
THE MINIMUM OF A FACTORIZABLE BILINEAR FORM. 

BY 

E. S. BARNES 

TRINITY COLLEGE) CAMBRIDGE. 

I. Le t  
B(x,  y, z, t)=(ax + ~y)(rz + dr) (I.,) 

be a factor izable  bi l inear  form,  where a, fl, 7, 8 are real, and x, y, z, t take all 

in tegra l  values subject  to 

x t - - y z =  _ I. (I .2) 

W e  suppose t ha t  d = a d - / ~ 7  # o, and t h a t  B does no t  represent  zero. Deno t ing  

the  lower bound of ]B(x, y ,z ,  t)l by M(B), we have the fol lowing theorem,  

which is due to Davenpor t  and  Hei lb ronn  ~" 

Theorem. 

(i) M(B) < 3 - -  V5 l, d l, (1.3) 

and equality occurs i f  and only i f  B is equivalent to a multiple of 

~ y  z +  t ,  (I.4) 

in which ease the lower bound is attained. 

(ii) For all forms not equivalent to a multiple of B, 

2-V~ 
M(B) -< - - I d  I, (,.5) 

4 

and equality occurs i f  and only i f  B is equivalent to a multiple of 
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3 2 4  E . S .  B a r n e s .  

B~ = (x--  V~s)(z  + V~t) 

in which case the lower bound is attained. 

(iii) For all forms not equivalent to a multiple of B 1 or B~, 

M(B)  <~ V 2 -  I [.d [, 
3 

and equality occurs i f  and only i f  B is equivalent to a multiple of 

B~ = (~-- V~y){~ + ( 3 -  V-~)t}, 

in which ease the lower bound is attained. 

(iv) /~br any ~ > o, there exists a set of f i rms  B for which 

and the set has the cardinal number 

They proved these results by 

sumed by B and those assumed by 

(i.6) 

(~.7) 

(x.8) 

(x.9) 

of the continuum. 

obta ining relations between the values as- 

the associated quadratic form 

Q(x, y ) = ( a x  + ~y)(~x  + ~y) ( i . i o )  

for coprime integers x, y. [ give here an alternative proof; the method is 

essentially the same as that  which I used in a recent paper 1 on the analogous 

problem of determining the lower bound of J O (x, y) Q (z, t) l for integral x, y, z, t 

subject t o  (I .2).  

The proof exhibits the dependence of the result (iv) on the existence of a 

- -  + ~ ) [ J [  for all but  a finite constant ~ > o such that [B s(x, y, z, t) l > ]|V2 
I 

\ 3 
number of values of x, y, z, t. 

2. The associated quadratic form Q, defined 

D = ( a d - - f l T ) ~ = J ~ > o ,  and so is indefinite. Also 

since B does not. Let then g 

by (I.tO), has discriminant 

Q does not represent zero, 

(2. I) �9 . . ,  9 - 2 ,  9 ~ - :  �9 9 0 ,  9 1 ,  ~o_o, . . . 

"The minimum of the product of two values of a quadratic form" (I1), Proc. London Malh. 
8oe. (a) 1 (1950). 

i For these results, see I. SCHUR, Sitz.-Ber. K. l~reuss. Akad. Berlin (1913) , 212--23! 
(214--216), whose notation 1 have adopted. 
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be the chain of reduced forms equivalent to Q, where 

~ v , = 9 , ( ~ , y ) = (  l ) ' - ~ x ~ + b ,  z v+(--~) '~, .+~V ~ (~=o ,  _+ i,  _+2 . . . .  ), (2.2) 

so that ,  supposing ao > o, all the numbers a,, b, are positive; fur ther  

is a positive integer.  

whence 

b, + b,+l = k, (2. 3) 
2 a~+ l  

We set 

V ~  + b, V ~ - b ,  
r ,  , 8 ,  , ( 2 . 4 )  

2 a~+l  ~ av+l 

a, b, ]/D 
= r , s , ,  = r , - - 8 , ,  =r~ +8 , .  (2.5) 

a,+l a~+l a~+l 

From (2.3) , (2.4), we deduce t h a t  

I I 

F~+I 8.+1 

and so 
~, = (~,, k,+~, k , + ~ , . . . ) ,  8~ = (o, ~,_~, k , _ ~ , . . . )  

(2.6) 

(2.7) 

in the usual  nota t ion  for cont inued fractions. We  also write 

so tha t  
r', = r~ --  k, = (o, k,+l, k,.+2 . . . .  ), 

p 

(2.8) 

(2.9) 

We denote by (K) the infinite sequence of positive integers 

(K): . . . ,  k - 2 ,  k - l ,  k0, ]cl, ~'2 . . . .  ( 2 . I 0 )  

K) is then  determined by Q, and hence also by B ;  conversely, (K) determines, 

to within an arbi t rary multiple, the class of forms equivalent to Q, and hence 

also the class of bilinear forms equivalent  1 to B. 

Finally,  we define 

t t 

( t )  r , ,  (~ )  _ I - -  r ~  ~ )  8 ~  I - -  8 ~  
A, = - - - - ;  A, - - - - - ;  A,  = - - ;  A T -  ; (v=o,  __ i, _ 2 , . . . ) .  (2.II) 

Clearly, by (2.9), 
A~) > o. (2.i2) 

i Two b i l inear  forms are said to be equ iva len t  if t he  cor responding  quadra t ic  forms a r e  

equiva len t  under  in tegra l  un imodu la r  t rans format ion .  I t  is easi ly seen t h a t  equ iva len t  forms as- 
sume t h e  same se t  of values  for in t eg ra l  x, y, z, f sa t i s fy ing  (I.2). 
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We  now establish the  following lemma, which const i tutes the  basis of the  

proof of the theorem" 

L e m m a  1. (i) Suppose that'), > o, and that 

[B(x, .u, ~, t)l > I~1 - -  )` 

for all integral x, y, z, t subject to (I.2). 

A~ t' >'~-, i.e. 

A?' > ~, i.e. 

A?' >-- ~, i.e. 

A(,4 ) ~ I - - - ,  i . e .  

Then the inequalities 

k, + s,--- (~-- I),-',; 

k, + (~ + 1)r" + s , -<  ~; 

k, + ,-" -< ()`-- x)s,; 

k, + r~ + ( ~ +  i ) s ,_<Z;  

hold for all v = o, + I ,  +__. 2 . . . .  

(ii) Suppose that ~ >-- 2 (V-2 + I). 

(2.1s) 

(2.14) 

(2-IS) 

(2.16) 

(2. I'7) 

Then i f  the imqualities (2. t4)--(2.17) hold for 

all v, (2.13) is true for all integral x, y, z, t subject to (1.2). 

Proof.  (i) Suppose tha t  (2.13) holds. Then,  since equivalent  forms assume 

the same set of values, 

IB, I>- [ ~  [ (,,=o, + 1, + 2~. .  3, (2.i8) 

where B,  is a bitinear form corresponding to the  reduced quadrat ic  form ~0,. 

F rom (2 .2)  and the relations (2.5) , we have 

- -  a , + l ( r , x  + y ) ( s , x - - y )  if ~ is even 
~ , =  (2.I9) 

a,+l (r, x - -  y) (s, x + y) if v is odd, 
a n d  s o  

B ~  B,~+_ a,+l(r ,x  + y) (s , z - - t ) ,  (2.20) 

l~/l= I~ (B,) l = a,+a (r, + ,%). (2.2 I) 

( 2 . I 8 ) ,  (2 .20) ,  ( 2 . 2 I )  n o w  g i v e  

[ ( r , x + y ) ( s , , , ~ - - t ) ] > I  ( , = 0 ,  + I ,  "{- 2, .). (2 .22)  
r~ + s~ - -  )` - -  - -  " " 
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The inequalities (2.I4)--(2.I7) now follow at once, since they are the partic- 

ular cases of (2.22) Corresponding to (x, y, z, t )=(I ,  - -k , ,  o, I), (I, - - k , - -  l, o, l), 

(o, I, I, o), (o, I, I, I) respectively. 

(it) Suppose now that ~ ~> 2(V2 + I), and that 

I~1 (,-23) [ B [ <  

for some integral xl, Yl, zl, tl satisfying (I.2). Lemma I (it) will follow if we 

then prove that  at least one of the inequalities (2.14)--(2.I7) is false for some ~. 

" ~ t 

an equivalent form 
B'  -= (a X + ~ Y)(~, Z + d T), (2.24) 

say, which satisfies (2.23) with (X, Y, Z, T)=( I ,  o, o, I), i.e. 

I~dl<l ~1 ~. �9 (2.2S) 

The quadratic form associated with B' is 

Q'=(a X + fl Y) ( rX + ~ Y ) ~  a X '  + b X Y +  c r ' ,  say. (2.26) 

Since I~1=1"~--~1 Ibl=la~ +~7[=l(~--~)--2-~] ,  we deduce from (2.25) 
that 

( Squaring since I--~->O and using the relation b S - - 4 a c = D ( Q ' ) = A  ~, we find 

By hypothesis, it-->2 (V2 + I), I + ~ -< V2, and 

either lal  < � 8 9  or [ e [ < � 8 9  

+ I. (2.27) 

SO (2.27) gives lacl <D-. Thus 
4 

Suppose firstly that  ] c [ < �89 VD. If  we apply to Q' the parallel transformation 

X = x ,  Y = - - p x  + y (p integral), (2.28) 

we obtain a form a'x  s + b ' xy  + cy ~, say, equivalent to Q', for which b '=b- -  2pe. 

We choose p so that 0 -<- -  b + ] / 9  + 2p e < 2 ] e I; then, since b'-- V ~  implies 
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that  Q represents zero, we have 

o < V ~ -  b' < 2 I~ I. (2.29) 

This gives b' > V D - -  2 [ c I > o, whence also 

o < V-D--b'  < 2 Ic[ < VD + b'. (2.30) 

Now (2,30) is lust the condition that  the form a 'x  ~ + b' xy  + cy ~ be reduced. Thus 

i f ( x ,  y ) = ~ ( x ,  v) 

for some v, and so, by (2.I9) and (2.21), 

IB ' (x ,  Y, z ,  T)[ [( , . ,x+y)(s,  zT t ) [  [ (r ,z+t)(s ,x~.v)]  
o r  , (2.3I) 

I~ l  , . ,+8, ,. ,+~, 

where, by (2.28), 
X = x ,  Y = - - p x  + y, Z = z ,  T = - - p z  + t. (2.32) 

Suppose nex t  that  [a I <:�89 Then a precisely similar argument shows 

that  we can reduce Q' by a transformation X = x - - p y ,  Y = y  (p integral), and 

so (2.31) still holds for some v, where now 

X = x - - p y ,  Y = y ,  Z = z - - p t ,  T=t .  (2.33) 

By hypothesis IB '[<]--~  - for (X, Y, Z, T)=(I ,  o ,o ,  I), i.e. for 

(X, y, Z, t ) = ( I , p ,  O, I) 0r ([, O, p, I), (2,3z~) 

according as (2.32) or (2-33) holds. On substituting (2.34) in (2.3I), we see that, 

for some integer p and some v=o,  _+ I, + 2 , . . . ,  one of the four following 

inequalities must be true: 

I 1 8 , - p  I < (23s) 

, ' , l p ~ , -  II < i ~ , l p r , -  ,l < I 
,-, + ~., ~-' r~ + s ,  ~" (2.36) 

Since, by (2.7), k ~ < r , < k ~ +  I, o < s , < I ,  the least value of I r , - - p [ , i s  

given by p = k ,  or k, + I, and the least value of Is~--pl  is given by p = o  or I, 

the corresponding values being ] r~ - -p l=r ;  or I - - r : ,  I s , - - p ] = s ,  or x- -s , .  

Hence, if :either of the inequalities (2.35) holds for some p, it follows tha t  one 
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I 
of the  four  numbers  A!/) is < ~ - ,  i.e. tha t  one of the inequalit ies (2.I4)--(2.17) 

is false. 

Finally, (2.6) gives r , - i  ~,-1 + I I = --,  s ,-1 = - - -  k,.-1, and the inequalit ies (2.36) 

can be wri t ten  as 

9'*'--1 + 8,'--1 )~ ' r,'--I + 8,,--1 ~ "  

But  these are of the  same form as (2.35) , with v - - I  in place of v, and p re- 

placed by p +_ k,-1. I t  therefore  follows, as in the preceding paragraph,  tha t  if 

e i ther  of the  inequali t ies (2.36) holds, then one of (2.I4)---(2.17) (with v - - I  in 

place of v) must  be false. 

3. W e  now take 
)~=3(V2 + i ) = 7 . 2 4 2 6 4 . . .  

and show that  the inequali t ies  (2.14)--(2.I7) can be true for all v only if (K) is 

one of three sequences ~ 

(3.2) 

(K~): or (3.3) 

(Ks): ~[2], I, I, [2]~. (3.4) 

Applying Lemma I (i), we shall then have the following result:  

Lemma 2. The inequality 

IBI < I ' l l  V 2 -  ~1,~1 (3.5) 
s (V~ + ~) s 

can be satisfied f o r  all forms  B other than those correspouding to the sequences 

(K1) , (K~), (Ks). 

In  this section we therefore  suppose tha~ (2.I4)--(2.I7) are t rue for  all v, 

where ~ = 3 ( V 2  + I). 

Lemma 3. Every  k,  is I or 2. 

t T h e  no t a t i on  ~ [ a ] ~  is  u sed  for t he  inf in i te  s equence  each of whose  e l emen t s  is o ;  ~[a ]  

a n d  [a]~ are t h e  semi- inf in i te  s equences  w i t h  every  e l e m e n t  a, wr i t t en  to t h e  le f t  and  to t he  

r i g h t  respec t ive ly ,  u[aj or [a]a, whe re  n is  a pos i t ive  in teger ,  wi l l  deno te  a s equence  of n e l e m e n t s  a. 
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Proof. Suppose firstly that  some k, --~ 4- Then, by (2.9), r,, + s~ > k, --> 4, and 

one of r',, I - - r "  must be --~�89 Hence e i therA (1) o rA~) i s  < t < ~ ,  contradicting 

either (2.I4) or (2.t5). 

Thus every k,--~ 3. Suppose that  some k , =  3. 

8, = (O, ]g','--I . . . .  ) > 

t and either r , < � 8 9  or l - - r ' - -< �89  

I f  I"~ --< �89 (2.14) gives 

]G,-1 + I 

or i t>  7.5, which is false. 

Then 

�88 

3 + t < ( z - x ) � 8 9  

If I--r'--<�89 r'>--�89 and (2.I5) gives 

3 + �89 + ~ ) + t < L  

�9 . .~ 2~  I~  I~ 2~ . . . .  

or i t>  7.5, which is again a contradiction. 

Thus k, # 3 for any v, and the lemma is proved. 

Lemma 4. I f  k ,  = 2, then 

r" -< 2 - V~ = (o, ~, i, 2..). (3.6) 

F a r t h e r ,  i f  r;  = 2 - -  V 2 ,  then s ,  = 1/2 - -  x = (o, 2.o). 

Proof. We obtain from (2.16) and (2. x5) in turn 

]g, + 1'; ~ (J~-- I )8 ,  ~ i t ( i t - -  I ) - -  ( i t - -  I) ]C,-- ( i t ' - -  x)r: ,  (3.7) 
whence 

o <- it(),-- 1 ) - -Zk , , - -  )?r',  

i t r ;  < i t - -  x - - k , .  

On substituting k ,=  2, 4= 3 (1/2 + I), this gives 

~'~, ~ I - -  = 2 - - V 2 .  

I f  now r ' =  2 - -V2 ,  there is equality throughout in (3.7), whence 

9 , - -  1 ) s , = k ,  + r:, 

( 3 V 2  + 2) 8 , = 4 - - V 2 ,  

8~ = V 2  - i .  

Lemma 5. A subsequenee . . . 2, I ,  . . . o f  ( K )  m u s t  f o r m  p a r t  o f  a subsequenee 
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Proof.  By hypothesis ,  k , = 2 ,  k , + l  = I for  some v. Then,  by Lemma 4, 

, "  = (o,  l ,  L.+~,  L,+.~, �9 �9 .) -< 2 - V 2  = (o,  i ,  i ,  2,  2 . . . .  ). 

Comparing par t ia l  quot ients  in this inequali ty,  we find k,,+2--<_ I, whence k,+2 = I; 

hhen k,+~ >-2,  whence,  by Lem m a  3, k,+a =2 .  

W e  now exclude the special sequences (K1), (Ks)defined in (3.2), (3.3). F rom 

Lemma  3, we then  see tha t  each of the numbers  I and 2 must  occur  in (K), 

and so also a subsequence . . .  1 , 2 , . . .  or . . . 2 ,  I , . . . .  By the  symmetry  in 

r',, s, of (2.I4)--(2.I7),  we may suppose tha t  (K) contains a s u b s e q u e n c e . . .  2, I, . . . .  

Lemma  5" now establishes t h e  existence of a subsequenee 

. . . 2 ( , ) ,  I ,  I ,  2 . . . . .  ( 3 . 8 )  
of (K). 

I f  now (3.8) extends  to the  r igh t  as . . . 2(,), I, I, [2]~, we have 

r ' , = ( O ,  I ,  I ,  2 o o ) = 2 - -  V 2 ,  

whence, by L e m m a  4, s, = (o, 2oo), and so (K) is (Ks) ((3.4)). By symmetry,  if (3.8) 

extends to the lef t  as ~[2], I, ], 2 . . . .  , (K) is again (Ks). Thus  if we now ex- 

clude also the  special sequence (Ks), there  can only be a finite number  of el.e- 

ments  2 immedia te ly  to the r igh t  and to the  left  of (3.8), Hence  (K) must  con- 

tain a subsequenee 
. . . .  I ,  , , [2] ,  I ,  i ,  [2]m,  I . . . . . .  

and so, using L e m m a  5, a subsequence 

. . . 2 ,  I ,  I ,  n [ 2 ] ,  I ,  I ,  [ 2 ] • ,  I ,  I ,  2 ,  . . . ( 3 "9 )  

where m, n are finite integers  > . I .  

W e  now complete  the proof  of Lemma 2 by showing tha t  the  existence of a 

subsequence (3.9) of (K) leads to a cont radic t ion  with the inequali t ies (2.14)--(2.17). 

Suppose firstly t ha t  m is even. Then,  taking k , =  2 as the  last 2 of the  block 

~[2], we have 
r :  = (o ,  I ,  i ,  [2]m,  I ,  i ,  2, . . . )  

> (o, I, I, [2]m, I, 1), an even convergent ,  

= ( o ,  I ,  I ,  [2]m§ 

> (O, I ,  1, 2oo), 

cont rad ic t ing  (3.6). 
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Thus we can suppose tha t  m is odd and, similarly, 

symmetry,  we may fur ther  suppose t h a t  m -  n. 

We define the numbers u i  for i = o ,  I, 2 , . . .  by 

tha t  n is odd; by 

u0=o,  u , =  , ,  . . . ,  ui+2= 2u;+1 + u~ (i_> o). (3-10) 

u l  ith Then clearly coi= is the convergent to the cont inued fract ion (0, 200) = 1/2 --  I, 
Ui+l 

and so 

o=0,o<O,~<o,,<.<1/2- i < . .  < ~ < c a ~ < ~ = � 8 9  (3.Ii)  

Taking k , =  2 as above, we then have 

,': = (o, I, 1, [2]m, , ,  I, 2 , . . . )  

> (O, I, 1, [2Ira, I, I, 2), an  even convergent;  

a simple calculation shows tha t  the value of this continued fraction is 

whence 
r ' , >  8 + 2 eom 

I3 + 5~om 
Also, 

8, =(O, [2],,-1, I, I, 2 , . . . )  

> ( o ,  [2]~-1, I, I), an even convergent,  

= (o, [2].) = ca.; 

since m > n, (3.1I) shows tha t  ~ -- co,,, whence 

8 ~/m+l + 2 ~m 

13 um+l + 5 Um 

(3.I2) 

8,, > cam. 

(2.15), with (3.I2) and (3.'3), now gives 

(3.,3) 

or  

2 + ( z + , )  8 - - + 2 c a ~ + o m < z .  
13 + 5co,~ 

Z > 5 oJ~ + 25 ram. + 34 (3.i4) 
3c~ + 5 

The r.h.s, of (3.14) is an increasing funct ion of O~m for  corn --> o, since its derivative is 

a positive multiple of 15 co~ + 5oo~m+ 23 > o. Hence, since, by (3.I I), corn > V2 --  I,  

we deduce from (3.I4) t ha t  

~ > 5 ( V 2 - 1 ) ~ + 2 5 ( V 2  1 ) + 3 4  2 4 +  1 5 1 / 2 = 3 ( V 2 + I ) = Z "  

3 ( I G - , ) +  5 3 V ~ + 2  
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This contradiction shows tha t  a sequence (3.9) cannot  occur in (K); the proof of 

L e m m a  2 is therefore complete. 

. 

sponding classes of bilinear forms. 

(i) I f  (g)  is (g,) :  ~[I],o, k, = I and r ;  = . , ,  = (o, ~0,) 

all v. By (2.5), a,  b, - -  = r~, &, = I ,  = r,  - -  ,% = I ,  SO t h a t  
a . + l  a , + l  

We now examine the special sequences (K~), (K,), ( Ks ) a n d  the corre- 

V~-, V~+~ 
- - ,  r ,  for  

2 2 

! 
Thus B is equivalent to a multiple of B 1 = iX + -  

Also, since r:, 8, > �89 

~-v~ ) 
+ - - t  . 

2 

' ' V~ F~, I - -  r ,  3 - -  8 .  I - -  8,~ 

r~ +8~ r~ + 8, 2V-5 ' r , + 8 ,  r , + 8 ~  
3 - V 5  - - ,  for  all v. 

Hence, by (2.II), A (i) : >  32V.~ , and so, by Lemma I (ii), 

IB, I->3--VSI~'I.  

Since BI ( I ,  o, , ,  i) 3-V5, I~(B,)J=Vs, it  follows tha t  
2 

M(Bx) 3--V-5 I,~l, 
2V~ (4-!) 

and tha t  the lower bound is at tained.  

(ii) If (K) is (Ks): 00[2]00, k ,=2 and r '=s ,=(o ,  20o)=V2-I ,  r ,=V2 + I for  

all v. By (2.5), a,, b, = r , & = I ,  = r , - - & = 2 ,  so that q~,=a(x~ + ~xy--.y~) ~ 
a , , + l  a ,~+l  

~ a ( x ~ - 2 y ~ ) = a ( x - V 2 y ) ( x  + V-2y). Thus B is equivalent to a multiple of 

B,=(x--V~ v)(~ + V~t). 
Also, since r ' ,  s, <�89 the least of the  expressions A(i) is 

V 2  - -  I 2 . V 2  C1) ($) A , = A ,  
2V~ 4 
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whence, by Lemma I (ii), 

IBm]->  2 -  } /2  I,~'l. 
4 

Since B2(I,  o , -  I ,  I ) = ] / 2  - I ,  ]L/(B~)I=2}/2,  it follows that 

2 - } / 2  
M(B~) - -  ] J I, (4 -2) 

4 
and tha t  the lower bound  is at tained.  

(iii) Suppose finally tha t  (K) is (Ks): ~[2], :, I, [2]~0. Taking k1=2 as the  

last  2 of the block .,[2], we have r~=(o, I, I, 2 ~ ) = 2 - - } / 2 ,  

~x-- (o, 20o) = ~ - I, ,-, = 2 + ,-~ = 4 - }/~, 
whence, by (2. I9), 

q ~ , = a ( ( 4 - - V 2 ) x - - y } ( ( V - 2 - - , ) x  + y ) ~ a . ( x - - } / - 2 y ) { x  + ( 3 - V 2 ) y } .  

Thus B is equivalent  to a multiple of Bs = ( x - - 1 / 2  y){z  + ( 3 -  V2)t}. 

In  order to show tha t  the  (attained) lower bound of IBs[ is ] / 2 - -  I IA  [, we 
3 

need the fol lowing lemma:  

L e m m a  6. I f ,  in any sequence (K), k , -2  = k,_x = k, = k,+: = k,+~ = 2, then 

A~} ~-- _I_ (i-- I, 2, 3, 4). 
7. I 

Proof.  By symmetry ,  it suffices to show tha t  (2.:4) and (2.15) are satisfied 

with ~ = 7 . I ;  and since r,  = (o, k,+:, . . .) = (o, 2 . . . .  )< �89  : - - r , > r , ,  and so it  i s  

sufficient to show tha t  A~I ___ 7.t,  i.e. tha t  (2.x4) is true. Now 

r" = (0, 2, 2, k,+3 . . . .  ) >  (0, 2, 2) = g ; , ,  = (0, 2, 2, k,,_3 . . . .  ) < (0, 2, 2, k,_3) -< (0, 2, 2, ~) = ~. 

Hence ( 2 . I 4 )  is certainly true if 

I ~ 2 + ~ _ < ( ~ . -  )~, 

i.e. if ~ >--~ = 7.o7 . . . .  and so in part icular  if ~ = 7.I. 

Our object ,  af ter  Lemma I (ii), is to prove that  the  inequalit ies (2 . :4)~(2 . I7)  

hold for all v if (K) is (Ks) and ;~=3 (}/2 + I ) = 7 . 2 4  . . :  Suppose first tha t  k~ 

occurs in the subsequence 

2,0), 2It), I(2}, I,  2, 2 (4.3) 

of (K~). By symmetry,  we need consider only the  values o, :, 2 of ~. 
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As was shown above, r i = 2 - V 2 ,  sl=V22-I,  r l = 4 - - V 2 .  Thus I - - r ~ = s l =  

I - r i  s, V 2  - I = V 2 - I  <�89 and the least  of the expressions A~ i) is 
r t + s~ rt + s~ 3 

U s i n g  (2.6) (with v--o,  ko=2  ), we find t h a t  

32+1/2 , 4 + V 2  
ro - - , 7 ' 0  , s o = V 2 - 1 .  

14 I4 

The least of the expressions A (h is therefore 

r~ 4 + V~ V 2 -  i 
A~> 

t o+So  I 8 + 5 V 2  3 

Again using (2.5) (with v:= I, k j= 2), we find tha t  

2 + V 2  , 1/~ 
" : = - - 2  , r : =  T ,  s , = I G -  I. 

i - ,-; V 2 -  I 
The least of the expressions A~ i) is therefore 

rg. + s2 3 

I f  now k, does n o t  belong to the subsequence (4 .3)of  (Ks), then clearly 

I V 2 - - i  
k,,z=k~-l=k,---k++l=2, whence, by Lemma 6, A ( j ) - - - - >  - 

7 -1 3 
I/2 - I 

We have therefore shown tha t  A~) > - -  for all v, whence, by Lemma I (ii), 
3 

I B : I >  V-=~-) - t I ~ I . 
3 

Since IB3(t ,  I, , ,  o ) [ = V 2 -  i, [ J (B=) I=3 ,  i t  follows tha t  

M(Ba) --- V2 --  I I J I, (4-4) 
3 

and tha~ the lower bound is at tained.  

5. Par ts  (i), (ii), (iii) of the theorem now follow at  once from Lemma 2 and 

(4.I), (4.2), (4.4), since the special sequences (K1) , (K~), (/x~) have been shown to 

correspond to the  classes of bilinear forms which are equivalent  to multiples of 

Bj, B~, Bn, respectively. 

I t  remains to establish the existence of the set of forms B sat isfying (I.9) 

for an arbitrari ly assigned 6 > o. This we do by "approximat ing"  to the sequence 

(g78} by sequences of the type 

( g ' ) :  . . . I ,  I, ,~[2], I, I, nx[2], I,  I, [2]ma, I, I, [2]me, I, I , . . . ,  (S.I) 

where . . . n~, n~, rnD mz . . . .  are sufficiently large positive integers. 
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I f  now k, does not  belong to a subsequence 

2, 2, i ,  I, 2, 2 (5.2) 

of (K*), Lemma 6 shows (as in w 4 (iii)) t h a t  the corresponding 

I V 2 ~ I  
A (") ~ - -  ~ - - -  

7.I 3 

Suppose next  t ha t  k, belongs to a subsequence (5.2) of (K*). This sub- 

sequence  forms par t  of a subsequenee 

p[2], I, I, [2]g (5"~) 

of (K*) where p, q are some two of the  in tegers  . . . n2, nl, ml, m~, . . . For  suit.  

ably large p, q, the values of r',, s, (for k, belonging to (5.2)) are as close as we 

please to the corresponding values of r',, s, found  above for  (Ks), since they  

t end  to these values as p and q tend to infinity. F rom the  cont inui ty  of the  

expressions A~ ) and the fact ,  proved above, t h a t  they are > _ _ V 2 - I  when (K) 
3 

is (Kq), it  follows tha t  
V2-  

A f  > - - -  -- ~ (~. (5-4) 
3 

provided t ha t  p, q > N = N(d). 

We  have there fore  shown tha t  (5.4) is t rue  for  all ~ provided tha t  the  

integers  . . . n~, nl, ml, m~ . . . .  are > N. Then,  by Lemma x (ii), 

3 I 1, 

where B* is a bil inear form of the  class corresponding to (K*), whence 

This proves par t  (iv) of the  theorem, since the set of sequences (K*) with 

�9 . . n~, n 1, ml, m2, �9 �9 �9 > N clearly has the cardinal  number  of the cont inuum. 

I t  was suggested to  me by Professor  L. J.  Mordell  tha t  the methods  of 

this paper  might  be extended to deal with more general  classes of forms.  Such 

an extension is in fac t  possible, and I hope short ly to publish some results  on 

the  min imum of a general  bi l inear form in four  variables. 


