of A with four possible but insoluble descents 9.6.1, including 
a + b e = e  (identical with the crossed values of Table 3). 

73, 1~ I8 I ,  199, 307, 487 (all  p r i m e s ) ;  361 ~ 198 

4g. A complete list of the insoluble values in the Tables 4 a-f. 

3, 4, 5, IO, I I ,  14, 18, 2I, 23, 25, 29, 36, 38, 39, 41, 44, 45, 46, 47, 

52, 55, 57, 5 9 ,  60, 66, 73, 74, 76 , 77, 82, 83 , 93, 95, 99 

.ioo~ i o i ,  lO2, lO9, I I I ,  113, 116, i i 8 ,  119, 121, 122, 129, 131, 137, 138, 145, 146, 147, 148, 

149, 15 ~ , 154, 155, 158, 165, 167, 173, 174, 175, 181, 185, 188, I9O, 191, 194, 196, 199 

2o4, 2o 7 , 22o, 221, 225, 226, 227 , 230, 234, 235, 237, 239, 242, 245, 252, 253, 255, 257, 26o, 

261, 262, 263 . 266, 268, 276, 281, 29o, 291, 292, 293, 298, 299 

3 ~176  3 ~ 307, 311, 315, 317, 318, 326, 327, 329, 332, 334, 338, 34 ~ 347, 350, 353, 354, 361, 

362, 364, 365, 369, 371 , 374, 381 , 383, 389, 398 

4 ~ , 404, 4 ~  , 4 l o  , 412 , 415, 417, 419, 423, 426 . 434. 437, 442 , 443, 451 , 455, 461 , 47 ~ 47 z, 

475, 476 , 478 , 479, 482 , 487, 489, 491, 492 



T h e  D i o p h a n t i n e  E q u a t i o n  a x  a + b y  a + c z  a = O. 355 

Table  5. 

Non-excluded equations 3 a u v  (u - -  v) + b (u 3 - -  3 u2 v + v a) = ~ t  A1 w a 

with A = A I . N ( a + b ~ )  cubefree and <5oo ,  a + b 0 # _ + _ I ,  + 0 ,  - + ~  

(conjugate values a + b Q and a + b 0 z not considered separately). 

A 

7 

13 

I 9  

2 6 = 2 "  13 

28  = 22 �9 7 

31 

3 5 = 5 " 7  

37  

43  

4 9  = 72 

6 I  

6 2 = 2 "  31 

6 ~ = 3 ~ "  7 

6 5 =  5 �9 13 

6 7  

7 9  

86  = 2 " 43  

91  = 7 " 13 

97  

9 8 = 2  �9 7 z 

IO  3 

I 1 7 = 3 2 "  13 

124  = 22 ' 3 I  

1 2 6 = 2 ' 3 ~ .  7 

8 I 
- - = 3  in Case i and I I ,  = -  in Case I I I  (Ch. IX,  w167 3 and 6). 
3t  9 

3 

7 

3 

7 

7 
81 

5 

I 

3 

4 
2 

IO 

7 
I 

4 
I 

5 

I I  

3 

I I  

4 

I 

3 

b A x  

3 1 I  
3 i 

3 1 

5 i 

2 !  I 

4 2 

2 4 

6 i 

i 5 

3 x 

7 i 

4 I 

6 I 

3 I 

9 i 

6 2 

I 9 

3 5 

9 i 

3 I 

6 2 

3 13 

I 7 

i o  I 

i i  i 

3 I 

8 2 

9 I 

i 9 

6 4 

2 i 8  

C a s e  

I ,  I I  

I 

I 

I I  

I I  

I I  

I I  

I 

I I  

I 

I I  

I I  

I ,  I I  

I 

I ,  I I  

I 

I I I  

I ,  I I  

I 

I ,  I I  

I 

I 

I I  

I I  

I I  

I ,  I I  

I I  

I 

I I I  

I ,  I I  

I I I  

u v 

i 2 

i o 

i o 

2 i 

2 i 

i 2 

2 I 

3 1 

2 i 

i o 

i 2 

i 5 

2 I 

i o 

2 i 

i 0 

i o 

2 i 

3 8 

i o 

i o 

i 3 

2 i 

i 2 

i 2 

i o 

I 2 

I 4 

i [ o  
i 2 

i o 

W A 

I z 2 7  

i 

I 

I 133  = 7 " 19 

2 I 3 4  = 2 �9 67  

I 1 3 9  

i 143  = I I  - 13 

2 151 

I 157  

I 161 = 7 " 23 

1 163  

2 

2 

i I 6 9  = 132 

i i 1 7 2 = 2 1 " 4 3  

1 1 8 2 = 2 ' 7 ' 1 3  

I 183  = 3 " 6 I  

I I 9 3  

9 ZOl = 3 " 6 7  

i 2 o 3  = 7 " 29  

I 2 0 6  = 2 - lO 3 

I 2 0 9  = i I  �9 19  

I 211  

2 2 1 5  = 5 " 43  

1 2 1 7  = 7 ' 31 

I 

1 

3 

i 2 1 8  = 2 ' I O 9  

I 2 1 9  = 3 " 73  

I 223  

b A 1  C a s e  

13 6 1 I I 

6 13 1 I I  I 

13 7 I I I  5 

5 3 7 I, I I  2 
9 2 2 I I  2 

I 3  3 I I  I I 

I 4 I i  I I  5 

14 9 I I,  I I  3 

13 12 I I 43  

3 I 23  I I  5 

14  3 I I I 

3 I 4  I I I  I 

14  I I  I I I  7 

8 1 5 ]  I I ,  I I  2 

7 6 4 I 3 

I I  6 2 I ,  I I  i 

4 9 3 I I 

16  9 I I 4 4  

2 3 3 9  I I 
l i  2 I 4 i  

I I  2 2 I I  I 

5 3 I I  I ,  I I  3 

I 15 i I 2 

i 7 1  5 I I  i 
i 

3 ]  2 31 I I  7 

6 5 7 I I  2 

8 17 I I I  I 

16  3 I I I 

5 ~2 2 I, I I  i 
I 9 3 I I 

17 6 I I ,  I I  3 

6 

2 

4 
I 

I 

0 

I 

2 

132  

4 

0 

2 

5 

I 

2 

0 

0 

227 

0 

I 

I7  

2 

I 5  

2 

2i 

Ii 
2 

0 

2 

0 

2 

W 

2 

I 

I 

I 

2 

I 

2 

3 
28  

I 

I 

2 

I 

I 

I 

I 

I 

1 2 9  

I 

I 

5 
I 

2 5  

I 

2 

I 

I 

I 

i I 

I 

4 ~  
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A 

229 

241 

2 4 4 = 2  z" 61 

2 4 7 = 1 3  . 19 

254 = 2 . 1 2 7  

2 5 9 = 7 " 3 7  

271 

273 = 3 . 7 . 1 3  

277 

278 = 2 . i 3 9  

2 7 9 = 3  ~" 31 

283 

2 8 7 = 7 - 4 I  

3 o l  = 7 " 4 3  

3 o 5  = 5 . 6 1  

3 o 9 ~ 3 " i o  3 

313 

314 = 2 . 1 5 7  

3 1 6 = 2 L 7 9  

3 2 5 = 5 ~ ' I 3  

331 

335 = 5 " 6 7  

337 

341 = 1 1 - 3 1  

3 4 2 = 2 - 3 2 . 1 9  

349 

3 6 7  

3 7 0 = 2 ' 5 " 3 7  

373 

377 = 1 3 " 2 9  

379 

386 = 2 " 1 9 3  

17 

16 

9 

17 

13 

5 

19 

9 

19 

i o  

19 

I 3  

6 

I 9  

i 

2 

9 
i i  

19 

13 

3 

4 
i o  

2 

8 

6 

5 
20 

22 

7 

4 

3 
22 

15 

22 

9 

b Ax Case  

12 I I 

15 I I ,  I I  

4 4 I I  

3 1 I 

6 2 I, I I  

I 8  I I.  I I  

9 i I 

19 i I I  

lO i I I  

9 3 I 

12 I I ,  I I  

i o  2 I I  

I 9 I I I  

6 I I 

3 41 I 

3 143 I 

5 5 II 

9 3 I 

3 i I ,  I I  

12 2 I 

io 4 I I  

3 25 I 

2 I  I I,  I I  

9 5 i ,  I I  

21 I I 

I I I  I I  

2 18 I I I  

3 I I ,  I I  

9 i i ,  i i  

4 io i i  
2I  I I 

4 29 I I  

15 I I 

22 I I I  

7 I I I  

16 2 I I  

u v 

I 4 

3 2 

5 4 
I o 

I o 

I 2 

I 6 

i 2 

1 4  I 

I o 

I 5 

2 I 

I o 

114 
512 
1 1 5  
I I  o 

I i ~  2 

3!I 
112 
112 

i 

i I o 

o 

23 I 

2 i 

5i2 
4 1I  

2 1 1  

3 5 !  1 

2 I i 

w A 

2 ! 3 8 7 = 3  ~ ' 4 3  

I i!388 = 22.  97 

2 ! 3 9 5 = 5 " 7 9  

1 ! 3 9 7  

1! 
21 

31 3 9 9 ~ 3 "  7"  19 

i j l 4 o 3 =  1 3 - 3 1  
i 

2 2 i ! 4 o  7 = I I  ' 3 7  

1 14o9 

4 4 1 3 ~ 7 " 5 9  

2 ' 421 

I I 4 2 2 ~  2"  2 I I  

427 = 7 61 

I ,  433 

i 

I i 
i 436 = 2 ~ �9 lO9 

i 439 

I 4 4 1  = 3 2 "  7 * 

I ' 446 = 2 �9 223 

I 4 5 3 = 3 " 1 5 1  

I 457 

I 458 : 2 " 229 

463 

I 4 6 8 = 2 2 ' 3  ~ ' 1 3  

I 469 = 7 " 67 

i 

35 
I 

I 473 = I I  �9 43 

2 481 = 13 �9 37 

I 485 = 5 " 97  

2 4 9 4 = 2 "  1 3 '  19 

39 497 = 7 " 71 

I 499 

a b A1 

7 1 9 

i i  8 4 

3 ,  i o  5 

23!  i 2  i 

12 I 23 i 

231 i i  i 

131 9 3 

4 i  3 3 1  

7 3 I I  

23 15 I 

3 2 59 

i 21 i 

15 ' 14 2 

22 i  3 1 

I i  24 i 

24 i l l  I 

24~ 13 I 

5 12 4 

23 18 I 

5 8 9 
I 7  I 6 2 

I4~ 9 3 

7 1 2 4  I 

17 12 2 

22 21 I 

3 4 36 

3 2 67 

9 7 7 
1 3 ' 2 5  I 

2 3 '  3 I 

7 I 6 1 1  

5 1 2 4  I 

3 I I  5 

5 2 26 

I 3 7 I 

251 18 I 

Case  

I I I  

I I  

I I  

I 

I I  

I I  

I 

I ,  I I  

I ,  I I  

I 

I I  

I ,  I I  

I I  

I 

I 

I I  

I I  

I 

I ,  I I  

I I I  

I 

I 

I ,  I I  

I 

I 

I I I  

I I  

I I  

I I  

I 

I 

I 

I I  

I I  

I ,  I I  

I 

U 

I 0 

4 I 7  

13 23 

4 3 
2 I 

17 7 

I o 

i 5 

2 I 

5 22 

8 I 9  

2 1 

i o 

i o 

13 77 

1 5 

i o 

7 5 
i o 

i o 

I o 

i o 

43 31 

i 3 

i o 

i i i  

7 5 
2 i 

I o 

i o 

i 2 

5 4 

5 1 

W 

I 

7 

2 

4 

I 

29 

1 

i 

I 

2 

2 9  

2 

I 

2 

II 

I 

I 

2 

2 

I 

I 

2 

22 

I 

I 

2 

I 

I 

I 
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Table 6. 

T h e  number g of generators and the basie solutions of the equation X 3 + y3  = A Z 3, 
A eubefree and < 500. 

A g (X, Y , Z )  A g (X, Y , Z )  

6 

7 
9 

I2  

13 
15 
17 
I9 
20 
22 
26 
28 

3 ~ 
31 
33 
34 
35 
37 
42 
43 
49 
5 ~ 
51 

53 
58 
61 
62 

63 
65 
67 
68 
69 
70 
7I 

75 
78 
79 
84 
85 
86 

87 
89 

(37, I7, 2I) 90 1 
(2 , -1 ,  1) 91 2 
(2, I, 1) 92 I 

(89, 19, 39) 94 I 
(7, 2, 3 ) 
(683, 397, 294) 
( 1 8 , - i ,  7) 97 I 
( 3 , - 2 ,  I), (5, 3, 2) 98 i 
(19, I, 7 ) lO3 i 
(25 469, 17 299, 9954)  ~1o 5 I 
( 3 , - I ,  i) lO6 i 
(3, I, I) 10 7 I 

(I63, IO7, 57), (289, -19 ,  93) IIO 2 
(137, -65  , 42 ) I I 4  I 
(I 853, 523, 582) 115 I 
(631 , -359,  I82~ I17 1 

(3, 2, I) 123 1 
(4, -3 ,  I), (IO, --I, 3) 
( 4 4 9 , - 7 1  , 129) 124 2 
(7, I, 2) 1 2 6  2 
( i i , - - 2 ,  3) 127 2 
(23 417, - I I 2 6 7  , 6111)  13 ~ I 
(73 o 511, 62 641 , 197 o28) 132 2 
(I 872, - I  819, 217) 133 I 
(28 747, - 14  653, 7~  I34 I 
( 5 , - 4 ,  I) 139 I 
(I1, 7, 3) I4 o 1 
( 4 , - I ,  1) 141 I 
(4, I, 1), ( I9I ,  -146,  39) I42 I 
(5 353, I 208, I 323 ) 143 I 
(2 538 163, -472  663, 620 505) 151 I 
(15 409, - IO 441, 3 318) 153 2 
(53, 17, 13} 156 I 
(197, -126,  43) 157 I 
(17351 , - I I 9 5 1  , 36o6)  159 I 
(5 563, 53, I 302) 16I I 
( 1 3 , - 4 ,  3) 163 2 
(433, 323, I I I )  I64 I 
(2 57 ~ 129, - 2  404 889, 33o 498) 
(13, 5, 3), (IO 067, - 1 0 0 4 9 ,  399) 166 1 
(I 176 498 611, -9o7 929 611, 216266  6IC 

(53, 36, 13) 

(I 241, -431,  273) 
(4, 3 ,  I), ( 6 , - 5 ,  I) 
(25 903, -3  547, 5 733) 
(15 642 626 656 646 177, 

-15  616 184 i86  396 177, 
59o 736 o58 375 ~ 

(14, ,-5, 3) 
( 5 , - 3 ,  i) 
( 5 9 2 , - 3 4 9 ,  I I7)  
(4 033, 3 527, I o i  4 ) 
(165 889, -14o  I3I ,  25 767 ) 
(90, 17, 19)  
(181, -7  I, 37), (629, 251, 134 ) 
(9 IO9, - 9 o i ,  I 878) 
(5 266 097, -2  741 617, I 029 364 ) 
(5 , -2 ,  1) 
(184 223 499 139, IO 183 412 861, 

37 045 412 88o) 
( 5 , - 1 ,  I), (479, .-443,  57) 
(5, I, I), (7 I, -23,  14) 
(7, -6, I), (I21, -I2O, 7) 
(52 954 777, 33 728 183, I I  285 694) 

i (2 o89, -9Ol,  399), (39 oo7, -29  503, 6 342) 
(5, 2, i) 
(9, 7, 2) 
( i 6 , - 7 ,  3) 
(27 397, 6 623, 5 3 ~  
(53 579 24"9, -52  31o 249, 4 23 ~ o3o) 
(2 454 839, i 858 411, 53 ~ 595) 
(73, 15, 14) 
(338, -95,  63) 
(7 ~ , --19, 131, ( l O 7 , - 5 6  , I9) 
(2 627 , - i  223, 471 ) 
(i 9 9 6 4 8 8 7  , -19  767 319, i 142 148) 
(lO 3 7 5 o 8 4 9 ,  2269o79 ,  19 151 118) 
(39, -16, 7) 
( I I ,  -3,  2), (17, -8,  3) 
(311 155 ooi ,  -236  283 589, 

46 913 867) 
(I 374 582 733 040 ~ 

- I  295 o38 816 428 439, 
136 834 628 o63 958 ) 
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Table 6 (continued).  

A A g (X, Y, Z) g (X, Y, Z) 

1 ( 8 , - 7 ,  1) 
I (26 353, 14 957, 5 o31) 
I (37, 20,  7) 
I (139, - lO  3 , 2I) 
1 (2 419 913 54 ~ 753, 1 5 8 7 2 o  7 867 247 , 

468 227 2Ol 520) 
t (110623913 , 8 0 6 5 0 6 3  , 19668222) 

I (2 184 480, - I  305 053, 357 833) 
1 (9Ol, 719, 183) 
2 (II ,  5, 2), (I 7, I, 3) 
2 (14, 13, 3), (295 579, -19o 171, 46 956) 
1 (56182393,  1559o357,  9 9 I I 8 9 5 )  
I (336 491, -149 491, 57 o7o) 
I ( 1 3 5 4 7 7 7 9 9 , - 1 1 6 1 5 7 5 9 8 ,  16825599)  
I (68 561, -54  521 , 9 366) 
I (2 339, -2  142, 247) 
I (I 8Ol, -19,  309) 
2 (16, I I ,  3), (3 251, 124, 555) 
t (2 884o67, 257 437, 491 652) 
2 (229, 32, 39), (2 426, -2  165, 273) 
I (8 191, - 6  551 , 1o94) 
I (5 211, - 4  961, 455) 
2 (52 , -41 , 7), (125, -26,  21) 
2 (I 387, 503, 237), (3 961, -2  o71, 633) 
I (74 167, 66 458 , 14 925) 
I (337 705 939 853, -315 o91 652 237 , 

32 429 956 428) 
1 (64 313 I5O 142 6o2 539 525 717, 

46 732 739 212 871 851 o99 283, 
12 ooo 095 23o 802 o28 o99 75 o) 

1 (307 277 703 127, -242[ 344 663 377, 
4 ~ 697 090 945) 

1 (6 , - - I ,  I) 
2 (6, I, I), (9, -8 ,  I) 

2 (7, --5, I), (279 469, --61 469, 46 270) 
2 (17 , lO, 3), ( 1 6 8 7 0 4 , - 3 6 0 5 3 ,  27897) 
I (5 884 597, 858 653, 972 855) 
I (5o9, 67 , 84 ) 
I (46 323 521, -'27 319 949, 7 o24 059) 
I (745 , -673 ,  78) 
I (818 567, -369 503, 129 186) 
I (124 253, -124 o20, 3 589 ) 
I (248 957, 2o9 827, 47 lO6) 
1 (53 927, 3 9o7, 8 7o3 ) 
I (292 , -283 ,  21) 

244 
246 

247 
249 

25I 

254 
'258 

259 
265 

267 
269 
271 
273 
274 

275 
277 
278i 1 
279 1 
282 2 

283 --<-- I 
284 I 

285 i 
286i I 
 871 1 
289 1 
294 i 
295 1 
3Ol 1 
303  i 
305 i 
306 I 
308 I 
3o9 2 

I 

31o  1 

i ( 99 , -67 ,  I4) 
2 (571 049, -511 271, 59 787 ), 

(2 043 883, - I  767 133, 230 685) 
1 (20, -11 ,  3 / 

I! (275 657 307 291 045 o75 2o3 684 958 997, 
-275 522 784 968 298 556 737 485 593 813, 

4 974 480 998 o65 387 679 6o3 368 524 } 
1 (4 284, - 4  o33, 373) 
2! (19, -1,  3), (587, 437, lO4) 
i (2 195 839, -2  o47 231, 198 156) 
~ ( I 3 , - 5 ,  2) 

(36 326 686 731 lO9 813 , 

9 746 422 253 537 867, 
5 691 827 727 61o 864) 

ti i (861 4o9, .342  361, 13o 914) 
(8oo o59 950, -786 434 293, 45 728 263) 

2: (1o, -9,  i), {487, -216, 73) 
2i (19' 8. 3), (I9 ~ -163, 21) 
I ( I I I  o35496427  236 122 887 , 

-43  257 922 194 314 055 637, 
16 751 541 717 OlO 945 845) 

I (424 56o 439, -309 086 839, 55 494 828) 
I (2o9, -145, 28) 

(13, 3, 2) 
(7,-4, 1) 
(I17 217 , - 96  913, 13 542), 

(2814 6o 7 , I571  o57, 452 772 ) 

I(7 722 63o 462 ooo 896 449 941 136 589, 
- I  293 813 622 621 939 3o3 367 981, 
1 174 877 194 362 780 234 594 343 698) 

(18 989, I531  , 2886) 

(323, -37.  49) 
(248 , .121, 39) 
(I99, 90, 31) 
(124 559, - lO3 391, 14 118) 
(34 9Ol, -16  o21, 5 068) 

(382, 5, 57) 
(2 659 949, 67 o51, 396 030) 
( 86 , -81 ,  7) 

(6 697, - 3  943. 921) 
(I99, lO9, 31 ) 
(20, 7, 3), (272 540 932, 

-142 217 089, 38 3o5 371 ) 
(5 0 I I  613, -190  493, 74 ~ 484 ) 
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Table 6 (continued).  

A g (X, Y, Z) A g (X, Y, Z) 

313 I (22 , -13 ,  3) 385 
314 I (241 , -223 ,  21) 386 
316 I ( 7 , - 3 ,  I) 387 
319 I ( 6 4 6 2 4 4 3 9 1 9 7 6 5 7 5 1 3 0 5 4 9 9 ,  :388 

--6 I82 025 219 694 143 438 499, 390 
472 407 353 3 lo  304 56I 590) 391 

321 I (13 755 277 819, 8 670 272 669, 

I (20  521 ,  --17 441 ,  2 054) 
I ( 9 , - 7 ,  I) 
1 (8, -5 ,  I) 

I (4 659, -3  287, 553) 
2 (3043, 467, 417 ), (4373, -863, 597) 
I (590 456 252 o6I 289, 

-171 359 229 789 289, 
2 164 318 002) 

3 2 2  I (I 873, 703, 278) 393 
323 I (252, 71 , 37) 
325 I (128, 97, 21) 
330 I (I 621, I 349, 273) 394 
331 I (II,  -IO, I) 

333 I (397, -286, 49) 395 
335 2 (7, --2, I ) ,  (39 ~ 997, 260 243, 61 362) 396 

337 ~ I 397! 
339 I (I 392 o97 139, -345 6o4 139, 399 

198 626 61o) 402 
I ( 6 , 5 ,  i)  
2 ( 7 , - I ,  I), (I 253, - I  205, 86) 

2 (16 543, 8 297, 2 454), 
(389 699, -19  ~ 979, 53 292) 

346 ~ I 
348 2 (4 ~ 283, -15 227 , 5 622), 

(2 7o6 I39, 425 861, 385 230) 
349 I ( 23 , -14 ,  3) 
355 I (2 903 959, 2 617 ooi ,  492 516) 
356 I (15 026 63 ~ 492 o61 476 o4I 947 o13, 

4 709632 I l O O t l  335 573 393 177, 
2 o98 22I 14I 58o 681 446 554 589 ) 

357 I (19 2o7, 6497,  2 742 ) 
358 I (7 951 661, 2922589,  I 138 095) 
359 I (77 517 18o, 5 ~ 972 869, I1 855 65~) 
363 I (I 9o 9 159 356 457, 

- I  746 345 039 913, 
165 073 IOi 648) 

366 I (2 087 027, - I  675 277, 228 885) 

367 I (42 349, 526. 5 915 ) 
37 ~ 2 (7, 3, I), (7 ~ 523, 19 387, 9891) 
372 I (2 717 893, 63 ~ lO7, 379 47 ~ 
373 I (I6O4, - 1 5 9 5  , 57) 
377 I (469, -237,  62) 
379 2 (15 , -7 ,  2), (917 , -908, 39} 
380 I (I o09 , -629, 127) 

382 --<-- 1 i 439 

80 084 lO3 077 16o) 
I (4 045 451 855 513 988 711 059, 

2 369 372 172 284 459 347 309, 

I (I 5.87 o46 969 413 536 968 336) 
439 245 403, -573 627 4o3, 
192 o88 39o) 

I (7 891, - 7  851, 266) 

34 I 
342 

345 403 
407 
409 
411 
413 
4~t4 
418 
420 

421 

422  

425 
427 
428 
429 
430 
431 

433 
435 

436 

438 

I (46 789 273, --37 OO9 657, 5 O74 314) 
2 (12, --II, I), (360, 37, 49) 
2 (22, 5, 3), (4 ol ,  328, 63) 
I (585 699 417 548 405 371 , 

102 798 361 24O 815 491, 
79 5 ~ 362 839 53O 631) 

(53, --22, 7) 
(7, 4, I), (33 733, --33 634, 939) 

I 

2 

<s I 

i (186 871 897, 49 864 lO3, 25 292 280) 
i (2 575, -2  lO 3 , 266) 
I (68 073 157, 32 528 843, 9 454 4 lo) 
I (76 267 , 25 307, IO 323 ) 
2 (2 213, I 567, 327), 

(io 459, - 6  679, I 263) 
I (19 690, 4 699, 2 639) 
1 (I5, 1, 2) 
i (2 393, lOO 7 , 326) 
I (25 , - I 6 ,  3) 
I 1I 294 057, - I  19o 053, lO 4 o13) 
I (16 739, 14 149, 2 598) 
I (5 989 967, 3 449 393. 841 204) 
I (7Ol, -270, 91) 
2 (37, 35, 6), (223 , -222, 7) 
2 (32 779, - I  459, 4 326), 

(3 784 049, 2981o71 ,  57 ~ 276) 
2 (19, 17, 3), 

(I 33o o19, - I  224 o71, Io5 957) 
x (12 636 764 o83, I I  127 85o 973, 

I 979 215 6o2) 
I t (571, -563, 26) 
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Table 6 (continued). 

E r n s t ' S .  Se lmer .  

A ~ (X, Y, Z) 

441 
4.44 

445 
446 
447 
449 
450 
452 

453 

454 

< 

2 

I 

I 

I 

I 

457 
458 i 
460 i 
462 2 
463 I 

A g (X, Y, Z) 

(13, II,  2) 465 I 
(4 174 254 535 499, -726 500 lO9 131, 

546 2Ol 297 768) 466 I] 

(23, -5, 3), (4 286 417, -4  285 265, 52 2121 
(4 4o5 3Ol, -382 3Ol, 576 o30) 467 Ij 
(323, 126, 43) 468 2 
(21 079, II  321, 2 886) 469 21 
(851 498 679 025 552 429, 973 ___<2 

224 535 817 897 760 o71, 474 I' 
I I I  626 729 681 785 675) 477 2 

(23, 4, 3), 481 I 
(5 ~ 167 097, 39 331 207, 7 447 188) 483 I 

(753 389 202 595 o29 867 852 29o 484 I 
245 746 241 IiO 629, 485 I 

-2o4 264 638 826 527 324 892 641 490 I 
927 694 862 943 879, 493 I 

97 368 775 947 767 167 139 892 
682 703 7o2 288 38'5) 1494 I 

(41, 31, 6) 495 I 
(953 o39, -761 375, 97 482) 497 2 
(248 768 189, -234 795 689, 17 466 345) 498 2 
(3 779, 379, 489), (II 969, -7 811, I 389)~ 
(403, -394, 21) 499 --<_ I 

(I 212 356 942 047, - I  197 072 217 207, 
52 307 828 958 ) 

(464 54 ~ 7 ~ 319 337 3 ~ 841 , 
88 798 763 256 715 446 551 , 
6o o57 8ol 943 83o 995 598) 

(I 17o, -703, 139) 
(7, 5, I), (859, -763, 74 I 
(13 , - i2 ,  I), (26, -17,. 3) 

(568 871, -453 689, 57 627) 
(89, 7 ~ , I3), (12040,-11881,  523) 
(43, 29, 6) 
(2 4Ol 741 , I945259,  35283o) 
(236 521, -176 o21, 25 235) 
(8 , -3 ,  1) 
(193 229, -74 159, 24 o39) 
(8 432 715 268 961, - i  o57 596 31o 369, 

i o66 758 076 384 ) 

(59,-33, 7) 
(342 361, -57 241, 43 212) 
(55, 16, 7), (7 411 , -~772 , 579) 
(611 137, -490 123, 60 543), 

(15 811 o0I, -15 250 751, 933 765 ) 
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