
THE MAXIMUM MODULUS AND VALENCY OF FUNCTIONS 
MEROMORPHIC IN THE UNIT CIRCLE. 

BY 

W. K, HAYMAN 

of EXETER~ ENGLAND. 

T a b l e  of  Contents 
Page 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .  89 - -95  
Chapter I. Extensions of Schottky's  Theorem . . . . . . . . . . . . . .  95 

( E =  ~,o, OO f p ( ~ ) d ~ < o o ) .  

Chapter II. The Main Problem . . . . . . . . . . . . . . . . . . . .  146 
(E and ~v (e) general) Par t  I, p (e) = constaht . . . . . . . . . . . .  147 

Part  II, p(~) unbounded . . . . . . . . . . .  161 
Chapter III .  Converse Theorems . . . . . . . . . . . . . . . . . . . .  193 

(Counterexamples to the results of Chapter II.) 

Introductory A b s t r a c t  

i) L e t  /~ be a closed set  of complex values w con ta in ing  w = o, oo and  at  

least  one o ther  finite value. L e t  p ( Q ) b e  an increas ing  posi t ive  funct ion  defined 

for  o _ < ~ <  I. 

W e  consider  in this  essay a func t ion  f(z) meromorph ic  in [z[ < I  and  such 

t h a t  none of the  equat ions  

f ( z )  = ~ ,  

where w lies in E,  have  more  t h a n  P(e) roots  in Iz]--< e, ~  I. I n  o the r  

words the  valency of f(z) on the  set  E is at  mos t  P(e) in [ z [ < e ,  o < e <  I. 

W e  shall  also say somet imes  t ha t  f(z) takes  no value w of /~ more  t h a n  p(e)  

t imes  in Iz]--< e. 

Our  a im is to find bounds  under  this  hypothes i s  for  the  m a x i m u m  modulus  

of f(~) 
M [ q , f ( z ) ]  = m a x  I f (qe '~  �9 
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We confine ourselves here to the case when p (Q)~ I. There are in this case 

various difficulties. We cannot  use the simple theory of subordinat ion to give 

the extremal  functions.  Fur ther  since f(z) is not  ill general  regular, we have 

_MLo, f ] = c,o 

whenever the circle ]z I = ~  contains a pole of f(z). Last ly even if  we assume 

tha t  f(z) is regular and takes no value more than  once, we cannot  from the 

boundedness of f (o)  alone deduce a bound for M [ ~ , f ] ,  as is shown by the 

funct ions 
= 

for  which f (o)  = o, while k is arbi trary.  I f  p(�89 --<p, so t ha t  f(z) takes no value 

of E more than  p "times in I zl g �89 and f(z) is regular,  a bound for M[q, f ]  can 

be obtained in terms of 

/iv = max [I, f (o) ,  f '  (o) . . . .  , fv)(o)]. 

We have preferred, however, to use the following laethod. L e t f ( z )  be meromorphic 

in I z ] < I  and let a~ ,#  = I to m, b~ ,v=  1 to n, be the zeros and poles o f f ( z )  in 

--< Then we define 

H g (g, b,) 
f .  (~) = .]e(~) 2n--m ~,:1 

I[  g a,) 
I*=l 

where 
I,I. 

z )  = 

Thus f , ( z )  is obtained from f(z) by dividing out  the zeros and poles of f(z) in 

the neighborhood of the point z. I f  f(z) is regular nonzero in [z I < I, we have 

f , (z)  =f (z ) .  The funct ion f , ( z )has  a continuous modulus in ] z ] <  I. However, 

except near  the zeros and poles f(z) does not  differ too much from f(z). Further 
we can obtain bounds for 

M[e,f,(z)] = max If,(ee*~ 
0 ~ 0 ~ 2 ~  

in terms of ~, If, (o)l, E and the function p (Q) only. We shall deal with/ ,  (z) 

th roughou t  and obtain bounds for  M[~, f,(z)]. Also when f ( z ) i s  regular  we 

have 
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If(z) l <- If, (z) l 

so that  bounds for M[ e, f ]  follow. 

2) In Chapter I we consider the ease, where E consists of o, I, do and p(0) 

is a general increasing function such that  

1 
fpI /ds< co. 
0 

Another way of putting this is to say that  

(2 . I )  -/~0 = ~ (I - - ] d , I )  < c o  

where d, runs over all the points such that  f(d,)= o , I  or do in [ z [ <  I. 

The basis of most of the positive results obtained in our essay is Theorem I, 

as stated in paragraph 20, where a bound is obtained for 

d 
d--0 log If,  (5)[ 

at 5 = o. Integration of this result yields Theorem I I  which is 

I + (2.2) log M[5, f,(z)] < - - [ ( I  + 5)l~ + {f,(o){ + A 5 (log log* ]f,(o)[ + No+ I)] 
1-- 5 

where N 0 is defined as in (2.1). We see that  the condition f ( z )#  o, I, co of 

Sohottky's Theorem is replaced by the much more general condition (2.1). I f  

f(z) is regular, we may replace M [5, f ,(z)]  by M[5, f(z)] in (2.2). Moreover it 

appears from a wide elass of counterexamples given in Theorem IV, that  the 

condition (2.I) is probably the weakest of its kind in order that the function 

f(z) shall always satisfy 

log M [e, f ,  (z)] = 0 (I__~), 
I - - 0  

the order of magnitude attained when p(0)--~ o. Most of Chapter I is taken 

up by the proof of Thorem I, an inequality for 

[d~ log l f ,  (5) ,]e= ~ .~f,  (o) 

The major deductions from this are stated in Theorems I to VI in para- 

graph 20. The deduction of Theorems I I  to V1 from Theorem I is compara- 
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tively simple. 

equations 

W. K. Hayman. 

Theorem V gives a general izat ion to funct ions f(z), such t h a t  the  

f ( z )  = o, ~ (~), oo 

have at  most p (Q) roots in ]z] < fl, where f p  (e) d D < oo and q~ (z) is a meromorphic 

funct ion in I z ] <  t having  at  most  P(e) poles and zeros. Then we have 

log M [e, f ,  (~)] -< log M [e, r (z)] + O (~_)), 

The result  follows from Th.eorem I I  by applying tha t  result  to 

g (z) = f (z). 
r  

3) In  Chapter  I I  we take up our general  problem again. In  the first part,  

we consider the case where p(~) is a constant  positive integer  p in o <: Q < ~.1 

Suppose t ha t  f(z) is regular  nonzero, and tha t  f(z) takes some value w such tha t  

Iwl  = ,-, a t  m o s t  p t imes in ]z[ < I. Put 

r (z) = [f(z)] ' / '+ '  . (3.~) 

Then 
~b (z) = w' 

implies 
f ( z )  = (w')~ +1 

Taking (w') v + l =  w which holds for p + I dis t inct  values w', we deduce tha t  

@(z) defined by (3.I) satisfies 

r (z) # w' 

in Izl < I for some w', such tha t  (w') p+1= r. The same result  holds i f f ( z )  takes 
no value w, such tha t  I w ] = r ,  more t h a n p +  I t imes in I z l < I .  In  T h e o r e m I I ,  

the main resul t  of the first part  of the chapter,  we show tha t  this method can 

be extended to the  case when f(z)  has a finite number  of zeros and poles in 

[ z l <  I. The proof is based on a lemma on hyperbolic distances. This allows 

us to find extensions of all the positive results proved when P = o (Hayman(I) ,  

(2), (3)), to the case when f(z) takes the values of E at  most  p t imes in ]z I < i. 

The method yields among other  results an extension of Cartwright ' s  I 

x This was previously considered in CARTWRIGHT (I), LITTLEWOOD (I). 
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Theorem I. 
then we have 

where 

93 

I f  f ( z )  is regular in Izl < z and takes no value more than p times, 

M [e, f ]  < A (p)/.,p (z - -  e)-2P 

~ = max  {~, I f (o)[ ,  [ f ' (o ) [ ,  . . .  If(P)(o)l}. 

The extension is 

Theorem III .  Let  r~ be ,a sequence of real numbers such that 

r 0 ~ O, 

r n ~ r n + l +  o% a s  n - ->cx)  

S = log < 0% 
n = l  r ~  

suppose also that f ( z )  is meromorphic in ]z[ < I  and for each r~ either f ( z )  takes 

some value on the circle I wl = r~ at most 1 9 -  I times or, f ( z )  takes each value on 

the circle I w l =  r~ at most p times. Then we have 

M [0, f ,  (z)] < A (p) {I f ,  (o) [ + rx} e s/p+l ( I  - -  e ) - -2  p. 

This result  is an extension at once of Theorem I above and of Theorem I I I  

(Hayman (3)) f rom which la t ter  it is a deduction,  using Theorem I I  of Chap- 

ter  I I .  

4) In  the  second part  of Chapter  I I  we deal with the  more general  prob- 

lem, when p(e)  is unbounded.  The results in this case are based on Chapter  I. 

W e  consider  in all four  problems. 

(i) What  can we say when E contains the whole plane? 

(ii) How small a set E is sufficient to have the same effect as the whole plane 

on the order of magnitude of  log M [ e , f ,  (e)]? 

(iii) What  can we say i f  .E contains some arbitrarily large values? 

(iv) What  can we say i f  E contains only o, I, oo or is bounded? 

Let  

so tha t  

1 + 2 0  
2 + 0  

� 8 9  < z - - e ,  < ~ - ( z - - e ) ,  o - < e <  ~. 

Then we prove in Theorem V I I  tha t  (iv) implies 
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Qr 

(4,/ log +p(r)ld,-. 
O 

Also we prove in Theorem V tha t  (i) gives 

Q* 
+ p(r) dr ] i.l ll = o l . /  _ 7----7. f" 

0 

Now if 

(4.3) P (e) = (I  - -  e) - a ,  o ~< a < c~, 

then (4.I), (4.2) both give 

(4-4) log M [e, ,f* (a)] = 0 ([ - -  e) -a 

when a >  ], while (4.2) also implies (4.4) if o < a G  I. I t  is shown by some 

simple examples in paragraph 2I of Chapter  II ,  tha t  (4.4) gives the r ight  order 

of magni tude  for  log M[~,  f ]  when P(e) is given by (4.3) and a >  ,, and tha t  

(4.2) is still best  possible if o--< a < I in (4.3). The inequali ty (4.I) is also best  

possible when p(~) is given by (4.3), o < a < r 

Theorem VI I  shows that  a set E consist ing of a sequence w~ sat isfying 

I w~+----21 < c' wn (4.5) ~ <1 
and w, -~  oo, is always sufficient to result  in (4.2). Theorem I X  shows tha t  if 

p(Q) grows as rapidly as in (4.3) with a > o  we can replace (4-5) by the weaker  

condit ion 
[~ .+ ,1<[~ .1  c. 

Converse examples, which show tha t  these results are all more or less best  pos- 

sible when p(~) is given by (4.3) are left  to Chapter  i I I  in all but  the sim- 

plest eases. 

Last ly  in the ease of problem (iii) above, we show in Theorem g l  Chap- 

ter  I I ,  tha t  if 
1 

0 
we have always 

lira (I - -  ~) 10g l ] f [~ ,  f ,  (z)l = O, 
G--->I 



The Maximum Modulus and Valency of Functions Meromorphic in the Unit Circle. 95 

a result Which cannot be improved, as was shown in t tayman (2), even when 

p(q)--= o. We prove further in Theorem X, Chapter I I  the more sophisticated 

inequalities 
l + a  

lira (I - -  ~)~-~ l o g  ~ [ ~ ,  f ( ~ ) ]  = o ,  o --< ~ < ~  ; 

l i m ( I - - e )  l ~  a =  I; 
I e -~t log log - -  

which hold when P(0) is given by (4.3) with o--< a < I. These are extensions of 

results proved when a = o in Hayman (2). They are shown to be best possible 

in Theorems I I  and I I I  of Chapter I I I .  

5) In Chapter I I I  we provide converse examples to the results of Chap- 

ter II ,  when P(e) is given by (4-3). While it is easy to provide these examples 

in the case of problems (i) and (iv) above, the counterexamples to problems (ii) 

and (iii) present considerable difficulties x and need a good deal of preliminary 

general mapping Theory. 

Throughout the whole essay the ideas~of R. Nevanlinna have been funda- 

mental. I have tried to indicate the most important places in the text. 

An index of literature is given at the back. 

I should like to express my gratitude to Miss M. L. Car~wright for sug- 

gesting the problem to me. 

C H A P T E R  I. 

E x t e n s i o n s  of  Schottky's T h e o r e m  

Notation. 

I) If  z = x + i y  is any complex number we shall write 

x=~tz, y=~z, 

z = x - i v ,  Iz l  = V ~ v 2 ) .  

Throughout this chapter we shall be dealing with functions f ( z ) m e r o m o r p h i c  in 

I~l < , .  W e  suppose for the time being that f ( z )  is meromorphic also for [z[= I .  

We denote by 

( I . I )  a~t : l a # i e i a ~  e, # = I t o  ~9~ 

1 P a r t i c u l a r l y  w h e n  a ~ i in  (4-3). T h i s  case  is,  h o wev e r ,  i n  m a n y  w a y s  cr i t ical ,  a n d  i t s  

o m i s s i o n  w o u l d  be  a s e r i o u s  gap .  
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of Oe(z) in lz] --< �89 arranged in order of increasing moduli and with the zeros 

correct multiplicity, and by 

(1.2) a~, / ~ = m + I  t o m  

the zeros of f ( z ) i n  �89 < Izl < 1. We write similarly 

(1.3) b u=ib~ieif l~,  / , =  I to n and n +  I to 2Y 

for the poles of f ( z ) i n  Iz[ < �89  and in � 8 9  [ z [ < I  respectively, and 

( I . 4 )  C/~ = Ic~<le'7,,, ~ = i tO /r and k + 1 to K, 

for the points in [z[--< �89 �89 < [z[ < 1 respectively such that  f(c~,) = 1. To these 

we shall refer as the ones of f(z). 
I t  will be useful occasionally to consider all the zeros, poles and ones to- 

gether and we accordingly write 

(1.5) d~=ld~[e~g~, # = 1  t o l ~ - m + n + k ,  1+ I t o L = M + N + K  

for all the points in I*l-< �89 �89 < 1*1 < I respectively, such that f(dr = o, I, oo. 
We also write 

(I.6) g(z,a) a - - z  I~1 I~1<~ I ~ 1 < I .  
I - - S z  a ' 

I t  will be necessary in the course of the work to use largely three integrals 

involving f(z). We define first z 
2~ 

(i.z) -, I;,, f(~)] = - , [ , , / ]  : ~ f l o g + l f ( , ' e " ~  o < , . - <  1. 
o 

Here log+x denotes as usual the larger of zero and log x. We shall need also 

2~ 

' / l o g  + I f ( , - e < o ) l ( ~ -  c o s  O)dO, o < r <  i ,  ~o [", f (*) ]  -- 
0 

( i  .8) 

and 

(i .9) m l  [,', f ( z ) ]  = m a x  m [m f ] ,  o < r <-- 1. 

The expressions max, rain, outside a bracket containing certain quantities 

denote the greatest or least respectively of these quantities, or if these do not 

exist, the upper and lower bounds. We denote by A any absolute constant not 

necessarily the same in different places and by A (p) etc. constants depending on p. 

1 C. F.  NEVANLINNA(1)  p. 6, f o r m u l a  3. 
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2) Using the nota t ion  of (I.I) to (~.6) the result  which will be the basis of 

this chapter, and whose proof will occupy most of it may now be s ta ted as 

follows. 

Theorem I. Let f(z) be meromorpMc in Izl <-- I and let 

H g (z, b~) 

(2. I) g (z) = 2n--mf(z) ~'=' 

]1 g(z, at, ) 

Then we have 

g'(O) 2 ] l og  ,g(o)[[ + A [ + [ log 'Y T ] (2.2) {)~ ~7~-~ < I -~- log Ig(O) I[ q- ~-, II dtt[2(I--[d/,[) 
g \ u )  

where the ~r in the ~..~ i~ - -  or + ac~o,'di.g .~ I g(o)l > ~  or I g (o )1< I, ~e- 

spectively. 

The interest  o[ Theorem I lies in the fact  tha t  it  is applicable to any mero- 

morphic function.  By mapping the uni t  circle onto itself, so tha t  an arbi t rary 

point  goes into the origin, we can obtain various extension of Schottky's  

Theorem 

The bound obtained in (2.2) appears to be fairly sharp at least in its de- 

pendence on the d , ,  as the formula  (3.4) below suggests. I f  we are given only 

the number  L of the d~ and noth ing  about  their  position we can eliminate the 

term log ~ ]1o2" I g(~ as will be shown in Theorem I I I  below. This result  is, 

however, less useful than  Theorem I. The condition tha t  f(z) is meromorphic 

on [z[ = I can clearly be relaxed, provided tha t  Z [ '  T d,  12(I--]d,I)  converges. 

The proof of Theorem I is ra ther  long. I t  depends in the main on applica- 

tions of the Poisson-Jensen formula  and some other analogous formulae and owes 

most to the ideas of Nevan l inna)  

F u n d a m e n t a l  Ident i t i e s .  

3) In  this section we put  together  four  fundamenta l  identities,  which we 

shall have occasion to use frequently at  a later stage. We  have firstly if, 

[zI<R-< i, 

1 See NEVANLINNA (1), partic,llarly Chapter IV. 
9- 642128 Acta mat/wmat/ca. 86 
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(3.I) log /(z) = -!-I log If(l~d~ Re~ o z dO-- ~ log g -~, 
2 ~  - - Z  

0 

+ X l o g  g -~,  +iC.  

This is the  generalized Poisson-Jensen formula.  For  a proof see e g. Ne- 

vanlinna(1),  Ch. I, p. 4. Pu t t ing  z = o  in (3.1) and taking real parts  we ob- 

tain Jensen 's  formula  

2rg 

I " § R 
(3.2) log I f ( o ) ]  = --2:~d ~ log I/(R do) l d 0 - -  X log, ~ + ~ log + �9 

0 

Secondly by differentiat ing (3.1) w. r. t. z and then put t ing  z = o, we have 

2 ~  

- f v 1~ - I~ .  1 ~ R~ - 1~,, I ~ f'f(o)(~ zRI log [ f ( R e ~ ~  + ~, tt2b ~ 
0 

where the sums are taken th roughout  over the zeros and poles of f(z) which lie 

in [z[<R. Taking real par ts  and mul t ip lying by i~ we have 

(:~.3) 

2 ~  

' 1 /~2 _ l a .  I ~ 

0 

Combining (3.2) and (3.3) we deduce 

( I - -  cos 0) d 0 

O 

- Y ~ t  )3 i5; i  c ~ 1 7 6  2 ~ l t ) , l  e ~ 1 7 6  " 

All the above formulae  require the assumption f ( o ) #  o or c ~  We shall assume 

in fu ture  tha t  f (o )  ~ o, I, oo and tha t  f ' ( o )  ~ o, whenever  it becomes necessary 

to insure the  finitude of ~he terms of our relations. 

I t  is now possible to outline the proof  of Theorem I. W e  apply the for- 

mula (3.4) to the funct ion g(z). We thus obtain a bound of the r ight  type for 

the lef t  hand side of (2.2), provided tha t  /~ is nearly I, while yet  
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log I --  COS 0) d 9 
0 

iS not too large. Since the integral is bounded by  0[n, ~] it is necessary 

we proceed 

to do, using methods similar to those employed by Nevanlinna 1 in proving his sec- 

ond fundamental  Theorem in the Theory of Meromorphic Functions, together with 

certain smoothing out processes, which become necessary if the d, dus ter  too 

much near the origin. 

4) In  the next two paragraphs we prove lemma I, which plays much the 

same role in a later stage of our proof as Jensen's formula (3.2)in the ordinary 

Nevanlinna Theory. 

Lemma 1. We have with the notation of paragraph I, i f  R < I, 

'm 0 R, --< 13 rnl [R, f ]  + 13 ~.a tog //7i, } ~ - -  l q  + 7 tog If(o) } 

I t  is significant that  this bound does not depend on the zeros of f(z) and on 

the poles only in the manner indicated. 

Making use of (3.2) and (3.3) we have 

2r~ 2,~ 

' f  'f )L (4, I) ~ log[f( l~eie)l(I--cosO)dO---  iog f R d  ~ (1 - -2eosO)  dO 
7~ 

0 0 

M a/z 

where @(z)= @(Od ~ is given by 

(4.2) {q~(z) 2 l o g I  I - -0~ ,, I = cos 0 < �9 
q q 2 - Q < ~ '  

(4.3) / •(z) 2 log  2 - - 3 e c o s 9  o ~ q < � 8 9  

(4.4) t r (g) 0 ' e ~ I .  

To prove lemma I we need the following elementary inequalities whose proof 

we defer to the next paragraph. 

1 N E V A N L I N N ' A ( 1 ) ,  Chapter  IV, par t icular ly  p. 57--67. 
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Lemma 2. W e  have 

(i) I+ (~)1 < 6 log 2T~I' I z ! ~ 3 !. 

( i i )  4 ( I - - [ z D a < ~ ( z ) < 3 1 ~  [ 3  z 

R 

(iii) R (  ~ ) s  f ( R )  + " R (  -~- I-- < I - -  log r d r < - -  
e 2 

(iv) log < I log o < < I R. 
2 2 

, -~12 ,  o < l z l < I .  

Assuming the truth of lemma 2 for the time being we deduce from (4. I) and 
(I.7), (I'8) 

2 ~  

0 
27 

+ z - -  og R d  ~ ( z c o s O - - x ) d O + ~ , 4  
2~ ~ = i  = 

0 

and hence 

since 

6m , + 4 m [ R , f ]  

- - i _ ~ i - - 2  c o s 0 ~ 3 ,  o ~ l - - e o s 0 - ~ 2 .  

Also (3.2) gives 

�9 =1 = ] t ~ ]  
--6 ~ log + R I 

and using lemma z (i) we deduce 

[ I  f ]  N /~ I --<6m R, + 6 ~  log + + 6 l o g  �9 

~ext we have from (3.2), if �89 ~< r--< R 

~ l~ (4.7) e [~R 
r b" + ?, I 

~,~[--<~=1 ~ log ~ [  + m[r , f ]  + loglf(o)[ 
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Multiplying both sides of(4.7) by ( I - - ~ )  and integrating w. r. K r w e h a v e  

R R 

f ( ~ )  ~ ,=~~f(~) +r (4"8) ~R--<~_ _latu I_</~ I - -  log+ ~ ] d r  <- ~ I - -  log [b~ldr 
�89 �89 

R R I 
+ ~ ~1 JR, f ]  + -~ log <~7=~. /2t~)l 

We have from (4.5) and (4.6) making use of (I.9) , 

(4.9) ~o R, <-reml[R,f]+61oglf(o)l 

Also from lemma 2 (ii), (iii) and (4.8) we have 

R 

,R~I~,I~R ~ x - -  log + ~ d r  
�89 

---< ~ -~ , - -  log + ~ldr+ml[R, /]  + log if(o) I 
�89 

--< 4 I - -  log § ~ + m~ [R, f l  + log i ~ 0 ]  I 

Combining this with (4.9) we obtain 

.~o[a, )] <-~3 m,[R, I 
f ]  + 7 log If(o)l 

+ ,=xX + 6 1 o g + ~ - - ~ , [ + 4  ' - -  

Using lemma 2, (i), (ii) and (iv), we have finally 

[ ' mo B, I <-I3mx[R'f]+71~ +I3 ~" -R 

which proves lemma I. 



102 W . K .  Hayman. 

and  

Since also 

5) I t  remains  to establish the  inequali t ies of l emmn 2. 

- - = 2 1 o g 2 + i ,  Iz[-< ~, 
3 

i 3 1 
6 l~  2 ~ - - >  6 l~  I~1-< -3 

3 6 2.8 
6 log 3 _ 2 log 2 --  i = log ~ - -  I > log - -  > o, 

2 e 

l emm~ 2 (i) follows. 

To prove (ii) we note  tha t  

(5.I) 1 95 (e ~'~ 95 (e), 

Also 95(1)= o and 

: 

\ e I 

On in t eg ra t ing  we obta in  

o < Q < i .  

I 
- < 4 ( ~ - e )  2, ~ - < e < 1 .  

We have 

(5.2) r < o, �89 

(5.3) 95(e)> -~ ( i  _e)3, �89 <Q< i, 

and since the left hand side of (5.3) decreases for o ~ D --~ �89 while the righ~ hand 

side increases, (5.3) holds for o--~ ~<  I. Combining this with (5.1) we deduce 

the first inequality of lemma 2 (ii). To prove the second inequality, note that 

f rom (4.2), (5.2) and  (5.3) we have 

95(z)= [21o~ ~e](i-cosO) + 95(~)eosO, ~- <-Q <- 

< [ 2 1 o g ~ I ] ( I - - e o s 0 ) +  ~4(I--~)3, 

[ ] I-<~ <I. (5.4) 95(z)<2 I - - e o s 0 + ~ ( I - - ~ )  2 l o g ~ ,  2 

Also 

(5'5) [I--QeiO[ 2= I--2QoosO+Q~=(I--Q)2 + 2Q(I--eosO). 

Combin ing  (5.4) and (5.5), the  second inequal i ty  of l emma 2 ( i i ) fo l lows when 

i < Q  ~ I .  W h e n  ~ < � 8 9  we  no te  tha t  
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qa(oei~ = 21og 2 - -  3 O cos O < 21og 2 - -  4O cos O + �89 

< 2 - -4Q  cos O< 2[I -- oe;~ ' ,  

�9 I 
by (5.5). We deduce, since 2 < 3 1 o g 2 - - < 3 1 o g - ,  o~<0 -<�89 that  

I ~ e; o < I qa(Off'o) < 3 log ~ [ i __ [2, 0 < 0 _ 2 .  

This completes the proof of lemma 2 (ii). 

To prove (iii) and (iv), we may without loss in generality suppose that  B =  I. 

Suppose first 0--> �89 Then 

1 

f (I --  r) log + 
{t 

1 

r-dr = f ( I  - - r ) l o g  ~-'dr 

e 

1 1 

=-F -:f I ( I - - r l = d , . >  ( i_r )9 .  dr  g( 
2| r 

o, r 

i - 0) 3. 

This proves the first half of (iii) when ~ >--�89 

t 

�89 

1 

- ~ f ( ~ - - r ) d r +  ~(~--e)  2 e -2 
�89 

Hence 

Also when o < o < � 8 9  

= 2 (  ) . . . .  o. I - - ~  4 ~  2 2 
i ~_!<I I 

1 

f ( I  - - r )  log + ~ d r - -  I e g ( i  - 0) 3 

�89 

decreases with ~ for o--< ~--< �89 and is positive when 0 >--�89 and so the expression 

is positive for o < ~  < I, which proves the first inequality of (iii). The second 

inequality of (iii) is obtained by replacing log+~ by log in the integrand, and 

altering the lower limit of integration to 0 both of which can only increase 

the integral, since log + r = o, r < ~ .  
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I t  remains to prove (iv). We note that  

log _~I2x --  (I --X) 210gxI = (2 30--X 2) log I _ _ l o g  2 = (2--X) X log x I - - log  2, 

I = !  x i Since x log - has a maximum at x and increases for < - we have 
x e' e 

and 

I 
(2- -x)  x i o g  I l o g 2 < 2 . - l o g 4 - - 1 o g 2 = o ,  x ~  I ,  

x - -  4 4 

(2 - -x )  x l o g ~ - - l o g 2 < 7  _ I _ l o g 2 < o ,  x ~ - I .  
4 e  4 

~) < I and the proof of that  lemma and Hence lemma 2 (iv) holds for o < - ~ - - 2  

of lemma I is complete. 

6) The next stage of the proof is very closely related to the Nevanlinna 

Theory)  The method by which Nevanlinna obtains a bound for m Jr, f [  de- 

pending only on the d, and on f(o), f ' (o)  will be used. We could deduce im- 

mediately a bound for 

Such a bound would, however, contain a term of the order of Z ( I  --Id, I) whereas 

we need the sharper bound involving ~ ( I  --Idol) [ I --  ds 12 which is smaller when 

the ds cluster near the positive real axis. This necessitates replacing the simple 

Jensen formula (3.2} by the more complicated lemma I applied to the logarithmic 

f '  (~) derivate ~ of f(z), to obtain the required result. 

Lemma 3. We have with the hypotheses of  lemma x 

(i) ro o R, ~ I7rnl /~, + 4ml R, + I3~_ I log" 1 ~  I - -  

IS<o.)', I + 7 1 o g l ~ l  + 4 1 ~  

[ j }  [ I / j ]  .. . ...+<o,_., (ii) m R, < 2 m  R, + m R, + ~ log + + l o g  
- ~=, I s  I f '  (o)i 

* NEVA~LImeA (t) p. 63---66. 
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Consider 

When If(z){ --< ~ we have 

and so 

(6.1) 

I I 

F(z) = f ~  + f ( z ) ~ .  

I I 

IF(~)l ~ ~ ]f(z)] 

Similarly when I f ( f ) - -  I[--< ~ we have 

I I 
I r'(f) l >-- 

2 I f ( f ) -  ~ I 

and these two sets of points are mutually exclusive. We deduce tha t  

I + I 
(6.2) log + F(z) ~ log + ~ + log I f (z) - -  I ] 2 log 3, 

provided that  either ]f}--<~ o r  [ f - - I . ]  G�89 and (6.2)is trivial otherwise. We 

deduce at once 

We deduce also 

-< mo [R, ~ ]  + ,,o [R, 2 log 3]; 

--< too[R, F]  + 4 log 3. 

(6.4) m R, + m  --<m[/~, F] + 2 l o g 3 .  

We now write 

(6.s) F(f)  f _  

I t  follows that  

[ (6.6) mo[R, FJ---<rn o R , ~ - ~  +~n o B, +too /~,-7 

Also since 

log + ( a + b ) - < l o g * a + l o g  + b + l o g z  
we have 
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~0 
(6.7) 

~ m o [ R , ' ~ . ]  § f f ~ ' i ]  § rno[R , log2] 

~ 4 m: JR, '~.] +4mx[R, jf~'i]+21og2. 

The function f '(z) J ' (z)-  : 

Applying lemma I with 

has simple poles whenever f(z) = : or o0, i.e. at the points 

.f' (z) instead of f(z), we have 
f ( z ) -  : 

(6.8) 
n?O [ -R , '~ ]  --< IJY/1 [1~, ~.~--~t i] -~- 7 lOg I'f-(jO~,)(~) I I 

+ :3 ~ log + I- 

Combining (6.6), (6.7) and (6.8), we deduce 

+ ,3~,~ lo~ ~ '-~I + ~lo~ j (o) + 2  log 2. 

Combining this with (6.3), we deduce lemma 3 (i). 
)r use of (6.4), (6.5) we deduce analogously 

[ ~] [ ~ ]  [~r m R, ~ 2 1 o g 3 + m  R, + m  R,' + m  + log 2 

and hence applying (3.z) with .f' (z) instead of f(z) 
f ( z ) -  

+ ~ log+ + log , 

which is lemma 3 (ii). This completes the proof of lemma 3. 

7, We have obt--d bounds for ~0[~ ;] ~nd for ~ [ ~  ~] in lomma 3 

which depend on the dr and on f(o), f'(o)and on the expressions m R, , 

m [ / ~ , , f f ~ I  ] .  The crux of the investigations is the result due to Borel and 
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Nevanlinna, according to which these latter expressions are in general small with 

respect to the other terms appearing in lemma 3. However, while the third and 

fourth terms on the right hand side of lemma 3 (i) and (ii)depend only on 

the behavior of f ( z )  in I zl  ~ R, in order to prove anything about the first two 

terms, we must assume that  f ( z )  is meromorphic in a larger region. For this 

region Nevanllnna (and his followers) have always chosen a larger concentric 

circle. In fact much weaker assumptions suffice in general to bound the first 

two terms in lemma 3 (i), e.g. the assumption that  f ( z )  is meromorphic in a larger 

touching circle, or more generally in any domain bounded by a finite number 

of analytic curves and containing all but a finite number of the points in 

Izl-<R. 
Some deductions from this will be made elsewhere. 

concentric circle is all that  we need for the present. 

We have first 

Lemma 4. 

have 

The case of the larger 

Suppose that f ( z )  is regular, f ( z )  # o or I i"  ]Z ] < 1~. " Then we 

A If'(o)l < -~lf(o)l [i +]log If(o)ll]. 

I t  is clearly sufficient to suppose B = I. In this case lemma 4 is an im- 

mediate consequence of Theorem V, Hayman(I) .  

We have next 

Lemma 5. Suppose that f ( z )  is meromorphic on [z[ = B, except perhaps for a 

set of points of  measure zero. Le t  do(O) denote the radius o f the largest circle centre 

zo = R e  i~ in which f ( z )  is regular and not equal to o or I. Then we have 

m 

2~ 

JR, 'f(z) J -- [R, f ]  + log + R, I I + I 
0 

where the integral is taken in the Lebesgue sense. 

I t  follows from lemma 4 that  

If ' (Re'O)[ ~ ! l o g I f ( R d ~  
7( e'~ < A t do (o) 

and hence 

+,} 
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log  f'(Re;~ [ 
f (Re,  O) < l~ I - -  + log + Ilog If(Rei~ ] + A] 

I + I 
< l o g  + ~ + l o g  log + l f l +  log + log + ~ + A .  

Integrat ing from 0 = o to 0 = 2 ~ we deduce 

2 f f  2rg 

[r f f I + I I + 
m R, <~-~ log d~(~ dO+-2~ log log+[f(Re'~ 

9 0 

2m 

(7.I) + I ; log+ log+ I 2~a if(RdO)l dO + A. 
0 

Now it follows from the geometric-arithmetric mean theorem that if ~(x) is a 

real positive function of x we have 

b b 

f l l f  } log r  log b--~ r �9 
b - - a  

a a 

Hence writing ~p(x)= max [I, ~(x)] we have 

b b 

f ' f  log + ~,(x)dx= b a logg,(x)dx b - - a  
a a 

b 

a 

5 

a 

b 

a 

+ I .  

On applying this inequality to the second and third integral on the right hand 

side of (7.I) we obtain lemma 5. 

8) Before proceeding further we need a simple lemma which will help us 

to deal with the last term in lemma 5- This is 
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L e m m a  6. Let  o < r < o% let z be any complex number and let Ek be the 

set of all 0 such that [ z - - r d ~  where o < k - -  < I .  Then we have 

f I [ i +i ] log + l z _ r e i o j d O < ~ r k  logic + log r- + I �9 
Ek 

W e  may wi thout  loss in genera l i ty  suppose z real  and positive or zero. 

Then Ek consists of an in terval  [O I < 0  o < - ~ ,  or is void. The last  case is tr ivial .  

In  the first case we have for  0 on .Ek 

IreiO--z] > r sin 0 

and there fore  
sin 0o -< k 

i.e. 

Oo < ~__kk. 
2 

6o 

flog+ I f + I  i z ~ r e ~ o l d O < 2  log ~ d 8  
~. o 

Hence  

--<2 ~ 

0 

~rk 

d O < 2  l~ r [ + l ~  dO 
o 

r ~ + I  , 

which proves the lemma,  

We  can now prove 

Lemma 7. Suppose that f ( z )  is meromorphic in a domain 1)containing almost 

all points of ]z I = R. Let  d(O) be the distance 5"ore z = R e  i~ to the frontier of D, 

let do(O) be the radius of the larqest circle centre z = R e  ~~ in which f ( z )  is regular 

and unequal to o or I and let n(O) be the number of roots of  the equations 

f(z) = o, I, oo at points distant, at least �89 d (0) from the fi'ontier of  D. Then we 

have 
27t  2~r 

0 0 

Let  dl, d~, . . . ,  d~ . . .  be the roots  of f ( z )  = o, I, oo enumera ted  in the order  

of the i r  distance f rom the f ron t ie r  of D. Le t  dl(0) be the distance f rom z = Re  ~~ 
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to the nearest point  d,. Then 

d o (0) = rain (dl (0), d (0)) 
and so 

2~ 2~ 2~ 

�9 f / 
J + I 0 + I + I 

(8. I) l og  ~0(0)(~ g l o g  ~l(~)dO + lOg ~)dO. 
o o o 

Let  E be the set of all 0 for which n ( 0 ) >  o and 

(8.2) dl (0 )<  [n(0)] ~ min R, �9 

Then if 0 lies in E there is a point d, such tha t  v ~ n(0) and 

do (o) = I R e ' : ~  dr I < ~ d (o). 

We thus  deduce f rom (8.2) tha t  if 0 lies in E we have 

R 
dl(O) = I R e ' ~  < -fi 

for some v. Hence it follows from lemma 6 tha t  

f ~ : ~ [  ~, ~ ] [ -~] (8'3) log+ d ~ 0 )  d 0 ~ , : l V  log  + l o g + T +  ! < A I + log  + �9 
E 

Again if O is no t  in E we see from (8.2) tha t  

+ + I + I --~21og n ( O ) + l o g  ~ + log (8'4) log+ d I (0) 

Hence we deduce from (8.3) and (8.4) tha t  

I 
d ~  + log 2. 

27~ 2~ 

f + ~ {f[  +~i] +~ } log d ~ ) d O ~ A  l o g + n ( 0 ) +  log d 0 + l o g  ~ + I  , 
0 o 

and combining this with (8.I)  we have lemma 7. 

9) We now combine lemmas 3, 5, 7 to prove 

Lemma 8. Suppose that 

f ( z )  = po + pl z + . . . , p 0 # o ,  I, c~, pl  # o, 

is  meromorphic i n  [zl  ~ I. Then  we have w i th  the notation o f  p a r a g r a p h  I 
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[,] + R, <A log P;i '--d~l~+~~176 IVol+ 

+ 1 PO-- I I 
log log + ~ + log + + log 

p :  1 - -  R 
- - -  + ~}, � 89  

We use the notat ion of lemma 7 and write 

(9. I) I =  -2-I ; l o g  + I 
2 ~ a d-~O )) dO 

0 

{ [ je] [ I ] I (9.2) B =  max re[R, f], m R, , r e [ R , / - - 1 ] ,  m t l , ~  t 

( 9 - 3 )  c= 5], 

The functions f,  
I I 
~, I - - f ,  and - ~ f I  all have the same points d,. 

. f '  f' J j _ + _ .  
7 '  ~ - f  f 

I I 
put r  ) ,  I - - f  and - in turn we obtain 

I - - f  

4' _ . f '  - - f '  - - f '  f '  
~ -- - - . 7  

q~ f I - - f '  I - - j "  

r .f' - f '  f, 
~- -  l J ' - - I '  I - - J '  if" 

Also if we 

Thus in any case we see that  

and 

f ,  - + m R, j'_-:Z~] + log 2 --< 2 C + log 2 

I { + + I 
log+ ~ (o)q,, (o) - ~  <- log {Po --  ~ [ + log + [Po [ + log [p~ I 

+ I 
2 log  Ipol + Xog 2 + log  + Ip~ I 

I I 
with f ,  ~e, I - - f ,  7 ~  instead of Thus we obtain, on applying lemma 3 (ii) 

f(z) in turn 

(9-4) 
L R 

B--< 5 C +  ,=1 ~ l~ i ~  +2  log + [Po[+ log + I ~ [ + A  . I  
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Applying lemma 5 with f, I - - f  instead of f(z) in turn,  we haev 

(9.5) C_< 2 log + B + I +  A. 

Combining (9'4) and (9-5) we deduce 

(9:6) C<--A [ log + (;~=11og+ ~ ] ) +  log + log + ]Po] + log + log + i 1 

We now use lemma 7, taking for D the domain ]z I < I. This gives 

(9.7) I < A  log + i---~-- ~ + log + n(B') + I + log , 

where n(R')is the number  of the d~ lying in I z l - < B  ' =  �89 + R). 

I L 
log + , ( R ' ) <  log + (x --  R') s ,~ ,  (I - -  I d~[) ~ 

I L 
< 3 l o g  + ~ R  ~ +  ~ ( I - ] & D  3, I ~=1 

Then 

I L I 
(9.8) log + n ( R ' ) - < 3 1 o g - + 3 1 o g 2 +  ~ l I - - d r l  2 log + �9 

I - - R  ,=I 

Similarly 

(9.9) 

( ~ )  I L 12 I log+ ~ l o g +  R < l o g + ( ~ _ _ B ) ~ l l i _ _ d ,  l o g + [ ~ ;  

log+ (: log+ &) __< 2 log , 5 I ~ - -  + ~=lX I I - -  d ,  I ~ log + ~ .  

Combining (9.6) to (9.9) we deduce tha t  

[ ~ 1  2 + I I I c_< A I, --  dr I log ~ + log ~ _ ~  + log 
(9 Io) 

+ log + log + I p0l + log + log + 

where C is defined by (9.3) and A is an absolute constant.  Subst i tu t ing in (9. Io) 

for t t  any number  r such tha t  �89 < r < B we have r > �88 if B > �89 so tha t  we 

have 

�9 l < A =Xlx - - d , [ '  log + + l o g - - x _ R  + l~ l~ Ip01 + log log + + i �9 

Combining this with lemma 3 (i), we have lemma 8. 
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[. Io) We have now found a bound for m0 , , when f(z) is meromorphic 

in ]z] ~ I, which depends on the position of the d, and on R in the r igh t  way, 

at  least when the d, lie near  ]~] = I. The bound has, however, the disadvantage 

of becoming infinite whenever f (o)  = o, I, oo or when y ( o )  = o. 

In  order to el iminate this  difficulty we introduce the funct ion g (z)of Theo- 

rem I which is no t  equal to o or oo in ]z]~--�89 and so shows a more regular  

behaviour than f(z). We shall also employ a t rans format ion  of ]z I ~ R  onto 

itself, which will move the origin to a point  zo, near  which the d, do not  cluster 

too much,  and which is so chosen tha t  f(Zo) is not much greater  than  g(o). We 

shall then  obtain a bound for m 0 [ / / , I [  w h i e h i s  of the required form, nnless 
I_ y J  

f ' ( z )  is small everywhere on the  circle ]z[= ]Zol in which case Theorem I can 
f( , )  
be proved directly. 

We  use the notat ion of (I.I) to (I .6) and write 

# = 1  

(m.2) re(z) = I"I g(z, 1,,) 

(m.3) ~ ( , )  = fig(z, c,) 

(IO.4) 

We  note also t ha t  

(Io.5) 

so tha t  

x < log+ 
(m.6) l~ Ig(*) l -  

In  order to obtain 

mo[R,g(~,a~]. We have 

10-  642128 Ac~a m a t h ~ M v a .  

g (z) = 2n-'nf(z) ~ (z)(z) 

g(z,a)]<~, [zl<~, ]a]<I; 

2 m + I n + I <_ log {/(~)---[ + ~ log + ,,,log2. 
,=1 [g(~, t,)l 

bound for , , ,o [ , ,  .--~.] we must first calculat~ a 
L g(z).] 
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L e m m a  9. I f  a = ~ e ir then 

I I - - R  ~ 
2 log ~ - -  e ~ - - -  cos `b, o < e - < R < I .  ooV ]= 

- - -  cos ,  b , o < R - - < ~ < I .  2 log ~ Q 

This  is immediate  on applying the formula (3.4) and not ing tha t  since (IO.5) 

I I 
l~ I g (z, a) l = log [ g (z, a)[" 

holds we have 

B>�89 

Combining lemma 9 and (IO.6) we have 

L e m m a  10. We have wi th  the above notation 

[ m o R, I < m o  B, + 31, 

In  fact  (IO. 5) and (IO.6) yield 

[ g] [ yt ~ [R'g I i] -b2mlOg2 (Io.7) mo B,~ -<too R, '  +,=lm~ (z,b, 

and we see from lemma 9 tha t  if I b , ] < � 8 9  R > � 8 9  we have 

[ i ] 210g R R2 mo R, ,q (z, b,~-~ -< + i - -  < 2 log 2 + I < 3, 

so tha t  

(io.8) mo B ,  g = 

Hence,  combining (Io.y) and (IO.8) we have lemma IO. 

1 I) W e  next  prove a lemma which will help us to find a point  near  which 

there are not  too many of the d,. This is 

L e m m a  11. Let  d 1 . . . .  d~ be 1 complex numbers such that I d o l < I ,  v =  I t o l .  

Then there exists ~, ~ ~ ~ ~ ~ such that 

1 
I l l  > = 
t ~,=1 I 

Suppose ]a I = r ,  I z l : ~ .  Then 
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] r - - ~ ]  3 I 
# ( Q , r ) =  rain l g ( z , a ) [ =  -~-~-~, >--- 4 l r - -0  [, 0 ~ - .  

Izl=e, lal=r 4 
Hence 

�88 t 

(~.~) l o g ~ ( ~ , , . ) d ~ > ~ l o g 4 +  log - -  

Hence if 

we have 

~ - - A .  

l 

# [~, HI = rain 1 ]  I g (z, d,) I 
{zl=:e "~=1 

f , lf log # [Q, I I ] d ~  log #(e, I d , [ ) d ~ >  - - A l  

by (II.1). I t  follows that  there exists ~, ~ ~ ,  such that 

log #[e, HI > -- 8A 1  ~- - -  A1, 

and lemma I I follows. 

To continue with the proof we shall have to distinguish two possibilities. 

The first is essentially that  f (z) is small everywhere on the circle [z I = e which 

is constructed in lemma I I. In  this case we can give a direct proof of the truth 

of Theorem I. This is the aim of lemma I2. If  the hypotheses of the lemma 

are not satisfied we can proceed with the main course of the argument, obtain 

a b o u n d  for mo[R, (~z)  ] and hence prove Theorem I. 

12) ]Partial Proof  of  Theorem L 

We have 

Lemma 12. Let Q, ~ ~ Q <~ } be such that 

l 

l ]  Igk, d,)l > A-' ,  I~1 =~. 

Suppose also that ]g(o) l ~ , and that at each point of  I zl = e 

( i 2 . I )  f '  (z) < 2. 
f ( z )  -- 

Then we have 

g' (~ + 1). 
(o) 

A 
g (o) - 

Thus Theorem I holds under the hypotheses of  lemrna I2. 
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Suppose tha t  (12.i) holds when z =  e i~ for  0 , - - < 0 < 0  2. Then we have 

0~ 

dO 
I 

Oi 

_< 2 e (o, - e~) _< �89 (e~ - o,~ < =, 

since ~ --< ~. We  deduce tha t  if o --< O, _< 82 --< 2 z~ and (I 2. I ) holds whenever  ]z I = Q, 

then we have 

(I2.21 ] log  ] f (qe  '~ - -  log ] f (e  e;~ < a, o < 0, < 0, _< 2 ~. 

Now g(z) is regular  nonzero in ]z] < ~ ,  and so its maximum modulus  increases 

and its min imum modulus  decreases in Iz[ < t .  I t  follows tha t  there  is a poin~ 

z I = ~e te, such tha t  

( I 2 . 3 )  I g ( z l ) l  = I g ( o )  l- 

Next  we see f rom (IO.4) and the hypothes is  of lemma I2 tha t  

(I2.4) A-t l f ( z ) [<--]g(z )]<--AZ] f (z )] ,  ] z ] = e .  

Hence if z s = eei~ is any point on lz] = P, it follows Crom (12.2) tO (I2.4) that 

(12.5) flog I g (.2)I- log Ig (o)ll < a t + =. 

We deduce from (12.5) that logg(z) which is regular in Izl ~ satisfies there 

9t log g (z) > log ]g (o)] - -  A (i + 1). 

Hence  log g(z) is subord ina te  to 

(z) = l o g  g (o) + A (i + Z) e 2 z - - g  

in ]z] < ~  so tha t  

02.6) log.q(,) =o= g-~0~l-<lm'(o)l= e - 

which proves the inequality of lemma 12. Also if ]d,]  ~< �89 we have 

( i --[d,I)  I i - d , l ' - > ~  
so that 

I L 

~-< 8Z(~ - I d ,  I)I ~--d,l ' -< 8Z(~ - I  d,I) 11 -- d, I'. 
�9 =1 'P=l 

Thus (I2.6) implies Theorem I and the proof  of lemma I2 is complete. 

I3) W e  consider  now the case where J '  (z) is no t  small  on the  whole circle 

]z I =  p. We  have in this ease. 
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Lemma 13, 
pose that 

(i) 

(ii) 

(i~i) 

(iv) 

Then there 
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Suppose that ~ is the ~umber constructed in lemma 11 and sup- 

max / ' (g ) [  > 2. 
i..l=e f ( z )  -- 

exists a point Zo with the following properties. 

t---  lgol-<t 
! 

I I  Ig(go, d . ) l >  a - ,  

I log I f(,o) I - log I g (o) 11 < .4 (~ + 1) 

if  (~o)[ > 2. 
f(go) - 

Since g ( z )  is regular nonzero in Izl <�89 
such that 

(~3.~) Ig(~,)l - Ig(o)I. 

there exists a point zl = 0e ~'~ 

Let 8 o be the smallest number not less than O, and such that for go 

(I3.2) 
By hypothesis Oo exists. 

(13.3) 

and hence 

0 3 4 )  

Also 

f (o  ei~ [ 

f (~D 
f(g0) I 

< 2 ,  0 1 < 0 < 0 o < 0 1  + 2 st, 

[log[f(go) [ - - log  [f(za)[[ --<z~. 

Again as (I2.4) still holds we have 

] log  If(g,)  ] - log I g (g,) I ] = ] log  If(g,)]  - log ] g (o) 1] <- A 1, 

and combining this with (13.1) and (13.4) we deduce 

03.5) [ logi f (Zo) l - - log[  g(o)[[ <-- A(I  + l). 

Then (I3.2) and (13.5) show that  z0 satisfies the conditions (iii) and ( iv)of  

lemma I3. Also (i) and (ii) are satisfied, by lemma II.  Thus the proof of lemma 

x3 is complete. 
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We shall consider now the transformation 

~ '  [(~ - Zo) ~ + Zo (/~ - ~o)] R > �89 
( 1 3 . 6 )  w = ~(z) : So ( R  - ~o) ~ + n ' ( R  - So) ' 

which sends ]z]--<R onto ] w [ < R  and z = o  o n t o w = z o .  

We consider instead of f ( z )  the function 

~p (z) = f I1 (z)], 

and deduce from lemma 8 applied to ~ (z) instead of f ( z )  and from 1emma 13 

that rno [R ,~  [ has an upper bound of the required form. From this follows a 

bound for m o ,~- and the proof of Theorem I. 

I4) In  this paragraph we investigate the function l(z) of (I3.6). We have 

T.emma 14. The transformation w = l(z) o f  (I3.6) is the unique bilinear trans. 

formation of [z [ < I~ onto ] w ] <~ R, such that l(o) = z o and l(B) = R. The inverse 

transformation is given by 

(14.I) z : ~(w)= R '  ( w -  zo_)) R -  2 0 
R ~ - - & w  R - - z  o 

Let  R o= R + ~ ( 1 - R ) .  Then we have 

(I4.2) ~ < [ I ' ( z ) [ < 6 ,  IZ[ ~ R  o. 

A l ,  o i f  Iz, l-< do, i = i ,~ and l(zt) = w i w e  have 

(14.3) ~12'1--2'~[ __< [Wx--W,[~ 6 [ g l - - Z ~ l .  

The statements of lemma I4 up to (I4,1) are evident by inspection. Con- 

sider now 

I l' (z)[ = R '  (2~ ~ - - ]*o  I ~) 

R --  20 z 
Since [zo[ <�88 R > �89 we have 

(I4.4) R~" ~ R~ /~4 

Also if [z[--<R o 

(I4.4) g ives  

~ I z ' (~ ) l  ~ I*1 < 1. [ R ' + + I , [ I :  

= R + �89 - - R ) <  1, then  R 2 + ~[z[  < 2 ~  2 s ince /~ > �89 so that 
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(I4.5) [l' (z) l > t I~' 3 > I 
4 j~4 I 6  6"  

Again if [z[ ~< Bo = ~ + ~R  we have 

- < 

119 

since R ~ �89 i.e. 

(,4.6) it' (~)[ -< < 6. 

Combining (I4.5) and (I4.6) we have (I4.2). 

i f  z l ,  z~ lie in ]zl~< Bo, so does the line segment  ~oining zl, z~ and so we 

have from (I4.2) 
z~ 

I . , : - w ~  l=  I z (z . ) -  t (~,) I -< f Iz'(~)l [ dzl -< 6 I ~ - ~ 1 1  
zl 

where the integral  is taken along the s t ra ight  line joining zl, z~. This proves 

the second inequali ty of ('4.3). 

Conversely l ( z )  maps the circle [z[ ~< R o onto another  circle, C say, and 

wl, w~ lie in C. Hence so does the segment  jo ining wa, w~ and in tegra t ing  along 

this segment  we have 
W~ 

[ Z , - -  ~'~[ = [ )~ (14)1) - -  ). (W2) [ ~< flz'(~)l Idwl-< 6[Wl--W~[ 
2ol 

since 

when w lies in C. This completes the proof of (I4.3) ~nd so of lemma I4. 

I5) Consider now 

(~ 5.~) ~ (~) ~ f i x  (z)]. 

I t  follows f rom lemma '4  tha t  [ l ( z ) [ ~  < R for [ z l ~  < R. Suppose next  t ha t  

z = r d S , R  ~-- r ~ R o = ~ +  ~ R .  
Then by (I4.3) 

I~(," r - l (R  ~'o)1 <- 6 ( r - -  R) 
so tha t  

i.e. 
I z(, ~'~)1 ~ R + 6 ( , , - R ) _ <  R + 6 ( R o - ~ )  = R + t(~ - R )  
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(~5.2) I Z (re ' )  I < R,  

where 
A~ 1 = I - - ~ ( I - - R ) <  I .  

Thus ~p (z) is meromorphic for )z ] g R o. Consider next m o R, ~-~j . By applying 

R 
lemma 8 with %- instead of R and tp (Ro z) instead of f(z) we see that  

*to 

(15.3) 
mo R I m o , --<A Z , + l o g  log Rol~,(o) l 

+ log + log+ ]~p (o)[ + log + ] ~ (o ) - - I  [ B o 
/to ~0' (o) + log Bo---------B + 

where 

Ro I 

i} 

and the sum is taken over all points d~ in ]z] ~/~o,  such that  gl(d',) = o, I, or c~. 

We consider the terms on the right hand side of (I 5.3) in turn. We have first. 

Lemma 15. Let Za, be as defined in (15.4). Then we have 

L 

~,  <A21I - -  a ,  I'( ,  - -  I a ,  I), 

Suppose that  ~0(d')= o, i or oo. Then it follows from (I5.I) that l(d')~ d,, 
where f (d , )= o, I or oo. In this case we write d ' =  d~ and thus obtain an or- 

dering of the points d~. 

Suppose first that  v ~ l  so that  I d - ] ~ � 8 9  Then 

I~(d:) - -  ~(o) 1 <- 61 d~l 

by (I4.3) and SO, since l (o )=  z0, we have 

and hence 

(I5.5) I - - R 0  log d, < A l o g  d~ 

Also 

[g(zo, d,.)l = I z~ I ~--~0d,  < Aizo--d '] '  Jd,]<1, 

so that  (I5.5) gives 
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if v--<l, Thus 

- -  d~] ~ A 

(i 5.6) 
*,=1 - -  /~0 ~ d,) 

[ = A |og 1 Iz~ (Zo) n~ (Zo) n~ (zo) l + l ]  

where ~he //~(z) are as defined in (to, I) to (1o.3). Combining (I5.6) mad lemma 
13 (ii); we see ~ha~ 

(xS.7) ,=,~ x - - g  ~ log id*,l<Al<A2(x--[d,[)l~--d,I ' . * , = ,  

Suppose next that �89 ~<ld, l~  R: Then (I4.3) yields 

so that  

05.8) 

I I [d;l~ ~l& Z o [ - - - -  
24 

I/LI 
log§ ~ < A ( R o - - ] d : l ) =  A [(n o - R ) +  R - - [ d : [ ]  

< A [i - - R  + / ~ - - I d ; I ] .  
Again if d,--re i~ (I4.3) yields 

[ Z (d,)--Z (~ e'~ I --< 61a*, -- n e ~  = 6(n  - - la ,  1). 

Again since Z(d*,)= d ' ,  Iz(/~*0)l = R we have 

(n - l a :L ) -<  6(R-Idol )  
so that (I5.8)gives 

(15.9) log+l~]<A[I---]z~-l-l~--ld*,[]=Atl--ld*,]], �89 R. 

Suppose next R --< 1<1 ~ Ro. Then I --[d*,[ > t ( I  - -R)  by (IS.2) so that  

(,5,,o) 1og l e [ -<  log "~ -~<A(Bo--R)=A(I--tl)<A(t [d,[) 

and combining (i5.9) , (~5.Io) we have 

(I5.1 I) log+ l < a  ( ~ -  Id, I), 
Id, l - -  v>l. 
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Consider lastly I 

e; I 
I - -  B o l  

W. K. Hayman. 

d', I ~, I--~o v>l .  We have 

< A IRo-- d; I < A [IRo-- R 1 + I R -  d;I] 

< A [I Po-- RI + II (R)--/(d',)l], 

making use of (I4.3). 

{I5.I2) I - ~ (  ~ 

Also (15.2) yields 

Thus (I5.I2) gives 

(15.13) '--R-oo <-~1 ~--a,, l t  

Combixiing (15.11)and (.5.I3) we obtain 

Since 1 (R) = R, 1 (d',) = d,, we deduce 

< A (_no-- n)  + I R - - d : l  < A  [1 - -_~  + I i - -  d : l ] .  

I I - -d , l>  I--R, = t(~--R). 

I d',l -< Bo. 

(I S.I4) ~ I - -  log + < A : ~ ( r - - [ d , [ } l r - - d , I  ~ . 

Now lemma 15 follows from (I5.7) and (15.]4)- 

I6) The other terms on the right hand side of (15.3)are easier tO deal 

with. We have 

(o) = f (~o) 

~ '  (o) = f '  {~0) ~' (o). 
Also by (14.2) 

.4 < I~' (o)1 < _4'. 
Hence we have 

tf-~o) + 1~ fT2o) + A 

+ I ' 1  <log tog+ ~ + A(~+l) 

making use of lemma (iii) and (iv). Thus 

I 1 I'l  {I6.I) l~176 Ro~'{o} < l~176  g ~  + A( ,+ l ) .  
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l~ext 

(I6.2) 
log + log+l V, (o) 1 = log + log + I f (*0)  I < log + [tog+ I g (o) 1 + A (I  + z)] 

< log+ log + I g (o) 1 + ~ + A 

making use of lemma 13 (iii). Again 

f( o)-I log+/( o)-i .r?o) I 
l~ ~ 0 ) ~ - ! [  = l~ (o) lf(zo) ~ f (<0)i .o+<o, .,. !< I + A 

I ~ I l~176 <l~ ~ + I ~ ]  + A. 

We deduce that  

(i6.3) •o ~'  (o)[ ~ + A (i + l)+ A 

making use of lemma 13 (iii) and (iv). Lastly we have 

Ro I log J I (I6.4) log Ro- R < l o g / ~ o -  R -- R < log 7 - - ~  + A. 

Mak ing  use of the inequalities (I6.I) to (I6.4) and lemma I5 for the terms on 

the r ight  hand side of (I5.3) we have finally 

Lemma 16. I f  [ g (o) [ >-- I an(~ ~ (Z) i8 deft,ted by (I 5. I) then 

[ i ]  { , } 
,no R, ~ ( 7  < A ,=1 ~ I,  - - d ~ l = ( ' - - I d ,  I) + log + log Ig(o)l  + log ~ - ~ R  + i  �9 

P r o o f  o f  T h e o r e m  I. 

obtained lemma I6 it remains to deduce a bound for rno JR, a~z~ 1 17) Having 

and to apply (3.4). We may assume without loss in generality that  Ig(o) l ~ I. 

I 
For if Ig(o) l ~  I, we apply our result to f(-~-~z) instead of f(z). This changes 

the points d~ to --d~ and g(z) becomes I g (--z)" Also 

g' (z) = i d i 

Thus when we have proved Theorem I for [g (o) I --> I the result for l g(~ -< I 
follows. 
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Fur the r  we have proved Theorem I if  t he  hypotheses  of lemma I5 hold  and 

[g(o)[ ~ :, so t h a t  we may assume fu r t h e r  t h a t  these hypotheses  are not  satisfied 

so t ha t  f ( z )  satisfies the coudit ions of l emma I3. 

Suppose now tha t  in (I3.6) 

w = B e ~r = 1 ( R  e~~ 
Then  (:4.2) gives 

( IT . I )  ~ - - 

Since 0 = o corresponds  to r = o we deduce 

Now 

(x7.3) 

2~ 

m o [ / ~ ' ~ ]  = ~ f l~162  
o 

Also (I7. I) and (I7.2) give 

cos O) d 0 

2~ 

= ~ log f ( t~e ,4~  ) 
0 

I - -  COS ~ <  A (I - - c o s  0), 

so t ha t  f rom (I7.3) 
Idsul < A l d a l ,  

2~ 

- -  cos ~) d 

2~ 

0 

(I7.4) 

Again f rom lemma IO 

/ t  I _-  oo[ 

~o , <~0 ,? +3l< . , . o  R, + ~ ( , - f d . l ) f ,  d.l', 
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and combining this with (I7.4) and lemma I6 we have 

[~ I] [ I L ] 
(I7-5) mo ,g < A  I + l ~  +l~176176 

We have from (4.2) and lemma 2 (ii) if z = q  e i~ 

2 log x ] -- ~ [ - - -  cos 0 

Writing ~ for ~ in this we obtain 

I < I .  

(17.6) 21ogR R~--O ~ [ [ z [  * [R[ 0 ~R cos0 ~ A  ] ~ log , � 8 9  

We now apply (3.4) with g(z) instead of f(z) and obtain, making use of (x7.6), 

(I7.7) 

]r 21og[g(o) l < . , o  R, + A  ~ i - -  log" 
g (o) .=~§ 

+ A ,v b, I ~ 

since the 

� 89  

zeros and poles of g (z) are the zeros and poles of f(z) which lie in 

T h u s  we have 

+ 

< A (R--[a,  I)< A (~ - [ a , [ )  

< A I R - -  a.I < A [(I - R )  + I I  - a,. I] < A I ~  - - a . I  

since [a~,[_.< R, and so 

gt~ <A(I --[alL[) [I --a~['. 

Combining this with (I7.5) and (17.7) we obtain 

or 

t I 
2 log I g (o) 1 < A ~ + log ~ + log + log lg (o) 1 
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(I7.8) g (o) /~ lo~ g (o) < A ~ + log F - R  + log log I g (o) 1 

Now 

We choose 

(I7.9) 

so that  

+ ~ [ I --d*l" (l - - I d ' l ) ]  " ,=1 

2 2 ( i - - B )  

[ i i] R = m a x  �89 log{g(o) 

(I ~)  10~ I g (O) I ~ I. 

Then (I7.8) and (I7.9) give 

~.q'/o) [ 
g (o) < 2 log I g (o) l + A ~ + log + log I Y (o) l 

which proves Theorem I. 

Applications of Theorem I. 

i8) Having proved the fundamental Theorem I we shall devote the rest of 

the chapter to some applications of this result. These follow relatively easily. 

Our aim is to obtain upper bounds for the maximum modulus of a function 

f(z), regular or more generally meromorphic in I z l <  I, given the roots of the 

equations f (z) = o, i, c~, or more generally f (z) = 61 (z), 6~ (z), c~, where 61 (z), 

6.,(z) are assigned meromorphic functions. The feature which distinguishes our 

investigations from previous work, e.g. that  deducible from the ordinarily Ne- 

vanlinna Theory is that  we obtain results of the type 

O(I)  
(I8.I) l o g / ( ~ , f )  = 7 ~ -  ~ , 

even when the equations f(z) = o, I, c~ may have infinitely many roots in [z[ < I, 

provided that  the total number n(r) of these roots in I zl ~ r < I satisfies 

1 
(i8.~) f ~ (,-) ~ , -  < ~ .  

0 
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Moreover  the condit ion (I8.2) seems to be the  weakest  condit ion of its kind 

which still implies (I8. I). (See Theorem IV.) Even in the case of a finite num- 

ber  of roots  our bounds  appear  to be sharper  than  those previbusly obtained. 

Natura l ly  we cannot  obtain (I8.1) generally when f ( z )  is meromorphie,  since 

M ( Q , f )  = 0% if f (~ )  has a pole on the circle Izl = 0. W e  ci rcumvent  this diffi- 

culty by introducing a func t ion  f ,  (z), the star  funct ion of f (z ) ,  which behaves 

locally as the funct ion g(z) of Theorem I behaves at the origin. I f  f ( z )  has no 

zeros or poles in a small circle surrounding the point  z we shall have 

f (z) = f .  (z), 

and if f ( z )  has no poles in I z l < I  we shall have 

If ,  (*)l >- If(*)l ,  I < i. 

The funct ion f ,  (z) has a cont inuous  non-zero modulus  in I z l <  I; and it is 

regular  except  on certain circles. Hence  log If ,  (z)l is cont inuous on each radius 

arg z = 0 = const, and differentiable except at  an isolated set of points. ~r 

use of Theorem I, we can obtain for  log If* (z) l a differential  inequali ty,  whose 

in tegra t ion will yield our main result ,  Theorem II.  

Notat ion.  

I9) We  shall consider in the  rest  of this chapter  a funct ion f ( z ) ,  mero- 

morphic in I z [ < I  and denote as in (I.I) to (I.5) by a , ,  b~, c, t h e z e r o s ,  poles 

and ones of f ( z )  in I z I < 1 and by d r, the total i ty  of these points. W e  no longer  

assume tha t  the set of d~ is finite. W e  assume, however,  tha t  

(I9,) No= ( , - I d , I ) <  oo 
~ = 1  

Let  n (r, f )  denote  the number  of poles of f ( z )  in [z [ ~< r, so tha t  n (r, I / ( f - -  w)) 

denotes  the  number  of roots  of f ( z ) = w  in [ z l - - < r <  I. Then ( I 9 . I ) m a y  also 

be wr i t ten  as 
1 

f{ ()) ( (19.2) N o = , (r, f )  + n r, + n r, d r  < oo.  

0 

We also define a funct ion  f ,  (z) as follows. Let  au,, a u , , . . . a , p ,  b . . . . . .  b,q be 

the zeros and poles respectively of f ( z )  in the region 
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Then we Write 
q 

II g (r be 
(I9.4) f .  (~) - 2q-P j=l ~, f(~)" 

II g 
i = 1  

I f  f ( ~ ) =  o or 0% f . (~)  is defined by continuity.  We see t h a t  f , ( ~ ) i s  regular  

nonzero, except on the circles ]g(~, a~) I - �89 ]g (~, b , ) ] -  �89 and on these ]A (~)1 is 

continuous.  Moreover if  f ( z )  has no zeros or poles in the region (I9.3) we have 

(,9.5) f. - f(1) 

and if f (z)  has no poles in the region (I9.3), we have 

(19.6) If* (~)l ~ If(~) I - 

In  par t icular  (19.6) and (I9.5) respectively hold th roughou t  

regular,  or regular  nonzero th roughou t  [ ~] < I .  

Last ly we define if ~ (z) is any funct ion of z in I z l <  , 

M [ r ,  ~ (z)] = m a x  I ~ (r eia) l. 
0 ~ 0 - - < 2 ~  

I~ < I i f f ( ~ )  is 

W e  use this  nota t ion  both for meromorphic functions,  in which case we have 

M [ r ,  ~b] = + oo whenever r has a pole on I zl = r or for  discontinuous func- 

tions such as f ,  (z). Here max denotes the upper  bound. 

We shall in the sequel be dealing f requent ly  with the derivative of f . ( z )  

at  a point  z = ~. W h e n  doing this we assume tha t  this derivative is defined at  

z ~-~, so t h a t  Ig(~, b,)l ~ �89 I g(~, a~,)l ~ �89 for  any pole b~ or zero a~. We write 

this derivative as A(~) which is no t  to be confused w i t h f , ( ~ ) ,  the star  funct ion 

of the derivative of f (z)  at z = ~, which latter, however, will not  be used in this 

paper. 

20) W i t h  the no ta t ion  defined above Theorem I may be rewri t ten  as 

follows 

T h e o r e m  I.  Let f (z)  be me,'omoTThic in ]z[ = Ix + i y  I < I  and let the roots 

d r o f f ( z ) =  o, I, vo satisfy (I9.I). Then we have 
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( 
2/ l log l f , (o ) l l  + A b  + log § Iloglf,(o)}{] 

/z=l  

where  the s i g .  in  the sum is  + o; - -  ~oo,'din.q ~s I f .  (o){ --< ~ 0," I f .  (o){ >-- ,. 

I f  f(z)  is meromorphic in [z[ --< I this result  is obtained at  once from Theo- 

C) rein I of paragraph 2. In the general  ease we apply t ha t  result  to f r with 

r >  I and make r ~  I, 

By in tegra t ing  Theorem I we can prove 

Theorem II .  W i t h  the hypotheses of  Theorem I we have for  o < r < 1, 

log M [r, f .  (z)] < - - ~ - ~  
I - - ~ '  

{(, + r)log + lf,(o)l + A r  [log+ log + lf,(o)l + No + d}, 

where N O is defined as in (I 9. I ) .  

This result  could not  be obtained by in tegra t ing  the inequali ty of Theorem I, 

if the sum in t ha t  Theorem was replaced by _N 0. Thus to obtain Theorem I I  

i t  is not  sufficient to obtain a bound for [f~(o)[. Both Theorems I and I I  con- 

tain the term log+[log I f ,  (o)[[. I f  there are only a finite number  L of d ,  we can 

eliminate this term, by replacing the terms depending on d r in Theorems I and 

I I  by L. W h e t h e r  the term log + [log [f,(o)[] can be el iminated in Theorems I 

and I I  wi thout  otherwise weakening those results remains an open question. 

We have 

Theorem I I I .  

i .  {~{ < ,. 

(i) 

(ii) 

Suppose that the equations f ( z )  = o, I,  oo have at most L roots 

Then we have 

I A ( o ) l < l A ( o ) l  [2 log If,(o)l + A( ,  + L)] 

/ I  + r  + A r  } 
M [,', f ,  (z)l < exp (]-Z~_ r log I f ,  (~ + --1--r (I + L) �9 

Both parts of this result  are best possible even in the case L = o, except for 

the constant  A3 

We also prove the following converse Theorem to Theorem I I .  

1 C. F. HAYMAN(I), T h e o r e m s  V and  v i .  

11 - 642128 A ~  m a t J ~ .  86 
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Theorem IV. Let 

(w) + w e r~ 

be an integral function of  genus o or I, which is real for  real w, has real negative 

zeros and satisfies ~ (o)= I. Let 

11 + z D  -~ 

Then f ( z )  is regular nonzero in [z[ < I and we have for any a 

l~ + If(")l 

(2o. 1) --> i - ~ .  tlog I f ( o ) -  a[ + (t, a) - - l o g  + la l -  log 

0 

I 
where n it, a) denotes the number of  zeros of  f ( z )  - -  a in ]z] < t. Further i f  ~. ~. 

converges O(w) has genus o and lim ( I - - r )  log M ( r , f )  exists finitely, so that 
r--~l 

1 
I 

f n it, a) d t converges for  every a. I f  ~_ ~, dive,'ges r (w) has genus I, 
0 

lim (I --  r) log +f(r) = oo 
r - -~i  

1 

and f n it, a )d t  diverges for every a other" than a = o. 
o 

Theorem IV shows that  for the wide variety of functions f ( z )  intro- 
1 

duced in that Theorem, the condition that fn(t, a)d t  converges for every a with 
0 

one exception is necessary in order that  ( I - -  r) log M [r, f ]  shall be bounded. 

Thus we cannot hope to weaken the conditions 

1 

fn(t, a)dt< oo, 
o 

a = o ~  i ~ o o  

to obtain an inequality similar to that  of Theorem II.  

I t  is not difficult to deduce from Theorem I I  a generalization in which the 

equations f(z)= o or I are replaced by f ( z ) =  r (z) or 02 (z), where the r are 

meromorphic functions of z. 
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The case when ~b 1 (z)~  o is particularly simple and we confine ourselves to 

it. We can deduce a result in the more general case by considering f(z)--@l(z) 

which is equal to o, @2 ( z ) -  @1 (z) when f ( z ) =  @i (z), @~ (z) respectively. We have 

Theorem V. Suppose that f(z),  r (z) are meromorphic in I z l< ~ and also that 

1 

"~1 < 
0 

Then we have for o < r < I 

log M[r ,  f ,  (z)] <: log M [ r ,  +,(z)] 

I 
+ - - - - [ ( I  + r) log+/x + Ar(log+ log+/~ + N +  I)] 

I - - r  

where 

I/, (~ I 
The results of Theorems I, II, III, and V have all been stated in terms of 

star-functions. This is justified by their simplicity in this form whether f (z)  is 

regular or merely meromorphic. I t  is not difficult to deduce results for M [ r , f ]  

when those for M [ r , f , ]  are known. The following Theorem enables .us to 

do this. 

Theorem VI. I f  f(z)  is regular in I z l < i  we have 

(20.2) M [r, f ,  (~)] >- M Jr, f ( ~ ) ] ,  o < r < I. 

I f  f (z)  is meromorphic in [z[ < I, then given e, o < e < I, we can find r, such that 

< r < � 8 9  +0)  and such that when {zi=-r we have 

(20 .3)  

where n (3 + ~1 denotes the 
\ 4 ] 

Is(<) I 

number of  poles of  f(z) in I~ I < a + o 
4 

Corollary. We may replace M [r, f ,  (z)] by M [r, f ]  in Theorems II,  I I I ,  (ii) 

and V for all r i f  f(z) is regular in I z I<  I and for some r in every range 

< r < �89 (I + ~) otherwise. 
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Proof of Theorem I I .  

2t) I-laving s ta ted our results we proceed to prove them in turn.  Theo- 

rem I has  already been proved at  the end of paragraph  I7. The o ther  results  

follow fair ly simply. 

Before we can prove Theorem II ,  w e  need two lemmas. 

Lemma 17. Let  ]~ (r) be a real continuous function of  r for o ~ r < I and sup- 

pose that ~' (r) exists at all but a finite number of  points in every range o-<-r <~ k < I. 

Suppose fur ther  that we have 

(21 . I )  ( I  - -  r ~) Z' (r) ~< 2 g (r) + C l o g  + g (r) + ff (r) 

whenever ~ (r) >~ o, where C is a positive constant and # (r) is positive and continuous 

for  o <-- r < I. Then we have 
r 

,(,)< el( . I ] - -  1+r)i~+2C,'(log ~ + 0 + 3 ) + 2 ( I + C )  f f ( t ) d t  o < r < ~  
I ~ "  ~ ~ ~ 

0 

where ~ = max {o, ~ (o)}. 

Suppose tha~ o < R <  I and t h a t  Z(R) :>o .  Le t  a be the smallest non- 

negat ive  number  such tha t  g ( r ) >  o for  a < r - - <  R. Then  we must  have e i ther  

a = o  or ~ ( ~ ) = o ,  and (2I.x) holds for  a < r < - - R ,  except  perhaps at  a finite 

number  of points.  Thus  

(i -,.~) z' (r) < (~ + C) z 0t  + ~ ("), ~ -< " < R 

excep~ at  a finite number  of poilJts, where ~(r) is continuous.  Thus 

C 

(21.2) 

say. Since 

duce tha t  

\ V ~ r f  ")l~ J (1  + r)'+~ 2ff = 
a 0 

we have e i ther  ~ . ( a ) = o  or a = o ,  we have g(a)_<~ and we de- 

Subs t i tu t ing  f rom this expression for  log + ~(r) in (2i.~) we have for  r ~ 2 ~  

\ I - -  r / )  

whenever  (zI . l )  holds. This is an inequali ty of the same type  as ( : I .1)  with 

C = o and ff (r) replaced by 
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(r) = C{log + 

We deduce from (21.3) that we have 

(2, .4) 

Now 

R 

f , (,.) d ,. = C R [log + 
0 

R 

(~,.s) f,(,-) 
0 

since 

and 

(7) Z+ log + 2 1 l + l o g z +  I + l o g i - ~ . i  + ~ (,'). 

0 

R 

+ ( ~)f ( ' + r /  ;~+log M +  log 2 ]+  C , + ~  l o g \ , _ r l  
0 

dr  + M, 

dr<(, + C)M+ CR[log+i+ C+3], 

R 

f log I + ~___~ d r = (, --/~) log (, --/~) + (I + R) log (, + R) < 2 R, 
I - - r  

0 

M is defined in (2,.2). This proves the lemma on combining (21.4). and 

(21.5). 
We have next 

Lemma 18. 

I - - r z l  t 

where z is complex and I~1 < , ,  the. we have 

r 

f ,(t)dt < Ar(, - I~1) ,  
0 

I f  ~ (r) is defined for o <-- r < I by 

I 1) 

o<r<I. 

We have 

~u(r)= I I - r z - z + r r ( I _ r z  I ~ [  z--r_I_Z~.zl) = (I + r)~l i - - z iS  I - r z I  ~ 

Thus 

(21.6) 

I - -  

I , - - r = l  ~- ' - -  7 - - -%,  / I ' - - " * 1 '  

r r 

f fl' ~,(t )dt<Sl, - -=l ' ( , - - I=l ' )  7--t=l' 
o 0 
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Suppose first r--< �89 Then (21.6) yields 

(21.7) f~(t)at < s. ~61i-  =l ' ( ' - I~1 ~) f dt < A r ( i -  I=1). 
0 o 

So tha t  the lemma holds in this case. Suppose next  r >  �89 Then we have 

r r l  l 

f 1 - - t  f(i--t)dt f (i-t) 
(21.8) [1--tz] ' d r <  [ I - - t~[  ' +  I I - - t z [ '  

0 0 rl  

where r l = m a x { o ,  I - - I I - - Z ] } .  Also 

= L + h  

r t  

f I - - t  I I 2 (2I'9) 1"1 < (I t) - - - ~ d t < -  <-- " 
o 

Since I~-t~l>�89 o < t < i  we have 

2 1. I O)  

1 1 

[ i _ z t l , < l i ~ z [ ,  (I--t)dt 
'~1 ?'1 

8 ( I - - r , ) '  < 8 

Combining (21.6), (21.8), (21.9) , (2I.IO), we have if r~�89 

/tt(t)dt<A(I- I=1') < A,'(I - -  I=l). 
o 

Combining this with (21.7) , we have lemma 18. 

22) W e  can now prove Theorem II .  W r i t e  

(e2.i) 4(,') = log+l f . ( r ) [ ,  o < r <  I. 

I t  is sufficient to prove tha t  

(22.2) L(r) < I [(I + r)s + A r ( I  + log + [s + No)] 
l - - r  

using the nota t ion of Theorem II .  For  the same upper  bound then holds for 

log § I f . ( r d ~  o < 0 <  z z ,  as we can prove by writ ing f ( z d  e) instead of f(z).  
W e  apply Theorem I to the funct ion  

_It+z\ e(~) =/~V~;~),  o_<,-<,. 
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Then g(z) = o, I, c~ at the points z = d',, where 

d r - -  r 
/ ~22 ,3 /  d" I - ," d ,  

and d, are the points  such t h a t . f  (d,) = o, I, c~. W e  deduce f rom Theorem I tha t  if 

[g, (o) 1 --- , ,  

[ d  ] _< 2 ]og+,g.(o)l (22.4) ~ l o g  + I g.(~)l ~=0 

L J 

Now the Green 's  Funct ions  w.r.t. Iz[ < I, log Ig(zl, z=)[ are invariant  under  a con- 

formal  mapping  of [ z [ < I  onto i tself  and we deduce from (I9.4) tha t  

(=.5) log Ig. (~)1 = log I f .  ~-J~r~: I ( '" + ~ ~ 

(:22.6) ~ g :  (0) ~ A  (r)( I 
g. (o) = ~" f .  (r)' - :)" 

Combining (22. I), (22.4), (22.5), (22.6), we deduce 

where d', is defined as in (22.3). This inequal i ty is similar to tha t  of lemma 17 

wi th  

and C = A .  Hence  tha t  lemma yields for  o < r < I  
r 

(22.9' ~(F) <~ s [(I + r)~(O) + A . [ I  + log + )~(o)] + ~ f .  ( , )" ' ]  
o 

Also it  follows f rom lemma I8 tha t  

/ ~ / [  d , - t f ' l  [ d , - t l i  . ( 0 a t = a r + ~ .  . ; :~ .1  ~,-j~_--~/Zif,~t 
o 0 

< A r  + A r  Z (I --Jd,}) 

: Ar(~ + Xo). 

Combining this with (22.9), we have (22.2), which proves Theorem II .  
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P r o o f  o f  T h e o r e m  I I I .  

23) Theorem I I I  can be deduced from Theorem [ I  and lies less deep than 

Theorem II.  Suppose that  a~, # =  I to m, # = m +  I to M are the zeros and 

b,, v =  I to n, ~ = n +  I to N the poles of f(z) lying in [z[--<�89 and � 8 9  

respectively under the hypotheses of Theorem III .  We have 

H g ( o ,  b,) 
n m ~,=1 f , (o)  = f ( o )  2 - -~ 

II  g (o, ~) 
t t = l  

We write 

( 2 3 . I )  

N 

I I  g(~, b,) 
g (z) = f (z) "-~/ 

I I  g (~, ~.) 
~t~ l  

Then we have 

(23.2) A_(M+,v) < f ,  (O)[ < AM+N 
- -  9 - - ~  - -  

and  also 

(o) .q'(o) ~ I .q (o, a,,) I g (o, b~) 
(23.3) (o) g (o) -<, ,~+,  I a (o, a,) I +,.=~§ ~ " 

Since also by hypothesis M +  N_< L we deduce from (23.2) that  we have 

(23.4) A - L ~  If(z)[ < A L 
J g/z) - 

in  the first instance when z = o, and hence for ] z ] < I  by mapping I~l<~ 
onto itself conformally. Also we have from (23.3) 

(23.5) IA(o) .q'(o) I < 
If .  (o) g ~  j _  A L. 

I t  follows that  it is sufficient to prove Theorem I I I  (i), with g (z) instead of 

f.(z).  Suppose first that  I g(o)] -< I. Then (23.4) gives 

IA (o) 1 .<- A L 
and s o  Theorem II  gives 

log+ i.f.(re, O)[< - A(1 + L) 
I - - r  
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Combining this with (23.4) we deduce that  

C 
(~3.6) log Ig( , -+~ ~ , 

1 r 

where 

(23.7) 

I t  follows, by mapping  [ z [ <  I 

are interchanged,  tha t  if we have 

C = A ( I  + L ) .  

onto i tself  conformally so tha t  z = o, g = r g  ~ 

(~3.s) log+ Ig(o) l >- - - -  

then 
log Ig (r~~ I _> o, 

I t  follows tha t  i f  (23.8) holds we have 

Ig(~)l > ~, 

and hence g ( z ) i s  subordinate  in I g I < ,  to 

[r  + ~ log I.q (o) 1 lp(z) = exp [ r - - z  

We  deduce that  if (z3.8) holds we have 

C 
I F r  

o ~ O g 2 ~ r .  

[g[ ~ r, 

+ i arg g (o)}" 

2 I g (o) I log I g(o) l. (23.0) I / ( o ) 1  ~ I ~P' (o) 1 ~ V 

Suppose now tha t  log Ig(o)l ~ z C and let  r be defined by 

(23.Io) (I - - r ) l o g  [g(o)[ = C. 

Thus r >--�89 Then we have (23.9) and so 

i t'(o)[ < ~ log I g(o) l = 2 tog I a(o)l + : (~ - ') log I o(o) l 

_< 2 log Ig(o) l + 4 C 

by (23.Io). Combining this with (23.4). (23.5), (23.7), we see tha t  Theorem I I I  (i) 

holds when 
log I f ,  (o) I > 2 C + A L = A (~ + L), 

and by writ ing [f(z)] -1 instead of f ( z )  we see tha t  this inequali ty also holds 

when 
log If,(o)I < - - A ( I  + L). 



138 W . K .  Hay,nan. 

Finally the result follows from Theorem I if 

Ilog If . (o) l l  < A(* + L). 

Thus Theorem I I I  (i) is always true. 

The inequality of Theorem I I I  (ii) now 

f l z + r \  ~ )  instead of f ( z )  in (i) we have 

(i - -  r') [ f :  (r).[ < 2 If,  (") [ {I log If .  (r) II + a (, + L)}, 

Integrating this we have 
l + r  r ( l+L)  

I f , ( r ) l < ~ , - , A  , - ,  , o < ~ r <  I 
where 

]A = max [I, tfo(o)l ]. 

follows from (i).  On writing 

o < r < I .  

A similar result holds with f .  (re ~~ instead of f .  (r). This proves (ii) and com- 

pletes the Proof of Theorem II I .  

P r o o f  o f  T h e o r e m  IV.  

24) To prove Theorem IV, we need two further lemmas. In  lemma I9 we 

show that  the inequality (20.I) is satisfied for a certain class of functions f(z) 

and in lemma 20, we show that  the func t ions / (z )  of Theorem IV belong to 

this class. The remaining part  of Theorem IV then follows. 

Suppose that ~p (w) = ~p (u + i v) is regular for u > o, real for  v = o, Lemma 19. 

and that 

(i) 

(ii) 

Let 

I , (u  + i v ) l - < , %  u---o 

log + ~p(u) increases with u, o < u < co. 
U 

• 1  +z~  

Then f ( z )  satisfies the inequality (2o.x). 

Suppose that  the hypotheses of lemma !9 hold. 

(2 4.  I ) -~ f log § IfO-e'O)[ao_<, - A  log+f(,.), 
2 o ~ d  I + r  

0 

Then we have 

o < r < L  
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For  write 

I + re r 
(24.2) I - - r e  i~ u (r, O) + iv(r, 0). 

Then it follows from lemma (I9) , (i) and (ii) t ha t  

and hence 

log + If(*" d~ = log + I ~a [u (r, O) + i v (r, 0>] [ 

< u (r, O) 
--  u (r, o) l~ I ~2 [u (r, o)] I 

u(r, O) 
- u (,., o) l ~  f(r) 

2 ~  2 ~  

) ~  log If(rd~ l~ If(r)[ I 
u (,', o) ~ 

0 0 

(o, o) 
u(r,  o) I~ [f(r) l 

since u(r,  0) is harmonic in [ z [ <  I. This proves (24. I), making use of (24.2). 

We  now apply gensen's  formula (3.2) to f ( z ) - - a  and obtain 

2 ~  r 

2 )  l ~ 1 7 6 1 7 6  + "n(t,a) �9 
0 0 

Also, since log + I f - -  a [ ~< log ]fl+ log + l a [ + log 2 we deduce  

r 2 7 ~  

log [ f (o)--a[  + f n(t, a ) ~  <~ l_2:zd I f ~ 2 4 7  [f("ei~ 
0 0 

dO + log + ]a] + log 2 

for  all finite a. Combining this with (24.1), we have lemma 19. 

We  prove next  

L e m m a  9.0. Let 
(w) ~ [~ (w)] -1 

where r is the integral function of Theorem IV .  Then ~p(w) satisfies the hypo- 
theses of lemma z9. 

W e  have 

7( (24 .3 )  ~ ( w )  = e - b w l I  e~, i + w . 
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In  order to show tha t  ~V(w) satisfies the hypotheses of lemma 19, it  is suf- 

ficient ~o show tha t  these are satisfied by each of the factors  

~/( ;:) e--bw~ e I + ~ �9 

Both (i) and (ii) are trivial for ~Vo(W ) = e b~ since when b is real 

and  
I eb(u+iv) I = ebu 

l o g  + e b u 
max (o, b) = eonst. 

U 

Consider next  

(24.4) '~I(W) = e 7 I + �9 

We  have 

which proves (i). 

] ~Pl(u + iv ! [  u + r < 
I 

~,(u) I V(u + ,9' + v ' -  
Also 

l~ ~Y' ( u ) l ~  ~V~ (u' u - -  u r _ ~[ , _ ~r ( u ) ]  ~o~o , + 

is an increasing funct ion of u / r  for fixed r. For  put t ing  u - = x ,  we have 

l+x  

[ ] - - I  i f  dr --i I d ~---~log(i+z) z ( i + x ) + ~  y>x(~+x)+ o, x>o .  ~x x x(i +x) 
1 

T h u s  ~01(w ) defined by (24.4) satisfies (i) and (ii) of lemma 19 and hence so 

does ~V(w) defined by (24.3). This proves lemma 2o and we deduce the t ru th  of 

(2o.I) in Theorem IV. Suppose next  t ha t  

S =  ~ ! < o o .  
�9 =1 r .  

Then we may write 

~(~) r  = eC~-~)w I + w 

so t ha t  ~(w) has genus zero. Also if  w = u + i v ,  

Iwl I + - -  > I ,  U ~ O ,  
r 
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so that  

and hence 

Since 

I ,/, (w) I -> ~ -  (~- ') ~ u >- o 

I ~ ( u  + iv)] = I[+(u + iv)]-~l < e  (.-b)~. 

log + ~p(u) 
~t 

increases with u, we deduce that  

U = lira log+ ~ (u) 

exists finitely and hence so does 

~) lI  + r \  
lim,.~ ( I - - r )  logf(r)= lim~_~l ( I -  " 0 ~]--~.)  = 2 U. 

1 

Also it follows from (2o . , ) t ha t  f . ( t ,  a)dt converges for every a. 
o 

Suppose next that  ~ r ~  = c~. Then ~b(w) has genus I. Also 

so that  

' i t  
U 

I + - - < e  r 
9" 

~p(u)=e_~,He,  . . ~  + u >e_bU~ie,,/lI,=, . .  

for every finite N. Hence 

log (I + 
l i m l ~  ~ I - - l i m  

U ~ = 1  r ~  lt--~r ~ 1  U ~ o o  

N 

= X •  

Since ~ diverges we deduce that  

(24.5) lira log ~p(u) lim I - - r  log f(r)  = oo. 
U r---~l I -[- r 

1 

I t  follows that  fn(t, a)dt diverges for every finite a # o .  
0 

to this that  
1 

No = f n(t, a)dt < oo, a ~ o. 
0 

A (~) ~- f(*)" 

In  this case we write 

For suppose contrary 
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Then f~ (z) # o, oo in I z l <  I and the number  of roots o f f l ( Z ) =  I i n l z J - - < t  

is n(t, a). Hence  Theorem I I  yields 

A 
log M[Y, fl(Z)] = log M [/', J ; .  (z)] < - - I N  O + log + [Z(o) l  + I], l - Y  

and so also 
O < : r < I ,  

lim (1 - - r )  log t.f(")l < co. 
r-+l 

which contradicts  (24.5). This  completes  the proof  of Theorem IV. 

P r o o f  o f  T h e o r e m  V. 

25) Theorem g 

write 

(25.1) 

is an almost  immedia te  consequence of Theorem II .  

f(z) 
g(~)  = v,(~) 

W e  

and see tha t  if g(z)=o, I or co, we have either f ( z ) = o  or co or ~b(z)=o or 

cx~ or f ( z )= ~(z). Thus we have 

1 

N,= f {"(t,v)+"(t, ~)+'(t, ~--~-7:)}<lt 
0 

--< N1 

where N 1 is defined as in Theorem V. I t  follows that  we have 

(as.2) log M[,. ,  g,(z)] < 
I - - r  

{(: + r )  log +]g,(o) l + A t [ l o g  + log + [ g , ( o ) [ + N : +  I]} 

on applying Theorem I I  to g(z) ins tead of f(z). 
It fonows from (25 .~ )~nd  (~9.4) that  

g, (z) = f*  (e) 
r (z) 

and hence we have 

log M [r, f ,  (z] --< log M [r, ~b, (z)] + log M [r, g, (z)]. 

Combining this with (25.2) we have Theorem V. 
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P r o o f  of  Theo rem u  

26) I t  follows from (]9.3) and ( I9 .4 ) tha t  if f(z) has poles b, and zeros a t` 
in [z[ < I, t h e n  we have 

[ f ( z )  ] - -  e b, I_ --5__ ,za~ lOglf- ~ = ~log+ [ -Xlog + [ ](;_z ~) ~ (~_ .t`) 
and from this (20.2) follows at once. We deduce fur ther  tha t  

and hence 

(26.z) 

log I f(~) ~ - I~! !b.i 
,f.(~) I -<X'~ I 2 (l~,_ ,b.I) 

i - t l b ,  I log§ M[t, /(z)]<--~,log+l (t_ 1" f~] 2 lb.I) 

Thus if o < 0  < 0 ' <  I, we have 
~ t  

(26.2) f l o g  + M[t, f ]  

Now 

where 

so tha t  

F 

+] ~ - ' ! h [  lat dt<_~, log 2 ( t - l b ,  I)l " 
q 

log+ I--t]b, 2(t--lb, ) dr<-- l~ d t 2 x  
q �9 = - V ,  

t--lb, I x + }b:.] 
x= , t= , 

i - - t l b ,  I i + x l b ,  I 

I - I b . l '  - �9 
at (f T~lbTI).a~8(~--Ib, I)a~. 

Thus we have always 

flo + I'-tlb.I Id , 
12 ( t -  It,. I). 

e 

VI 

- -  111 

= A ( x -  I b,I) 

Also the integral on the left hand  side of (26.3) vanishes if 

i.e. if 

a - J b . I  > !  

, + 21b.I O>__ 
2 + l b . I  
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which is true in part icular  unless 

Hence  the integral on the lef t  hand side of (26.3) ei ther vanishes or satisfies 

(26.4) log 2(~--ZIb, D d t < A ( 1 - - O )  

so that  (26.4) holds generally.  Again the integral  in (26.4) vanishes if 

Ib,,I-d 
,-e'lb l-2 

i.e. if 

which is true if 

Chose now 0' so that  

[ b , [ > ~ + 2 0  ' 
- -  2 + 0 '  

Then it follows that  the integral  in (26.4) vanishes if 

*-Ib, 

Thus the total  number  of b. for which the integral  in (26.4) does not  vanish 

cannot  exceed the number  of b, in [ z l G I - - - ( I - - r  n . Using this 
4 

fact  and (26.4) we have 

O' 

f + '-*'""'[ log 2 ( t__ lb ,  D d t < A ( l - - e ) n \  4 I 
,o 

I t  follows tha t  there  exists r, such tha t  e < r < ~' and 

(26.6/ 2 l o g  2( r - - lb , .D < O--O \ 4 I 

using (26.5). Also it follows from (26.5) that  0 ' < � 8 9  + 0) so that  o < r - ~ � 8 9  + ~). 

Combining (26. I), (26.6), we have (20.3). 

I t  remains to prove the corollary to Theorem u  We may suppose that  

the quant i ty  r in (20.3) satisfies r >-- �88 This is trivial if 0 >- �88 I f  o ~ Q < {~ (26.5) 

shows that  r exists such that  (20.3) holds and also �88 <: Q', where 
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, 0 = ' ( ,  a 
so that  ~ ' <  �89 Thus we have in this case 

Let n(t) be the number of poles of f(z) in [zl<_ t. 

function of t. Hence we have 

Then n(t) is an increasing 

1 f () [ 3__~]  (3~__~Q) I - - Q  ( 3 + ~ t  n_t_dt >~ I - -  n n 
4 \ 4 ! 

and s o  
1 

(26 .7 )  n ( ~ )  ~ I A---Tf'n(t)dt" 
o 

Thus we have 

where N O is defined as in (x9.2). Combining this with (20.3) and Theorem II,  

we deduce that  if r satisfies (2o.3) we have 

log M[r,f(z)]  ~ ~ { ( I  + r) log + [ f , ( o ) l +  A r  [log + log + [ f , ( o ) l +  N O + ,]} + A N o  
I - - r  I - - r  

< _  I -{(I  + r ) l o g  + t f . ( o ) l  + A , ' [ l o g  + l o g  + I f . ( o ) l  + N o + I]}  
I - -  r 

since by hy.pothesis I" ~ ~ = A. This proves the part of the corollary which in- 

volves Theorem II. Similarly the part involving Theorem I I I  (ii)follows on 

noting that  with the hypotheses of that  Theorem we have 

Finally in the case of Theorem V we have in the notation of that  Theorem 

�9 

n g A N g .  
I --7" 

This completes the proof of the corollary. 

12- 642128 Ac~a mc~hemc~/ca. 86 
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C H A P T E R  II .  

T h e  M a i n  P r o b l e m .  

S t a t e m e n t  of  P r o b l e m .  

I) In  the last  chap te r  we obta ined  bounds for  the  maximum modulus of a 

funct ion which has a res t r ic ted number  of zeros, poles and ones. In  this chap te r  

we consider  the more general  problem of a meromorphic  func t ion  f(z)which 
takes none of an assigned set E of complex values w more than  p(Q) t imes in 

I z l ~ e <  I. Clearly p(Q) may be taken  to be increasing. This is, however,  the  

only assumption we make on p(Q). 

I t  is easy to see t ha t  we may wi thout  loss in general i ty  suppose E to be 

closed. Fo r  let  wo be a l imit  point  o f / ~  and let  z o be a point  in I z I ~ I, such tha t  

= Wo.  

Then the values t aken  by f(z) in any ne ighborhood of z0 contain w o as an 

in ter ior  point. I t  follows tha t  if the eq u a t i o n  (I .I)  has e x a c t l y p ( ~ ) r o o t s  in 

] z } <  Q, then f(z) takes all values of E sufficiently near  to Wo at  l e a s tp (~ ) t im es  

in [ z l < e .  Hence  if the equation f{z)=w has at mos tp (Q)  roots in I z l < Q ,  

whenever  w lies in E the same is t rue of the equat ion (I.I) and so we may 

suppose E closed. 

I f  E is unbounded  it  follows f rom this  t ha t  we may assume th a t  E con- 

tains w = c~. We  shall make this assumption also when E is bounded. In  addi- 

t ion we shall have to suppose tha t  E contains  at  least two finite numbers ,  one 

of which we may wi thout  loss in genera l i ty  take to be w = o. 

Thus we assume a l toge ther  t ha t  p(~) is nondecreas ing and tha t  /~ contains 

o and c~ and is closed. 

W e  shall cont inue  to use t h roughou t  this chapter  the f u n c t i o n ] ,  (z)defined 

in pa ragraph  19 of the  previous chapter .  W e  shall  obta in  bounds for  the maximum 

modulus M[~,f,(z)] of f,(z). Bounds for  M [ e , / ]  can be deduced by means of 

Theorem VI of chapter  I. The use of f , ( z )  has two advantages.  In  the first 

instance it  allows us to s tudy meromorphic  funct ions  as easily as regular  

funct ions.  Secondly we shall be able to obtain our  bounds in a very simple 

form depending only on p (e), t), If*(o) l and E.  
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P a r t  I. 

The Case when p (~)) is Constant. 

2) W e  have already studied the  case when p ( ~ ) ~ o ,  o ~ I  in some 

detail  in previous work (Hayman (I), (2), (3)). In  addit ion the case when P(t)--~0,  

a positive in teger  has  received some a t tent ion .  Ostrowsky 1, Milloux ~ and 

others  have studied funct ions  with only a finite number  of zeros, poles and ones. 

F u r t h e r  there  are the results  of L i t t l ewood 3 and Car twr igh t  4 about  func t ions  

regular  in the uni t  circle and tak ing  none of a sequence of values w~ such t h a t  

more t h a n  p times. L i t t l ewood showed t h a t  if wn+l/w,, is bounded then  

Miss Car twr igh t  4 showed tha t  if in addi t ion 

then  we have 
M [ ~ l f ]  = O ( I - - e )  -~(p+I)-~ 

f o r  every e ~ o. Here  the index 2 (p  + I) is best possible as is shown by the 

func t ions  
( I + z ~  2(p+~) 

f ( z )  = _ 

which take  no real  negat ive  value more than  p t imes in t z l <  I. 

Car twr igh t  4 proved also the fol lowing resul t  

Theorem I. Suppose that f ( z )  = ao + a l z  -~ " "  iS regular in I z I < I and takes 

no value more than p times, where p is a positive integer. Then we have 

Mid ,  f ]  < A(p) /a(I  _ ~ ) - 2 p  
where 

= m a x  [ , ,  l a o l ,  la l, . . .  la l]. 

This result  was generalized by Spencer  ~ to funct ions  which take values 

on the average p t imes in ] z l ~ I  and now p need no t  be an integer.  W e  cannot  

even state  Spencer 's  many beaut i fu l  resul ts  wi thout  going into his r a the r  in t r icate  

definit ion of mean valency, which lies outside our  scope. We must  re fe r  the 

reader  to Spencer 's  papers. 

1 0 S T a O W S K Y  (I). ~ MILLOUX (I). a L1TTLEWOOD (2), p. 2 2 8 .  
4 CARTWRIGHT (I). 5 SPENCER (I), a n d  r e f e r e n c e s  t h e r e  g i v e n .  
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3) We do not  aim here to prove explicitly all the above results. W e  shall, 

however,  prove a general  Theorem by which the s tudy of funct ions  taking values 

p t imes can be reduced to the case when p = o, which has already been studied.  

This result  is Theorem II .  Hav ing  proved this we shall give an application in 

Theorem I I I ,  which will include Car twright ' s  Theorem I as a special case. The 

second half  of the chapter  will be occupied with the  ease when p(~) is unbounded.  

W e  reserve all except the simplest  counterexamples  to the  next  chapter.  

The funct ions  
( i  + zl ' ( '+l)  

/ ( z )  = 

take no value more than  p + I t imes and no real negat ive value more than  10 

t imes in 131< ~, and their  rate of g rowth  is extremal under  these conditions.  

By taking the (10 + I)th root  we obtain funct ions  which take no real negat ive 

value in I 1< i. This simple process lies at  the  basis of our result.  The most  

serious difficulty lies in the zeros and poles, which would y ie ld  singularit ies 

when tak ing  the (19 + I ) th  root. This difficulty is not  insuperable,  however,  as we 

shall see .  

Theorem II.  Suppose that f (e)  is meromorphie in I e I < I and has at most q zeros 

an,d q poles. Suppose that p is a positive integer or zero and that f ( z )  sati,~fies one 

or more conditions of one of the following two types. 

(i) f ( z )  takes no value on the circle I w l =  r mo,'e than p + I times in I z l < I ;  

(ii) f ( z )  takes some value on the circle I v [ =  r at most p times in [ z l < I ;  

where the numbers r are real and positive. 

Then given Q, o < ~ < I, there exists ~' such that 

(3.I) I - - e  <-- Aq(I - -e ' )  

and a function O(z) regular nonzero in I z l < I  and such that 

(3.2) [ +(0) ] ~ {A q I f .  (o)I} 1/(p+1) 

I {log i [Q, f .  (z)] - -  q A }. (3.3) log M [O', @ (z)] -->p + I 

Further i f  r is a number for which (i) or (ii) holds then @ (z) never takes some value 

w 1, such that ]w I[p+1 = r, in [z[ < I. 

Thus we can use the known bounds for M[q,  @] to obtain bounds  for  

M[Q, f . ] ,  and as we shall see in paragraph Io, the bounds obtainable in this 

way are fair ly sharp. 
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4) The proof of Theorem I I  consists of two parts. T h e  first, which is almost 

trivial, is to prove the result  when q = o. The second ra ther  more intr icate  part  

consists in e l iminat ing the zeros and poles of f (z ) .  This depends on conformal 

mapping and hyperbolic distances ~, which were introduced earlier. We have first 

L e m m a  1. Theorem I I  holds when q = o, with ~' = ~, @(z) = If(z)] 1/(p+~). 

Suppose q = o and let f ( z )  be the funct ion of Theorem I I .  

(4. I) ~ (Z) : If(z)] 1/(v+1) 

where the principal branch o f  @(z) is taken at. the origin. 

Then (3.I) to (3.3) are clearly satisfied. 

We  write 

We write Q '=  q. 

Suppose next  t ha t  f ( z )  satisfies a condit ion of type (ii), so tha t  the equation 

(4.2) = w 

has at  m o s t p  roots in I z l < I  for some w such tha t  I w l = r .  Then if  

(4.3) (w') v+' = w 
we can only have 

(4.4) @ (z) = w t 

when (4.2) holds. Since there are p + I different values w t sat isfying (4.3) i t  

follows tha t  for at  least one of them the equation (4.4) can have no solution in 

]z[ < I. This proves the Theorem except for the case when f ( z )  satisfies one or 

more hypotheses of the type (i). 

To complete the proof of lemma I, we shall show tha t  if q = o and  f ( z )  

satisfies a hypothesis  (i) then f ( z )  also satisfies the corresponding hypothesis  (ii). Le t  

g (z) = log f ( z )  

and let ~t < ~7 < t7~ be the largest  interval  such tha t  the equation 

g (z) = log r + i ~, ~1 < ~ < ~ 

has roots in I ~ 1 <  I. I f  the interval  does not  exist, f ( z ) ~  r and our result  is 

proved. The interval  cannot  be infinite since otherwise the equation 

f ( z )  = r 

would have infinitely many roots in I z I <  I. Then the equation 

f(z)  = r e r 
has at  most  p roots in ]z I <  I. 

i IIX:eMA~ (I). 
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For i f  not  let z~, z~ . . . . .  zp+x be roots of this equation (possibly coincident  

in the case of multiple roots) so tha t  

(4 .s )  

Then we have 

f ( z j ) = r d %  j =  I to p + I. 

a = l o g  r + i( l + 2 

where mj # o, since g(z) # log r + i ~1 by hypothesis. 

small we can find z~ n e a r  zj, such tha t  

Hence if ~ is sufficiently 

g (z~) = l o g  r + i Vl + 2 (m~ + , )  ~r i 

and by hypothesis  we can also find z o such tha t  

g(Zo) = log r + i~1 + 2~ti~. 

Hence the equation 
f ( z )  = r e ''~I+2~" 

has p + 2 dist inct  roots in I z I <  1 if ~ is small enough, contrary  to hypothesis.  

Thus the assumption tha t  (4.5) holds is incorrect, so tha t  the equation 

f ( z )  = r e' ~1 

has at  most p roots in I z I < I. Thus when q = o the hypothesis (i) of Theorem I I  

yields (ii). This completes the proof of lemma I. 

We note incidentally t ha t  the a rgument  breaks down when q > p .  In  fact  

the funct ion z p+I *akes every value in [ w [ < I  exactly p + I times in I z l <  I. 

5) We now approach the task of e l iminat ing the zeros and poles. To do 

this  we proceed to construct  a simply-connected domain lying in ] z ] <  I, and 

conta ining nei ther  poles nor  zeros of f ( z ) .  We then consider the funct ion 

f[Z(z)], where Z(z) maps I z l < I  onto this  domain and have a funct ion sat isfying 

the hypotheses of Theorem I I ,  with q = o. 

W e  first deal with the zeros and poles in a manner  analogous to t ha t  used 

in paragraps i t  and I2 of chapter  I. We have 

Lemma 2. Suppose that f ( z )  is meromorphic in I z l < I  and has at most q 

zeros and q poles in I z l <  I. Then i f  I z o l <  I, there exists z' such that 

I (i) I ~ - -  ~o z 4 
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(ii) I f  z , , v  ~ I is a pole or zero o f f ( z )  we have 

tt,-z'l l,q(z,, z')l . . . .  : - - ,  : >  A-q. 

(iii) We have 

a-~ If, (z0) l -< If(t') I -< A~ If, (Zo)I. 

To prove lemma 2 we may suppose wi thout  loss in general i ty t ha t  t o = o. For, 

J Z - - t o  \ 
if not, we can consider ] ~ )  instead of f (z) .  Let  a~, /~ = I  to m be the 

zeros and b,, ~ = I to n the poles of f ( z ) i n  I z I X  �89 and let 

R 

I I  g(~, b,) 
(5.I) g ( z )  = f ( z ) 2  ~ ' - ~  ,--i _ .  

I I  g (~, a,,) 

We have m --< q, n ~ q by hypothesis  and so i t  follows from lemma 11 of chapter  I, 

t ha t  we can find @, 8 -  ~ ~ -  such tha t  
4 

I " I (5.2) 1-[g(z,a~,)l-[g(z,  b,) > Aq, I~1 = e .  

Since g(e) is regular  nonzero in Iz l< �89 its maximum modulus increases and 

its min imum modulus decreases. Hence we can find z' such tha t  

I~'l = e  (5.3) 
and 

(5.4) (~') = I g (o) I = IA (o) I. 

It follows from (5.3) and @--< �88 and Zo = o, that z' satisfies (i). I~ follows from 

(5.0, (5.2) and (5.3) that 
Aq ]g(z')] < I/(z') l < Aq ] g (z')[, 

which combined with (5.4) yields (iii). Also (ii) follows from (5.2) when I z ,]-< �89 

and (ii) is trivial for [ z , l ~  �89 since then  

I g (z,, z) l >~ �89 = [ .  
I - -  �89 2 

This completes the proof of lemma z, 
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6) The crux in the proof of Theorem I I  is lemma 3, which is best ex- 

pressed in terms of hyperbolic distances. We recall the definitions given in 

Hayman(I) ,  which we denote by S.T., particularly (3 . I ) and  (3.3). With this 

notation we have 

Lemma 3. Let D be a simply connected domain in the z plane and let z', z", 

zl, z~, . . .  zq be q + 2 points of D such that 

d[z',z~; D]>--d, i =  i to q, 
(6. I) 

d [ z " , z ~ ; D ] > ~ ,  i = 1  to q, 

where ~ > o. Then there exists a simply connected domain D', containing ~', z" but 

none of the zi, and contained in D such that 

(6.2) d[z', " D ' ] < d [ z ' , z " ;  D] + A ( q  + log+; )  z ; 

To prove lemma 3 we remind the reader of the following properties of 

hyperbolic distances. They obey the triangle relation (S. T. lemma 5). They are 

left invariant by I : i  conformal mappings (S. T. lemma 6). They increase with 

a contracting domain. In other words if D1 < D~, we have 

d ['1, zl; D,]  ~ d [zt, z,; D,] .  

This is implicit in SIT. lemma 6, since we may take the function w = f ( z ) =  z 

which maps D 1 into Dv Also if D is the circle [z I <  I, then in that  lemma, 

we have 

, I + l l l  d[% ~ ;•] = �89 l o g ~ .  

This foltows from S.T. (3.4). I t  also follows more generally that  if D is the 

circle I z --  z o I < R, we have 

/r + Iz'-Zot 
d [s0, e ' ; / ) ]  = �89 l o g / r  _ I z' - -  z01" 

I t  follows from the invariance of hyperbolic distances that we may suppose 

without loss in generality, that  the domain D of lemma 3 is the circle ]zJ < I. 

We suppose first that  q = I. By a conformal mapl~ing o f  Izl < i onto itself, we 

then map z 1 onto the point + iy l  on the positive imaginary axis and z', z" onto 

the real axis. This is clearly always possible. We now take for D'  the domain 

obtained from D by cutting along the positive imaginary axis from iyl  to i. 
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Hyperbolic distances in the new domain could be worked out explicitly, but 

it is easier to approximate, making use of the methods of S.T. Suppose first 

o < z ' <  �89 Then z' is contained in the circle C, namely ],z--�89189 itself con- 

tained in D'. Thus 
, , [ , - - z ' ~  

(6.3) d [ z , � 8 9 1 8 9  C ] =  �89 z' 1" 

Now we have by hypothesis 

d [z', i y; D] >-- r 
ttence we have 

dig', o; D] + d [o, iyl; D] >-- 
so that  either 

(6.4) 

o r  

(6.s) 

d [z', o; D] = �89 log ~I-~ z'] > - 
2 

d [o, iyl; D] = �89 log x + Y l  

I - -  Yl 2 

If  (6.4) holds we have at once from (6.4) and (6.3) 

[ +'] (6.6) d [ z ' , � 8 9  1 + l o g  ? �9 

I f  (6;5) holds and ]z'] ~ �89 we see again from this, (6.5) and (6.3) that  (6.6) 

holds. If o < z ' < � 8 9  we note that  z' is contained in the circle C', [ z l < y , ,  

which is contained in D', so that  

d [z', �89 Yl; D'] < a [z', �89 y,; 03 

< d [z', o; C'] + d [o, �89 Yl; C'] 

y_L+ z: + YA + �89 Yl �89 log 
Yl --  z �89 log Yl --  �89 Yt - -  < l o g  3,  

since g'<: �89 Yl. Thus in this case 

d [z', �89 D'] < d [z', �89 y,; D'] + d [�89 Yl, �89 D'] 

< A  + �89 + !  
Yl 

from (6.3), and since (6.5) holds we deduce again (6.6). Thus (6.6)holds for 

Suppose now that  ~ ~ z - - z  < ~. Then z ,  are both contained in the 

circle C, ]z--z '[  < I - - z ' ,  which is contained in D', so ~hat 
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d [ z ' , z  ; n ' ] < d [ z , z " ;  C]= �89  ~ Z Z ( ~ )  ] 

I -- J 
< �89 log ,, + 5 log 2, 

I - - g  

(6.7) d [ z , z  ; D ' ] < � 8 9  + A  I + log + �9 
I 

Again if o < z ' < 5  - < z ' ' < I  we have 

d[z', z"; D'] < d [z', �89 1)'] + d [~ ,z" ;D ' ]  

on using (6.6) and (6.7) with 5 instead of z'. Thus (6.7) holds also if o < z ' ~  
�89  Suppose next that o < z ' < z " < 5 .  Then we have 

d [z', z"; D'] ,< d [z', 5; D'] + d [z", �89 D'] 

[ '1 < A  I + log+~ , 

using (6.6) in turn with z', z" instead of z'. Thus (6.7) holds whenever o--<z'< 
< e " <  I. Also in this case 

, ,, , ,, I1 + z " / I  + z '  l I - - z '  
d [ z , z  ; 1 ) ] = d [ z , z  ;[z[ < ' ] = S l o g / V - _ _ - . / ~  J > � 8 9  

Thus (6.7) yields if o --< z' < z" < I, 

(6.8) d[z', z"; D ' ] <  d[z',.z"; D ] +  A ( , +  log + ~). 

Clearly (6.8) also holds if - -  I < z' < z" <-- o. Suppose lastly - -  I ~ Z' ~ 0 ~ Z" ( I. 

We note that D' is always contained in the domain D" given by 

- - 3 ~ < a r g z <  ~, [ z [ < I ,  
2 2 

which contains z = --�89 5- Thus 

d [ - -5 ,  5; D'] < d [ - -  �89 5; D"] = A. 

Hence if --  i < z' < o < z" < i we have, using (5.8) 

d [z', z*'; D'] < d [z', ~ 5; D'] + d [-- 5, 5; D'] + d [�89 z"; D'], 

(6.9) d[z ' , z";  D ' ] < d [ z ' , - - � 8 9  D�89 + d[�89 z " ; D ] +  A ( I +  log + ~). 
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We may suppose 

:Let 
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Again since z' ~ o ~ z", we have 

d [z', z"; D] = d [z', o; D] + d [o, z"; D] 

> d[z', --�89 D] - -  d[o, --�89 D] + d[�89 z"; D]--  clio, �89 D] 

= d[~', - � 89  D] + d[�89 z"; 2 ) ] - -A .  

Combining this with (6.9), we see that  (6.8) holds in this case also. This com- 

pletes the proof of lemma 3, when q = I. 

7) I t  remains to prove lemma 3 when q >  I. Let D be the domain of 

lamina 3. Suppose that  the z~ are so numbered that  

(7.I) d[z~,z'; D]>d[z , , z ' ;  D], i > i ,  

(7.2) d [zi, z"; D] >-- d [z~, z"; D] i >-- 2. 

Let DI be a simply connected domain, containing z', z" but not zl, contained 

in D, and such t h a t  

d[z,  " D , ] ~  z ; + (I  ~). �9 z ; d[z', " D] A +log+ 

Since we have proved lemma 3, when q = I, D1 exists. Since D~ is contained 

in D we have further 

d[z', zdDl]>--d[z ', z~;D]=>c~, i = 2  to q 

d [z", ~ ;  D, ]  >--d [z", z;; D]  >--- 8, i = 2 to q. 

Thus we can similarly construct a simply connected domain D2 contained in Dj, 

not containing z~, and such that  

z ; D ~ ] < d [ z ' , z " ; D I ] + A  I + log 

z ; d[z ' , z  ;D] + A  1 + l o g  �9 

without loss in generality that  D is I z ] <  I and that  3' = o. 

Z = l p ( W )  = a l w  H- a s w  ~ §  

map ]w I < x  onto D~ so that  ~p(o)= z ' =  o. Since D~ does not contain zl it 

follows from the theory of schlieht functions 1, that  

1 LITTLEWOOD (2) p.  207,  T h e o r e m s  242 , 243.  
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Also i t  follows f rom 

we have 

I t  follows tha t  we have 

Similarly we have 

W. K. H a y m a n .  

I~(w)l<(la, llwl 41z, llwl 
- I w l ) '  < ( i - I w P "  

(7.1) that I z, I -> I~ I, i-> z, so 

4 1 ~ l l w ,  I > Iz~l, 
( i - I w ,  D ~ -  

(i - I w ,  I)' -< 41~, l ,  

Iw, l - > A > o .  

t ha t  if  ~p (wl) = zi, i > 2, 

d[z', z,; :Ds = clio, w,; I w l <  I]>A, i > 2 ,  

d [z", z~; D~] > A, i > 2, 

since Ds does no t  conta in  z s and (7.2) holds. We can thus  repeat  our  construc- 

t ion  g - -  2 t imes more with A ins tead of •, and finally obtain a domain  D '  = Dq, 

which contains none  of the points  zl, zj, . . .  Zq. Also if  Ds, D 4, etc. are domains 

conta in ing  none of the  zt, for  i--< 3, i--< 4, etc., we deduce tha t  

d [z', z";/)q] _< d [z', z"; Dq-1] + A --<... 

--< d [z', z"; D~] + A (q - -  2) 

<d[z ' ,  " D]+ [q ~], - -  z ; A + log+  t 

making  use of (7.3). This  completes the  proof of lemma 3. 

8) We  can now combine lemmas 2 and 3 to give 

Lomma  4. Let Zo, [zol < I, be given and suppose that f(z)  is meromorphic in 

[z I< I and has at most q zeros and q poles. Then we can find a function ~(z), 

which is sehlieht in I r  and maps I zl < I  into itself, such that f[Z (z)] is re- 
gular non zero in ]zl < I and 

(i) [f[Z (o)]1 < Aq If* (o) 1. 

(ii) There exists a points z(l), such that 

Jf[Z (z(,))] I > J -q If, (zo) l 
where 

(iii) ,I - -  I z(~) I > A-q (I - -  I zo I)- 
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We may suppose q >--I, since otherwise lemma 4 is tr ivial  taking Z(z )=  z. 

Let  z' be chosen to satisfy the conclusions of lemma z. Le t  z" be chosen so as 

to sat isfy the  conclusions of 1emma 2 for  z', with z o = o. I t  fol lows tha t  if z,,  

> o ,  is a pole or zero of f(z) we have 

I + Ig(z', ~,)1 Aq 
- I  g (z', z,)l > 

< �89 log 

(8.I) d[z', z"; D']  < �89 log - -  

I + I*01 
,--Igo] + Aq + A 

' +1"o l  
- Izo l  + Aq 

making  use of lemma 2 (i) and q > I. 

Let  Z(z) map I zl < I  onto D'  so tha t  Z ( o ) =  z", ~t(z(l))= z'. Then the con- 

clusions (i) to (iii) of lemma 4 hold. For  ~(z) is schlicht in I z l <  I. Also D' 
contains no zeros or poles of f(z) so tha t  f [ Z  (z)] is regular,  nonzero. Fu r the r  

I f i x  (o)11 = If(z")l < A~ If ,  (o) 1, 

by lemma 2 (iii) with o, z" instead of z0, z'. This proves 1emma 4 (i). Again 

I f [z  (z(,/)] I = If(z') I > A-q If ,  (zo) l 

by lemma 2 (iii), which proves lemma 4 (ii). Finally 

d[o, ,(,); Izl < ~1 = dtz ' ,  z"; D'] < �89 log ~ + IZol + Aq 
, - I , o l  

by (8.Q, i.e. 

�89 log I + I*('~1 ' + I*ol 
I --  Iz(,) I < �89 l ~  -I~ol + aq ,  

which y ie lds . lemma 4 (iii). This completes  the proof of lemma 4. 

d[ , ' ,  , , ;  [ z [ <  ~] = �89 

d[ ," ,  , , ;  I z l <  d > A q .  

I t  now follows from this and lemma 3, tha t  we can find a domain D'  con- 

ta ined in I z I < z  and containing none of the  poles or zeros of f(z),  of which 

there  are at  most  2 q in all, such tha t  

d[z', z"; D'] <d[z', z"; Izl< I] + Aq 

< a[ , ' ,  o; I~1 < ~1 + d[o,  Zo; I~1 < ~1 + d(,0, ," ,  I*1 < ~1 + Aq 
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Proof of  Theorem II. 

9) W e  can now prove Theorem II .  Let  f(z) be the funct ion of tha t  Theo- 

rem and let  Zo be so chosen tha t  I Zol =~ and 

(9.:) M[~, A (z)] = [L (~o) J. 

Let  ~(z) be defined as in lemma 4 and let 

(9.2) r (~) = f i x  (~)],/<p+l/. 

Leg z(1) be d e f i n e d  as  in lemma 4 and let Iz(,)] = 0'. Then (3.1) follows f rom 

lemma 4 (iii). Fur the r  

[4, (o)[ = I f [ z  (o)] I:/(p +1) < {Aq I f ,  (o) l} ~/(v+~) 

by lemma 4 (i). This proves (3.2). Again 

log M[O', ~(~)] --> log I~ (~:1))1 i p + t log If[Z (z(,))l 

I 
> [log If,  (~o) 1 - A q] p + i  

making use of lemma 4 (ii), whence (9. I) gives 

I 
log M [e', ~b] > ~ [log M [O, Jr. (z)] - -  A q] 

which proves (I.3). Again the funct ion f [2(z)]  takes no value more often than 

f (z)  in Iz] < I, since 2(z) is schlicht. Thus f[Z(z)] satisfies the hypotheses  for 

f(z) of lemma I. Hence  it foliows from that  lemma that  if r is defined by 

(9.2) and f(z) satisfies a hypothesis  (i) or (ii) of Theorem II ,  then there exists a 

number  w', such tha t  ]w'lp+l = r and such tha t  4,(z)#w', in Iz] < I. This com- 

pletes the proof  of Theorem II.  

An Application of Theorem lI .  

:o) As has already been stated, Theorem I I  can be used to prove extensions 

to most  of the  theorems, which have been proved earlier 1, concerning upper  

bounds for  the rate of growth of funct ions omit t ing certain values, to the case 

when the functions take certain values at most~o times. W e  give one application 

1 HAW, AN (,), (2), (3). 
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of this, which will contain as a special case a slightly different form of Cart- 

wright's Theorem I. This is 

Theorem III .  Let r~ be a strictly increasing sequence of real number's tending 

to infinity and satisfying 

(~o.~) 

(~o .2)  

r 0 ~ O 

( r n + ~ l / ' < ( X ) "  
s = , = x  ~ log rn I 

Suppose also that f(z)  is meromorphic in I:1 < i and that for each n either" 

(i) f ( ~ )  t akes  some v a l u e  w . ,  such  t h a t  Iw.I  = r~ at most p times in Iz[ < I, or 

(ii) f (z)  takes no value w,,, such that Iwn[ = rn more than p + I times in Iz I < 1, 

where p is a positive integer or zero. Then we have 

(~o.3) M[e. f , (e )]  <A(p)eSl(v+l)(r, + I f ,  (o) l) ( ~ - 0) - ' ( ' + ' ) ,  o < e <  ~. 

o f  course if f (z)  is regular we can replace M[~ , f , ]  by the smaller M[O, f] 
in (lO.3). To prove Theorem I I I  suppose first that  p = o and that  (i) holds for 

every n. Suppose further that  

(i 0.4) I f (o) l < r,  

( Io .5 )  w ,  = - I. 

Since f(z) never takes a sequence of values tending to infinity, f (z)  is regular 

in I~1 < ~. Also it follows from this and (Io.t), that f ( o ) = f , ( o ) ,  and hence i t  

follows from Hayman (3), Theorem II I ,  that (io.3) holds in this ease. 

Again if (lO.4) is satisfied but not necessarily (io.5), (io.3) still follows on ap- 

plying the result with . f (z)  instead of f(z). Suppose now that (io.4) is false. 
- - W  t 

Let no be the greatest integer such that  

r,0 _< I f .  (o) 1, 
and put 

(~o.6) ~ (~) - f (~) 
- -  W n o - I - 1  

Then %0(z) satisfies the hypotheses for f(z) of Theorem II I ,  with 

s,o+l = ~ / logr~+l t '  
,o+I  \ rn / 
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instead of s, and also (1o.4) and (IO.5), if we relabel the sequence rn so tha t  

r,0+k, k > O  becomes rk. W e  deduce tha t  (IO.3) holds for  V/(z), so tha t  

log M [~, ~0 (z)] < 8.o+1 + 2 log 1 + A. 

Then (lO.6) gives 
I 

log M[o,f]<--logrn~+,+sm+l+ 21og + A 

= logr~.  + log r,,.+l + s,,0+~ + 2 log I + A 
r .  o I - -  ~) 

ar ( l o g  rn+lt ' -}-  2 l o g  - - - I -  + A. log If(o) l +.o.,. ,-. / ~ - e  

Thus (lO.3) holds in this case also. I t  follows tha t  Theorem I I I  holds general ly 

when p = o and the hypothesis  (i) is satisfied for each n. 

Suppose next  tha t  p ~> o. W e  apply Theorem II.  Let  q~(z) be the funct ion  

of tha t  theorem. Then for  each n, @(z) never  takes  in I z I < I  some value w~, 

such tha t  
Iw; P+I = r . .  

Hence 
, ]~ ( Wn~. 1 I)' I ,~1( rn-b~l/' '~ 

s =~=1 l~ I w---~ ( p +  i )~ log r~ ! ( p +  I) ~ 

Also ]w'~] = r]/{p+l). Thus  it follows from our previous a rgument  tha t  

(I O. 7) ] ~  [~', (~ (~')] < A e "](p+ 1)1 (I {~ (~ "~ "Fll [(p +1))( 1 -- e') -2" 

N o w f ( z )  has at m o s t p +  I poles or zeros so tha t  in Theorem I I  q = p +  I. I t  

then follows from Theorem II ,  (3.I) tha t  given ~, o < ~ < 1, we may choose ~' with 

I A p+I 
(,o.S) ' - - e '  < --1--e 

such tha t  from (3.3) 

(lO.9) M[O, f ,  (z)] < {A M[Q', @ (z)]}v+~ 

and finally by (3.2) 

(1o.,o) I'l, (o) 1 -< A l A (o)I~/~+~). 

Combining (Io.7) to (Io. lo)  we deduce that  for o < e < t 

M[O, f ,  (z)] -< [Ap +' era)+') ' I l l ,  (o)] I/(p+') + rl'(P+')} (1 - -  e ) -2 ]  p+'  

A(P+')'es/(P+I) (IJ;  (0)[ + r,)(I - -  e) - ' (p+I) ,  

which proves (lo.3), i.e. Theorem I I I .  



The Maximum Modulus and Valency of Functions Meromorphic in the Unit Circle. 161 

Suppose now that  f(z) takes no value more than p times in Iz[ < I. Then 

we can apply Theorem I I I ,  with r 1 ~ I f ,(o)[,  and s ~ ~ where ~. is arbitrarily 

small. We deduce that  

M[e,f,] <-- A (p)If, (o)] (I -- e) -2". 

This is the conclusion of Theorem I due to Cartwright with 

[f* (~ = 2"-"  [ f(~ blal a~b~'"b" lain 

replacing #, where a l . . .  an are the zeros and  bl . . .  bn the poles of f(z) in 

]z I--< �89 I t  is not difficult to deduce the exact bound in the form of Theo- 

rem I. 

The chief disadvantage of the method lies in the constant A (p) of Theo- 

rem I I I .  This takes the form A(p+I)~, while Cartwright proved her original re- 

suit with A (p) = A p. This makes it impracticable in general to extend the method 

of Theorem I I  t o  the case of functions having infinitely many zeros and poles. 

To consider this case we Shall adopt different methods, based on the results of 

Chapter I. 

Part  II .  

The Case when p (0) is Unbounded. 

i ~) The problem of this chapter when p(q) is unbounded does not seem to 

have received so much study to date. The most important work in this case is 

probably Nevanlinna's Theory of meromorphic functions. Nevanlinna's results 

involve bounds for the characteristic of a function meromorphic in a circle in 

terms of its valency on a finite number of values., For a more  detailed study ot 

this problem which lies outside the scope of this essay, we refer the reader to Ne- 

vanlinna's books, x 

in our problem. 

Theory are 

The methods are not easily applied to give best possible results 

In fact the strongest results obtainable on the Nevanlinna 

T[r , f ]= 0 {log ~ -~ .}  �9 

From this we can only deduce 

I N~VANLIN~A (I) and (2). 
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so tha t  the results 

( I I . l )  10g M [ r , f . ]  O(1) 
I - - r  

of chapter  I are not  immediate  deduct ions from Nevanl inna ' s  Theory.  Ra th e r  

surpris ingly the Nevanl inna  Theory  can be adapted  to yield results  of the type 

(I I.I) but  we must  consider this  as outside our  scope. W e  shall base our  method  

on the results of Chapter  I. 

To do this we consider f(z) in re la t ion to the roots  of the e q u a t i o n s f ( ~ ) =  

= o, w, 0% where w is the value of E neares t  in modulus  to f ,  (z). In  this way 

the  general  theory  reduces essentially to the case where E contains only 3 val- 

ues which we may take  to be o, I, 0% and i t  is this case which we consider 

first of all. 

This  problem has been considered in Chapte r  I. We  must, however,  ex tend 

the results of the Chapter  to the case when fp (o)do  diverges.  In  order  to do 

this we shall have to obtain results in terms of the roots  of the equat ions 

f(z) = O, 1, oo in [z[ --< R where R <: i. 

I f  z = 0, f .  (0) is defined as in Chapte r  I, I9 in terms of the  poles and zeros 

of f(z) in the circle 

(I 1.2) 

I f  (I 1.2) holds we have 

z--o__[ < �89 
--Oz 

z [ < I + 2 0  

2 +  0 

I + 20 we have (II.2). Thus in 
2 +  0 

and conversely if z is real  and satisfies 0 < z < -  

order  to obtain results involving f ,  ( 0 ) w e  shall cer tainly have to consider the 

behavior  of f(z) in a region conta in ing  (I 1.2) and tile smallest  circle centre  the 

origin, which contains  (11.2) has radius 

1 - / - 2  0 
( ~ . 3 )  0 ,  -- - -  

Throughou t  this wOrk we shall consequently,  in obtaining bounds for  I f ,  (z)l 

in the circle lel-<0, have to consider the number  of roots of equat ions J ( z ) =  

o, w, 0% where w lies in E, in the circle I zl < 0 , ,  where 0, is given in terms of 

0 by (II.3). We  note  tha t  

� 8 9  I - ~ . _ <  ~(I-e), 
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so that if p(@] does not grow more rapidly than a power of 

p (~.) = o {p @}. 

we shall have 

After  this preamble we can state our first and fundamental result as follows 

Theorem IV. Suppose that f ( z )  is meromorphic in [z I<  ~ and that each o f  the 

equations f ( z )  = o, wo, oo have at most p (~) roots in I z I < 0 for  o < e < I. Let  

(I 1.4) Z(e) = log M [@, f ,  (z)] = max loglf.(ee'~ o_<e< ~. 
0 ~ 0 ~ 2 ~  

Suppose that o <-- ~ < ~' < I and that ~., ( .  are given by (I 1.3). Then 

(i) I f  ~. (q') > log [Wo I, we have 

A(~ ~)[i + p ( g ) ] .  (~) > log [w01 (~ - e') 

(ii) I f  Z = max {o, Z (e) --  log I Wo I}, we have 
@', 

f ] Z ( e ' ) < Z + l o g [ w o l + i - ~ -  ~ ( O ' - - q ) X +  [ ~ + p ( t ) l d t  �9 
@, 

By repeated application of Theorem IV we shall obtain all the results of this 

chapter, which will turn out to give the correct order of growth in most cases. 

Roughly speaking the more rapidly p (~) grows, the less effect the form o f /~  has. 

h sufficiently slowly growing sequence will always have nearly the same effect 

as the who lep lane ,  and if p(~) grows as rapidly as (I __0)-a with a >  I, a set 

E consisting of 2 finite values and co will have much the same effect as the 

whole plane. 

12) We need two subsidiary lemmas for the proof of Theorem IV. We 

have first 

Lemma 5. 

Then we have 

Let  O--<@<I, @,--<l~(I, and let 

(z - o) 
gR (q, z) ~ - e 8 

g (e, ~) = al  (e, ~) z -  

 ,=1oo.1 1 oo. I -  2 gR (e, z) 
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(i) I f  ]g (e, z)] ~ �89 then ~ (e, z) = o 

(ii) I f  ]g (e, z)] ---< �89 we have 

o ~ )~ (e, z) --< A [�89 - -  ]g (e, z)]1 

(iii) I ~ ( e '  z)l -~ ' - -e  ~ 

whenever the d~fferential coefficient exists. 

Suppose tha t  I z l ~  R. Then  we have  

I gR(~, g)] :~ I 
and also 

(~2.,) ]ale, z)]= ~z-e ]> ~--eRR--e _>�89 
Thus  in this  case ~(Q, z ) =  o so t ha t  l emma 5 (i) holds. 

Next  when [ z [ =  R, we have 

IgR(e, z)f = , ,  

and hence us ing  ( ,2.I)  we deduce 

(,2.2) �89 < ] g(e. z) ] I~I<R. 

The inequali t ies (I2.2) which were proved for  I~1 = R  hold also when ] ~ I < R  
since the  func t ion  

.q (~, z____~) R ~ --  e z gR(e, z) is equal in  modulus  to  R ( t - - e  z ) '  

which is regular  nonzero in I z[ ~ R ,  and a t ta ins  its m a x i m u m  and  m i n i m u m  

modulus  in this  region on the boundary.  Then l emma 5 (i) follows f rom (,2.2), 

W e  also deduce f rom (,2.2) tha t  if  Ig(e, z)] ~ we have 

(I 2.3) ~ (~, z) --~ log 2, 

and  also we have clearly if �88 ~ I g (Q~ z) l ~ �89 

(,2.4) z(e, ~)< log I ~ l .  

Combining  (,2.3) , (I2.4) we have l emma 5 (ii). 
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The inequality of lemma 5 (iii) is trivial by ( i ) i f  19(5, z)l > �89 

next tha t  
Ig(e, z)l < �89 Ig~(~, z)l > �89 

Suppose 

In  this case it follows from ( I 2 . 2 )  that  

so that  

[ 'q(~ 'z) l= l ~ ] z - - 0  >! ,4  

(i2.5) I z - - e l > A ( ~ - - 5 ) .  

Also 

I , l l  I A = - <  + - - - < - -  

Z - - Q  I - - ~  I - -  5 I - -  Q I - - O  

by (Iz.5). 

Then 

Suppose lastly that  

g (5, z) < �89 a~ (e, z) < �89 

A 
I - -Q  

This completes the proof of lamina 5 (iii) and so of lamina 5. 

I3) We have next 

Lamina 6. Let  o <- ~ < I, 5 '  <- R < i, and suppose that f ( z )  is meromorphic 

in t z l  < I, and that none of  the equations f ( z )  = o, I, oo have more tha~ p ( R )  roots 

in I z l < R .  Then we have 

A(o) 2 B  
< R ~ _ o ,  {llog IA (e)ll + A [p(Zr + i]}. 

Put  

R + ~ w  ' 

w = R~__O z , 

03.2) q~ (w) = f ( z )  = f [ l  (w)]. 

The function z = l(w) maps ] w l < I  onto I z [ < B  so that  the. equations @(w)= 

o, I, oo each have at most p(R) roots in [ w ] <  I. Thus applying Theorem I I I  (i) 

of Chapter I to @[w) we have 
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4. (o) I (i3.3) + ~  < 2 {I log I~, (o)ll + A 

Let  a~, / , =  i to M be the zeros and b,, 

[z I <  R and let a;, b" be the corresponding zeros 
f 

(13.4) l (at,) ~ at,, lu = I t o  

( i3 .5)  Z(b',) = b,, ~ = ~ to 

Then if z, w are real and non-negative we have 

(I3.6) log If,(z)[ = log [f(z)l + ~ log + 
F =  1 

I ( i3.7)  log I~ , (w) [  = log I~(~)1 + ~ log  + i 

Suppose now tha t  z, w are connected by (I3.1). 

(p(R) + i)}. 

= I to 2V the poles of f ( z )  in 

and poles of @ (w). Thus  we have 

M 

N. 

f rom Chapter  I, (I9.4) 

I ,I - Z log + a~) .=~ g(w, b. 

Then (13.4) , (I3.5) give easily 

, R ( z -  e) R ( a ~ -  e) I 

I g (w, a;)l = i - w 2; = ; - -  w a-~ R (z - o) R ( ~ ; -  ~) L 

R (z - a,) 

with the no ta t ion  of lemma 5- Making use of this and (I3.2), (13.6), (I3.7) we 

deduce tha t  
M N 

(I3.S) log If .  (z) l - -  log I 0.  (w) l = ~ Z (z, ~.) --  2 Z(z, b.). 

P u t t i n g  z = ~, w = o we have at once from (I3.8) and lemma 5 (ii) 

(I 3.9) [ l~ I@, (~ - -  log I f ,  (e)]l < A (M + N) < A p  (R).  

Different ia t ing (I3.8) with respect  to z and then put t ing  z = ~  we have, using 
( i3.~)  

Y.(e) R'  e' ~.(o) = ~=e" 

Making use of  lemma 5 (iii) we deduce 

(x3.Io) IJ~ (~) tt q;,(o)] A (M + -h r) < A AR 
(e) ~ i ' - ~  ~.(o) < i  - e  - I _---~p(R)_< ~rs~_e~p(R). 

Using (I3.3) , (I3.9) and (I3.Io) we have lemma 6. 
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Proof  of Theorem IV. 

14) The remainder of the proof of Theorem IV is not easily split into 

lemmas. In  this paragraph we prove Theorem IV (i). We shall suppose throughout 

the proof of Theorem IV that  Wo = I. We may clearly do this without loss in 

generality, since otherwise we can consider f(z) instead of f(z). By applying 
Wo 

Theorem IV to this function, the complete result will follow. 

Suppose now that  

(I4. I) 

and that 

(I4.2) 

Let 

(I4.3) 

log I/; (d) l = o 

l o g l f . ( , ' ) l < o ,  e - < , - < e  '. 

R =Q; = ,  + 2 e____~' 
2 q-~}' 

Then it follows from Lemma 6 and (I4.2) that  

~L_R 
f , ( r )  < R  ~ - r  ~ { - l ~  I]}, 
f . ( r )  

0 < r < ~ ' .  

This may be written as 

d /~ + " I - - l o g  If,(")I + A {p(/~)+ I]] > o ,  dr R - - r  
~ < r < r ' .  

This yields combined with (I4. I ) 

R+e"  R + e  
R --  ~ [A (i + p (R))] > ~ {A [i + p (B)] --  log If ,  (e)l/, 

i.e. 

or 

.+::) 
R - -  o - -O R A [ I  + j9 (/{)], 

2 A R (e' - - o ) ,  
log If,(~)I > (R T--'-~R - -  --<'/p(R) e~x ~,~ + ']" 

Making use of (I4.3) we deduce that  

(I4.4) log If ,  (e) l > - A (e' T e) {p (g,) + i}. 
I - - Q  

Suppose next that  

(I4.5) log I.f, (d) I >- o 
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and tha t  
log fA (e) f < o. 

Let  e~ be the least number  greater  than 0 such tha t  

log If* (O,) = o. 
Then we have 

log I / : ( r ) l  < o, e < , ' < e ,  

and hence by wha t  precedes (14.4) holds with Qj replaeing Q'. Since Q'--> ~,, (14.4) 

holds a fort iori  with ~'. Also (14.4) is trivial if I f , ( 0 ) [ >  I. Thus (I4.4) holds 

whenever  o --< Q < ~' < I and (I4.5) holds. 

Suppose now that  with the nota t ion  of (I 1.4), 

2 (d) -> o. 

Then we can find 0 = O(Q') such tha t  

log I f . (e '  e;~ I >--o. 

Then our previous a rgument  leading to (I4.4), when applied to f(ze ie) gives 

log If, (~ e'~ > 

This proves Theorem IV (i) since 

!5 .1 ) 

and tha~ 

(I5.2) 

Suppose also tha t  

(I5.3) 

In  this case we take 

(~5.4) 

- A ( e ' _ e ) { i  + p(e:)}. 

(e) > l o g  If ,(e ei~ 

15) I t  remains to prove Theorem IV (ii). 

log If, (Q) l -> o 

log I/ ,  (Q) I -< log If, (,')I, 

Suppose first tha t  

, I + 2 ~  

2+Q 
4 

R = r ,  , Q < r - - Q ,  
2 + r  

and use Lemma 6 with r instead of ~. This gives 
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5,/.(") (0 

f,(r) 
de. (r) 

2 R  
< R ~  r~ {log If*(") I + A [1 + p (B)]} 

2 ( 2  + 5 r + 2 r  ~) 
= (1 + 4 ~ 4:~7~-(i :--;.') {log I/, (,:) I + A [i + p (~)]}; 

4 {log ]A (r) [ + A [! +p(R)]}. 
1 - -  t .2 

This may be written as 

d [ 1 - - " I "  4 ( I - - r ) [ i  + p(B)] < A ( 1 - - e ) [ I  + p(B)] d--r~I + r/ log [f,(r)[--< (I + r) a 

sinc'e e--<r--< e' and (15.3) holds. Thus we have on integrating 
Q' 

[i'-:'7 ]:' f \ l + r l  l~  ~ A ( I - - 0 )  [1 +p(B)]dr 
e 

f 3d B = A ( 1 - - o )  [i + p ( B ) ] ( 2 _ R )  , 
0* 

_ < A ( I - - e ) f b  + p(R)~R,  
(,, 

making use of (15.4), i.e. 
e; 

log If,(Q')[ < I I  -b ~'~2~[I --0~2 ) K I - - 0 t /  (KI + e /  log [f*(0)[ + A(I --e).,f[I +p(R)]dR 
e, 

el 
[ 2(e'-~) 1~ A(~--o)f[,§ < I + ( i ~ _ ~ O )  ] log{f . (0){+ (i__e,) ,  

,o, 
and since (15.3) holds so that ( 1 - - o ) < A ( I - - 0 ' ) ,  we deduce 

(I~.~) lo~ [f,(~t)[ < [I + A!0'--,~) 1 ,  - ~  ~ ,o~ Is,/~)l + ~-~  ~ f ~, +~(~3~. 
e* 

16) Suppose next that (15.3) is false, so that  

(16.1) I + 2 0 < ~ 0 , < i "  
2 + ~  

We still suppose that (I5.1), (I5.2) hold. 

(16.2) ~ ~- e* 

We put 

I + 2 ~ '  



170 W. K. Hayman.  

and 

(i6.3) 

(I6.4) 

The function l(w) maps 

yields 

(I6.5) 

where d', are the points 

(I6.3), (16.4) 

= t ( w ) = / ~  (~ + ~ w)  
R+Qw 

q~w) = f(z) = f[1 (w)]. 

[ w ] < i  onto ] z [ < g .  Also Theorem I I  of Chapter I 

A 
log I +,(,~) I ~ ~ [log+ [ ~,(o) 1 + ~ ( I  - - [ d "  I) -1- I], 

such that  @(d:)=o,  I, oo in ]wl < I -  We have from 

R(d,--e) 
d: R2--~d, 

where d, are the points such that  f(d,)= o, I, c~ and [ d , [ < R .  Hence 

- S d :  13 = ,  - -  d ;  a :  = (R~ - -  e & ) ( R '  - -  e & )  - -  n ' ( d ,  - -  e ) ( &  - -  e)  
( R  ~ - -  e d , ) ( R  ~ - -  e &) 

~_(R ~ q')(R~--[d,[') <(R2--e~)(R'--Jd, l~) <A(R- - Id ,  D, 
I R ~ - e ~ , l  ' R ~ ( P ~ - d )  , - e  

since (I6. I), (I5.2) hold. Also I - - [ d : l - - < I  so tha t  we deduce 

(I6.6) ~ . ( t - - [ d ' [ ) < - i _ d  q ~ m i n  {R--[d,[, I--q}. 

Now from (I6.I), (I6.2) we deduce 

/e > -,.: (l +e,) 
so that  

min {R--[d, I, I - - ~ } < A m i n  {R--[d,[ ,R--~,}  

and so (I6.6) yields with (16.2) 
Q; 

Af (i6.7) 2 ( ~ - I  e;I)< V:~_ Q po(,.)a,. 

e* 

where po(r) denotes the number  of d, such  tha t  I d, l ~ r. 1 

I7) To complete the proof, we apply the a rgument  which leads to lemma 6. 

The formulae (I6.3), (I6.4) are the same as (I3.I), (I3.2) and hence if w, z are 

related as in (16.3) and are both real and positive, we have again as in (I3.8) 
M N 

(I 7. I) log I f ,  (Z) I - -  log I ~* (~V)[ = Z ~ (Z, at, ) - -  Z X (Z, b,). 

1 We have clearly Po (r)--< 3 p(r), in the notation of Theorem IV. 
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Here  2(z, ag) ~s the  funct ion of lemma 5 with e = z ,  z = a n ,  and b~, a ,  are 

the poles, zeros of f(z) in I z I < R. 
W h e n  ~ ~ Q, it follows f rom lemma 5 

] a e ~  e 
I - -  ~a  n 

and so a f o r t i o r i  if 

(i) tha t  Z ( z , a ~ ) = o ,  if  

I 
~___ - ~  

2 

lanl-q >I 
I - - Q I ~ , I -  2 

i.e., if ] a~] >-- ~,. Also if ]a ,  I -< 0,, l emma 5 (ii) yields 

Iz(e, an) l -<A.  

Similar results hold for  Z(e, b~), and hence (I7.1) yields 

(I7.2) [ log If ,  (0)] - -  log [~, (o)][ < Apo(O,) 
where P0(e,) is ~he number  of roots o f f ( z ) =  o, 1, oo in [ z l < 0 , .  

be the number  corresponding to z = 0' by (16.3). We  have f rom (17.I) 

M N 

('7.3) log If. (e')] - -  log ] ~b, (w')l = Z Z (e', an) --  Z Z (e', b.). 

Now i~ follows from lemma 5 (i) and (ii) tha t  e i ther  Z (Q', %~) = o, or  

- 1 - e  an J l - e  la#lJ 

A{'+2q'-la,,,l(2+q')} A [I_+2q_' ] 
= 7  ~ - e ' l a n l  -<*-t,'i_~+e' la . l  . 

Thus using (16.2), we have if g(O', % ) #  o 

(I7"4) [~(e', a~)]_< A , ( R - - J a i l ) .  
I - - ~  

Again we have f rom lemma 5 (ii) 

t ~(e', a. ) l  _<A 
so tha t  (17.4) yields 

A 
Iz(e', a A l - < -  ,min{I--q',R--[a:,[}, I - - ~  

and since B --  O' > A (I - -  0') we deduce tha t  

z (e', a,.) _< - A ,  rain [R - -  ~,', ZZ - -  I an.l]- I--~o 

Again let w' 
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A similar resul t  holds for the  poles b~. Thus (I7.3) yields 

A 
[ l o g  [ f .  (O')[ - -  l og  [ 6 ,  (w') [ [ < - -  ' - - O  

R 

(,z.5) Iloglf,(Q')l-logl~,(w')l[-< _A fp0(,gd,', 
I ~ 

e 

where/~o(r) has the same meaning as in (16,7). 

Pu t t ing  w = w' in (I6.5), we have from 16.7), (~7.2) and (17.5) 

(1>6)  log  I f , ( g ) l  

< , log [A (e)[ + A (1 + Po(e.)) + - -  

, { Z m i n  [R--{a,,l, R--O'] + ~ m i n  [R--b,, R--O']} 

- - ~  po (r) d ,'. -- ,--@ 

Also w' corresponds to ~' by (I6.3) so that  

, R ( e + / ~ w ' )  

and hence 
, • (e '  - e) 

~v - R~ - ~0' 
so tha t  

, (/t~ q- 0) (/~ --O') > A (I - -  ~') 
(17.7) I - - W  = R~ ee ,  - I - - e  

Also 

dr 
R e~ 

(,7.8) Vo(e,)-<R ;o(,')d,'< i20 Po(,') 
Q* Q* 

by (16.1) and (16.2). Using (I6.,),  (16.2), (I7.6), (I7.7), (17.8) we deduce tha t  

(I7.9) log If ,  (0')1 < A(li_r l~ I f .  (0) I + - -  

% 

A e f p o ( r ) d , . +  A}. 
I - -  

W e  deduce f rom (16.I) tha t  ( I - - 0 ) < A ( Q ' - - Q )  , so that it  follows from ('7.9) 
tha t  (15.5) still holds if (I6.1) is true. Thus ( I5 .5 )ho lds  whenever  ( I 5 . I ) a n d  

(I5.2) are satisfied. 

I8) Suppose now that  w o = i in Theorem IV so that  



The Maximum Modulus and Valency of Functions Meromorphic in the Unit Circle. 173 

where Z(9) is defined as in (t 1.4). We have proved Theorem IV (i). To prove (ii) 

it is clearly sufficient to show that  
e; 

z +  [i +p(r)] d -- ' I Q' r. 

Q, 

For then the same upper bound clearly holds for log [f,(~'e~'e)[ for every 0, on 

applying (I8. I) to f ( zd~) ,  instead of f(z). Now (I8.I) is trivial unless 

(is.~) lor If, (e')l > z. 

I f  (I8.2) holds let fll be the greatest number less than ~' such that 

( i8.3) log IA(e,)I  = ~. 

Then it follows from (I8.2) and the definition of ~ that  ~1 exists and ~1-->~. Also 

log If,  (,-)1 -> log If,  (01)1, et < r -< e'. 

Thus (I5.i), (i5.2) are satisfied with q, instead of q and Z instead of log If,(e)l. 

Then (18.I) follows with pl instead of p from (I5.5). Since ~j--> ~, it follows that  

(18.1) holds a fort iori  with 0, so that Theorem IV (ii) always holds. This 

completes the proof of Theorem IV. 

Applications of Theorem IV. 

i9) We can solve most of the problems of the type we consider in this 

chapter by repeated application of Theorem IV. General theorems are rather 

cumbersome. We shall prefer to give some particular applications. Our aim is 

to obtain the right order of magnitude for the growth of 2(~)= log M[~, f,(z)]. 

This is less than we can achieve in favorable circumstances by the methods of 

Theorem II.  For instance we obtained in Theorem I I I  the right order of mag- 

nitude of M[9, f,(z)]. On the other hand, the method of Theorem IV, dealing 

as it does with a general increasing function p(q), has of course much wider 

scope than tha~ of Theorem II.  

We recall the statement of the problem in paragraph I. We  shall restrict 

ourselves to results of the following types. 

(i) The case when E includes the whole plane. 

(ii) How small a set E is sufficient to have the same effect as the whole plane 

for a given function p (e), i.e. such that the order of growth of ~ (~) is the same as 

i f  E occupied the whole plane? 
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(iii) What can we prove i f  E is merely unbounded? 

(iv) What  can we ~rove ~f E contains only a finite set of values ? 

Some of these results will be proved for general  p(0), in some cases we shall 

restr ict  ourselves to the funct ions p(Q)= (I __Q)-a. Converse theorems, except in 

the simplest cases will be lef t  to Chapter  I I I .  They will show tha t  at  any  rate  

when p(Q)= ( I - -~) -~ ,  o-----a < 0% all the orders of magn i tude  obtained are best 

possible. 

The result  in ease (iv) is obtained in Theorem IV (ii). I t  appears t ha t  the 

three values o, wo, oo have much the same effect as any bounded set E.  Wr i t ing  

0 = o, ~ for ~' in Theorem IV (ii) and put t ing w o = I, we obtain 

Theorem g .  Suppose that f ( z )  is meromorphic in ]z] < I  and that none oj 

the equations f ( z ) - - o ,  I, oo have more than P(e) roots in I z] <_ e < I. Then i f  

)~(e) is defined as in (11.4), and e, as in (ti.3), whe have 

<-i..a o [,o= + ,s, r ,+ f r.+ p(r)] dr], 
0 

Consider next  the ease (iii) above. We have 

O < o < I .  

Theorem VI. t Suppose that E is an unbounded set containing zero, and that 

none of the equations f ( z ) =  w, where w lies in E, have more than p(Q) roots in 

Izl<--e. Then i f  
1 

o o  

0 

(I9. I) 

we have 

(I92) lira (I - -  e) g (Q) = o. 
Q-+I 

Theorem VI shows tha t  if (19.1) holds, we can sharpen the result  of Theorem V 

by merely assuming tha t  E is unbounded.  I t  does not  appear tha t  this  is pos- 

sible in general  if (19.1) is fa lse? W e  shall, however, later prove some results  

in this ease also, which hold for some 0 arbitrari ly near  I. (Theorem X.) These 

results lie ra ther  deeper than  Theorem VI and will be proved only in the case 

p ( Q )  = ( i  - 

This result~was proved when p ( ~ ) =  o in HAYMAI~T (2), Theorem V. Even in this case (x9.2 
is best possible as is shown in Theorem VI of tha t  paper .  

See Theorem III  of Chapter III, which proves this if p ( 0 ) =  I/(I --0).  
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We come now to our fundamenta l  result  in the problem (i) and (ii) s tated 

above. This is 

Theorem VII. Suppose that E contains zero and a sequence of  complex num- 

bers w~ satisfying 

('9'3) Iw.l-<l ,~.+ll-<klw. I, n =  x , 2 , ,  

where k is a constant greater than one, and 

(x9.4) Iw, l - ~ ,  as , , ~ o o .  

Then i f  none of  the equations f ( z )  = w, for  w in E ,  have more than p (r) roots in 

I z l _ < r < I ,  we have 

i * d t  Z(O)-<log~+A [ ~ + l o g k + p ( t ) l ~ _ _ r  o < 0 < ~ ,  
�89 

,ohe,.e ~ = m a x  [ I f ,  (o)I, l w ,  I]. 

Oorollary.  I f  E eonsists of  the whole plane, so that f ( z )  takes no value more 

than P(O) times in [zl<_ o, we have 

f * d t  
z(o) < log  If,(o)l + A [I q- p(t)] I---~ ~" 

. J  
�89 

We shall see tha t  the corollary to Theorem V I I  gives in general  the r igh t  

answer for our problem (i) above. Also when p(p) is bounded the conditions 

(I9.3), (I9.4) cannot  be essentially weakened. 1 On the other  hand,  we shall  see 

in Theorem IX,  t h a t  if p(o) grows as rapidly as (I _ ~ ) - a  wi th  a ~ o ,  we can 

relax (I9.3) to Iw~+x [ <  I w~l k, and this condit ion cannot  be fu r ther  weakened. 2 

We shall first prove Theorems u  and V I I  and then give some simple con- 

verse examples to the corollary to Theorem VII .  Theorem V has been proved 

already in Theorem IV (ii). 

Proof of  Theorems u  and VII. 

20) To prove Theorem VI, take ~ so nearly I t ha t  

1 

(~o.,) f[~ + ~(,-)]d,- < ~. 

1 See Theorem IV of Chapter  HI .  

See Theorem V of Chapter  I I I .  
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Then take a value w o in E,  such tha t  

log I We I > Z (e). 

Since E is unbounded f (z)  has at most p(r) poles in I ~ 1 - < , <  ~, a~d so we ca= 

apply Theorem IV (ii). 

We obtain 
i 

z(d)<loglwol+ A f [ i  - -  - - ~  + p ( r ) ] d r ,  e' > - e .  
I - -  e 

We deduce tha t  
i i m  (I - -  e'): Z (e') ~< A $, 
o'--->1 -" 

and since e is arbi t rary  Theorem u  follows. 

To prove Theorem VII ,  note tha t  Theorem IV (ii) yields on making e'---> e, 

d A 
(20.2) e-d--Z(e) ~< -- [)- (e) - -  log I*%1 + P(e,) + *] 

I - - e  

provided that  Z(e ) --> log IWo I. I t  follows from ('9.3) and ('9.4), tha t  if Z(e ) > log [w, 1, 

we can always find n such that  

(20.3) log Iw, [ < Z(e) ~< log [w, ] + log k. 

By applying (20 .2)  with w0 = w,,, we deduce tha t  

_dd Z A [log k + p (e,) + ~1 (20.4) do ( e ) < i _ _ ~  

provided tha t  
Z (e) ~> log lw, 1. 

We note that  Theorem VII  is trivial if Z(e) < log ]wjl. Suppose then tha t  

)'(e) > log ]wl ], and tha t  e0 is the smallest positive number  such tha~ 

Z(t) > log ]w,], qo-< t < q .  

Then (2o.4) yields on wri t ing t instead of e and in tegra t ing  from t = eo to e 

/ (2o.s) X(e)--Z(eo)--<A ( p ( t , ) + l o g k + i )  dt  <_A [ p ( t ) + l o g k + i ]  d t . 
: - - t  I - - t  

eo �89 

Also we have ei ther  ~(eo)= log lw,] or eo = o so tha t  

�9 ~(e,,) -< max  {log I~ ,  I, log If ,  (o)I} = log  ~. 

Thus Theorem V I I  follows from (20.5). 
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To prove the corollary we take w~ = f . ( o ) e  n-~, and apply the main Theorem. 

We deduce that 
q* 

f Z(Q) ~ l o g  [ f . ( o ) {  + a [ I  + I + p(t)] 1 3 '  
�89 

and t, he corollary follows. 

Some Simple Counterexamples to Theorem VII. 

2I) In  this paragraph we study some simple examples to show that  the 

order of growth obtained in the corollary to Theorem VII  is the correct one, 

at any rate when 

(2I.I) P(e) = b(I __o)--a, o < a < o o "  

In fact  if a = o in the above, the corollary to Theorem VI I  yields: 

z(e) ~ l o g  If , (o) l  + a ( i  + b) log 
I 

2( i  - ~,) 

3 

14- 642128 Ae~a mathemat/ca. 86 

< log If ,  (o) 1 + A (i + b) log - - .  
- 2 ( ,  - -5 )  

On the other hand, the function 

( '  ~ - g t  2b 
(21.2) f(*)  = x 1 - ~ t  

is regular nouzero in I s [ <  I and takes no value more than b + I times i f .b  

is any real number, while at the same time 

z (e) = log M [~,/] > 2 b log 
I - -  0 

Thus the order of growth given by Theorem VII, corollary for 4(5 ) is correct, 

when P(O) is constant. 

On the other hand, when a > o  and P(0) is given by (21.1) we have 

* O* 

= b f  a, o(,) o(i) O[p(o)]. 
~lg(t) ~ (I - -  t) a+l  (I - -  e , )  a (1 - -  ~)a 

o o 

Thus in this ease Theorem VI I  corollary gives 

(21.3) z(e) = o{p(e ) } .  
Let 

[ i  + z i "  
f ( z )  = , ,  + i v = i ~ - - - ~ l '  o < a < o o  
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ct 
be the function of (21.2), which takes no value more than  - +  i times. 

2 
we have 

(21.4) 

Hence if we put  

Also 

IV[ < (I + 01a< 2a(i__~)_~. 
\1 --0/ 

~b (z) = e / (z/ 

the equation ~ (z )=  w ~ o has a root only if 

f (z )  = log +. 2n i. 

For  given w, n the equation (21.5) has at  most  a +  I roots in [ z l < I  and it  2 
follows from (21.4) tha t  the equation (21.5) only has roots in I z l < r  for 

2a+1( I - - e ) - a  different values of n. Thus for given w (21.5) has at  most. 

( a +  i )2a+1( i__~)_  ~ different roots in I z [ <  I, while clearly 

).(e) = log M [e, f ]  -> (i --  e)-o, o < a < oo. 

Thus we see tha t  (21.3) cannot  be sharpened so tha t  the corollary to Theorem V I I  

gives the r igh t  order for )~(~), when p(0) is given by (21.0, and a = o or o < a < c~. 

22) We proceed to obtain some general conditions under  which the in- 

equality (21.3) holds. We have seen in the preceding paragraph,  tha t  we cannot  

hope to prove more than  this, even if f (z)  takes no value more than  p(Q) times 

in ]z] < 0. Also as stated in paragraph I I, wi thout  making more assumptions 

on p(0), we can only prove the slightly weaker inequali ty ~(~)= O{p(Q,)}. I f  

p(q) does not  grow too rapidly, this implies (21.3). 

We need first two lemmas, which give bounds for the integrals occurring 

in Theorems V and VII .  

Lemma 7. Suppose that p(t) is a positive increasing function, defined for 

o ~ t < I, and satisfying 

(22.I) p [ � 8 9  t)]>_kp(t), o - - < t < I ,  

where k is a constant greater than 2. Then we have 

(22.2) I--I p(t)dt<~_z(O--�89 � 8 9  
i 
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Suppose first~ 5 ~ t .  Then 

- -  < (~ - -  5 ) ( 5 - -  �89 8k 
P(t)dt<--(5--�89 I 5)(5--  �89 k - - 2  

�89 

Thus (22.2) holds in this case. I f  ~---<5 < I, we define inductively 

5o = 5, 

5- = 2 5,~-I-- 1, n--~ 1, (22.3) 

and we have 0o 
f p  (t) a t < 2 (50 - 51)p (50) -~ 2 (i - 5)p  (5), 

01 

f p ( t ) d t  < 2 ( 5 1 -  5.2)p(5, ) = 2 " 2 ( I -  5)P(5,) 
~2 

2 
< 2 " lf i(I  - -  5 ) P  (5),  

by (22.1). Cont inuing we deduce tha t  if 5,,+1 ~ 0  

On 

Qn-t- 1 

Let  no be the largest integer  for which 5~, defined as in (22.3). is positive. 

Then 5,,~ -< �89 and so 

f f~ ~ ' i  1 p(t) d t ~  p(t) d t =  p(t)dt  

8k 
< ~ (5 - �89 (i  - 51p(51 

since 5 ~- ~. This completes the proof of lemma 7. 

We  deduce 

2 L ( I  
< k - 2 - 5) p (5) 

L e m m a  8. Suppose that p (t) is a positive increasing function of t for o ~-- t < I 
and satisfies (22.I) with k >  I. Then we have 

f dt  8k  
P(t)7--~- t < ~ _  ~ (5 -- �89 P(5). 

t 
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We apply lemma 7 with p(t) /( , -- t) ,  which increases since p(t)does, instead 

ofp( t ) .  We have 

p[�89 + t)] 2p[�89 + t)] > 2 k  p(t~_) 
~ - � 8 9  ,-t ~ - t  

since (22.I) holds. Also by hypothesis 2k > 2. Thus we have from lemma 7 

P 
' ( t )  d -~ t  t 8 . 2 k  p(~) ~:_~. p(  < - - ( e - � 8 9  , 

2 k - - 2  I - - ~  
�89 

which proves lemma 8. 

Using lemma 7 and Theorem V we can now prove 

Theorem VIII. Suppose that p(Q) is an increasing function of Q for o < ~ < I, 
satisfying (22.1) with k >  2. Then i f  f(z) is meromorphic in {z{ < I and none oj 
the equations f ( z )=o ,  I, CO have more than p(o) roots in {zl<--e for o < ~ <  i, 
we have 

+ Aq[', + l~176 + ~ k  p(q,)~] log M [~, f , (z)] < log+ If,(o) l 
where 

' + 2 0 .  
2 + Q  

In fact Theorem V yields 
O* 

log M[Q,f,(z)] < log + {f,(o) { + T~--~ n[~ (I + log + [f,(o) l) + 
�89 

<log+J.f ,(o) l+  A0  (i + l o g  + I f . ( o ) { ) + - -  
A ~ (e, - �89 (e,) 

k - - 2  

by lemma 7. 

I f  

(22.5) 

Also ~ , - - �89  < A ~, and hence Theorem VII I  follows. 

p(~) = b(I - -~) -a ,  a ~> I, 

(22.I) holds with k = 2 a >  2. Thus Theorem VII I  yields 

Z(~) = log M [~, / ,  (z)] = 0 {p(~,)} = 0 {p(~)}. 

This order of growth cannot be sharpened, even if we assume that  f(z) takes 

no value more than p(Q) times in I z l < Q .  Thus to rever~ 00 our original prob- 

lem (ii) of paragraph 1% we see that if ~v(~) grows as rapidly as in (22.5), any 



The Maximum Modulus and Valency of Functions Meromorphic in the Unit Circle. 181 

(23.I) 
a~d p (o) : (~ - o ) -  o, 

[zl--<e we have 

set /~ containing more than 2 values has roughly the same effect on the order 

of growth of ~(~). 

This agrees with Nevanlinna's theory, who showed that  if f (z)  takes any 

value as frequently as this, f (z)  takes all values with at most two exceptions 

roughly equally of ten)  There is not, however, entire agreement between the 

two theories, since Nevanlinna's theory still holds, at least in amended form 

when p(O)= I / ( I - -0 ) ,  while Theorem VII I  breaks down, as we shall see in The- 

orem I, Chapter I I I .  

23) In  the general case when p(o) grows less rapidly, the situation is not 

so simple. In fact if M >  I 

f (z)  M exp I + z  
I - - 2  

takes in [ z [ < I  no value w such that  I w l < M ,  while at the same time 

log M [e, f ]  > i +__0~. 

Thus in order to prove stronger results we shall have to assume that  J~ is 

unbounded at least. Theorem V shows that  if ~ contains a sequence satisfying 

then if f (z )  takes no value of E more than p(Q) times in 

logM[fl ,  f ]  = O(I--f l)-a,  a > o .  

We shall show tha t  if P(O) grows as rapidly as this, we ean replace the condi- 

tion (23.1) by the weaker condition 

(23.2)  I w . + , l  < I w . I  ~ n = ~, 2 , . . ,  c >  ~, 

and yet obtain 
log M [ e , f , ]  = O[p(e,)] 

if f (z)  takes no value w. more than P{O) times. We have 

Theorem IX. Suppose that :E is a set of values containing zero and a sequence 

w~ satisfying (23.2) and 

(23.3) w~ ~ o% as n-+ oo. 

Suppose also that p(o) is an increasing function of 0 satisfying (22.1)with 

some k >  I and p(o) >- I. 

1 NEVAI~LII~NA (1) Chapter  IV, 
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Then i f  f(z) is meromorphic in I z [ < I  and takes no value of ~E more than 
P(e) times in Izl ~-~, o < ~ < I ,  we have 

x(e) = log M [~, f . (z ) ]  <- A(c, k)[x + log + I,f.(o)l + log Iw~l]p(e.). 

On the other hand, it will be seen in Chapter I I I ,  Theorem V, that  if E 

does not contain a sequence satisfying (23.2) and (23.3), then f(z) exists taking 

no value of .E more than ( I - -~ )  -" times, o < a g I  in I z [ < I ,  while yet 

lim (I __~)a log M[Q, f ,  (z)] = cx~. 

Thus the condition on E to contain a sequence satisfying (23.2) and (23.3) 

is the necessary and sufficient condition that  E shall have the same effect as 

the whole plane when p ( r  o < a ~  I. Thus Theorems VII, VI I I  

and IX solve problem (ii) of paragraph I9, w h e n p ( Q ) = ( I - - ~ )  -a, o - - ~ a <  c~. 

2 4 )  To prove Theorem IX we firs~ extract from the sequence w. a certain 

subsequence. Let n~ be the smallest integer such that  

(~4.~) Iw,,,I > IWll k 

where k is the constant of (22. I) and Theorem IX. Then 

and hence by (23.3) we have 

(24.2) 

Thus (24. I ) and (24.2) give 

Iw~t < Iwl l<  

tw, I ~ -< I w,,.J -~ IwlJ< 

We can similarly find n s such that  

Iw,,I ~ _< Iw~,l --~ Iw,,t kc 

and finally a sequenae np, such that  

~()nl ~ W i 

t % l ~ - ~ l w , > ~ l _ < l % t  ~o, p >  I. 

We now ignore all the w~ expect those for which n =np and this remaining 

sequence we relabel simply wp. We thus obtain a sequence w,, none of which 

f (z)  takes more than P(e) times in lel < e, and which satisfies 

(~4.3) I~,,I ~ < Iw,,+,l-< I,~,,I ~, n --> 1. 

Also wl is the same in the old and the new notation. 
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Le t  ~,~ be the  least  number  such tha t  

I f  IA(o)l>lw~l,  we put e ~ = o .  If  If.(~)l <lw,~l  for * 1 < I  we put e , ,=  ' .  

any case we h~ve on upplying Theorem IV (ii), with ~ = 0,~, ~ ' =  q.+t,  

f< 
Wn I 

provided tha t  0~ > o, where 

( 2 4 . 5 )  t .  = e , , .  - 

tn+ l 
A 

[ I  

[ [i +p( t ) ]d t ,  
I - -  ~n+l d 

I + 2 ~ n  

2 + ~,, 

In  

Now we have p(t)--> p(o)>---I by hypothesis ,  so tha t  

tn+l tn+l 

A f [I +p ( t ) ]  d t  ~- 2 A  f p ( t ) d ~  
I --~n+l , I - -~n+l  

t n t n 

tn+l 

< A f p ( t )d t  
I - -  tn+l . 

tn 

since 

Thus  (24.4) yields 

tn 

Suppose now tha t  ~,~ > o, and tha t  

(24.7) log Iw, I < B p ( t J ,  

where B is a cons tan t  to be determined.  Le t  p be an integer,  such tha t  

(24.8) k p-1 ~> C. 

Then  if 

(24.9) I - -  tn+l < 2-P (I - -  t,,) 

we deduce by successive appl icat ion of (22.1) tha t  

p(t.+l) >- kpp(t~) > kcp(t~) 
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by (24.8). Also by (24.3) we have 

log Iw~§ k~ log Iw~l-< k~Bp(t,,) 

us ing  (24.7), and  hence (24.7) and (24.9) give 

(24.io) log Jw,+ll < Bp(tn+l). 

Suppose  nex t  t h a t  (24.9) is false. Then  (24.6) gives 

$n +1 tn + l 

log I ~ < - -  p (t) d t --< A 2p 
I - -  tn I - -  t 

tn tn 

< A(c, k)p(tn+l) 

m a k i n g  use of l emma 8. Using the  f irst  inequal i ty  of (24.3), which gives 

W n +  1 

we deduce t h a t  in this  case also 

(24.I I) log Iw~+~l <-- A(e, k) p(t~+~). 

Thus  if (24.7) holds,  we have ei ther  (24.Io) or (24.II).  Choos ing  

(2 4 . 1 2 )  B 3> A (e, k), 

we see t h a t  (24.7) implies  (24. I0), provided t ha t  (24.12) holds, Le t  no be the  
smallest  in teger  such  t h a t  

Iw,.I > If,(o)l. 

Then  (24.7) holds wi th  n <-- no, and B = log Iw.01. Also if I;2(o)1 > Iw, I i t  follows 
f rom (24.3), t h a t  

log f w,, f < k ~ log If, (o) l. 

Thus  we have in any ease 

log ]w,,, I < log I w~ I + k e log + If* (~ 

I t  follows f rom this  and  (24.I2), t ha t  (24.7) holds for  all n wi th  

(24. is) B = log I w, I + ~ log" t f .  (o) l + A (c, k). 

Suppose  now tha t  0 > o, and  let  n be the  larges t  in teger  (if any), such t h a t  

(24.I4) Iw,,I < M [0, f , ] .  
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If  no such integer exists, Theorem IX is trivial. Otherwise we have from (24.3) 

and (24.7) 
log M [Q, f .  @] < ~ ~ log p w,, I < k ~ B p  (t,,) < ~ c B p  (Q.) 

since 
0,~<@ 

by (24.14) and so tn--< 0, by (24.5). Making use of (24.I3), Theorem IX follows. 

Some Further Results when E is Unbounded. 

25). We have considered in the last few sections what kind of sets E have 

the effect of the whole plane for different functions p(@), on the rate of growth 

of ~t(@). Theorem V I I I  shows that if p(@) satisfies ( 2 2 . I )  with k >  2, ~ny set E 

containing at least 2 finite values has this property, while Theorem IX shows 

that  if (22.I) is satisfied with k >  I, then it is sufficient to assume that  E con- 

tains a sequence satisfying (23.2). These results may be considered as generaliza- 

tions of Theorem VII.  

We conclude the chapter by proving certain results on the assumption that  

E is unbounded only. These results will take the form of showing that  M [@, f , ]  

satisfies a certain inequality for some values of ~ arbitrarily near I. Also we 

can in this case replace M I@, f , ]  by M[e, f], even if f(z) is meromorphic. Since 

the form of the best possible inequalities is rather intricate and cannot easily 

be stated in the simple form of e.g. Theorems V and VII,  we confine ourselves 

to the case 

(25.I) p ( e ) = c 0 - e ) - t  o_<a<oo,  c > o .  

We note that  in this case Theorem VI gives 

(25,2) log+M[o,f,(z)]=o(I--@)-l, o < a < i ,  

while Theorem V gives 

(2 5.3) log M [@, f ,  (z)] = ~ log ~-~:-~Q a = 1 

(25.4) log M [@, f.(z)] = 0(x - -e )  -a, a > I. 

These inequalities are the strongest which hold for all @ sufficiently near I. 1 

Also the functions 

1 See Chapter  I l I ,  Theorems I I  and I I I ,  section 17, for converse examples  to (25.2), (25,3) ' 
(25.5), (25.6). (25. 5) and its converse  wore proved for a ~ -o  in HAYMAN (2). 
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/ I + z / a  
f (z)  = exp \ I - -  Z /  

show that  we cannot  hope to s t rengthen (25.4) at  all, even i f f ( z ) t a k e s  no value 

more than p(~) t imes in Iz] < I. We can, however,  sharpen (25.z) and (25.3)for  

some values of ~ arbitrari ly near  I. W e  have in fac t  

Theorem X. Suppose that E is an unbounded set of complex values and that 

f (z)  is meromorphic in [z] < I and takes no value of  .E more than p(Q) times in 

Izl < ,, where p(~) is given by (25.I). Then we have 

l q -a  

(25.5) lim ( I  - -  e )  3--a  log M [e , f ]  -< o, o -< a < I. 
Q--*I 

(25.6) lira log M(Q, f )  < A, a = I. 

-~ x P (e) log log ~ - -  
I - - Q  

(25.7) lira log M[e, . f  ] t-. A(a), a > I. 
Q-.1 P(q) 

26). To prove Theorem X we may suppose without  loss in general i ty  tha t  

E .contains zero. For  if not, we may consider  f ( z ) - - w  o instead of f(z), where 

w o is a value of E. This will not  al ter  any of the inequali t ies of Theorem X. 

Also if w is a value of E,  f ( ~ ) - - %  does not  take the value w - - w o  more than 

1 ~ t imes in I z] <Q,  and w- -Wo is unbounded  if w is. 

W e  next  write 

(26.1) Zl(e) = max log M[r, f . (z)]  = max Z(,'). 
0--<r~Q 0--<r<p 

Then it is sufficient to prove Theorem X with Za(p) replacing log M [0, f ] .  In  

fac t  it follows f rom Theorem VI  of Chapter  I, tha t  given Q, o < p < I, we can 

find r such tha t  Q--< r--< �89 + 0) and 

(26.2) log M [r, f ]  --< log M [r, f ,  (z)] + A n [ ~ ]  

where n [ ~  --~] den~ the number ~ p~ ~ f (z)  in [z[<--3+04 Also since 

f(z) takes no value of the  unbounded  set E more  than 10(~) t imes in [ z ] < 0 ,  

f (z)  has also at most  p(Q) poles, so tha t  with the notat ion of (26. I) we deduce 

from (26.2) and the hypotheses  of Theorem X, tha t  given t, o < e < i ,  we can 

find r, t----- r -<  �89 + O) such tha t  
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(26.3) log M[r , f ]  <<- •, [�89 + ~)] + A(a)c(I __~)--a. 

Hence  if a < I  and p is so chosen tha t  
l + a  

J~l [�89 (I  -I- e)]  < 8 ( I  - -  ~) 3--a 

we have 
l + a  

log M[r , f ]  <--s(I--~) 3 - ,  + A(a)e(I _Q)-c,  

l + a  

< 8(1 --~') 3-a + A(a)c(I --r)-" 

and since a <  i + a  - - ,  o < a < I, (26.3) holds for  some values o f t  arbi t rar i ly  near  I, 
3 - - a  

and , is a rb i t ra ry  we deduce tha t  
l + a  

lira (I - -  ,.)~-a log M Jr, f ]  < o, 
r---> 1 

1.e., (25.5). 

Suppose next  t ha t  a = r. Again (26.3) holds for  some r in every range  

~ r ~ � 8 9  +p) .  Choose ~ so tha t  

I I 
Z, [�89 (1 + O)] < A c log log - -  

I - - ~  I - - e  

Then  (26.3) gives 

log M [r, f ]  <-- A c I ~ [ l o g l o g  I + A ]  

- -<A e  log l o g ~  + A  �9 
i - - r  I - - r  

Since this holds for  some values of  r arbi t rar i ly  near  I, (25.6) follows. 

Last ly  we can prove (25.7) direct. I t  follows from Theorem IV (ii), applied 

wi th  0 = o, t ha t  in this case 

z,( , )< + , f  (I_t)_adt I - - ~  I 
0 

A 0 (i) e' 
<- (i--q')~ + - I - ~ ' '  o <  < i ,  

taking for  w any value of E.  Hence  it  follows f rom (26.3), t h a t  we have for  

some r in every range  ~' -<- r < �89 + ~') 

A(a)c 0 ( I )  
log M Jr, f ]  < (I r) ~ + - -  

- -  I r 
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Since a > I, (25.7) follows on taking  r sufficiently near  I. 

Thus to complete the proof of Theorem X, we may suppose tha t~E contains 

zero and we need only prove tha t  

l + a  
(26.4) lira (I --  0) 3-" 21 (0) g o, 

Q---~ 1 
and 

(26.5) lim , , 21(0) 
r P(q) log log (I /(I--e))  

where 21(0) is defined as in (26.I). 

a < I  

< A, a = I ,  

27) We prove first  (26.4). The funct ion 21(0) is non-decreasing and clearly 

(26.4) is trivial if 21(0) is bounded. Thus we may suppose t ha t  

Z~ (q) ~ o o ,  a s  q - ~  x. 

I t  follows f rom Theorem VI  tha t  given ~ >  o, we can find 0o such tha t  

(27.i) ( ~ - 0 ) 2 1 ( 0 )  < ~ ,  0 > 0 0 ,  

if a < I .  Choose w in E such tha t  

(27.z) log I w I > z, (00) 

and let 01 be the smallest number  such tha t  

2 (0,) = log M [ o , , / , ]  = tog I w I. 
Thus 

(27.3/ 2(0,) = 21(0~/= log Iwl. 

We then  apply Theorem IV (i) with 0~ instead of 0' and we deduce tha t  if 

0 < 0 <  0 , then 
A(I - -0 ) r  

2(01)--2(0) < (-! ~ l )  lI +/7(01")]' 

and since from (27.3), 21(01 ) = 2(01) , we have a f o r t i o r i ,  

A1 C (i - -  0) 
( 2 7 " 4 )  21 (01) <[  21 (0) "~ ( I  - -  q l )  l + a  

provided 01 is so near  I t h a t  

P (01.)  = C ( I  - -  01 , )  - a  ~> I ,  

which we may assume by taking w large enough. Suppose now fur ther  tha t  

< Ale(I --0o) 
(~-0o)- ( ~ - e , )  1+" 
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where 00 is the  number  of (27.2). This again can be achieved by taking w suffi- 

ciently large so tha t  01 is sufficiently near  I. We  then  choose 0 in (27.4) to 

satisfy 
e A ,e ( ,  --0) 

(27"5) I - -  0 (I - -  et) l+a 

and it follows tha t  0 >Co, so tha~ (27.I) h o l d s . . T h e n  (27.4), (27-5) give 

(27.6) z~(q,) -< 2_~_~ = 
I - -  0 

2 (A ,  c 8) �89 (I - -  ~1) -(1+a)12. 

We next  apply T h e o r e m  IV (ii) with ~1 ins tead of 0- We may take ~ (0') instead 

of Z (0') in tha t  theorem, since ~ (Q)--< log ]w, [, e <-0, and the  r ight  hand  side 

of Theorem IV (ii) increases with 0'. Then Theorem IV (ii) gives 

2,(0' ) - -  log ,w] <-- --~'--0A f[x + (1 - -  t ) ' - - c  ] dt 
Qt* 

A (a) c (I --  01) ' - a  ~< 
' - - 0 '  

Then using (27.3) , (27.6) we deduce tha t  

(27.7) 21(0' ) --< (A 1 c ~)~ (I - -  el) -a+a)/~ + 
A (a) c ( ,  - 0,) 1 -~  

We may suppose 01 so near  I tha t  the  second te rm on the r ight  hand  side of 

(27.7) is less than  the  first when 0 ' =  Or. W e  then choose 0' so tha t  the terms 

are equal, i.e., 
(I - -  0,) l - a  (& c ~)~ (, - o,)-I'+o>i ~ = A (~) c , - -  o' 

lX2 i , I  2 1 \ 
= {(A1 e ~)~('+~)(A (a)c) 1/(I-a) (, - -  0')-1/( 1 - ' ) } / t ~  + ~-~1 

= K ,F, K '  ( I -- 0')  - ( l+a)/(3-a) ,  

where  K, K' are positive constants  independent  of e. Then  (27.7) gives 

l+a  
)L,(0')--< 2Ke~c'( I - -0 ' )  s-a 

and this holds for values of 0' arbi t rar i ly  near  I. Also e is arbi trary.  Thus 

(26.4) holds. 
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28) To complete the proof of Theorem X it remains to prove (26.5). 

follows from Theorem IV (ii) that  

O* 

I - -~)  I - - ~  I - - r  
0 

I t  

_< ~(o,,___~, + _  
1--Q 

A c  i 
log - - ,  

I - - 0  I - - 0 .  

i . e , ~  

A c  I 
(28. I) )., (~) _< l o g - - ,  ~>--eo. 

Choose now w in E so large that  

(28.2) log Iw I > z, (Co), 

and let ~ be the smallest number such tha t  

(28.3) x, (q) = log l*~ {. 

We apply Theorem IV (ii) and deduce that  

(28.4) 

e. 
Zl(O,)<xl(q) + _ _ A  [ ' ( i +  c ) 

1 - e '  ~ i - r  
d ' r  

i f - -  

- -  - - }  1 1%- 
I - - Q  

c 
--> I, which we assume. 

I - - ~  

We suppose, as we may, tha t  w is so  large that  I - - 0  < - I  and we then 
e 

choose Q' so that  

(28 .5 )  

Then (28.3) and (28.4) give 

I - -  Q log I 
i 

I - - ~  I --~ 

A 
I- 

(e') 
o 

~, -< z, (e) + / 
L 

I - I - l o g  log i ~ O ]  

< A c log I + A [ 
- -  - - -  p I 

I - - - ~  I --0 I --~) t 
+c,o 1oo ] 
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on making  use of (28.I) and (28.2). Using (28.5) and the fact  tha t  e'>_-e, we 

deduce tha t  
,l(e,)< __Ac [ I )l  

i e '  log log ~ + 0 ( I  
- -  i - -  e 

and since this holds for values of e' arbi t rar i ly  near  I, we deduce (26.5). This 

completes the proof of Theorem X. 

We  may remark here tha t  the above a rgument  clearly also yields the in- 

equality 

X, (e ' )=  0 [p (e') log log i - I ~ ]  

for some values of e' arbi trar i ly near  I if p (e) is a funct ion of the form 

and f (z) takes no value of an unbounded set E more thanp (e) times in I z I -< e. 

Thus the convergence or divergence of f p (e)de does not  seem to have the same 

fundamenta l  difference in effect tha t  appears in Theorem VI. Nevertheless the 

rate of growth 
c 

I - -  e 

is nearly critical in the sense tha t  if p(e) grows as rapidly as ( I - - e )  -a, with 

a > I the results are fundamenta l ly  different in character  f rom those when p (~) 

grows like ( I - - e ) - "  with a <  I. In  the critical case a = I, converse theorems 

appear to be most  diff icul t  to construct.  We shall show, however, in Chapter  I I I  

t h a t  all theorems which apply to the case p (e) = (i - -  0) -a are best possible. These 

results will appear in the next  issue. 


