NON-HOMOGENEOUS BINARY QUADRATIC FORMS. ${ }^{1}$

I. Two Theorems of Varnavides.

By
R. P. BAMBAB
st. John's college, cambridge.

Introduction.

1. Let $f(x, y)$ be an indefinite binary quadratic form $a x^{2}+b x y+c y^{2}$, with positive discriminant $d=b^{2}-4 a c$. A well-known theorem of Minkowski states that, for any real numbers x_{0}, y_{0}, there exist integers x, y such that

$$
\left|f\left(x+x_{0}, y+y_{0}\right)\right| \leq \frac{\mathrm{I}}{4} \sqrt{d}
$$

the sign of equality being necessary if and only if $f(x, y)$ is equivalent to a multiple of $x y$.

Heinhold [I], Davenport [r], Varnavides [r] and Barnes [r] have found better estimates for the minimum for non-critical f.

Recently Davenport [2,3,4] studied the special forms $x^{2}+x y-y^{2}$ and $5 x^{2}-$ II $x y-5 y^{2}$ and obtained interesting results about their minima. Varnavides $[2,3,4]$ applied Davenport's method to the forms $x^{2}-2 y^{2}, x^{2}-7 y^{2}$, and x^{2} - II y^{2}. In this note we give straight-forward geometrical proofs of Varnavides' results about the forms $x^{2}-7 y^{2}$ and $x^{2}-11 y^{2}$.

The results we prove can be stated as
Theorem 1: Let $f(x, y)=x^{2}-7 y^{2}$. Then given any two real numbers x_{0}, y_{0} we can find x, y such that
(1.I) $\quad x \equiv x_{0}(\bmod .1), y \equiv y_{0}(\bmod . \mathrm{I})$
and
(1.2) $|f(x, y)| \leq \frac{9}{14}$.

[^0]The equality sign in (1.2) is necessary if and only if

$$
\begin{equation*}
x_{0} \equiv \frac{1}{2}(\bmod .1), y_{0} \equiv \pm \frac{5}{14}(\bmod .1) \tag{I.3}
\end{equation*}
$$

If x_{0}, y_{0} do not satisfy (1.3) we can replace (1.2) by

$$
(1.4)^{2}
$$

$$
|f(x, y)|<\frac{1}{1.56}
$$

Theorem 2: Given x_{0}, y_{0}, any two real numbers, we can find (x, y) such that

$$
\begin{equation*}
x \equiv x_{0}(\bmod .1), y \equiv y_{0}(\bmod .1) \tag{2.1}
\end{equation*}
$$

and
(2.2)

$$
\left|x^{2}-11 y^{2}\right| \leq \frac{19}{22}
$$

The sign of equality in (2.2) is necessary if and only if

$$
\begin{equation*}
x_{0} \equiv \frac{1}{2}(\bmod .1), y_{0} \equiv \pm \frac{7}{22}(\bmod .1) \tag{2.3}
\end{equation*}
$$

For all x_{0}, y_{0}, not satisfying (2.3), we can replace (2.2) by
$(2.4)^{1}$

$$
\left|x^{2}-11 y^{2}\right|<\frac{1}{1.16} .
$$

Proof of Theorem 1.

2. We first prove

Lemma 1.1: Let $\left(x_{0}, y_{0}\right) \equiv\left(\frac{1}{2}, \pm \frac{5}{14}\right)(\bmod . \mathrm{I})$. Then for all $(x, y) \equiv\left(x_{0}, y_{0}\right)(\bmod . \mathrm{I})$, $\left|x^{2}-7 y^{2}\right| \geq \frac{9}{14}$. For some of these (x, y), for example $\left(\frac{1}{2}, \pm \frac{5}{14}\right)$, the result holds with the equality sign.

Proof: All $(x, y) \equiv\left(x_{0}, y_{0}\right)$ (mod. I) are given by $x=a+\frac{1}{2}, y=b \pm \frac{5}{14}$, where a and b are integers.

For these x, y we have
(1.5) $\left|x^{2}-7 y^{2}\right|=\left|\left(a+\frac{1}{2}\right)^{2}-7\left(b \pm \frac{5}{14}\right)^{2}\right|=\left|a^{2}+a-7 b^{2} \mp 5 b-\frac{9}{14}\right| \geq \frac{9}{14}$,
${ }^{1}$ These results are slightly stronger than those of Varnavides in that we do not have the sign of equality in (1.4) and (2.4).
since $a^{2}+a-7 b^{2} \mp 5 b$ is an even integer for all the a and b. The sign of equality in (1.5) arises when, for example, $a=b=0$. This completes the proof of the lemma.
3. Suppose now x_{0}, y_{0} is a pair of real numbers such that

$$
\begin{equation*}
\text { For all }(x, y) \equiv\left(x_{0}, y_{0}\right)(\bmod .1),\left|x^{2}-7 y^{2}\right| \geq \frac{1}{1.56} \tag{1.6}
\end{equation*}
$$

After Lemma 1.1 , it will suffice for the proof of the theorem to show that x_{0}, y_{0} must satisfy the relation (1.3).

The rest of the proof will, therefore, be concerned with the proof of the above.

Let y_{1} be the unique number for which

$$
-\frac{1}{2}<y_{1} \leq \frac{1}{2}, y_{1} \equiv y_{0}(\bmod .1)
$$

Consider the values of x satisfying the relation

$$
x^{2}-7 y_{1}^{2}<\frac{1}{1.56} \leq(x+1)^{2}-7 y_{1}^{2}
$$

The above is equivalent to

$$
x^{2}<\frac{1}{1.56}+7 y_{1}^{2}=b^{2}(\text { say }) \leq(x+1)^{2}
$$

i.e.
and

$$
\left.\begin{array}{c}
-b<x<b \\
\text { either } x+\mathrm{I}_{\mathrm{I}} \geq b \text {, or } x+\mathrm{I} \leq-b
\end{array}\right\} \cdot\left({ }^{*}\right)
$$

Since it is impossible for x to be simultaneously less than $-b-1$ and greater than $-b$, we must have $x \geq b-\mathrm{I}$.

Now $b-1>-b$, since $b>\frac{1}{2}$. Therefore $\left(^{*}\right)$ is satisfied if and only if

$$
b-\mathrm{I} \leq x<b
$$

i.e. the values of x form a half-open interval of length 1 . This interval contains a unique number $x_{1} \equiv x_{0}(\bmod .1)$. Therefore there exists one and only one pair x_{1}, y_{1}, such that
(1.7) $\left\{\begin{array}{l}\left(x_{1}, y_{1}\right) \equiv\left(x_{0}, y_{0}\right)(\bmod .1),-\frac{1}{2}<y_{1} \leq \frac{1}{2}, \text { and } \\ x_{1}^{2}-7 y_{1}^{2}<\frac{1}{1.56} \leq\left(x_{1}+1\right)^{2}-7 y_{1}^{2} .\end{array}\right.$

Similarly there exist unique numbers x_{2}, y_{2} such that

$$
\left\{\begin{array}{l}
x_{2}, y_{2} \equiv\left(x_{0}, y_{0}\right)(\bmod . \mathrm{I}),-\frac{1}{2}<y_{2} \leq \frac{1}{2}, \text { and } \tag{1.8}\\
x_{2}^{2}-7 y_{2}^{2}<\frac{1}{1.56} \leq\left(x_{2}-1\right)^{2}-7 y_{2}^{2}
\end{array}\right.
$$

Clearly $y_{1}=y_{2}$. We suppose
(1.9)

$$
0 \leq y_{1}=y_{2} \leq \frac{\mathrm{r}}{2}
$$

The procedure for negative y_{1} is similar.
By (I.6), (I.7) and (I.8) we must have

$$
\begin{equation*}
x_{1}^{2}-7 y_{1}^{2} \leq-\frac{1}{\mathrm{I} .56}, \quad x_{2}^{2}-7 y_{2}^{2} \leq-\frac{\mathrm{I}}{\mathrm{I} .56} \tag{1.10}
\end{equation*}
$$

4. We now introduce a few definitions.

Definition 1: A point $P(x, y)$ in the $x-y$ plane will be said to be "congruent' to the point $Q\left(x^{\prime}, y^{\prime}\right)$ if we have

$$
(x, y) \equiv\left(x^{\prime}, y^{\prime}\right)(\bmod .1)
$$

We will then write $P \equiv Q$.
Definition 2: We shall call two regions R and S in the $x-y$ plane "congruent" regions, if a translation through integer distances parallel to the axes changes R into S and vice versa. We, then, write $R \equiv S$.

Obviously if $R \equiv S$, every point in R has a congruent point in S and vice versa.

Definition 3: A translation $\mathscr{J}_{m, n}$ will mean the translation through a distance m parallel to x-axis and n parallel to the axis of y.
5. Now, let us represent a pair x, y of real numbers by the point P in the x, y plane with co-ordinates (x, y). Then we have only to prove:
"Let $P_{0}\left(x_{0}, y_{0}\right)$ be a point such that no point congruent to it lies in the region τ : defined by the inequality

$$
\left|x^{2}-7 y^{2}\right|<\frac{1}{\mathrm{I} .56}
$$

Then P_{0} must be congruent to one of the two points $\left(\frac{1}{2}, \pm \frac{5}{14}\right)$ ".

Fig. 4
Fig. 5
Fig. 6
Figs. 1-6.
6. Let $\mathscr{H}, \mathscr{B}, \mathcal{C}$ and \mathscr{D} be the arcs of the hyperbolas $x^{2}-7 y^{2}= \pm \frac{1}{1.56}$. Then \mathcal{T} is the open region included between these arcs. (See fig. 1).

Let the line $y=\frac{1}{2}$ meet these arcs in the points A, B, \bar{B} and \bar{A} as shown in the figure. Move the part of \mathscr{A}, lying between $A \bar{A}$ and the x-axis, through
a distance - I parallel to the x-axis. Let it take up the position $C D V$, with the points C, D and V on $A \bar{A}, \mathcal{C}$ and the x-axis respectively. Clearly the equation of $C D V$ is $(x+1)^{2}-7 y^{2}=\frac{1}{1.56}$.

Also move the part of \mathscr{B}, between $A \bar{A}$ and the x-axis, through distance i parallel to the x-axis to take up the position $\bar{C} \bar{D} \bar{V}$, as shown in figure 1 . The equation of $\bar{C} \bar{D} \bar{V}$ is $(x-1)^{2}-7 y^{2}=\frac{1}{1.56}$.

Denote the closed curvilinear triangles $B C D$ and $\bar{B} \bar{C} \bar{D}$ by \mathscr{R} and \mathscr{R}.
Then the relations (1.7), (I.9) and (I.10) mean that there exists a unique point $P_{1} \equiv P_{0}$ in \mathscr{R}, while relations (1.8), (I.9) and (I.10) mean that there is just one point P_{2} congruent to P_{0} and lying in $\overline{\mathcal{R}}$.

Clearly it will suffice for our theorem to show that " P_{1} must coincide with $\left(\frac{1}{2}, \frac{5}{14}\right)$.

For convenience of reference, we tabulate below the co-ordinates of the vertices of \mathscr{R} and $\overline{\mathcal{R}} . \quad \overline{\mathscr{R}}$ is obviously the image of \mathscr{R} in the y-axis.

Table I.

Point	Curres on which it lies	Co-ordinates
B	$y=\frac{\mathrm{I}}{2}, x^{2}-7 y^{2}=-\frac{\mathrm{I}}{\mathrm{I} .56}$	$\begin{aligned} & \left(\sqrt{\frac{173}{156}}, \frac{1}{2}\right)=(1.053 \ldots, 0.5) . \\ & \left(\sqrt{\frac{373}{156}}-1, \frac{1}{2}\right)=(0.546 \ldots, 0.5) . \\ & \left.\left(\frac{11}{78}, y^{\prime}\right) \text { (the value of } y^{\prime} \text { unimportant }\right) \\ & (-1.053 \ldots, 0.5) . \\ & (-0.546 \ldots, 0.5) . \\ & \left(-\frac{11}{78}, y^{\prime}\right) . \end{aligned}$
C	$y=\frac{\mathrm{I}}{2},(x+1)^{2}-7 y^{2}=\frac{\mathrm{I}}{1.56}$	
D	$x^{2}-7 y^{2}=-\frac{1}{1.56},(x+1)^{2}-7 y^{2}=\frac{1}{1.56}$	
	Image in y-axis of	
\bar{B}	B	
\bar{C}	C	
\bar{D}	D	

7. Let the translation $\mathscr{I}_{1,0}$ change $\mathscr{\mathcal { R }}$ into \mathscr{R}^{\prime}. Then we assert that \mathscr{R}^{\prime} consists of three parts (see fig. 2)
i) π, which lies in τ,
ii) the closed curvilinear quadrilateral \mathscr{R}_{1}, which lies in \mathscr{R}, and
iii) the region \mathcal{S}, which lies outside \mathcal{T} as well as \mathscr{R}. The above assertion will clearly follow if we can show that
8. the upper vertices of \mathscr{R}^{\prime} lie to the left of C,
9. the lower vertex of \mathscr{R}^{\prime} lies inside \mathcal{T}, and
10. the hyperbolic arcs in the boundaries of \mathscr{R} and \mathscr{R}^{\prime} meet each other in single points.

We first observe

Lemma A: Let \mathcal{C} be an infinite arc of a hyperbola. Let $A B$ be a finite arc of a hyperbole \mathcal{D}, whose asymptotes are parallel to those of \mathcal{C}. Then, if A and B lie on opposite sides of $\mathcal{C}, A B$ intersects \mathcal{C} in a single point; but, if A and B lie on the same side of $\mathcal{C}, A B$ meets \mathcal{C} in two points or none.

Proof: Obvious, since \mathcal{C} and \mathscr{D} cannot intersect in more than two finite points.

After Lemma $A, 3$ is a direct consequence of 1 and 2.
The condition 2 is obviously satisfied since the lower verter of \mathscr{R}^{\prime}, i.e. the new position of \bar{D}, lies on the line $D \bar{D}: y=y^{\prime}$, at a distance less than i to the right of D, and since the arc $D C$ is at distance i from \mathscr{A}.

The condition 1 , too, is easily verified, since the co-ordinates of the upper vertices of \mathscr{R}^{\prime}, obtained by adding (I, o) to those of \bar{B} and \bar{C}, are ($-.053 \ldots, .5$) and $(.453 \ldots, .5)$ while those of C are (.546 $\ldots, .5$).

Consequently our assertion about \mathscr{R}^{\prime} is true and fig. 2 is correct.
Now \mathscr{R}^{\prime} is congruent to $\overline{\mathcal{R}}$. Therefore \mathscr{R}^{\prime} contains a point $Q \equiv P_{2} \equiv P_{0}$. As Q cannot lie in \mathcal{T}, it must lie either in \mathscr{R}_{1} or in \mathcal{S}; we include the common boundary in \mathscr{R}_{1} only.

Now, let the translation $\mathscr{J}_{1,0}$ change \mathcal{S} into \mathcal{S}^{\prime}. We assert that \mathcal{S}^{\prime} will consist of two parts i) π_{2} lying in \mathcal{T} and ii) the closed curvilinear triangle $\mathscr{R}_{\boldsymbol{2}}$ lying in \mathscr{R}. The assertion will clearly be justified if we can show

1. The upper vertices of \mathcal{S}^{\prime} are situated relative to B and C as shown in fig. 2 , and
2. The points of intersection between the boundaries of \mathscr{R} and \mathscr{S}^{\prime} are as shown in fig. 2.

After Lemma A, 2 is a direct consequence of 1 , which in its turn follows from the fact that the co-ordinates of the upper vertices are (. $946 \ldots, .5$) and (1.453..., 5) while those of C and B are (.546 ..,.5) and (1.053..., .5) respectively.

Therefore the figure is verified.
Now if the point Q lies in \mathcal{S}, a point $Q^{\prime} \equiv Q \equiv P_{0}$ will lie in \mathcal{S}^{\prime}. As Q^{\prime} cannot lie in \mathscr{T}, it will lie in \mathscr{R}_{2}. So that we conclude that a point $\equiv P_{0}$ lies in \mathscr{R}_{1}, or \mathscr{R}_{2}.

As both \mathscr{R}_{1} and \mathscr{R}_{9} lie in \mathscr{R} and \mathscr{R} contains just one point $P_{1} \equiv P_{0}, P_{1}$ must obviously lie in \mathscr{R}_{1} or \mathscr{R}_{2}.

Similarly, we can prove that P_{2}, the point in $\overline{\mathcal{R}}$ congruent to P_{0}, must lie in $\overline{\mathcal{R}}_{1}, \overline{\mathscr{R}}_{2}$, respective images in y-axis of \mathscr{R}_{1} and \mathscr{R}_{2}.

By considering the equations of boundary ares of $\mathscr{R}_{1}, \overline{\mathcal{R}}_{1}, \mathscr{R}_{2}$ and $\overline{\mathcal{R}}_{2}$ or by simple symmetry considerations, it is easily seen that $\mathscr{R}_{1} \equiv \overline{\mathcal{R}}_{1}$ and $\mathscr{R}_{2} \equiv \overline{\mathcal{R}}_{2}$.

Let the vertices of \mathcal{R}_{1} be E, F, G, and H, those of $\overline{\mathcal{R}}_{1}$ be $\bar{E}, \bar{F}, \bar{G}$, and \bar{H}, of \mathscr{R}_{3} be K, L and B while those of $\overline{\mathcal{R}}_{2}$ be \bar{K}, \bar{L} and \bar{B}, as shown in fig. 3 .

Join $E G$ and $\bar{E} \bar{G}$. Draw the lines $K M, \bar{K} \bar{M}$ parallel to y-axis to meet $B \bar{B}$ in M and \bar{M}. These lines divide $\mathscr{\mathcal { R }}_{1}, \mathscr{R}_{2}, \overline{\mathscr{R}}_{1}, \overline{\mathcal{R}}_{2}$ in two parts each. These parts have various congruence and symmetry relations e.g.
I. $\bar{E} \bar{F} \bar{G}$ is congruent to $E H G$ and symmetric with respect to y-axis to EFG.
2. $\bar{K} \bar{B} \bar{M}$ is congruent to $K L M$ and symmetric with respect to y-axis to $K B M$.

In view of these relations it will suffice for the proof of Theorem I to prove statement A viz. "Every point, except $\left(\frac{1}{2}, \frac{5}{14}\right)$, of $K L M$ and $E G H$ has a congruent point inside ' \mathcal{C} '. For, if so, because of congruence, every point, except $\left(-\frac{1}{2}, \frac{5}{14}\right)$, in $\bar{K} \bar{B} \bar{M}$ and $\bar{E} \bar{F} \bar{G}$ will have a congruent point in \mathcal{T}, and, then by symmetry, every point, except $\left(\frac{1}{2}, \frac{5}{14}\right)$, of $K B M$ and $E F G$ will have a congruent point in \mathcal{T}. Combined with the statement A this will mean that every point except $\left(\frac{\mathrm{I}}{2}, \frac{5}{14}\right)$ in \mathscr{R}_{1} or \mathscr{R}_{2} has a congruent point inside \mathcal{T}, so that P_{1}, which lies in \mathscr{R}_{1} or \mathscr{R}_{2} and has no congruent point in \mathcal{T}, will have to coincide with the point $\left(\frac{1}{2}, \frac{5}{14}\right)$ and the Theorem will follow.
Table II.

Point	Curves through it	Equations of the Curves	Coordinates of the point
E	$E F, E H$	$(x-1)^{2}-7 y^{2}=-\frac{1}{1.56}, x^{2}-7 y^{2}=-\frac{1}{1.56}$	$\left(\frac{1}{2}, \sqrt{\frac{139}{1092}}\right)=(.5, .3567 \ldots)$
H	$H G, E H$	$(x-2)^{2}-7 y^{2}=\frac{1}{1.56} \quad, x^{2}-7 y^{2}=-\frac{1}{1.56}$	$\left(\frac{53}{78}, \frac{1}{78} \sqrt{\frac{6709}{7}}\right)=(.679 \ldots, 3969 \ldots)$
G	$H G, F G$	$(x-2)^{2}-7 y^{9}=\frac{1}{1.56} \quad, \quad(x+1)^{2}-7 y^{2}=\frac{1}{1.56}$	$\left(\frac{1}{2}, \sqrt{\frac{251}{1092}}\right)=(.5, .4794 \ldots)$
K	$K L, K B$	$(x-2)^{2}-7 y^{2}=-\frac{\mathrm{I}}{\mathrm{I} .56}, \quad x^{2}-7 y^{2}=-\frac{\mathrm{I}}{1.56}$	$\left(1, \sqrt{\frac{64}{273}}\right)=(\mathrm{I}, .484 \ldots)$
M	$M K, M B$	$x \quad=1 \quad y=\frac{1}{2}$	$\left(\mathrm{I}, \frac{1}{2}\right)=(\mathrm{I}, .5)$
L	$\boldsymbol{K} L, L B$	$(x-2)^{2}-7 y^{2}=-\frac{1}{1.56}, \quad y=\frac{1}{2}$	$\left(2-\sqrt{\frac{173}{156}}, \frac{1}{2}\right)=(.946 \ldots, .5)$.

We now prove statement A in the Lemmas 1.2-1.4 below. For convenience for reference we tabulate the co-ordinates of some points.
8. Lemma 1.2: Every point in $K L M$ has a congruent point in \mathcal{T}.

Proof: Let the translation $\mathcal{J}_{3,1}$ change $K L M$ into $K^{\prime} L^{\prime} M^{\prime}$. (See fig. 4). Then

$$
\boldsymbol{K}^{\prime}=\boldsymbol{K}+(3,1)=(4,1.484 \ldots) \text { lies in } \mathcal{T}
$$

since

$$
\left|4^{2}-7(1.484 \ldots)^{2}\right|^{1}<.58 \ldots<\frac{1}{1.56}=.641 \ldots
$$

also,

$$
L^{\prime}=L+(3, \mathrm{I})=(3.946 \ldots, \text { I. } 5) \text { lies in } \mathcal{T}
$$

since

$$
\left|(3.946 \ldots)^{2}-7(1.5)^{2}\right|<7(1.5)^{2}-(3.9)^{2}=.54<\frac{1}{1.56}
$$

As the triangle $K^{\prime} L^{\prime} M^{\prime}$ lies entirely within the rectangle formed by the lines through K^{\prime} and L^{\prime} parallel to the axes, the above implies that $K^{\prime} L^{\prime} M^{\prime}$ lies inside τ and the lemma follows.

Lemma 1.3: Every point in $E H G$ excluding a closed curvilinear triangle $E N Q$ has a congruent point in \mathcal{T}.

Proof: Let the translation $\mathscr{J}_{1,-1}$ change $E H G$ into $E^{\prime} H^{\prime} G^{\prime}$. (See fig. 5). Then,

$$
H^{\prime}=H+(\mathrm{I},-\mathrm{I})=(\mathrm{I} .679 \ldots,-.603 \ldots) \text { lies inside } \mathcal{T}
$$

since

$$
\begin{aligned}
& \left|(1.679 \ldots)^{2}-7(.603 \ldots)^{2}\right|<2.89-2.52=.37<\frac{1}{\mathrm{I} .56} \\
& G^{\prime}=G+(1,-1)=(1.5,-.5205 \ldots) \text { lies inside } \mathscr{C}
\end{aligned}
$$

since

$$
\left|(1.5)^{2}-7(.5205 \ldots)^{2}\right|<2.25-1.75=.5<\frac{1}{1.56}
$$

$E^{\prime}=E+(1,-1)=\left(1.5, \sqrt{\frac{139}{1092}}-1\right)$ lies below the boundary \mathscr{D} i.e. in that part of $x^{2}-7 y^{2}<-\frac{1}{1.56}$, where y is negative, since

$$
(1.5)^{2}-7\left(\sqrt{\frac{139}{1092}}-1\right)^{2}<-.646 \ldots<-\frac{1}{1.56}=-.641 \ldots
$$

This proves that the position of the points E^{\prime}, G^{\prime} and H^{\prime} is as shown in fig. 5.
${ }^{2} 1.484 \ldots=1+\sqrt{\frac{64}{273}}$.

We also observe that $E^{\prime} H^{\prime}$ and $H^{\prime} G^{\prime}$ are arcs of hyperbolas with asymptotes parallel to $x \pm \sqrt{7} y=0$.

By Lemma $\mathrm{A}, E^{\prime} H^{\prime}$ meets \mathscr{D} in a single point, N^{\prime} (say). As $E^{\prime} G^{\prime}$ is a line parallel to the y-axis, it intersects \mathscr{D} in one point, Q^{\prime} (say). The arc $G^{\prime} H^{\prime}$ arises from \mathscr{J} by a translation $\mathscr{J}_{3,-1}=\mathcal{J}_{1,0}+\mathscr{J}_{1,0}+\mathscr{J}_{1,-1}$. Therefore its equation is

$$
\begin{equation*}
(x-3)^{y}-7(y+1)^{2}=\frac{1}{1.56} \tag{1.11}
\end{equation*}
$$

The equation of \mathscr{D} is

$$
x^{2}-7 y^{2}=-\frac{1}{1.56} .
$$

Therefore, eliminating y between (I.II) and the above, we find that the points of intersection, if any, of $G^{\prime} H^{\prime}$ and \mathscr{D} satisfy the equation

$$
\mathrm{o}=-\frac{175}{39}-7 x^{2}+\left(3 x-\frac{14}{39}\right)^{2}=2 x^{2}-\frac{84}{39} x-\frac{175 \times 39-196}{39^{2}} .
$$

This has a negative root. Therefore, as all the points on $G^{\prime} H^{\prime}$ have a positive abscissa, there is at most one point of intersection of $G^{\prime} H^{\prime}$ and \mathscr{D}. But by lemma A, the points of intersection of $G^{\prime} H^{\prime}$ and \mathscr{D} are two or none. Therefore $G^{\prime} H^{\prime}$ does not intersect \mathscr{D}.

The equation of \mathscr{R} is

$$
x^{2}-7 y^{2}=\frac{1}{1.56}
$$

Eliminating y between (I.II) and above, we see that the points of intersection, if any, of $G^{\prime} H^{\prime}$ and \mathscr{A} satisfy the equation

$$
0=(1-3 x)^{2}-7 x^{2}+\frac{7}{1.56}=2 x^{2}-6 x+\left(1+\frac{7}{1.56}\right) .
$$

As this equation has no real root, $G^{\prime} H^{\prime}$ does not intersect \mathscr{H}. Hence the position of $E^{\prime} G^{\prime} H^{\prime}$ is as shown in fig. 5. The translation $\mathcal{J}_{-1,1}$, i.e. the translation inverse to $\mathscr{J}_{1,-1}$, changes $E^{\prime} N^{\prime} Q^{\prime}$ into $E N Q$ of the lemma.
9. Now we give an easy lemma which we shall apply later.

Lemma B: Let $a>0, r>1, a_{0} \leq a$, be any three real numbers. Then, if $N \leq a$ be a positive number, we can find an integer $n \geq 1$, such that

$$
a_{0}<N r^{n} \leq a r
$$

Proof: Obvious, since we can find $n \geq 1$ such that

$$
a<N r^{n} \leq a r
$$

Lemma 1.4: Every point, except $\left(\frac{1}{2}, \frac{5}{12}\right)$, in the closed triangle $E N Q$, has a congruent point in τ.

Proof: The equations of the boundary arcs of $E N Q$ are
$E N:$

$$
x^{2}-7 y^{2}=-\frac{\mathrm{I}}{\mathrm{I} .56}
$$

$N Q:$
$E Q: \quad x=\frac{1}{2}, \quad$ (by definition).
Therefore the co-ordinates of Q are

$$
x=\frac{\mathrm{I}}{2}, y=\mathrm{I}-\left[\frac{1}{7}\left(\frac{9}{4}+\frac{25}{39}\right)\right]^{1 / 2}=\left(\frac{\mathrm{I}}{2}, .35734 \ldots\right)
$$

As the co-ordinates of E are $\left(\frac{1}{2}, .35677 \ldots\right), R$, the point with co-ordinates $\left(\frac{1}{2}, \frac{5}{14}\right)=\left(\frac{1}{2}, .35714 \ldots\right)$ lies between E and Q on the line $E Q$.

Let $R S T$, the line $y=\frac{5}{14}$ through R, meet $N Q$ and $E N$ in S and T respectively.

Then the co-ordinates of S are $\left(\sqrt{\frac{2459}{1092}}-1, \frac{5}{14}\right)=\left(.5006 \ldots, \frac{5}{14}\right)$, and those of T are $\left(\sqrt{\frac{375}{1092}}, \frac{5}{14}\right)=\left(.5018 \ldots, \frac{5}{14}\right)$. Therefore the position is as shown in fig. 6.

Consequently every point of $E N Q$ has co-ordinates $\left(\frac{1}{2}+\alpha, \frac{5}{14}+\beta\right)$ where

$$
0 \leq \alpha<.0019,-.0004<\beta<.00021
$$

Therefore the points of $E N Q$, excluding $\left(\frac{1}{2}, \frac{5}{14}\right)$ form a subset of the set Σ consisting of points $\left(\frac{1}{2}+\alpha, \frac{5}{14}+\beta\right)$, where

$$
\begin{equation*}
0 \leq \alpha<.0019,|\beta|<.0004, \quad(\alpha, \beta) \neq(0,0) \tag{1.12}
\end{equation*}
$$

It will consequently suffice to show that every point of Σ has a congruent point in \mathcal{T}.

Suppose it is not so. Then let $\left(x^{\prime}, y^{\prime}\right)=\left(\frac{1}{2}+\alpha_{1}, \frac{5}{14}+\beta_{1}\right)$ be a point of Σ such that all points congruent to it lie outside \mathcal{T}.

Then, we have

$$
\begin{equation*}
0<\alpha_{1}+\left|\beta_{1}\right| \sqrt{7}<.0019+(.0004)(2.7)<.003 \tag{I.13}
\end{equation*}
$$

and, for all rational integers x, y,

$$
\begin{equation*}
\left|\left(x+\alpha_{1}+\frac{1}{2}\right)^{2}-7\left(y+\beta_{1}+\frac{5}{14}\right)^{2}\right| \geq \frac{1}{1.56} \tag{1.14}
\end{equation*}
$$

First suppose $\beta_{1} \geq 0$.
The relation (I.I4) implies that, for all rational integers x, y, we have
(I.15) $\left\lvert\,\left\{\xi-\left(\frac{3}{2}+\frac{9}{14} \sqrt{7}\right)+\left(\alpha_{1}+\beta_{1} \sqrt{7}\right)\right\}\right.$

$$
\left.\cdot\left\{\xi^{\prime}-\left(\frac{3}{2}-\frac{9}{\mathrm{I} 4} \sqrt{7}\right)+\left(\alpha_{1}-\beta_{1} \sqrt{7}\right)\right\} \right\rvert\, \geq \frac{\mathrm{I}}{\mathrm{I} .56}
$$

for all integers $\xi=x+y \sqrt{7}$ and their conjugates $\xi^{\prime}=x-y \sqrt{7}$ in the field $k(\sqrt{7})$.

Write τ for the fundamental unit $8+3 \sqrt{7}=15.93 \ldots$ of $(k \sqrt{7})$.
Take ξ defined by the relation

$$
\xi-\left(\frac{3}{2}+\frac{9}{14} \sqrt{7}\right)=-\left(\frac{3}{2}+\frac{9}{14} \sqrt{7}\right) \tau^{\prime 2 n}, n \text { an integer. }
$$

Obviously

$$
\xi=\left(\frac{3}{2}+\frac{9}{14} \sqrt{7}\right)\left(\mathrm{I}-\tau^{\prime 2 n}\right)=\tau^{\prime n}(9+3 \sqrt{7})\left(\tau^{\prime \prime}-\tau^{\prime n}\right) \frac{1}{2 \sqrt{7}}
$$

is an integer since $\tau^{n}-\tau^{\prime n} \equiv 0(\bmod 2 \sqrt{7})$.

$$
\begin{aligned}
\text { Dividing (I.15) by } \left\lvert\,\left\{\xi-\left(\frac{3}{2}+\frac{9}{14} \sqrt{7}\right)\right\}\left\{\xi^{\prime}\right.\right. & \left.-\left(\frac{3}{2}-\frac{9}{14} \sqrt{7}\right)\right\} \mid \\
& =\left|\left(\frac{3}{2}+\frac{9}{14} \sqrt{7}\right)\left(\frac{3}{2}-\frac{9}{14} \sqrt{7}\right)\right|=\frac{9}{14}
\end{aligned}
$$

we have
(I.16) $\quad\left|\mathrm{I}-\frac{\alpha_{1}+\beta_{1} \sqrt{7}}{\frac{3}{2}+\frac{9}{14} \sqrt{7}} \tau^{2 n}\right|\left|\mathrm{I}+\frac{\alpha_{1}-\beta_{1} \sqrt{7}}{\frac{9}{14} \sqrt{7}-\frac{3}{2}} \cdot \frac{1}{\tau^{2 n}}\right| \geq \frac{1}{1.56} \cdot \frac{14}{9}=\frac{14}{14.04}$
for all n.
Writing $\frac{\alpha_{1}+\beta_{1} \sqrt{7}}{\frac{3}{2}+\frac{9}{14} \sqrt{7}}=\varrho$ and $\frac{\alpha_{1}-\beta_{1} \sqrt{7}}{\frac{3}{2}-\frac{9}{14} \sqrt{7}}=\varrho^{\prime},($ I.16) becomes
(1.16)

$$
\left|1-e \tau^{2 n}\right|\left|1-e^{\prime} \tau^{\prime 2 n}\right| \geq \frac{14}{14.04}
$$

for all n.
Now, as $\tau>1$, from (1.12), we have, for all $n \geq 1$,

$$
\begin{equation*}
\left|1-\varrho^{\prime} \tau^{\prime 2 n}\right| \leq 1+\frac{\alpha_{1}+\beta_{1} \sqrt{7}}{\left(\frac{9}{14} \sqrt{7}-\frac{3}{2}\right)} \cdot \frac{1}{\tau^{2}}<1+\frac{.003}{250(.17)}<1 \frac{1}{14,000}=m(\text { say }) \tag{1.17}
\end{equation*}
$$

We show now that in Lemma B, we can take

$$
r=\tau^{2}, a=\frac{1}{r}, a_{0}=1-\frac{14}{14.04 m} \text { and } N=\varrho
$$

For, $r>1$, and $0<N \leq a$ follows from

$$
0<N r=\frac{\alpha_{1}+\beta_{1} \sqrt{7}}{\frac{3}{2}+\frac{9}{14} \sqrt{7}} \tau^{2}<(.003)(256)<\mathrm{I}=a r
$$

Also $a_{0}<a$, since

$$
\frac{a r}{a_{0}}=\frac{1}{1-\frac{14}{14.04 m}}=\frac{14.04(14001)}{14.04(14001)-14(14000)}>\frac{196,000}{575}>300>\tau^{2}
$$

Therefore, all the conditions of the lemma are satisfied so that we can find an $n \geq 1$ such that

$$
1-\frac{14}{14.04 m}<\varrho \tau^{2 n} \leq 1
$$

Therefore

$$
\begin{equation*}
\left|1-\varrho \tau^{2} n\right|<\frac{14}{14.04 m} \tag{1.18}
\end{equation*}
$$

Multiplying by (1.17), we have

$$
\left|1-\varrho \tau^{2 n}\right|\left|1-\varrho^{\prime} \tau^{\prime 2 n}\right|<m \frac{14}{14.04 m}=\frac{14}{14.04}
$$

which contradicts (1.16').
Therefore, $\beta_{1}<0$.
Let $\beta_{1}=-\beta_{1}^{\prime}$, so that $\beta_{1}^{\prime}>0$ and $\alpha_{1}+\beta_{1}^{\prime} \sqrt{7}>0$.
The relation (1.14) implies that, for all rational integers x, y,

$$
\begin{equation*}
\left|\left(x-\frac{1}{2}+\alpha_{1}\right)^{2}-7\left(y+\frac{5}{14}-\beta_{1}^{\prime}\right)^{2}\right| \geq \frac{1}{1.56} \tag{1.19}
\end{equation*}
$$

(1.19') i.e. $\left\lvert\,\left\{\xi+\left(\frac{5}{14} \sqrt{7}-\frac{1}{2}\right)+\left(\alpha_{1}-\beta_{1}^{\prime} \sqrt{7}\right)\right\}\right.$

$$
\left.\cdot\left\{\xi^{\prime}-\left(\frac{5}{14} \sqrt{7}+\frac{1}{2}\right)+\left(\alpha_{1}+\beta_{1}^{\prime} \sqrt{7}\right)\right\} \right\rvert\, \geq \frac{1}{1.56}
$$

for all integers ξ of $k(\sqrt{7})$.
Taking $\xi^{\prime}-\frac{7+5 \sqrt{7}}{14}=-\frac{7+5 \sqrt{7}}{14} \tau^{2 n}$, we obtain a contradiction as before. Thus there is no point $\left(x^{\prime}, y^{\prime}\right)$ in Σ which does not have a congruent point in \mathcal{T}. This proves the lemma.

Combining Lemmas I.2, I. 3 and I.4 we get statement A and hence the theorem.

Proof of Theorem II.

10. As in the proof of Theorem I we first prove

Lemma 2.1. Let $\left(x_{0}, y_{0}\right) \equiv\left(\frac{1}{2}, \pm \frac{7}{22}\right)(\bmod .1)$. Then for all $(x, y) \equiv\left(x_{0}, y_{0}\right)$ (mod. 1), $\mid x^{2}-1$ I $y^{2} \left\lvert\, \geq \frac{19}{22}\right.$. For some of these x, y, for example $\left(\frac{1}{2}, \pm \frac{7}{22}\right)$, this result holds with the sign of equality.

Proof: All $(x, y) \equiv\left(x_{0}, y_{0}\right)(\bmod .1)$ are given by $x=a+\frac{1}{2}, y=b \pm \frac{7}{22}$, where a and b are integers.

For these x, y, we have
(2.5) $\left|x^{2}-11 y^{2}\right|=\left|\left(\dot{a}+\frac{1}{2}\right)^{2}-\operatorname{II}\left(b \pm \frac{7}{22}\right)^{2}\right|=\left|a^{2}+a-11 b^{2} \mp 7 b-\frac{19}{22}\right| \geq \frac{19}{22}$, since $a^{2}+a-11 b^{2} \mp 7 b$ is an even integer.

The sign of equality in (2.5) is necessary when, for example, $a=b=0$.
II. Let \mathcal{T} be the open region bounded by the arcs of the hyperbolas $x^{2}-$ II $y^{2}= \pm \frac{1}{\text { I.16 }}$. Let $P_{0}\left(x_{0}, y_{0}\right)$ be a point such that no point congruent to it lies in \mathcal{T}. Then, as in Theorem 1 , we have only to show that P_{0} must be congruent to one of the two points $\left(\frac{1}{2}, \pm \frac{7}{22}\right)$.

Fig. 7

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Figs. 7-14.
12. Let \mathscr{A} and \mathscr{B} be the arcs of the hyperbola $x^{2}-$ II $y^{2}=\frac{1}{1.16}$ and \mathcal{C} and \mathscr{D} those of $x^{2}-1$ I $y^{2}=-\frac{1}{1.16}$, so that \mathcal{T} is the open region enclosed by $\mathscr{H}, \mathscr{J}, \mathcal{C}$ and \mathcal{D}. (See fig. 7).

Let the line $y=\frac{1}{2}$ meet these arcs in the points A, B, \bar{B} and \bar{A} as shown in the figure. Now move the part of \mathscr{A} lying between $A \bar{A}$ and the x-axis through a distance - I parallel to the x-axis. Let it take up the position $C D V$, with the points C, D and V on $A \bar{A}, \mathcal{C}$ and the x-axis respectively. The equation of $C D V$ is $(x+1)^{2}-$ II $y^{2}=\frac{1}{\text { I.I } 6}$.

Similarly move the part of \mathscr{B} between $A \bar{A}$ and the x-axis through a distance I parallel to the x-axis, to take up the position $\bar{C} \bar{D} \bar{V}$ as shown in the figure. The equation of $\bar{C} \bar{D} \bar{V}$ is $(x-1)^{2}-7 y^{2}=\frac{1}{1.16}$.

Denote the closed curvilinear triangles $B C D, \bar{B} \bar{C} \bar{D}$ by \mathcal{R} and $\overline{\mathcal{R}}$ re. spectively.

Now suppose that the unique $y_{1} \equiv y_{0}$ in the interval $-\frac{1}{2}<y_{1} \leq \frac{1}{2}$ is nonnegative.

Then, as in Theorem I, it is easily seen that both \mathscr{R} and $\overline{\mathcal{R}}$ contain unique points P_{1} and P_{2} congruent to P_{0}.

Then it will suffice to prove $P_{1}=\left(\frac{1}{2}, \frac{7}{22}\right)$. For, if y_{1} were negative, similar argument would give $P_{1}=\left(\frac{1}{2},-\frac{7}{22}\right)$; so that all $P_{0}\left(x_{0}, y_{0}\right)$, incongruent to points of \mathcal{T}, are congruent to $\left(\frac{1}{2}, \pm \frac{7}{22}\right)$. This is clearly equivalent to the theorem.

For convenience of reference, we tabulate now the co-ordinates of the vertices of \mathscr{R} and $\overline{\mathscr{R}} . \overline{\mathscr{R}}$ is obviously the image of \mathscr{R} in the y-axis.
13. Let the translation $\mathscr{J}_{1,0}$ change $\overline{\mathcal{R}}$ into \mathscr{R}^{\prime}. Then we assert that \mathscr{R}^{\prime} consists of three parts (see fig. 8),
i) π, which lies in \mathcal{T},
ii) the closed curvilinear quadrilateral \mathscr{R}_{1}, which lies in \mathscr{R}, and
iii) the region \mathcal{S}, which lies outside \mathcal{T} as well as \mathcal{R}.

Table III.

Point	Curves on which it lies	Co-ordinates
B	$y=\frac{1}{2} \quad, \quad x^{2}-$ II $y^{2}=-\frac{1}{1.16}$	$\left(\sqrt{\frac{219}{116}}, \frac{1}{2}\right)=\binom{$ I $374 \ldots}{.5}$,
0	$y=\frac{1}{2} \quad, \quad(x+1)^{2}-\text { I I } y^{2}=\frac{1}{\mathrm{I} .16}$	$\left(\sqrt{\frac{419}{116}}-1, \frac{1}{2}\right)=(.90 \ldots, .5)$
D	$x^{2}-$ II $y^{2}=-\frac{\mathrm{I}}{\text { I.16 }}, \quad(x+\mathrm{I})^{2}-\mathrm{II} y^{2}=\frac{\mathrm{I}}{\text { I.16 }}$	$\left(\frac{21}{58}, y^{\prime}\right) \underset{\left(\text { the value of } y^{\prime} \text { unimpor- }\right.}{\operatorname{tant})}$
	Image in y-axis of	
\bar{B}	B	(-1.374..., .5)
\bar{C}	C	(-.90..., .5)
\bar{D}	D	$\left(-\frac{2 I}{58}, y^{\prime}\right)$

To prove the assertion we have only to show

1. the upper vertices of \mathscr{R}^{\prime} lie to the left of C,
2. the lower vertex of \mathscr{R}^{\prime} lies in \mathcal{T}, and
3. the byperbolic arcs in the boundaries of \mathscr{R}, and \mathscr{R}^{\prime} meet each other in single points.

The condition 3 is, by Lemma A, an immediate consequence of I and 2 .
The condition 2 is obviously satisfied since the lower vertex of \mathscr{R}^{\prime}, i.e. the new position of \bar{D}, lies on the line $\bar{D} D: y=y^{\prime}$, at a distance less than I to the right of D and since arc $D C$ is at distance I from \mathscr{F}.

The condition 1 , too, is easily verified, since the co-ordinates of the upper vertices of \mathscr{R}^{\prime}, obtained by adding $(1,0)$ to those of \bar{B} and \bar{C}, are $(-.374 \ldots, 5)$ and (.09 ..., 5) while those of C are (.90..., .5).

Consequently our assertion about \mathscr{R}^{\prime} is true and the position is as shown in fig. 8.

Now \mathscr{R}^{\prime} is congruent to $\overline{\mathcal{R}}$. Therefore \mathscr{R}^{\prime} contains a point $Q \equiv P_{2} \equiv P_{0}$. As Q cannot lie in \mathscr{C}, it must lie either in \mathscr{R}_{1} or in \mathcal{S}; we include the common boundary of \mathscr{R}_{1} and \mathcal{S} in \mathscr{R}_{1} only.

Now, let $\mathscr{J}_{1,0}$ change \mathcal{S} into \mathcal{S}^{\prime}. We assert that \mathcal{S}^{\prime} is situated as shown in fig. 8. Because of Lemma A, we have only to verify that the positions of the vertices of \mathcal{S}^{\prime} are as shown. Now the lower vertices of \mathcal{S} lay on $C D$. Therefore the lower vertices of \mathcal{S}^{\prime} must lie on \mathscr{F}. Also the co-ordinates of the upper vertices obtained by adding (I, o) to those of upper vertices of \mathcal{S}, are (.625 .., .5) and ($1.09 \ldots, .5$), while those of C and D are (.90..., .5) and ($1.374 \ldots, .5$). Therefore the positions of the upper vertices, too, are easily seen to be correctly shown.

Consequently \mathcal{S}^{\prime} consists of
i) π^{\prime} lying in \mathcal{T},
ii) the closed curvilinear pentagon \mathcal{S}_{1}, and
iii) π_{2} lying neither in \mathcal{C} nor in \mathscr{R}; the boundary arcs of \mathcal{S}_{1} common with π^{\prime} or π_{2} are included in \mathcal{S}_{1} alone.
Now if the point Q lies in \mathcal{S}, a point $Q^{\prime} \equiv Q \equiv P_{0}$. will lie in \mathcal{S}^{\prime}. As Q^{\prime} cannot lie in \mathcal{T}, it will lie either in \mathcal{S}_{1} or in π_{2}.

The translation $\mathscr{J}_{1,0}$ changes the lower vertex and one of the upper vertices of π_{2} to points on \mathscr{F}, while the other upper vertex becomes (1.625 .., .5) as shown. Thus the translation $\mathcal{J}_{1,0}$ changes π_{2} into π_{2}^{\prime} lying entirely in \mathcal{T}.

Now $\pi_{2}^{\prime} \equiv \pi_{2}$. Therefore if Q^{\prime} lay in π_{2}, a point $Q^{\prime \prime} \equiv Q^{\prime} \equiv P_{0}$ would lie in \mathcal{T}, which is impossible. Therefore Q^{\prime} cannot lie in π_{2}.

Consequently a point congruent to P_{0} is seen to lie in \mathscr{R}_{1} or \mathcal{S}_{1}. As both \mathscr{R}_{1} and \mathcal{S}_{1} lie in \mathscr{R}, and \mathscr{R} contains only one point, namely $P_{1}, \equiv P_{0}$, we conclude that P_{1} must lie either in \mathscr{R}_{1} or in \mathscr{S}_{1}.

Let \mathscr{R}_{2} be the closed curvilinear triangle containing π_{2}, \mathcal{S}_{1} and the region π_{3}, shown in fig. 8. Then we can say that P_{1} lies in \mathscr{R}_{1} or \mathscr{R}_{2}.

Let the vertices of \mathscr{R}_{1} and $\mathscr{R}_{\underline{w}}$ be E, F, G, H, K, B, and L as shown in fig. 9. Join $E G$ and draw $K M$ parallel to y-axis to meet $A \bar{A}$ at M.

Then, as in Theorem I, it will suffice to show that
"Every point, except $\left(\frac{1}{2}, \frac{7}{22}\right)$, of $K L M$ and $E G H$ has a congruent point inside $\mathcal{T}{ }^{\prime \prime}$

This we shall prove in the rest of the paper.
For convenience of reference we tabulate the co-ordinates of some points together with the equations of the curves on which they lie.
R. P. Bambah.

Point	Curves through it	Equations of the curves	Co-ordinates of the point
E	$E F, E H$	$(x-1)^{2}-$ I I $y^{2}=-\frac{1}{\text { I.16 }}, \quad x^{2}-$ II $y^{2}=-\frac{\mathrm{I}}{\text { I.I6 }}$	$\left(\frac{1}{2}, \sqrt{\frac{129}{1276}}\right)=(.5, .317 \ldots)$
H	$H G, E H$	$(x-2)^{2}-11 y^{2}=\frac{1}{1.16} \quad, \quad x^{2}-11 y^{2}=-\frac{1}{1.16}$	$\left(\frac{33}{58}, \frac{1}{58} \sqrt{\frac{3989}{11}}\right)=(.57 \ldots, .328 \ldots)$
G	$H G, G F$	$(x-2)^{2}-\mathrm{II} y^{2}=\frac{1}{1.16} \quad, \quad(x+1)^{2}-11 y^{2}=\frac{1}{1.16}$	$\left(\frac{1}{2}, \sqrt{\frac{161}{1276}}\right)=(.5, .355 \ldots)$
K	$K L, K B$	$(x-2)^{2}-\text { I I } y^{2}=-\frac{1}{\text { I.16 }}, \quad x^{2}-\text { I I } y^{2}=-\frac{\mathrm{I}}{\text { I.16 }}$	$\left(1, \sqrt{\frac{54}{319}}\right)=(1, .411 \ldots)$
L	$K L, L B$	$(x-2)^{2}-\mathrm{II} y^{2}=-\frac{\mathrm{I}}{\mathrm{I} \cdot 16}, \quad y=\frac{\mathrm{I}}{2}$	$\left(2-\sqrt{\frac{219}{116}}, \frac{1}{2}\right)=(.625 \ldots, 5)$
M	$M K, M L$	$x=\mathrm{I} \quad, \quad y=\frac{\mathrm{I}}{2} .$	$\left(\mathrm{I}, \frac{\mathrm{I}}{2}\right)=(\mathrm{I} .5$)

14. Lemma 2.2: Every point in $K L M$ has a congruent point in \mathcal{T}.

Proof: If not, suppose there is a point P in $K L M$, such that no point congruent to it lies in \mathcal{T}.

Then we shall obtain a contradiction in three stages (i), (ii) and (iii) below.
i) Let the translation $\mathscr{J}_{1,-1}$ change $K L M$ into $K^{\prime} L^{\prime} M^{\prime}$. (See fig. 10). Then,

$$
\boldsymbol{K}^{\prime}=K+(\mathrm{I},-\mathrm{I})=(2,-.588 \ldots) \text { lies in } \mathcal{T}
$$

since

$$
\begin{gathered}
\left|2^{2}-\mathrm{II}(.588 \ldots)^{2}\right|<4-\mathrm{II}(.58)^{2}=.2996<\frac{1}{1.16} \\
L^{\prime}=L+(1,-\mathrm{I})=(1.625 \ldots, .5) \text { lies in } \mathcal{T}
\end{gathered}
$$

since

$$
\left|(1.625 \ldots)^{2}-\operatorname{II}(.5)^{2}\right|<2.75-2.56<\frac{1}{1.16}
$$

$M^{\prime}=\boldsymbol{M}+(\mathrm{I},-\mathrm{I})=(2,-.5)$ lies above \mathscr{A} i.e. in that part of

$$
x^{2}-\text { II } y^{2}>\frac{1}{1.16}
$$

where x is positive, since

$$
2^{2}-11(.5)^{2}=1.25>\frac{1}{1.16} .
$$

Therefore the position of the points K^{\prime}, L^{\prime} and M^{\prime} is as shown in fig. Io.
The lines $K^{\prime} M^{\prime}$ and $M^{\prime} L^{\prime}$, being parallel to the axes, meet \mathscr{A} in single points S^{\prime} and T^{\prime} say.

Now $K^{\prime} L^{\prime}$ arises from $K L:(x-2)^{2}-11 y^{2}=-\frac{1}{1.16}:$ by translation $\mathscr{J}_{1,-1}$. Therefore, its equation is

$$
\begin{equation*}
(x-3)^{2}-\operatorname{II}(y+1)^{2}=-\frac{1}{\mathrm{I.16}} \tag{2.6}
\end{equation*}
$$

The equation of, \mathscr{D} is

$$
x^{2}-11 y^{2}=-\frac{1}{1.16} .
$$

Therefore, on eliminating y between (2.6) and the above, we find that the points of intersection, if any, of $K^{\prime} L^{\prime}$ and \mathscr{D} satisfy the relation

$$
\begin{equation*}
\mathrm{o}=\text { I I } x^{2}-(3 x+\mathrm{I})^{2}+\frac{275}{29}=2 x^{2}-6 x+\frac{246}{29} \tag{2.7}
\end{equation*}
$$

This equation has no real roots. Therefore $K^{\prime} L^{\prime}$ does not intersect \mathcal{D}.
The equation of \mathcal{A} is $x^{2}-11 y^{2}=\frac{1}{\text { r.16 }}$.
Therefore, by (2.6) and the above, the points of intersection, if any, of $K^{\prime} L^{\prime}$ and \mathscr{H} satisfy

$$
\begin{equation*}
0=\text { II } x^{2}-\left(3 x+\frac{4}{29}\right)^{2}-\frac{275}{29}=2 x^{2}-\frac{24}{29} x-\left(\frac{16}{29^{2}}+\frac{275}{29}\right) . \tag{2.8}
\end{equation*}
$$

Obviously (2.8) has a negative root. As the x-co-ordinates of all points of $K^{\prime} L^{\prime}$ are positive, $K^{\prime} L^{\prime}$ and \mathscr{A} cannot intersect in two points. Therefore, by Lemma $\mathrm{A}, \boldsymbol{K}^{\prime} L^{\prime}$ has no point common with \mathcal{H}.

Consequently we see that the situation is as shown in fig. io, i.e. $K^{\prime} L^{\prime} M^{\prime}$ consist of two parts, i) the curvilinear region $K^{\prime} L^{\prime} S^{\prime} T^{\prime}$ lying in \mathcal{T}, and ii) the closed curvilinear triangle $S^{\prime} T^{\prime} M^{\prime}$ lying outside \mathcal{T}.

Since $K^{\prime} L^{\prime} M^{\prime} \equiv K L M$, it contains a point $P^{\prime} \equiv P$. As P^{\prime} cannot lie in \mathcal{T}, P^{\prime} lies in the curvilinear triangle $S^{\prime} T^{\prime} M^{\prime}$. The co-ordinates of S^{\prime} and T^{\prime} are

$$
\begin{gathered}
T^{\prime}=\left(\sqrt{\frac{419}{116},-\frac{1}{2}}\right)=(1.90 \ldots,-.5) \\
S^{\prime}=\left(2,-\sqrt{\frac{91}{319}}\right)=(2,-.534 \ldots)
\end{gathered}
$$

ii) Let now the translation $\mathscr{J}_{3,-1}$ change $S^{\prime} M^{\prime} T^{\prime}$ into $S^{\prime \prime} M^{\prime \prime} T^{\prime \prime}$. (See fig. it). Then

$$
M^{\prime \prime}=M^{\prime}+(3,-1)=(5,-1.5) \text { lies in } \mathcal{T}
$$

since

$$
\begin{gathered}
\left|(5)^{2}-\mathrm{II}(-1.5)^{2}\right|=.25<\frac{\mathrm{I}}{\mathrm{I} .16} \\
T^{\prime \prime}=T^{\prime}+(3,-1)=(4.90 \ldots,-1.5) \text { lies in } \boldsymbol{C}
\end{gathered}
$$

since

$$
\left|(4.90 \ldots)^{2}-11(1.5)^{2}\right|<.74<\frac{1}{1.16}
$$

since

$$
S^{\prime \prime}=S^{\prime}+(3,-1)=(5,- \text { I. } 534 \ldots) \text { lies below } \mathscr{D}
$$

$$
(5)^{2}-11(-1.534 \ldots)^{2}<-.88<-\frac{1}{1.16}
$$

This shows that the points $S^{\prime \prime}, M^{\prime \prime}$ and $T^{\prime \prime}$ are situated as shown. As $S^{\prime \prime} M^{\prime \prime}$ and $M^{\prime \prime} T^{\prime \prime}$ are parallel to the axes, $M^{\prime \prime} T^{\prime \prime}$ intersects neither \mathscr{A} nor $\mathscr{D}, S^{\prime \prime} M^{\prime \prime}$
intersects \mathscr{D} at a single point, $U^{\prime \prime}$, say. The hyperbolic are $S^{\prime \prime} T^{\prime \prime}$ does not intersect \mathscr{Z} because of the situation of these arcs relative to the lines $S^{\prime \prime} M^{\prime \prime}$, $M^{\prime \prime} T^{\prime \prime}$. Again, by Lemma $A, S^{\prime \prime} . T^{\prime \prime}$ intersects \mathscr{D} at one point $V^{\prime \prime}$. In short, the position of $S^{\prime \prime} M^{\prime \prime} T^{\prime \prime}$ is as shown in the figure.

Now $S^{\prime \prime} M^{\prime \prime} T^{\prime \prime}$ is congruent to $S^{\prime} M^{\prime} T^{\prime}$ and, therefore, contains a point $P^{\prime \prime} \equiv P^{\prime} \equiv P$. As $P^{\prime \prime}$ cannot lie in \mathcal{C}, it lies in the curvilinear triangle $S^{\prime \prime} U^{\prime \prime} V^{\prime \prime}$.

The point $U^{\prime \prime}$ has co-ordinates $\left(5,-\sqrt{\frac{750}{319}}\right)=(5,-1.533 \ldots)$. Also we note that the abscissa of $V^{\prime \prime}$ is greater than that of $T^{\prime \prime}$, which is greater than 4. Therefore, the abscissa of any point on $S^{\prime \prime} V^{\prime \prime}$ or $U^{\prime \prime} V^{\prime \prime}$ lies between 4 and 5 .
iii) Now let $\mathscr{J}_{20,-6}$ change $S^{\prime \prime} U^{\prime \prime} V^{\prime \prime}$ into $S^{\prime \prime \prime} U^{\prime \prime \prime} V^{\prime \prime \prime}$. (See fig. i2).

Then

$$
S^{\prime \prime \prime}=S^{\prime \prime}+(20,-6)=\left(25,-7-\sqrt{\frac{9 \mathrm{I}}{3 \mathrm{I} 9}}\right) \text { lies in } \mathcal{Z}
$$

since

$$
\begin{aligned}
& \left|(25)^{2}-\mathrm{II}\left(7+\sqrt{\frac{9 \mathrm{I}}{3 \mathrm{I} 9}}\right)^{2}\right| \\
= & \left|625-539-\frac{9 \mathrm{I}}{29}-\sqrt{\frac{9 \mathrm{I} \times 154 \times \mathrm{I} 4}{29}}\right| \\
= & 625-539-3.13 \ldots-82.2 \ldots<.67<\frac{\mathrm{I}}{\mathrm{I} \cdot \mathrm{I} 6} \\
& U^{\prime \prime \prime}=U^{\prime \prime}+(20,-6)=\left(25,-6-\sqrt{\frac{750}{319}}\right) \text { lies in } \mathcal{T}
\end{aligned}
$$

since

$$
\left|(25)^{2}-11\left(6+\sqrt{\frac{750}{319}}\right)^{2}\right|=|625-396-25.86 \ldots-202.39 \ldots|<.75<\frac{1}{1.16}
$$

The translation $\mathcal{J}_{20,-1}$ does not change the relative position of $S^{\prime \prime} V^{\prime \prime}$ and $U^{\prime \prime} V^{\prime \prime}$ i.e. $S^{\prime \prime \prime} V^{\prime \prime \prime}$ lies below $U^{\prime \prime \prime} V^{\prime \prime \prime}$. Therefore, in order to show that $S^{\prime \prime \prime} U^{\prime \prime \prime} V^{\prime \prime \prime}$ lies inside \mathcal{T}, it will suffice to show that (a) $U^{\prime \prime \prime} V^{\prime \prime \prime}$ does not intersect \mathscr{H}, and (b) $S^{\prime \prime \prime} V^{\prime \prime \prime}$ does not intersect \mathscr{D}.
(a) The arc $U^{\prime \prime \prime} V^{\prime \prime \prime}$ arises from $U^{\prime \prime} V^{\prime \prime}: x^{2}-1$ I $y^{2}=-\frac{1}{1.16}$ by $\mathcal{J}_{20,-6}$.

Therefore
I. the x-co-ordinate of any point on $U^{\prime \prime \prime} V^{\prime \prime \prime}$ lies between 24 and 25 .
2. the equation of $U^{\prime \prime \prime} V^{\prime \prime \prime}$ is

$$
\begin{equation*}
(x-20)^{2}-11(y+6)^{2}=-\frac{1}{1.16} \tag{2.9}
\end{equation*}
$$

The equation of \mathscr{A} is $x^{2}-$ I $1 y^{2}=\frac{1}{\text { I.16 }}$. Therefore, on eliminating y between (2.9) and the equation of \mathscr{A}, we find that the points of intersection, if any, of $U^{\prime \prime \prime} V^{\prime \prime \prime}$ and \mathscr{A} satisfy the equation

$$
\begin{align*}
0 & =\frac{396}{1.16}-396 x^{2}+\left(-20 x+\frac{83}{29}\right)^{2} \\
& =4 x^{2}-\frac{3320}{29} x+\left\{\left(\frac{83}{29}\right)^{2}+\frac{9900}{29}\right\}=f(x) \text { (say). } \tag{2.10}
\end{align*}
$$

Now $f(0)>0, f(4)<0, f(25)<0$, and $f(\infty)>0$. Therefore, there is no root of (2.10) in the interval $(24,25)$. Consequently, $U^{\prime \prime \prime} V^{\prime \prime \prime}$ does not intersect \mathscr{A}, i.e (a) is verified.
(b) The arc $S^{\prime \prime \prime} V^{\prime \prime \prime}$ arises from $S^{\prime \prime} V^{\prime \prime}:(x-3)^{2}-11(y+1)^{2}=\frac{1}{1.16}$ by $\mathscr{J}_{20,-6}$. Therefore,

1. The x-co-ordinate of any point on $S^{\prime \prime \prime} V^{\prime \prime \prime}$ lies between 24 and 25 .
2. The equation of $S^{\prime \prime \prime} V^{\prime \prime \prime}$ is

$$
\begin{equation*}
(x-23)^{2}-11(y+7)^{2}=\frac{1}{1.16} \tag{2.11}
\end{equation*}
$$

The equation of \mathscr{D} is $x^{2}-$ I $y^{2}=-\frac{1}{1.16}$. Therefore, eliminating y, we find that the common points, if any, of $S^{\prime \prime \prime} V^{\prime \prime \prime}$ and \mathscr{D} satisfy

$$
\begin{align*}
0 & =539 x^{2}-\left(23 x+\frac{170}{29}\right)^{2}+\frac{(539) 25}{29} \tag{2.12}\\
& =10 x^{2}-\frac{7820}{29} x+\frac{361875}{841}=f(x) \text { (say) }
\end{align*}
$$

Now $f(0)>0, f(2)<0, f(25)<0$ and $f(\infty)>0$. Therefore, (2.12) bas no root between 24 and 25 . And so $U^{\prime \prime \prime} V^{\prime \prime \prime}$ and \mathscr{D} have no common points, i.e. (b) is true.

Consequently $U^{\prime \prime \prime} S^{\prime \prime \prime} V^{\prime \prime \prime}$ lies entirely in \mathcal{C}. Now $U^{\prime \prime \prime} S^{\prime \prime \prime} V^{\prime \prime \prime}$ is congruent to $U^{\prime \prime} S^{\prime \prime} V^{\prime \prime}$. Therefore a point $P^{\prime \prime \prime} \equiv P^{\prime \prime} \equiv P$ lies in $U^{\prime \prime \prime} S^{\prime \prime \prime} V^{\prime \prime \prime}$ and hence in \mathcal{T}. This gives the required contradiction and the lemma is established, i.e. every point in $K L M$ has a congruent point in \mathcal{T}.

Lemma 2.3: Every point in $E H G$, excluding a closed curvilinear triangle $E N Q$, defined in the proof, has a congruent point in \mathcal{T}.

Proof: Let the translation $\mathcal{J}_{5,-2}$ change $E H G$ into $E^{\prime} H^{\prime} G^{\prime}$. (See fig. 13). The point $H^{\prime}=H+(5,-2)=(5.57 \ldots,-1.67 \mathrm{I} \ldots)$ lies in \mathcal{T}, since

$$
\begin{gathered}
\left|(5.57 \ldots)^{2}-11(1.671 \ldots)^{2}\right|<(5.58)^{2}-11(1.67)^{2}<.5<\frac{1}{1.16} \\
G^{\prime}=G+(5,-2)=(5.5,-1.644 \ldots) \text { hies in } \mathcal{C}
\end{gathered}
$$

since

$$
\begin{aligned}
& \left|(5.5)^{2}-\mathrm{II}(1.644 \ldots)^{2}\right|<30.25-\mathrm{II}(\mathrm{I} .64)^{2}<.67<\frac{\mathrm{I}}{\mathrm{I} .16} ; \\
& E^{\prime}=E+(5,-2)=\left(5.5, \sqrt{\frac{\mathrm{I} 29}{1276}}-2\right) \text { lies below } D
\end{aligned}
$$

since

$$
\begin{aligned}
& (5.5)^{2}-11\left(\sqrt{\frac{129}{1276}}-2\right)^{2}=30.25-44-1.112 \ldots \\
& \\
& \quad+13.990 \ldots<-.87<-\frac{1}{1.16} .
\end{aligned}
$$

This shows that the position of the points E^{\prime}, G^{\prime} and H^{\prime} is as shown in the figure.

As $E^{\prime} G^{\prime}$ is a line parallel to the y-axis, it intersects \mathscr{D} in one point, Q^{\prime} say. Again, by Lemma $A, E^{\prime} H^{\prime}$ meets D in one point, N^{\prime} say.

The arc $G^{\prime} H^{\prime}$ arises from \mathscr{F} by a translation $\mathscr{J}_{2,0}+\mathscr{J}_{5,-2}=\mathscr{J}_{7,-2}$. Therefore, its equation is (2.13)

$$
(x-7)^{2}-11(y+2)^{2}=\frac{1}{1.16}
$$

The equation of \mathscr{D} is $x^{2}-$ II $y^{2}=-\frac{\mathrm{I}}{\text { I.I } 6}$.
Therefore, eliminating y between (2.13) and the above, we find that points of intersection, if any, of $G^{\prime} H^{\prime}$ and \mathscr{D} satisfy the equation

$$
\begin{aligned}
0 & =-176 x^{2}+\left(14 x-\frac{95}{29}\right)^{2}-\frac{176(25)}{29} \\
& =20 x^{2}-\frac{(190) 14}{29} x-\frac{1}{841}\left\{176(725)-95^{2}\right\} .
\end{aligned}
$$

This has a negative root. Therefore, as all the points on $G^{\prime} H^{\prime}$ have a positive abscissa, there is at most one point of intersection of $G^{\prime} H^{\prime}$ and \mathcal{D}. But by

Lemma A, the points common to $G^{\prime} H^{\prime}$ and \mathscr{D} are two or none. Therefore $G^{\prime} H^{\prime}$ does not intersect \mathfrak{D}.

The equation of \mathscr{A} is $x^{2}-$ II $y^{2}=\frac{1}{1.16}$.
Eliminating y between (2.13) and the above, we see that the points of intersection, if any, of $G^{\prime} H^{\prime}$ and \mathscr{A} satisfy the equation

$$
0=176 x^{2}+(14 x-5)^{2}+\frac{176(25)}{29}=20 x^{2}-140 x+176.72 \ldots
$$

As $f(0)>0, f(2)<0$ and $f(5.5)>0$, the roots of this equation lie in the open intervals $(0,2)$ and $(2,5.5)$. But the x-co-ordinate of every point on $H^{\prime} G^{\prime}$ is greater than 5.5 , the x-co-ordinate of G^{\prime}. Therefore $H^{\prime} G^{\prime}$ does not intersect \mathscr{H} either. Consequently the position of $E^{\prime} G^{\prime} H^{\prime}$ is as shown in the figure.

The translation $\mathscr{J}_{-5,2}$, i.e. the translation inverse to $\mathscr{J}_{5,-2}$, changes $E^{\prime} N^{\prime} Q^{\prime}$ into $E N Q$ of the lemma.
15. Lemma 2.4: Every point, except $\left(\frac{1}{2}, \frac{7}{22}\right)$, in the closed triangle $E N Q$ has a congruent point in \mathcal{T}.

Proof: The equations of the boundary arcs of $E N Q$ are
$E N:$

$$
x^{2}-\text { II } y^{2}=-\frac{1}{1.16}
$$

$N Q:$

$$
(x+5)^{2}-11(y-2)^{2}=-\frac{1}{1.16}
$$

$\boldsymbol{E} Q:$

$$
x=\frac{1}{2} .
$$

Therefore, the co-ordinates of Q are

$$
x=\frac{1}{2}, y=2-\sqrt{\frac{3609}{1276}}=(.5, .31822 \ldots)
$$

Also the co-ordinates of E are $\left(\frac{1}{2}, \sqrt{\frac{129}{1276}}\right)=(.5, .31795 \ldots)$.
Therefore, R, the point with co-ordinates $\left(\frac{1}{2}, \frac{7}{22}\right)=(.5, .31818 \ldots)$ lies between E and Q on the line $E Q$.

Let $R S T$, the line $y=\frac{7}{22}$ through R meet $N Q$ and $E N$ in S and T respectively.

Then the coordinates of S are $\left(\sqrt{\frac{38601}{1276}}-5, \frac{7}{22}\right)=\left(.5001 \ldots, \frac{7}{22}\right)$ and those of the T are $\left(\sqrt{\frac{32 \mathrm{I}}{1276}}, \frac{7}{22}\right)=\left(.5015 \ldots, \frac{7}{22}\right)$.

Thus the position is as shown in fig. 14.
Consequently every point of $E N Q$ has co-ordinates $\left(\frac{1}{2}+\alpha, \frac{7}{22}+\beta\right)$, where $0 \leq \alpha<.0016,-.00024<\beta<.00005$.

Therefore the points of $E N Q$, excluding $\left(\frac{1}{2}, \frac{7}{22}\right)$ form a subset of the set Σ : consisting of points $\left(\frac{1}{2}+\alpha, \frac{7}{22}+\beta\right)$, where

$$
\begin{equation*}
0 \leq \alpha<.0016,|\beta|<.00024,(\alpha, \beta) \neq(0,0) . \tag{2.14}
\end{equation*}
$$

It will consequently suffice to show that every point of Σ has a congruent point in \mathcal{T}.

Suppose it is not so. Then let $\left(x^{\prime}, y^{\prime}\right)=\left(\frac{1}{2}+\alpha_{1}, \frac{7}{22}+\beta_{1}\right)$ be a point of Σ such that all points congruent to it lie outside $\boldsymbol{\mathcal { C }}$.

Then, we have

$$
\begin{equation*}
0<\alpha_{1}+\left|\beta_{1}\right| \sqrt{1 I}<.0016+(.00024) \sqrt{I I}<.0024 \tag{2.15}
\end{equation*}
$$

and, for all rational integers x, y,

$$
\begin{equation*}
\left|\left(x+\frac{1}{2}+\alpha_{1}\right)^{2}-\mathrm{II}\left(y+\frac{7}{22}+\beta_{1}\right)^{2}\right| \geq \frac{1}{1.16} \tag{2.16}
\end{equation*}
$$

Let $\beta_{1} \geq 0$.
The relation (2.16) implies that

$$
\text { (2.17) } \begin{aligned}
& \left\lvert\,\left\{\xi-\left(\frac{\mathrm{II}}{2}+\frac{37 \sqrt{\mathrm{II}}}{22}\right)+\left(\alpha_{1}+\beta_{1} \sqrt{\mathrm{II}}\right)\right\}\right. \\
& \qquad \left.\left\{\xi^{\prime}-\left(\frac{\mathrm{II}}{2}-\frac{37 \sqrt{\mathrm{II}}}{22}\right)+\left(\alpha_{1}-\beta_{1} \sqrt{\mathrm{II}}\right)\right\} \right\rvert\, \geq \frac{1}{1.16}
\end{aligned}
$$

for all integers $\xi=x+y \sqrt{11}$ and their conjugates $\xi^{\prime}=x-y \sqrt{11}$ in the field $k(\sqrt{\mathrm{II}})$.

Write τ for the fundamental unit $10+3 \sqrt{\text { II }}$ of $k(\sqrt{\text { II }})$ and τ^{\prime} for the conjugate of τ.

Then, as in Theorem 1 , Lemma 1.4 , we get a contradiction by taking ξ defined by the relation:

$$
\xi-\left(\frac{1 \mathrm{II}}{2}+\frac{37 \sqrt{\mathrm{II}}}{22}\right)=-\left(\frac{\mathrm{II}}{2}+\frac{37 \sqrt{\mathrm{II}}}{22}\right) \tau^{\prime 2 n}
$$

If $\beta_{1}=-\beta_{2}, \beta_{2}>0$, we first deduce fromn (2.16) that
(2.18) $\left\lvert\,\left\{\xi^{\prime}-\left(\frac{\mathrm{I}}{2}-\frac{7 \sqrt{\mathrm{II}}}{22}\right)+\left(\alpha_{1}-\beta_{2} \sqrt{\mathrm{II}}\right)\right\}\right.$

$$
\left.\cdot\left\{\xi-\left(\frac{1}{2}+\frac{7 \sqrt{I I}}{22}\right)+\left(\alpha_{1}+\beta_{2} \sqrt{I I}\right)\right\} \right\rvert\, \geq \frac{I}{1.16}
$$

for all integers ξ of $k(\sqrt{\mathrm{II}})$.
Then we get a contradiction by taking ξ defined by

$$
\xi-\left(\frac{\mathrm{I}}{2}+\frac{7 \sqrt{\mathrm{II}}}{22}\right)=-\left(\frac{\mathrm{I}}{2}+\frac{7 \sqrt{\mathrm{II}}}{22}\right) \tau^{\prime 2 n}
$$

This shows that there is no point $\left(x^{\prime}, y^{\prime}\right)$ in Σ which does not have a congruent point in \mathcal{T}. This establishes the lemma.

Combining Lemmas 2.1, 2.2, 2.3 and 2.4 we obtain theorem II.
In the end I would like to express my deep sense of gratitude to Prof. L. J. Mordell, F.R.S., for help in preparing this note. I am also grateful to the Royal Commission of 185 I Exhibition for the award of an Overseas Science Research Scholarship which enabled me to carry out this work at the University of Cambridge.

References.

Barnes, E. S. r. Non-homogeneous binary quadratic forms. Quar. Jour. Math. Oxford, Second Series, x (i950), 199-21r.
Davenport, H. i. Non-homogeneous binary quadratic forms I. Konink. Neder. Akad. Wet. 49 (1946), 815-21.
——, 2. Non-homogeneous binary quadratic forms II. Konink. Neder. Akad. Wet. 50 (1947), 378-89.
——, 3. Non-homogeneous binary quadratic forms III. Konink. Neder. Akad. Wet. 50 (1947), 484-91.
——, 4. Non-homogeneous binary quadratic forms IV. Konink. Neder. Akad. Wet. 50 (1947), 909-17.
Heinhold, J. i. Verallgemeinerung und Verschärfung eines Minkowskischen Satzes, Math. Zeit., 47 (1939), 659-88.

Varnavides, P. 1. Note on non-homogeneous quadratic forms. Quar. Jour. Math. Oxford Ser. Iq (1948), 54-58.
--, 2. Non-homogeneous binary quadratic forms, I, II. Konink. Neder. Akad. Wet. 5I (1948), 396-404, 470-8r.
——, 3. On the quadratic form $x^{2}-7 y^{2}$. Proc. Roy. Soc. A, 197 (1949), 256-68.

- 4. Arithmetical properties of indefinite quadratic forms, Ph.D. thesis, 1948, London University.

[^0]: ${ }^{1}$ This note forms a part of author's thesis: Some Kesults in the Geometry of Numbers: approved for the degree of Ph, D. at the University of Cambridge.

