THE PROBLEM OF UNITARY EQUIVALENCE. ${ }^{1}$

By
J. BRENNER
of Pullman, Wash. (U.S. A.).

The question of equivalence of matrices under the group G of unitary transformations has received attention from several writers [1, 2, 3, 4]. Fundamental in most investigations is the theorem of Schur [5] that any matrix A of complex numbers can be transformed by some unitary matrix into triangle form: $\left(a_{i j}\right), a_{i j}=0$ whenever $i>j$. A short proof of Schur's theorem appears in Murnaghan's book [6].

This theorem alone is not enough to settle the equivalence question; two matrices may be in triangle form, equivalent under G, and yet not equal. An example is given by the matrices $\left(\begin{array}{ll}0 & i \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.

If a matrix is in triangle form, the diagonal elements are the characteristic roots. Schur proves further that it is possible to find a unitary matrix U such that $U A U^{*}$ is in triangle form and has its characteristic roots arranged in any order along the main diagonal. In order that two matrices be equivalent under G it is clearly necessary that they have the same characteristic roots; this condition is by no means sufficient.

This article investigates the question of equivalence under G :

$$
A_{1}, B_{1} \text { given; } X \text { to be found so that }
$$

$$
\begin{equation*}
X A_{1} X^{*}=B_{1}, \quad X X^{*}=1 \tag{I}
\end{equation*}
$$

To solve problem (i), we follow a standard procedure: A_{1} is transformed into a unique canonical form C_{1}. This canonical form will have the properties ordinarily ascribed to canonical forms. The definition of canonical form will be determinative; the canonical form will be unique; and the definition will be so arranged that two matrices equivalent under G have the same canonical form.

[^0]It seems unwise to us to apply Schur's theorem to A_{1} directly. For we do not know how to find easily what unitary matrices will transform a triangle matrix into another triangle matrix with the same main diagonal. For this reason we prefer to consider $A_{1} A_{1}^{*}$, a positive semi-definite hermitian matrix. By Schur's theorem, there is a unitary matrix V such that $D_{1}=V\left(A_{1} A_{1}^{*}\right) V^{*}$ is triangular. Hence D_{1} is diagonal, and the diagonal elements are all real and non-negative. Let it be assumed moreover that equal elements are grouped along the main diagonal, with groups arranged in decreasing order of value. Set $F_{1}=V A_{1} V^{*}$; clearly $F_{1} F_{1}^{*}=D_{1}$, and from now on we deal with F_{1} instead of with A_{1}; the two are equivalent under G and will have the same canonical form. There are three cases to consider. First, if F_{1} is scalar, define $C_{1}=F_{1}=A_{1}$. The centralizer of F_{1} is G. Second, if $F_{1} F_{1}^{*}$ is scalar but F_{1} is not scalar, set $F_{1} F_{1}^{*}=\operatorname{diag}(r, r, \ldots, r), r>0$. By a corollary of Schur's theorem ${ }^{1}, F_{1}$ can be transformed into diagonal form; $W F_{1} W^{*}=C_{1}=\operatorname{diag}\left(e^{i \theta(1)} V_{r}^{-}, e^{i \theta(2)} \sqrt{r}, \ldots, e^{i \theta(n)} \sqrt{r}\right)$, $\circ \leqq \theta(\mathrm{I}) \leqq \cdots \leqq \theta(n)<2 \pi, W W^{*}=\mathrm{I}$. In C_{1}, the equal diagonal elements are grouped.

Hence the centralizer of C_{1} is the subgroup of G which consists of matrices which are of the form
(2)

Here the first box has dimension $t_{1} \times t_{1}$, where t_{1} is the number of diagonal elements of C_{1} which are equal to $e^{i \theta(1)} \sqrt{r}$; the second box has dimension $t_{2} \times t_{2}$, where t_{2} is the number of elements in the second group of equal elements on the diagonal of C_{1}, etc.

In the third case $F_{1} F_{1}^{*}$ is diagonal but not scalar. Here, the definition of canonical form for F_{1} presents some difficulty. The subgroup G^{\prime} of G which centralizes $F_{1} F_{1}^{*}$ consists of matrices like the picture (2), where the dimensions of the boxes are arranged to conform with the structure of $F_{1} F_{1}^{*}$. (We have assumed that equal elements are grouped along the main diagonal of $F_{1} F_{1}^{*}$.) The logical thing to do is to define a canonical form C_{1} as a certain transform of F_{1} not under G, but under the subgroup of G which centralizes $F_{1} F_{1}^{*}$. The
${ }^{1}$ See lemma 3 of this article.
definition is actually carried out by induction. In substance, F_{1} is first transformed so that a certain submatrix takes on specified form; at this stage it is necessary to know the subgroup of G^{\prime} which leaves unaltered the specified submatrix of F_{1}. The definition is so arranged that this last subgroup consists of matrices of the form (2), with some modifications. The subgroups of G^{\prime} which are involved are called generalized diagonal unitary groups, and are defined below.

Before proceeding to the general inductive definition, which is necessarily abstract, we prefer to study special cases. For the first case, consider the possibility that the characteristic roots of $F_{1} F_{1}^{*}$ are distinct. It is not excluded that F_{1} be singular, so that one of the characteristic roots of $F_{1} F_{1}^{*}$ is zero. The case of distinct characteristic roots is the one which will occur "in general".

Here, $F_{1} F_{1}^{*}=\operatorname{diag}\left(r_{1}, r_{2}, \ldots, r_{n}\right), r_{1}>r_{2}>\cdots>r_{n}$. The subgroup of G which centralizes $F_{1} F_{1}^{*}$ is the set of diagonal unitary matrices $\operatorname{diag}\left(e^{i \theta(1)}, e^{i \theta(2)}, \ldots, e^{i \theta(n)}\right)$. Let us see how F_{1} is transformed by such a matrix; for simplicity, let

$$
F_{1}=\left(\begin{array}{lll}
f_{11}, & f_{12}, & f_{13} \\
f_{21}, & f_{22}, & f_{23} \\
f_{31}, & f_{32}, & f_{33}
\end{array}\right)
$$

Then diag $\left(e^{i \theta}, e^{i \varphi}, e^{i \psi}\right) \cdot F_{1} \cdot \operatorname{diag}\left(e^{-i \theta}, e^{-i \varphi}, e^{-i \psi}\right)$

$$
=\left(\begin{array}{lll}
f_{11} & f_{12} e^{i \varphi-i \theta} & f_{13} e^{i \psi-i \theta} \\
f_{21} e^{i \theta-i \varphi} & f_{22} & f_{23} e^{i \psi-i \varphi} \\
f_{31} e^{i \theta-i \psi} & f_{32} e^{i \varphi-i \psi} & f_{33}
\end{array}\right)
$$

If each of the numbers $f_{12}, f_{13}, f_{21}, f_{31}$ is zero, then F_{1} is transformed essentially by the $(n-1) \times(n-1)$ matrix $\operatorname{diag}\left(e^{i \varphi}, e^{i \psi}\right)$, and the definition of canonical form may be expected to proceed by induction. If one of the elements in the first row or column is not zero, then we choose the transforming matrix so that the first of $f_{12} e^{i \rho-i \theta}, f_{13} e^{i \psi-i \theta}, f_{21} e^{i \theta-i \varphi}, f_{31} e^{i \theta-i \psi}$ which is not zero shall be real and positive. To fix the ideas, let $f_{12}=0, f_{13} \neq 0$. The transformed matrix K_{1} is not exactly the canonical form eventually to be defined; however the (1,3)th element of K_{1} is positive, and the same fact is true concerning all transforms of $K_{\mathbf{1}}$ by the group diag $\left(e^{i \theta}, e^{i \varphi}, e^{i \theta}\right)$. This last group involves fewer parameters than do any groups mentioned before, so that the problem of defining a canonical form has been pushed one step ahead and it may be expected again that induction would succeed. Indeed the canonical form is completely determined by the additional specification that the first of the numbers $f_{21} e^{i \theta-i \varphi}, f_{23} e^{i \theta-i \varphi}, f_{32} e^{i \varphi-i \theta}$
which is not zero shall be real and positive. If all three of f_{21}, f_{23}, f_{32}, are zero, then the last group leaves unaltered not only the ($\mathrm{I}, 3$)th element of K_{1}, but also every element of K_{1}, so that K_{1} has been reduced to canonical form in any case. Next we reduce

$$
F_{1}=\left(\begin{array}{ccccc}
\frac{\mathrm{I}-i}{2} & \frac{-\mathrm{I}+i}{\sqrt{3}} & \frac{-3-5 i}{2 \sqrt{3}} & 0 & 0 \\
\frac{3+i}{\sqrt{3}} & \frac{2}{3} & \frac{-\mathrm{I}+i}{3} & 0 & 0 \\
\frac{\mathrm{I}-i}{2 \sqrt{3}} & \frac{-\mathrm{I}+5 i}{3} & \frac{5+3 i}{6} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -\mathrm{I}
\end{array}\right)
$$

to canonical form. Note that $F_{1} F_{1}^{*}=\operatorname{diag}(4,4,4,1,1)$. If a hermitian matrix is known to have characteristic roots $4,4,4, \mathrm{I}, \mathrm{I}$, it is of course possible to transform the matrix into $F_{1} F_{1}^{*}$ by a unitary matrix, and it is not hard to show that a suitable transforming matrix can be found rationally in a finite number of steps. The unitary matrices which centralize $F_{1} F_{1}^{*}$ can be written in the form

$$
X=\left(\begin{array}{lllll}
x_{11} & x_{12} & x_{13} & 0 & 0 \\
x_{21} & x_{22} & x_{23} & 0 & 0 \\
x_{31} & x_{32} & x_{33} & 0 & 0 \\
0 & 0 & 0 & x_{44} & x_{45} \\
0 & 0 & 0 & x_{54} & x_{55}
\end{array}\right)=\left(\begin{array}{ll}
X^{11} & X^{12} \\
X^{21} & X^{22}
\end{array}\right)
$$

where X^{11} is the principal 3×3 minor, and X^{22} is the lower right 2×2 minor, etc. Let F_{1} be divided into sub-matrices in a conformal manner:

$$
F_{1}=\left(\begin{array}{ll}
F^{11} & F^{12} \\
F^{21} & F^{22}
\end{array}\right)
$$

The transform $X F_{1} X^{*}$ is equal to

$$
\left(\begin{array}{cc}
X^{11} F^{11} X^{11 *} & F^{12} \\
F^{21} & X^{22} \\
F^{22} & X^{22^{*}}
\end{array}\right)
$$

where $F^{21}=0, F^{12}=0$. If we wish to reduce F_{1} to canonical form by transforming by a matrix from the centralizer of $\boldsymbol{F}_{\mathbf{1}} \boldsymbol{F}_{\mathbf{1}}$, it is necessary to use induc-
tion, that is, to assume that the equivalence problem has been solved in the 2×2 and also in the 3×3 case. Let us recall briefly what the solution was, as regards $X^{11} F^{11} F^{11 *}$. Since $F^{11} F^{11 *}$ is scalar, but F^{11} is not scalar, we have to deal with case $2 ; F^{11}$ can be transformed into diagonal form. In order actually to carry out this transformation, it is only necessary to know the characteristic roots of F^{11}. They are $2,2 i,-2 i$, so that the canonical form for F^{11} is $\operatorname{diag}(2,2 i,-2 i)$ and the canonical form for F_{1} is $\operatorname{diag}(2,2 i,-2 i, 1,-1)$.

The example

$$
F_{1}=\left(\begin{array}{ccccc}
\frac{1-i}{2} & \frac{-1+i}{\sqrt{3}} & 0 & \frac{-3-5 i}{2 \sqrt{3}} & 0 \\
\frac{3+i}{\sqrt{3}} & \frac{2}{3} & 0 & \frac{-1+i}{3} & 0 \\
\frac{1-i}{2 \sqrt{3}} & \frac{-1+5 i}{3} & 0 & \frac{5+3 i}{6} & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{array}\right)
$$

presents a more general problem than the preceding examples.
We have $F_{1} F_{1}^{*}=\operatorname{diag}\left(4,4,4\right.$, I, I), so that the centralizer of $F_{1} F_{1}^{*}$ is the same as in the preceding example. The matrices $F^{11}, F^{12}, F^{21}, F^{22}$ which have to be considered are different in this case, so that it is no longer true that $F^{11} F^{11 *}$ is scalar. It is necessary to find a matrix X^{11} so that $X^{11} F^{11} F^{11 *} X^{11 *}$ is diagonal, and then to transform $X^{11} F^{11} X^{11 *}$ by a group with fewer parameters, namely the centralizer of $X^{11} F^{11} F^{11 *} X^{11 *}$, etc. If the characteristic roots of $F^{11} F^{11 *}$ are determined, all these steps can be performed in a finite number of steps and rationally.

The canonical form of an arbitrary matrix is defined inductively according to a plan suggested by the preceding example. In order to have a successful inductive definition, it is necessary to consider not only matrix equations such as $X^{11} F^{11} X^{11 *}=L^{11}$, which occur in the main stream of the induction, but also equations such as $X^{11} F^{12} X^{22 *}=L^{12}$. The occurrence of this last equation is illustrated in the first example, where bowever all the matrices have dimension i: $e^{i \theta} f_{12} e^{-i \varphi}=l_{12}$. As each partial reduction is carried out, it is necessary to give a simple rule for determining what is the group which leaves the transformed matrix unaltered in the spots which have been picked out for improvement.

The definition as given below is finite, rational, and constructive at all steps, except that it is necessary to find the characteristic roots of a matrix F_{1}, or of a submatrix F^{11}, or of an auxiliary matrix $F^{12} F^{12 *}$ of lower dimension than the matrix F_{1}. In many accepted solutions of equivalence problems, it is necessary to find the characteristic roots of a matrix. I do not know whether the present problem could be solved without the resolution of algebraic equations of degree n, where $n=\operatorname{dim} F_{1}$. On the other hand, a direct attack on the equation $U F_{1} U=L_{1}$ leads to equations of degree much greater than n.
(3) Let $X=\left(\begin{array}{ll}X^{11} & 0 \\ 0 & X^{22}\end{array}\right)$ be a unitary matrix, and let F_{1} be such that $F_{1} F_{1}^{*}$ is the direct product $\left(\begin{array}{ll}r & 0 \\ 0 & s\end{array}\right)$ of two scalar matrices, the dimensions of which are $\operatorname{dim} X^{11}$ and $\operatorname{dim} X^{22}$ respectively. The unitary matrices which fix $F_{1} F_{1}^{*}$ are those which have the form of X. Let $F_{1}=\left(\begin{array}{ll}F^{11} & F^{12} \\ F^{21} & F^{22}\end{array}\right)$ be the division of F_{1} into submatrices conformal with the above division of X into submatrices. Then
(4)

$$
X F_{1} X^{*}=\left(\begin{array}{ll}
X^{11} F^{11} X^{11 *} & X^{11} F^{12} X^{22^{*}} \\
X^{22} F^{21} X^{22^{*}} & X^{22} F^{22} X^{22^{*}}
\end{array}\right)
$$

This last equation makes it clear that in order to make a definition of canonical form by induction, it will be necessary to consider the matrix equation $P A Q=B$, where A, B are rectangular, and P, Q are unitary. The necessary facts are stated in the following lemma.

Lemma 1. Let $A_{1 \beta}$ be a $k(\mathrm{I}) \times k(\beta)$ matrix. There are two unitary matrices $U^{k(1)}$ and $U^{k(\beta)}$ of dimensions $k(\mathrm{I}) \times k(\mathrm{I})$ and $k(\beta) \times k(\beta)$ respectively such that $U^{k(1)} A_{1 \beta} U^{k(\beta)}$ has the form
(5) $\operatorname{diag}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{m-1}\right)$, bordered by zeros, where $r_{1}, r_{2}, \ldots, r_{m-1}$ are real and positive: $r_{1}>r_{2}>\cdots>r_{m-1}>0$. [The border of zeros may consist of any number of rows, any number of columns, and in particular the border may be absent.]

Let us return now to equation (4). If by chance F^{11} and F^{22} were themselves both scalar, equation (4) would read

$$
X F_{1} X^{*}=\left(\begin{array}{cc}
F^{11}, & X^{11} F^{12} X^{22 *} \tag{6}\\
X^{22} F^{21} X^{22 *}, & F^{22}
\end{array}\right)
$$

so that we should seek a canonical form for $X^{11} F^{12} X^{22 *}$ (lemma I). Next it is necessary to know which matrices of the form (5) leave the matrix (6) unaltered in the upper right-hand box. Lemma 2 describes these matrices.

Lemma 2. Let $A_{1 \beta}$ have the form (5). Then the equation $A_{1 \beta}=U^{k(1)} A_{1 \beta} U^{k(\beta)}$ holds if and only if $U^{k(1)}$ has the form $\operatorname{diag}\left(X^{K(1)}, X^{K(2)}, \ldots, X^{K(m-1)}, X^{K(m)}\right)$, and at the same time $U^{k(\beta)}$ is equal to

$$
\operatorname{diag}\left(X^{K(1)}, X^{K(2)}, \ldots, X^{K(m-1)}, X^{K(m+1)}\right)
$$

This means that $U^{k(1)}$ and $U^{k(\beta)}$ are equal element for element in the first $\boldsymbol{K}(\mathrm{r})+\boldsymbol{K}(2)+\cdots+K(m-\mathrm{I})$ rows and columns; the superscript $K(j)$ denotes a matrix of dimension $\operatorname{dim} r_{j}$. The symbol $X^{K(m)}$ is to be expunged above if no row of (5) is zeros, and the symbol $X^{K^{(m+1)}}$ is to be expunged if no column of (5) is zeros. We prove now

Lemma 3. Let A_{1} be an $n \times n$ matrix such that $A_{1} A_{1}^{*}$ is scalar. Then A_{1} can be transformed into diagonal form by some unitary matrix. In particular, then, any unitary matrix can be transformed into diagonal form by some unitary matrix.

Proof: By Schur's theorem, A_{1} can be transformed into triangular form B_{1} by a unitary matrix, and thus B_{1} is a triangular matrix such that $B_{1} B_{1}^{*}$ is scalar. If $B_{1} B_{1}^{*}=0$, it is clear that $B_{1}=0$. If on the other hand $B_{1} B_{1}^{*}=r$, where $r \neq 0$, then r is real and positive, and $\frac{1}{\sqrt{r}} B_{1}$ is both unitary and triangular, hence diagonal.

We give now a general definition of the groups which appear at successive stages in the inductive definition of the canonical form of A_{1}. For each value of k, v satisfying the inequalities below, let $X^{k, v}=\left(x_{i j}^{k, v}\right)$ be a $k \times k$ matrix of indeterminates,

$$
\mathrm{I} \leqq k \leqq n, \quad \mathrm{I} \leqq v \leqq[n / k] ; \text { let } \mathrm{I} \leqq k(t) \leqq n
$$

$$
\mathrm{I} \leqq v(t) \leqq[n / k(t)](t=\mathrm{I}, \ldots, s) ; \text { let } \Sigma_{t=1}^{s} k(t)=n .
$$

The symbol

$$
X=\operatorname{diag}\left(X^{k(1), v(1)}, X^{k(2), v(2)}, \ldots, X^{k(s), v(s)}\right)
$$

is called an $n x n$ matrix formula. In the symbol $X^{k(t), v(t)}$, the first superscript $k(t)$ is equal to the dimension of the matrix $X^{k(t), v(t)}$, and the second superscript $v(t)$ is a counting superscript; if $k(t)=k(u), v(t)=v(u)$, then $X^{k(t), v(t)}$ and $X^{k(u), v(u)}$ are necessarily equal.

Examples are the following:

$$
\begin{aligned}
\operatorname{diag}\left(X^{1,1}, X^{1,2}, X^{1,3}\right) & =\left(\begin{array}{lll}
x^{1,1} & 0 & 0 \\
0 & x^{1,2} & 0 \\
0 & 0 & x^{1,3}
\end{array}\right) ; \\
\operatorname{diag}\left(X^{1,1}, X^{1,2}, X^{1,1}\right) & \equiv\left(\begin{array}{lll}
x^{1,1} & 0 & 0 \\
0 & x^{1,2} & 0 \\
0 & 0 & x^{1,1}
\end{array}\right) ; \\
\operatorname{diag}\left(X^{2,1}, X^{2,2}\right) & \equiv\left(\begin{array}{llll}
x_{11}^{21} & x_{12}^{21} & 0 & 0 \\
x_{21}^{21} & x_{22}^{21} & 0 & 0 \\
0 & 0 & x_{11}^{22} & x_{12}^{22} \\
0 & 0 & x_{21}^{22} & x_{22}^{22}
\end{array}\right)
\end{aligned}
$$

which differs only in notation from

$$
\left(\begin{array}{llll}
x_{11} & x_{12} & 0 & 0 \\
x_{21} & x_{22} & 0 & 0 \\
\circ & 0 & x_{33} & x_{34} \\
\circ & 0 & x_{43} & x_{44}
\end{array}\right)
$$

and $\operatorname{diag}\left(X^{2,1}, X^{2,1}\right)$, which differs only in notation from the formula

$$
\left(\begin{array}{llll}
x_{11} & x_{12} & \circ & \circ \\
x_{21} & x_{22} & \circ & 0 \\
\circ & \circ & x_{11} & x_{12} \\
\circ & \circ & x_{21} & x_{22}
\end{array}\right)
$$

If the indeterminates in the symbol X be replaced by complex numbers so chosen that X becomes a unitary matrix after the substitution, each submatrix $X^{k(j), v(j)}$ becomes a unitary matrix also, and conversely if each submatrix $X^{k(j), v(j)}$ is unitary, then so is X. The notation $k(j)$ is more easily printed than is k_{j}; otherwise we would use the latter in place of the former.

The class of $n \times n$ unitary matrices which can be obtained by substitution in a single matrix formula fill out a group $G ; G$ is called a generalized diagonal unitary group and is generated by the formula.

To give another example, a formula for the group of unitary matrices in the form

$$
\left(\begin{array}{lllll}
x_{1} & 0 & 0 & 0 & 0 \\
0 & x_{2} & x_{3} & 0 & 0 \\
0 & x_{4} & x_{5} & 0 & 0 \\
0 & 0 & 0 & x_{6} & 0 \\
0 & 0 & 0 & 0 & x_{1}
\end{array}\right)
$$

would be $\operatorname{diag}\left(X^{11}, X^{21}, X^{12}, X^{11}\right)$.
It is true that for every g.d. group, there is a matrix which is commutative whith the matrices of this group and with no others. Moreover if the centralizer of a matrix is a gen. diag. unitary group, it is easy to tell (by inspection) what this group is, and to write down its generating formula.

Rather than find a canonical form for matrices under transformation only by the full unitary group, we prefer to find a canonical form under transformation by any gen. diag. unitary group. The canonical form will have the property that its centralizer is some gen. diag. unitary group. In view of the large number of such groups, it is to be expected that there will be a large number of canonical forms; too many to be described in any such pictorial language, as Jordan's canonical form, for example. On the other hand the description of canonical form, while not pictorial, is straightforward and exact, and the method for obtaining it is perfectly workable in any practical case.

The advantage of describing a canonical form for a matrix under any gen. diag. group is this, that an ordered pair of matrices A_{1}, A_{2} can be reduced simultaneously to a canonical pair C_{1}, C_{2}. This is done by first transforming A_{1}, A_{2} to the pair (C_{1}, D_{2}), and then transforming D_{2} to canonical form by matrices of the gen. diag. group which centralizes C_{1}.

In order to make a definition of canonical form for A_{1} under group G, we shall assume, as a hypothesis for the inductive definition, that a canonical form has been defined for all matrices A under all gen. diag. groups G_{0} whenever either
(δ) $\operatorname{dim} A_{0}=\operatorname{dim} G_{0}<n$, or
(ع) $\operatorname{dim} A_{0}=\operatorname{dim} G_{0}=n, G_{0} \subset G$; and
that moreover, the centralizer of the canonical form for A_{0} is a gen. diag. group (of dimension $\operatorname{dim} A_{0}$). We shall give a definition of a canonical form for A_{1} under G by carrying out a simple construction and then calling on the induc-
tion hypothesis. We shall prove at the same time that the centralizer of this canonical form is a gen. diag. unitary group. As we have already remarked, it is then easy to describe this centralizer and find the formula which generates it.

Many definitions not ordinarily so described in the literature are in fact inductive definitions in the sense of the preceding paragraph. The Peano definition of number, the Jordan canonical form for a matrix, and almost all finite and transfinite constructions are really of the above type. The definition is like a recursion formula, in that both allow actual computations to be carried through, in a finite, possibly very large number of steps. Definitions which are not of this type are those based on existence theorems of one sort or another.

The form of the definition to be given is different, depending on the form of the gen. diag. group G; there are three cases. Under each case are subcases, depending on the character of the matrix A_{1}. It should be observed that the inductive method of definition is effective not only for the reasons given above, but also because when $\operatorname{dim} G=1$, the canonical form of A_{1} is A_{1}, and the centralizer of this canonical form is G, so that the inductive definition may begin.

Case I. The case when the transforming group is the entire unitary group has already been discussed. There are three subcases: Ia, A_{1} is scalar; Ib, $A_{1} A_{1}^{*}$ is scalar but A_{1} is not scalar; Ic, $A A_{1}^{*}$ is not scalar. In case Ia, A_{1} is commutative with every element of G, and so is its own canonical form. The centralizer of A_{1} is a gen. diag. unitary group, namely G. In case $I b$, the canonical form for A_{1} is diagonal:

$$
C_{\mathbf{1}}=\operatorname{diag}\left(e^{i \theta(1)} \sqrt{r}, e^{i \theta(2)} \sqrt{r}, \ldots, e^{i \theta(n)} \sqrt{r}\right), \quad \circ \leqq \theta(\mathrm{I}) \leqq \cdots \leqq \theta(n)<2 \pi
$$

The diagonal of C_{1} has $k(1)$ equal elements, followed by $k(2)$ elements equal to each other but different from any of the preceding ones, etc. The centralizer of C_{1} is the group consisting of unitary matrices of the form

where the first box is $k(1) \times k(\mathrm{I})$, the second box is $k(2) \times k(2)$, etc. This group is generated by the matrix formula diag $\left(X^{h(1), 1}, X^{k(2), 2}, \ldots\right)$ and is a gen. diag. unitary group.

It is in case I c that the induction hypotheses $(\delta),(\varepsilon)$ are used. There is a
matrix W such that $W\left(A_{1} A_{1}^{*}\right) W^{*}$ is diagonal, indeed with diagonal elements real and positive and written in decreasing order of magnitude; say k (I) equal elements, followed by $k(2)$ equal elements, each less than the preceding, etc. Set $F_{1}=W A_{1} W^{*}$. Then $F_{1} F_{1}^{*}=W A_{1} A_{1}^{*} W^{*}$. The matrices which transform $F_{1} F_{1}^{*}$ into itself are precisely the matrices of the gen. diag. group diag ($\mathrm{X}^{k(1), 1}, \mathrm{X}^{k(2), 2}, \ldots$). Moreover, if K_{1} is a transform of F_{1} by any matrix of this group, then $K_{1} K_{1}^{*}=$ $=F_{1} F_{1}^{*}$. The canonical form for A_{1} shall be the (already defined) canonical form for F_{1}^{\prime} under this last group. Actually W is an arbitrary representative of a certain coset of this group; any other representative of the same coset could take the place of W in the discussion.

Case II. We must now define a canonical form for a matrix under a gen. diag. group which is a proper subgroup of the full unitary group. We prefer to do this in stages; first, suppose the transforming group is $G_{2} \equiv\left\{\operatorname{diag} X^{k(1), 1}\right.$, $\left.X^{k(1), 1}, \ldots, X^{k(1), 1)}\right\}$, that is, suppose each matrix of the group has the same $k(\mathrm{I}) \times k(\mathrm{I})$ matrix $X^{k(1), 1}$ repeated along the main diagonal a certain number of times. Let $A_{i j}$ be a conformal subdivision of A_{1} into $k(\mathrm{I}) \times k(\mathrm{I})$ submatrices $(i, j=1,2, \ldots, n / k(\mathrm{I})$ There are three subcases. First, if each of the submatrices $A_{i 1}, A_{1 i}$ is scalar, then the transforming group operates essentially on the minor $\left(A_{i j}\right) i, j>_{\mathrm{I}}$ of A_{1}, for which a canonical form has been defined, according to the induction hypothesis. By the same token, the centralizer of this canonical form is a gen. diag. unitary group.

Second, let each submatrix $A_{i 1}$ be scalar; let not all $A_{1 i}$ be scalar; let $A_{1 j}$ be the first of the $A_{1 i}(i=2, \ldots)$ which is not scalar. The transform of A_{1} by the arbitrary matrix diag $\left(X^{k(1)}, X^{k(1)}, \ldots, X^{k(1)}\right)$ of the transforming group replaces the submatrix $A_{1 j}$ of A_{1} by the submatrix $X^{k(1)} A_{i j} X^{k(1) *}$. Since $A_{1 j}$ has dimension lower than that of A_{1}, a canonical matrix has been defined among all matrices of the set $X^{k(1)} A_{i j} X^{k(1) *}$, and we choose for $X^{k(1)}$ some matrix $U^{k(1)}$ for which $U^{k(1)} A_{i j} U^{k(1)^{*}}$ is in the (uniquely defined) canonical form.

Again all the matrices which transform $A_{i j}$ as $U^{k(1)}$ does belong to some coset of the centralizer of $U^{k(1)} A_{i j} U^{k(1)^{*}}$. According to the induction hypothesis, this centralizer is a gen. diag. unitary group. Let the general element of this group be Y. Let G_{3} be the group generated by the formula which arises when each symbol $X^{k(1), 1}$ in the generating formula for G_{2} is replaced by Y : $G_{3}=\{\operatorname{diag}(Y, Y, \ldots, Y)\}$. Clearly G_{3} is a gen. diag. group properly contained in G_{2}. The canonical form for A_{1} is defined as the (already defined) canonical form for $\operatorname{diag}\left(U^{k(1)}, U^{k(1)}, \ldots, U^{k(1)}\right) A_{1} \operatorname{diag}\left(U^{k(1)^{*}}, U^{k(1)^{*}}, \ldots, U^{k(1) *}\right)$ under G_{3}.

In the third subcase, not all the $A_{i 1}$ are scalar, so that some transform of A_{1} under G_{2} does differ from A_{1} in one of the first $k(\mathrm{I})$ colunms.

Here the reasoning proceeds as in the second subcase; we choose j so that $A_{j 1}$ is the first of the $A_{i 1}$ which is not scalar; etc.

Case III. In this case we admit for a transforming group a more general type of proper subgroup of the full unitary group, namely the group $G_{2}=$ $=\operatorname{diag}\left(X^{k(1), v(1)}, X^{k(2), v(2)}, \ldots, X^{k(s), v(k)}\right)$, and in order that cases II and III be mutually exclusive, we insist that at least two of the X 's in the above formula be different: for at least one pair of numbers $u, w,(k(u), v(u)) \neq(k(w), v(w))$. The construction is similar to that in case II. As in that case, so here we have to notice that $X A_{1 i} X^{*}=A_{1 i}$ for all x only if $A_{1 i}$ is scalar; we must further notice that $X A_{1 j} Y^{*}=A_{1, j}$ [or $\left.Y A_{j 1} X^{*}=A_{j 1}\right]$ for all X, Y only if $A_{1 j}=\mathbf{0}\left[A_{j 1}=0\right]$. Then we depend on lemmas 1 and 2 instead of on the induction hypothesis (as in case II). In the end the transforming group is a gen. diag. unitary group because of lemma 2 .

The inductive definition is now complete.

Literature.

1. HUA, L. K. The orthogonal classification of hermitian matrices. American Mathematical Society Transactions 59 (1946), pp. 508-523.
2. Specht, W. Zur Theorie der Matrizen. Jahresbericht der Deutschen MathematikerVereinigung 46 (1936), pp. 45-50.
3. Brenner, J. Right-multiplication by a unitary matrix. Notae. Mathematicae 1950.
4. See also Ingraham, M., and Wegner, K. W. The equivalence of pairs of hermitian matrices. Trans. Amer. Math. Soc. 38 (1935) pp. 145-162.
Trotr, G. R. On the canonical form of a non-singular pencil of hermitian matrices. American Journal of Mathematics 56 (1934) pp. 359-371.
Turnbull, H. W. On the equivalence of pencils of hermitian forms. London Mathematical Society Proceedings (2) 39, pp. 232 - 248 .
Vinograde, B. Canonical positive definite matrices under internal linear transformations. American Mathematical Society Proceedings i (i950), pp. 159-16i.
5. Schur, I. Über die charakteristischen Wurzeln einer linearen Substitution mit einer Anwendung auf die Theorie der Integralgleichungen.
6. Murnaghan, F. D. The theory of group representations. Baltimore, Johns Hopkins Press, pp. $25-26$.

[^0]: ${ }^{1}$ The solution herewith presented was completed in 1948 ,-but not published until now.

