THE CONGRUENCE $a x^{3}+b y^{3}+c \equiv 0(\bmod x y)$, AND INTEGER solutions of cubic equations in three variables.

By

L. J. MORDELL

Cambridge, England.

I have recently ${ }^{1}$ proposed the following
Conjecture: Let $f(x, y, z)$ be a cubic polynomial in x, y, z with integer coefficients such that $f(x, y, z)$ - a is irreducible for all a. Then if the equation

$$
\begin{equation*}
f(x, y, z)=0 \tag{1}
\end{equation*}
$$

does not represent a cone in three dimensional space and has one solution in integers, there exists an infinity of integer solutions.

This conjecture, as far as I know, has not been proved for even simple equations such as

$$
x^{3}+y^{3}+z^{3}=3,
$$

but was proved for some equations and in particular for

$$
z^{2}-k^{2}=l x+m y+A x^{3}+B x^{2} y+C x y^{2}+D y^{3},
$$

where the coefficients are integers and l is prime to m, the known solution being $x=0, y=0, z=k$. The case $l=m=0$ seems more difficult, but interesting results can be found for some 'equations of the form

$$
\begin{equation*}
z^{2}-k^{2}=A x^{3}+B y^{3} . \tag{2}
\end{equation*}
$$

I find that integer solutions of (2) can be deduced from the integer solutions of some very simple equations included in (1), namely,

$$
\begin{equation*}
a x^{3}+b y^{3}+c=x y z \tag{3}
\end{equation*}
$$

[^0]Here some solutions of (3) are obvious since we can take $x= \pm 1$, and for y, any divisor of $c \pm a$. The conjecture suggests that there should be an infinity of integer solutions of (3) and this will be proved. Hence there exist equations ${ }^{1}$ of the form (2) with an infinity of integer solutions as is shown by

Theorem I.

The equation

$$
\begin{equation*}
z^{2}-27^{2} a^{2} b^{2} j^{2}=a b^{2} x^{3}+y^{3} \tag{4}
\end{equation*}
$$

where a, b, j are integers, has an infinity of integer solutions.
The known types of formulae giving an infinity of integer solutions for equations included in (1) are as follows. They may involve one integer parameter t_{1} or two integer parameters t_{1}, t_{2}. In the first case, the solutions are expressed as polynomials in t_{1} or polynomials in $\theta_{1}^{t_{1}}, \varphi_{1}^{t_{1}}, \psi_{1}^{t_{1}}$ where θ_{1} is some constant, e.g. a quadratic or cubic irrationality and φ_{1}, ψ_{1} are conjugates of θ_{1}. In the second case, we have polynomials in t_{1}, t_{2}, or polynomials in $\theta_{1}^{t_{1}} \theta_{2}^{t_{2}}, \varphi_{1}^{t_{1}} \varphi_{2}^{t_{2}}, \psi_{1}^{t_{1}} \psi_{2}^{t_{2}^{2}}$, where θ_{1}, θ_{2} are constant cubic irrationalities, and φ_{1}, ψ_{1} are conjugates of θ_{1} etc. The irrationalities arise as the units of quadratic or cubic fields. We may also have two parameter solutions as polynomials in $\theta_{1}^{ \pm t_{1}}$ where θ_{1} is a variable quadratic irrationality of norm unity as occurs with $x^{2}+y^{2}+z^{2}+2 x y z=1$.

In Theorem I, the infinity of solutions are given by polynomials in a, b, c with integer coefficients but of variable degrees in a, b, c. The polynomials are associated with an integer sequence $t=1,2,3, \ldots$, and their degrees are associated with θ^{t} where $\theta^{2}-3 \theta+1=0$, and so really with alternate Fibonacci numbers.

We consider first the equation (3). If a prime p is a common divisor of x and y, then p^{2} / c, and so there can only be a finite number of values for p. Writing $p x, p y$ for x, y, we have

$$
a p x^{3}+b p y^{3}+c / p^{2}=x y z .
$$

Hence we can find all the integer solutions of (3) from a finite number of equations of the same form in which $(x, y)=1$.

We write (3) as a congruence and prove

Theorem II.

The congruence

$$
\begin{equation*}
a x^{3}+b y^{3}+c \equiv 0(\bmod x y) \tag{4}
\end{equation*}
$$

[^1]The congruence $a x^{3}+b y^{3}+c \equiv 0(\bmod x y)$.
where a, b, c are given integers, has an infinite number of solutions for which $(c x, y)=1$, and we can give x, y as polynomials in a, b, c.

More generally, it will be seen that the same method proves the existence of an infinity of solutions of

$$
a x^{m}+b y^{n}+c \equiv 0(\bmod x y)
$$

where m, n are given positive integers, and also of
where

$$
f(x)+g(y)+c \equiv 0(\bmod x y),
$$

and

$$
f(x)=a_{0} x^{m}+a_{1} x^{m-1}+\cdots+a_{m-1} x
$$

$$
g(y)=b_{0} y^{n}+b_{1} y^{n-1}+\cdots+b_{n-1} y
$$

and the a 's and b 's are integers.
The working is simpler if we write x_{1}, x_{2} for x, y respectively. Since $\left(x_{1}, x_{2}\right)=1$, (4) is equivalent to the two congruences

$$
\begin{align*}
& b x_{2}^{3}+c \equiv 0\left(\bmod x_{1}\right), \tag{5}\\
& a x_{1}^{3}+c \equiv 0\left(\bmod x_{2}\right) . \tag{6}
\end{align*}
$$

We can satisfy (5) by putting

$$
\begin{equation*}
b x_{2}^{3}+c=x_{1} x_{3} \tag{7}
\end{equation*}
$$

where x_{1} is any divisor of $b x_{2}^{3}+c$ and x_{2}, prime to c, is still to be determined. We suppose x_{1} can be taken so that $\left(x_{2}, x_{3}\right)=1$, and it will suffice for this if $\left(x_{3}, c\right)=1$. To satisfy (6), we require from (7),

$$
a\left(\frac{b x_{2}^{3}+c}{x_{3}}\right)^{3}+c \equiv 0\left(\bmod x_{2}\right) .
$$

Since $\left(x_{2}, x_{3}\right)=1$, this will be satisfied if

$$
a c^{3}+c x_{3}^{3} \equiv 0\left(\bmod x_{2}\right),
$$

or since we have assumed that $\left(x_{2}, c\right)=1$, if

From (7),

$$
\begin{equation*}
x_{3}^{3}+a c^{2} \equiv 0\left(\bmod x_{2}\right) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
b x_{2}^{3}+c \equiv 0\left(\bmod x_{3}\right) . \tag{9}
\end{equation*}
$$

Hence (8), (9) are two congruences in x_{2}, x_{3} similar to (5), (6), the two congruences in x_{1}, x_{2}.

A particular solution of (8) is given by taking

$$
x_{2}=x_{3}^{3}+a c^{2}, b\left(x_{3}^{3}+a c^{2}\right)^{3}+c \equiv 0\left(\bmod x_{3}\right) .
$$

Since $\left(x_{3}, c\right)=1$, it suffices if $x_{3} \mid\left(b a^{3} c^{5}+1\right)$ and so $\left(x_{3}, c\right)=1$; and in particular if $x_{3}=b a^{3} c^{5}+1$. Then $x_{2}=\left(b a^{3} c^{5}+1\right)^{3}+a c^{2}$, and
and so

$$
x_{3} x_{1}=b\left(x_{3}^{3}+a c^{2}\right)^{3}+c,
$$

$$
x_{1}=b x_{3}^{8}+3 b a c^{2} x_{3}^{5}+3 b a^{2} c^{4} x_{3}^{2}+c
$$

We can deal more generally with (8), (9) by writing (8) as

Then from (9)

$$
\begin{equation*}
x_{3}^{3}+a c^{2}=x_{2} x_{4} . \tag{10}
\end{equation*}
$$

$$
b\left(\frac{x_{3}^{3}+a c^{2}}{x_{4}}\right)^{3}+c \equiv 0\left(\bmod x_{3}\right)
$$

Suppose now $\left(x_{3}, x_{4}\right)=1$, which from (10) is so if $\left(x_{4}, a c\right)=1$. Then
and from (10)

$$
\begin{gather*}
x_{4}^{3}+b a^{3} c^{5} \equiv 0\left(\bmod x_{3}\right) \tag{11}\\
x_{3}^{3}+a c^{2}=0\left(\bmod x_{4}\right) . \tag{12}
\end{gather*}
$$

These two congruences in x_{3}, x_{4} are similar to those in x_{2}, x_{3} given in (8), (9).
A particular solution of (11), (12) is given by

$$
x_{3}=x_{4}^{3}+b a^{3} c^{5} ; b^{3} a^{8} c^{13}+1 \equiv 0\left(\bmod x_{4}\right) .
$$

We can take $x_{4}=1+b^{3} a^{8} c^{13}$ and so $\left(x_{4}, a c\right)=1$. Then

$$
\begin{aligned}
x_{3} & =\left(1+b^{3} a^{8} c^{13}\right)^{3}+b a^{3} c^{5} \equiv 1(\bmod c), \\
x_{4} x_{2} & =\left(x_{4}^{3}+b a^{3} c^{5}\right)^{3}+a c^{2}, \\
x_{2} & =x_{4}^{8}+3 b a^{3} c^{5} x_{4}^{5}+3 b^{2} a^{6} c^{10} x_{4}^{2}+a c^{2} \equiv 1(\bmod a c) .
\end{aligned}
$$

We can continue this process. Thus for $\varrho=1,2,3, \ldots$, we define exponents λ_{e} μ_{ρ}, ν_{e} by the recurrences formulae,
and

$$
\begin{gather*}
\lambda_{\varrho+2}=3 \lambda_{\varrho+1}-\lambda_{Q}, \mu_{Q+2}=3 \mu_{Q+1}-\mu_{Q}, \nu_{Q+2}=3 v_{Q+1}-\nu_{Q} \tag{13}\\
\lambda_{1}=0, \lambda_{2}=1, \lambda_{3}=3, \lambda_{4}=8, \lambda_{5}=21, \ldots \\
\mu_{1}=-1, \mu_{2}=0, \mu_{3}=1, \mu_{4}=3, \mu_{5}=8, \ldots \tag{14}\\
\\
\nu_{1}=1, v_{2}=2, v_{3}=5, v_{4}=13, v_{5}=34, \ldots
\end{gather*}
$$

It may be remarked that the Fibonacci numbers are 1, 2, 3, 5, 8, 13, 21, ..., so that
(14) consists essentially of sequences of alternate Fibonacci numbers.

Also

$$
\begin{equation*}
x_{\sigma+1}^{3}+a^{\lambda} b^{\mu} c^{y^{\prime} \sigma}=x_{\sigma} x_{\sigma+2}, \text { for } \sigma=2,3, \ldots \tag{15}
\end{equation*}
$$

The congruence $a x^{3}+b y^{3}+c \equiv 0(\bmod x y)$.
We suppose $x_{1}, x_{2}, \ldots x_{Q}$ determined from these equations and then x_{Q+1}, x_{Q+2} satisfy

$$
\begin{align*}
& x_{\varrho+2}^{3}+a^{\lambda_{\varrho+1}} b^{\mu_{\varrho+1}} c^{\nu_{Q+1}} \equiv 0\left(\bmod x_{\varrho+1}\right) \tag{16}\\
& x_{Q+1}^{3}+a^{\lambda_{Q}} b^{\mu_{Q}} c^{\nu_{\varrho}} \equiv 0\left(\bmod x_{\varrho+2}\right) \tag{17}
\end{align*}
$$

Then we can take as a particular solution
and

$$
\begin{equation*}
x_{\varrho+1}=x_{\varrho+2}^{3}+a^{\lambda}{ }_{Q+1} b^{\mu_{Q+1}} c^{\nu Q+1} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
x_{Q+2}=a^{3 \lambda_{Q+1}-\lambda_{\varrho}} b^{3 \mu_{Q+1}-\mu_{Q}} c^{3 \nu_{Q+1}-\nu_{Q}}+1=a^{\lambda_{Q+2}} b^{\mu_{Q+2}} c^{\nu_{Q+2}}+1 . \tag{19}
\end{equation*}
$$

Clearly $\left(x_{Q+2}, a b c\right)=1$ and so $\left(x_{Q+2}, x_{\varrho+1}\right)=1$. Since $x_{\varrho+2} \equiv 1(\bmod a b c), x_{Q+1} \equiv 1(\bmod$ $a b c)$, then $x_{\varrho} \equiv 1(\bmod a b c)$. Hence $\left(x_{\varrho+1}, x_{\varrho}\right)=1,\left(x_{\varrho}, x_{Q-1}\right)=1$ etc.

It may be remarked that we might take as other particular solutions
and then

$$
-x_{\varrho+1}=x_{\varrho+2}^{3}+a^{\lambda_{\varrho+1}} b^{\mu_{\varrho+1}} c^{y+1},
$$

$$
\pm x_{Q+2}=-a^{2} \varrho+2 b^{\mu_{Q+2}} c^{\nu_{Q+2}}+1
$$

The values of $x_{\varrho+1}, x_{\varrho+2}$ in (18), (19) give a value for x_{1}, x_{2}. We show now that x_{2} is a polynomial in a, b, c, of degree λ_{Q+2}^{2} in a. Since the coefficients are positive and the degrees are steadily increasing with ϱ, it follows that the values of x_{2} found in this way are all different and so we have an infinity of solutions in x_{1}, x_{2}.

Let the degrees in a of $x_{\varrho+2}, x_{\varrho+1}, \ldots$ be $A_{\varrho+2}, A_{\varrho+1}, \ldots$ Then from (19), $A_{\varrho+2}=\lambda_{\varrho+2}$, and from (18), $A_{\varrho+1}=3 \lambda_{\varrho+2}$ since $3 \lambda_{Q+2}>\lambda_{Q+1}$. Also from (15),
if $3 A_{\sigma+1} \neq \lambda_{\sigma}$. Hence

$$
A_{\sigma}+A_{\sigma+2}=\max \left(3 A_{\sigma+1}, \lambda_{\sigma}\right)
$$

$$
\begin{aligned}
A_{\varrho} & =3 A_{\varrho+1}-A_{\varrho+2}=8 \lambda_{\varrho+2}=\lambda_{4} \lambda_{\varrho+2} \\
A_{\varrho-1} & =\max \left(3 \lambda_{4} \lambda_{\varrho+2}, \lambda_{\varrho-1}\right)-A_{\varrho+1} \\
& =21 A_{\varrho+2}=\lambda_{5} A_{\varrho+2} .
\end{aligned}
$$

We easily prove by induction that for $\tau=-2,-1,0, \ldots \varrho-2$,

$$
A_{0-\tau}=\lambda_{\tau+4} A_{\varrho+2}
$$

For if the result is true for $\tau, \tau+1$, it is true for $\tau+2$ since
or

$$
A_{\varrho-\tau-2}+A_{\varrho-\tau}=\max \left(3 A_{\varrho-\tau-1}, \lambda_{\varrho-\tau-2}\right),
$$

since

$$
A_{\varrho-\tau-2}+\lambda_{\tau+4} A_{\varrho+2}=3 \lambda_{\tau+5} A_{\varrho+2}
$$

$$
3 A_{\varrho-\tau-1} \geq 3 A_{\varrho+2}=3 \lambda_{\varrho+2}>\lambda_{\varrho-\tau-2} .
$$

[^2]Hence from (13),

$$
A_{\varrho-\tau-2}=\lambda_{\tau+6} A_{Q+2}
$$

and so for $\tau=\varrho-4$,

$$
A_{2}=\lambda_{\varrho+2} A_{\varrho+2}=\lambda_{\varrho+2}^{2}
$$

We now come to Theorem 1. Consider the equation

$$
\begin{equation*}
z^{2}-k^{2}=a b\left(x^{3}+c y^{3}\right), \quad c \neq 0 . \tag{20}
\end{equation*}
$$

Denote by θ, φ, ψ the roots of $t^{3}=c$.
Take

$$
\begin{gather*}
z+k=a \prod_{\theta, p, \psi}\left(p+q \theta+r \theta^{2}\right), \tag{21}\\
z-k=b \prod_{\theta, p, \psi}\left(p_{1}+q_{1} \theta+r_{1} \theta^{2}\right) \tag{22}
\end{gather*}
$$

where $p, q, r, p_{1}, q_{1}, r_{1}$ are integers. Then multiplying (21), (22) and replacing θ^{3} by c and θ^{4} by θc, we have equation (20), where

$$
x=p p_{1}+\left(q r_{1}+q_{1} r\right) c, y=p q_{1}+p_{1} q+c r r_{1}
$$

Also $p r_{1}+p_{1} r+q q_{1}=0$, and

$$
2 k=a\left(p^{3}+c q^{3}+c^{2} r^{3}-3 c p q r\right)-b\left(p_{1}^{3}+c q_{1}^{3}+c^{2} r_{1}^{3}-3 c p_{1} q_{1} r_{1}\right)
$$

Take $r_{1}=0, p_{1}=q, q_{1}=-r$. Then
and.

$$
x=p q-c r^{2}, y=-p r+q^{2}, z-k=b\left(q^{3}-c r^{3}\right)
$$

$$
2 k=a\left(p^{3}+c q^{3}+c^{2} r^{3}-3 c p q r\right)-b\left(q^{3}-c r^{3}\right)
$$

Take now $c=b / a$, and so

$$
z^{2}-k^{2}=a b x^{3}+b^{2} y^{3},
$$

and

$$
2 k=a p^{3}+\frac{2 b^{2}}{a} r^{3}-3 b p q r
$$

It is easy to impose conditions upon a, b so that this equation has integer solutions in p, q, r and

$$
x=p q-\frac{b}{a} r^{2}, y=-p r+q^{2}, z=k+b q^{3}-\frac{b^{2}}{a} r^{3},
$$

are integers. In particular, take $p=3 b P, r=3 R a, k=27 a b^{2} j$, where j is an integer. Then x, y, z are integers and

$$
2 j=b P^{3}+2 a R^{3}-P R q .
$$

From Theorem II, this has an infinity of integer solutions in P, R, q. Since $b \mid x$ and $b \mid z$, on putting $b x$ for x, and $b z$ for z, we see that

$$
z^{2}-(27 a b j)^{2}=a b^{2} x^{3}+y^{3}
$$

has integer solutions given by

$$
\begin{aligned}
& x=3 P q-9 a R^{2}, y=-9 a b P R+q^{2} \\
& z=27 a b j+q^{3}-27 a^{2} b R^{3}
\end{aligned}
$$

where $\quad 2 j=b P^{3}+2 a R^{3}-P R q$.
The infinity of integer solutions in P, R, q gives an infinity of integer solutions in x, y, z since the value of z shows at once by Thue's theorem that if z were bounded, then also q, R would be bounded.

It may be noted that if in (20) we take $a=b=1, p_{1}=-p, q_{1}=0, r_{1}=r$, we see that integer solutions of

$$
z^{2}-k^{2}=x^{3}+c y^{3}
$$

are given in terms of integer solutions of

$$
\begin{equation*}
2 p^{3}+c q^{3}-3 c p q r=2 k \tag{23}
\end{equation*}
$$

by means of

$$
\begin{gathered}
x=-p^{2}+c q r, y=-p q+c r^{2} \\
z-k=-p^{3}+c^{2} r^{3}
\end{gathered}
$$

We can easily impose conditions other than $k \equiv 0(\bmod 27 c)$ to make obvious some solutions of (23) for p, q, r.

Postscript. - The conjecture is false in the simple nontrivial case

$$
x^{2}+y^{2}+z^{2}+4 x y z=1
$$

After I spoke to Dr Cassels about this equation, he proved very simply that the only integer solutions were those typified by $y=z=0$.

Note added in reading the proofs, Aug. 1952. - Hurwitz has proved that if a is an integer $\neq 1,3$, the only integer solution of the equation

$$
x^{2}+y^{2}+z^{2}+a x y z=0
$$

is $x=y=z=0$.
See his Mathematische Werke 2, p. 420.
St John's College, Cambridge, England.

[^0]: 1"On cubic equations $z^{2}=f(x, y)$ with an infinity of integer solutions" Proceedings of the American Mathematical Society 3 (1952), 210-217.

[^1]: ${ }^{1}$ I have previously found some equations of this kind in a paper "Note on cubic diophantine equations $z^{2}=f(x, y)$ with an infinity of integral solutions'. (Journal of the London Mathematical Society 17 (1942), 199-203).

[^2]: 6-513804. Acta mathematica. 88. Imprimé le 28 octobre 1952.

