AN EXTENSION OF THE SLUTZKY-FRÉCHET THEOREM.

By

J. M. HAMMERSLEY.

Lectureship in the Design and Analysis of Scientific Experiment, University of Oxford.

§ 0. Notation and conventions.

In this paper German capital letters denote Euclidean vector spaces of finite dimensionality. Small German letters denote point sets in these spaces; and $\underline{x} - \underline{x}'$ denotes the (perhaps empty) set of all points which belong to \underline{x} and not to \underline{x}' . Script letters denote classes of point sets. Clarendon type denotes points (or vectors) of a Euclidean space. Ordinary italic type is reserved for scalar quantities. The symbol \Rightarrow denotes implication, the arrow pointing from the premiss to the conclusion; and the double-headed arrow \Leftrightarrow means 'implies and is implied by'. Two statements I and II, which together imply a third III, are linked by an ampersand: — 'I & II \Rightarrow III'.

§ 1. Introduction.

Let y(x) be a continuous one-valued function of x, and consider the equations

$$\lim_{v\to\infty} x_v = x, \tag{1.1}$$

$$\lim_{x \to \infty} (x_r - x) = 0, \qquad (1.2)$$

$$\lim \{y(x_{\nu}) - y(x)\} = 0, \qquad (1.3)$$

$$\lim y(x_{\nu}) = y(x). \tag{1.4}$$

When x and x_r are real variables, it is familiar that

$$(1.1) \Leftrightarrow (1.2) \Rightarrow (1.3) \Leftrightarrow (1.4). \tag{1.5}$$

For random variables, the position is different. Slutzky (4) proved

$$(1.2) \Rightarrow (1.3)$$
 (1.6)

when x_r is a random variable and x a real variable; while Fréchet (1) proved (1.6)

in case x_r and x were both random variables. It is an immediate consequence of the definition of 'lim' for random variables that

$$(1.1) \neq (1.2) \text{ and } (1.3) \Rightarrow (1.4)$$
 (1.7)

but the converse statements

$$(1.1) \Rightarrow (1.2) \text{ and } (1.3) \Leftarrow (1.4)$$
 (1.8)

are generally false. It is, however, easy to find special cases in which (1.8) is true for certain specific random variables; and then the question naturally arises whether, given any random variables satisfying (1.1), we can always find at least one special case such that (1.2) is also true. In Theorem 1 I shall give an affirmative answer to this question: so that, combining Theorem 1 with the Slutzky-Fréchet theorem (1.6) and with the second part of (1.7), we shall have established

$$(1.1) \Rightarrow (1.4)$$
 (1.9)

for random variables. However (1.9) is insufficient for certain practical applications; and I shall prove a generalisation of it in Theorem 3: namely, that (1.6) and (1.9) remain true for almost-certainly-continuous many-valued vector functions of a vector variable.

A number of authors have discussed, in a few special cases, the distribution of the zeros of a random polynomial. I hope to show elsewhere how the extended form of (1.9) provides a general solution to this problem.

§ 2. One-valued random variables and their limits.

Let \mathfrak{X} denote an *n*-dimensional Euclidean space. A probability set function $F[\mathfrak{X}]$ is any one-valued real non-negative completely-additive set function defined for all Borel sets \mathfrak{X} of \mathfrak{X} and satisfying $F[\mathfrak{X}] = 1$. If \mathfrak{X} is the particular set of all points, whose coordinates do not exceed the corresponding coordinates of a given point \mathfrak{X} of \mathfrak{X} , we write $F[\mathfrak{X}] = F(\mathfrak{X})$ and call $F(\mathfrak{X})$ a cumulative distribution function. Obviously $F[\mathfrak{X}]$ uniquely determines $F(\mathfrak{X})$, and the converse is a consequence of Lebesgue's theory of integration. A cumulative distribution function is monotone increasing and everywhere continuous on the right. For the purposes of axiomatic theory it is permissible to identify a *one-valued random variable* \mathfrak{x}^* with a probability set function. Asterisks will hereinafter denote random variables. If the functional form of F, either as a probability set function or as a cumulative distribution function, is supposed given we say that F determines the random variable \mathfrak{x}^* identified with it.

 $\mathbf{244}$

This corresponds to saying that a real variable \mathbf{x} is determined when the numerical values of its coordinates are supposed given. A random constant \mathbf{a}^* is the random variable identified with that probability set function $F[\mathbf{x}]$ which equals 1 or 0 according as the fixed point \mathbf{a} belongs to \mathbf{x} or not.

Let \mathfrak{X}_i , $i = 1, 2, \ldots, m$, be an n_i -dimensional Euclidean space in which \mathfrak{x}_i is a typical Borel set. Let \mathbf{x}_i^* be a one-valued random variable in \mathfrak{X}_i determined by $F_i[\mathfrak{x}_i]$. In the direct product space $\mathfrak{X}_1 \times \mathfrak{X}_2 \times \cdots \times \mathfrak{X}_m$ any probability set function G is called a *joint determination* of $\mathbf{x}_1^*, \mathbf{x}_2^*, \ldots, \mathbf{x}_m^*$ if it satisfies

$$G[\mathfrak{X}_1 \times \mathfrak{X}_2 \times \cdots \times \mathfrak{X}_{i-1} \times \mathfrak{x}_i \times \mathfrak{X}_{i+1} \times \cdots \times \mathfrak{X}_m] = F_i[\mathfrak{x}_i]$$
(2.1)

for all values of *i* and all Borel sets \mathfrak{x}_i of \mathfrak{X}_i . The random variable identified with *G* is written $\mathbf{x}_1^* \times \mathbf{x}_2^* \times \cdots \times \mathbf{x}_m^*$. We say that the \mathbf{x}_i^* are *independently distributed* if a stronger form of (2.1) holds, namely

$$G[\mathfrak{x}_1 \times \mathfrak{x}_2 \times \cdots \times \mathfrak{x}_m] = F_1[\mathfrak{x}_1] F_2[\mathfrak{x}_2] \ldots F_m[\mathfrak{x}_m]$$

$$(2.2)$$

for all Borel sets $\mathfrak{x}_i \subseteq \mathfrak{X}_i$.

Let G in (2.1) be a joint determination of $\mathbf{x}_1^*, \mathbf{x}_2^*, \ldots, \mathbf{x}_m^*$. Let $\mathbf{y} = \mathbf{y}(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_m)$ be a one-valued Borel-measurable mapping of $\mathfrak{X}_1 \times \mathfrak{X}_2 \times \cdots \times \mathfrak{X}_m$ into a Euclidean space \mathfrak{Y} . Let \mathfrak{y} be a Borel set of \mathfrak{Y} , and let $\mathfrak{x}(\mathfrak{y})$ be the set of all points $(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_m)$ in $\mathfrak{X}_1 \times \mathfrak{X}_2 \times \cdots \times \mathfrak{X}_m$ for which $\mathbf{y}(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_m) \in \mathfrak{y}$. Since $\mathbf{y}(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_m)$ is a Borel-measurable function, $\mathfrak{x}(\mathfrak{y})$ is a Borel set. The function of several jointly determined random variables

$$\mathbf{y}^* = \mathbf{y} \left(\mathbf{x}_1^*, \, \mathbf{x}_2^*, \, \ldots, \, \mathbf{x}_m^* \right) = \mathbf{y} \left(\mathbf{x}_1^* \times \mathbf{x}_2^* \times \cdots \times \mathbf{x}_m^* \right)$$

is defined to be the random variable identified with

$$H[\mathfrak{y}] = G[\mathfrak{x}(\mathfrak{y})],$$

it being easy to verify that H[y] so defined is a probability set function. Indeed this is a particular case of some more general theory discussed by Hammersley (3).

In a Euclidean space \mathfrak{X} , let \mathbf{x}^* be a random variable determined by the cumulative distribution function $F(\mathbf{x})$ and let \mathbf{x}^*_r , $\nu = 1, 2, \ldots$, be a sequence of random variables respectively determined by $F_{\nu}(\mathbf{x})$. If, as $\nu \to \infty$, $F_{\nu}(\mathbf{x})$ tends to $F(\mathbf{x})$ at every point of continuity of $F(\mathbf{x})$, we say that \mathbf{x}^*_{ν} converges in distribution to \mathbf{x}^* , and we write

$$\dim_{\nu\to\infty} \mathbf{x}_{\nu}^* = \mathbf{x}^*. \tag{2.3}$$

Let **a** be a constant vector, and let $g(\mathbf{a})$ denote the set of points **x** satisfying

 $|\mathbf{x} - \mathbf{a}| < \delta$, where $\delta > 0$ is any prescribed positive number. If to every prescribed pair of positive numbers $\delta > 0$ and $\varepsilon > 0$ we can find a positive integer $v_0 = v_0(\delta, \varepsilon)$ such that the probability set functions $F_r[\mathbf{x}]$ of \mathbf{x}_r^* satisfy

$$F_{\nu}[\mathfrak{x}(\mathbf{a})] > 1 - \varepsilon, \qquad \nu \geq \nu_0(\delta, \varepsilon)$$

we say that x, converges in probability to a, and we write

$$\lim_{r\to\infty} \mathbf{x}_r^* = \mathbf{a}. \tag{2.4}$$

It is not difficult to see that

$$\lim_{r \to \infty} \mathbf{x}_{r}^{*} = \mathbf{a} \Leftrightarrow \dim \mathbf{x}_{r}^{*} = \mathbf{a}^{*}.$$
(2.5)

If, for each value of ν , \mathbf{x}_{r}^{*} and \mathbf{x}^{*} are jointly determined by some given G_{ν} , and if the function $\mathbf{x}_{r}^{*} - \mathbf{x}^{*}$ of such a pair of jointly determined random variables converges in probability to the zero vector as $\nu \to \infty$, we say that \mathbf{x}_{r}^{*} converges in probability to \mathbf{x}^{*} , and write

$$\lim_{r \to \infty} \mathbf{x}_{r}^{\bullet} = \mathbf{x}^{\bullet}. \tag{2.6}$$

Thus

$$\lim_{v \to \infty} (\mathbf{x}_{v}^{*} - \mathbf{x}^{*}) = \mathbf{0} \Leftrightarrow \lim_{v \to \infty} \mathbf{x}_{v}^{*} = \mathbf{x}^{*} \Leftrightarrow \dim_{v \to \infty} (\mathbf{x}_{v}^{*} - \mathbf{x}^{*}) = \mathbf{0}^{*}$$
(2.7)

when \mathbf{x}_r^* and \mathbf{x}^* are jointly determined; and it is quite simple to show that $(2.7) \Rightarrow (2.3)$. This is a fuller explanation of the first part of (1.7). On the other hand, the truth of '(2.3) \Rightarrow (2.7)' depends upon the form of the joint determination of \mathbf{x}^* and \mathbf{x}_r^* . We shall now prove in Theorem 1 that, amongst the class of all joint determinations of any given pair of individually determined random variables \mathbf{x}^* and \mathbf{x}_r^* , there is always at least one joint determination such that (2.3) \Rightarrow (2.7).

Theorem 1. If \mathbf{x}^* is a given one-valued random variable, and if \mathbf{x}^* , $\nu = 1, 2, ...,$ is a sequence of given one-valued random variables satisfying

$$\dim_{\mathbf{x}\to\infty} \mathbf{x}^*_{\mathbf{x}} = \mathbf{x}^*, \tag{2.8}$$

then, for each value of v, there exists a joint determination of x^* and x^* , such that

$$\dim_{r\to\infty} (\mathbf{x}_r^* - \mathbf{x}^*) = \mathbf{0}^*.$$
(2.9)

Take \mathfrak{X} to be the Euclidean space in which \mathbf{x}^* is defined; and write $\mathbf{x} = \{x_1, x_2, \ldots, x_n\}$ for a typical point of \mathfrak{X} , and \mathfrak{x} for a typical Borel set of \mathfrak{X} . Suppose that $F[\mathfrak{X}]$ and $F_r[\mathfrak{X}]$ are the given probability set functions which determine

 $\mathbf{246}$

 \mathbf{x}^* and \mathbf{x}^*_{ν} respectively, and that $F(\mathbf{x})$ and $F_{\nu}(\mathbf{x})$ are the corresponding cumulative distribution functions. Let $\delta > 0$ and $\varepsilon > 0$ be any pair of prescribed positive numbers.

We can find a finite number $U = U(\varepsilon) > 0$ such that

- (i) $F(\mathbf{x})$ is continuous on each of the hyperplanes \mathfrak{h}_{ij} , (i = 1, 2, ..., n; j = 1, 2), where \mathfrak{h}_{i1} is the hyperplane $x_i = +U$ and \mathfrak{h}_{i2} is the hyperplane $x_i = -U$; and
- (ii) $F[\mathfrak{x}_0] < \frac{1}{2}\varepsilon$, where \mathfrak{x}_0 is the set of all points which violate at least one of the *n* inequalities $-U < x_i \le +U$, i = 1, 2, ..., n.

We can now find a finite sequence of numbers u_k , k = 1, 2, ..., m, where $m = m(\delta, \varepsilon)$, such that

- (iii) $-U = u_1 < u_2 < \cdots < u_m = +U$; and
- (iv) $u_{k+1} u_k < \delta/V n, k = 1, 2, ..., m-1$; and
- (v) $F(\mathbf{x})$ is continuous on the hyperplanes $\mathfrak{h}^{i\,k}$, (i = 1, 2, ..., n; k = 1, 2, ..., m), where $\mathfrak{h}^{i\,k}$ is the hyperplane $x_i = u_k$.

Write $M = M(\delta, \varepsilon) = (m-1)^n$; and let \mathfrak{x}_p , $p = 1, 2, \ldots, M$, denote the half-open finite intervals in \mathfrak{X}

$$u_{k(i)} < x_i \le u_{k(i)+1}, i = 1, 2, ..., n$$
 (2.10)

enumerated in some specific order, where k(i) denotes an integer (depending upon *i*) selected from the integers $1, 2, \ldots, m-1$. Consider the non-negative numbers

$$a_p = F[\mathfrak{x}_p], \ b_p = F_*[\mathfrak{x}_p], \ p = 0, 1, 2, \dots, M,$$
 (2.11)

where b_p is a function of ν . Since $\mathfrak{x}_0, \mathfrak{x}_1, \ldots, \mathfrak{x}_M$ are mutually disjoint and cover \mathfrak{X} completely

$$\sum_{p} a_{p} = \sum_{p} b_{p} = 1.$$
 (2.12)

Let δ_{pq} denote the Kronecker delta $(\delta_{pq} = 1 \text{ or } 0 \text{ according as } p = q \text{ or } p \neq q)$; and let $\Lambda(\theta) = \theta$ if $\theta \neq 0$ while $\Lambda(0) = 1$. Define for p, q = 0, 1, 2, ..., M

$$c_{pq} = \frac{(a_p + b_p - |a_p - b_p|) \delta_{pq}}{2} + \frac{(|a_p - b_p| + a_p - b_p) (|a_q - b_q| - a_q + b_q)}{2 \Lambda (\sum_p |a_p - b_p|)}.$$
 (2.13)

In view of (2.12) and $a_p \ge 0$, $b_p \ge 0$, we find without difficulty

$$c_{pq} \ge 0, \ \sum_{p} c_{pq} = b_q, \ \sum_{q} c_{pq} = a_p, \ \sum_{p} c_{pp} = 1 - \frac{1}{2} \sum_{p} |a_p - b_p|.$$
 (2.14)

Let 3 denote the 2*n*-dimensional space $\mathfrak{X} \times \mathfrak{X}$, and let \mathfrak{z}' denote any Borel set of 3 which can be expressed in the form

$$\mathfrak{z}' = \mathfrak{x}' \times \mathfrak{x}'', \ \mathfrak{x}' \subseteq \mathfrak{x}_p \text{ and } \mathfrak{x}'' \subseteq \mathfrak{x}_q \text{ for some } p, q,$$
 (2.15)

 \mathfrak{x}' and \mathfrak{x}'' being Borel sets. Define G', depending upon ν , by

$$G'[z'] = F[z'] F_{\nu}[z''] c_{pq} / \Lambda (a_p b_q), \qquad (2.16)$$

where the values of p and q are those appearing in (2.15). It is easy to see that $G'[\mathfrak{z}]$ is a non-negative completely-additive set function for all sets \mathfrak{z}' satisfying (2.15) for any fixed pair p, q. Now the intervals $\mathfrak{x}_p \times \mathfrak{x}_q$ are mutually disjoint and cover \mathfrak{Z} completely; and any Borel set of \mathfrak{Z} can be built up from an enumerable number of sets of the form $\mathfrak{x}' \times \mathfrak{x}''$. Therefore we may uniquely define $G[\mathfrak{z}]$ as that non-negative completely-additive set function of Borel sets $\mathfrak{z} \subseteq \mathfrak{Z}$ such that $G[\mathfrak{z}'] = G'[\mathfrak{z}']$ for all sets of the type \mathfrak{z}' . Let \mathfrak{x} be any Borel set of \mathfrak{X} . There is a unique decomposition

namely $\mathfrak{x}^p = \mathfrak{x} \cdot \mathfrak{x}_p$. Now $a_p = 0 \Rightarrow F[\mathfrak{x}^p] = 0; \quad b_q = 0 \Rightarrow c_{pq} = 0;$

and so (2.14) establishes

$$G[\mathfrak{x} \times \mathfrak{X}] = \sum_{p \ q} F[\mathfrak{x}^p] F_r[\mathfrak{x}_q] c_{p \ q} / \Lambda (a_p \ b_q)$$

$$= \sum_p \frac{F[\mathfrak{x}^p]}{\Lambda (a_p)} \sum_q \frac{c_{p \ q} \ b_q}{\Lambda (b_q)} = \sum_p \frac{F[\mathfrak{x}^p] a_p}{\Lambda (a_p)} = \sum_p F[\mathfrak{x}^p] = F[\mathfrak{x}].$$
(2.17)

Similarly

$$G[\mathfrak{X} \times \mathfrak{x}] = F_{*}[\mathfrak{x}]. \tag{2.18}$$

Hence

$$G[\mathfrak{Z}] = G[\mathfrak{X} \times \mathfrak{X}] = F[\mathfrak{X}] = 1;$$

so that G is a probability set function. Whereupon (2.17) and (2.18) show that G jointly determines \mathbf{x}^* and \mathbf{x}^*_r .

Now write $\mathbf{z} = \{z_1, z_2, \ldots, z_{2n}\}$ for a typical point of \mathcal{Z} , and let z_0 be the set of all points \mathbf{z} which satisfy all the inequalities

$$|z_i-z_{n+i}| < \delta/\gamma n, \ i=1, 2, ..., n$$

From (iv) and (2.10)

$$\mathfrak{z}_0 \cong \sum_{p=1}^M \mathfrak{x}_p \times \mathfrak{x}_p;$$

and therefore by (2.14)

$$G[\mathfrak{z}_{0}] \geq G[\sum_{p=1}^{M} \mathfrak{x}_{p} \times \mathfrak{x}_{p}] = \sum_{p=1}^{M} G[\mathfrak{x}_{p} \times \mathfrak{x}_{p}] = \sum_{p=1}^{M} c_{p\,p} = 1 - c_{00} - \frac{1}{2} \sum_{p=0}^{M} |a_{p} - b_{p}|$$

$$\geq 1 - a_{0} - \frac{1}{2} \sum_{p=0}^{M} |a_{p} - b_{p}| > 1 - \frac{1}{2} \varepsilon - \frac{1}{2} \sum_{p=0}^{M} |a_{p} - b_{p}|, \qquad (2.19)$$

where in the final step we have employed condition (ii). Now each of the numbers a_p and b_p can be expressed as the sum or difference of 2^n quantities of the form $F(\mathbf{x})$ or $F_r(\mathbf{x})$ where \mathbf{x} is an intersection of fixed hyperplanes $\mathfrak{h}^{i\,k}$. Consequently (2.8) and condition (v) show that we can determine $v_0 = v_0(\delta, \epsilon)$ such that, for each p, $|a_p - b_p| < \epsilon/(M+1)$, $v \ge v_0$. On substitution into (2.19) we get

$$G[\mathfrak{z}_0] > 1 - \varepsilon, \quad \nu \geq \nu_0 (\delta, \varepsilon),$$

which establishes (2.9) and completes the proof.

§ 3. Almost-certainly-continuous many-valued vector functions.

Suppose that, to each point **x** of an *n*-dimensional Euclidean space \mathcal{X} , there corresponds a system $\mathbf{y}(\mathbf{x})$ of *p* points (not necessarily distinct) in a *q*-dimensional Euclidean space \mathcal{Y} . We call $\mathbf{y}(\mathbf{x})$ a *p*-valued *q*-dimensional vector function of **x**. If there are defined a system of *p* one-valued functions of **x**

$$\mathbf{y}_{1}(\mathbf{x}), \, \mathbf{y}_{2}(\mathbf{x}), \, \dots, \, \mathbf{y}_{p}(\mathbf{x}) \tag{3.1}$$

such that, having due regard to multiple points, the points (3.1) coincide with the points $\mathbf{y}(\mathbf{x})$ for each \mathbf{x} in \mathfrak{X} , then we call the functions (3.1) an *indexing* of $\mathbf{y}(\mathbf{x})$. If $\mathbf{y}(\mathbf{x})$ possesses at least one indexing (3.1) such that $\mathbf{y}_j(\mathbf{x})$ is a Borel-measurable function for each fixed j = 1, 2, ..., p, then $\mathbf{y}(\mathbf{x})$ is called a *many-valued Borel-measurable function*. In this paper we shall only be concerned with Borel-measurable $\mathbf{y}_j(\mathbf{x})$; and we shall therefore assume that (3.1) is an indexing for which $\mathbf{y}_j(\mathbf{x})$ is Borel-measurable for each fixed j.

We say that $\mathbf{y}(\mathbf{x})$ is continuous in a Borel set \mathfrak{x}_0 if, for every prescribed $\varepsilon > 0$ and all points $\mathbf{x} \in \mathfrak{x}_0$, there exists $\eta = \eta(\varepsilon, \mathbf{x}) > 0$ and at least one permutation 1', 2',..., p' (possibly depending on ε , \mathbf{x} , \mathbf{x}') of the integers 1, 2, ..., p such that

$$\mathbf{x} \in \mathbf{x}_0 \& |\mathbf{x} - \mathbf{x}'| < \eta \Rightarrow |\mathbf{y}_j(\mathbf{x}) - \mathbf{y}_{j'}(\mathbf{x}')| < \varepsilon, \ j = 1, 2, \dots, p.$$
(3.2)

If further $F[\mathfrak{x}_0] = 1$, where F determines a random variable \mathbf{x}^* , we say that $\mathbf{y}(\mathbf{x})$ is almost-certainly-continuous with respect to \mathbf{x}^* .

Theorem 2. If $\varepsilon > 0$ and $\theta > 0$ are prescribed, and if $F[\underline{x}]$ is a probability set function, and if $\mathbf{y}(\mathbf{x})$ is a p-valued Borel-measurable vector function, continuous in a Borel set \underline{x}_0 , then we can find a Borel set $\hat{\underline{x}}$, satisfying $F[\hat{\underline{x}}] \ge (1-\theta) F[\underline{x}_0]$, and a number $\eta = \eta(\varepsilon, \theta)$, independent of \mathbf{x} , such that

$$\mathbf{x} \in \hat{\mathbf{y}} \& |\mathbf{x} - \mathbf{x}'| < \eta \Rightarrow |\mathbf{y}_j(\mathbf{x}) - \mathbf{y}_j'(\mathbf{x}, \mathbf{x}')| < \varepsilon, \ j = 1, 2, \ldots, p$$

where $\mathbf{y}_{j}'(\mathbf{x}, \mathbf{x}')$ is a Borel-measurable function of \mathbf{x} and \mathbf{x}' for each fixed j = 1, 2, ..., p, and the set $\mathbf{y}_{1}'(\mathbf{x}, \mathbf{x}'), \mathbf{y}_{2}'(\mathbf{x}, \mathbf{x}'), ..., \mathbf{y}_{p}'(\mathbf{x}, \mathbf{x}')$ is a permutation (depending on \mathbf{x}) of the set $\mathbf{y}_{1}(\mathbf{x}'), \mathbf{y}_{2}(\mathbf{x}'), ..., \mathbf{y}_{p}(\mathbf{x}')$.

When p = 1 this theorem reduces to one on uniform continuity over the 'nontrivial' part of a probability set. Surprisingly enough, the standard textbooks on topological measure theory do not mention even this special case, which therefore seems new.¹

Let π_k , k = 1, 2, ..., p!, denote the permutations of p objects, and let (1 k), $(2 k), \ldots, (p k)$ denote the result of applying π_k to the integers $1, 2, \ldots, p$. Let m be a positive integer. Let C_m denote the class (containing at least the empty Borel set) of all Borel sets \underline{x} of $\underline{\mathcal{X}}$ with the property

$$\mathbf{x} \in \mathfrak{x} \& |\mathbf{x} - \mathbf{x}'| < m^{-1} \Rightarrow |\mathbf{y}_j(\mathbf{x}) - \mathbf{y}_{(j\,k)}(\mathbf{x}')| < \varepsilon; \ j = 1, 2, \dots, p; \text{ some } k;$$
(3.3)

where 'some k' means that there is at least one value of k (possibly depending on **x** and **x'**) such that (3.3) holds for all j with this fixed k. We notice first that $C_m, m = 1, 2, \ldots$, is a monotone increasing collection of σ -rings [Halmos (2)]: that is to say

$$\mathfrak{x} \in \mathcal{C}_m \& \mathfrak{x}' \in \mathcal{C}_m \Rightarrow \mathfrak{x} - \mathfrak{x}' \in \mathcal{C}_m; \tag{3.4}$$

$$x_s \in C_m, \ s = 1, 2, \ldots \Rightarrow \sum_{s=1}^{\infty} x_s \in C_m;$$
 (3.5)

$$m < m' \Rightarrow C_m \subseteq C_{m'} . \tag{3.6}$$

Since F is a probability set function there exists M_m , the least upper bound of F[x] for $x \in C_m$. We have

$$\mathfrak{x} \in C_m \stackrel{\scriptscriptstyle >}{} F[\mathfrak{x}] \leq M_m. \tag{3.7}$$

Moreover we can find $\underline{x}_{ma} \in C_m$, a = 1, 2, ..., such that $F[\underline{x}_{ma}] \ge M_m - a^{-1}$. Write $\underline{x}_m = \sum_{\alpha=1}^{\infty} \underline{x}_{m\alpha}$ and notice that $\sum_{\alpha=1}^{\beta} \underline{x}_{m\alpha}$, $\beta = 1, 2, ...$, is a monotone increasing sequence of Borel sets. Then

$$F[\mathfrak{x}_m] = F[\lim_{\beta \to \infty} \sum_{\alpha=1}^{\beta} \mathfrak{x}_{m\alpha}] = \lim_{\beta \to \infty} F[\sum_{\alpha=1}^{\beta} \mathfrak{x}_{m\alpha}] \ge \sup_{\beta} F[\mathfrak{x}_{m\beta}] \ge \sup_{\beta} (M_m - \beta^{-1}) = M_m.$$
(3.8)

But (3.5), (3.7), and (3.8) now show

$$\mathbf{x}_m \in \mathbf{C}_m, \ F[\mathbf{x}_m] = M_m. \tag{3.9}$$

When we have thus found z_m to satisfy (3.9) for each m = 1, 2, ... we define

$$\mathfrak{x}^m = \sum_{\mu=1}^m \mathfrak{x}_{\mu}, \ m = 1, 2, \dots, \infty.$$
(3.10)

¹ Professor Kac has remarked to me in conversation that the special case p = 1 can be deduced from Lusin's theorem.

Now (3.5), (3.6), and (3.7) show $F[x^m] \leq M_m$; and (3.9) and (3.10) show $F[x^m] \geq M_m$. So we have

$$\mathfrak{x}^m \in \mathcal{C}_m, \ F[\mathfrak{x}^m] = M_m. \tag{3.11}$$

The definition of M_m , the fact that F is a probability set function, and (3.6) demonstrate

$$M_m \le M_{m'} \le 1, \quad m < m';$$
 (3.12)

so $M = \lim_{m \to \infty} M_m$ exists. Further \mathfrak{x}^m , $m = 1, 2, \ldots$, is a monotone increasing sequence of Borel sets. Thus

$$F[\mathfrak{z}^{\infty}] = F[\lim_{m \to \infty} \mathfrak{z}^m] = \lim_{m \to \infty} F[\mathfrak{z}^m] = \lim_{m \to \infty} M_m = M.$$
(3.13)

Since \mathfrak{x}_0 is a Borel set by hypothesis, $\mathfrak{x}_0 - \mathfrak{x}^{\infty}$ is a Borel set (perhaps empty). We shall show that the supposition

$$F[\mathfrak{x}_0 - \mathfrak{x}^\infty] > 0 \tag{3.14}$$

leads to a contradiction.

In the *n*-dimensional space \mathfrak{X} , in which $F[\mathfrak{X}]$ is defined, a bounded half-open set of all points $\mathbf{x} = \{x_1, x_2, \ldots, x_n\}$ which satisfy all the inequalities

$$a_i - h < x_i \le a_i + h$$
, a_i and h finite, $i = 1, 2, ..., n$ (3.15)

is called a hypercube. Given a hypercube (3.15), the set of all points satisfying, for each value of i, one or other (but not both) of the inequalities

$$a_i - h < x_i \le a_i$$
 or $a_i < x_i \le a_i + h$

is called a first hyperquadrant of the hypercube (3.15). We then inductively define a (q + 1)th hyperquadrant of (3.15) as a first hyperquadrant of a *q*th hyperquadrant of (3.15). The unqualified term 'hyperquadrant' will mean a *q*th hyperquadrant for some unspecified positive integer *q*.

If (3.14) holds, we can find a hypercube \mathfrak{h}_0 such that

$$F\left[\left(\mathfrak{x}_{0}-\mathfrak{x}^{\infty}\right)\cdot\mathfrak{h}_{0}\right]>0,\tag{3.16}$$

because F is a probability set function. Let h' denote the union of all hyperquadrants \mathfrak{h} of \mathfrak{h}_0 which satisfy

$$F[(\mathfrak{x}_0 - \mathfrak{x}^{\infty}) \cdot \mathfrak{h}] = 0. \tag{3.17}$$

The set of hyperquadrants \mathfrak{h} satisfying (3.17) is at most enumerable, because it is a subset of the enumerable set of all hyperquadrants of \mathfrak{h}_0 . Hence \mathfrak{h}' is a Borel set, and

$$F[(\mathfrak{x}_0 - \mathfrak{x}^{\infty}) \cdot \mathfrak{h}'] = 0.$$

Consequently, from (3.16)

$$F[(\mathfrak{x}_0 - \mathfrak{x}^{\infty}) \cdot (\mathfrak{h}_0 - \mathfrak{h}')] > 0.$$
(3.18)

Now (3.18) implies that $(\underline{x}_0 - \underline{x}^{\infty}) \cdot (\underline{h}_0 - \underline{h}')$ is not empty. So we can choose a point \mathbf{x}_0 (hereafter fixed) such that

$$\mathbf{x}_{0} \in (\mathbf{\mathfrak{x}}_{0} - \mathbf{\mathfrak{x}}^{\infty}) \cdot (\mathbf{\mathfrak{h}}_{0} - \mathbf{\mathfrak{h}}'). \tag{3.19}$$

Since (3.19) implies $\mathbf{x}_0 \in \mathfrak{h}_0$, we may define \mathfrak{h}_q to be the *q*th hyperquadrant of \mathfrak{h}_0 such that $\mathbf{x}_0 \in \mathfrak{h}_q$. This definition is unique, because, for each fixed *q*, the several *q*th hyperquadrants of \mathfrak{h}_0 are mutually disjoint. Further

$$F[(\mathfrak{x}_{0} - \mathfrak{x}^{\infty}) \cdot \mathfrak{h}_{q}] > 0, \quad q = 1, 2, \ldots,$$
(3.20)

for otherwise $\mathbf{x}_0 \in \mathfrak{h}_q \subseteq \mathfrak{h}'$ in contradiction to (3.19).

Next (3.19) implies $\mathbf{x}_0 \in \boldsymbol{z}_0$; so that $\mathbf{y}(\mathbf{x})$ is continuous at \mathbf{x}_0 by hypothesis. Therefore, \mathbf{x}_0 being fixed, we can find a positive integer $r = r(\mathbf{x}_0, \varepsilon) = r(\varepsilon)$ such that

$$|\mathbf{x} - \mathbf{x}_0| < 2r^{-1} \rightarrow |\mathbf{y}_j(\mathbf{x}_0) - \mathbf{y}_{(jk)}(\mathbf{x})| < \frac{1}{2}\varepsilon; \quad j = 1, 2, \ldots, p; \text{ some } k.$$
(3.21)

Let \hat{s} denote the set of all points **x** satisfying $|\mathbf{x} - \mathbf{x}_0| < r^{-1}$. If the value of h [see (3.15)] for \hat{h}_q is h_q , $h_q = 2^{-q}h_0 \rightarrow 0$ as $q \rightarrow \infty$ because h_0 is finite. Hence we can choose a value of q, say q = t, so that $\hat{h}_t \subseteq \hat{s}$. Now let **x** and **x'** be any two points satisfying

$$\mathbf{x} \in (\mathbf{r}_0 - \mathbf{r}^\infty) \cdot \mathbf{h}_t \text{ and } |\mathbf{x} - \mathbf{x}'| < r^{-1}.$$
(3.22)

Then

A fortiori

$$\mathbf{x} \in \mathfrak{h}_{t} \subseteq \mathfrak{s} \Rightarrow |\mathbf{x} - \mathbf{x}_{0}| < r^{-1} \Rightarrow |\mathbf{x}' - \mathbf{x}_{0}| < 2r^{-1}.$$
$$|\mathbf{x} - \mathbf{x}_{0}| < 2r^{-1} \text{ and } |\mathbf{x}' - \mathbf{x}_{0}| > 2r^{-1};$$

x –

so that (3.21) shows that there exist integers k' and k'' with
$$1 \le k'$$
, $k'' \le p!$ such that

$$|\mathbf{y}_j(\mathbf{x}_0) - \mathbf{y}_{(j\,k')}(\mathbf{x})| < \frac{1}{2}\varepsilon, \ |\mathbf{y}_j(\mathbf{x}_0) - \mathbf{y}_{(j\,k'')}(\mathbf{x}')| < \frac{1}{2}\varepsilon, \ j = 1, 2, \ldots, p.$$

Whereupon

 $|\mathbf{y}_{(j\,k')}(\mathbf{x}) - \mathbf{y}_{(j\,k'')}(\mathbf{x}')| < \varepsilon, \quad j = 1, 2, \ldots, p.$

Now apply the inverse permutation $\pi_{k'}^{-1}$ to these last inequalities, and there results

$$|\mathbf{y}_{j}(\mathbf{x}) - \mathbf{y}_{(j\,k)}(\mathbf{x}')| < \varepsilon; \quad j = 1, 2, \ldots, p; \text{ some } k.$$

$$(3.23)$$

Since $(3.22) \Rightarrow (3.23)$, we have from (3.3)

$$(\mathfrak{x}_0 - \mathfrak{x}^{\infty}) \cdot \mathfrak{h}_t \in C_r;$$

and therefore by (3.5)

$$\mathfrak{x}^r + (\mathfrak{x}_0 - \mathfrak{x}^\infty) \cdot \mathfrak{h}_t \in C_r. \tag{3.24}$$

Now $\mathfrak{x}^r \subseteq \mathfrak{x}^{\infty}$; so \mathfrak{x}^r and $(\mathfrak{x}_0 - \mathfrak{x}^{\infty}) \cdot \mathfrak{h}_t$ are mutually disjoint. Therefore, by (3.24), (3.7), (3.20), and (3.11)

$$M_r \geq F[\mathfrak{x}^r + (\mathfrak{x}_0 - \mathfrak{x}^\infty) \cdot \mathfrak{h}_t] = F[\mathfrak{x}^r] + F[(\mathfrak{x}_0 - \mathfrak{x}^\infty) \cdot \mathfrak{h}_t] > F[\mathfrak{x}^r] = M_r,$$

which is the required contradiction. So we must abandon the supposition (3.14); and there only remains the possibility

$$F[\mathfrak{x}_0 - \mathfrak{x}^\infty] = 0.$$

Consequently

$$F[\mathfrak{x}_0] \leq F[\mathfrak{x}^\infty] = M = \lim_{m \to \infty} F[\mathfrak{x}^m].$$

This last equation shows that we can find an integer s such that

$$(1-\theta) F[\mathfrak{x}_0] \le F[\mathfrak{x}^s]. \tag{3.25}$$

We now choose $\eta = \eta(\varepsilon, \theta)$ to satisfy $0 < \eta < s^{-1}$, and put $\hat{\mathfrak{x}} = \mathfrak{x}^s$. We have

$$F[\hat{\mathfrak{x}}] \ge (1-\theta) F[\mathfrak{x}_0], \qquad (3.26)$$

and, as a stronger case of (3.3)

$$\mathbf{x} \in \hat{\mathbf{z}} \& |\mathbf{x} - \mathbf{x}'| < \eta \Rightarrow |\mathbf{y}_j(\mathbf{x}) - \mathbf{y}_{(jk)}(\mathbf{x}')| < \varepsilon; \quad j = 1, 2, \dots, p; \text{ some } k.$$
(3.27)

Let $\mathfrak{Z} = \mathfrak{X} \times \mathfrak{X}'$ denote the space of points $\mathbf{z} = (\mathbf{x}, \mathbf{x}')$; and let $\mathbf{R}_{\lambda}, \lambda = 1, 2, \ldots$, be an enumeration of the rational points of \mathfrak{Y} . For each value of $k = 1, 2, \ldots, p!$, let \mathfrak{z}_k denote the (possibly empty) set of points $\mathbf{z} = (\mathbf{x}, \mathbf{x}')$ which satisfy all the inequalities

$$|\mathbf{y}_{j}(\mathbf{x}) - \mathbf{y}_{(j\,k)}(\mathbf{x}')| < \varepsilon, \quad j = 1, 2, \ldots, p; \qquad (3.28)$$

and let 3 denote the set of points for which (3.28) holds for some k (perhaps depending on x and x'). Then

$$\mathfrak{z} = \sum_{k=1}^{p!} \mathfrak{z}_k.$$

The set of points **x**, satisfying $|\mathbf{y}_{j}(\mathbf{x}) - \mathbf{R}_{\lambda}| < \frac{1}{2}\varepsilon$ for fixed j and fixed λ , is a Borel set $\mathbf{x}_{j\lambda}$ since $\mathbf{y}_{j}(\mathbf{x})$ is a Borel-measurable function of **x**. Similarly the set of points **x**', satisfying $|\mathbf{y}_{(jk)}(\mathbf{x}') - \mathbf{R}_{\lambda}| < \frac{1}{2}\varepsilon$ for fixed j and fixed k and fixed λ , is a Borel set $\mathbf{x}'_{(jk)\lambda}$. Consequently

$$\mathfrak{z}_k = \prod_{j=1}^p \left\{ \sum_{\lambda=1}^{\infty} (\mathfrak{x}_{j\lambda} \times \mathfrak{x}'_{(jk)\lambda}) \right\}$$

is a Borel set. We define

$$\mathfrak{z}^{\kappa} = \mathfrak{z}_{\kappa} - \sum_{k=1}^{\kappa-1} \mathfrak{z}_{k}, \quad \kappa = 2, 3, \ldots, p!, \quad \mathfrak{z}^{1} = \mathfrak{Z} - \sum_{\kappa=2}^{p/2} \mathfrak{z}^{\kappa}.$$

Then 3^{\varkappa} , $\varkappa = 1, 2, ..., p!$, are mutually disjoint Borel sets covering \mathfrak{Z} ; so that their characteristic functions

$$\chi_{\mathbf{x}}(\mathbf{x}, \mathbf{x}') = \begin{cases} 1 & \text{if } \mathbf{z} = (\mathbf{x}, \mathbf{x}') \in \mathfrak{z}^{\mathbf{x}} \\ 0 & \text{if } \mathbf{z} = (\mathbf{x}, \mathbf{x}') \notin \mathfrak{z}^{\mathbf{x}} \end{cases}$$

are Borel-measurable functions of x and x'. The theorem is now proved by taking

$$y'_{j}(\mathbf{x}, \mathbf{x}') = \sum_{\mathbf{x}=1}^{p/2} \chi_{\mathbf{x}}(\mathbf{x}, \mathbf{x}') \mathbf{y}_{(j\,\mathbf{x})}(\mathbf{x}'), \quad j = 1, 2, ..., p.$$
(3.29)

The case of Theorem 2 which will interest us in this paper arises when $\mathbf{y}(\mathbf{x})$ is almost-certainly-continuous, and we have $F[\hat{\mathbf{x}}] \ge 1 - \theta$. The counter-example

$$y(x) = x^{-1}, \quad F(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } 0 \le x \le 1 \\ 1 & \text{if } x > 1 \end{cases}$$

shows that Theorem 2 would be false were $\theta = 0$ permitted.

§ 4. Many-valued random variables.

An unordered set of p probability set functions determines a *p*-valued random variable, \mathbf{x}^* . Suppose that, for any given Borel set \mathfrak{x} , these p probability set functions are arranged in an arbitrary order and then denoted by $F_j[\mathfrak{x}], j = 1, 2, ..., p$. This indexing may depend in general upon the set \mathfrak{x} chosen; but the symmetric sum

$$F[\mathfrak{X}] = p^{-1} \sum_{j=1}^{p} F_j[\mathfrak{X}]$$

is evidently independent of the indexing. It is moreover easy to verify that $F[\underline{x}]$ is a probability set function, which we call the condensed probability set function of \mathbf{x}^* . The corresponding condensed cumulative distribution function is

$$\boldsymbol{F}(\mathbf{x}) = p^{-1} \sum_{j=1}^{p} \boldsymbol{F}_{j}(\mathbf{x})$$

where $F_j(\mathbf{x})$ are specified by an indexing of the p cumulative distribution functions

of \mathbf{x}^* . Further, $F[\underline{x}]$ and $F(\mathbf{x})$ determine the same one-valued random variable, which we call the *condensation* of \mathbf{x}^* and denote by ${}^c\mathbf{x}^*$.

If \mathbf{x}^* is a one-valued random variable, and $\mathbf{y}(\mathbf{x})$ is a *p*-valued Borel-measurable function with an indexing (3.1) of one-valued Borel-measurable functions, then

$$\mathbf{y}_{j}^{*} = \mathbf{y}_{j}(\mathbf{x}^{*}), \ j = 1, 2, \ldots, p$$

will be p one-valued random variables determined by $H_i[\mathfrak{y}]$ say. Whereupon

$$H[\mathfrak{y}] = p^{-1} \sum_{j=1}^{p} H_j[\mathfrak{y}]$$

will be the condensed probability set function of the many-valued random variable $y(x^*)$, and will determine a condensation denoted by $cy(x^*)$.

Theorem 3. If \mathbf{x}^* and \mathbf{x}^*_{ν} , $\nu = 1, 2, \ldots$, are one-valued random variables satisfying

$$\dim_{\boldsymbol{\nu}\to\infty} \mathbf{x}_{\boldsymbol{\nu}}^* = \mathbf{x}^*, \tag{4.1}$$

and if $\mathbf{y}(\mathbf{x})$ is a many-valued Borel-measurable function which is almost-certainly-continuous with respect to \mathbf{x}^* , then

$$\dim_{\nu \to \infty} {}^{c} \mathbf{y} \left(\mathbf{x}_{\nu}^{*} \right) = {}^{c} \mathbf{y} \left(\mathbf{x}^{*} \right). \tag{4.2}$$

It will be noticed that y(x) need not be almost-certainly-continuous with respect to x_{ν}^{*} for any value of ν at all.

Suppose that $F[\underline{x}]$ and $F_{r}[\underline{x}]$ are the probability set functions determining \underline{x}^{*} and \underline{x}_{r}^{*} respectively. Let $\varepsilon > 0$ and $\theta > 0$ be any pair of prescribed positive numbers. Since $\underline{y}(\underline{x})$ is almost-certainly-continuous with respect to \underline{x}^{*} we can find a Borel set $\hat{\underline{x}}$, satisfying

$$F[\hat{\mathfrak{x}}] \ge 1 - \frac{1}{2}\theta, \tag{4.3}$$

and a number $\eta = \eta$ (ε , θ) such that

$$\mathbf{x} \in \hat{\mathbf{z}} \& |\mathbf{x} - \mathbf{x}'| < \eta \Rightarrow |\mathbf{y}_j(\mathbf{x}) - \mathbf{y}'_j(\mathbf{x}, \mathbf{x}')| < \varepsilon, \quad j = 1, 2, \ldots, p$$

$$(4.4)$$

where $\mathbf{y}'_{j}(\mathbf{x}, \mathbf{x}')$ is defined by (3.29).

Let $\mathfrak{Z} = \mathfrak{X} \times \mathfrak{X}'$ be the space of points $\mathbf{z} = (\mathbf{x}, \mathbf{x}')$. By (4.1), we can take the probability set function $G[\mathfrak{z}]$ defined in Theorem 1 to be a joint determination of \mathbf{x}^* and \mathbf{x}^*_r . We put the quantity δ of Theorem 1 equal to $\eta(\mathfrak{c}, \theta)$, and the quantity ε of Theorem 1 equal to the quantity $\frac{1}{2}\theta$ of the present theorem. Then, with \mathfrak{z}_0 denoting the set of points $\mathbf{z} = (\mathbf{x}, \mathbf{x}')$ satisfying $|\mathbf{x} - \mathbf{x}'| < \eta$, we have from Theorem 1

$$G[\mathfrak{x} \times \mathfrak{X}] = F[\mathfrak{x}]; \quad G[\mathfrak{X} \times \mathfrak{x}'] = F_{\nu}[\mathfrak{x}']; \quad G[\mathfrak{z}_{0}] > 1 - \frac{1}{2}\theta, \quad \nu \ge \nu'_{0}(\varepsilon, \theta); \quad (4.5)$$

where $\nu'_0(\varepsilon, \theta) = \nu_0 \{\eta(\varepsilon, \theta), \frac{1}{2}\theta\}$. Then, with $\hat{\mathfrak{z}} = \hat{\mathfrak{x}} \times \mathfrak{X}'$ we have

$$G[\hat{\mathfrak{z}}] = F[\hat{\mathfrak{z}}] \ge 1 - \frac{1}{2}\theta. \tag{4.6}$$

Then (4.5) and (4.6) show that

$$G[\mathfrak{z}_{0} \cdot \hat{\mathfrak{z}}] = 1 - G[\mathfrak{Z} - (\mathfrak{z}_{0} \cdot \hat{\mathfrak{z}})] = 1 - G[(\mathfrak{Z} - \mathfrak{z}_{0}) + (\mathfrak{Z} - \hat{\mathfrak{z}})]$$

$$\geq 1 - G[\mathfrak{Z} - \mathfrak{z}_{0}] - G[\mathfrak{Z} - \hat{\mathfrak{z}}] = -1 + G[\mathfrak{z}_{0}] + G[\hat{\mathfrak{z}}] > 1 - \theta, \qquad (4.7)$$

while (4.4) becomes

$$\mathbf{z} = (\mathbf{x}, \, \mathbf{x}') \in \mathfrak{z}_0 \cdot \hat{\mathfrak{z}} \Rightarrow |\mathbf{y}_j(\mathbf{x}) - \mathbf{y}'_j(\mathbf{x}, \, \mathbf{x}')| < \varepsilon, \quad j = 1, \, 2, \, \dots, \, p.$$
(4.8)

Now, since ε and θ are arbitrary, (4.7) and (4.8) imply

$$\lim_{\mathbf{y}\to\infty} \{\mathbf{y}_j(\mathbf{x}^{\bullet}) - \mathbf{y}'_j(\mathbf{x}^{\bullet}, \mathbf{x}^{\bullet}_{\mathbf{y}})\} = \mathbf{0}, \ j = 1, 2, \ldots, p$$

and, since $(2.7) \Rightarrow (2.3)$, we have

$$\dim_{\boldsymbol{y}\to\infty} \mathbf{y}_j'(\mathbf{x}^*, \mathbf{x}_{\boldsymbol{y}}^*) = \mathbf{y}_j(\mathbf{x}^*), \quad j = 1, 2, \ldots, p.$$

Summing the corresponding cumulative distribution functions over all values of j, and remembering that a distribution function has at most an enumerable number of discontinuities, we deduce without difficulty

$$\dim {}^{c}\mathbf{y}'(\mathbf{x}^{*}, \mathbf{x}_{\nu}^{*}) = {}^{c}\mathbf{y}(\mathbf{x}^{*}).$$

$$(4.9)$$

We complete the proof by showing that $\mathbf{y}'(\mathbf{x}^*, \mathbf{x}^*_{\mathbf{y}})$ has the same condensed probability set function as $\mathbf{y}(\mathbf{x}^*_{\mathbf{y}})$. Let \mathfrak{y} denote a typical Borel set of the space \mathfrak{Y} of points \mathbf{y} . Let $\mathfrak{z}'_j(\mathfrak{y})$ denote the set of all points $\mathbf{z} = (\mathbf{x}, \mathbf{x}')$ such that $\mathbf{y}'_j(\mathbf{x}, \mathbf{x}') \in \mathfrak{y}$; and let $\mathfrak{z}_j(\mathfrak{y})$ denote the set of all \mathbf{z} such that $\mathbf{y}_j(\mathbf{x}') \in \mathfrak{y}$. Since $\mathbf{y}_j(\mathbf{x}')$ and $\mathbf{y}'_j(\mathbf{x}, \mathbf{x}')$ are Borel-measurable functions $\mathfrak{z}_j(\mathfrak{y})$ and $\mathfrak{z}'_j(\mathfrak{y})$ are Borel sets. The condensed probability set function of $\mathbf{y}'(\mathbf{x}^*, \mathbf{x}^*_{\mathbf{y}})$ is

$$p^{-1}\sum_{j=1}^{p} G[\dot{g}'_{j}(\mathfrak{y})] = p^{-1}\sum_{j=1}^{p} \sum_{\kappa=1}^{p'} G[\dot{g}^{\kappa} \cdot \dot{g}'_{j}(\mathfrak{y})], \qquad (4.10)$$

where $\mathfrak{z}^{\mathfrak{x}}, \mathfrak{x} = 1, 2, \ldots, p!$, are the disjoint Borel sets covering \mathfrak{Z} defined in Theorem 2. If $\mathbf{z} \in \mathfrak{z}^{\mathfrak{x}} \cdot \mathfrak{z}'_{j}(\mathfrak{y})$, (3.29) shows $\mathbf{y}'_{j}(\mathbf{x}, \mathbf{x}') = \mathbf{y}_{(j \times)}(\mathbf{x}')$; and so

$$\mathfrak{z}^{\boldsymbol{x}}\cdot\mathfrak{z}_{j}(\mathfrak{y})=\mathfrak{z}^{\boldsymbol{x}}\cdot\mathfrak{z}_{(j\,\boldsymbol{x})}(\mathfrak{y}).$$

Substituting into (4.10), we get

An extension of the Slutzky-Fréchet theorem.

$$p^{-1}\sum_{j=1}^{p} G[\mathfrak{z}_{j}'(\mathfrak{y})] = p^{-1}\sum_{\varkappa=1}^{p'}\sum_{j=1}^{p} G[\mathfrak{z}^{\varkappa}\cdot\mathfrak{z}_{j(\mathfrak{z})}(\mathfrak{y})] = p^{-1}\sum_{\varkappa=1}^{p'}\sum_{j=1}^{p} G[\mathfrak{z}^{\varkappa}\cdot\mathfrak{z}_{j}(\mathfrak{y})]$$
$$= p^{-1}\sum_{j=1}^{p}\sum_{\varkappa=1}^{p'} G[\mathfrak{z}^{\varkappa}\cdot\mathfrak{z}_{j}(\mathfrak{y})] = p^{-1}\sum_{j=1}^{p} G[\mathfrak{z}_{j}(\mathfrak{y})],$$

which is the condensed probability set function of $y(x_r^*)$.

§ 5. References.

- FRECHÉT, M. Recherches Théoriques Modernes. Traité du Calcul des Probabilités et de ses Applications. Tome 1, Fasc. III, 1^{er} livre. (Paris: Gauthier-Villars, 1937).
- [2] HALMOS, P. R. Measure Theory. (New York: Van Nostrand, 1950.)
- [3] HAMMERSLEY, J. M. "A theorem on multiple integrals." Proc. Camb. Phil. Soc. 47 (1951), 274-8.
- [4] SLUTZKY, E. "Über stochastische Asymptoten und Grenzwerte." Metron. 5, No. 3 (1925), 3-89.

Lectureship in the Design and Analysis of Scientific Experiment, University of Oxford.

17 – 632081 Acta mathematica. 87