AN EXTENSION OF THE SLUTZKY-FRÉCHET THEOREM.

By
J. M. HAMMERSLEY.
Lectureship in the Design and Analysis of Scientific Experiment, University of Oxford.

§ 0. Notation and conventions.

In this paper German capital letters denote Euclidean vector spaces of finite dimensionality. Small German letters denote point sets in these spaces; and $\mathfrak{x}-\mathfrak{x}^{\prime}$ denotes the (perhaps empty) set of all points which belong to \mathfrak{x} and not to \mathfrak{x}^{\prime}. Script letters denote classes of point sets. Clarendon type denotes points (or vectors) of a Euclidean space. Ordinary italic type is reserved for scalar quantities. The symbol \Rightarrow denotes implication, the arrow pointing from the premiss to the conclusion; and the double-headed arrow \Leftrightarrow means 'implies and is implied by'. Two statements I and II, which together imply a third III, are linked by an ampersand: - 'I \& II \Rightarrow III'.

§ 1. Introduction.

Let $y(x)$ be a continuous one-valued function of x, and consider the equations

$$
\begin{align*}
\lim _{v \rightarrow \infty} x_{\nu} & =x, \tag{1.1}\\
\lim _{v \rightarrow \infty}\left(x_{\nu}-x\right) & =0, \tag{1.2}\\
\lim _{v \rightarrow \infty}\left\{y\left(x_{v}\right)-y(x)\right\} & =0, \tag{1.3}\\
\lim _{v \rightarrow \infty} y\left(x_{\nu}\right) & =y(x) . \tag{1.4}
\end{align*}
$$

When x and x_{p} are real variables, it is familiar that

$$
\begin{equation*}
(1.1) \Leftrightarrow(1.2) \Leftrightarrow(1.3) \Leftrightarrow(1.4) . \tag{1.5}
\end{equation*}
$$

For random variables, the position is different. Slutzky (4) proved

$$
\begin{equation*}
(1.2) \Rightarrow(1.3) \tag{1.6}
\end{equation*}
$$

when x_{ν} is a random variable and x a real variable; while Fréchet (1) proved (1.6)
in case x_{v} and x were both random variables. It is an immediate consequence of the definition of 'lim' for random variables that

$$
\begin{equation*}
(1.1) \leftarrow(1.2) \quad \text { and } \quad(1.3) \Rightarrow(1.4) \tag{1.7}
\end{equation*}
$$

but the converse statements

$$
\begin{equation*}
(1.1) \Rightarrow(1.2) \quad \text { and } \quad(1.3) \leftarrow(1.4) \tag{1.8}
\end{equation*}
$$

are generally false. It is, however, easy to find special cases in which (1.8) is true for certain specific random variables; and then the question naturally arises whether, given any random variables satisfying (1.1), we can always find at least one special case such that (1.2) is also true. In Theorem 1 I shall give an affirmative answer to this question: so that, combining Theorem 1 with the Slutzky-Fréchet theorem (1.6) and with the second part of (1.7), we shall have established

$$
\begin{equation*}
(1.1) \Rightarrow(1.4) \tag{1.9}
\end{equation*}
$$

for random variables. However (1.9) is insufficient for certain practical applications; and I shall prove a generalisation of it in Theorem 3: namely, that (1.6) and (1.9) remain true for almost-certainly-continuous many-valued vector functions of a vector variable.

A number of authors have discussed, in a few special cases, the distribution of the zeros of a random polynomial. I hope to show elsewhere how the extended form of (1.9) provides a general solution to this problem.

§ 2. One-valued random variables and their limits.

Let \mathfrak{X} denote an n-dimensional Euclidean space. A probability set function $F[x]$ is any one-valued real non-negative completely-additive set function defined for all Borel sets \mathfrak{x} of \mathfrak{X} and satisfying $F[\mathfrak{X}]=1$. If \mathfrak{x} is the particular set of all points, whose coordinates do not exceed the corresponding coordinates of a given point \mathbf{x} of \mathfrak{X}, we write $F[\mathfrak{x}]=F(\mathbf{x})$ and call $F(\mathbf{x})$ a cumulative distribution function. Obviously $F[\mathfrak{x}]$ uniquely determines $F(\mathbf{x})$, and the converse is a consequence of Lebesgue's theory of integration. A cumulative distribution function is monotone increasing and everywhere continuous on the right. For the purposes of axiomatic theory it is permissible to identify a one-valued random variable \mathbf{x}^{*} with a probability set function. Asterisks will hereinafter denote random variables. If the functional form of F, either as a probability set function or as a cumulative distribution function, is supposed given we say that \boldsymbol{F} determines the random variable \mathbf{x}^{*} identified with it.

This corresponds to saying that a real variable \mathbf{x} is determined when the numerical values of its coordinates are supposed given. A random constant \mathbf{a}^{*} is the random variable identified with that probability set function $F[x]$ which equals 1 or 0 according as the fixed point a belongs to \mathfrak{x} or not.

Let $\mathfrak{X}_{i}, i=1,2, \ldots, m$, be an n_{i}-dimensional Euclidean space in which \mathfrak{x}_{i} is a typical Borel set. Let \mathbf{x}_{i}^{*} be a one-valued random variable in \mathfrak{X}_{i} determined by $F_{i}\left[\mathfrak{x}_{i}\right]$. In the direct product space $\mathfrak{X}_{1} \times \mathfrak{X}_{2} \times \cdots \times \mathfrak{X}_{m}$ any probability set function G is called a joint determination of $\mathbf{x}_{1}^{*}, \mathbf{x}_{2}^{*}, \ldots, \mathbf{x}_{m}^{*}$ if it satisfies

$$
\begin{equation*}
G\left[\mathfrak{X}_{1} \times \mathfrak{X}_{2} \times \cdots \times \mathfrak{X}_{i-1} \times \mathfrak{x}_{i} \times \mathfrak{X}_{i+1} \times \cdots \times \mathfrak{X}_{m}\right]=F_{i}\left[\mathfrak{X}_{i}\right] \tag{2.1}
\end{equation*}
$$

for all values of i and all Borel sets \mathfrak{x}_{i} of \mathfrak{X}_{i}. The random variable identified with G is written $\mathbf{x}_{1}^{*} \times \mathbf{x}_{2}^{*} \times \cdots \times \mathbf{x}_{m}^{*}$. We say that the \mathbf{x}_{i}^{*} are independently distributed if a stronger form of (2.1) holds, namely

$$
\begin{equation*}
G\left[\mathfrak{x}_{1} \times \mathfrak{x}_{2} \times \cdots \times \mathfrak{x}_{m}\right]=F_{1}\left[\mathfrak{x}_{1}\right] F_{2}\left[\mathfrak{x}_{2}\right] \ldots F_{m}\left[\mathfrak{x}_{m}\right] \tag{2.2}
\end{equation*}
$$

for all Borel sets $\mathfrak{x}_{i} \subseteq \mathfrak{X}_{i}$.
Let G in (2.1) be a joint determination of $\mathbf{x}_{1}^{*}, \mathbf{x}_{2}^{*}, \ldots, \mathbf{x}_{m}^{*}$. Let $\mathbf{y}=\mathbf{y}\left(\mathbf{x}_{1}, \mathbf{x}_{2} \ldots, \mathbf{x}_{m}\right)$ be a one-valued Borel-measurable mapping of $\mathfrak{X}_{1} \times \mathfrak{X}_{2} \times \cdots \times \mathfrak{X}_{m}$ into a Euclidean space \mathfrak{Y}. Let \mathfrak{y} be a Borel set of \mathfrak{Y}, and let $\mathfrak{x}(\mathfrak{y})$ be the set of all points $\left(\mathbf{x}_{1}, x_{2}, \ldots \mathbf{x}_{m}\right)$ in $\mathfrak{X}_{1} \times \mathfrak{X}_{2} \times \cdots \times \mathfrak{X}_{m}$ for which $\mathbf{y}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right) \in \mathfrak{y}$. Since $\mathbf{y}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right)$ is a Borel-measurable function, $\mathfrak{x}(\mathfrak{y})$ is a Borel set. The function of several jointly determined random variables

$$
\mathbf{y}^{*}=\mathbf{y}\left(\mathbf{x}_{1}^{*}, \mathbf{x}_{2}^{*}, \ldots, \mathbf{x}_{m}^{*}\right)=\mathbf{y}\left(\mathbf{x}_{1}^{*} \times \mathbf{x}_{2}^{*} \times \cdots \times \mathbf{x}_{m}^{*}\right)
$$

is defined to be the random variable identified with

$$
H[\mathfrak{y}]=G[\mathfrak{x}(\mathfrak{y})],
$$

it being easy to verify that $H[\mathfrak{y}]$ so defined is a probability set function. Indeed this is a particular case of some more general theory discussed by Hammersley (3).

In a Euclidean space \mathfrak{X}, let \mathbf{x}^{*} be a random variable determined by the cumulative distribution function $F(\mathbf{x})$ and let $\mathbf{x}_{v}^{*}, v=1,2, \ldots$, be a sequence of random variables respectively determined by $F_{v}(\mathbf{x})$. If, as $\nu \rightarrow \infty, F_{v}(\mathbf{x})$ tends to $F(\mathbf{x})$ at every point of continuity of $F(\mathbf{x})$, we say that \mathbf{x}_{ν}^{*} converges in distribution to \mathbf{x}^{*}, and we write

$$
\begin{equation*}
\operatorname{dim}_{v \rightarrow \infty} \mathbf{x}_{v}^{*}=\mathbf{x}^{*} \tag{2.3}
\end{equation*}
$$

Let a be a constant vector, and let $\mathfrak{x}(a)$ denote the set of points x satisfying
$|\mathbf{x}-\mathbf{a}|<\delta$, where $\delta>0$ is any prescribed positive number. If to every prescribed pair of positive numbers $\delta>0$ and $\varepsilon>0$ we can find a positive integer $\nu_{0}=\nu_{0}(\delta, \varepsilon)$ such that the probability set functions $F_{p}[x]$ of \mathbf{x}_{v}^{*} satisfy

$$
F_{\nu}[\underline{x}(\mathbf{a})]>1-\varepsilon, \quad \nu \geq \nu_{0}(\delta, \varepsilon)
$$

we say that $\mathbf{x}_{\boldsymbol{*}}^{*}$ converges in probability to \mathbf{a}, and we write

$$
\begin{equation*}
\operatorname{plim}_{r \rightarrow \infty} \mathrm{x}_{\boldsymbol{v}}^{*}=\mathbf{a} . \tag{2.4}
\end{equation*}
$$

It is not difficult to see that

$$
\begin{equation*}
\operatorname{plim}_{p \rightarrow \infty} \mathbf{x}_{p}^{*}=\mathbf{a} \Leftrightarrow \operatorname{dlim} \mathbf{x}_{v}^{*}=\mathbf{a}^{*} . \tag{2.5}
\end{equation*}
$$

If, for each value of ν, \mathbf{x}_{v}^{*} and \mathbf{x}^{*} are jointly determined by some given G_{v}, and if the function $\mathbf{x}_{\boldsymbol{v}}^{*}-\mathbf{x}^{*}$ of such a pair of jointly determined random variables converges in probability to the zero vector as $\nu \rightarrow \infty$, we say that $\mathbf{x}_{\dot{*}}^{*}$ converges in probability to \mathbf{x}^{*}, and write

$$
\begin{equation*}
\operatorname{plim}_{v \rightarrow \infty} x_{i}^{*}=\mathbf{x}^{*} . \tag{2.6}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\operatorname{plim}_{v \rightarrow \infty}\left(\mathbf{x}_{v}^{*}-\mathbf{x}^{*}\right)=\mathbf{0} \Leftrightarrow \operatorname{plim}_{v \rightarrow \infty} x_{v}^{*}=\mathbf{x}^{*} \Leftrightarrow \operatorname{dim}_{v \rightarrow \infty}\left(x_{v}^{*}-\mathbf{x}^{*}\right)=\mathbf{0}^{*} \tag{2.7}
\end{equation*}
$$

when \mathbf{x}_{v}^{*} and \mathbf{x}^{*} are jointly determined; and it is quite simple to show that $(2.7) \Rightarrow(2.3)$. This is a fuller explanation of the first part of (1.7). On the other hand, the truth of ' $(2.3) \Rightarrow(2.7)$ ' depends upon the form of the joint determination of \mathbf{x}^{*} and \mathbf{x}_{n}^{*}. We shall now prove in Theorem 1 that, amongst the class of all joint determinations of any given pair of individually determined random variables \mathbf{x}^{*} and \mathbf{x}_{ν}^{*}, there is always at least one joint determination such that $(2.3) \Rightarrow(2.7)$.

Theorem 1. If \mathbf{x}^{*} is a given one-valued random variable, and if $\mathbf{x}_{p}^{*}, \nu=1,2, \ldots$, is a sequence of given one-valued random variables satisfying

$$
\begin{equation*}
\operatorname{dim}_{n \rightarrow \infty} \mathrm{x}_{p}^{*}=\mathbf{x}^{*}, \tag{2.8}
\end{equation*}
$$

then, for each value of ν, there exists a joint determination of \mathbf{x}^{*} and \mathbf{x}_{p}^{*} such that

$$
\begin{equation*}
\lim _{v \rightarrow \infty}\left(\mathbf{x}_{v}^{*}-\mathbf{x}^{*}\right)=\mathbf{0}^{*} . \tag{2.9}
\end{equation*}
$$

Take \mathfrak{X} to be the Euclidean space in which \mathbf{x}^{*} is defined; and write $\mathbf{x}=$ $=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ for a typical point of \mathfrak{X}, and \mathfrak{x} for a typical Borel set of \mathfrak{X}. Suppose that $F[x]$ and $F_{v}[x]$ are the given probability set functions which determine
\mathbf{x}^{*} and \mathbf{x}_{v}^{*} respectively, and that $F(\mathbf{x})$ and $F_{\nu}(\mathbf{x})$ are the corresponding cumulative distribution functions. Let $\delta>0$ and $\varepsilon>0$ be any pair of prescribed positive numbers.

We can find a finite number $U=U(\varepsilon)>0$ such that
(i) $F(\mathbf{x})$ is continuous on each of the hyperplanes $\mathfrak{h}_{i j},(i=1,2, \ldots, n ; j=1,2)$, where $\mathfrak{H}_{i 1}$ is the hyperplane $x_{i}=+U$ and $\mathfrak{H}_{i 2}$ is the hyperplane $x_{i}=-U$; and
(ii) $F\left[x_{0}\right]<\frac{1}{2} \varepsilon$, where x_{0} is the set of all points which violate at least one of the n inequalities $-U<x_{i} \leq+U, i=1,2, \ldots, n$.

We can now find a finite sequence of numbers $u_{k}, k=1,2, \ldots m$, where $m=m(\delta, \varepsilon)$, such that
(iii) $-U=u_{1}<u_{2}<\cdots<u_{m}=+U$; and
(iv) $u_{k+1}-u_{k}<\delta / V n, k=1,2, \ldots, m-1$; and
(v) $F(x)$ is continuous on the hyperplanes $\mathfrak{h}^{i k},(i=1,2, \ldots, n ; k=1,2, \ldots, m)$, where $\mathfrak{H}^{i k}$ is the hyperplane $x_{i}=u_{k}$.

Write $M=M(\delta, \varepsilon)=(m-1)^{n}$; and let $\mathfrak{X}_{p}, p=1,2, \ldots, M$, denote the half-open finite intervals in \mathfrak{X}

$$
\begin{equation*}
u_{k(i)}<x_{i} \leq u_{k(i)+1}, \quad i=1,2, \ldots, n \tag{2.10}
\end{equation*}
$$

enumerated in some specific order, where $k(i)$ denotes an integer (depending upon i) selected from the integers $1,2, \ldots, m-1$. Consider the non-negative numbers

$$
\begin{equation*}
a_{p}=F\left[\mathfrak{r}_{p}\right], b_{p}=F_{v}\left[\mathfrak{x}_{p}\right], p=0,1,2, \ldots, M \tag{2.11}
\end{equation*}
$$

where b_{p} is a function of ν. Since $\mathfrak{x}_{0}, \mathfrak{x}_{1}, \ldots, \mathfrak{x}_{M}$ are mutually disjoint and cover \mathfrak{X} completely

$$
\begin{equation*}
\sum_{p} a_{p}=\sum_{p} b_{p}=1 \tag{2.12}
\end{equation*}
$$

Let $\delta_{p q}$ denote the Kronecker delta ($\delta_{p q}=1$ or 0 according as $p=q$ or $p \neq q$); and let $\Lambda(\theta)=\theta$ if $\theta \neq 0$ while $\Lambda(0)=1$. Define for $p, q=0,1,2, \ldots, M$

$$
\begin{equation*}
c_{p q}=\frac{\left(a_{p}+b_{p}-\left|a_{p}-b_{p}\right|\right) \delta_{p q}}{2}+\frac{\left(\left|a_{p}-b_{p}\right|+a_{p}-b_{p}\right)\left(\left|a_{q}-b_{q}\right|-a_{q}+b_{q}\right)}{2 \Lambda\left(\sum_{p}\left|a_{p}-b_{p}\right|\right)} \tag{2.13}
\end{equation*}
$$

In view of (2.12) and $a_{p} \geq 0, b_{p} \geq 0$, we find without difficulty

$$
\begin{equation*}
c_{p q} \geq 0, \quad \sum_{p} c_{p q}=b_{q}, \quad \sum_{q} c_{p q}=a_{p}, \quad \sum_{p} c_{p p}=1-\frac{1}{2} \sum_{p}\left|a_{p}-b_{p}\right| \tag{2.14}
\end{equation*}
$$

Let 3 denote the $2 n$-dimensional space $\mathfrak{X} \times \mathfrak{X}$, and let z^{\prime} denote any Borel set of 3 which can be expressed in the form

$$
\begin{equation*}
\mathfrak{z}^{\prime}=\mathfrak{x}^{\prime} \times \mathfrak{c}^{\prime \prime}, \mathfrak{x}^{\prime} \subseteq \mathfrak{x}_{p} \text { and } \mathfrak{x}^{\prime \prime} \subseteq \mathfrak{x}_{q} \text { for some } p, q \tag{2.15}
\end{equation*}
$$

\mathfrak{x}^{\prime} and $\mathfrak{x}^{\prime \prime}$ being Borel sets. Define G^{\prime}, depending upon ν, by

$$
\begin{equation*}
G^{\prime}\left[z^{\prime}\right]=F\left[\mathfrak{x}^{\prime}\right] F_{v}\left[\mathfrak{x}^{\prime \prime}\right] c_{p q} / \Lambda\left(a_{p} b_{q}\right), \tag{2.16}
\end{equation*}
$$

where the values of p and q are those appearing in (2.15). It is easy to see that $G^{\prime}[z]$ is a non-negative completely-additive set function for all sets z^{\prime} satisfying (2.15) for any fixed pair p, q. Now the intervals $\mathfrak{x}_{p} \times \mathfrak{x}_{q}$ are mutually disjoint and cover 3 completely; and any Borel set of 8 can be built up from an enumerable number of sets of the form $\mathfrak{x}^{\prime} \times \mathfrak{r}^{\prime \prime}$. Therefore we may uniquely define $G[z]$ as that nonnegative completely-additive set function of Borel sets $z \subseteq 8$ such that $G\left[z^{\prime}\right]=G^{\prime}\left[z^{\prime}\right]$ for all sets of the type z^{\prime}. Let \mathfrak{x} be any Borel set of \mathfrak{X}. There is a unique decomposition

$$
\mathfrak{x}=\sum p \mathfrak{x}^{p}, \quad \mathfrak{x}^{p} \subseteq \mathfrak{x}_{p},
$$

namely $\mathfrak{x}^{\boldsymbol{p}}=\mathfrak{x} \cdot \mathfrak{x}_{p}$. Now

$$
a_{p}=0 \Rightarrow F\left[\mathfrak{x}^{p}\right]=0 ; \quad b_{q}=0 \Rightarrow c_{p q}=0 ;
$$

and so (2.14) establishes

$$
\begin{align*}
G[\mathfrak{x} \times \mathfrak{X}] & =\sum_{p q} F\left[\mathfrak{x}^{p}\right] F_{p}\left[\mathfrak{x}_{q}\right] c_{p q} / \Lambda\left(a_{p} b_{q}\right) \\
& =\sum_{p} \frac{F\left[\mathfrak{x}^{p}\right]}{\Lambda\left(a_{p}\right)} \sum_{q} \frac{c_{p q} b_{q}}{\Lambda\left(b_{q}\right)}=\sum_{p} \frac{F\left[\mathfrak{x}^{p}\right] a_{p}}{\Lambda\left(a_{p}\right)}=\sum_{p} F\left[\mathfrak{x}^{p}\right]=F[\mathfrak{x}] . \tag{2.17}
\end{align*}
$$

Similarly

$$
\begin{equation*}
G[\mathfrak{X} \times \mathfrak{x}]=F_{v}[\mathfrak{x}] . \tag{2.18}
\end{equation*}
$$

Hence

$$
G[3]=G[\mathfrak{X} \times \mathfrak{X}]=F[\mathfrak{X}]=1 ;
$$

so that G is a probability set function. Whereupon (2.17) and (2.18) show that G jointly determines \mathbf{x}^{*} and $\mathbf{x}_{\boldsymbol{v}}^{*}$.

Now write $z=\left\{z_{1}, z_{2}, \ldots, z_{2 n}\right\}$ for a typical point of 3 , and let z_{0} be the set of all points z which satisfy all the inequalities

$$
\left|z_{i}-z_{n+i}\right|<\delta / V n, i=1,2, \ldots, n
$$

From (iv) and (2.10)

$$
\mathfrak{z}_{0} \supseteq \sum_{p=1}^{M} \mathfrak{x}_{p} \times \mathfrak{x}_{p}
$$

and therefore by (2.14)

$$
\begin{align*}
G\left[z_{0}\right] & \geq G\left[\sum_{p=1}^{M} \mathfrak{x}_{p} \times \mathfrak{x}_{p}\right]=\sum_{p=1}^{M} G\left[\mathfrak{x}_{p} \times \mathfrak{x}_{p}\right]=\sum_{p=1}^{M} c_{p} p=1-c_{00}-\frac{1}{2} \sum_{p=0}^{M}\left|a_{p}-b_{p}\right| \\
& \geq 1-a_{0}-\frac{1}{2} \sum_{p=0}^{M}\left|a_{p}-b_{p}\right|>1-\frac{1}{2} \varepsilon-\frac{1}{2} \sum_{p=0}^{M}\left|a_{p}-b_{p}\right| \tag{2.19}
\end{align*}
$$

where in the final step we have employed condition (ii). Now each of the numbers a_{p} and b_{p} can be expressed as the sum or difference of 2^{n} quantities of the form $F(\mathbf{x})$ or $F_{v}(\mathbf{x})$ where \mathbf{x} is an intersection of fixed hyperplanes $\mathfrak{h}^{i k}$. Consequently (2.8) and condition (v) show that we can determine $\nu_{0}=\nu_{0}(\delta, \varepsilon)$ such that, for each $p,\left|a_{p}-b_{p}\right|<\varepsilon /(M+1), \nu \geq \nu_{0}$. On substitution into (2.19) we get

$$
G\left[z_{0}\right]>1-\varepsilon, \quad \nu \geq \nu_{0}(\delta, \varepsilon),
$$

which establishes (2.9) and completes the proof.

§ 3. Almost-certainly-continuous many-valued vector functions.

Suppose that, to each point \mathbf{x} of an n-dimensional Euclidean space \mathfrak{X}, there corresponds a system $\mathbf{y}(\mathbf{x})$ of p points (not necessarily distinct) in a q-dimensional Euclidean space \mathfrak{V}. We call $\mathbf{y}(\mathbf{x})$ a p-valued q-dimensional vector function of \mathbf{x}. If there are defined a system of p one-valued functions of x

$$
\begin{equation*}
\mathbf{y}_{1}(\mathbf{x}), \mathbf{y}_{2}(\mathbf{x}), \ldots, \mathbf{y}_{p}(\mathbf{x}) \tag{3.1}
\end{equation*}
$$

such that, having due regard to multiple points, the points (3.1) coincide with the points $\mathbf{y}(\mathbf{x})$ for each \mathbf{x} in \mathfrak{X}, then we call the functions (3.1) an indexing of $\mathbf{y}(\mathbf{x})$. If $\mathbf{y}(\mathbf{x})$ possesses at least one indexing (3.1) such that $\mathbf{y}_{j}(\mathbf{x})$ is a Borel-measurable function for each fixed $j=1,2, \ldots, p$, then $\mathbf{y}(\mathbf{x})$ is called a many-valued Borelmeasurable function. In this paper we shall only be concerned with Borel-measurable $\mathbf{y}(\mathbf{x})$; and we shall therefore assume that (3.1) is an indexing for which $\mathbf{y}_{j}(\mathbf{x})$ is Borel-measurable for each fixed j.

We say that $\mathbf{y}(\mathbf{x})$ is continuous in a Borel set \mathfrak{x}_{0} if, for every prescribed $\varepsilon>0$ and all points $\mathbf{x} \in \mathfrak{X}_{0}$, there exists $\eta=\eta(\varepsilon, \mathbf{x})>0$ and at least one permutation 1^{\prime}, $2^{\prime}, \ldots, p^{\prime}$ (possibly depending on $\varepsilon, \mathbf{x}, \mathbf{x}^{\prime}$) of the integers $1,2, \ldots, p$ such that

$$
\begin{equation*}
\mathbf{x} \in \mathfrak{x}_{0} \&\left|\mathbf{x}-\mathbf{x}^{\prime}\right|<\eta \Rightarrow\left|\mathbf{y}_{j}(\mathbf{x})-\mathbf{y}_{j^{\prime}}\left(\mathbf{x}^{\prime}\right)\right|<\varepsilon, j=1,2, \ldots, p \tag{3.2}
\end{equation*}
$$

If further $F\left[\mathfrak{x}_{0}\right]=1$, where F determines a random variable \mathbf{x}^{*}, we say that $\mathbf{y}(\mathbf{x})$ is almost-certainly-continuous with respect to \mathbf{x}^{*}.

Theorem 2. If $\varepsilon>0$ and $\theta>0$ are prescribed, and if $F[x]$ is a probability set function, and if $\mathbf{y}(\mathbf{x})$ is a p-valued Borel-measurable vector function, continuous in a Borel set \mathfrak{x}_{0}, then we can find a Borel set $\hat{\mathfrak{x}}$, satisfying $F[\hat{\mathfrak{x}}] \geq(1-\theta) F\left[\mathfrak{x}_{0}\right]$, and a number $\eta=\eta(\varepsilon, \theta)$, independent of \mathbf{x}, such that

$$
\mathbf{x} \in \hat{\mathfrak{x}} \&\left|\mathbf{x}-\mathbf{x}^{\prime}\right|<\eta \Rightarrow\left|\mathbf{y}_{j}(\mathbf{x})-\mathbf{y}_{j}^{\prime}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right|<\varepsilon, j=1,2, \ldots, p
$$

where $\mathbf{y}_{j}^{\prime}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is a Borel-measurable function of \mathbf{x} and \mathbf{x}^{\prime} for each fixed $j=1,2, \ldots, p$, and the set $\mathbf{y}_{1}^{\prime}\left(\mathbf{x}, \mathbf{x}^{\prime}\right), \mathbf{y}_{2}^{\prime}\left(\mathbf{x}, \mathbf{x}^{\prime}\right), \ldots, \mathbf{y}_{p}^{\prime}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is a permutation (depending on \mathbf{x}) of the set $\mathbf{y}_{1}\left(\mathbf{x}^{\prime}\right), \mathbf{y}_{2}\left(\mathbf{x}^{\prime}\right), \ldots, \mathbf{y}_{p}\left(\mathbf{x}^{\prime}\right)$.

When $p=1$ this theorem reduces to one on uniform continuity over the 'nontrivial' part of a probability set. Surprisingly enough, the standard textbooks on topological measure theory do not mention even this special case, which therefore seems new. ${ }^{1}$

Let $\pi_{k}, k=1,2, \ldots, p!$, denote the permutations of p objects, and let ($1 k$), $(2 k), \ldots,(p k)$ denote the result of applying π_{k} to the integers $1,2, \ldots, p$. Let m be a positive integer. Let \mathcal{C}_{m} denote the class (containing at least the empty Borel set) of all Borel sets \mathfrak{x} of \mathfrak{X} with the property

$$
\begin{equation*}
\mathbf{x} \in \mathfrak{x} \&\left|\mathbf{x}-\mathbf{x}^{\prime}\right|<m^{-1} \Rightarrow\left|\mathbf{y}_{j}(\mathbf{x})-\mathbf{y}_{(j k)}\left(\mathbf{x}^{\prime}\right)\right|<\varepsilon ; j=1,2, \ldots, p ; \text { some } k \tag{3.3}
\end{equation*}
$$

where 'some k ' means that there is at least one value of k (possibly depending on \mathbf{x} and \mathbf{x}^{\prime}) such that (3.3) holds for all j with this fixed k. We notice first that $\mathcal{C}_{m}, m=1,2, \ldots$, is a monotone increasing collection of σ-rings [Halmos (2)]: that is to say

$$
\begin{gather*}
\mathfrak{x} \in \mathcal{C}_{m} \& \mathfrak{x}^{\prime} \in \mathcal{C}_{m} \Rightarrow \mathfrak{x}-\mathfrak{x}^{\prime} \in \mathcal{C}_{m} ; \tag{3.4}\\
\mathfrak{x}_{s} \in \mathcal{C}_{m}, s=1,2, \ldots \Rightarrow \sum_{s=1}^{\infty} \mathfrak{r}_{s} \in \mathcal{C}_{m} ; \tag{3.5}\\
m<m^{\prime} \Rightarrow \mathcal{C}_{m} \subseteq \mathcal{C}_{m^{\prime}} \tag{3.6}
\end{gather*}
$$

Since F is a probability set function there exists M_{m}, the least upper bound of $F[x]$ for $\mathfrak{x} \in \mathcal{C}_{m}$. We have

$$
\begin{equation*}
\mathfrak{x} \in \mathcal{C}_{m} \Rightarrow F[\mathfrak{x}] \leq M_{m} . \tag{3.7}
\end{equation*}
$$

Moreover we can find $\mathfrak{x}_{m a} \in \mathrm{C}_{m}, a=1,2, \ldots$, such that $F\left[\mathfrak{x}_{m a}\right] \geq M_{m}-a^{-1}$. Write $\mathfrak{x}_{m}=\sum_{a=1}^{\infty} \mathfrak{r}_{m \alpha}$ and notice that $\sum_{a=1}^{\beta} \mathfrak{r}_{m a}, \beta=1,2, \ldots$, is a monotone increasing sequence of Borel sets. Then
$F\left[\mathfrak{r}_{m}\right]=F\left[\lim _{\beta \rightarrow \infty} \sum_{\alpha=1}^{\beta} \mathfrak{r}_{m \alpha}\right]=\lim _{\beta \rightarrow \infty} F\left[\sum_{\alpha=1}^{\beta} \mathfrak{r}_{m a}\right] \geq \sup _{\beta} F\left[\mathfrak{r}_{m \beta}\right] \geq \sup _{\beta}\left(M_{m}-\beta^{-1}\right)=M_{m}$.
But (3.5), (3.7), and (3.8) now show

$$
\begin{equation*}
\mathfrak{x}_{m} \in \mathcal{C}_{m}, F\left[\mathfrak{x}_{m}\right]=M_{m} \tag{3.9}
\end{equation*}
$$

When we have thus found \mathfrak{r}_{m} to satisfy (3.9) for each $m=1,2, \ldots$ we define

$$
\begin{equation*}
\mathfrak{x}^{m}=\sum_{\mu=1}^{m} \mathfrak{r}_{\mu}, m=1,2, \ldots, \infty \tag{3.10}
\end{equation*}
$$

[^0]Now (3.5), (3.6), and (3.7) show $F\left[\mathfrak{x}^{m}\right] \leq M_{m}$; and (3.9) and (3.10) show $F\left[\mathfrak{x}^{m}\right] \geq M_{m}$. So we have

$$
\begin{equation*}
\mathfrak{x}^{m} \in \mathcal{C}_{m}, F\left[\mathfrak{x}^{m}\right]=M_{m} . \tag{3.11}
\end{equation*}
$$

The definition of M_{m}, the fact that F is a probability set function, and (3.6) demonstrate

$$
\begin{equation*}
M_{m} \leq M_{m^{\prime}} \leq 1, \quad m<m^{\prime} \tag{3.12}
\end{equation*}
$$

so $M=\lim _{m \rightarrow \infty} M_{m}$ exists. Further $\mathfrak{c}^{m}, m=1,2, \ldots$, is a monotone increasing sequence of Borel sets. Thus

$$
\begin{equation*}
F\left[\mathfrak{x}^{\infty}\right]=F\left[\lim _{m \rightarrow \infty} \mathfrak{r}^{m}\right]=\lim _{m \rightarrow \infty} F\left[\mathfrak{x}^{m}\right]=\lim _{m \rightarrow \infty} M_{m}=M . \tag{3.13}
\end{equation*}
$$

Since \mathfrak{x}_{0} is a Borel set by hypothesis, $\mathfrak{x}_{0}-\mathfrak{x}^{\infty}$ is a Borel set (perhaps empty). We shall show that the supposition

$$
\begin{equation*}
F\left[\mathfrak{x}_{0}-\mathfrak{x}^{\infty}\right]>0 \tag{3.14}
\end{equation*}
$$

leads to a contradiction.
In the n-dimensional space \mathfrak{X}, in which $F[x]$ is defined, a bounded half-open set of all points $\mathbf{x}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ which satisfy all the inequalities

$$
\begin{equation*}
a_{i}-h<x_{i} \leq a_{i}+h, a_{i} \text { and } h \text { finite, } i=1,2, \ldots, n \tag{3.15}
\end{equation*}
$$

is called a hypercube. Given a hypercube (3.15), the set of all points satisfying, for each value of i, one or other (but not both) of the inequalities

$$
a_{i}-h<x_{i} \leq a_{i} \text { or } a_{i}<x_{i} \leq a_{i}+h
$$

is called a first hyperquadrant of the hypercube (3.15). We then inductively define a $(q+1)$ th hyperquadrant of (3.15) as a first hyperquadrant of a qth hyperquadrant of (3.15). The unqualified term 'hyperquadrant' will mean a q th hyperquadrant for some unspecified positive integer q.

If (3.14) holds, we can find a hypercube \mathfrak{h}_{0} such that

$$
\begin{equation*}
F\left[\left(\mathfrak{x}_{0}-\mathfrak{x}^{\infty}\right) \cdot \mathfrak{h}_{0}\right]>0 \tag{3.16}
\end{equation*}
$$

because F is a probability set function. Let \mathfrak{h}^{\prime} denote the union of all hyperquadrants \mathfrak{h} of \mathfrak{h}_{0} which satisfy

$$
\begin{equation*}
F\left[\left(\mathfrak{x}_{0}-\mathfrak{x}^{\infty}\right) \cdot \mathfrak{h}\right]=0 . \tag{3.17}
\end{equation*}
$$

The set of hyperquadrants \mathfrak{h} satisfying (3.17) is at most enumerable, because it is a subset of the enumerable set of all hyperquadrants of \mathfrak{h}_{0}. Hence \mathfrak{h}^{\prime} is a Borel set, and

$$
F\left[\left(\mathfrak{x}_{0}-\mathfrak{x}^{\infty}\right) \cdot \mathfrak{G}^{\prime}\right]=0 .
$$

Consequently, from (3.16)

$$
\begin{equation*}
F\left[\left(\mathfrak{x}_{0}-\mathfrak{x}^{\infty}\right) \cdot\left(\mathfrak{h}_{\mathfrak{o}}-\mathfrak{h}^{\prime}\right)\right]>0 . \tag{3.18}
\end{equation*}
$$

Now (3.18) implies that $\left(\mathfrak{x}_{0}-\mathfrak{x}^{\infty}\right) \cdot\left(\mathfrak{h}_{0}-\mathfrak{h}^{\prime}\right)$ is not empty. So we can choose a point x_{0} (hereafter fixed) such that

$$
\begin{equation*}
x_{0} \in\left(\mathfrak{x}_{0}-\mathfrak{x}^{\infty}\right) \cdot\left(\mathfrak{h}_{0}-\mathfrak{h}^{\prime}\right) \tag{3.19}
\end{equation*}
$$

Since (3.19) implies $x_{0} \in \mathfrak{h}_{0}$, we may define \mathfrak{h}_{q} to be the q th hyperquadrant of \mathfrak{H}_{0} such that $\mathbf{x}_{0} \in \mathfrak{h}_{q}$. This definition is unique, because, for each fixed q, the several q th hyperquadrants of \mathfrak{h}_{0} are mutually disjoint. Further

$$
\begin{equation*}
F\left[\left(\mathfrak{x}_{0}-\mathfrak{x}^{\infty}\right) \cdot \mathfrak{h}_{q}\right]>0, \quad q=1,2, \ldots \tag{3.20}
\end{equation*}
$$

for otherwise $x_{0} \in \mathfrak{h}_{q} \subseteq \mathfrak{h}^{\prime}$ in contradiction to (3.19).
Next (3.19) implies $x_{0} \in \mathfrak{x}_{0}$; so that $\mathbf{y}(x)$ is continuous at x_{0} by hypothesis. Therefore, x_{0} being fixed, we can find a positive integer $r=r\left(\mathrm{x}_{0}, \varepsilon\right)=r(\varepsilon)$ such that

$$
\begin{equation*}
\left|x-x_{0}\right|<2 r^{-1} \rightarrow\left|y_{j}\left(x_{0}\right)-y_{(j k)}(x)\right|<\frac{1}{2} \varepsilon ; j=1,2, \ldots, p ; \text { some } k \tag{3.21}
\end{equation*}
$$

Let \mathfrak{G} denote the set of all points x satisfying $\left|x-x_{0}\right|<r^{-1}$. If the value of h [see (3.15)] for \mathfrak{h}_{q} is $h_{q}, h_{q}=2^{-q} h_{0} \rightarrow 0$ as $q \rightarrow \infty$ because h_{0} is finite. Hence we can choose a value of q, say $q=t$, so that $\mathfrak{h}_{t} \subseteq 3$. Now let x and x^{\prime} be any two points satisfying

$$
\begin{equation*}
\mathbf{x} \in\left(\mathfrak{x}_{0}-\mathfrak{x}^{\infty}\right) \cdot \mathfrak{h}_{t} \text { and }\left|\mathbf{x}-\mathbf{x}^{\prime}\right|<r^{-1} \tag{3.22}
\end{equation*}
$$

Then

$$
x \in \mathfrak{h}_{t} \subseteq \xi \Rightarrow\left|x-x_{0}\right|<r^{-1 \Rightarrow\left|x^{\prime}-x_{0}\right|<2 r^{-1} .}
$$

A fortiori

$$
\left|x-x_{0}\right|<2 r^{-1} \text { and }\left|x^{\prime}-x_{0}\right|>2 r^{-1}
$$

so that (3.21) shows that there exist integers k^{\prime} and $k^{\prime \prime}$ with $1 \leq k^{\prime}, k^{\prime \prime} \leq p$! such that

$$
\left|\mathbf{y}_{j}\left(\mathbf{x}_{0}\right)-\mathbf{y}_{\left(j k^{\prime}\right)}(\mathbf{x})\right|<\frac{1}{2} \varepsilon,\left|\mathbf{y}_{j}\left(\mathbf{x}_{0}\right)-\mathbf{y}_{\left(j k^{\prime \prime}\right)}\left(\mathbf{x}^{\prime}\right)\right|<\frac{1}{2} \varepsilon, j=1,2, \ldots, p
$$

Whereupon

$$
\left|\mathbf{y}_{\left(j k^{\prime}\right)}(\mathbf{x})-\mathbf{y}_{\left(j k^{\prime \prime}\right)}\left(\mathbf{x}^{\prime}\right)\right|<\varepsilon, \quad j=1,2, \ldots, p
$$

Now apply the inverse permutation $\pi_{k^{\prime}}^{-1}$ to these last inequalities, and there results

$$
\begin{equation*}
\left|\mathbf{y}_{j}(\mathbf{x})-\mathbf{y}_{(j k)}\left(\mathbf{x}^{\prime}\right)\right|<\varepsilon ; j=1,2, \ldots, p ; \text { some } k \tag{3.23}
\end{equation*}
$$

Since $(3.22) \Rightarrow(3.23)$, we have from (3.3)

$$
\left(\mathfrak{x}_{0}-\mathfrak{x}^{\infty}\right) \cdot \mathfrak{h}_{t} \in \mathcal{C}_{r} ;
$$

and therefore by (3.5)

$$
\begin{equation*}
\mathfrak{x}^{r}+\left(\mathfrak{x}_{0}-\mathfrak{x}^{\infty}\right) \cdot \mathfrak{h}_{t} \in \mathcal{C}_{r} \tag{3.24}
\end{equation*}
$$

Now $\mathfrak{x}^{r} \subseteq \mathfrak{x}^{\infty}$; so \mathfrak{x}^{r} and $\left(\mathfrak{x}_{0}-\mathfrak{x}^{\infty}\right) \cdot \mathfrak{h}_{t}$ are mutually disjoint. Therefore, by (3.24), (3.7), (3.20), and (3.11)

$$
M_{r} \geq F\left[\mathfrak{x}^{r}+\left(\mathfrak{x}_{0}-\mathfrak{x}^{\infty}\right) \cdot \mathfrak{h}_{t}\right]=F\left[\mathfrak{x}^{r}\right]+F\left[\left(\mathfrak{x}_{0}-\mathfrak{x}^{\infty}\right) \cdot \mathfrak{h}_{t}\right]>F\left[\mathfrak{x}^{r}\right]=M_{r}
$$

which is the required contradiction. So we must abandon the supposition (3.14); and there only remains the possibility

Consequently

$$
\begin{gathered}
F\left[\mathfrak{x}_{0}-\mathfrak{x}^{\infty}\right]=0 \\
F\left[\mathfrak{x}_{0}\right] \leq F\left[\mathfrak{x}^{\infty}\right]=M=\lim _{m \rightarrow \infty} F\left[\mathfrak{x}^{m}\right] .
\end{gathered}
$$

This last equation shows that we can find an integer s such that

$$
\begin{equation*}
(1-\theta) F\left[\mathfrak{x}_{0}\right] \leq F\left[\mathfrak{x}^{8}\right] . \tag{3.25}
\end{equation*}
$$

We now choose $\eta=\eta(\varepsilon, \theta)$ to satisfy $0<\eta<s^{-1}$, and put $\hat{\mathfrak{x}}=\mathfrak{x}^{8}$. We have

$$
\begin{equation*}
F[\hat{x}] \geq(1-\theta) F\left[x_{0}\right] \tag{3.26}
\end{equation*}
$$

and, as a stronger case of (3.3)

$$
\begin{equation*}
\mathbf{x} \in \hat{\mathfrak{y}} \&\left|\mathbf{x}-\mathbf{x}^{\prime}\right|<\eta \Rightarrow\left|\mathbf{y}_{j}(\mathbf{x})-\mathbf{y}_{(j k)}\left(\mathbf{x}^{\prime}\right)\right|<\varepsilon ; j=1,2, \ldots, p ; \text { some } k \tag{3.27}
\end{equation*}
$$

Let $\mathcal{Z}=\mathfrak{X} \times \mathfrak{X}^{\prime}$ denote the space of points $\mathbf{z}=\left(\mathbf{x}, \mathbf{x}^{\prime}\right) ;$ and let $\mathbf{R}_{\lambda}, \lambda=1,2, \ldots$, be an enumeration of the rational points of \mathfrak{V}. For each value of $k=1,2, \ldots, p!$, let z_{k} denote the (possibly empty) set of points $\mathbf{z}=\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ which satisfy all the inequalities

$$
\begin{equation*}
\left|\mathbf{y}_{j}(\mathbf{x})-\mathbf{y}_{(j k)}\left(\mathbf{x}^{\prime}\right)\right|<\varepsilon, \quad j=1,2, \ldots, p \tag{3.28}
\end{equation*}
$$

and let z denote the set of points for which (3.28) holds for some k (perhaps depending on x and x^{\prime}). Then

$$
z=\sum_{k=1}^{p!} z k .
$$

The set of points \mathbf{x}, satisfying $\left|\mathbf{y}_{j}(\mathbf{x})-\mathbf{R}_{\lambda}\right|<\frac{1}{2} \varepsilon$ for fixed j and fixed λ, is a Borel set $\mathfrak{x}_{j \lambda}$ since $\mathbf{y}_{j}(\mathbf{x})$ is a Borel-measurable function of \mathbf{x}. Similarly the set of points \mathbf{x}^{\prime}, satisfying $\left|\mathbf{y}_{(j k)}\left(\mathbf{x}^{\prime}\right)-\mathbf{R}_{\lambda}\right|<\frac{1}{2} \varepsilon$ for fixed j and fixed k and fixed λ, is a Borel set $\mathfrak{x}^{\prime}(j k) \lambda$. Consequently

$$
z_{k}=\prod_{j=1}^{p}\left\{\sum_{\lambda=1}^{\infty}\left(\mathfrak{x}_{j \lambda} \times \mathfrak{x}_{(j k) \lambda}^{\prime}\right)\right\}
$$

is a Borel set. We define

$$
z^{x}=z_{x}-\sum_{k=1}^{x-1} z_{1}, \quad x=2,3, \ldots, p!, \quad z^{1}=3-\sum_{x=2}^{p l} z^{x}
$$

Then $z^{x}, x=1,2, \ldots, p$!, are mutually disjoint Borel sets covering 3; so that their characteristic functions

$$
\chi_{x}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\{\begin{array}{l}
1 \text { if } \mathbf{z}=\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in \mathcal{z}^{x} \\
0 \text { if } \mathbf{z}=\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \notin z^{x}
\end{array}\right.
$$

are Borel-measurable functions of \mathbf{x} and \mathbf{x}^{\prime}. The theorem is now proved by taking

$$
\begin{equation*}
y_{j}^{\prime}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sum_{x=1}^{p!} \chi_{x}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \mathbf{y}_{(j x)}\left(\mathbf{x}^{\prime}\right), j=1,2, \ldots, p \tag{3.29}
\end{equation*}
$$

The case of Theorem 2 which will interest us in this paper arises when $\mathbf{y}(\mathbf{x})$ is almost-certainly-continuous, and we have $F[\hat{\mathfrak{x}}] \geq 1-\theta$. The counter-example

$$
y(x)=x^{-1}, \quad F(x)=\left\{\begin{array}{l}
0 \text { if } x<0 \\
x \text { if } 0 \leq x \leq 1 \\
1 \text { if } x>1
\end{array}\right.
$$

shows that Theorem 2 would be false were $\theta=0$ permitted.

§ 4. Many-valued random variables.

An unordered set of p probability set functions determines a p-valued random variable, \mathbf{x}^{*}. Suppose that, for any given Borel set \mathfrak{x}, these p probability set functions are arranged in an arbitrary order and then denoted by $F_{j}[x], j=1,2, \ldots, p$. This indexing may depend in general upon the set \mathfrak{x} chosen; but the symmetric sum

$$
F[x]=p^{-1} \sum_{j=1}^{p} F_{j}[x]
$$

is evidently independent of the indexing. It is moreover easy to verify that $F[x]$ is a probability set function, which we call the condensed probability set function of \mathbf{x}^{*}. The corresponding condensed cumulative distribution function is

$$
F(\mathrm{x})=p^{-1} \sum_{j=1}^{p} F_{j}(\mathrm{x})
$$

where $F_{j}(\mathbf{x})$ are specified by an indexing of the p cumulative distribution functions
of \mathbf{x}^{*}. Further, $\boldsymbol{F}[\mathfrak{x}]$ and $\boldsymbol{F}(\mathbf{x})$ determine the same one-valued random variable, which we call the condensation of \mathbf{x}^{*} and denote by ${ }^{c} \mathbf{x}^{*}$.

If \mathbf{x}^{*} is a one-valued random variable, and $\mathbf{y}(\mathbf{x})$ is a p-valued Borel-measurable function with an indexing (3.1) of one-valued Borel-measurable functions, then

$$
\mathbf{y}_{j}^{*}=\mathbf{y}_{j}\left(\mathbf{x}^{*}\right), j=1,2, \ldots, p
$$

will be p one-valued random variables determined by $H_{j}[\mathfrak{y}]$ say. Whereupon

$$
H[\mathfrak{y}]=p^{-1} \sum_{j=1}^{p} H_{j}[\mathfrak{y}]
$$

will be the condensed probability set function of the many-valued random variable $\mathbf{y}\left(\mathbf{x}^{*}\right)$, and will determine a condensation denoted by ${ }^{c} \mathbf{y}\left(\mathbf{x}^{*}\right)$.

Theorem 3. If \mathbf{x}^{*} and $\mathbf{x}_{\nu}^{*}, y=1,2, \ldots$, are one-valued random variables satisfying

$$
\begin{equation*}
\operatorname{dim}_{v \rightarrow \infty} \mathbf{x}_{p}^{*}=\mathbf{x}^{*} \tag{4.1}
\end{equation*}
$$

and if $\mathbf{y}(\mathbf{x})$ is a many-valued Borel-measurable function which is almost-certainly-continuous with respect to \mathbf{x}^{*}, then

$$
\begin{equation*}
\operatorname{dim}_{v \rightarrow \infty} c \mathbf{y}\left(\mathbf{x}_{v}^{*}\right)=^{c} \mathbf{y}\left(\mathbf{x}^{*}\right) \tag{4.2}
\end{equation*}
$$

It will be noticed that $\mathbf{y}(\mathbf{x})$ need not be almost-certainly-continuous with respect to x_{v}^{*} for any value of ν at all.

Suppose that $F[x]$ and $F_{v}[x]$ are the probability set functions determining \mathbf{x}^{*} and x_{v}^{*} respectively. Let $\varepsilon>0$ and $\theta>0$ be any pair of prescribed positive numbers. Since $\mathbf{y}(\mathbf{x})$ is almost-certainly-continuous with respect to \mathbf{x}^{*} we can find a Borel set $\hat{\mathfrak{x}}$, satisfying

$$
\begin{equation*}
F[\hat{\hat{x}}] \geq 1-\frac{1}{2} \theta, \tag{4.3}
\end{equation*}
$$

and a number $\eta=\eta(\varepsilon, \theta)$ such that

$$
\begin{equation*}
\mathbf{x} \in \hat{\mathfrak{x}} \&\left|\mathbf{x}-\mathbf{x}^{\prime}\right|<\eta \Rightarrow\left|\mathbf{y}_{j}(\mathbf{x})-\mathbf{y}_{j}^{\prime}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right|<\varepsilon, \quad j=1,2, \ldots, p \tag{4.4}
\end{equation*}
$$

where $\mathbf{y}_{j}^{\prime}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is defined by (3.29).
Let $\mathcal{Z}=\mathfrak{X} \times \mathfrak{X}^{\prime}$ be the space of points $\mathbf{z}=\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$. By (4.1), we can take the probability set function $G[z]$ defined in Theorem 1 to be a joint determination of \mathbf{x}^{*} and \mathbf{x}_{v}^{*}. We put the quantity δ of Theorem 1 equal to $\eta(\varepsilon, \theta)$, and the quantity ε of Theorem 1 equal to the quantity $\frac{1}{2} \theta$ of the present theorem. Then, with z_{0} denoting the set of points $\mathbf{z}=\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ satisfying $\left|\mathbf{x}-\mathbf{x}^{\prime}\right|<\eta$, we have from Theorem 1

$$
\begin{equation*}
G[\mathfrak{x} \times \mathfrak{X}]=F[\mathfrak{x}] ; \quad G\left[\mathfrak{X} \times \mathfrak{x}^{\prime}\right]=F_{v}\left[\mathfrak{x}^{\prime}\right] ; \quad G\left[z_{0}\right]>1-\frac{1}{2} \theta, \nu \geq \nu_{0}^{\prime}(\varepsilon, \theta) \tag{4.5}
\end{equation*}
$$

where $\nu_{0}^{\prime}(\varepsilon, \theta)=\nu_{0}\left\{\eta(\varepsilon, \theta), \frac{1}{2} \theta\right\}$. Then, with $\hat{\mathfrak{z}}=\hat{\mathfrak{x}} \times \mathfrak{X}^{\prime}$ we have

$$
\begin{equation*}
G[\hat{z}]=F[\hat{x}] \geq 1-\frac{1}{2} \theta . \tag{4.6}
\end{equation*}
$$

Then (4.5) and (4.6) show that

$$
\begin{align*}
& G\left[z_{0} \cdot \hat{z}\right]=1-G\left[3-\left(z_{0} \cdot \hat{z}\right)\right]=1-G\left[\left(3-z_{0}\right)+(3-\hat{z})\right] \\
& \geq 1-G\left[3-z_{0}\right]-G[3-\hat{z}]=-1+G\left[z_{0}\right]+G[\hat{z}]>1-\theta, \tag{4.7}
\end{align*}
$$

while (4.4) becomes

$$
\begin{equation*}
\mathbf{z}=\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in \mathcal{z}_{0} \cdot \hat{z} \Rightarrow\left|\mathbf{y}_{j}(\mathbf{x})-\mathbf{y}_{j}^{\prime}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right|<\varepsilon, \quad j=1,2, \ldots, p \tag{4.8}
\end{equation*}
$$

Now, since ε and θ are arbitrary, (4.7) and (4.8) imply

$$
\operatorname{plim}_{v \rightarrow \infty}\left\{\mathbf{y}_{j}\left(\mathbf{x}^{*}\right)-\mathbf{y}_{j}^{\prime}\left(\mathbf{x}^{*}, \mathbf{x}_{p}^{*}\right)\right\}=\mathbf{0}, j=1,2, \ldots, p
$$

and, since $(2.7) \Rightarrow(2.3)$, we have

$$
\operatorname{dim}_{r \rightarrow \infty} \mathbf{y}_{j}^{\prime}\left(\mathbf{x}^{*}, \mathbf{x}_{p}^{*}\right)=\mathbf{y}_{j}\left(\mathbf{x}^{*}\right), \quad j=1,2, \ldots, p
$$

Summing the corresponding cumulative distribution functions over all values of j, and remembering that a distribution function has at most an enumerable number of discontinuities, we deduce without difficulty

$$
\begin{equation*}
\operatorname{dim}_{v \rightarrow \infty}{ }^{c} \mathbf{y}^{\prime}\left(\mathbf{x}^{*}, \mathbf{x}_{v}^{*}\right)={ }^{c} \mathbf{y}\left(\mathbf{x}^{*}\right) . \tag{4.9}
\end{equation*}
$$

We complete the proof by showing that $\mathbf{y}^{\prime}\left(\mathbf{x}^{*}, \mathbf{x}_{v}^{*}\right)$ has the same condensed probability set function as $\mathbf{y}\left(x_{v}^{*}\right)$. Let \mathfrak{y} denote a typical Borel set of the space \mathfrak{V} of points \mathbf{y}. Let $\mathfrak{z}_{j}^{\prime}(\mathfrak{y})$ denote the set of all points $\mathbf{z}=\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ such that $\mathbf{y}_{j}^{\prime}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in \mathfrak{y}$; and let $z_{j}(\mathfrak{y})$ denote the set of all \mathbf{z} such that $\mathbf{y}_{j}\left(\mathbf{x}^{\prime}\right) \in \mathfrak{y}$. Since $\mathbf{y}_{j}\left(\mathbf{x}^{\prime}\right)$ and $\mathbf{y}_{j}^{\prime}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ are Borel-measurable functions $z_{j}(\mathfrak{y})$ and $z_{j}^{\prime}(\mathfrak{y})$ are Borel sets. The condensed probability set function of $\mathbf{y}^{\prime}\left(\mathbf{x}^{*}, x_{v}^{*}\right)$ is

$$
\begin{equation*}
p^{-1} \sum_{j=1}^{p} G\left[z_{j}^{\prime}(\mathfrak{y})\right]=p^{-1} \sum_{j=1}^{p} \sum_{x=1}^{p!} G\left[z^{x} \cdot z_{j}^{\prime}(\mathfrak{y})\right] \tag{4.10}
\end{equation*}
$$

where $z^{x}, x=1,2, \ldots, p$!, are the disjoint Borel sets covering 3 defined in Theorem 2. If $\mathbf{z} \in \mathfrak{z}^{x} \cdot \mathfrak{z}_{j}^{\prime}(\mathfrak{y})$, (3.29) shows $\mathbf{y}_{j}^{\prime}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{y}_{(j x)}\left(\mathbf{x}^{\prime}\right)$; and so

$$
z^{x} \cdot z_{j}^{\prime}(\mathfrak{y})=z^{x} \cdot z(j x)(\mathfrak{y})
$$

Substituting into (4.10), we get

$$
\begin{aligned}
p^{-1} \sum_{j=1}^{p} G\left[z_{j}^{\prime}(\mathfrak{y})\right] & =p^{-1} \sum_{x=1}^{p!} \sum_{j=1}^{p} G\left[z^{x} \cdot z_{(j x)}(\mathfrak{y})\right]=p^{-1} \sum_{x=1}^{p l} \sum_{j=1}^{p} G\left[z^{x} \cdot z_{j}(\mathfrak{y})\right] \\
& =p^{-1} \sum_{j=1}^{p} \sum_{x=1}^{p!} G\left[z^{x} \cdot z_{j}(\mathfrak{y})\right]=p^{-1} \sum_{j=1}^{p} G\left[z_{j}(\mathfrak{y})\right],
\end{aligned}
$$

which is the condensed probability set function of $\mathbf{y}\left(\mathbf{x}_{v}^{*}\right)$.

§ 5. References.

[1] Frechét, M. Recherches Théoriques Modernes. Traité du Calcul des Probabilités et de ses Applications. Tome 1, Fasc. III, 1er livre. (Paris: Gauthier-Villars, 1937).
[2] Halmos, P. R. Measure Theory. (New York: Van Nostrand, 1950.)
[3] Hammersley, J. M. "A theorem on multiple integrals." Proc. Camb. Phil. Soc. 47 (1951), 274-8.
[4] Slutzky, E. "Über stochastische Asymptoten und Grenzwerte." Metron. 5, No. 3 (1925), 3-89.

Lectureship in the Design and Analysis of Scientific Experiment, University of Oxford.

[^0]: ${ }^{1}$ Professor Kac has remarked to me in conversation that the special case $p=1$ can be deduced from Lusin's theorem.

