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1. For a large number of classes C of functions /(z) regular in the unit circle, 

we have very complete knowledge concerning the existence of a boundary function 

F (0) = lim ] (rei~ 
r--}l 

the classical result being that of Fatou. However, very little is known about the 

properties of this boundary function F (0), and in particular about the sets E as- 

sociated with the class C, having the property that /(z) vanishes identically if 

F(0)  = 0 on E. Let us call a closed set of this kind a set o/ uniqueness for the 

class C. If E is not a set of uniqueness, we speak of a set of multiplicity. Our 

whole knowledge in this direction seems to be contained in a classical result of F. 

and M. Riesz: E is a set of uniqueness for the class of bounded functions if and 

only if it has positive Lebesgue measure. 

We shall here consider the problem of finding the sets of uniqueness for three 

different classes of functions, namely: 

1 ~ Functions with high regularity in ]z[ s 1; 

2 ~ Functions with a bounded Dirichlet integral; 

3 ~ . Absolutely convergent Taylor series. 

The first class gives us information regarding the nature of the boundary function 

of analytic functions in general and shows clearly the decisive role of the integral 

2 ~  

f log l / ( r  e'~ I a 0. 
0 
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The second class will be considered on account of its function theoretic interest, 

and we shall here be concerned mainly with the extremal problem associated with 

a set of multiplicity. The third class, finally, has been selected on account of its 

importance for general problems in function spaces. In all three eases, new pro- 

perties of sets are of importance, and the non-metrical nature of the problem is 

evident. I t  should be noted that  no complete solution in either case 2 or case 3.is 

given. I t  seems also highly improbable that  there are any known set theoretical 

equivalences in these two cases. 

I.  Functions with high regularity. 

2. Let  E be an arbitrary closed set in (0, 2 zt). For t > 0, let Et be the closed 

set of points with distance < t from E. We then consider the measure 

(t) = ~ E  (t) = m • t .  

The properties of this function as t ~ 0, are decisive for the sets of uniqueness for 

functions with high regularity. The importance of this function for uniqueness pro- 

blems of this type was recognized first by Beurling [1], who proved the direct part  

of the following theorem. 

T h e o r e m  1 . . L e t  E be a closed set in (0, 2 zt). I /  a /unction /(z) belongs to one 

o/ the /ollowing classes 

(a) /(z) satisfies a Lipschitz condition o/ order r162 > 0; 
v~ 

(b) 1(,)  = Y a . , " ,  la.I = O(n-'), V> 1; 
0 

then E is a set o/ u~iiqueness i/ and only i/ the integral 
1 

0 

diverges. 

We first prove a simple lemma which shows the connection between our condi- 

tion and that  in Beurling [1]. 

Lemrna .  / ]  { 1,} denotes the lengths o/ the finite complementary intervals o~ E, 

the divergence o~ (1) is equivalent to the statement 

(2) m E > 0 or ,= /, log/, = oo. 
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If m E > 0, then 99 (t) >_ q (0) > 0 and (1) diverges trivially. We therefore as- 

sume that  m E  = O. If we introduce the function 

/v-~t 

we find by a partial integration that  the divergence of the series in (2) is equi- 

valent to the divergence of 
1 

f y) (t) d t. (3) 
J t 
0 

~o (t) -< 99 (t) - ~ 2 - n + l y ) ( 2 " t ) + 2 t .  
2nt~2n 

Thus, if (3) diverges, the same is true for the integral (1). 

we need only use the inequalities 

To prove the converse, 

1 2n2 - n  

f f 99( t )d t  -< 2 -I- ~o 2 - n §  ~/)(2nt) d t  
J t t 
0 0 

2~ 

= 2 + 4 f  v2(t)dt. 
J t 
0 

Let us first consider the non-constructive case when the integral (1) diverges. 

We assume that  / (z) ~ 0 belongs to the Lipsehitz class of order a, and that  F (0) = 0 

on E. Since /(z) is a bounded function, it follows from Jensen's formula that  

2~t 
(4) flog IV(O)ldO>--oo. 

0 

Since )t satisfies a Lipschitz condition, we deduce that  I F (0) 1 < M t  a when 0 eEt,  

M being a fixed constant. Hence the integral (4) is less than 

f log (M t a) d 99 (t) = M 99 (~t) + a f log t d 99 (t). 
0 0 

The last integral diverges by hypothesis and consequently we have /(z)~= 0. 

The non-trivial part  of the proof consists in the construction of / ( z ) ~  0 with 

F (0 )  = 0 on E and with the regularity (b), when the integral (1) converges. Let  

to, = (a,, fl,) denote the complementary intervals of E, where ax = 0 and #z = 2 ~t, 

and define a realvalued function h (t) by  the conventions 
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h ( t ) =  K{log~-~l__ t 

where K >  1 is a constant. 

where in (0, 2 ~r) and 

We can thus form the function 

t___~l } ~ < t < ~ ,  +log  ' ~ ,=1 ,2  . . . .  

By the lemma this function is defined almost every- 

2~ 

f lh (~) ld~< oo. 
0 

2~ 

/ ( z ) = e x p {  - l~-~jei--~----zh(x)feiz+z dx},  
0 

so that /(z) is analytic and bounded in I z J <  1. We shall prove that, for K > K(p), 

](z) satisfies condition (b). 

We have first to prove that F (0) vanishes on E. It  is evident that F(O)= 0 
if 0 belongs to the boundary of any complementary interval of E. For an arbitrary 

0 E E, let I~ denote the interval 0 - - 7  < x < 0 + ~/. We find that 

~=0Z~/d l i m l  fh(x)dx>>-limKlog~.2~/=n=0~ 0% 
17 

from which it follows that F (0)= 0. If we introduce the notation 

~,(o) = ] o -  ~ 1 . [ ~ , -  o], 
we have 

(5) [F(O)I = ~,(0) K for 0em~. 

Let 0 be the complement of E with respect to (0, 2 ~t). We shall show that a 

constant M exists such that 

(6) lim [/' (rei~ < M, 0 E O, 
r--~l 

provided that K > 2. By differentiation, we find 

2n 

1 feizh(x) dx 
/' (~) = _ ;~ J ( - ~ - - - ~  �9 ! (~). 

0 

Suppose that z = re ~~ and that 0 belongs to co,. If m' denotes the set 1 0 - - x [  > 

> -~ ~,, (0), we have 
2n 

- - I  f ei~h(x)dx I Const. f 
lim / ~ < ]h(x)ldx. 
,-.~ ~ (~ - z? o, (o? o j 
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On account of (5), it is therefore sufficient t o  consider the integral  t aken  over the 

complement oJ of o/ ,  where h (x) has a very simple form. In the interval eo we 

expand h (x) in its Taylor series. We have 

1 
log t - -  ~r 

1 O- - t  
= log 0__--~, + ~ + (O--t)~O(e,(O) -2) 

and a similar expression corresponding to fir. If  we use these expansions, we 

can again integrate over the whole interval ( 0, 2 :~), thus making an error of the 

same order of magnitude as before. We finally get 

lim I/ '  (fete) [ < Const. ~, (0)K-2,  0 E (Dr, 
r--~l 

and assertion (6) follows. 

In general, it is not possible to infer that  1' (z) is bounded in I z l< 1 from an 

inequality of type (6). In our case, however, it is possible. Namely, if 0 and O' 
both belong to co,, it follows from (6) that  

(7) IFCO)--F<O')I <- MI O-- O'l, 

and if 0 E o~, and 0 ' e  oJ~, v ~ /z ,  we find in the same way 

IF(O)- F(O')I -< MI O--~l + MI 0'--~,1 -< MI O-- o'1, 

say. If  at  least one of 0 or 0' belongs to E, (7) is verified trivially. Now, since 

] (z) is a bounded function, it must coincide with the Cauchy integral of F (0), and 

since this function satisfies a Lipschitz condition of order 1, the same must  be true 

for /(z) considered as a function in I z l <  1. Hence, for some constant M'  we have 

I '1<1, 

which evidently implies that  [/ '  (z) l <  M'.  

We can now use exactly the same argument to show that  if K > 3, then 

lim I]" (rei~ < Const. ~, (0) x-3, 0 E co,. 
r--*l 

The only difference is that  we have to use one more term in the Taylor development 

of h(x). As before, it then follows that  I]"  (z) l <  M "  in l z l <  1. Finally we find 

that  if K :> p + 1, ](~) (z) is bounded in I z [ < 1 ; this implies that  / (z) satisfies condi- 

tion (b). The theorem is thus completely proved. 
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3. The situation here is remarkable in tha t  if the integral (1) diverges, only 

functions with very weak regularity can vanish on E without vanishing identically, 

while if the integral converges, we can construct non-trivial functions with very high 

regularity. In order that  a less restrictive condition than the divergence of (1) 

should imply / (z)-~ 0, we have to impose strong conditions on the function. 

T h e o r e m  2. A /unction / ( z )= ~ a~ z n whose coe//icients an satis[y 
0 

log = 0 (n-~'), 0 < p < �89 

vanishes identically i/ F(O) vanishes on a per/ect set E and 

1 

o t 1 - p  

Under our assumption, the limit function F (0) has derivatives of all orders and 

F (k) (0) satisfies an inequality 

1 

for some constant M. Since E is a perfect set, it  follows tha t  F (~) (0 )=  0, if 0 E E, 

for k = 0, 1 . . . . .  Let  0 belong to eo, = (0~, fl,), a complementary interval of 

length /,. Then 

0 

[f,,~ r ]F(O)[ < inf ~ - _ 5 ~ .  F(k'(t)dt 
% 

We therefore have 

2~t co 1 - -2p  

f loglF(O)ldO < - - M "  1-" " 
0 1 

In the same way as before, we can prove tha t  the last series diverges in view of 

our assumption (8), unless m E  > 0; in this case, however, the theorem is trivi- 

ally true. 

Finally, we shall t reat  the most regular case, which leads to the following 
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problem: what  condition must a function satisfy in order tha t  ] ( z , )=  0 for any 

infinite sequence {z,} in [ z I -< 1 should imply / (z) ~ 0 ? 

T h e o r e m  3. I] lan[ < Q,, where { l o g ~ }  is a concave sequence and 

~ log pa 
nS/~ - -  o O  j 

i / /  (z) has Taylor coe//ieients an and vanishes on an in/inite set in then ] (z) ~ O, 

I z l - < l .  

This theorem is essentially a consequence of Carleman's fundamental  theorem 

on quasi analytic functions. We can obtain a simple proof in the following way. 

The zeros of ] (z) have a limit point, which we assume to be z = 1. Then av(k) (0) = 0, 

k = 0, 1, . . .  The function 

v = a .  n :  
1 

is analytic for Re  {~} > 0 and y ( k ) =  0, k = 1, 2 . . . . .  Furthermore,  

O~ 

+ i O I  -< = e 
1 

A theorem of Ostrowski and our assumption on en implies tha t  

Then v2(~)--01 and a n = 0 ,  n =  O, 1, . . . .  

II. Functions with a bounded Dirichlet integral. 

1. Sets of uniqueness. 

4. In this chapter, we shall consider two different problems for the class D of 

functions with a bounded Diriehlet integral: we shall study the sets of uniqueness 

and, when E is not  a set of uniqueness, investigate the associated extremal function. 

We first observe tha t  Theorem 1 has a non-trivial application to this class D:  

a set E is not a set of uniqueness if the integral (1) converges. This result shows 

an interesting difference between conformal mappings which are schlicht and non- 

1 C o m p a r e ,  C a r l e s o n  [2 ] .  
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schlicht: Under a univalent mapping of the unit  circle onto a domain o f  f'mite 

area, a t  most a set of logarithmic capacity zero on the circumference of the circle 

can be mapped onto a single point x, while there exist Riemann surfaces of finite 

area having boundary points which project onto a single point and correspond to 

a set on the circle with dimension arbitrarily close to 1. 

For the class D, F(0)  is determined except on a set of capacity zero. I t  is 

therefore to be expected tha t  sets of capacity zero can be neglected in considering 

uniqueness problems. We have, in fact, the following result. 

T h e o r e m  4. I] E is a closed set o] capacity zero, there exists a /unction /E D 

with F(O)= 0 on E. 

This theorem is known, but since there seems to be no proof in print, we 

shall sceteh a proof here. 

Let E, ,  n = 1, 2 . . . . .  denote a finite sum of closed intervals, which contains E, 

and let un (z) be the equilibrium potential corresponding to En, 

u . ( e  ~~ = V., OeEn. 

By assumption, we can choose En so tha t  ~ V~-J < oo. Then 
1 

U (z) = 
Ua (z) 

n ~ l  Vn 

is a harmonic function with a finite Dirichlet integral which tends to infinity on E. 

Defining /(z) by the relation log I / l = - -  u,  we see that  / is a function of the 

desired kind. 

5. We now turn to the uniqueness problem. The essential properties of the 

sets of multiplicity are contained in the previous results, but  we have to impose 

further regularity conditions on the set in question. Let  C, (E) denote capacity of 

order ~r We shall assume tha t  for some a > 0, Ca (E) is positive and tha t  the set 

is homogeneous in the following sense. Given a point x EE, let I ,  denote the interval 

( x - - y ,  x + y) and assume that  for each x E E  

(9) Ca (EI~) > m~ 

for a fixed constant m > 0. 

1 For  th is  and  other  results  concerning  the  class  D ,  wh i ch  are c i ted  w i t h o u t  reference,  see  

Beur l ing  [1]. 
2 For  def init ions,  see  Carleson [1]. 
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T h e o r e m  5. / ]  (9) holds, then E is a set o/ uniqueness i/ and only i/ the 
integral (1) diverges. 

I t  is essential tha t  some condition of type (9) be introduced in order to ensure 

tha t  the divergence of (1) is not due to the presence of long complementary inter- 

vals in the neighbourhood of an isolated closed subset of E, which is metrically 

very thin (e. g. has capacity zero). I t  is to be noted tha t  assumption (9)is actually 

very weak. 

Let  us first set down the following known facts concerning potentials. Let  /x 

be a distribution of unit mass on the set E and suppose tha t  the corresponding 

potential of order ~ is less than V. Then, if ~ and ft, are the Fourier-Stieltjes 

coefficients of/x,  we have 

(10) ~ n -Va--al (~r + fl~) -< Const. V 

where the constant depends only on cr 

Now suppose tha t  a function ] in D exists with F (0 )=  0 on E and tha t  ] ~ 0. 

We shall prove tha t  if (1) diverges, this assumption leads to a contradiction. As 

suppose tha t  mE = 0. The function h (x )=  I F  (x)] has a Fourier before, we may 

series 

(11) 

such that  

h (x) ~ �89 ao + ~ (an cos n x + b~ sin n z) 
0 

oo 

n (a~ + bS=) < oo. 
1 

Let us consider the function hi(x)= 1 f h(y)dy, 
x - - t  

sin n t 
coefficients are those of h(x) multiplied by - -  

nt 
(10), it  follows by Schwarz's inequality tha t  

(12) 

t > 0. The corresponding Fourier 

For a distribution /x satisfying 

1 ft 

f h, (x) d .  (x) = f (h, (~) --  h (~)) d .  (x) < Const. V ~ V. 
B 

Let kn denote the number of complementary intervals of E with lengths lying be- 

tween 2 -n+1 and 2 -n. I t  follows from our assumption tha t  (1) diverges, tha t  

~nkn 
,,~1 2" = c~. 
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Let  o~ 1, oJ z . . . .  , o~., be the intervals in question. Let  8~, i = 1, 2 . . . . .  2 ~ ,  be the 

intervals of length 2 -~ with midpoints x~ at  the endpoints of the intervals eo~. Each 

Oi intersects at  most one 6i, i ~ i. Let  ~ > 0 be a constant to be determined later;  

consider those intervals 6i for which 

(13) h~ (x~) > 2 - ~ - ,  ~ = 2-% 

holds, and let S be the set formed by these intervals. The inequalities (13) imply 

that  h2~(x)~ 2 -~ ' -1  holds for x belonging to S. From the general relation (12) it  

follows that  
Ca (ES) ~ Const. 2 (ur- ~")n. 

Let  N be the number of intervals Oi constituting S. In order to estimate N, we 

must use assumption (9). If /~i is the equilibrium distribution for potentials of order 

of E Oi, we construct the set function 

For the corresponding a-potential u, we have by (9) the estimate 

u < Const. 2nN -1 + N-12  n~ ~-" -< Const. 2nN -I .  

H e n c e  

N 2 -n ~ Const. 2 (2r-t~)n 
and 

N < C o n s t .  2 ~n, where p < l  if ~ < ~ -  

If  the inequality (13) does not  hold for the endpoints of an interval eo~, we have 

1 flogh(x) dx<=log{m~,fh(x)dxl<---rn+Const. 
m (Dr 

The number of indices r, for which the inequality above is true, is greater than 

kn - -  2 N > k, - -  Const. 2 rn. Hence 

k .  k n 

Z flog h(x)d  -< - r -  2--(k.-Const. + Const. 5m .. 

We finally get since p < 1 

2n 

f log h(x) dx < --r~,nk, 2-" + Const. 
0 1 

Since this series diverges and ? > 0 we have obtained the desired contradiction. 
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The general situation concerning sets of uniqueness for the class D can be sum- 

marized in the following way: when we weaken the metrical assumptions on the 

sets, we must strengthen the assumptions on the complementary intervals. Finally, 

let us note the following very special consequence of theorem 5: there are sets of 

uniqueness of measure zero and even of arbitrarily small dimension. A construction 

can also very easily be carried out in the same way as in the proof of theorem 8 below. 

2. The extremal problem. 

6. In this section, we shall study the extremal problem associated with a set 

of multiplicity. We shall consider only the most regular case, where the integral 

(1) converges. Theorem 4 here shows that E has positive logarithmic capacity. 

In D, we introduce the scalar product of two functions / ( z ) =  ~ a n z  '~ and 
0 

g (z) = ~ bn z ~ by the relation 
0 

OO 

(/, g) = ~nanbn.  
1 

Then [I/]]* = (/, ]) is the Dirichlet integral of ] (z) if we disregard a factor ~r -1. We 

denote by D~ the linear, convex subspace of D for which / ( 0 ) - - 1  and 

C14) lim / (re i~ ~- O, 0 e E, 
r---~l 

except perhaps on a set of (inner) capacity zero (= "a.e."). We shall first prove 

the following result. 

T h e o r e m  6. DE is a closed subspace o/ D. 

Let { ]n (z)} be a sequence of functions in DE and suppose that ] (z)ED exists 

such that ] ] / - / n  []-+ 0, n-+ oo. We must prove that (14) holds "a.e.". If # is an 

arbitrary distribution of unit mass on E with finite energy integral, it is sufficient 

to prove that the boundary function of / cannot be different from zero on a set 

where # does not vanish. Exactly as in the proof of theorem 5, it follows by 

developing ]/(e it) --]~ (ei~)[ in a Fourier series that 

2 ~  

lim limf ]/(re 'r) -- / , ,  (reir) [ dla (x) = O, 
n--*or r - -* l  0 

if we observe that I ] / - / - [ ]  ~ 0. Since lira/,, (re 'r) = 0 "a.e." on E, it follows that 
r--~l  

] has the same property. 
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7. We now come to the extremal problem of finding an / in DE realizing the 

lower bound 
inf II/11 = M, 

/ 6DB 

and we shall show that  the lower bound is attained for a function with very regular 

behaviour. 

Theorem 7. There exists a unique /unction ] (z) in DE/or which II111 = M h o ~ .  

Its derivative ]' (z) is analytic and single valued in the whole plane except on the set 

E regarded as a subset o~ the circle I zl = 1. 

We first have to prove tha t  M > 0. Let  g E DE have Taylor coefficients b, and 

suppose again that  /~ has a finite energy integral and tha t  /~ (E) = 1. Then 

0 = l i r a  f g ( r e " ) d ~ ( x ) =  l + lim [ ~b , r"e 'n 'd /~(x ) .  
r--~l R r--~l 

The last limit is less than a multiple of II g ll, as an application of Schwarz's in- 

equality shows. Hence O g [[ is bounded from below, and it follows tha t  M > 0. 

I f  now II [n [[ ~ M, [n 6 DE, then by a standard argument in the theory of Hil- 

bert space, DE being convex, we have 

I I / . - / m l l - ~ 0 ,  n, m ~  oo .  

Since DE is closed, an extremal function ] 6DB exists and is unique. 

The rest of the proof will be devoted to establishing the last statement of the 

theorem. We start  with the following lemma. 

Lemma.  Let q~ (x) be integrable on (0, 1) and suppose that /or all V (x) with 

continuous second derivative in (0, 1) and such that 

1 

e ( v )  = f l v ( ~ ) l d ~  ~ 1, v (0 )  = v (1 )  = 0, 
0 

q~ (x) satis/ies the relation 
1 

L (~) = f q~ (x) y~ (x) d x <= 1. 
o 

Then we can rede/ine q~ (x) on a set o] measure zero so that q~ (x) exists a.e. and 

satis/ies 1r (z) l -< 1. 

I t  follows from our assumptions tha t  L (y~) -< ~ (v/). If  v/is an arbitrary function 

which is integrable on (0, 1), then functions { ~,  } in the domain of definition of L 

exist such that  Q ( ~ -  yn)-~ 0 as n-~  ~ .  I t  is easy to see that  
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L (~)  = lira L ( ~ )  
t~-~O0 

exists and is independent of the particular sequence {~n } chosen. Clearly, it  ex- 

tends L(~)  to a linear functional on L 1 (0, 1). Hence a bounded function ~(x)exis ts  

such that  
1 

L ( ~ )  = f ~(x)~(x)dx, la( )l -< 1. 
0 

Let  Xo and x be two fixed points, Xo < x, and define for e > 0 a continuous 

function ~8 (t) so tha t  V~8 (t) = 0 for t < Xo and t > x + e, ~, (t) = 1 for Xo + e < t < x 

and let ~ (t) be linear for other values of t. The for almost all x and Xo, we have 

(Xo) - -  r (x) = lira L (W,) = f 2  (t) dt .  
~ 0  

xo 

We. define ~ (x) so that  this holds for all x and find ~' ( x ) = -  ~t (x)a.e.  ; t h i s  proves 

the lemma. 

8. We return to the proof of theorem 7. For  all complex numbers t and every 

g E DE, ] + t zg belongs to DE. Since ] solves our extremal problem, it follows in 

the usual way tha t  

(15) (1, z g) = 0, g DE. 

We consider a point ~ in the complement of E. By the method used in the proof 

of theorem 1, we construct a function g E DE such that  its boundary function has 

absolute value 1 in an interval I around ~ and has continuous second derivative in 

[zl-< 1. By a conformal mapping of the image domain, we construct a similar 

function h = hi + i ha, belonging to DE, such that  h ( 0 ) =  0 and such that  its real 

part  h 1 vanishes on an interval to r I ,  ~ E to. We may also assume tha t  h9 ~ 0 on to. 

We observe that  h is analyt ic  on to by Schwarz's reflection principle. 

Let  now l~ = pl + i pa be an arbitrary analytic function in [ z ] <  1, continuous 

in I zl -< 1, and consider the function 

h p  = a = aa + in2.  

On to, we have al = -  h~pz.  We consider a subinterval to' of to, which still con- 

tains ~. If  we determine p2 so that  at assumes prescribed values y (x )on  to', where 

yJ has continuous second derivative on to', vanishes at the endpoints of co', and satisfies 

(16) .f,I I --- 1, 

2 2  -- 6 3 2 0 8 1  Acta mathematica. 8 7  
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and if we let P2 vanish outside of o~', then a has a uniformly continuous derivative 

on ]z I = l  outside of co. Since h ( 0 ) = 0 ,  we have by (15) (/, a) = 0, a n d i f / = u + i v ,  

this relation can be written in the form 

f f [OvO~s OvO~s~ 
Izl<l 

By assumption, as has a continuous derivative in I z] < 1. 

and find 

0 G s 
If  we observe that  0 r  . . . .  

z = x + i y .  

We integrate by parts 

2 ~  

,~llimj Or dO=O, 
o 

Z = r e  i~  

1 O al O al 
r 0 0 and that  ~ vanishes on co--co' and is uniformly 

bounded outside of eo, we obtain 

d Const.  
fO" 

O v  
for all at satisfying (16). I t  follows now from the lemma that  ~ exists a.e. on co' 

Ou 
and is bounded. A similar argument shows that  ~-~ is bounded in a neighbourhood 

of ~. If  we now let ~ vary, we find that  ['(z) is bounded on I z l = l  except on an 

arbitrary open set containing E. 

9. We are now compelled to use another variational argument. Suppose that  T (z) 

is harmonic in I z I < 1 and continuously differentiable in I zl < 1 and that  v (0 )=  0. 

If  z'(z) is the conjugate function of v, normalized by z ' ( 0 ) =  0, then for every 

real t, the function g=[e t<'+iT') belongs to De. If we set U(z)=l[(z)l s and 

V (z) = ] # (z)I s, then 

4 ',llglls= f f 
Izl<l 

/ ' F  
v d dy u d dy 4  11/11 . 

i# L] 

Izl<l 

OU 
An ordinary variational argument shows that,  U~ =O-x-x etc., 

I~(f { t A U  + 2(U~Tx + Uuvu)}dxdy=O. 
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With the aid of Green's formula, we rewrite this in the form 

2 ~  

o 

Z ~ r e  i ~  

Let  u(z) be the harmonic function in I z ] <  1 which is equal to U on [z I= 1. We 

may then, on account of the regularity of 3, replace U by u in the last term above, 

and we obtain after one more application of Green's formula 

2 ~  

(17) limT_~l O~r + ~ T d 0 = 0. 
0 

Let  us first consider the particular case when T vanishes on I zl = 1 in a neigh- 

bourhood of E. Since r (z) is bounded when v ~ 0, it follows from (17) t h a t  

OU Ou 
(18) 0--r + ~ = 2 a.e. outside of E, 

where 2 is a certain constant. To determine ~t, let us formally set ~ ~ 1 in (17). 

The integral then tends to 4re ]1]]] 2. Let  S~ be a finite sum of intervals containing 

E such that  mS,=e. In  (17) we choose v = l  on S, and v = - - I  in a suitable 

interval of length e in the complement of S,, and set v = 0 on the rest of ]z] = 1. 

The formula may be applied although ~ is not uniformly continuous, and we see tha t  

lira lira - ~  + d 0 = O. 

Outside of S,, the integrand tends boundedly to 2, and hence we have proved tha t  

= 2 II111 

10. Let  us now assume that  / ( z ) =  ~ a n z  n. The general relation (15) gives us 
o 

( ] ,z  ~ ] ) = 0  for ~ > 1 .  If  we set a ~ = 0  for n ~ 0  and define cp by the equality 

c~ = ~ n a-~ an+~, 
1 

it  is apparent  tha t  c~ = 0 for p < 0. We form the series 

F (z) = ~ cp z~. 
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Let  us again consider a subinterval eo of the complement of E. If we use the fact 

tha t  cp = 0 for p < 0, we see that  F has a representation 

2 z r  

F (z) = ~ ] (r R e  [-[-~--z j dq), r = q e "~. 
o 

Since ]' (z) is bounded on o~, it follows by an application of Green's formula in the 

sector arg z ~ co, tha t  F (z) is bounded on r and that  

lim F (re i~ = e - i~  ] (e i~ l i m / '  (re i~ 
r--+l r--~l 

almost everywhere on w. Let  G be the closed subset of eo where ] (eie) vanishes. 

Since all functions involved are bounded on co, it follows by a known theorem on 

analytic continuation that  / '  (z) can be analytically continued over e o -  G by the 

function 

, ( . ,=  - - - ,  1~1 > 1. 

I t  now remains to prove that  G is empty and tha t  ] (z) does not vanish in 
O U  

[ z [ < l .  To prove tha t  G is empty, let us assume that  / (e  i a ) = 0  for d e w .  
Or 

is continuous on c o -  G and tends to zero on G, since / '  is bounded. Hence the 
Ou 

relation (18) must hold everywhere on co, since -Or is bounded there. At the point a, 

O U  Ou 
0--7 = 0 while O~r < O. This would imply 2 < 0, which contradicts our determina- 

tion of ,l. Therefore G is empty, and [' (z) is meromorphic outside of E. 

Let  us finally assume that  / '  (z) has a pole, i.e. tha t  /(Zo) = 0 for some zo in 

the unit circle. I t  is then very easy to prove a tha t  if 

1 - -  ZSo 
a (z) = zo - -  1 (z), 

z o - -  z 

then g (z) belongs to D~ and JJg]f < IJ/ll. This contradicts the mmimal i ty  of /. 
Exact ly  the same argtLment can be used to prove tha t  the extremal problem 

associated with a sequence of points {z~} in ]z[ < 1, ] (zn)= 0, has a solution with 

similar properties. The essential difference is tha t  in this case, / '  ( z ) h a s  simple 

poles at  the points ~-1. 

1 See  L o k k i  I l l ,  p .  27. 
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III. Absolutely convergent Taylor series. 

11. The problem of determining the sets of uniqueness for the class A of 

absolutely convergent Tay]orseries is of great interest for functional analysis. We 

shall here mention a closure problem which is equivalent to the uniqueness problem. 

Let  H ~ be the Hilbert  space of square integrable analytic functions F ( z ) =  

= ~ a n z  n in I z [ < l  with the norm 
0 

2 3  

IIFll  = 1 f IF(re'~ --  la.I 
r-~l 2 :~ J 0 

0 

Let  F(z)  be a given function and consider its rotations Ft (z)= F(d tz ) .  For H 2, 

the Wiener closure problem is trivial:  {Ft(z)}, 0 < t < 2 g ,  is fundamental on H s 

if and only if a ,  ~ 0, n = 0, 1, 2 . . . .  The relevant problem on H ~ is the following : 

determine the closure sets E for which it  is t rue that  {Ft (z)}, t e E, is fundamental 

on H ~, whenever an ~ 0, n = 0, 1 . . . .  I t  is obvious tha t  E is a closure set if and 

only if E is a set of uniqueness for A. Let  us in this connection observe tha t  for 

certain subspaces of H ~ the complete solution of the closure problem is given in 

theorem 1. If, for example, Sa is characterized by the convergence of ~ [ a~ ]  ~ n a, 
1 

0 ~ ~ ~ ~ ,  then the closure sets corresponding to Sa are independent of ~ and are 

exactly those sets for which the integral (1) diverges. 

12. We shall first show tha t  there exist closed sets of uniqueness with measure 

zero. Since no property of continuity is involved in the definition of A, this is far 

from obvious and depends on the arithmetical nature  of the class. 

Theorem 8. There exist closed sets E o[ uniqueness [or the class A with vanishing 

Lebesgue measure. 

L e m m a .  Let p be a given number, 0 ~ p ~ �89 Then there exists a closed set F 

o/ measure zero such that its Lebesgue ]unction t z (x) has the 7~roperty 

For such constructions, see e.g. Salem [1]. 

Let  H denote the sequence 0, (log 2) -1, (log 3) -1 . . . .  Then if F is the set 

described in the lemma, we define 

E = F  + H =  { x + y ;  xEF,  y e H } .  
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E is obviously closed and has measure zero, since it is contained in the union of a 

countable number  of translations of F. We shall prove tha t  E is a set of uniqueness. 

Suppose tha t  ] (z) = ~ a n z  n belongs to A and vanishes on E. We then construct 
0 

a function ~ (~), I~l < 1, by the relation 

= f = ~a,,/a,,~" = ~ A , ~  n. 
F 0 0 

Since / (e  is) = 0 for s belonging to E, ~ (e iv) vanishes on H. Fur thermore  

21A, , In"  = la,,I It,,,I n" -< Const. 21 a,I < 
1 1 1 

This implies tha t  ~ (~) satisfies a Lipschitz condition of order p and hence mus t  

vanish identically by choice of H. In  particular,  A0 = a0 = 0. I f  we repeat  the 

argument  on z -1 / (z), z - 2 / ( z )  . . . .  , we see tha t  ] (z) ~ 0. 

I t  was shown in Salem [1] tha t  we may  chose for F a Cantor set. I t  is readily 

verified tha t  for these sets the integral (1) converges, which implies tha t  F is not 

a set of uniqueness for the class A. A union of a countable number  of sets of 

multiplicity may  thus be a set of uniqueness. A similar remark  is t rue  also for 

the class D. 

13. We now proceed to the proof of a theorem which shows clearly the arith- 

metical nature  of the problem. We shall consider the following natural  extension 

of the uniqueness problem: to determine the closed sets E such tha t  every contin- 

uous function on E is the boundary function of an element in A. In  order to 

formulate our result, we need a new concept. 

Let  E be a closed set in (0, 2 ~), and consider the class /"  = F~ of functions 

of bounded variat ion on (0, 2 z) which are constant  outside of E. Let  T '~ be the 

subc]ass of T' of functions normalized by 

f l a . ( x ) l  = 1. 
E 

We then  define the index o/ linear dependence within g as 

p (E) = inf sup f e  in~ d/~ (x)[. 
~ E r  �9 n->O 

Obviously 0 -< p (g) -< 1. I f  p (E) = 1, we call E a Kroneeker set. I f  m E > O, then 

the class /"  eontains absolutely continuous functions and by the Riemann-Lebesgue 

theorem we have in this ease /9 ( g ) =  O. 
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To justify our terminology, we choose for E a sequence A = { )~ }. Then p (A) = 1 

if and only if the numbers { 2,} are linearly independent modulo 2 ~. This is an 

easy consequence of Kronecker 's approximation theorem. For  a finite sequence of 

linearly dependent numbers, p (E) is always positive and is found to depend on how 

large the integers n, in the relations ~ n , ~ ,  ~ 0 have to be. 

Without  going into the proof we point out tha t  there are per/ect sets E such 

that p (E) = 1. 

The theorem which we shall prove can now be formulated as follows. 

T h e o r e m  9. I /  E is a closed set such that p (E) > 0, then every continuous/unc- 

tion ~ (x) de/ined on E is the boundary /unction o/ an element in A, i.e. ~ (x) has a 

representation 

(19) q(x) = ~ a n e  i ~ ,  weE,  ~ ] a a l < o o .  
0 0 

Goro l la ry .  E is not a set o[ uniqueness /or the class A i/ p (E) > O. 

To prove the corollary, we need only choose q ( x ) =  e -ix in the theorem above. 

We obtain a function in A which vanishes at the origin and is equal to 1 on the 

set E. 

The proof of the theorem depends on the following observation. 

Lema~aa. I /  p (E) > 0 and q~ (x) is continuous on E, then there exists a sequence 

{ As }, lira As = 0% such that /or all /~ E FE 

• fe, n dz( )l 
: oPan j , 

For a given # e FE, let B = B .  be the lefthand side above and y (n)=~v~ (n) 

the n:th Fourier-Stieltjes coefficient of/~. Let  us assume, as we may, tha t  [~0(x)l -< 1. 

If now M = 2 p ( E )  -1, we choose the integer n 1 so tha t  if 

B~ = M and [y~(v)] < 1, v = 0) 1 . . . . .  nl, C l :  

then 
inf sup ] F ,  (~) ] = L 1 > 4. 

To prove that  nl exists~ let us assume tha t  for every n > 1, a function ~un E FE 

exists satisfying B~n = Bn = M, l Yn (r)] < 1, u = 0, 1 , . . . ,  n, and [Fn (~)[ < S for all 

> 0. From the definition of p (E), it  follows tha t  

f]d/~,~ (x) I < 8 p (E) -1. 
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There is a sequence { m } such that  / ~ - *  p, where p ~ F~. Since B~ -~ B~ and 

y~  -> ?p~, we have B~ = M and I ~  (r) ] < 1, u -- 0, 1 , . . . .  We thus find 

B 

which contradicts the definition of M. 

Let  us assume tha t  the classes C1, C~ . . . . .  C~-1 with corresponding integers 

nl, n~, . . . ,  nk-1 have been determined. We then choose nk so tha t  if 

Ck: p E C k - l ,  [ ~ , ( v ) [ ~ 2  k - l ,  ~ =  n k - l +  1, . . . ,  nk, 

then 
inf sup ]yJ~ (u)] = Lk > 2 TM. 

~.C k ~>~0 

The existence of nk is proved exactly as in the case k = 1; if nk did not exist, 

there would exist a function p E Ck-1 such tha t  [ ~  (r)[ < 2 k for all v > 0, and this 

contradicts the definition of Ck-1. 

We can now choose the sequence {As}. We define (no = 0) 

A , = M - 1 2  ~ , v = n ~ + l  . . . .  ,n~+l ;  k = 0 , 1  . . . . .  

I f  now lW~(u)l < A, for all ~ and fq~(x)d#(x)--1, then M p  belongs to all of the 
E 

classes C~, and, for all k, we must have 

E 

This is clearly impossible, and the lemma is proved. 

Suppose now that  {~1 

infinite system of equations 

is a sequence which is dense on E and consider the 

oo eln~ 

oO 

o 

where the sequence { An } is as determined in the lemma, for a given continuous 

function ~ (x). By a theorem of F. Riesz this system has a solution { x~ } if for 

every sequence { h, }I, 

I I_i  I h~ ~ (2~) -< s u p  K h,  e TMx~ . 
n~o A n  ffi 
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I t  follows from the lemma tha t  a solution {x~ } exists for K sufficiently large. 

continuity, we must then have 

o o  

Y X'*e"~ = ~(~), xeE, 
~,~0 An 

and the theorem is proved. 
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