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w O. Notation and conventions. 

In this paper German capital letters denote Euclidean vector spaces of finite 

dimensionality. Small German letters denote point sets in these spaces; and ~ -  ~" 

denotes the (perhaps empty) set of all points which belong to ~ and not to ~'. Script 

letters denote classes of point sets. Clarendon type denotes points (or vectors) of a 

Euclidean space. Ordinary italic type is reserved for scalar quantities. The symbol 

denotes implication, the arrow pointing from the premiss to the conclusion; and 

the double-headed arrow ~ means 'implies and is implied by'. Two statements I and 
II ,  which together imply a third III ,  are linked by an a m p e r s a n d : -  ' I  & I I *  I I I ' .  

w 1. Introduction. 

Let y(x) be a continuous one-valued function of x, and consider the equations 

lim r~ = x, (1.1) 
~---~o0 

lira (x,-  x) = 0, (1.2) 

lim {y(x,) - -  y(x)} = O, (1.3) 
y---~O0 

l ira y (x,) = y (x). (1.4) 

When x and x, are real variables, it  is familiar tha t  

(1.1) ~ (1.2)~ (1.3) ,~ (1.4). (1.5) 

For random variables, the position is different. Slutzky (4) proved 

(1.2) ~ (1.3) (1.6) 

when x~ is a random variable and x a real variable; while Fr4chet (1) proved (1.6) 
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in case x, and x were both random variables. I t  is an immediate consequence of 

the definition of 'lim' for random variables tha t  

(1.1)r and (1.3)* (1.4) (1.7) 

but the converse statements 

(1.1)* (1.2) and (1.3)~(1.4) (1.8) 

are generally false. I t  is, however, easy to find special cases in which (1.8) is true 

for certain specific random variables; and then the question naturally arises whether, 

given any random variables satisfying (1.1), we can always find at  least one special 

case such that  (1.2) is also true. In Theorem 1 I shall give an affirmative answer 

to this question: so that ,  combining Theorem 1 with the Slutzky-Fr~chet theorem 

(1.6) and with the second part of (1.7), we shall have established 

(1.1)* (1.4) (1.9) 

for random variables. However (1.9) is insufficient for certain practical applications; 

and I shall prove a generalisation of it  in Theorem 3: namely, tha t  (1.6) and (1.9) 

remain true for almost-certainly-continuous many-valued vector functions of a vector 

variable. 

A number of authors have discussed, in a few special cases, the distribution of 

the .zeros of a random polynomial. I hope to show elsewhere how the extended form 

of (1.9) provides a general solution to this problem. 

w 2. One-valued random variables and their l imi t s .  

Let ~ denote an n-dimensional Euclidean space. A probability set/unction lv[~] 

is any one-vahied real non-negative completely-additive set function defined for all 

Borel sets ~ of ~ and satisfying F[~]  = 1. If  ~ is the particular set of all points, 

whose coordinates do not exceed the corresponding coordinates of a given point x 

of ~, we write iv [~] = iv (x) and call F (x) a' cumulative distribution/unction. Obviously 

lv[~] uniquely determines iV(x), and the converse is a consequence of Lebesgue's 

theory of integration. A cumulative distribution function is monotone increasing and 

everywhere continuous on the right. For the purposes of axiomatic theory it is 

permissible to identify a onc-valued random variable x* with a probability set func- 

tion. Asterisks will hereinafter denote random variables. If  the functional form of 

~v, either as a probability set function or as a cumulative distribution function, is 

supposed given we say tha t  • determines the random variable x* identified with it. 



An extension of the Slutzky-Fr~chet theorem. 245 

This corresponds to saying that  a real variable x is determined when the numerical 

values of its coordinates are supposed given. A random constant a* is the random 

variable identified with that  probability set function F[~] which equals 1 or 0 ac- 

cording as the fixed point a belongs to ~ or not. 

Let  3~i, i = 1, 2 . . . . .  m, be an ni-dimensional Euclidean space in" which ~i is a 

typical Borel set. Let  x7 be a one-valued random variable in ~i determined by  

Fi[~i]. In the direct product space ~1 X 3~9. X-- .  X ~m any probability set function 

G is called a ioint determination of x~, x* 2 , . . . ,  x~ if it  satisfies 

G [ ~  1 X ~2 X . . -  X ~ i -1  X ~$ X ~ + 1  X . - .  X ~r = F~[~il (2.1) 

for all values of i and all Borel sets ~ of 3~. The random variable identified with 

G is written x~ X x~ X .-. X x*m. We say tha t  the x7 are independently distributed if a 

stronger form of (2.1) holds, namely 

G[~I X ~ X . . -  X ~m] = FI [~I ]F~[~]  . . .  Fm[~m] (2.2) 

for all Borel sets ~ i ~ i .  

Let  G in (2.1) be a joint determination of x~, x~, . . . ,  x~.  Let  y = y(xl ,  x~ . . . ,  xm) 

be a one-valued Borel-measurable mapping of ~1 X ~2 X - . .  X ~ into a Euclidean 

space ~.  Let  ~) be a Borel set of ~,  and let ~ (~)) be the set of all points (xl, x~, . . .  x~) 

in ~1 • ~ X . - .  X ~ for which y (xl, x~. . . . . .  x~) e~). Since y (Xl, x~, . . . ,  xm) is a 

Borel-measurable function, ;(~)) is a Borel set. The /unction o/ several 1ointly deter- 

mined random variables 

y* = y(x[ ,  x~, . . . ,  x~) = y(x~ • x*2 X .-. •  

is defined to be the random variable identified with 

H[ t ) ]  = Gig( t ) ) / ,  

it  being easy to verify tha t  H[t)] so defined is a probability set function. Indeed 

this is a particular case of some more general theory discussed by  Hammersley (3). 

In a Euclidean space 3~, let x* be a random variable determined by  the cumula- 

tive distribution function F (x) and let x~, v = 1, 2, . . . ,  be a sequence of random 

variables respectively determined by  F~(x). If, as v-+ oo, F~(x) tends to F (x )  at  

every point of continuity of F(x) ,  we say tha t  x~ converges in distribution to x*, 

and we write 
dlim x* = x*. (2.3) 
~---> tm 

Let  a be a constant vector, and let ; ( a )  denote the set of points x satisfying 
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I x - - a ] <  (~, where 5 >  0 is any prescribed positive number. If  to every prescribed 

pair of positive numbers ~ >  0 and ~ >  0 we can f ind a positive integer ~o = vo( (~, ~) 

such that  the probability set functions F,[~] of x~ satisfy 

F ,  [; (a)] > 1 --  E, �9 --> Uo (~, e) 

we say tha t  x: converges in probability to a, and we write 

plim x~ = a. (2.4) 

I t  is not difficult to see tha t  

plim x~ = a ~ dlim x* = a*. (2.5) 

If, for each value of ~, x~ and x* are jointly determined by some given G,, and if 

the function x * -  x* of such a pair of jointly determined random variables converges 

in probability to the zero vector as v-~ r we say tha t  x* converges in probability 

to x*, and write 
plim x~ = x*. 

Thus 

(2.6) 

plim (x2-- x*) = 0 ~ plim x: --= x* r dlim (x~-- x*) = 0* (2.7) 

x* are jointly determined; and it is quite simple to show that  when x~ and 

(2.7)* (2.3). This is a fuller explanation of the first part  of (1.7). On the other hand, 

the t ruth of '(2.3)* (2.7)' depends upon the form of the joint determination of x* 

and x~. We shall now prove in Theorem 1 that ,  amongst the class of all joint 

determinations of any given pair of individually determined random variables x* and 

x~, there is always at least one joint determination such tha t  (2.3)* (2.7). 

T h e o r e m  1. I /  x* is a given one-valued random variable, and i/x*, v = 1, 2 , . . . ,  

is a sequence o] given one-valued random variables satis/ying 

dlim x2 = x*, (2.8) 
y*-~ O0 

then, /or each value o~ ~, there exists a joint determination o/ x* and x~ such that 

dlim (x:--x*) = 0". (2.9) 

Take ~ to be the Euclidean space in which x* is defined; and write x = 

= {xl, x2 . . . . .  xn} for a typical point of ~, and ~ for a typical Borel set of ~. 

Suppose that  F[~] and F~[~] are the given probability set functions which determine 
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x* and x~ respectively, and that  F (x)  and F, (x)  are the corresponding cumulative 

distribution functions. Let  ~ ~ 0 and e ~ 0 be any pair of prescribed positive 

numbers. 

We can find a finite number U = U ( e ) ~  0 such that  

(i) F ( x )  is continuous on each of the hyperplanes ~1i, (i = 1, 2, . . . ,  n;  j = 1, 2), 

where ~il is the hyperplane xl = + U and ~i2 is the hyperplane xl = - - U ;  and 

(if) F[~o] ~ �89 where ~o is the set of all points which violate at least one of the 

n inequalities - -  U ~ xi ~ + U, i = 1, 2, . . . ,  n. 

We can now find a finite sequence of numbers uk, k = 1, 2, . . . m ,  where m = re(O, s), 

such tha t  

(iii) - - U = u t < u 2 < . . . < u ~ =  + U; and 

(iv) u~+l - -  uk < ~/Vn ,  k = 1, 2, . . . ,  m --  1 ; and 

(v) F (x )  is continuous on the hyperplanes I) ik, (i = 1, 2 . . . . .  n;  k = 1, 2, . . . ,  m), 

where t} ik is the hyperplane xi = uk. 

Write M = M(8, e) = ( m -  1)n; and let ~ ,  p = 1, 2, . . . ,  M, denote the half-open 

finite intervals in 
uk(i) < xl ~ uk(~)+~, i = 1, 2 . . . . .  n (2.10) 

enumerated in some specific order, where k(i) denotes an integer (depending upon i) 

selected from the integers 1, 2 . . . . .  m -  1. Consider the non-negative numbers 

a~ = F[~p], b~ = F,[~p], p = 0, 1, 2, . . . ,  M, (2.11) 

where b~ is a function of v. Since ~0, ~1 , . . . ,  ~M are mutually disjoint and cover 

completely 
~ a p  = ~ b p  = 1. (2.12) 

Let  O~q denote the Kronecker delta ( ~ q = l  or 0 according as p = q  or p ~ q ) ;  

and let A ( 0 ) = 0  if 0 ~ 0  while A ( 0 ) = I .  Define for p , q = 0 , 1 , 2  . . . . .  M 

(ap + b~--[ap--bp[)Opq + (]a~--b~l + ap--b~) (]aq--bq[--aq + bq) 
(2.13) 

In view of (2.12) and a~ >--0, b~--> 0, we find without difficulty 

c~q~--O, 5~c~q = bq, ~.qc~,q = a~, ~.~%~ = 1 - - � 89  [. (2.14) 

Let  g denote the 2n-dimensional space ~ X ~, and let $' denote any Betel set 

of ~ which can be expressed in the form 

$ ' =  ~ 'X  ~", ~ ' % ~  and ~"~__~q for some p, q, (2.15) 
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~' and ~" being BoreI sets. Define G', depending upon v, by 

G' [$'] = F [~'] F ,  [~"] cp q / A (ap be), (2.16) 

where the values of p and q are those appearing in (2.15). I t  is easy to see that  

G'[$] is a non-negative completely-additive set function for all sets ~' satisfying (2.15) 

for any fixed pair ~, q. Now the intervals ~ X ~r are mutually disjoint and cover 

3 completely; and any Borel set of 3 can be built up from an enumerable number 

of sets of the form $ ' X  ~". Therefore we may uniquely define G[$] as that  non- 

negative completely-additive set function of Borel sets $ ~  3 such that  G[$'] = G'[$'] 

for all sets of the type ~'. Let  ~ be any Borel set of ~. There is a unique de- 

composition 
= ~ ,  r  

namely ~ = ~. ~ .  Now 

a~ = o* ~'[~;,'] = o; 

and so (2.14) establishes 

a[~ x ~] = Z~,  F [ ~ ]  ~v, [~d c~,/A (a~bd 

~v [;v] cp Cb~ m ~v [~p] ap 

br = O*c~r = O; 

- ~ v F [ ~  p] = F [ ~ ] .  (2 .17)  

Similarly 
G[~ X ~] = F,  [~]. (2.18) 

Hence 
G[8]  = G[~ X ~] = F [~ ]  = 1; 

so that  G is a probabihty set function. Whereupon (2.17) and (2.18) show that  G 

jointly determines x* and x~. 

Now write z = {zl, z~ . . . .  , zcn} for a typical point of 8 ,  and let 30 be the set 

of all points z which satisfy all the inequalities 

From (iv) and (2.10) 
[ z l - z ~ + ~ ] < ~ / V n ,  i =  1, 2 . . . . .  n. 

M 

pffil 

and therefore by (2.14) 

M M M M 

~=1 p = l  ~=1 l)=O 

M M 

-> 1 - ~ - ~ 2 1 a ~ -  b,I > 1 - ~ - � 8 9  
p=O p=O 

(2.19) 
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where in the final step we have employed condition (ii). Now each of the numbers 

ap and bp can be expressed as the sum or difference of 2 n quantities of the form 

F(x)  or F~(x) where x is an intersection of fixed hyperplanes ~ik. Consequently 

(2.8) and condition (v) show tha t  we can determine % = %  (~, e) such that,  for each 

~, la~--bl, I < s / ( M +  1), ~ 0 .  On substitution into (2.19) we get 

G [ $ o ] > l - - e ,  ~:>%(8,  e), 

which establishes (2.9) and completes the proof. 

w 3. Almost-certainly-continuous many-valued vector functions. 

Suppose that ,  to each point x of an n-dimensional Euclidean space ~, there 

corresponds a system y (x) of ~ points (not necessarily distinct) in a q-dimensional 

Euclidean space ~.  We call y (x) a p-valued q-dimensional vector ]unction of x. If 

there are defined a system of ~ one-valued functions of x 

Yl (x), Y2 (x) . . . . .  y,, (x) (3.1) 

such that ,  having due regard to multiple points, the points (3.1) coincide with the 

points y (x) for each x in ~, then we call the functions (3.1) an indexing of y ix). 

If y(x) possesses at  least one indexing (3.1) such tha t  yi(x) is a Borel-measurable 

function for each fixed i = 1, 2 , . . . ,  p, then y(x) is called a many-valued Borel- 

measurable ]unction. In this paper we shall only be concerned with Borel-measurable 

y(x);  and we shall therefore assume tha t  (3.1) is an indexing for which yi(x) is 

Borel-measurable for each fixed j. 

We say that  y(x) is continuous in a Borel set ~o if, for every prescribed e > 0 

and all points xe~0, there exists ~ = ~(e, x ) ~ 0  and at least one permutation 1', 

2', . . . . .  p" (possibly depending on e, x, x') of the integers 1, 2 , . . . ,  p such tha t  

Xe~o & I x - x ' [  < v~ l y j ( x ) - y r  (x')l < e, i = 1 , 2  . . . .  , p .  (3.2) 

If  further F It0] ~ 1, where F determines a random variable x*, we say that  y (x) is 

almost-certainly-continuous with respect to x*. 

Theorem 2. I] e :> 0 and 0 > 0 are prescribed, and i] F[~] is a ~robability 

set ]unction, and i/  y (x) is a ~-valucd Borel-measurable vector ]unction, continuous in 

a Borel set to, then we can lind a Borel set ~, satis]ying F[~] ~ ( 1 -  0)F[~0], and a 

nund)er ~? = ~  (e, 0), independent o] x, such that 

x e ~ & l x - - x ' [  < ~ - [ y i ( x ) - - y ~ (  x, x ' ) [ <  e, i = 1, 2, . . . ,  p 
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where y~ (x, x') is a Betel-measurable /unction el x and x' /or each fixed j = 1, 2, . . . ,  ~, 

and the set y~ (x, x'), y~ (x, x') . . . . .  y~ (x, x') is a permutation (depending on x) el the 

set Yx (x'), Y2 (x'), . . . ,  y~ (x'). 
When p = 1 this theorem reduces to one on uniform continuity over the 'non- 

trivial' part of a probability set. Surprisingly enough, the standard textbooks on 

topological measure theory do not mention even this special case, which therefore 

seems new.  1 

Let zk, k = 1, 2, . . . ,  p!, denote the permutations of p objects, and let (lk),  

(2k), . . . ,  (pk) denote the result of applying ~ to the integers 1, 2, . . . ,  p. Let m 

be a positive integer. Let C~ denote the class (containing at  least the empty Borel 

set) of all Borel Sets ~ of ~ with the property 

x E ~ & l x - - x ' ] ~ m - l ~ [ y i ( x ) - - y ( j k ) ( x ' ) l ~ e ;  ~ =  1, 2, . . . , p ;  some k; (3.3) 

where 'some k' means tha t  there is at  least one value of k (possibly depending on 

x and x') such that  (3.3) holds for all ~" with this fixed k. We notice first that  

Cm, m = 1, 2 . . . . .  is a monotone increasing collection of a-rings [I-Ialmos (2)]: tha t  

is t o  s a y  
e C,~ & ~' e Cm~- ~ -- ~' ~ C,,,; (3.4) 

~,eCm, s = 1, 2 . . . .  ~ b e C m ;  (3.5) 
& ~ l  

m < m ' ,  Cm ~ C~'. (3.6) 

Since F is a probability set function there exists Mm, the least upper bound of 

F[~] for ~ECm. We have 
~ e  c ~  ~[~] -< M~. (3.7) 

Moreover we can find ~m~ECm, a = 1, 2 , . . . ,  such tha t  F[~m~] >--Mm--a  -1. Write 

= a n d  n o t i c e  t h a t  = 1, 2 . . . .  , i s  a m o n o t o n e  i n c r e a s i n g  s e q u e n c e  

of Betel sets. Then 

F[~m] = F[ l im ~ = ~ ]  = lira F [ ~ m ~ ]  ~ sup F[~m~] --> sup (M~ --fl-~) = M~.  (3.8) 
fl--~r a = l  fl...-~oo a =  l f l  

But  (3.5), (3.7), and (3.8) now show 

~m e Cm,  F[~m] = M ~ .  (3.9) 

When we have thus found ~m to satisfy (3.9) for each m = l,  2 . . . .  we define 
f~ 

~ = ~ ,  m = 1, 2, . . . ,  ~ .  (3.10) 
/~=1 

1 Professor Kac has remarked to me in conversation that  the special case p = 1 can be deduced 
from Lusin's theorem. 
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Now (3.5), (3.6), and (3.7) show/~ [~ ]  ~ Mm ; and (3.9) and (3.10) show F [~m] >_ Mm. 

So we have 
~;" E C,,, F I r ]  = M,,,. (3.11) 

The definition of M~,  the fact tha t  F is a probability set function, and (3.6) 

demonstrate 
M,n <-- M,w <-- 1, m < m" ; (3.12) 

Further ~ ,  m --- 1, 2 . . . . .  is a monotone increasing sequence so M = lira M~ exists. 

of Borel sets. Thus 

F [ ~ ]  = $ '  [lim ~m] = lira F [ ~ ]  = lim Mm = M. (3.13) 

Since ~o is a Borel set by hypothesis, $ o -  r is a Borel set (perhaps empty). We 

shall show tha t  the supposition 

F [~0 --  ~ ' ]  > 0 (3.14) 
leads to a contradiction. 

In the n-dimensional space ~, in which F[~] is defined, a bounded half-open 

set of all points x = {ms, xa . . . .  , xn} which satisfy all the inequalities 

ai - -  h < xi -<- ai + h, ai and h finite, i = 1, 2, . . . ,  n (3.15) 

is called a hypercube. Given a hypercube (3.15), the set of all points satisfying, 

for each value of i, one or other (but not both) of the inequalities 

a~- -  h < x~ ~-- ai or ai < xi ~_ ai + h 

is called a first hyperquadrant of the hypercube (3.15). We then inductively define 

a (q + 1)th hyperquadrant of (3.15) as a first hyperquadrant of a qth hyperquadrant 

of (3.15). The unqualified term 'hyperquadrant '  will mean a qth hyperquadrant for 

some unspecified positive integer q. 

If (3.14) holds, we can find a hypercube ~o such tha t  

F [(~o --  ~ ' ) "  I)o] > 0, (3.16) 

because F is a probability set function. Let I)' denote the union of all hyperquadrants 

l) of I)o which satisfy 
F[(~o --  r ) .  ~] = o. (3.17) 

The set of hyperquadrants ~ satisfying (3.17) is a t  most enumerable, because it is 

a subset of the enumerable set of all hyperquadrants of ~0. Hence ~' is a Borel 
set, and 

_ t)'] = o. 
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Consequently, from (3.16) 
F [(~o --  ~ ' )"  (~o --  ~')] > 0. (3.18) 

Now (3.18) implies tha t  ( ~ o - - ~ ) "  ( ~ o -  ~') is not empty. So we can choose a point 

Xo (hereafter fixed) such tha t  

Xo E (~o --  ~")" (~o --  ~'). (3.19) 

Since (3.19) implies x o e ~o, we may  define ~q to be the qth hyperquadrant of ~o 

such that  x o E ~q. This definition is unique, because, for each fixed q, the several 

qCh hyperquadrants of ~o are mutually disjoint. Further 

F [ (~o  - -  ~ ' ) "  1)r > 0, q = 1, 2, . . . ,  (3.20) 

for otherwise x o E~e~__~ ' in contradiction to (3.19). 

Next (3.19) implies XoE~o; so tha t  y(x) is continuous at  xo by hypothesis. 

Therefore, x o being fixed, we can find a positive integer r = r (xo, e) = r (e) such tha t  

I X - x o l < 2 r - ' - ~ l y J ( X o ) - y ( j k ) ( x ) l < � 8 9  7" = 1, 2 . . . . .  v ;  some k. (3.21) 

Let  ~ denote the set of all points x satisfying I x -  Xol < r -1. If  the value of h 

[see (3.15)] for I~g is hq, hg = 2-gho ~ 0 as q ~ oo because ho is finite. Hence we 

can choose a value of q, say q = t ,  so tha t  ~ t ~ .  Now let x and x'  be any two 

points satisfying 
xE(~o--~'~ and I x - - x ' l  < r - ' .  (3.22) 

Then 
x ~ ~,=__ ~ I x -  ~ol < ~ - '~  I ~ ' -  ~ol < 2~-~. 

A /ortiori 
I x - x o l < 2 r  -1 and I x ' - - x e [ >  2r-1;  

so tha t  (3.21) shows that  there exist integers k' and k"  with 1 --< k', )~" --< p ! such that  

ly j (xo) -y ( j r ) (x ) [  <�89 l y j ( x o ) - y ( j r ) ( x ' )  I < i t ,  i = 1, 2, . . . ,  v .  

Whereupon 
]y,,k')(x)--y(,k")(x')] < e ,  ~" = 1, 2, . . . ,  V. 

Now apply the inverse permutation g~l to these last inequalities, and there results 

]ys (x) - -y(s~) (x ' ) ]<s ;  j = 1, 2 . . . . .  lo; some k. (3.23) 

Since (3.22)* (3.23), we have from (3.3) 
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and therefore by (3.5) 
+ (~o - -  ~ ) "  ~ E Cr. (3.24) 

Now ~ r = ~ ;  SO ~r and ( ~ o - - ~ ) - ~ t  are mutually disjoint. Therefore, by (3.24), 

(3.7), (3.20), and (3.11) 

which is the required contradiction. So we must abandon the supposition (3.14); 

and there only remains the possibility 

F[~o- -~  ~] = O. 
Consequently 

Fifo] ~ F[~ "]  = M = lim F[~ ' ] .  

This last equation shows tha t  we can find an integer s such that  

(1 - -  0)F[~o] --< F [~ ] ,  (3.25) 

We now choose ~ = ~ ( e ,  0) to satisfy 0 < ~ < s  -1, and put  ~ = ~ ' .  We have 

F[~] --  (1 - -  0) F[~o], (3.26) 

and, as a stronger case of (3.3) 

xe~&lx-x'l<~*lyi(x)-y(~k)(x')l<~; i = l ,  2 , . . . , p ;  some k. (3.27) 

Let 3 = 3~ • 3~' denote the space of points z = (x, x');  and let R~, ;t = 1, 2 . . . . .  

be an enumeration of the rational points of ~.  For each value of k = 1, 2 , . . . ,  pl, 

let 3k denote the (possibly empty) set of points z = (x, x ' ) w h i c h  satisfy all the 

inequalities 
lyi(x) --y(jk)(x')l < ~, j = 1, 2, . . . ,  V; (3.28) 

and let 3 denote the set of points for which (3.28) holds for some k (perhaps de- 

pending on x and x'). Then 

The set of points x, satisfying lyj(x)-R  I < � 8 9  for fixed i and fixed 2, is a Borel 

set D~ since yi(x) is a Borel-measurable function of x. Similarly the set of points 

x', satisfying l y ( ik) (x ' ) - -R~[<�89  for fixed i and fixed k and fixed 2, is a Borel 

set ~'(i~)a. Consequently 

i = 1  ~1=1 
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is a Borel set. We define 

x--1 ~o! 
$ " = 3 , , - - ~ 3 t ,  x = 2 , 3  . . . . .  V!, $ * = 3 - - ~ $ " .  

k = l  x = 2  

Then $~, x = 1, 2 . . . . .  ~!, are mutually disjoint Borel sets covering ~; so tha t  their 

characteristic functions 
= /  1 if z = ( x , x ' ) 6 ~  

X')  

[ 0 if "- = (x, x') r $~ 

are Borel-measurable functions of x and x'. The theorem is now proved by taking 

y~(x, x') = ~Zx(x,  x')y(i,)(x'), i = 1, 2 . . . . .  ~. (3.29) 
x = l  

The case of Theorem 2 which will interest us in this paper arises when y (x) 

is almost-certainly-continuous, and we have F[~] > 1 -  0. The counter-example 

y i x )  = z - 1 ,  ( x )  = 

0 i f x < 0  

x i f 0 ~ x ~ l  

l i f x > l  

shows tha t  Theorem 2 would be false were 0 = 0 permitted. 

w 4. Many-valued random variables. 

An unordered set of p probability set functions determines a p-valued random 
variable, x*. Suppose that,  for any given Borel set ~, these p probability set func- 

tions are arranged in an arbitrary order and then denoted by Fi[~], ~" = 1, 2 . . . .  , p. 

This indexing may depend in general upon the set ~ chosen; but the symmetric stun 

P 

i=1  

is evidently independent of the indexing. I t  is moreover easy to verify tha t  F[~] 

is a probability set function, which we call the condensed probability set ]unction o/ 
x*. The corresponding condensed cumulative distribution /unction is 

i=1  

where F i (x) are specified by an indexing of the l~ cumulative distribution functions 
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of x*. Further, lv[~] and iV(x) determine the same one-valued random variable, 

which we call the condensation of x* and denote by cx*. 

If x* is a one-valued random variable, and y(x) is a p-valued Borel-measurable 

function with an indexing (3.1) of one-valued Borel-measurable functions, then 

y~ = yj(x*), i = 1 , 2  . . . . .  p 

will be p one-valued random variables determined by Hi[t) ] say. Whereupon 

H[~]  = p-~Hj[t~] 
i = 1  

will be the condensed probability set function of the many-valued random variable 

y(x*), and will determine a condensation denoted by  ty(x*). 

Theorem 3. I /  x* and x~, v = 1, 2 . . . . .  are one-valued random variables satis]ying 

dlim x~ = x*, (4.1) 
p--~oo 

and i/ y (x) is a many,valued Borel-measurable /unction which is almost-certainly-con- 

tinuous with respect to x*, then 

dlim Cy (x~) = Cy (x*). (4.2) 
~-->oo 

I t  will be noticed that  y (x) need not be almost-certainly-continuous with respect 

to x~ for any value of v at all. 

Suppose that  F[~] and F,[~] are the probability set functions determining x* 

and x~ respectively. Let e > 0 and 0 > 0 be any pair of prescribed positive numbers. 

Since y(x)  is almost-certainly-continuous with respect to x* we can find a Borel 

set ~, satisfying 
F[~] --> 1 --�89 (4.3) 

and a number ~ / = 7  (e, O) such that  

x ~  a I x - x ' l  < , ~  l yj (x) - -  y; (x, x')l < e, i = 1 , 2  . . . .  , p  (4.4) 

where y~ (x, x') is defined by (3.29). 

Let ~ = ~ X ~ '  be the space of points z = ( x , x ' ) .  By  (4.1), we can take the 

probability set function G[$] defined in Theorem 1 to be a joint determination of 

x* and x*. We put  the quanti ty c$ of Theorem 1 equal to y (e, 0), and the quanti ty 

e of Theorem 1 equal to the quanti ty �89 0 of the present theorem. Then, with $o 

denoting the set of points z = (x, x') satisfying I x - -  x' I < 7, we have from Theorem 1 
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O [ ~ •  O [ ~ •  F,[~']; G [ 3 o ] > 1 - - t 0 ,  v>--v~(e, 0); (4.5) 

where v~) (e, 0) = v o {v/(e, 0), �89 0}. Then, with ~ = ~ X :~" we have 

G[~] = F[~.] --~ 1 -- �89 (4.6) 

Then (4.5) and (4.6) show that  

V [ 3  o �9 ~] = 1 - -  a [ 3  - -  (30" ~)]  = 1 - -  e [ ( 3  - -  30) + ( 3  - -  ~)] 

--> 1 - -  a [ 3  - -  3o] - -  a [ 3  - -  ~] = - -  1 + G [30] + G [~] > 1 - -  0 ,  ( 4 . 7 )  

while (4.4) becomes 

. .  = (x, x')  e ~o. ~ ,  l y~ (~) - y i  (~, ~ ' ) l  < ~, i = 1, 2, . . . ,  v .  (4.8) 

Now, since e and 0 are arbitrary, (4.7) and (4.8) imply 

plim {yj(x*)--y;(x*,  x~)} = O, j = 1, 2 . . . . .  
t*--~oo 

and, ~ince (2.7)* (2.3), we have 

dlim y~ (x*, x~) = Yi (x*), 7" = 1, 2 . . . . .  p. 

Summing the corresponding cumulative distribution functions over all values of 7", 

a n d  remembering that  a distribution function has at most an enumerable number 

of discontinuities, we deduce without difficulty 

dlim ~y' (x*, x~) = ~y (x*). (4.9) 
I~--}oo 

We complete the proof by showing that  y'(x*, x~) has the same condensed 

probability set function as y(x~). Let ~) denote a typical Borel set of the space 

of points y. Let 3~(t)) denote the set of all points z = i x, x') such that  y~(x,x')Et); 

and let 3i(t)) denote the set of all z such that  yj(x')Et).  Since y~(x') and y~(x, x') 

are Borel-measurable functions ~i(t)) and 3~(t)) are Borel sets. The condensed prob- 

ability set function of y'(x*, x*) is 

j ~ l  i = l  x = l  

where 3 ~, u = 1, 2 . . . .  , ~o!, are the disjoint Borel sets covering ~ defined in Theorem 2. 
x P l If z e 3  .~j(t)), (3.29) shows yi(x, x ' ) =  y(j~)(x'); and so 

3 ~- $;(~)  = 3~. 3(~) (~) .  

Substituting into (4.10), we get 
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P 
' ' ~9--1~ j ~ I G  [ ~ .  ~(jx) (~) ] ~ - 1 ~  p 

j~ l  xffil ~ x=l 

= ~ - 1 ~  ~o[~, .~j(~)]  = p-1 ~:O[3~(~)], 

which is the condensed probability set function of y(x~). 
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