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Introductory Abstract

1) Let E be a closed set of complex values w containing w = 0, oo and at
least one other finite value. Let p(g) be an increasing positive function defined
for o< p<1.

We consider in this essay a function f(¢) meromorphic in |[2[ <1 and such
that none of the equations
f&) = w,
where w lies in E, have more than p(p) roots in |z|<p, 0<g < 1. In other
words the valency of f(z) on the set E is at most p(g) in |2]<p, 0<p< 1.
We shall also say sometimes that f(¢) takes no value w of E more than p(p)
times in |z] <.

Our aim is to find bounds under this hypothesis for the maximum modulus

of f(e)
Me.f(e)] = max |f(oe)].

0=8s2m
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We confine ourselves here to the case when p(gp)= 1. There are in this case
various difficulties. We cannot use the simple theory of subordination to give

the extremal functions. Further since f(2) is not in general regular, we have
M[Q’ f] = 00

whenever the circle |z| = ¢ contains a pole of f(z). Lastly even if we assume
that f(z) is regular and takes no value more than once, we cannot from the
boundedness of f(o) alone deduce a bound for Mg, f], as is shown by the
functions
fle) = k2

for which f(o) = o, while % is arbitrary. If p(}) < p, so that f(z) takes no value
of F more than p times in |z]| <4 and f(z) is regular, a bound for M [g, f] can
be obtained in terms of

pp = max [1, f(o), f'(0), ..., /P (0)].

We have preferred, however, to use the following method. Let f(z) be meromorphic
in |z| <1 and let a,, 4 = 1 to m, b, v =1 to n, be the zeros and poles of f(¢) in

IZ:Egz =< %. Then we define
[ 96 )
fol®) = fE)2mm T —
H g(g) aﬂ)
where .
_z—E ||
g(§7 Z) - _I‘_'i__z:" 2

Thus f,(z) is obtained from f(z) by dividing out the zeros and poles of f(z) in
the neighborhood of the point z. If f(z) is regular nonzero in |z| <1, we have
fo(2) = f(2). The function f,(¢) has a continuous modulus in |z| < 1. However,
except near the zeros and poles f(z) does not differ too much from f{(z). Further

we can obtatn bounds for

Mo, f.(e)] = Oiggnlf* (0]

in terms of o, |f.(0)], E and the function p(o) only. We shall deal with f,(2)
throughout and obtain bounds for My, f.(2)]. Also when f(z) is regular we
have
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lfe =1/l
so that bounds for Mg, f] follow.

2) In Chapter I we consider the case, where E consists of 0, 1, co and p (o)

is a general increasing function such that

1
[ple)de<oo.
0

Another way of putting this is to say that

(2.1) No=23(1—]|d)<oo
y=1
where d, runs over all the points such that f(d,) =0, 1 or oo in [z]|< 1.
The basis of most of the positive results obtained in our essay is Theorem I,
as stated in paragraph 20, where a bound is obtained for

%MMﬁW

at ¢ = o. Integration of this result yields Theorem II which is

I

. __e[(l + ) log” |/, (0)| + 4 o (log" log" |£. (0)| + No+1)]

(2.2) log Mo, 1, (2] <

where N, is defined as in (2.1). We see that the condition f(z)# o, 1, oo of
Schottky’s Theorem is replaced by the much more general condition (z.1). If
fle) is regular, we may replace M [p, f.(2)] by M[o, f(2)] in (2.2). Moreover it
appears from a wide class of counterexamples given in Theorem IV, that the
condition (2.1) is probably the weakest of its kind in order that the function
JS(2) shall always satisfy

0(1) ’

1—p

lOg‘ M[Qrf* (Z)] =

the order of magnitude attained when p(g)=o0. Most of Chapter I is taken
up by the proof of Thorem I, an inequality for

a4 _qfulo).
LJ%M@GH A

The major deductions from this are stated in Theorems I to VI in para-
graph 20. The deduction of Theorems II to VI from Theorem I is compara-
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tively simple. Theorem V gives a generalization to functions f{z), such that the

equations

f&) = 0, ¢e), o0

have at most p(g) roots in [2] < p, where [ p{p)d o < oo and ¢(2) is a meromorphic
function in |z| <1 having at most p(g) poles and zeros. Then we have

0

log Mo, f. ()] < log Mle, ¢ (2)] + T p

The result follows from Theorem II by applying that result to

3) In Chapter II we take up our general problem again. In the first part,
we consider the case where p(p) is a constant positive integer p in 0 <p <1
Suppose that f(z) is regular nonzero, and that f(¢) takes some value w such that
|w| =7, at most p times in {z]<1. Put

(3.1) $(2) = [f{)] P+,
Then

- $(2) = w’
implies

Sle) = @t

Taking (#')P*!' = w which holds for p + 1 distinet values w’, we deduce that
¢ (2) defined by (3.1) satisfies

¢(2) = uw

in |2] <1 for some w’, such that (w')P*! = r. The same result holds if f(¢) takes
no value w, such that |w| = r, more than p + 1 times in [z|{<<1. In Theorem II,
the main result of the first part of the chapter, we show that this method can
be extended to the case when f(2) has a finite number of zeros and poles in
2] <1. The proof is based on a lemma on hyperbolic distances. This allows
us to find extensions of all the positive results proved when p = o (Hayman (1),
(2), (3), to the case when f(z) takes the values of F at most p times in |z] < 1.
The method yields among other results an extension of Cartwright's!

* This was previously considered in CARTWRIGHT (1), LITTLEWO0OD (I).
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Theorem I. If f(2) is regular in \2| <1 and takes no value more than p times,
then we have

Mo, /1< A(P) (1 — o)

pp = max {1, |£(O), | £ (0)], ... /¥ ()]}

The extension is

where

Theorem III. Let rn be @ sequence of real numbers such that
o = 0,
rp << 1pg1—> OO, &S # —> OO
S = f: (log 71-ji_~l)2<0<>,
n=1 Tn
suppose also that f(2) is meromorphic in |z| <1 and for each ry either f(2) takes

some value on the circle |w| = rn at most p— 1 times or, f(2) takes each value on
the circle [w| = r. at most p times. Then we have

M. fu (] < A(P){| £ (0)| + ra} €57+ (1 — g)22.

This result is an extension at once of Theorem I above and of Theorem III

(Hayman (3)) from which latter it is a deduction, using Theorem II of Chap-
ter I1.

4) In the second part of Chapter II we deal with the more general prob-
lem, when p(g) is unbounded. The results in this case are based on Chapter I.
We consider in all four problems.

(i) What can we say when E contains the whole plane?

(ii} How small a set E is sufficient to have the same effect as the whole plane
on the order of magnitude of log Mo, f. (2)]?

(iii) What can we say if E contains some arbitrarily large values?

(iv) What can we say +f E contains only o, 1, 0o or ts bounded?

Let
I+ 20
2+g’

*

so that
11— =1—p,<}(1—p), 0<p<1.

Then we prove in Theorem VII that (iv) implies
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(4.1) log Mo, /i ()] = 211 [t+n6nar

I—g¢

Also we prove in Theorem V that (i) gives

[

(«2) tog Mo, £.(2) = 0] [ 20,
Now if
(4.3) ple)=(1—@™ o=a<oo,

then (4.1), (4.2) both give
(4.4) log Mg, fi(e)] = O(1 —g)°

when a>1, while (4.2) also implies (4.4) if o<a=<1. It is shown by some
simple examples in paragraph 21 of Chapter II, that (4.4) gives the right order
of magnitude for log Mg, f] when p(o) is given by (4.3) and a>1, and that
(4.2) is still best possible if 0 <a <1 in (4.3). The inequality (4.1) is also best
possible when p(g) is given by (4.3), 0 <a < oo,

Theorem VII shows that a set FE consisting of a sequence w, satisfying

Wn+1

(4.5) 1< <e,

Wn
and w, — 00, is always sufficient to result in (4.2). Theorem IX shows that if
p(o) grows as rapidly as in (4.3) with @ >0 we can replace (4.5) by the weaker

condition
[wns1| < |wale.

Converse examples, which show that these results are all more or less best pos-
sible when p(o) is given by (4.3) are left to Chapter III in all but the sim-
plest cases.

Lastly in the case of problem (iii) above, we show in Theorem VI Chap-
ter II, that if

1

[plo)de<oo

0
we have always

lim (1 — o) log M[o, f. (2)] = o,
e—>1
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a result which cannot be improved, as was shown in Hayman (2), even when
plo)=o0. We prove further in Theorem X, Chapter II the more sophisticated

inequalities
14+a
lim (1 —gP~2log Mg, fl&)] =0, o=a<r1;
o1
li_“i(l—e) 10ng[9,f]<A’ a=1
oL
log log —%

which hold when p(g) is given by (4.3) with o <a < 1. These are extensions of
results proved when a = o0 in Hayman (2). They are shown to be best possible
in Theorems IT and III of Chapter IIIL

5) In Chapter III we provide converse examples to the results of Chap-
ter II, when p(g) is given by (4.3). While it is easy to provide these examples
in the case of problems (i) and (iv) above, the counterexamples to problems (ii)
and (iii) present considerable difficulties’ and need a good deal of preliminary
general mapping Theory.

Throughout the whole essay the ideas of R. Nevanlinna have been funda-
mental. 1 have tried to indicate the most important places in the text.

An index of literature is given at the back.

I should like to express my gratitude to Miss M. L. Cartwright for sug-
gesting the problem to me.

CHAPTER I.

Extensions of Schottky’s Theorem

Notation.
1} If 2= + 7y is any complex number we shall write
x =Rz, y="3e,
t=z—iy, |e|=V@*+4)

Throughout this chapter we shall be dealing with functions f(¢) meromorphic in
|2]< 1. We suppose for the time being that f(z) is meromorphic also for [z[=1.
We denote by

(1.1) ap = lau|e%, p=1 1o m

1 Particularly when a==1 in (4.3). This case is, however, in many ways critical, and its
omission would be a serious gap.
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the zeros of f(2) in |z] <}, arranged in order of increasing moduli and with
correct multiplicity, and by
(1.2) Qu, p=m+1to M
the zeros of f(¢) in } <|z|< 1. We write similarly
(1.3) by=|bu|ePu, u=1to nand n+1 to N
for the poles of f(z) in |z| <4 and in } <]|z| <1 respectively, and
(1.4) ¢u=|cu|l€%, u=1to k and &+ 1 to K,
for the points in |2| <}, } <|z| <1 respectively such that f(c.) = 1. To these
we shall refer as the ones of f(z).
It will be useful occasionally to consider all the zeros, poles and ones to-
gether and we accordingly write
(1.5)  du=|du]|€'%, u=1tol=m+n+k l+1toL=M+N+K

for all the points in |z| <4, 3 <|z| <1 respectively, such that f(d.) = o, 1, co.

We also write
(1.6) o(e, a) = 2=2 lal

22 12 o)<y, fal <t

It will be necessary in the course of the work to use largely three integrals
involving f(¢). We define first!

27

(.7) mlr, F()] = m[r, £1 = ﬁflogf Lf(rei®)|dd, o<r=rt.

0

Here log” x denotes as usual the larger of zero and log . We shall need also

2n

(1.8) my [r, f(2)] = iflog+ [f(re®) (1 —cos 6)d8, o<r<1,
and '
(1.9) my [, £(2) =imax mlo, f], o<r=1.

rso=r

The expressions max, min, outside a bracket containing certain quantities
denote the greatest or least respectively of these quantities, or if these do not
exist, the upper and lower bounds. We denote by 4 any absolute constant not
necessarily the same in different places and by A (p) ete. constants depending on p.

1 ¢. F. NEVANLINNA (1) p. 6, formula 3.



The Maximum Modulus and Valency of Functions Meromorphic in the Unit Circle. 97

2) Using the notation of {1.1) to (1.6) the result which will be the basis of
this chapter, and whose proof will occupy most of it may now be stated as
follows.

Theorem I. Let f(z) be meromorphic in |z| <1 and let

)
() S

=
w
=
()

=
i

(2.1)

<
&
|
[
2
]
3
~

o
U~
~
=R
T

&
A

Ther we have

’ L
) RES <2lioglgoll + 4|1 +log’ Log lg(olll + 3 11 F dul (r =[]
w=
where the sign in the sum is — or + according as |g(o)|=1 or |g(0)| <1, re-
spectively.

The interest of Theorem I lies in the fact that it is applicable to any mero-
morphic function. By mapping the unit circle onto itself, so that an arbitrary
point goes into the origin, we can obtain various extension of Schottky's
Theorem.

The bound obtained in (2.2} appears to be fairly sharp at least in its de-
pendence on the d., as the formula (3.4) below suggests. If we are given only
the number L of the d, and nothing about their position we can eliminate the
term log” |log |g(0)]| as will be shown in Theorem IIT below. This result is,
however, less useful than Theorem I. The condition that f(z) is meromorphic
on [z|=1 can clearly be relaxed, provided that > |1 F du[?(1 —|d.]) converges.

The proof of Theorem T is rather long. It depends in the main on applica-
tions of the Poisson-Jensen formula and some other analogous formulae and owes

most to the ideas of Nevanlinna.l

Fundamental Identities.

3) In this section we put together four fundamental identities, which we
shall have occasion to use frequently at a later stage. We have firstly if,
[z <R<T1,

! See NEVANLINNA (1), particularly Chapter 1V.
9~ 642128 Acta mathematica. 86
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27 R b
’ 18 J;_j__q ( _1)
(3:0) 1o 1) = 5= [log lf(Re)| B5 7 E a0~ S 10g o (5, %
0
+zlogg(—%, %")%—ia

This is the generalized Poisson-Jensen formula. For a proof see e¢ g. Ne-
vanlinna (1), Ch. I, p. 4. Putting z =0 in (3.1) and taking real parts we ob-

tain Jensen's formula

‘Z’n
I
o)] = ;{]lo
0

Secondly by differentiating (3.1) w.r. t. z and then putting 2 = 0, we have

(3.2) log | f(

Re'a)]d(?—-zlogvg‘ + > log’ .
[ [ 6]

il K01 o
sz’l}

f100|f e e?dg— Z la"'+2

fo

where the sums are taken throughout over the zeros and poles of f(z) which lie
in |z| < R. Taking real parts and multiplying by R we have

(3.3) RE ,(E)O)) = —;;.flog[f(Re"”)[-cosﬁdﬁ—zB%i_l—ljl—E cos @
+> Hlblb[ |~cosﬁv
Combining (3.2) and (3.3) we deduce
f‘ ) B . 2r .
(34) RR: Flo) 2 log | f(o)] = ;Bflog e (1 — cos 8)d6
i L " R) fB2—|hf (,.ﬁ
Z{ A cos oy 2logl”I+Zl b cos B, — Zlob“'}

All the above formulae require the assumption f(0)s£ 0 or oo, We shall assume
in future that f(0)s o, 1, o and that f’(0)
to insure the finitude of the terms of our relations.

)7 0, whenever it becomes necessary

It is now possible to outline the proof of Theorem I. We apply the for-
We thus obtain a bound of the right type for
), provided that R is nearly 1, while yet

mula (3.4) to the function g(2).
the left hand side of (2.2
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27
1 I
?rflog,m'(l——cos 0)d0
1]

is not too large. Since the integral is bounded by my [R, 3] it is necessary

only to obtain a sufficiently delicate bound for m, [R, E%;)] This we proceed

to do, using methods similar to those employed by Nevanlinna® in proving his sec-
ond fundamental Theorem in the Theory of Meromorphic Functions, together with
certain smoothing out processes, which become necessary if the d, cluster too
much near the origin.

4) In the next two paragraphs we prove lemma 1, which plays much the
same role in a later stage of our proof as Jensen’s formula (3.2) in the ordinary
Nevanlinna Theory.

Lemma 1. We have with the notation of paragraph 1, 7f R <1,

P

_._\2 + 7 log ,_.E__
I /(o)

It is significant that this bound does not depend on the zeros of f(z) and on

mO[R }]<13m1[R j]+I3Zlo I’ l

the poles only in the manner indicated.
Making use of (3.2) and (3.3) we have

27

(4.1) %flog]f(Re"e)Hl——cos 0)d0~7rtflog

(1—2cos8)df

(e

where ¢(z) = ¢ (0 €'?) is given by

1 1—¢° 1
.2 z)=2log - — cos 0, ~<p<1;
(4.2) ¢ (2) 0 o ;=0
(4.3) ) =2log2—30cosf@ , 0o<=pg<}
(4.4) ¢le)=o , 0= 1.

To prove lemma 1 we need the following elementary inequalities whose proof
we defer to the next paragraph.

' NEVANLINNA (1), Chapter 1V, particularly p. 57—67.
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Lemma 2. We have

1 1
R, <7

B ls@l<clogsl Il

(ii) —Tr—]zf<ele)<3log |||t —2 o<|z]<1

i (=2 < [(1=2) g Tar< 21— 2 g 2, 0=

111 6 R .R og R :’Q’ e =
R

. R o\, R I
— —_— — < —
(iv) 10g29<(1 )loge, o<g_zR.

Assuming the truth of lemma 2 for the time being we deduce from (4.1) and

(1.7), (1.8)

mo[R, ‘I;] = mo[R, f] + 2—I—f2ﬂlog+
z—flog (; e“’)

and hence

(4.5) my [R, ‘—}] <2zm [éR,f] +6m ER, }f] + 4m[R, f]

N b}y M
+ v§l¢ (‘R) o ygl¢ (%),

—1<1—2c080=<3, 0=1-—cost=<2,

(1—2cos 6)do

__r
(3 Re)

).

(2 cos0—1)d0+§:¢(—b—w)—-—§¢(@—‘
v=1 B I .R

=

since

Also (3.2) gives

I 1 1 n . R m . R
6m[5R, }] —6m[2R, f]+6v§110g 2Tl 6M§llog 2Ta

and using lemma 2 (i) we deduce

I

(4.6) 6m [;R }] _laulé”(#(%) <6m [—; R, f] + 6§1 log* EI_IZTI + 6 log V&J)ﬂl

Next we have from (3.2), if }R<r <R

(4.7) > log I [—Zlog ]b|+m[,f]+10g|f I

R .SlalulﬁR
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Multiplying both sides of (4.7) by (I ~1) and integrating w.r. t. » we have

R
R R
(4.8) > f( WL) SR f( ._L> o
+R=[7,| <k L log Ia#\dr_v‘;zx 1= log ‘bvldr
Py ¥R
R R 1
+§~m1[R,f] +§log 7 o]]

We have from (4.5) and (4.6) making use of (1.9),

I

|/ o)

X b, . R au
+v§1{¢ (ﬁ) + 6 log ——-—Zlbvl}_}RS%ulst,(—R X

Also from lemma 2 (ii), (iii) and (4.8) we have

_ AP ( _l_a_d)s
*Rs|%(53¢(3) 3;355“53 ! B

sl mo| B, 3| = r2m (R A1+ 610g

7
8 f( r) .o
= = 1—5) log” ——dr
iR.,s%‘IsRR R) % [a,]
+'R

R
g y . 1
Svglﬁ‘}&f(l—'j{—) log l—bjldr-}_ml[R’f]-[.lOg“lf(O)[

L. . R I
=3 log |b,,|+ml[R’f]+1Og——.

=42, 70l

Combining this with (4.9) we obtain

mo[R, }] <13 ml[R,:f]+7 log,-f*(l(-))—‘
b, |2

+§{ Ef)+61 +~£—+ 1—=
y=1 ¢(R o8 2|b"| 4 R

+ R
log m}'

Using lemma 2, (i), (ii) and (iv), we have finally
1 I x R by |2
R,'—]SI R, fl+7log ——+13 51 —' ——”\,
mo[ f 3m1[ f] 7 Og‘f(O)l X3v§1 og ‘bvl 1 R

which proves lemma 1.
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5) It remains to establish the inequalities of lemma 2. We have

)

l¢(z)l£¢(——§) =z2log2+1, [z

W |-

and
I 3 I
> 3 < -.
610g2|z| 6 log *, |2] ;
Since also
6

6log§——2log2—~1 = log3—8—1 >log—2—'§>o,
2 2 e
lemma 2 (i) follows.
To prove (i) we note that

(s.1) l6lee)=¢(0) o<e<r.

Also ¢(1) =0 and

' 1 —g\? 2 I
o<g¢fo)=|——) =4(1—0} -<e¢=1
0 2
On integrating we obtain
(5.2) ple)<o, t=e<y
(5.3) ¢lo)>—45(1—0P $=p<i,

and since the left hand side of (5.3) decreases for 0 < p =< }, while the right hand
gide increases, (5.3) holds for o< p< 1. Combining this with (5.1) we deduce
the first inequality of lemma 2 (i1). To prove the second inequality, note that
from (4.2), (5.2) and (5.3) we have

$(2) = [2log é](1~—0086)+¢(g) cos 0, éSQSI
<[210g1](1——cost9)+5‘—'(1——@)3,
e 3
(5.4) ¢(z)<2[1——cos€+g(l——g)z]log—;, —é,<_9<1.
Also
(5.5) 1 —ge?P=1—20cos 0+ o= (1—0)?+ 20(1 — cos b

Combining (5.4) and (5.5), the second inequality of lemma 2 (ii) follows when
$4=¢=<1. When g<} we note that
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ploe®) =2log2—30cos0<<2log2—4pcosf+}

<2—4pcos 0 <2|1—ge??,
by (5.5). We deduce, since 2 <3 log 2 < 3 logé, 0=<p=1 that

W

dloe?) <3 10gé|1——ge“”]2, o<p=

This completes the proof of lemma 2 (ii).
To prove (iii) and (iv), we may without loss in generality suppose that B =1.
Suppose first o =3%. Then

1 1

L r ”
1—7)lo —d7'=f 1—r)log-dr
f( ) log . (1—r) ¢,

Ed e

o
¢

1 1
(O (e = L — o
~2[ . d1>2f(1 rds 6(I o).

0

This proves the first half of (iii) when p=4. Also when 0<p<1}

4] o onatir o]

¥

Hence
f(r —r) log" gdr— é(l —o)?
3

decreases with o for 0 <9 =<1} and is positive when ¢ =% and so the expression
is positive for o< ¢ <1, which proves the first inequality of (iii). The second

inequality of (iii) is obtained by replacing log+£ by logg in the integrand, and
altering the lower limit of integration to g both of which can only increase

the integral, since log’ - = 0, r <p.

0=
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It remains to prove {iv). We note that
log L — (1 —x)zlog£ = (22— 27 logE —log 2 = (2 —2x)x log L' log 2.
2x z x x =

. 1 . 1 . I
Since z log ~ has a maximum at & = -, and increases for x << - we have
e e

(2-—x)xloggc—log2<2'ilog4——log2=o, r=<l,

4
and
(2——9c)acloglI —-log2<z »I—log2<o, z=1.
z 4 € 4
Hence lemma 2 (iv) holds for o < 2. and the proof of that lemma and

B~
of lemma 1 is complete.

6) The next stage of the proof is very closely related to the Nevanlinna
Theory.! The method by which Nevanlinna obtains a bound for m[r, }] de-

pending only on the d, and on f(0), f (0) will be used. We could deduce im-

mediately a bound for
e onfe )

Such a bound would, however, contain a term of the order of > (1 — |d.|) whereas
we need the sharper bound involving 3 (1 —|d.|) |1 — d, [?, which is smaller when
the d, cluster near the positive real axis. This necessitates replacing the simple
Jensen formula (3.2) by the more complicated lemma 1 applied to the logarithmic
f(2)
S(2)

Lemma 3. We have with the hypotheses of lemma 1

(i) mo[R, :17[] < I7m1[R’fifv—1] + 4m1[R, ?] + 1321 log* I’%‘I—% 2
flo)—1
o)

ol e S o] o f e

derivate of f(z), to obtain the required result.

l+410fr6

+ 7 log

1 NEVANLINNA (I) p. 63—66.
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Consider
I I

FE=fa* ro—=x

When |f{(z)] <1 we have
N O S . O

fle)—1] 7 27 2 |flo)l

and so
I I

Similarly when |f(¢)—1|=<1} we have

s 1
\F@ = =

and these two sets of points are mutually exclusive. We deduce that

(6.2) log® F(z) = log* lf 1 + log* —y — 2 log 3,

® =1l

provided that either |f|<1} or |f—1|<1} and (6.2) is trivial otherwise. We

deduce at once

mo[R f] + my [R ‘;’—T] mo (R, F] + my[R, 2 log 3];

(6.3) Mo [R, 1] + my [R, fi x] < mo[R, F] + 4 log 3.

We deduce also

(6.4) m [R, ;—[] +m [R,.Ti—l] <m[R, F] + 2 log 3.

We now write

(6.5) Fle) = 52 Jij?—‘- [f? +f§7]

It follows that

6.6) my[R, F]= [R f—~] + mg [R f—;—‘] + mo [R, éf_ +f_f;d_l].

Also since

log" (@ + b)<log" a+ log" b + log 2
we have
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(6.7) o [R’!} +ff I] = o [R’ I;T] Mo [R> j—é,j]wL mq [R, log 2]

=4m [R, 6‘:] +4m [R, f'—f* 1] + 2 log 2.

: has simple poles whenever f(z) = 1 or oo, i.e. at the points

f (2
Sle)—

The function

ey, by.

f(z)—z—)l instead of f(z), we have
mO[R, f—j——,l] = 13my [R, jf ] + 7 log

d 2
‘TR

Applying lemma 1 with

So)—
- (0)

(6.8)

7 . R
~l—13210g!—d—l

v=]

Combining (6.6), (6.7) and (6.8), we deduce

ST T PRI PR PR DO o

J s
flo)—1
+ 7 log 7o) + 2 log 2.

d [?
TR

3 . R
-+ I3v§llog‘ Tc_z’:I

Combining this with (6.3), we deduce lemma 3 (i).
Making use of (6.4), (6.5) we deduce analogously

m[R, }]S210g3+m[R,Ji}—I—] +m[R,fJ;I] +m[R,—f«f__,—I—] + log 2

and hence applying {3.2) with f‘é)(i) - instead of f(2)
m[R f]<2m[ ] [ ]+log18
2 B flo)—1
* 2 oe g+ e [ |

which is lemma 3 (ii). This completes the proof of lemma 3.

7) We have obtained bounds for m, [R, 1] and for m[R, 1] in lemma 3

7 i ,
which depend on the d, and on f(0), /' (0) and on the expressions m [R,—f],
m[R, 7;_,—1] The crux of the investigations is the result due to Borel and
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Nevanlinna, according to which these latter expressions are in general small with
respect to the other terms appearing in lemma 3. However, while the third and
fourth terms on the right hand side of lemma 3 (i) and (ii) depend only on
the behavior of f(z) in |z| < R, in order to prove anything about the first two
terms, we must assume that f(z) is meromorphic in a larger region. For this
region Nevanlinna (and his followers) have always chosen a larger concentric
circle. In fact much weaker assumptions suffice in general to bound the first
two terms in lemma 3 (i), e.g. the assumption that f(2) is meromorphic in a larger
touching ecircle, or more generally in any domain bounded by a finite number
of analytic curves and containing all but a finite number of the points in
lz] < R.

Some deductions from this will be made elsewhere. The case of the larger
concentric circle is all that we need for the present.

We have first

Lemma 4. Suppose that f(z) is reqular, f(¢) %0 or 1 in || <R.:- Then we
have

17 Ol < 2170 [ + og |F ).

It is clearly sufficient to suppose I = 1. In this case lemma 4 is an im-
mediate consequence of Theorem V, Hayman (1).
We have next

Lemma 5. Suppose that f(z) is meromorphic on |z| = R, except perhaps for a
set of points of measure zero. Let do(0) denote the radius of the largest circle centre
2o = Re'? <n which f(e) is regular and not equal to o or 1. Then we have

2

m[R,‘)—}(L:)—)] <A + log" m[R, f] + log* m[R, }] + ﬁ f log® ao—l(e—) a6

where the tntegral vs taken in the Lebesgue sense.

It follows from lemma 4 that

[£imen oy flealiReoils

F(Re) do (6)

and hence
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(R

10g+ f(R ¢'f)

<:[hg+ﬁﬁ%ﬂ]+]og+|bg|f(Re”H|+dA]

+ I + + + + I
< log m+log log” | f| + log” log Ifl+A.

Integrating from 6 =0 to @ = 22 we deduce

2 27

q ;f . I ;f “loo" | F(R &l

m[R,f <5, [ log do(ﬂ)d0+2n log” log™ | f(Re€%)|d6
0 0

27
I 5 4 1
(71) + Eflog ].Og lf(Relg)lda‘*' A.
0

Now it follows from the geometric-arithmetric mean theorem that if ¢(x) is a

real positive function of x we have

b b
s [ 1og $(2)dz = log {b—;‘;fﬂx)dx}-

Hence writing 9 (z) = max [1, ¢ (x)] we have

b b
! flog+¢(m)dx=—b—i—af log Y (x)dx

b—a
)
=< log {i)—i—;fw(x)dx}
3

< log {—b—jlaf(zﬁ(x) + I)dx}

a

b
< log" {b—i—afq;(x)dx} + 1.

On applying this inequality to the second and third integral on the right hand
side of (7.1) we obtain lemma 3.

8) Before proceeding further we need a simple lemma which will help us

to deal with the last term in lemma 5. This is
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Lemma 6. Let o<<r<<oo, let z be any complex number and let Ey be the
set of all 0 such that |z —ré®| <kr, where o<<k<1. Then we have

flog = ]d0<nk[loo'k+1oo' —+I]

We may without loss in generality suppose 2 real and positive or zero.
Then Ej consists of an interval |8| <8, < 7—;, or is void. The last case is trivial.
In the first case we have for 6 on E;

|rel®—z| =7 sin 6
and therefore

ie.
6, < nk
2
Hence

)
+ I + 1
4o <
flog |Z__rew|d0_.2flog rsinﬁde
) 0

Ky,

which proves the lemma.
We can now prove

Lemma 7. Suppose that f(z) ©s meromorphic in a domain D containing almost
all points of |z| = R. Let d(f) be the distance from z = Re'® to the frontier of D,
let do(0) be the radius of the largest circle centre z = Reé'® in which f(z) is regular
and unequal to o or 1 and let n(0) be the number of roots of the equations
f(¢) =0, 1,00 at points distant at least }d(6) from the fromtier of D. Then we
have

2n 2
+ 1 + + 1
- < el .
flog do(())da“A{f [1og n(6) + log" d(O)] a8 + log R + I}
0 0

Let dy, dy, ..., dn ... be the roots of f(z) =0, 1, co enumerated in the order
of their distance from the frontier of D. Let d,(6) be the distance from z = Re'?
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to the nearest point d,. Then
dy (6) = min (d, 0), d(0)

and so
2n 2

27

v . . .
8.1 10+md0£fl g+~~d0+floor+—~d0.
( ) 6/ Ob d() (0) ; (¢} dl (0) : B d (0)

Let E be the set of all & for which % (f) > o and

['_n(%ﬁi min [R, @%9—)] .

Then if 6 lies in E there is a point d, such that » <»(f) and

(8.2) dy (6) <

dolf) = |Ret®—d,| < 3d(6).
We thus deduce from (8.2) that if € lies in E we have

dl(a) = |Rei8‘—daz]<;ﬂ;

for some ». Hence it follows from lemma 6 that

o0

I 7 1 1
o <7 il 2 + + .
(8.3) flog d1(9)d0— > - [logv + log S 1] <A [I + log ——]
E

r=1
Again if 4 is not in E we see from (8.2) that

+ 1 + + I 1
— << —_ o — .
(8.4) log 0= 2 log” n(6) + log 7T log 20 + log 2

Hence we deduce from (8.3) and (8.4) that

27 2n

I 1. I
log+h—d0£A{f[lo " n(6) + log” ——]d0+ log" = + 1},
Of 4,0 J g 0 @ R

and combining this with (8.1) we have lemma 7.
9) We now combine lemmas 3, 5, 7 to prove
Lemma 8. Suppose that
fle)=po+pe+--, py7#0, 1,00, p #o0,

s meromorphic in || =< 1. Then we have with the notation of paragraph 1
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L
mO[R,;,] <4 {zllog+ |—dl—| |1 —d|* + log" log" |pe| +

+ log Y*_LE—{' I}, %SR<I

Po— I
1

log" log" D;—l + log"
1

We use the notation of lemma 7 and write

27

I PR |

0

1

(9.2) B = max {m [R ], m [R, ?], m[R, f—1], m [R, f——-i—l]}

(9.3) C = max {m [R, ]if]’ m [R, f—f_-—l]}
The functions f, ;, 1—f, and I—i—f all have the same points d,. Also if we
put ¢ =1, ;}, 1 —f and Y_-I——j in turn we obtain
?‘i ='£7 _f’7 —._f’v f’ 5
¢ f f 1—=f 1=f
o _ S = r L
p—1 f—1 1—f f S i=f
Thus in any case we see that
m [R, ‘*i] <¢
¢
m[R, ¢ ]Sm[b’, Ji] +m [R, ,f ]+log2£20+log2
1 J S
and
$(0)—1

log”

¢ (o)

= 10g+ Ipo— I l + log” |pol + 10g+ ..
|p1|

< 2log” |po| + log 2 + log” L

| ;]
Thus we obtain, on applying lemma 3 (i) with f, }, 1—f, I—_I_? instead of
F{e) in turn

L
(9.4) B=3 0+ leog+l—§*i+2log+|p0[+log+l171|+A.
r= » 1
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Applying lemma 5 with f, 1 —f instead of f{z) in turn, we haev
(9.5) C<2log" B+ 1+ A.

Combining (9.4) and (9.5) we deduce
(9.6) C'SA[log+ (z log” I, i) + log® log™ | p,| + log* log* ] | + I+ I]

We now use lemma 7, taking for D the domain |z|{<<1. This gives

.1 v o 1
< ,
(9.7) I_A[log . R+1og n(R)+ 1 + log R]
where »(R’) is the number of the d, lying in [2| <R’ =}(1 + R). Then

log” n(R') < log" (T__I——,,, > (1—|d|)?

v=1

L

+ 2 (1—[d

)7
(9.8) log"” n(R) <3 log +3log2+ X |1—d,|tlog” L
R v=1 Idvl
Similarly
log* (z log" i) < log* é |1 —d,|?* log” .
ld'v[ (I - 24’=‘ |d |
+ + R
(9.9) log* { > log ] <210g +z|1 d,|? log* ldl
Combining (0.6) to (0.9) we deduce that
<Al S1i—aftlog 2 + log—— + log &
=A[3 [1—d[ log ARy g5
(9.10)
+ log” log* |ps| + log™ log" 7 I—1— 1]

where C is defined by (9.3) and A is an absolute constant. Substituting in (9.10)
for R any number » such that } R<r <R we have r=1 if R=1 so that we

have
m [ ] e[

L
SA[VZIH d,|? log" |dl+10g R+log log” |p,| + log” log” 7 |+1]

Combining this with lemma 3 (i), we have lemma 8.
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10) We have now found a bound for m, [R, }], when f(2) is meromorphic

in |z] <1, which depends on the position of the d, and on R in the right way,
at least when the d, lie near |z| = 1. The bound has, however, the disadvantage
of becoming infinite whenever f(0) =0, 1,  or when f'(o) = 0.

In order to eliminate this difficulty we introduce the function g(z) of Theo-
rem I which is not equal to 0 or oo in |z| <}, and so shows a more regular
behaviour than f(z). We shall also employ a transformation of |z|< R onto
itself, which will move the origin to a point £,, near which the d, do not cluster
too much, and which is so chosen that f(z,) is not much greater than g(0). We

shall then obtain a bound for m, [R, é] which ie of the required form, unless
fle)

50 is small everywhere on the circle |z| = |2,[, in which case Theorem I can
be proved directly.

We use the notation of (1.1) to (1.6) and write

(10,1 1) - [ 96, @)
w=1

{(10.2) I, (2) = fI gz, b)
(10.3) I, (2) = H gz, c)
(rc.4) L s
We note also that
(10.5) lglz, a)l <1, |zl<1, |a|l<T;
so that

+ I 5 2™ P | i + I
(10.6) log ezl =< log Ol < log 7@ + ng log 70 0] + mlog 2.

In order to obtain a bound for m, [R, —I~] we must first calculate

9(2)
1
my [R, m] We have

)

10 - 642128 Acta mathematica. 86
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Lemma 9. If a = gé'® then

I 1 — R?
—— < .
. zlogR R Cos ¢, o<p<=R<1
mO[R, =
gz, a) I 1—@°
zlogé—«R cosdp, o< R=<p<1.

This is immediate on applying the formula (3.4) and noting that since (10.5)
holds we have

log* ——— = log ———-
® T9Gd] = F oG, a)l
Combining lemma 9 and (10.6) we have

Lemma 10. We have with the above notation

m°[R’WIz)] SmO[R, ?é] +31, B=4.

In fact (10.5) and (10.6) yield

(10.7) my [R, ;]Smo[ ] g [ g\z ™ ]+2m10g2

and we see from lemma 9 that if |b,| <}, BR=}, we have

l 1 I 1
) < — — P2
Moy R’g(,bv) _—zlogR+I R*<2logz2+1<3,

so that

(10.8) é:l my [R, W’—IE—)] =3n.

Hence, combining (10.7) and (10.8) we have lemma 10.

11) We next prove a lemma which will help us to find a point near which
there are not too many of the d,. This is

Lemma 11. Let d,, ... d; be | complex numbers such that |d,| <1, v=1to L.
Then there exists o, <9 =1} such that

lﬁ g(e, d,)

l2] = .

Suppose |a| = r, |z| = 9. Then
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- — I
(o, 7) = min 2, a ="——-Q~‘z§r— , 0= -
plery= min gl a)l=| =220 r—el o=
Hence
3
(11.1) flog,u(g, r)dg>;-;logi+floglr——gldg>~A.
3 3
Hence if
1
wlo, 1] = ﬁinﬂlg(z, d,)|
z::g’l'=1
we have
: o
flogu[e, Mde= glj log ule, [dy])de> — Al
% %

by (11.1). It follows that there exists p,  <p <1}, such that
log ule, 1> —8A41= — Al,

and lemma 11 follows.

To continue with the proof we shall have to distinguish two possibilities.
The first is essentially that f'(z) is small everywhere on the circle |z| = o which
is constructed in lemma 11. In this case we can give a direct proof of the truth
of Theorem I. This is the aim of lemma 12. If the hypotheses of the lemma
are not satisfied we can proceed with the main course of the argument, obtain

a bound for m, [R, ZI—E;)] and hence prove Theorem L.

12) Partial Proof of Theorem I.
We have

Lemma 12. Let g, 1 <g =<1} be such that

4

gz d)|> A7, |z =e.

v==1

Suppose also that |g(0)| = 1 and that at each point of || = o

%
(12.1) }sz =
Then we have )
fy((oo)) < A(1+1).

Thus Theorem I holds under the hypotheses of lemma 12.
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Suppose that (12.1) holds when z = ¢'¢ for 6, <6 <0,. Then we have

19
log | f(ee'®)| — log | f(oe®) |<f'f 9;0)

=20(0,—0,)<3}(6,—0)<wm,
since p <}. We deduce that if 0 <6, <6, < 27 and (12.1) holds whenever |z|=0g,
then we have

(12.2) |log |floe'®| — log | floe®)|l<n, 0<6,<6,<2am.

Now g(2) is regular nonzero in |z| <<}, and so its maximum modulus increases
and its minimum modulus decreases in |z|<}. It follows that there is a point
z, = p€e'% such that

(12.3) lg(e)] =19 (o).
Next we see from (10.4) and the hypothesis of lemma 12 that
(12.4) AR =g =4 fE), 2] =e

Hence if z, = ge'® is any point on |z] =g, it follows from (12.2) to (12.4) that
(12.5) |log |g(2s)| — log [glo)| < 47 + .
We deduce from (12.5) that log g(2) which is regular in |z| < g satisfies there
R log g(2) > log |g (0)| — A (1 + ).

Hence log g(z) is subordinate to

Y(e) = logglo) + A (1 + 9=,

in |z] <g so that

_|9)
g(0)

2A(1+1))

(12.6) < |y (0)]| = <A(1+1),

d
751029 ()

z=0
which proves the inequality of lemma 12. Also if |d,|<3} we have

(1—ld]) l1—df =}
so that

1 L
SSE (t—|d )| 1—d, |’<82 (1—]d )1 —ds]2.

Thus (12.6) implies Theorem I and the proof of lemma 12 is complete.

13) We consider now the case where 7' (z) is not small on the whole circle
|2] = 0. We have in this case.
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Lemma 13. Suppose that o is the number constructed in lemma 11 and sup-
pose that

mex | 28] =
Then there exists a point 2, with the following properties.
) T ENES
(i) Elg(zo, d))|> A
(i) [log| flzo)| —log | g(0)|| < A (1+1)
(iv) % =

Since g(¢) is regular nonzero in |z| <<}, there exists a point 2z, = g%
such that

(13.1) lgle)l =1g(0)]

Let 6, be the smallest number not less than 6, and such that for z, = p¢f%

By hypothesis 6§, exists. Also

(13.3) l%%%i =2, 0,<0<0,<6,+2m,
and hence

(13.4) og | f(zo) [ —log [ f(2:) || = .

Again as (12.4) still holds we have

[log|f(z) | —1log | g () || = |log | f(e;)] —log | g (0)}] = A1,

and combining this with (13.1) and (13.4) we deduce

(13.5) llog|f(z0)| —log| g (0)|| = 4 (x + ).

Then (13.2) and (13.5) show that 2, satisfies the conditions (iii) and (iv) of
lemma 13. Also (i) and (ii) are satisfied, by lemma 11. Thus the proof of lemma
13 is complete.
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We shall consider now the transformation

. R(R—z)z+ 2 (R—3)]
(13.6) w=1(z) = ZW(R—z) 2+ B (R—7,)

, R=>1%,

which sends |z| < R onto |w|=< R and 2z =0 onto w = ¢,.
We consider instead of f(z) the function

yie) = flL ],

and deduce from lemma 8 applied to 1 (2) instead of f(z) and from lemma 13

that m, [R, 1,1_0] has an upper bound of the required form. From this follows a

bound for m, [R, —;—] and the proof of Theorem I.

14) In this paragraph we investigate the function 1(¢) of (13.6). We have

Lemma 14. The transformation w = 1(2) of (13.6) is the unique bilinear trans-
SJormation of |z| < R onto |w| < R, such that 1(0) =z, and 1(R) = B. The inverse

transformation is given by

R*(w—2) BR—5
R*—3w R—z,

(14.1) z=2i{w) =

Let By=R + 3(1 — R). Then we have
(14.2) L<|r@)l<6, |e| <R,
Also if |2:| < Ry, ¢ = 1,2 and 1(2:)) = w; we have

(14.3) Ililzx'—@lslwl—w2l£6|21_52‘~

The statements of lemma 14 up to (14.1) are evident by inspection.

gider now
R*(R*—|2]?)
R—z |°
2 5 0
RZ + zo———R %goz

[7 ()| =

Since [z,] <%, R=%, we have

R%.3 R? , R
(14.4) S <) < g el < 1.
[B* +1]el] B

4
— =]

Con-

Also if || < Ry= R+ 4(1—R) <1, then R?+ }|z] <2 R® since R=1}, so that

(14.4) gives
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(14.5) |z’(z)|>i§i:%>é.
Again if |2|< R, =} + 1R we have
4 4
‘RZ_Rllglz—-Rz_.R_IRO2=(__7_1 ! )zg(*—{_})z
4 4 32R 32 R? 16 8
since R =1, i.e.
(14.6) ()] = (?)2 <.

Combining (14.5) and (14.6) we have (14.2).

119

1f 2z,,2, lie in |2| < R,, so does the line segment joining z,, z, and so we

have from (14.2)

s — w0, | = | ey — 1)) = [ 17| [ d2] < 6] 23—,

31

where the integral is taken along the straight line joining 2, z,. This proves

the second inequality of (14.3).

Conversely !(z) maps the circle [z]| =< R, onto another circle, C say, and

wy, w, lie in C. Hence so does the segment joining w,, w, and integrating along

this segment we have
Wy
Loy — s | = [Alwy) — 2 (wy) | = fll'(w)l |dw| < 6]w, —w,]
Wy
since
{

()] = |7

<6,

when w lies in C. This completes the proof of (14.3) and so of lemma 14.
15) Consider now
(r5.1) vie) = fl1()].
It follows from lemma 14 that [I(z)] < R for |z| < R. Suppose next that
z=re R<r<R,=%+3%R.

Then by (14.3)
[U(re®)—1(ReC)| < 6(r—R)

so that
[1(reé®)|<R+6(r—R)<R+6(R,—~R) =R+3(1—R)
ie.
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(15.2) [1{re?)| < B,

where
R =1—3(1—R)< 1.

Thus ¥(2) is meromorphic for |z] < R,. Consider next m, [R, EIE)] By applying

lemma 8 with % instead of R and yw({R,2) instead of f(z) we see that
0

I E I + + 1
— 1 = —_— | < 2y + log g ST
"o [R, "ub(e')] o [Ro Q1U(Roz)] =4 { @ +log log Rolw (0)|

(r5.3) w01 R
0
+ log” log™ |y (0)] + log” row'(O)]ﬁLIOg*_—“Ro—RJ”}
where
LR dy |?
(15.4) Yy = I log E—;" 1——1—.{0

and the sum is taken over all points d, in | 2] < R,, such that v (d,) = o, 1, or co.
We consider the terms on the right hand side of (15.3) in turn. We have first.

Lemma 15. Let Zy be as defined ¢n (15.4). Then we have

Sy <AZli—dl(—|a).

Suppose that y(d’) = o, 1 or co. Then it follows from (15.1) that I(d) = d,,
where f{d,) =0, 1 or co. In this case we write d’ = d, and thus obtain an or-
dering of the points d,.

Suppose first that » <! so that Idvl < 3}. Then

by (14.3) and so, since /(o) = z,, we have

[ d. = ld,—e,
and hence
(15.5) I_% Tlog” | B0 l<Alog dvizo'.
Also
g(z5,da)| = So—dy < Aley—d,|, |dil<1
1—2Zyd, ’

so that (15.5) gives
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d, |? R A
— | log' {2l <41 —I
' I B, - dy o8 glzo, ds)
if v<<![. Thus
: a*. .|R, 7 I ’
vzl ! -R_o log d;' < A'vgl [log g (ZO> d‘l') ' * I]
(15.6)

1
-4 [log | T, (2,) 11, (2,) IT, (2,) | * l]

where the I7;(z) are as defined in (10.1) to (10.3). Combining (15.6) and lemma
13 (ii), we see that

R,

d,

'
log

(15.7) g <Az<A§l(x—|d,|)|1—dv|=.

-
R,

Suppose next that } <|d,| < B. Then (14.3) yields

, 1 I
= ld,—z,| = —
Id"' 6|d4‘ ZOI 24
so that

R
lo'+*,°’<AR—-d; = A[(R,— R)+ R —|d,
(158) OB dfv ( 0 I |) [( 0 R) id |]
<AI—R+R—|d|].

Again if d, = re’? (14.3) yields
[A(d,) —2{Re?)| <6|d,— Re?| = 6(R—|d.])
Again since A(d,) = d,, |A(R€%)| = R we have

_ (B—|d]) =6(R—|d,])
so that (15.8) gives

R,

(15.9) log" @ <A[1—R+RB—|dll=401—|d]], 3=|d|=<R.

Suppose next R <|d,| < R,. Then 1 —|d.,|>3}(1 —R) by (15.2) so that

SIOg%<A(RO—R)=A(I—R)<A(I —|d})

R,

dy

(15.10) log

and combining (15.9), (15.10} we have

R,

dy

(r5.11) log* =AG0—|dl), v>1.
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td

{ — —

0

Consider lastly ,v>10. We have

L~%1<Amfwﬂ<Aﬂm~RLHR~&U
<A[| Ry — R| + |I(R)—I(d})[],

making use of (14.3). Since I(R) = R, I(d)) = d,, we deduce

(15.12)

1——%1|<A(RO—R)+|R—a’v|<A[1~R+ [1—d|].
0

Also (15.2) yields
[1—d,|]>1—R,=3(1 —R).
Thus (15.12) gives

2

L Ali—a) || =R,

(15.13) !1—170

Combining (15.11) and (15.13) we obtain

I d’ 2 R L
(15.14) $ i m+#<AZUfMDh—M?
ye=]+4+1 RO d'v y=1+1

Now lemma 15 follows from (15.7) and {15.14).

16) The other terms on the right hand side of (15.3) are easier to deal
with. We have

Y (o) = f (2)
Y (0) = f" (2,1 (0).

Also by (14.2)
A<|lU(o)}< 4.

Hence we have

+ + 1 + + 1
log™ log m*%—)i < log” log e + 4
+ + f(Zo) 1 ]
<log [Iog f,——-(zo) + log ) + A4
<log*log" .ZI%Ow)l + A{1+1)

making use of lemma (iii) and (iv). Thus

(16.1) log” log"

—I'—'+A(1+Z).

< log" log"
l € %% 1g(0)

I
Roy'(0)
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Next
log"log* |y (0)| = log"log™ | f(z,)| <log" [log"{g (0)| + A(1 + 1)]

(16.2)
<log'log'|go)| +1+ 4

making use of lemma 13 (iii). Again

s|plo)—1 - Sleg) — 1 o' Slag —1 Slzo)
IR ox Ty R o R o
+ I o] flz0)
< log ey + log Flea) + A,
We deduce that
(16.3) log* f&}—( ol )l + A +)+ A

making use of lemma 13 (iii) and {iv). Lastly we have

(16.4) log

8
0 — N
S R—R oy

<log In

<log;—_1—— + A.

1
R,—R R

‘Making use of the inequalities (16.1) to (16.4) and lemma 15 for the terms on
the right hand side of (15.3) we have finally

Lemma 16. If |g (0)| = 1 and W (z) is defined by (15.1) then

| il <

L
A{Z 11 =@l —1a) + tog"log g (o) + log 1 + 1)

v=1

Proof of Theorem I,

17) Having obtained lemma 16 it remains to deduce a bound for m, [R, g_(I;)]
and to apply (3.4). We may assume without loss in generality that | g{o)| = 1.

For if |g(o)| <1, we apply our result to instead of f(2). This changes

_r
fl—2)
the points d, to — d, and ¢ (2) becomes ;—I_?) Also

Thus when we have proved Theorem I for |g(0)| = 1 the result for |g(0)| <1
follows,
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Further we have proved Theorem I if the hypotheses of lemma 12 hold and
lg(o){ = 1, so that we may assume further that these hypotheses are not satisfied
so that f(z) satisfies the conditions of lemma 13.

Suppose now that in (13.6)

w = Re® =1 (Re").
Then (14.2) gives

1 do

Since @ = o0 corresponds to ¢ = 0 we deduce

(17.2) HEEELE

Now
2n
1 1 +
STERY
ht

- iofmlog* )ﬁl—;gqs—)l(x—cos Vd g,

Also (17.1) and (17.2) give

—cos Y do

I R io]l(l

1 —cos ¢ <A(1—cos ),

ld¢l< Aldd],
so that from (17.3)

2n
LY N A RS B S [
mO[R,f] = ”Oj log PR (1 —cos ¢)d ¢
. 1
<Aoflog }—(E;ﬁ (1 —cos 0)d6
(17.4) = Am, [R,;pl—]-

Again from lemma 10

mo[R,;-] <mo[R,}] + 3Z<mo[R,}J + Azll(l —ld )1 —d, ]},

v
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and combining this with (17.4) and lemma 16 we have

p=1

L
(17.8) my [R,é] < A [I + log;——_I—R + log” log* [g{o)| + 2 (1 —|d, )| 1 ——d.,l"'].

We have from (4.2) and lemma 2 (ii) if z = g ¢,

1 1—p® . 1
2log5— cos 6 <A|x—z|log;,§$g<1.
Writing 1—% for ¢ in this we obtain
. R R*—p¢® z |? R
B S _— — <7 <7
(17.6) 2log9 o R cos 0 <A'1 7 log e” 1<p=R<1.

We now apply (3.4) with g(z) instead of f(z) and obtain, making use of (17.6),

90 oo 1 s |l . 1B

RE 700 2-log | g (0)| < m, [R, g] + A,L=§+1 1~ log y

(17.7) Xt b, L|R
+A«-=§r1 1—% log ol

since the zeros and poles of g(z) are the zeros and poles of f{z) which lie in
34=<z< 1. Thus we have

IR
tog’ | 2| < 4R - < 41—l
ll—%‘ <A|R—a <A —R) +|1—al<Ad|1—a,

since |a,| < R, and so

Qu

l.—_——

% <at—ladli-al

log® a%

Combining this with (17.5) and (17.7) we obtain

mR—-Z/((s))——z loglg(o)|<A[1 +1ogI—_L-Rj + log” log{g(0)|

+é1' 1 —d,|9(x~|d,|)],

or
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1
1i—R

(17.8) ?Rg—l(—o) — —2—10g gloy< 4 [1 + log + log" log | g (0)|

glo) R

I
+3li—df (—fal)

Now
2o 2By 0 —R), Rz
We choose
1
(17.9) B = max [%’ ' _W]
go that

(1—R)log|glo)] =1
Then (17.8) and (17.9) give

ie

20 < 2 log |g(0)] +A[1 + log” log | g ()|

#3li—ara—lan]

which proves Theorem I.

Applications of Theorem I.

18) Having proved the fundamental Theorem I we shall devote the rest of
the chapter to some applications of this result. These follow relatively easily.
Our aim is to obtain upper bounds for the maximum modulus of a function
JS(2), regular or more generally meromorphic in |2z|< 1, given the roots of the
equations f (¢) = 0, 1, c0, or more generally f (2) = ¢,(2), ¢y (2), 00, where ¢,(2),
¢s(2) are assigned meromorphic functions. The feature which distinguishes our
investigations from previous work, e.g. that deducible from the ordinarily Ne-
vanlinna Theory is that we obtain results of the type
(18.1) log Mg, f) - 70:(%
even when the equations f(z) = 0, 1, 0 may have infinitely many roots in |2| < 1,
provided that the total number »(r) of these roots in |z| <7 <1 satisfies

(18.2) fln(r)dr<00.
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Moreover the condition (18.2) seems to be the weakest condition of its kind
which still implies (18.1). (See Theorem IV.) Even in the case of a finite num-
ber of roots our bounds appear to be sharper than those previously obtained.

Naturally we cannot obtain (18.1) generally when f(z) is méromorphic, since
Mg, f) = oo, if f(2) has a pole on the circle |z]| = p. We circumvent this diffi-
culty by introducing a function f, (), the star function of f(z), which behaves
locally as the function g(2) of Theorem I behaves at the origin. If f(2) has no
zeros or poles in a small circle surrounding the point z we shall have

f(z) =fl' (Z),

and if /' (z) has no poles in |z| <1 we shall have
@z l/@1, lzl<1

The function f, (¢) has a continuous non-zero modulus in |z| < 1; and it is
regular except on certain circles. Hence log | f, (2)| is continuous on each radius
arg z = 8 = const, and differentiable except at an isolated set of points. Making
use of Theorem I, we can obtain for log |f, (¢)| a differential inequality, whose
integration will yield our main result, Theorem II.

Notation.

19) We shall consider in the rest of this chapter a function f(z), mero-
morphic in [#|<1 and denote as in (1.1) to (1.5) by 4., b., . the zeros, poles
aud ones of f(z) in |z| <1 and by d, the totality of these points. We no longer
assume that the set of d, is finite. We assume, however, that

(19.1) N, 221(‘ —|du]) < co.

Let » (r, f) denote the number of poles of f'(z) in [z| <7, so that n (r, 1/(f— w))
denotes the number of roots of f(¢) =w in |2|<7» < 1. Then (19.1) may also
be written as

(19.2) N0=f1{n(r,f)+n(r,f—l) +n(r,f-i—7)}dr<oo.

We also define a function f,(z) as follows. Let a,,, Qg s+ - Quys Ouyy o by b

the zeros and poles respectively of f(z) in the region
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(19.3) lg(z 8] = I_,§'<é
Then we write
Ing(§, by))
(19.4) Sol®)=20p =2 £

g (57 aﬂl‘)

—

v
-

If f(§) =0 or oo, f,(§) is defined by continuity. We see that f, (&) is regular
nonzero, except on the circles |g(&, a.)] =3, |9(&, )] = %, and on these | f, (§)] is
continuous. Moreover if f(z) has no zeros or poles in the region (19.3) we have

(19.5) fe(§) = 1)
and if f(z) has no poles in the region (19.3), we have

(19.6) L@ =1rE]

In particular (19.6) and (19.5) respectively hold throughout |§|<1 if f(£) is
regular, or regular nonzero throughout |&|<1.

Lastly we define if ¢ (¢) is any function of z in |2| <1

M]r, ¢(2)] = max | (re9)].
0s6=<2n
We use this notation both for meromorphic functions, in which case we have
M[r,¢$] = + oo whenever ¢(z) has a pole on |z|=r or for discontinuous func-
tions such as f, (z). Here max denotes the upper bound.

We shall in the sequel be dealing frequently with the derivative of f, (2)
at a point z =§ When doing this we assume that this derivative is defined at
z=E so that |g(§ b)| #3, |9(§ au)|#} for any pole b, or zero a,. We write
this derivative as f,(§) which is not to be confused with f*,(§), the star function
of the derivative of f(2) at z = £, which latter, however, will not be used in this
paper.

20) With the notation defined above Theorem I may be rewritten as

follows

~ Theorem I. Let f(2) be meromorphic in |z| = |z + iy| <1 and let the rools
du of f(2) = o, 1, 0o satisfy (19.1). Then we have
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d N
{L10g1r @I} _ = 2{ltogl )l + AL + 1og" |10g| 4 (o)
¢ St -l
P

where the sign in the sum is + or — according as |f,(0)] <1 or |f,(0)|=1.

If f(2) is meromorphic in [z| <1 this result is obtained at once from Theo-

rem 1 of paragraph 2. In the general case we apply that result to f (f) with

r>1 and make ¢ — I.
By integrating Theorem I we can prove

Theorem II. With the hypotheses of Theorem I we have for o <r <1,
log Mr, £, (2)] < ?—i—1 {(x + ) log" | fu (0)| + A7 [log" log” | f. (0} + Ny + 1]},

where N, zs defined as in (19.1).

This result could not be obtained by integrating the inequality of Theorem I,
if the sum in that Theorem was replaced by N,. Thus to obtain Theorem II
it is not sufficient to obtain a bound for |f,(0)|. Both Theorems I and II con-
tain the term log’|log|f,(0){]. If there are only a finite number L of d, we can
eliminate this term, by replacing the terms depending on d, in Theorems I and
II by L. Whether the term log’ |log |/, (0)|] can be eliminated in Theorems I
and II without otherwise weakening those results remains an open question.
We have

Theorem III. Suppose that the egquations f(z) = o, 1, o have at most L roots
in lz|<1. Then we have

0 £ @ <1/ (0)] [2log| (o] + 41 + L)
(i M, ] < exp [ og? 120 + A5G0+ )

Both parts of this result are best possible even in the case L = 0, except for
the constant 4.7

We also prove the following converse Theorem to Theorem II.

1 C. F. HAYMAX (1), Theorems V and VI.
11 - 642128 Acta mathematica. 86
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Theorem IV. Let
w)—e’””H(r + )e =

be an integral function of genus o or 1, which is real for real w, has real negative
zeros and satisfies ¢(0) = 1. Let

re=lo(i )"

Then f(2) is regular nonzero wn |2| <1 and we have for any a

log" |f(r)}

(20.1) >1t ’{loglf ~a|+]n(t, a)%—log+|a|—log2},o<r<x,
0

r

I—

where n(t, a) denotes the number of zeros of f(z)—a in |2|<t. Further if Z’—I

converges ¢{w) has genus o and lim (1 —r)log M(r, f) exists finitely, so that

r—>1

1
fn (t, a)dt converges for every a. If z— diverges ¢ (w) has genus 1,
0

lim (1 —7)log’ f(r) = o
r—>1

1

and f n(t, a)dt diverges for every a other than a = o.
[
Theorem IV shows that for the wide variety of functions f(z) intro-

1
duced in that Theorem, the condition that f n (¢, a)dt converges for every a with
0

one exception is necessary in order that (1 —r)log M[r, f] shall be bounded.
Thus we cannot hope to weaken the conditions

1
fn(t, a)dt<<oo, a=0,1,00
[

to obtain an inequality similar to that of Theorem II.

It is not difficult to deduce from Theorem II a generalization in which the
equations f(z) = 0 or 1 are replaced by f(z) = ¢,(2) or ¢,(z), where the ¢:(z) are
meromorphic functions of 2.
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The case when ¢,(2)==0 is particularly simple and we confine ourselves to
it. We can deduce a result in the more general case by considering f(2)— ¢, (2)
which is equal to 0, ¢;(2) — ¢, (2) when f(z) = ¢,(2), ¢5(2) respectively. We have

Theorem V. Suppose that f(z), ¢(z) are meromorphic in |z| <1 and also that

N, =f1{n(t,f) +n(t,}) +n(t,7_‘—¢) + n(t, i)+n(t,¢)}dt<oo.

Then we have for o <r <1
log M7, £, )] <log |, 49|

+ I_‘_Ij7 [(t +7r)log" u + Ar(log”log" u + N + 1))
where

felo)],

£ .00

The results of Theorems I, IT, I1I, and V have all been stated in terms of
star-functions. This is justified by their simplicity in this form whether f(z) is
regular or merely meromorphic. It is not difficult to deduce results for M[r, f]

when those for M[r, f,] are known. The following Theorem enables us to
do this.

Theorem VI. If f(e) is regular in |z| <1 we have
(20.2) Mlr, f(]1=M[r, fl2)], o<r<1.

If f(2) is meromorphic in |z| << 1, then given o, 0 <<@ <1, we can find r, such that
e=<r<}(1 + o) and such that when |z| =r we have

f(2) (3 + 9)
20. lo < An|=——)»
(20.3) AT "\
where n (3 : 9) denotes the number of poles of fle) in |z| < 3—: e

Corollary. We may replace M [r, f,(2)] by M[r, f] in Theorems II, I1I, (i7)
and V for all v if f(z) is regular in |z| <1 and for some r in every range
e =r<3}(1 + o) otherwise.
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Proof of Theorem 1I.

21) Having stated our results we proceed to prove them in turn. Theo-
rem I has already been proved at the end of paragraph 17. The other results
follow fairly simply.

Before we can prove Theorem II, we need two lemmas.

Lemma 17. Let A(r) be a real continuous function of v for 0 =r <1 and sup-

pose that A’ (r) exists at all but a finite number of points in every range o <r <k <1.
Suppose further that we have

(21.1) (1—r)A () <210)+ Clog" 2(r) + ulr)

whenever A(r) = o, where C is a positive constant and u(r) is positive and continuous
SJoro=r<<1. Then we have

r
[(1 +7)A+2C0r{log" A+ C+3)+2(1 + O)f,u(t)dt], o<r<i,

0

i) <

1—7
where A = max {o, 1(0)}.
Suppose that o< R <1 and that A(R)>o0. Let « be the smallest non-

negative number such that A(r)>o0 for « <r<R. Then we must have either

a=0 or Al@)=o0, and (21.1) holds for « <7 <R, except perhaps at a finite
number of points. Thus

1=V <2+ O+ ulr), e<r<R

except at a finite number of points, where i(r) is continuous. Thus

o ([T ] < [l fuo

o

say. Since we have either A{e)=0 or ¢ =0, we have A(e)=<1 and we de-
duce that
(21.3) l(R)<(l+M)(I + B

1— R

1+0C/2
) , o< R<1.

Substituting from this expression for log’ A(7) in (21.1) we have for r <R

Y "
(1—r2 ()< 240) + (J{log+ A+log" M + log2 + (1 + %) log (i i:)} + u(r),

whenever (21.1) holds. This is an inequality of the same type as (21.1) with
C =0 and u(r) replaced by
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v(r) = C{log+ A+ log" M+ log z + (1 + —S) log %ﬂ} + (7).

pa—

We deduce from (21.3) that we have

R

(21.4) l(R)<ii§(l+f‘v(1')dr)-
o
Now
R R
‘ ‘ - C 1+
fv(r)dr= CR[log" A + log" M + log 2] + C(l +_2)f10g(1——r) dr+ M,
4] ¢
R
(21.5) fv(r)dr<(l + O)M + CR[log" 2 + O + 3,
0
since

R

fmg:”dr=(x—R)1og(1—R)+(1 + R)log(1 + B)< 2R,

0

and M is defined in (21.2). This proves the lemma on combining (21.4) and

(21.5).
We have next

Lemma 18. If u(r) us defined for o<r <1 by

o

where z is complex and |z| <1, then we have

Z—r
I—7rz

e—7r
I—rez

I —

)

plr) =

»

f,u(t)dt<Ar(I-—|Z|), o<r<r1.

1]

We have
1—rz—z+rl z2—r _(I+r)2|1~z|2( z—r )
wlr) = 1 —rz (I I——rz)_ |1 —rezf S
I AN A WE ST
< sl — = " .
[t —re| 1—rz 1 —rz]

Thus
R e =T

0 0
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Suppose first » <3}. Then (21.6) yields

(21.7) fﬂmu<sqm1—d%pqdj[m<Awu_wu
0 0
So that the lemma holds in this case. Suppose next +>3. Then we have
’ i—ddr [ (=4
11 1—t)dt I —
- r = I
(21.8) fll—tz|4dt<f|1—tzl4+f|1—tz|4 L+1
Q 1] r

where r, = max {o, 1 — |1 —¢|}. Also

‘ 1—¢ 1 1 2
- < Z <Z .
(21.9) I <5[(‘ t)‘*dt“z C=rE ==z

Since |1 —tz|> 4|1 —2|, o<t<<1 we have

1 1
(= 9dt 16 /‘ . _8—m)? 8
(21.10) I2~f|1—zt|4<|1~z4‘ (1—8dt= | =

Combining (21.6), (21.8), (21.9), (21.10), we have if r =1

r

fﬂmw<Au—pm<Aup4m.

0
Combining this with (21.7), we have lemma 18.
22) We can now prove Theorem II. Write
(22.1) Ar)=1log" | fi ()], o=r<1.
It is sufficient to prove that

I

(22.2) Ay < - [(x +7)2(0) + A7 (1 + log" |A(0)] + N,)]

using the notation of Theorem II. For the same upper bound then holds for

log" | fu (re®)], o<0 <2, as we can prove by writing f(z¢'%) instead of f(e).
We apply Theorem I to the function

r+z

=r<I.
1+rz)’ o=r<

9(Z)=f(
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Then g(z) = 0, 1, o at the points z = d,, where

(22.3) d, =

and d, are the points such that f(d,) = 0, 1, 0. We deduce from Theorem I that if
lg. @) =1,
d + +
(22.4) [;1—9; log” {g. (=) f] < 2log"|g. (o)l
0

=

+ A[I + log*log* lg. @)} + 3 |1 — | (1 —~|d;|)]-
=1

Now the Green's Functions w.r.t. [2] < 1, log|g(z,, 2,)| are invariant under a con-
formal mapping of [z <1 onto itself and we deduce from (19.4) that

(22.5) log g, (¢)] = log |/ (1’-:72)
g.(0) _ Jolr) )
(22.6) mg.(o) = Eﬂf' (r)(l rE).

Combining (22.1), (22.4), (22.5), (22.6), we deduce
(227) (1 —r2)2.’(9~),<_z,1(9~)+A[1 +log" A + 5 |1 —dP(x -—ld,l)], o<r <1,
v=1

where d, is defined as in (22.3). This inequality is similar to that of lemma 17

with
2 dv_r
(‘“,r—m ) - ‘]

& dy—r
(22.8) wi -4 31— 2=
and C= 4. Hence that lemma yields for o <r <1

1—7rd,

v=1

(22.9) Ar)<

I—r

[(1 + 7)Ao} + Ar1 + log" A(0)] + Afp(t)dt]-

Also it follows from lemma 18 that

] © (I d—t|? dy—t
f,u(t)dt=A7+v§!f|1—-1__td”‘ (1— l__tdv)dt
) 0

<Ar+ Ar Y (1—|d))
y=1
=A7'(I+No).

Combining this with (22.9), we have (22.2), which proves Theorem II.
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Proof of Theorem III.

23) Theorem III can be deduced from Theorem IT and lies less deep than
Theorem II. Suppose that a,, u=1 to m, u=m+ 1 to M are the zeros and
by, v=1 t0o n, ¥ =n+ 1 to N the poles of f(2) lying in [z|<} and } <|z|<1
respectively under the hypotheses of Theorem III. We have

9(0, b))
1. (0) = flo) " mg——
H g (o, a,,)
u=1

We write
N
HQ(Z, by)
(23.1) 9(e) = flo) 57—
o6 a)
wn=1
Then we have
22.2 A._(M+N) < f* (O) _<_AM+N
(23.2) g (o)
and also
(23.3) £i0)_ g0 & |dloa)|, & |dlb)|
f* (O) g(o) u=m+1 9(07 aﬂ) v=nv1] g0, b,)
Since also by hypothesis M + N < L we deduce from (23.2) that we have
- |f@
23.4 AL < AL
(23.4) 71

in the first instance when z=o0, and hence for |z|<1 by mapping |z| <1
onto itself conformally. Also we have from (23.3)

filo) __g'(0)
fe0) g0l

It follows that it is sufficient to prove Theorem III(i), with g() instead of
Jf+(2). Suppose first that |g(0)| < 1. Then (23.4) gives

|fulo)| = A*

A1 + L)

+ 16 il Bt A
log’ |/, ret| < AU

<AL

(23.5)

and so Theorem II gives
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Combining this with (23.4) we deduce that

(23.6) log Ig(re"")lsl_r, o<r<i1, o<@=<2nm
where
(23.7) C=A(1+ L).

It follows, by mapping |z| <1 onto itself conformally so that z = 0, z = r¢*®
are interchanged, that if we have

(23.8) log" 9(0)] = ——

1—r
then
log |g(»€'®) | =0, o=<6=<2am

It follows that if (23.8) holds we have
lgE@>1,  lel<r,

and hence g(z) is subordinate in |z|<r to

P(e) = exp {:iz log |g(0)] + 7 arg 9(0)}-

We deduce that if (23.8) holds we have

’ ' 2
(23.9) lg' ()| = lw'(0)| = >19(0)| log |9 0} .
Suppose now that log |g{0)| = 2 C and let » be defined by

(23.10) (1—7)log |g(0)| = C.

Thus » = 4. Then we have (23.9) and so

1—7)
glo :

=2 log |g(o)] = 21log [g(0)] + 1" tog | )]

[ g'(0)

<2 log|g{o)] +40C

by (23.10). Combining this with (23.4), (23.5), (23.7), we see that Theorem IIT (i)

holds when
log |fu(0)|>2C+ AL=A(1 + L),

and by writing [f(2)]"! instead of f(z) we see that this inequality also holds
when

log |fu(o) | <— A (1 + L).
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Finally the result follows from Theorem I if
|log | fu(0) || < 4 (x + L).

Thus Theorem III (i) is always true.
The inequality of Theorem III (ii) now follows from (i). On writing

z4+7r)\ . . s
f(I n rz) instead of f(z) in (i) we have

=)A<zl 0) [l log £ ()| + A1 + L)}, o<r<1.

Integrating this we have
14 r(1+L)

()| <pu—d4 -, o<r<1
where
p = max [1, | £,(0)] ].

A similar result holds with f, (r¢*®) instead of f,(r). This proves (ii) and com-
pletes the Proof of Theorem III.

Proof of Theorem IV.

24) To prove Theorem IV, we need two further lemmas. In lemma 19 we
show that the inequality (20.1) is satisfied for a certain class of functions f(z)
and in lemma 20, we show that the functions f(z) of Theorem IV belong to

this class. The remaining part of Theorem IV then follows.

Lemma 19. Suppose that w(w) = W(u + i v) 7s regqular for u = o, real for v = o,
and that
(i) lyw+iv) <yl wu=o

(i) log” y(u)

” increases with %, o <wu < oo.

f(z)=w(l ”)-

1—e
Then f(2) satisfies the inequality (20.1):
Suppose that the hypotheses of lemma 19 hold. Then we have

1+7

3n
(24.1) L f log* |f(re®)|d0 <" log" flr), o<r<rt.
(1]
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For write
I+ 7ref
I —7 eio

(24.2) =u(r, 0)+7v(r,0).

Then it follows from lemma (19), (i) and (ii) that

log" | f(re®)| = log" | ulr, 6) + iv(r, 6)]|

=20 log” [wlulr, o)
- 22 tog f0)
and hence
- f [T Lg-(ﬁé)-”;‘;,fu( 6)d0
- 142 % 1og" | 70|

since u(r, 6) is harmonic in |z|<< 1. This proves (24.1), making use of (24.2).
We now apply Jensen's formula (3.2) to f(z) —a and obtain

2n r

—2% log" | f(re'®)—a|db=log |flo)—al + f’n(t, a)%if

Also, since log” |f—a|<log |f] + log" |a| + log 2 we deduce

r

at 1

2n
log | f(0) — af +fn(t, a)Tsz—;t-flog |f(re®)|dB +log™ |a]| + log 2
0 0

for all finite a. Combining this with (24.1), we have lemma 19.
We prove next

Lemma 20. Let
Y(w) = [¢(w)]™*
where ¢(w) ¢s the integral function of Theorem IV. Then W{w) satisfies the hypo-

theses of lemma 19.
We have

4 v =T 2}

=]
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In order to show that w(w) satisfies the hypotheses of lemma 19, it is suf-
ficient to show that these are satisfied by each of the factors

- w
e—b'w, ey 1+ -
Ty

Both (i) and (ii) are trivial for w,(w) = e®* since when b is real

Ieb(u+iv)l = gbu
and
+ bu
lig% = max (0, b) = const.
Consider next
v w
(24.4) Y, (w) = e’/(l + ;)-
We have
Yy lu+ 5v)| “u+r <
Y, (w) Viu+1)E+ 4

which proves (i). Also
log” () _ log v (w) _ 1[ " Jog (1 +§g)]
r

I.____
U u r w

is an increasing function of u/r for fixed ». For putting 5% we have

142

d 1 —1 1 [dt —1 1
EE[ log(1+x)]——(-———)+;§f7> ( + =0, xz > 0.
1

I_—_
z {1 + z(1+x) =z(1+2)

Thus ,(w) defined by (24.4) satisfies (i) and (ii) of lemma 19 and hence so
does (w) defined by (24.3). This proves lemma 20 and we deduce the truth of

(20.1) in Theorem IV. Suppose next that

Then we may write

¢ (w) = e‘b‘s)’”g (I + %)

so that ¢(w) has genus zero. Also if w = u + v,

’1+%}'>1, % =0,
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so that
l¢(w)| = e v y=o
and hence
[ (u+iv)| = |[p(u+iv)] 71| < ele=Dv,
Since
log™ yw(w)
n

increases with #, we deduce that
U = lim log”  {u)
U—>0 u

exists finitely and hence so does

lim (1 —7) log f(r) = lim (1 —7‘)1,(1(1——*——7:) =2U.

r—>1 1 I—7r
1
Also it follows from (20.1) that f n(t, a)dt converges for every a.
0

Suppose next that z% = 00, Then ¢(w) has genus 1. Also

“ u
1+;<e’
so that
o u u N K -
Qp(u)=e‘b“He’~/(I +7)2e"”‘He'v/(I +1'—)
v==1 v v=1 v

for every finite N. Hence

log (1+—~)
N N .
lim OBV ST g § O T

H—oo v=1%» >0 p=1 u

v=17y

Since 2% diverges we deduce that

1 o
(24‘5) lim igi(_u) = lim :—4:—: log f(/r) = 00,

U—>00 u r—1

141

1
It follows that f n(t, a)dt diverges for every finite a 0. For suppose contrary
0

to this that
1
N0=fn(t,a)dt<00, a # o.
0

In this case we write
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Then f,(z) # 0, 0 in || <1 and the number of roots of fi(z) = 11in|z|<t¢
is n (¢, a). Hence Theorem II yields
A

1—7r

log M[r, f1(2)] = log M[r, fi.(e)] <

[Ny +log" | fi(0)] + 1],
o<r<iu,
and so also

lim (1 — 1) log f()] < co.

which contradicts (24.5). This completes the proof of Theorem 1V,

Proof of Theorem V.

25) Theorem V is an almost immediate consequence of Theorem II. We

write

(25.1) gle) = ﬂ

and see that if g(z) =0, 1 or oo, we have either f(z) = 0 or oo or ¢(z) =0 or
oo or f(z) = ¢(z). Thus we have

1
Ng=f{n(t, g)+n(t, 1)+n(t, ! )}dtSNI
5 g g—1

where N, is defined as in Theorem V. It follows that we have

(25.2) log M[r, g.(2)] <I—i—7,{(1 + 1) log” | g, (0)| + Ar[log” log™|g.(0}} + N, + 1]}

on applying Theorem II to g(2) instead of f(z).
It follows from (25.1).and (19.4) that

_ [ 2
b (2

g+(2)

~—

and hence we have
log M[r, f.(e] <log M{r, ¢.(2)] + log M[r, g.(2)].

Combining this with (25.2) we have Theorem V.
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Proof of Theorem VI.

26) It follows from (19.3) and (19.4) that if f(¢) has poles b, and zeros a,
in |z| <1, then we have

Az
2(z—a,)

=3 log

log

zb +
b) ——Elog

and from this (20.2) follows at once. We deduce further that

O]y o | 1—=]2]|b]
log T.fz‘)lsz“g 2(z|—5.))
d hen
and hence ) 2 o]
(26.1) tog” 2 ¢, f.(z)] 2 log ‘—"‘t—lb,l)l'

Thus if 0 <p <@ <1, we have

el 91
+ f] f + I—t'b4'|
26.2 flo M[t,— at = log" | ———=—%|dt.
( ) 14 A 2 g Z(t—lb,l)
e e
Now . .
fl o dt<fl + Ly
% 20— =) '% 2%
[ x=—12
where | | | |
o bw IL‘+ bu
sy K s o
so that
dt=:deS8(l—lb I)d-’l)
+ z|b,|)® ’ ’
Thus we have always
F o Ja—tlbl
(26.3) flog dt=4(1—|b)) Iflog
t_‘lbv|
[4 —1jg

= A1 —|b,)).

Also the integral on the left hand side of (26.3) vanishes if

_g:Ib" - 1
1—olb| 2

ie, if
L 1+2|b|

= 2+ |b|
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which is true in particular unless
1—oe=4(1—|b).

Hence the integral on the left hand side of (26.3) either vanishes or satisfies

¢
(26.4) flo
0

so that (26.4) holds generally. Again the integral in (26.4) vanishes if

twl

’V I

dt<A(1—p)

|b1|_9;>1

I——glb, 2
ie, if
290
-
Ib.,l_ 2+@'

which is true if
Chose now ¢  so that

(26.5) (1—e)=3(1—0)
Then it follows that the integral in (26.4) vanishes if
1—b|<3{r—o).

Thus the total number of b, for which the integral in (26.4) does not vanish

cannot exceed the number of 3, in |2]| =<1 —-i(l —p) ie n (3 :g) Using this
fact and (26.4) we have

3 o

It follows that there exists », such that o <<r<g' and

Al <anfi)

1 —tlb|
2(t—18])

dt<<A(1 —p)n (3:9)-

1—r|bs]

(266) z 10g+ m

using (26.5). Also it follows from (26.5) that o’ < 4 (1 + g) so that o <7 < }(1 + o).
Combining (26.1), (26.6), we have (20.3).

It remains to prove the corollary to Theorem VI. We may suppose that
the quantity » in (20.3) satisfies » =3}. Thisis trivialif p=3. If 0<p <} (26.5)
shows that r exists such that (20.3) holds and also } <7 <p'. where
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so that ¢’ <%. Thus we have in this case
o<i=r<i=i(1+o)

Let n(f) be the number of poles of f(¢) in |z|<¢ Then n(f) is an increasing
function of £ Hence we have
1

fn(t)dt2[1—3:9]n(3:9) _ I:Q'"'(3:Q)

3+¢

4

and so

(26.7) n (3—?—:—(3) < I‘irfn(t)-d t.

Thus we have

,,(g_tez) <4 N
4 1—r

where N, is defined as in (19.2). Combining this with (20.3) and Theorem II,
we deduce that if r satisfies (20.3) we have
A.No

log M[r, f(e)] < “I—i“, {1 +7) log" |fu(0)| + Ar[log” log™ | fu(O)| + Ny + 11} + =

=-——{{1 + ) log" | f.(0)] + Ar[log” log” |fi(0)| + N, + 11}

since by hypothesis =} = A. This proves the part of the corollary which in-
volves Theorem II. Similarly the part involving Theorem III (ii) follows on
noting that with the hypotheses of that Theorem we have

7;(3—2—9)SL$ L

I1—r

Finally in the case of Theorem V we have in the notation of that Theorem

n(m)é 4 'Nl.
\ 4 1—7

This completes the proof of the corollary.

12~ 642128 Acta mathematica. 86
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CHAPTER II.
The Main Problem.

Statement of Problem.

1) In the last chapter we obtained bounds for the maximum modulus of a
function which has a restricted number of zeros, poles and ones. In this chapter
we consider the more general problem of a meromorphic function f(z) which
takes none of an assigned set E of complex values w more than plp) times in
|zl <o <1. Clearly plo) may be taken to be increasing. This is, however, the
only assumption we make on p (o).

It is easy to see that we may without loss in generality suppose E to be
closed. For let w, be a limit point of E and let 2, be a point in | z| < 1, such that

(r.1) flzg) = wo.

Then the values taken by f(z) in any neighborhood of 2, contain w, as an
interior point. It follows that if the equation (1.1) has exactly p(g) roots in
|z] < o, then f(2) takes all values of E sufficiently near to w, at least p(o) times
in |z| <. Hence if the equation f(z) =w has at most ple) roots in |z]| <p,
whenever w lies in E the same is true of the equation (1.1) and so we may
suppose E closed.

If F is unbounded it follows from this that we may assume that E con-
tains w = co. We shall make this assumption also when E is bounded. In addi-
tion we shall have to suppose that F contains at least two finite numbers, one
of which we may without loss in generality take to be w = 0.

Thus we assume altogether that p (o) is nondecreasing and that K contains
o and oo and is closed.

We shall continue to use throughout this chapter the function f, () defined
in paragraph 19 of the previous chapter. We shall obtain bounds for the maximum
modulus M [, £, (¢)] of f.(¢). Bounds for Mg, f] can be deduced by means of
Theorem VI of chapter I. The use of f,{z) has two advantages. In the first
instance it allows us to study meromorphic functions as easily as regular
functions. Secondly we shall be able to obtain our bounds in a very simple

form depending only on »(g), o, | f.(0)| and E.
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Part 1.
The Case when p (o) is Constant.

2) We have already studied the case when p(p)=o0, 0<p<1 in some
detail in previous work (Hayman (1), (2}, (3)). In addition the case when p(o)=p,
a positive integer has received some attention. Ostrowsky!, Milloux? and
others have studied functions with only a finite number of zeros, poles and ones.
Further there are the results of Littlewood® and Cartwright* about functions
regular in the unit circle and taking none of a sequence of values w, such that

|wn|——>00

more than p times. Littlewood showed that if wn4,/w, is bounded then

10gM[9»f]=0{10g ! }

I—e
Miss Cartwright! showed that if in addition

Wn+1
Wa

> 1

then we have '
Mlo, 1= 0(x — g

for every &>o0. Here the index 2(p + 1) is best possible as is shown by the
functions

f(z)=(

1 + z\2p+D)
1—£

which take no real negative value more than p times in |z]<<1.
Cartwright* proved also the following result

Theorem I. Suppose that f(z) = ay+ a,z + -+ is regular in |2| <1 and takes
no value more than p times, where p is a positive integer. Then we have

M[Q:f] < A(p),u(l ——9)“21’

where :
p=max [1, |al, |a], ... |apll.

This result was generalized by Spencer® to functions which take values
on the average p times in |z| <1 and now p need not be an integer. We cannot
even state Spencer’s many beautiful results without going inte his rather intricate
definition of mean valency, which lies outside our scope. We must refer the

reader to Spencer’s papers.

' OSTROWSKY (1). * MILLOUX (I). * LiTTLEWOOD (2), p. 228.
t CaArtwrIGHT (1). ® SPENCER (1), and references there given.
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3) We do not aim here to prove explicitly all the above results. We shall,
however, prove a general Theorem by which the study of functions taking values
p times can be reduced to the case when p = o0, which has already been studied.
This resuit is Theorem II. Having proved this we shall give an application in
Theorem III, which will include Cartwright's Theorem I as a special case. The
second half of the chapter will be occupied with the case when p(p) is unbounded.
We reserve all except the simplest counterexamples to the next chapter.

) ~ (I + 5)2(p+1)

1—2z

The functions

take no value more than p + 1 times and no real negative value more than p
times in |z|< 1, and their rate of growth is extremal under these conditions.
By taking the (p + 1)th root we obtain functions which take no real negative
value in |z| << 1. This simple process lies at the basis of our result. The most
serious difficulty lies in the zeros and poles, which would yield singularities
when taking the (p + 1)th root. This difficulty is not insuperable, however, as we
shall see.

Theorem II. Suppose that f(z) is meromorphic in | z| < 1 and has at most q zeros
and q poles. Suppose that p is a positive integer or zero and that f(z) satisfies one
or more conditions of one of the following two types.

(i) f(2) takes no value on the circle |w|=r more than p + 1 times in |2| < 1;

(ii) f(e) takes some value on the circle |w| =1 at most p times in |2| <1,
where the numbers r are real and positive.

Then given 9, 0 < < 1, there exists o such that

(3.1) 1—p<A1(1— )

and a function ¢(2) regular nonzero in |z| <1 and such that
(3.2) |¢(0)| < {42] £, (o) [} V/ir+1)

(3.3) log M[¢', ¢ ()] = —— {log Mo, fu ()] —q 4}.

p

+1
Further if r 4s a number for which (i) or (ii) holds then ¢(2) never takes some value

w', such that |w' [P+l =17, in |2|<1.

Thus we can use the known bounds for Mg, ¢] to obtain bounds for
Mo, f.], and as we shall see in paragraph 10, the bounds obtainable in this
way are fairly sharp.
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4) The proof of Theorem II consists of two parts. The first, which is almost
trivial, is to prove the result when g = 0. The second rather more intricate part
consists in eliminating the zeros and poles of f(z). This depends on conformal
mapping and hyperbolic distances’, which were introduced earlier. We have first

Lemma 1. Theorem II holds when q = o, with o' = o, ¢(2) = [ fle)]V/+1),
Suppose ¢ = 0 and let f(2) be the function of Theorem 1I. We write

(4.1) $(e) = Lf (] VoD

where the principal branch of ¢(z) is taken at the origin. We write o’ = p.
Then (3.1) to (3.3) are clearly satisfied.
Suppose next that f(z) satisfies a condition of type (ii), so that the equation

(4.2) (&) =w

has at most p roots in 2| <1 for some w such that |w|=r. Then if
(43) (')t = w

we can only have ‘

(4-4) $(2) = w'

when (4.2) holds. Since there are p + 1 different values w' satisfying (4.3) it
follows that for at least one of them the equation (4.4) can have no solution in
| 2] <1. This proves the Theorem except for the case when f(2) satisfies one or
more hypotheses of the type (i).

. To complete the proof of lemma 1, we shall show that if ¢ = 0 and f(2)
satisfies a hypothesis (i) then f(2) also satisfies the corresponding hypothesis (ii). Let

; g(2) = log f(2)
‘and let 5, <7 <7, be the largest interval such that the equation
gley=logr+in, m<n<m

has roots in |z|<1. If the interval does not exist, f(2) > and our result is
proved. The interval cannot be infinite since otherwise the equation

fle)=r
would have infinitely many roots in 2| < 1. Then the equation
fle) = rein

has at most p roots in |z|<C1.

! Haymaw (1)
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For if not let 2, 2,, . . ., 2p+1 be roots of this equation (possibly coincident
in the case of multiple roots) so that

(4.5) Sfle)=remn,  j=1top+1.
Then we have
( 9(z) =log r +i(n, + 2m;7)

where m; <0, since ¢g(z)#log » + ¢7n; by hypothesis. Hence if ¢ is sufficiently
small we can find 2z near z;, such that

g(#)=logr+in +2(m+ &nms
and by hypothesis we can also find ¢, such that

gleg) =logr+in +2nie
Hence the equation
f(Z) = petmtidnie

has p + 2 distinet roots in |z|<<1 if ¢ is small enough, contrary to hypothesis.
Thus the assumption that (4.5) holds is incorrect, so that the equation

f) = ren

has at most p roots in |#| < 1. Thus when ¢ = 0 the hypothesis (i) of Theorem 1I
yields (ii). This completes the proof of lemma 1.

We note incidentally that the argument breaks down when ¢ >p. In fact
the function 2P+! takes every value in |w| <1 exactly p + I times in |2]|<1.

5) We now approach the task of eliminating the zeros and poles. To do
this we proceed to construct a simply-connected domain lying in |[z|< 1, and
containing mneither poles nor zeros of f(z). We then consider the function
STA(2)], where A(¢) maps |2| <1 onto this domain and have a function satisfying
the hypotheses of Theorem II, with ¢ = o.

We first deal with the zeros and poles in a manner analogous to that used
in paragraps 11 and 12 of chapter I. We have

Lemma 2. Suppose that f(z) is meromorphic in |z|<1 and has at most ¢
zeros and q poles in |z|<1. Then if |z,| <1, there exists 2’ such that

<!

4

’
2 —z,
1—Z,2

(i)
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(i) If 2»,v=1 15 a pole or zero of f(2) we have

’
gy, — &

;= A9
1—Z¢

‘g(z‘,, Zl” =
(i) We have
: A fo )| =) = 47| fo(20) ).

To prove lemma 2 we may suppose without loss in generality that ¢, = 0. For,

if not, we can consider f (12 —;"Z) instead of f(z). Let a,, # =1 to m be the
%0

zeros and b,, ¥ = 1 to n the poles of f(2) in |z| <}, and let
n
gle, b.)
(5.1) gle) = flo) 2rm g
II g (Z; a,‘)
a=1

We have m =< ¢, » =< ¢ by hypothesis and so it follows from lemma 11 of chapter I,

that we can find o, %Sgﬁi such that

(5.2) o6 ad[[ote )| > 42 |2l e
p=1 v=1

Since g(z) is regular nonzero in |z|< %, its maximum modulus increases and

its minimum modulus decreases. Hence we can find 2’ such that

(5.3) 2| = e
and
(5.4) 9(&) =g(0)| =1/ ().

1t follows from (5.3) and ¢ <} and 2, = 0, that 2’ satisfies (i). It follows from
(s.1), (5.2) and (5.3) that
A1]g(N)| <) < A g ()],

which combined with (5.4) yields (iii). Also (ii) follows from (5.2) when |2,| <},
and (ii) is trivial for |2,| =} since then

3-

I —

loa

1
= =
|g(Z°') Z)l 2

L

This completes the proof of lemma 2.
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6) The crux in the proof of Theorem II is lemma 3, which is best ex-
pressed in terms of hyperbolic distances. We recall the definitions given in
Hayman (1), which we denote by S.T., particularly (3.1) and (3.3). With this

notation we have

Lemma 3. Let D be a simply connected domain in the z plane and let 2, 2",
2., 2y, ...%2q be q + 2 points of D such that

d[Z', z¢; D=4, i=1 to g,

(6.1) " )
dl’, z;; D=9, i =1 to g,

where d >o0. Then there exists a simply connected domain D', containing ', 2" but
none of the z;, and contained in D such that

(6.2) dle',2"; D) <d[/,s"; D]+ 4 (q + log* %)

To prove lemma 3 we remind the reader of the following properties of
hyperbolic distances. They obey the triangle relation (S.T. lemma 5). They are
left invariant by 1:1 conformal mappings (S.T. lemma 6). They increase with
a contracting domain. In other words if D, < D,, we have

d [31, 2y Dl] = d [Zl’ Zz; -D2]

This is implicit in S.T. lemma 6, since we may take the function w = f(¢) = 2
in that lemma, which maps D, into D,. Also if D is the circle |z| <1, then
we have

1+|e]

11—

dfo, 2'; D] = } log

This follows from S.T. (3.4). It also follows more generally that if D is the
circle |z —2,| < R, we have
R + |Z’ ——Zo|.

dle,, 2'; D] = %logR_l'Z"”ZoI

It follows from the invariance of hyperbolic distances that we may suppose
without loss in generality, that the domain D of lemma 3 is the circle |2 < 1.
We suppose first that ¢ = 1. By a conformal mapping of |z|<<1 onto itself, we
then map 2, onto the point + sy, on the positive imaginary axis and 2/, 2" onto
the real axis. This is clearly always possible. We now take for D’ the domain
obtained from D by cutting along the positive imaginary axis from <y, to ¢.
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Hyperbolic distances in the new domain could be worked out explicitly, but
it is easier to approximate, making use of the methods of S.T. Suppose first
0<z <} Then 2 is contained in the circle C, namely |z —}| <34, itself con-
tained in D'. Thus

6.3 Al & D1<dl, 1, O] - log (155

Now we have by hypothesis .
a7, <y, D] = .
Hence we have
dls, 0; D] + dfo, ty,; D1=4
so that either k

b 1+2\_ ¢
(6.4) il o; D]——%log(l__z,)>2
or
(6.5) dlo, iys; D} = ylog L5415 4.
1—y, 2
If (6.4) holds we have at once from (6.4} and (6.3)
(6.6) diZ,4; D'1< 4 [l + log” }Ii]

If (6.5) holds and |2/|=3y, we see again from this, (6.5) and (6.3) that (6.6)
holds. If o<z <}y, we note that 2/ is contained in the circle C, |z| <y,
which is contained in D', so that

dle, y; D]1<dle, 3y, C1]
<dle, 0, 1+ dlo, }y,; C1]

T iy

y1+Z
17 yi—%y,

= } log :;l————?+ $log < log 3,

since 2’ < }y,. Thus in this case

d[Z', ‘%’ D’] < d[zlv %!/1; D,] + d['%ul: %7 -D’]

<A+§log+‘1—;—

1
from (6.3), and since (6.5) holds we deduce again (6.6). Thus (6.6) holds for
o< <4}

Suppose now that 3 <2 <7'< 1. Then 7, 7" are both contained in the
circle C, |z—2'|<1~—2', which is contained in D', so that
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I — z'+z"——z')
1—2 — (" —2)

dl#, 2", D')<d[, 2"; C] = % log (

<%10g — ,,+%100'2

(6.7) ale, 2" D]<llog +A(I+10g 3,)
Again if 0<2' <} =<:"<1 we have
dle, ", D'1<dle, §; D)+ df3, 2’; D]
<A[1 + log* 6]+%log — ,,+A(1 + log* 3)

on using (6.6) and (6.7) with } instead of 2. Thus (6.7) holds also if o <&'=
<3} <7". Suppose next that 0 <z <z’ <}. Then we have

d [Z'y z’/; D,] < d [z/’ %; DI] + d [Z”, %; DI]
<A [I + log” (—;] )

using (6.6) in turn with 2’, 2 instead of 2. Thus (6.7) holds whenever 0 <2<
<¢”<1. Also in this case

dlZ, ', D] = al, ¢"; |e|<1]=%log{«lj—_z ! +Z}>%l og
11— 1—¢
Thus (6.7) yields if o <2 <z2”" <1,
(6.8) dle, 2", D)< dle, 2", D]+ 4 (I + log” g)

Clearly (6.8) also holds if — 1 <z’ <<z <o0. Suppose lastly —1 <2 <o<z'<1.
We note that D’ is always contained in the domain D" given by

—3=n n
; <argz < > lz] <1,

which contains 2= — 3, 3. Thus
d[—4 s D1<d[—4 1 D']= 4
Hence if — 1<z <o0<2”<1 we have, using (6.8)
ale, s D')<dle', — 4 D1+ d[—4, & D]+ aly, 2% DT,

(6.9) ale, 2" D]<d[’, —4, D)+ d[4, 2", D} + A ( 1+ log* %)'
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Again since 2’ <o < Z”, we have
dle’, 2"; D] = d[7, 0; D] + d o, "; D]
> d[zra _—%7 D]_d[oy —_%) D] + d[‘%, Z”; D]—'d[o) %’ D]
=d[d, —% D1+ d[3, 2", D)— A.

Combining this with (6.9), we see that (6.8) holds in this case also. This com-
pletes the proof of lemma 3, when ¢ = 1.

7) Tt remains to prove lemma 3 when ¢>1. Let I be the domain of
lemma 3. Suppose that the 2; are so numbered that

(7.1) dlzi, 2y D1=dlz, 2; D), i1,
(7.2) dlzi, 2", D] =d [z, 2"; D] ¢=02.

Let D, be a simply connected domain, containing 2’, 2’ but not z,, contained
in D, and such that '

dle, 2", Dl<die,2’; D1+ 4 (I + log* é)

Since we have proved lemma 3, when g =1, D, exists. Since D, is contained
in D we have further

dlz', zi; D]1=d[s, z:; D=3, i =2 to ¢

dlZ’, 2;; D)= d[s’, 2;; D] =46, i =2 to q.

Thus we can similarly construct a simply connected domain D, contained in D;,

not containing z,, and such that

alz,"; D)< dls, 2", D]+ A (I + log" :Is)

(7:3) ale, ", Dy} <dle, 2", D] + A (‘ + log* ?Is)

We may suppose without loss in generality that D is || <1 and that 2’ =o.

Let
z=Yw) =a,w+ ayw® + -

map |w|<<1 onto D, so that y(0)=2 =o0. Since D, does not contain z, it
follows from the theory of schlicht functions®, that

! LITTLEWOOD (2) p. 207, Theorems 242, 243.
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la| || - 4|z,”w|

= Tl = (= ]

Also it follows from (7.1) that |z;|=|z|, 1 =2, so that if @(w) =2, i> 2,
we have

4o fowi|
(1 _lwil)z = |Z1|a

(1 —we])* < 4| wil,
|wi]= A >o.
It follows that we have
dle, zi; D) = dfo, wi; |w]< 1] >4, > 2.
Similarly we have
dz", z:; D) > A, i > 2,

since D, does not contain 2z, and (7.2) holds. We can thus repeat our construc-
tion ¢ — 2 times more with A instead of d, and finally obtain a domain D' = D,
which contains none of the points z,, 2,, ... 2. Also if D,, D,, etc. are domains
containing none of the 2, for ¢ <3, 7 <4, etc., we deduce that

dle,¢"; D] <d[z, &' Dyl + A<
<dl[e, ¢’ D]+ A(g—2)

<d[, 2’ D]+ A [q + log” ;] )

making use of (7.3). This completes the proof of lemma 3.

8) We can now combine lemmas 2 and 3 to give

Lemma 4. Let z,, |2,| <1, be given and suppose that f(z) is meromorphic in
|z2| <1 and has at most q zeros and q poles. Then we can find a function A(g),
which ds schlicht in |z| <1 and maps |e| <1 into itself, such that fli(2)] is re-
gular non zero in |2| <1 and
(1) |12 (0] < 47| £, (0)].

(i) There exists a points 2y, such that

[FTA ()] > 49| £, (20)]

where

(iii) 1—lew|> A1 —|2)).
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We may suppose ¢ =1, since otherwise lemma 4 is trivial taking 4(2) = 2.
Let 2’ be chosen to satisfy the conclusions of lemma 2. Let ¢” be chosen so as
to satisfy the conclusions of lemma 2 for 2', with 2z, = 0. It follows that if 2,,
>0, is a pole or zero of f(z) we have

1+ |g(3’1 Z,.)

, |
dle', z,; 2] <1] = } log 7 > A9
[ lel<11=14 1—|g(¢, 2)|

dlz”, 2z.; |z] < 1] > 49,

It now follows from this and lemma 3, that we can find a domain D’ con-
tained in |z| <1 and containing none of the poles or zeros of f(¢), of which
there are at most 2¢ in all, such that

dle, 2", D'l<d[e, 2"; |z|<1] + Aq
<d[Z,0;|z|< 1]+ dlo, 20; |2| < 1] + d (2, 27, |2]| < 1] + A¢q
<§10gi——i~|—z——}+Aq+A

)
'5’0

1+ |2

(8.1) d[,2"; D'1< }log + Aq
1— | 2|

making use of lemma 2 (i) and ¢ =1.

Let A(¢) map |z|<1 onto D' so that A(0) = 2", A(en) = 2. Then the con-
clusions (i) to (iii) of lemma 4 hold. For A(2) is schlicht in |z|<1. Also D’
contains no zeros or poles of f(z) so that f{A(2)] is regular, nonzero. Further

|2 (0] = |f(e")] < 47| £, (o)},
by lemma 2 (iii) with o, 2 instead of z,, 2. This proves lemma 4 (i). Again
LIzl = | f()| > 4791, ()]

by lemma 2 (iii), which proves lemma 4 (ii). Finally

dlo, zp); |2l <1l =d[¢, 2""; D] <§10gi_;_|ﬂ’~' + A4q

|20l
by (8.1), i.e.
1+ |2,]
1— |z

1+ |z
log————<i%lo + Ag,
log i, ] < tlog q

which yields lemma 4 (iii). This completes the proof of lemma 4.
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Proof of Theorem I1I.

9) We can now prove Theorem II. Let f(z) be the function of that Theo-
rem and let z, be so chosen that {z,| = ¢ and

(9'1) M[Qa f* (Z)] = ,f* (Zo)l'
Let A(2) be defined as in lemma 4 and let
(9.2) ¢ (2) = fA(e)]Veor0).

Let 2z be defined as in lemma 4 and let |z9| = ¢. Then (3.1) follows from
lemma 4 (iii). Further

[6(0)] = | FTA (0)]|¥2+D < { 49| £, (o) ]} @+

by lemma 4 (i). This proves (3.2). Again

I
p+I

llog |/« (20)| — A q]

log M[¢', ¢ (2)] = log | ¢ (z))] = log | f[4(2)|

1
p+1

making use of lemma 4 (ii), whence (g9.1) gives

1
pt+1I

log Mo, ¢] > [log Mg, f. (2)] — A q]

which proves (1.3). Again the function f[i(2)] takes no value more often than
Sf(2) in |z| <1, since A(z) is schlicht. Thus f[Z(¢)] satisfies the hypotheses for
S(2) of lemma 1. Hence it follows from that lemma that if ¢ (¢) is defined by
(9.2) and fle) satisfies a hypothesis (i) or (ii) of Theorem II, then there exists a
number »’, such that |w’|?+1 = and such that ¢ (¢) #w’, in |z| < 1. This com-
pletes the proof of Theorem II.

An Application of Theorem II.

10) As has already been stated, Theorem II can be used to prove extensions
to most of the theorems, which have been proved earlier!, concerning upper
bounds for the rate of growth of functions omitting certain values, to the case

when the functions take certain values at most p times. We give one application

! HavyManN (1), (2), (3).
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of this, which will contain as a special case a slightly different form of Cart-
wright's Theorem I. This is

Theorem III. Let rn be a strictly increasing sequence of real numbers tending
to enfinity and satisfying

(10.1) Yo =0
00 - 2
(10.2) s= 3 (log 7Ltl) <o,
n=1 Tn

Suppose also that f(2) is meromorphic in |z| <1 and that for each n either
(i) f(2) takes some value wn, such that |wa| = rn at most p times in |z| <1, or
(i) f(e) takes no value wa, such that |wy| = rs more than p + 1 times vn 2| <1,
where p is a positive integer or zero. Then we have

(10.3) Mo fo (2] < A(p) eSS V(r + |fL @) (1 — )27+, o<p< 1.

Of course if f(z) is regular we can replace M[p, f,] by the smaller M [o, f]
in (10.3). To prove Theorem IIT suppose first that p = 0 and that (i) holds for
every n. Suppose further that

(10.4) [flo)|<r,

(IOS) w, = — 1.

Since f(z) never takes a sequence of values tending to infinity, f(z) is regular
in |z]<1. Also it follows from this and (10.1), that f(0) = f,(0), and hence ‘it
follows from Hayman (3), Theorem III, that (10.3) holds in this case.

Again if (10.4) is satisfied but not necessarily (10.5}, (10.3) still follows on ap-

12

plying the result with instead of f(2). Suppose now that (10.4) is false.

1

Let %, be the greatest integer such that

Tny = |f* (O)l’
and put
(10.6) Ylz) = ;];Ei)ﬂ .

Then v (2) satisfies the hypotheses for f(2) of Theorem III, with

< rnt1\’
Snp+1 = z (108' &)
N+ 1

rn
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instead of s, and also (10.4) and (10.5), if we relabel the sequence 7, so that
Tng+k, k>0 becomes 7. We deduce that (10.3) holds for y(z), so that

log Mlp, ¥ (2)] < sn+1 + 2 log I 44

1—p
Then (10.6) gives
log Mg, /1= log ra,t1 + Snt1+ 2log —— + 4

= log ra, + log Toutl 4 Sno+1 + 2 log + 4
T, 1—o
S rar1\’ 1

<log|flo)| + 3 \log + 2log —— + A.

n=ng Tn I1—p

Thus (10.3) holds in this case also. It follows that Theorem III holds generally
when p = 0 and the hypothesis (i) is satisfied for each =.

Suppose next that »p >o0. We apply Theorem IL. Let ¢(z) be the function
of that theorem. Then for each n, ¢(2) never takes in |z| <1 some value wy,

guch that
[wn]Ptt = 7y,

i )

p+ 1S ] o+ 1)

Hence
7
Wn+1
W

-]

’

§=2 (10g
n=1

Also |wi| = »/®+tV. Thus it follows from our previous argument that
(10.7) Mo, ¢ ()] < delw+V* (g (o)] + ri®H) (1 — )72

Now f(z) has at most p + 1 poles or zeros so that in Theorem II ¢ =p + 1. It
then follows from Theorem II, (3.1) that given g, 0 < g < 1, we may choose ¢’ with

(10.8) Lo« A
1—¢ T 1—p
such that from (3.3)
(10.9) Mo, f. (] < {A Mg, ¢ ()]} 4
and finally by (3.2)
(10.10) 16(0)] < 4]/, (o) io.

Combining (10.7) to (10.10) we deduce that for o <p <1

Mo, f. ()] < [APT sl 12 {] £, (0) [P +D) + pUip+D) (1 — g)=2]pH1
< Ap+1)? gsilp+1) (|f;= (O)l + ) (1 — Q)—2(p+1),

which proves (10.3), i.e. Theorem III.
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Suppose now that f(¢) takes no value more than p times in |z| < 1. Then
we can apply Theorem III, with r, =|f,(0)|, and s =~ ¢ where & is arbitrarily
small. We deduce that

M[Q:ft] = A(p) ‘f* (O)‘(I _Q)_—“).

This is the conclusion of Theorem I due to Cartwright with

b by ... by
a,q,...0an

|f# (OH = 2" " f(O)

replacing u, where a,...an are the zeros and b,...b, the poles of f(z) in
|z| <%. It is not difficult to deduce the exact bound in the form of Theo-
rem 1. :

The chief disadvantage of the method lies in the constant A4 (p) of Theo-
rem III. This takes the form AP*Y* while Cartwright proved her original re-
sult with A4 (p) = A?. This makes it impracticable in general to extend the method
of Theorem II.to the case of functions having infinitely many zeros and poles.
To consider this case we shall adopt different methods, based on the results of
Chapter 1.

Part 1L
The Case when p (¢p) is Unbounded.

11) The problem of this chapter when p(g) is unbounded does not seem to
have received so much study to date. The most important work in this case is
probably Nevanlinna’'s Theory of meromorphic functions. Nevanlinna's results
involve bounds for the characteristic of a function meromorpbic in a circle in
terms of its valency on a finite number of values. For a more detailed study of
this problem which lies outside the scope of this essay, we refer the reader to Ne-
vanlinna’s books.! The methods are not easily applied to give best possible results
in our problem. In fact the strongest results obtainable on the Nevanlinna
Theory are

T[r,f]=0{10g ! }

I—r
From this we can only deduce

log My, £, (2]~ 0f+ tog -}

I—r I—7

! NEVANLINNA (1) and (2).

18- 642128 Acta mathematica. 86
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so that the results
(r1.1) log M [r, f. :IQ_'(,I—B.

of chapter I are not immediate deductions from Nevanlinna’s Theory. Rather
surprisingly the Nevanlinna Theory can be adapted to yield results of the type
(11.1) but we must consider this as outside our scope. We shall base our method
on the results of Chapter I. .

To do this we consider f(z) in relation to the roots of the equations f(z) =
= 0, w, o, where w is the value of E nearest in modulus to f,(z). In this way
the general theory reduces essentially to the case where F contains only 3 val-
ues which we may take to be o, 1, co, and it is this case which we consider
first of all.

This problem has been considered in Chapter 1. We must, however, extend
the results of the Chapter to the case when [ p(o)do diverges. In order to do
this we shall have to obtain results in terms of the roots of the equations
fley=0,1,00 in |z| <R where R<1.

If 2 =9, f.(0) is defined as in Chapter I, 19 in terms of the poles and zeros
of f(z) in the circle
£~

(11.2) P——

1
= 3.

If (11.2) holds we have

1+2p
<
(Z!_ 249

I+ 20
2+p

order to obtain results involving f,(¢) we shall certainly have to consider the

and conversely if z is real and satisfies p <z < we have (11.2). Thus in

behavior of f(z) in a region containing (11.2) and the smallest circle centre the
origin, which contains (11.2) has radius

L+2g

(11.3) &= T,

Throughout this work we shall consequently, in obtaining bounds for | £, (2)]
in the circle |z| < g, have to consider the number of rocts of equations f(z) =
0, w, ©0, where w lies in E, in the circle |z| <p,, where g, is given in terms of
o by (11.3). We note that

i—e=1—0,=<3}(1—p),
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go that if p(p) does not grow more rapidly than a power of —I—_I_——e we shall have

»le.) = 0{plo)}.

After this preamble we can state our first and fundamental result as follows

Theorem IV. Suppose that f(z) is meromorphic in |2| <1 and that each of the
equations f(2) = 0, wy, 00 have at most p(g) roots in |z|<p for o<e<1. Let

(11.4) (o) = log Mo, f. (2)] =  max log |fe(0e?)], o=p<1.

Suppose that 0 <9 <@ <1 and that g., 0, are given by (11.3). Then
(i) If (") = log |w,|, we have

éﬁ—$h+p@n

4e) > log |wo| — 7 __e

(ii) If 2 = max {0, (o) — log |w,|}, we have

0%
M) <i+ logluof + 2o [@—aa+ [+ peidar]
Q0

By repeated application of Theorem IV we shall obtain all the results of this
chapter, which will turn out to give the correct order of growth in most cases.
Roughly speaking the more rapidly p(g) grows, the less effect the form of E has.
A sufficiently slowly growing sequence will always have nearly the same effect
as the whole plane, and if p(g) grows as rapidly as (1 —g)~% with a> 1, a set
E consisting of 2 finite values and oo will have much the same effect as the
whole plane.

12) We need two subsidiary lemmas for the proof of Theorem IV. We
have first

Lemma 6. Let o<g<1, g,,SR<i, and let

\_ Ble—d
gR(Q’Z)— RQ'—‘QE
= -f—e
g(Q, Z) gl(@? 3) I ___Qz-,
I
Alo, 2) = log" | ——— og" | ——|-
(Q ) & 29(9,2’) & ZQR(Qaz)

Then we have
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@)  Iflgle, &)l =4 then 2(o,2) =0
(i) If lgle 2)| =% we have

0=1(g,2) <Al —|gle 2l

J
0 -
(i) |5 4le 2| = 2=
whenever the differential coefficient exusts.
Suppose that |z|= R. Then we have
l9zle, )] =1
and also
(12.1) gl 9l = |ZoL = Fol =y
) . 1—o3 1—o R

Thus in this case Alg, z2) = 0 so that lemma 5 (i) holds.
Next when |z| = R, we have

lgr(e, 2)| = 1,
and bence using (12.1) we deduce

g(o. 2)

(12.2) 1< P

<1, |e|<R.

The inequalities (12.2) which were proved for |z| = R hold also when [z|<R
since the function

Rz |
R(1—o2)

Zz) is equal in modulus to

which is regular nonzero in |z| <R, and attains its maximum and minimum
modulus in this region on the boundary. Then lemma 3 (i) follows from (12.2).
We also deduce from (12.2) that if |g(p, 2)] <} we have

(12.3) Ao, 2) <log 2,

and also we have clearly if } <|g(p.2)| <4,

(12.4) A(e, 2) < log

I
29(93 Z)'

Combining (12.3), (12.4) we have lemma ;5 (ii).
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The inequality of lemma 5 (iii) is trivial by (i) if |g(e, 2)|=%. Suppose
next that
lale, 2)l <3, lgzle, )| >%.

In this case it follows from (12.2) that

—|F—e |1
lg o, 2)] ozl T4
so that
(12.5) le—~el> A1 —0).
Also
a 1 z A A4 A
— _ —_— < <<
lael(e’z)I z—p I—eé_l~e+1—9_1—e

by (12.5). Suppose lastly that

g(Q, Z) < %, gR(Q7 Z) < %
Then

l z z

A
R —07 1—0i|
ez 1—pz

_I-—-e.

’—3%1(9,3)

This completes the proof of lemma 5 (iii) and so of lemma 5.
13) We have next
Lemma 6. Let 0<p<1, 0, <R <1, and suppose that f(z) is meromorphic

in |2) <1, and that none of the equations f(z) = o, 1, 0o have more than p(R) roots
in |2| <R. Then we have

filo) 2R
m <R?_Qz{llOglf*(Q)”+A[p(R)+I]}~
Put
(13.1) o= L) = %>
_E(z—9)
w = RE-—Qz’
(13.2) ¢ (w) = fl2) = FLL(w)].

The function z=[{w) maps |w| <1 onto |z| <R so that the equations ¢{w) =
0, 1, 00 each have at most p(R) roots in |w|<<1. Thus applying Theorem III (i)
of Chapter I to ¢ () we have
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. (0)
¢4 (0)

Let a,, g=1 to M be the zeros and b,, v =1 to N the poles of f{2z) in
|z| <R and let ag, b, be the corresponding zeros and poles of ¢ (w). Thus we have

(13.3) <z{|log|g.(0)|| + A(p(B) + 1)}.

(13.4) law = au, p=1to M
(13.5) 1(¥)) =by, »=1 to N.
Then if 2z, w are real and non-negative we have from Chapter I, (19.4)

1
2

(13.6)  log | fu(e)] = log |f(2)] + 2 og” 7 z, N WE log” Gl
I
(13.7)  log |du(w)| = log |¢ (w)| + Z 10g o To, ) “Zl log T )|

Suppose now that 2, w are connected by (13.1). Then (13.4), (13.5) give easily
R(z-—e)_R(au-‘e)

| w—d | _|w—a|_| BP—ez R*—ga,
[g(w, au)| = |I—‘w¢7;4 'I—u;a;t R(Z—Q) R(au—o)
R*—oz (Rs_@“u)
— R(Z au)
Rz—a,tz 'gR(Z’ allf)'

with the notation of lemma 5. Making use of this and (13.2), (13.6), (13.7) we
deduce that

i N
(138)  loglA)l—logle (] = 32, a)— 3 16,
u= v=
Putting z = ¢, w =0 we have at once from (13.8) and lemma 5 (ii)
(13.9) [log |g. (0)| — log | £, (@)} < A(M + N) < Ap(R).
Differentiating (13.8) with respect to z and then putting z = ¢ we have, using
(13.1)
fule) R ¢~'.(0)_[” 9., 3 ]
i i sl PR TR ¥ LS I
Making use of lemma 5 (iii) we deduce
falo) R ¢.(0) A AR
13.10) |54 — = < M R)< R
(13.10) folo) BE= @ ¢ul0) I_e( (R) Rs__gzp( )

Using (13.3), (13.9) and (13.10) we have lemma 6.
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Proof of Theorem IYV.

14) The remainder of the proof of Theorem IV is not easily split into
lemmas. In this paragraph we prove Theorem IV (i). We shall suppose throughout
the proof of Theorem IV that w,= 1. We may clearly do this without loss in

fle)

generality, since otherwise we can consider o instead of f(z). By applying
0

Theorem IV to this function, the complete result will follow.
Suppose now that

(14.1) log | £, (@) = o
and that
(14.2) log |[fu(M) <o, e=r<y.
Let

_ I+ 2@"
(14.3) R=o.=—= v

Then it follows from Lemma 6 and (14.2) that

Sulr) 2R ‘ ,
JAQ <R2—72{ log |fo(r)| + Alp(R) + 1]}, e<r<y.
This may be written as
&%gi:[—log |f()| + A[p(R) + 1]l >0, e<r<r’.

This yields combined with (14.1)

gig:[‘“‘ +pE) > LA [+ p(R] —log |£. @),
ie.
ﬁig log If*(@)l>{g%§—gig,}fi (1 + p(R)],
or

—24 R —o)
log | £, {0)] > W[P(R) + 1].

Making use of (14.3) we deduce that

(14.4) \ log | fu(0)| >:—é(—9’—7—@ {ple)) + 1}.

Suppose next that
(14.5) log |fu(@)| =0
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and that
log | (0)| <o.

Let o, be the leagt number greater than g such that

lOg ,f* (Ql)l = 0.
Then we have

log |f(r)| <o, o<r<pg

and hence by what precedes (14.4) holds with g, replacing ¢’. Since ¢’ = g,, (14.4)
holds a fortiori with ¢'. Also (14.4) is trivial if |f,(0)| > 1. Thus (14.4) holds
whenever 0 <p <o <1 and (14.5) holds.

Suppose now that with the notation of (11.4),

Ale)=o.
Then we can find 6 = 6 (¢') such that
log |fu(o' €?| = 0.
Then our previous argument leading to (14.4), when applied to f(ze'?) gives

log | f. (0 %) | > ;‘j—f‘_’;@?—){l + plou)}.

This proves Theorem IV (i) since
(o) =1log | file ).

15) It remains to prove Theorem IV (ii). Suppose first that

15.1) log [fi(o)| =0
and that
(15.2) log [fi (o) =log |f.(r)], e=r=y¢.

Suppose also that

’ I+‘29
. < Rl
(15.3) = =00,
In this case we take
1+72r ’
(154) R”—‘?‘*:—:,_T: e=r=g,

and use Lemma 6 with » instead of p. This gives
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L] < g T o LA + 4T+ p(RY)
- i‘j ESTEET) Hog 4] + AL + p(RI);
20 < log 1A 0] + 4L + p(RI)
This may be written as
2G5 oeln0 =4t Hu s mI < 4t —ol + (2D

since 9 <r <pg' and (15.3) holds. Thus we have on integrating

[(?‘}:)2 log | £.(7) l]:'s A(1—g) f I[I +p(R)]dr

I*Qf[l'*’p 3dR)

< A1 ~g)f[1 + p(R)dR,

o%
making use of (15.4), i.e
O

tog [4,0)] < (L8) (1) 10 1) + 41— o) [ 11+ p(RDaR)

Oy

169

<[r+ 242l s 1+ £ 2 [ pirnar,

Ji—e) :
and since (15.3) holds so that (1 —p)<< A(1 —@'), we deduce

| Al
(15.5)  log[fu(e’ |<[I+ __Q] g |filo)

R)]dR.

16) Suppose next that (15.3) is false, so that

1+29

{(16.1) T i

<g <1.

We still suppose that (15.1), (15.2) hold. We put

Ly o 1tze
(16.2) R =g, T o
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and
(16.3) 2= 1(w) — %ﬁ%@
(16.4) ¢lw) = fl2) = fL(w)].

The function !(w) maps |w]|<1 onto |z|<R. Also Theorem II of Chapter I
yields

(16.5) log|¢.(w)| =

[og" | ¢s(0) |+ X(x —[du|) + 1],

1—|w|

where d, are the points such that ¢(d,) =0, 1,00 in |w|<1. We have from

(16.3), (16.4)
d’ — R(dw—g),
¥ R*—opd,

where d, are the points such that f(d,) =0, 1, c© and |d.,| <R. Hence
(R*—od.)(R?—od,)— R*(d, — o) (dv — 0)
(R*—ed,)(R*—ed.)

(B — ") (B — | du]") _ (B*—0) (R*—|d.|") _A(R—|d.])
| R* —od,|® R*(R*—¢?) 1—e

1 —|dP=1—d,d, =

since (16.1), (16.2) hold. Also 1—|d,| <1 so that we deduce
, A .
(16.6) Z(I—Id,,l)<—1—_f2)2mm {_R—|d‘y‘, I——Q}.

Now from (16.1), (16.2) we deduce

R>1(1+0,)
so that

min {R—|d,|, 1 — o} < A min {R —|d,|, B —g.}
and so (16.6) yields with (16.2)

O
(16.7) St—la) <72 [ nlar
0%

where p,(r) denotes the number of d, such that |d,|<r.?

17) To complete the proof, we apply the argument which leads to lemma 6.
The formulae (16.3), (16.4) are the same as (13.1), (13.2) and hence if w, z are
related as in (16.3) and are both real and positive, we have again as in (13.8)

(17.1) log | £, (2)| —log | ¢ (1) ] zé;ll (2, au) —é:}.(z, by).

! We have clearly p,(r)<3p(r), in the notation of Theorem IV,
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Here Alz, a,) is the function of lemma 5 with ¢ =2, 2z = a,, and b,, a, are
the poles, zeros of f(z) in |2| < R.
When ¢ = g, it follows from lemma 5 (i} that 1(e, ay) = o, if

ap 0
1 —pay

> 1,
2

and so a fortiori if
dau]—e _ 1

1—o] “#' T2
ie., if |a.|=p,. Also if |a.|<pg,, lemma 5 (ii) yields
[A(g, au)| < 4.
Similar results hold for (g, b,), and hence (17.1) yields
(17.2) llog | £ (o) — log | 4. (0} || < A pole.)

where p,lp.) is the number of roots of f{z) =0, 1, o0 in |z|<pg,. Again let '
be the number corresponding to 2 =’ by (16.3). We have from (17.1)

” N
(17.) log 11.()] — log | 6. ()] = 3102, @) — 3 11c, )
= v=
Now it follows from lemma 5 (i) and (ii) that either A(¢’, @) = o, or
a@—e

’ AN e i_ laﬂldel]
|/‘L(Q’a#)IEA[ I—QIQy]SA[Z 1_‘0’]“#’

A1+ 20—|a.l(z+ 0 A + 20
S = BTN R
o' au| 1—o'L2+e

1
2

Thus using (16.2), we have if A(¢’, @) # 0

(17.4) |4, a)) = 2 (R —| .

Again we have from lemma 5 (ii)

,'?'(9’) aﬂ), =4
so that (17.4) yields

, 4 . ,
|(e, ap)| = 7= min {1 —¢', B —[au[},

and since R — ¢ > A(1 — ') we deduce that

' A . '
Ao, @) < g min [R—¢', B—|a.]].
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A similar result holds for the poles &,. Thus (17.3) yields

A
1—o

[log [ f.(¢')| — log | ¢« (w')|| < {3 min[R—|a,|, R—¢'] + ¥ min [R—b,, R—¢']}

R

Y

d

[4

(17.5)  llog[fi(e))| —log ¢ (w')|]| =
where p,(r) has the same meaning as in (16.7).

Putting w = w’ in (16.5), we have from (16.7), (17.2) and (17.5)

(17.6) log |f. (')l
0% y 4

[log LAl ]+ A (1 + polen) + I{i_—efpo(r) dr] T rf?o(")d7'-

0% ¢

<

7
I—w

Also w’ corresponds to @' by (16.3) so that
, R+ Rw

R+ ow
and hence
+_Rl'—0
Y TR =y
so that
., _(B+o)(R—g) A(1—¢)
(177) 1 w = R2~'99, 1—pe
Also
R Cn
I A
(17.8 Rle) < g, | v <2y [ wbrar
O% *

by (16.1) and (16.2). Using (16.1), (16.2), (17.6), (17.7), (17.8) we deduce that

A

(17.9) log lf*(e')l<51—(l:—,§){log I/s (@) + - _A_pro("')d7' + A}-

I1—¢
0%

We deduce from (16.1) that (1— )<< A{p'—p), so that it follows from (17.9)
that (15.5) still holds if (16.1) is true. Thus (15.5) holds whenever (15.1) and
(15.2) are satisfied.

18) Suppose now that w, = 1 in Theorem IV so that

A = max {o, 4(g)}
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where A(o) is defined as in (11.4). We have proved Theorem IV (i). To prove (ii)
it is clearly sufficient to show that

’

O

(18.1) log lf,,,(g')ls{l + A(e’_—‘;,g)}l +- f@,f[l + p(r)]dr.

I

(€3
For then the same upper bound clearly holds for log | f,(o"€?)| for every 6, on
applying (18.1) to f(z¢*?), instead of f(z). Now (18.1) is trivial unless

(18.2) log | fi(e")| > .
If (18.2) holds let g, be the greatest number less than ¢’ such that
(18.3) log | /(@) | = 2.

Then it follows from (18.2) and the definition of 2 that g, exists and g, = ¢. Also
log | /i (r)| = log |Aile)] e <r=¢.

Thus (15.1), (15.2) are satisfied with g, instead of ¢ and A instead of log |/, (o)|.
Then (18.1) follows with g, instead of p from (15.5). Since g, = p, it follows that
(18.1) holds a fortiori with g, so that Theorem IV (ii) always holds. This
completes the proof of Theorem IV.

Applications of Theorem IV.

19) We can solve most of the problems of the type we consider in this
chapter by repeated application of Theorem IV. General theorems are rather
cumbersome. We shall prefer to give some particular applications. Our aim is
to obtain the right order of magnitude for the growth of i(p) = log M [o, 1. (2)].
This is less than we can achieve in favorable circumstances by the methods of
Theorem II. For instance we obtained in Theorem III the right order of mag-
nitude of Mo, f.(2)]. On the other hand, the method of Theorem IV, dealing
as it does with a general increasing function p(p), has of course much wider
scope than that of Theorem II.

We recall the statement of the problem in paragraph 1. We shall restrict
ourselves to results of the following types.

(i) The case when E includes the whole plane.

(ii) How small a set E is sufficient to have the same effect as the whole plane
for a given function plp), i.e. such that the order of growth of Alp) is the same as
if E occupied the whole plane?
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(iii) What can we prove if E ¢s merely unbounded?
(iv) What can we prove if E contains only a finite set of values?

Some of these results will be proved for general p(g), in some cases we shall
restrict ourselves to the functions p(p) = (1 —p)~% Converse theorems, except in
the simplest cases will be left to Chapter III. They will show that at any rate
when p(o) = (1 —@)™% 0=<<a < oo, all the orders of magnitude obtained are best
possible.

The result in case (iv) is obtained in Theorem IV (ii). It appears that the
three values 0, 4, ©© have much the same effect as any bounded set £. Writing
o =0, g for o' in Theorem IV (ii) and putting w, = 1, we obtain

Theorem V. Suppose that f(z) is meromorphic in |z|<<1 and that none of
the equations f(z) =0, 1, 0 have more than plg) roots in |z| <o <<1. Then if
A(o) is defined as in (11.4), and o, as in (11.3), whe have

(4]

[log+|f*(o)|+f[1 +p(r)]dr], o<p<I.

l(e)<1_9

Consider next the case (iii) above. We have

Theorem VI.' Suppose that E us an unbounded set containing zero, and that
none of the equations f(z) =w, where w lies in E, have more than p(g) roots ¢n
lz]<o. Then if

(19.1) [ple)de < oo

we have

(19.2) lim (1 — @) Alg) = o.
o1

Theorem VI shows that if (19.1) holds, we can sharpen the result of Theorem V
by merely assuming that E is unbounded. It does not appear that this is pos-
sible in general if (19.1) is false.? We shall, however, later prove some results
in this case also, which hold for some g arbitrarily near 1. (Theorem X.) These
results lie rather deeper than Theorem VI and will be proved only in the case

plo)=(1—0) "

! This result. was proved when p(p)=o in HAYMAN (2), Theorem V.- Even in this case (19.2
is best possible as is shown in Theorem VI of that paper.
? See Theorem III of Chapter III, which proves this if p(e)= 1/(1 — ).
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We come now to our fundamental result in the problem (i) and (ii) stated
above. This is

Theorem VII. Suppose that E contains zero and a sequence of complex num-
bers wn satisfying

(19:3) |wn| < |wpsr| < k|wn], n=1,2,...,
where k ¢s a constant greater than one, and
(19.4) |wa| =00, as n-—>oo.

Then if none of the equations f(2) = w, for w in E, have more than p(r) roots in
lz|<r <1, we have

l(e)ﬁlogwrrif[l +logk+p(t)];(~i_—f-t, 0<p<1,
E

where p = max [| £, (0)], |, |1

Corollary. If E consists of the whole plane, so that f(z) takes no value more
than p(p) times in |z| <, we have

1e) <log | fu(0)] + A_fll #2017
3

We shall see that the corollary to Theorem VII gives in general the right
answer for our problem (i) above. Also when p(g) is bounded the conditions
(19.3), (19.4) cannot be essentially weakened.! On the other hand, we shall see
in Theorem IX, that if p{g) grows as rapidly as (1 —g)~¢ with a>o0, we can
relax (19.3) to |wn41|<|wnl|f, and this condition cannot be further weakened.?

We shall first prove Theorems VI and VII and then give some simple con-

verse examples to the corollary to Theorem VII. Theorem V has been proved
already in Theorem IV (ii).

Proof of Theorems VI and VII.

20) To prove Theorem VI, take p so nearly 1 that

(20.1) f[I + p(r)dr <e.

! 8ee Theorem IV of Chapter III.
* See Theorem V of Chapter III.
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Then take a value w, in E, such that
log |wy| > (o).

Since E is unbounded f(¢) has at most p(») poles in |z|<» <1, and so we can
apply Theorem IV (ii).
We obtain

Ao') < log |w,| +:

I—

1
Ae,] [t +p(ldr, o =p.
0

We deduce that -
lim (1 —@)1(o") = 4,

'
o'—1

and gince ¢ is arbitrary Theorem VI follows.
To prove Theorem VII, note that Theorem IV (ii) yields on making o’ — g,

d A
2=
(20.2) do o) P—

[A(e) —log | wy| + p(.) + 1]

provided that A(o) = log |, |. It follows from (19.3) and (19.4), that if 1(g) = log | w, |,
we can always find # such that

(20.3) log | wa| < i(g) <log |wx| + log £.
By applying (20.2) with w, = w,, we deduce that

d A
(20.4) JoHe =T

[log & + plo.) + 1]

provided that
o) =log | w, |-

We note that Theorem VII is trivial if A{o) <log |w,| Suppose then that
Alo) >log |w, |, and that g, is the smallest positive number such that

L) =log |w,|, e=t=e.

Then (20.4) yields on writing ¢ instead of ¢ and integrating from ¢ = g, to g

(20.5)  ilo) —Al) = Af(w*) +log &+ 1) d_t,;'

0o

1—t

0%
di <Af[p(t)+logk+1]l
)

Also we have either A(g,) = log |w,| or g, = 0 so that
i{e,) = max {log |w, |, log £ ()|} = log p.
Thus Theorem VII follows from (20.5).
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To prove the corollary we take wn = f,(0}¢*~!, and apply the main Theorem.
We deduce that

o
o) =log1£.6)|+4 [ [+ 1+ ;2
3

and the corollary follows.

Some Simple Counterexamples to Theorem VII.

21) In this paragraph we study some simple examples to show that the
order of growth obtained in the corollary to Theorem VII is the correct one,
at any rate when

(21.1) plo)=b(1—p)™% o0=<a<oo.
In fact if a = o in the above, the corollary to Theorem VII yields:

A{g) <log |fe(0)| + A (1 + B) log

2(1—e.)
<1} . +A4(1+b)1 .
og |fo)| + 4 (x + B) log 17—
On the other hand, the function
I+ z2\?®
(21.2) fle) = ()

is regular nonzero in |z| <1 and takes no value more than b + 1 times if b
is any real number, while at the same time
1

l(e)=10gM[e,f]>2blogI__Q

Thus the order of growth given by Theorem VII, corollary for A{g} is correct,
when p(g) is constant.
On the other hand, when a>> o0 and p(g) is given by (21.1) we have

St o F a4t o o)
fp(t)l—t-bg (I—t)““_(l—e.s)"—(1—9)“_0[1’(9)1'

0

Thus in this case Theorem VII corollary gives

(21.3) (o) = 0{p(o)}.
Let
fle)=u+iv= (%{—z)a, o0 <a<oo

14— 642128 Acta mathematica. 86
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be the function of (21.2), which takes no value more than g—l- 1 times. Also
we have

+ a
(21.4) |v|<(l—~g) < 28(1—p)"".

Hence if we put

the equation ¢(z) = w4 0 has a root only if
(21.5) Sf&)=1logw t 2nmni.

For given w, n the equation (21.5) has at most g+ 1 roots in |z[<<1 and it

follows from (21.4) that the equation (21.5) only has roots in |z|<<p for
20+1 (1 —p)~¢ different values of ». Thus for given w (21.5) has at most

(g + 1) 20+1(1 — g)=¢ different roots in |z]| <1, while clearly
Ale) =log Mo, f]=(1—0)™% o<a< oo,

Thus we see that (21.3) cannot be sharpened so that the corollary to Theorem VII
gives the right order for 1(p), when p(p) is given by (21.1), and a = 0 or 0 < a < 0.

22) We proceed to obtain some general conditions under which the in-
equality (21.3) holds. We have seen in the preceding paragraph, that we cannot
hope to prove more than this, even if f(z) takes no value more than p(p) times
in |z] <. Also as stated in paragraph 11, without making more assumptions
on plp), we can only prove the slightly weaker inequality A(g) = O{p(e.)}. If
p{p) does not grow too rapidly, this implies (21.3).

We need first two lemmas, which give bounds for the integrals occurring
in Theorems V and VIIL.

Lemma 7. Suppose that p(f) 7s a positive increasing function, defined for
o=t<C1, and satisfying

(22.1) p+0]=kplt), o=<t<1,
where k ts a constant greater than 2. Then we have

[4
(22.2) : fp(t)dtﬁks_kz(e—%)p(e), i<e<r.

I—e
¥
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Suppose first o < 2. Then

fp(t)dté(e— Dol <a(t—ole—rl) < ,f_kz (1—o)le— 3 plo)
3

Thus (22.2) holds in this case. If 3 <p <1, we define inductively
% =0,
(22.3) On=20p1—1, B=1,

and we have

foop(t)dt <2(go—e)ple) = 2(1 —e)ple),
01

Foltyat<z(e,—edpled = 2-2(1 —)plel

<2-%(l—e)p(e),

by (22.1). Continuing we deduce that if g,+1 =0

On

(22.4) fp(t)dt< 2(%)% —o)»lo)

On+1

179

Let m, be the largest integer for which g.,, defined as in (22.3) is positive.

Then g,, =%, and so

0 On—1
fp(t)dts fp(t)dt =3 | p(t)dt
.. n=1 g
% On, On

<zti—ap@|r+ 2+ (2) + ] <2 ol

< ,f_kz (e—4#) (1 —e)ple)

since ¢ = ¢. This completes the proof of lemma 7.
We deduce

Lemma 8. Suppose that p(t) is a positive increasing function of t for 0 <t <1

and satisfies (22.1) with k> 1. Then we have

fp(t)l—d_f—t<%_k—l(e*%)p(e)-

i
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We apply lemma 7 with p(#)/(1 —¢), which increases since p(t) does, instead
of p(f). We have
pla(c+ 8] _2plpi+ 8] . p()

1—3(1+1) 1 —¢ 1—t

since (22.1) holds. Also by hypothesis 2% > 2. Thus we have from lemma 7

[ 4
1 dt 8-2k , . plo)
[0 < e e

t

which proves lemma 8.
Using lemma 7 and Theorem V we can now prove

Theorem VIII. Suppose that p(p) is an increasing function of g for o <p <1,
satisfying (22.1) with k> 2. Then if f(¢)is meromorphic in |z| <1 and none of
the equations f(2) = o0, 1, 00 have more than p(o) roots in |z|<g for 0<p <1,

we have
. 1+ log’|f.lo k
log Mo, f.(2)] <log™ |f.(o})| + A¢ [__Flg__lg’\(_)l + ,7_—213(@.)]
where
_1tz2e
* 2+o

In fact Theorem V yields
os
log Mo, f.(e)] <log” | fs(0)] + I%—é{e(l +log" | fo (o)) + / ul t}’

¥

AL (v tog' 110 + AHE )

<log" |f.(0)] +

by lemma 7. Also g, —3} <<A4yp, and hence Theorem VIII follows.
If

(22.5) ple)=0b(1—g)% a>1,

(22.1) holds with £ = 22> 2. Thus Theorem VIII yields

A(o) = log Mo, £.(2)] = O {ple.)} = O{p(o)}.

This order of growth cannot be sharpened, even if we assume that f(z) takes
no value more than p(g) times in {2z| <g. Thus to revert to our original prob-
lem (ii) of paragraph 19, we see that if p(g) grows as rapidly as in (22.5), any
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set E containing more than 2 values has roughly the same effect on the order
of growth of A(g).

This agrees with Nevanlinna’'s theory, who showed that if f(z) takes any
value as frequently as this, f(z) takes all values with at most two exceptions
roughly equally often.! There is not, however, entire agreement between the
two theories, since Nevanlinna’s theory still holds, at least in amended form
when p(o) = 1/(1 — @), while Theorem VIII breaks down, as we shall see in The-
orem I, Chapter IIL

23) In the general case when p(p) grows less rapidly, the situation is mot
go simple. In fact if M > 1

f(z)=Mepr+Z

)
I —2Z

takes in [2| <1 no value w such that |w| <M, while at the same time

+

Thus in order to prove stronger results we shall have to assume that F is
unbounded at least. Theorem V shows that if E contains a sequence satisfying
(23.1) | Wns1| <E|lwn|—o00, as n—>o0

and p(g) = (1 —o)~% then if f(2) takes no value of E more than p(g) times in
2] <o we have :
log Mo, f1=0(1—g)™%, a>o.

We shall show that if p(p) grows as rapidly as this, we can replace the condi-
tion (23.1) by the weaker condition

(23.2) lwnsr| <|wnl®, m=1,2,... e>1,

and yet obtain
log Mo, f.] = 0lple.)]

if f(2) takes no value w, more than p(g) times. We have
Theorem IX. Suppose that E is a set of values containing zero and a sequence

wn satisfying (23.2) and
(23.3) Wn—> 00, as n—> 00,

Suppose also that ple) is an increasing function of o satisfying (22.1) with
some k> 1 and p(0)=1.

! NEVANLINNA (1) Chapter IV,
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Then if f(2) 7s meromorphic in |z|<1 and takes no value of E more than
plo) times in |2| <o, 0<p<1, we have

A(o) = log Mo, f.(2)] =< A(c, k) [1 + log" | fo(0)] + log |, I ple.)-
On the other hand, it will be seen in Chapter III, Theorem V, that if F

does not contain a sequence satisfying (23.2) and (23.3), then f(z) exists taking
no value of E more than (1—g)® times, o<a<1 in |z|<1, while yet
lim (1 — ) log M [o, /. (2)] = oo.

Thus the condition on E to contain a sequence satisfying (23.2) and (23.3)
is the necessary and sufficient condition that F shall have the same effect as
the whole plane when p(p)=(1—p)"% o<a=<1. Thus Theorems VII, VIII
and IX solve problem (ii) of paragraph 19, when p(g) = (1 —p)™% 0<a < oo.

24) To prove Theorem IX we first extract from the sequence w, a certain
subsequence. Let 7, be the smallest integer such that

(24.1) lwn| > a0y [*

where % is the constant of (22.1) and Theorem IX. Then

Way—1 = fwx ,k
and hence by (23.3) we have

a2) ] < s .
Thus (24.1) and (24.2) give
Jw, [ < |wn,| < |00, |Fe.
We can similarly find », such that
L, [F < |own,| < lwn, [F¢
and finally a sequenae #,, such that
Wn, = W,

‘w"p‘kg'w"p-u"é'w 'kc’ .p>1'

n,
D
We now ignore all the w, expect those for which n = 7, and this remaining
sequence we relabel simply w,. We thus obtain a sequence w,, none of which
JS{2) takes more than p(p) times in |2z| < p, and which satisfies

(24-3) ,wnlk < ,wn-Hl = lw"lkc) n=1.

Also w, is the same in the old and the new notation.
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Let g, be the least number such that
Mlgn, fu(e)] = |wal.

If | £ (0)] > |wnl, we put g = 0. If |f.(2)| <|wn| for |2| <1 we put gu=1. In
any case we have on applying Theorem IV (ii), with ¢ = g, @' = On+1,

tht1
Wn+1 4
24. 1 < +p(D]dt,
(24.4) og |2 < —A— [ L1+ p00)
tn
provided that g,> o0, where
1+ 2
(24~5) tn*‘:en*=—2~+—gi§ o< n<<oo

Now we have p(f) = p(0) = 1 by hypothesis, so that

ta+1 tnt1
4 [ 2A f
—_— 1+ plf)]dt< t)dt
| Urplars 2 [t
tht1
o |
=< t)ydt
= p(t)
gn
since
I— tn = ! Q" = ! en
2+ on 2
Thus (24.4) yields
A tn—&-l
L Waa
(24.6) log |2 < £ — f plt)dt.

iy

Suppose now that g, >0, and that

(24.7) log |wa| < Bp({ta),

where B is a constant to be determined. Let p be an integer, such that

(24.8) P>
Then if
(249) T —tppr <277 (I - tn)

we deduce by successive application of (22.1) that

pltas1) Z kP p (ta) = ke p(ta)
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by (24.8). Also by (24.3) we have
log |wns1] < ke log |wa| < ke Bpl(t,)
using (24.7), and hence (24.7) and (24.9) give
(24.10) log |wn41] < Bp(tat1).
Suppose next that (24.9) is false. Then (24.6) gives

tnt1 tht1
Y4
<Az fp(t)dtSAzpf}%%

Wn+1
Wn

log —y

tn tn

< 4 (C; k\)p(tn-l-l)
making use of lemma 8. Using the first inequality of (24.3), which gives

Wn+1

log —-~—Wn

b=3 (1—72) log | wn+1]

we deduce that in this case also

(24.11) log |wat1] < Afe, k) p(tat).

Thus if (24.7) holds, we have either (24.10) or (24.11). Choosing
(24.12) B=Ale k),

we see that (24.7) implies (24.10), provided that (24.12) holds. Let n, be the

smallest integer such that
|0n,] > |1, (0)].

Then (24.7) holds with n < n,, and B = log |wn,|. Also if |f,(0)] > |w,] it follows

from (24.3), that
log |wn,| < k¢ log | £,(0)].

Thus we have in any case
log |wwn,| < log |w,| + ke log” |£, (0)].
It follows from this and (24.12), that (24.7) holds for all » with
(24.13) B = log |w,| + kclog® |fu(0)| + A (e, &).
Suppose now that ¢ >0, and let # be the largest integer (if any), such that

(24.14) Jwa| < Mo, f.].
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If no such integer exists, Theorem 1X is trivial. Otherwise we have from (24.3)

and (24.7)
log Mo, f.(2)] <kelog |wn| <keBp(t) <keBplo.)
since
on <9

by (24.14) and so t, < p, by (24.5). Making use of (24.13), Theorem IX follows.

Some Further Results when E is Unbounded.

25). We have considered in the last few sections what kind of sets E have
the effect of the whole plane for different functions p(p), on the rate of growth
of A(g). Theorem VIII shows that if p(g) satisfies (22.1) with £> 2, any set £
containing at least 2 finite values has this property, while Theorem IX shows
that if (22.1) is satisfied with %> 1, then it is sufficient to assume that E con-
tains a sequence satisfying (23.2). These results may be considered as generaliza-
tions of Theorem VII

We conclude the chapter by proving certain results on the assumption that
E is unbounded only. These results will take the form of showing that M [, f.]
satisfies a certain inequality for some values of p arbitrarily near 1. Also we
can in this case replace M [o, f.] by M [g, /], even if f(z) is meromorphic. Since
the form of the best possible inequalities is rather intricate and cannot easily
be stated in the simple form of e.g. Theorems V and VII, we confine ourselves
to the case

(25.1) ple)=c(i—p)™% o0=a<<oo, ¢>o0.
We note that in this case Theorem VI gives
(25.2) log" Mo, fo(2)] =01 —0)"1, o<a<T,

while Theorem V gives

(25.3) log M [o, f. ()] = 0{ !

1—p
(25.4) log Mo, fo()] = O(1 — )79, a>1.

These inequalities are the strongest which hold for all ¢ sufficiently near 1.1

1
log ——%, =
ogl_}al

Also the functions

! See Chapter III, Theorems I1I and III, section 17, for converse examples to (25.2), (25:3),
(25.5), (25.6). (25.5) and its converse were proved for ¢ = 0 in HAYMAN (2).
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show that we cannot hope to strengthen (25.4) at all, even if f(2) takes no value
more than p(p) times in |z| <1. We can, however, sharpen (25.2) and (25.3) for

some values of g arbitrarily near 1. We have in fact

Theorem X. Suppose that E is an unbounded set of complex values and that
fle) is meromorphic in [z|<<1 and takes no value of E more than p(g) times in
lz| <1, where p(g) is given by (25.1). Then we have

ktg
(25.5) lim (1 —g)* % log Mo, f1<0, 0=<a<I.
o1
(25.6) EDEMT<A’ a=1.
—1 o
¢! ple) log log - s
(25.7) fim 2 Mo Sl o 4y o>

o1 ple),

26). To prove Theorem X we may suppose without loss in generality that
E _contains zero. For if not, we may consider f(z) —w, instead of f(z), where
w, is a value of E. This will not alter any of the inequalities of Theorem X.
Also if w is a value of E, f(¢) —w, does not take the value w — e, more than
plo) times in |z] <, and w — w, is unbounded if w is.

We next write

(26.1) 41 (0) = max log M[r, f.(2)] = max A(»).

0=r=xg 0=r=p

Then it is sufficient to prove Theorem X with ,(p) replacing log M [o, f]. In
fact it follows from Theorem VI of Chapter I, that given p,0<<g<{1, we can
find r such that p<r=<3(1 + o) and

(26.2) log M [r, f1=<log M[r. ()] + An [11—2]

where # [3 : Q] denotes the number of poles of f(2) in |z| Sz’—:—e . Also since

f(2) takes no value of the unbounded set E more than p(g) times in [2]| <,
f(2) has also at most p(g) poles, so that with the notation of (26.1) we deduce
from (26.2) and the hypotheses of Theorem X, that given g,0<<g¢ <1, We can
find 7, p<r=<1(1 + g) such that
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(26.3) log M[r, f1=4,[3(1 + o] + Ala)e(r — o).
Hence if a <1 and p is so chosen that
1+a
L[3(1+ o] <e(r—g) *
we have
_lta
log M[r, /1=e(t—pg) >+ Ala)o(1 — o)™
_1+a

<e(1—4) ¥+ Al@)e(1 —r)=°

and since a < ; iz, 0 < a<1,/(26.3) holds for some values of » arbitrarily near 1,
and ¢ is arbitrary we deduce that
Lﬂ
lim (1 —7p*~%log M{r, f] <o,

r—1
e, (25.5).
Suppose next that a = 1. Again (26.3) holds for some r in every range
0 <7r=<13}(1+g). Choose g so that

1 I
< .
/11[%(1+e)]—A01 gloglog’I 0

Then (26.3) gives

logM[r,f]SAcI_I_ [loglog ! +A]

e I—e
I

I—7r

< Ae¢

[log log : +A]-

I—r

Since this holds for some values of » arbitrarily near 1, (25.6) follows.
Lastly we can prove (25.7) direct. It follows from Theorem IV (ii), applied
with ¢ = o, that in this case

%
n_ 0(1) A
< - — )
ll(e)~1_9,+l_g, c(1—t)-adt
= Ala)e + O(I),, o< <1,

taking for w any value of E. Hence it follows from (26.3), that we have for
some 7 in every range ¢ <r < }(1 + o)

Ala)e N 0 (1)

(1= 1—7

log M [r, f1 <
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Since a > 1, (25.7) follows on taking r sufficiently near 1.
Thus to compléte the proof of Theorem X, we may suppose that E contains
zero and we need only prove that

1+a
(26.4) lim (1 —of A0 <o0, a<T1
—1
and ‘
(26.5) lim »1(e) <A, a=1,

o= Ple) loglog (1/(1—¢))
where A,(p) is defined as in (26.1).

27) We prove first (26.4). The function 2,(g) is non-decreasing and clearly
(26.4) is trivial if ,(¢) is bounded. Thus we may suppose that
A{g) > o0, as p—> 1.
It follows from Theorem VI that given £>o0, we can find g, such that
(27.1) (1—o)4le)<se, @=0g,,
if a<<1. Choose w in E such that
(27.2) log |w] > 2,(e,)

and let o, be the smallest number such that

Ao,) = log M [g,, f.] = log le
Thus

(27.3) (o) = A (@) = log |w].
We then apply Theorem IV (i) with g, instead of ¢’ and we deduce that if

o0 <p<p, then

A1 —o)

o) — A < G —a) [1 + plo],

and since from (27.3), 4,(¢,) = A(,), we have a fortiori,

A;e(1—p)

(27.4) Aile) <A (o) + (1 —e)*°

provided g, is so mnear 1 that
p(@u) = ¢(I _91*)_a 21,
which we may assume by taking w large enough. Suppose now further that

2 <A16(I_Qn)
(1—g)  (1—g)*
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where g, is the number of (27.2). This again can be achieved by taking w suffi-
ciently large so that g, is sufficiently near 1. We then choose p in (27.4) to
satisfy
£ Aje(1—
(27.5) - el

1—g (1—g)te

and it follows that ¢ = g,, so that (27.1) holds. Then (27.4), (27.5) give

(27.6) A (o) = ;zjeé = 2(4,ce)t (1 — g, 1+ar2,
We next apply Theorem IV (ii) with o, instead of g. We may take 4,(p’) instead
of 1(¢') in that theorem, since A(g) <log |w,|, @ <, and the right hand side

of Theorem IV (ii) increases with g". Then Theorem IV (ii) gives

A

M) —log |w| = If@,f [1 + G—_O_W]dt

(4L

Ala)e(x ’_'91)1_a_
I—e

<

Then using (27.3), (27.6) we deduce that

Aa)e(r —o )t
1—¢g

(27.7) A (e) < (4, cef (1 —p,)~0+al 4

We may suppose o, s0 near I that the second term on the right hand side of
(27.7) is less than the first when o’ = p,. We then chocse o' so that the terms
are equal, i.e.,
(1—p)
(4 cet (1 — )"+ = A (a) A

1X2

2 1
— {(A1 ¢ 8)2(1+a) (A (@) c)ll(l——a) (I . QI)—I[(I—a)}l/(m + x—a)
= K & (I — 9’)~(1+a)l(3—a),

where K, K’ are positive constants independent of . Then (27.7) gives

1+a

M(e) < 2K (1—¢g) *0

and this holds for values of o' arbitrarily near 1. Also ¢ is arbitrary. Thus
(26.4) holds.
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28) To complete the proof of Theorem X it remains to prove (26.5). It
follows from Theorem 1V (ii) that

)< 0(1) + 4 [ ecar

o i—o 1—pJ 1—1
Q
- 0(1) + Ade log T
1—p 1—p 1~ Q4
ie.,
Ac I
(28.1) ll(g)SI_QIOQI_g’ 0= @
Choose now w in F so large that
(28.2) log || > 4, (eo),
and let ¢ be the smallest number such that
(28.3) 4 (¢) = log 0]
We apply Theorem IV (ii) and deduce that
O
, 4 ¢ :
(284) ll (Q ) <ll (Q) ’q, / (I + ; ——7‘) d1
04
=1, (0) — 1[1+10g1—§f]
if - ;9 = 1, which we assume.

We suppose, as we may, that w is so large that 1—@<1 and we then
e

choose o' so that

1—po _ 1
(285) I_Ql lOgI__Q
Then (28.3) and (28.4) give
, Ae 1
<
2, (0") =24, (0) + 1—9'[1 + log log 1—9]
Ae 1 A I
<<
=T—e log P + I__Q,[I + ¢ log log I—-Q]
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on making use of (28.1) and (28.2). Using (28.5) and the fact that o' =, we

deduce that
’ 4dc 1
M) = 1——9'[10g 10gI 9,+ O(I)]

and since this holds for values of p’' arbitrarily near 1, we deduce (26.5). This
completes the proof of Theorem X.

We may remark here that the above argument clearly also yields the in-
equality

L) =0 [p (¢)) log log - ig]

for some values of o' arbitrarily near 1 if p (o) is a function of the form

C 1 *
rle) = 1—g(l°g1~9)

and f(2) takes no value of an unbounded set E more than p (o) times in |z| <.

Thus the convergence or divergence of f 2 (0)dp does not seem to have the same

fundamental difference in effect that appears in Theorem VI. Nevertheless the

rate of growth
e

I—e

plo) =

is nearly critical in the sense that if p (o) grows as rapidly as (1 —p)~% with
a>1 the results are fundamentally different in character from those when p (o)
grows like (1—p)™® with a<<1. In the critical case a = 1, converse theorems
appear to be most difficult to construct. We shall show, however, in Chapter II1
that all theorems which apply to the case p(g) = (1 — o)~ 2 are best possible. These
results will appear in the next issue.



