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Introduction. 

Let /(x) and K(x)  be two functions integrable over the interval ( - -0% + oo). 

I t  is very well known that  their composition 

+ o o  

f /(t)K(x--t)dt 

exists, as an absolutely convergent integral, for almost every x. The integral can, 

however, exist almost everywhere even if K is not absolutely integrable. The most 

interesting special case is that  of K ( x ) =  1/x. Let us set 

+ o o  

i(x) = 1 f !_(') dr. 
~ d x - - t  

- - o 9  

The function 7 is called the conjugate of ] (or the Hilbert transform of/) .  I t  exists 

for almost every value of x in the Principal Value sense: 

/(x) = lira 1 ( f +  dt .  
e ~ o  ~ \ d  i 

Moreover it is known (See [9] or [7], p. 317) to satisfy the M. Riesz inequality 

+ o o  + ~  

(1) [ f 171" ax] 1'; -< A; [ f  I/I; ax] ''~, 1 < ~ < ~ ,  
- o o  - o o  

where Ap depends on p only. There are substitute result for p = 1 and p = c~. 

The limit / exists Mmost everywhere also in the ease when ] (t)dt is replaced there 

by d F(t) ,  where F( t )  is any function of bounded variation over the whole interval 

( - -0% + oo). (For all this, see e.g. [7], Chapters VII and XI, where also biblio- 

graphical references can be found). 
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The corresponding problems for functions of several variables have been little 

investigated, and it is the purpose of this paper to obtain some results in this direc- 

tion. T o  indicate the problems we are going to discuss let us consider two classical 

examples. 

Let  /(s, t) be a function integrable over the whole plane, and let us consider in 

the half-space z > 0 the Newtonian potential  u (x, y, z) of the masses with density 

] (s, t). Thus 

u(x'Y'z) = f f /(s't) dsdtR ' R2= (x--s)~ + (Y--t)2 + z2' 

the integration being extended over the whole plane. Let  us also consider the par- 

tial derivatives 

R 3 , u x = - -  l ( s , t )  R~ d s d t .  

Here - -  (4 7~) -1 u~ is the Poisson integral of /, and it  is a classical fact tha t  it tends 

to ] (x ,y )  as z-~ O, at  every point (x,y) at  which / is the derivative of its indefi- 

nite integral. On the other hand, by formally replacing z by 0 in the formula for 

Ux we obtain the singular integral 

f f  x_s / (s, t) [(x - -  s ) i +  ( y - -  t)2] 3/2 ds dr. 

I t  can be written in the form 

f f  /(s, t) K ( x - - s , y - - t )  ds dr, (2) 

with 
X 

(3) K (x, y) = (x 2 + y2)312" 

I t  is a simple mat ter  to show that  at  every point (x0, Y0) at  which / is the deriv- 

ative of its indefinite integral the existence of the integral is equivalent to the ex- 

istence of lim Ux, as the point (x, y, z) approaches (Xo, Y0, 0) non-tangentially (and 

that  both expressions have the same value), but  neither fact seems to" have been 

established unconditionally.  Here again the integral (2) is taken in the principal 

value sense, which in two dimensions means that  first the integral is taken over the 

exterior of the circle with center (xo, Yo) and radius e, and then E is made to 

tend to 0. 

Another example, of a somewhat similar nature, arises from considering in the 

plane the logarithmic potential  u of masses with density /(s, t). Hence 
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u(x'Y)= f f /(s't) l~ l- r2= (x-s)2 + (Y-t)2" 

If in order to avoid unnecessary complications we assume that  / vanishes in a 

neighborhood of infinity, then in any finite circle u is the convolution of two inte- 

grable functions, and so the integral converges absolutely almost everywhere. The 

integral obtained by formal differentiation, say with respect to x, is 

ff x - s  d s d t ,  (4)  - / (s,  t) (x  - 8) 3 + (u - t) ~ 

and so, as a convolution of two integrable functions, again converges absolutely 

almost everywhere and represents a function integrable over any finite portion of 

the plane. Using this fact one proves without difficulty (see [1]) tha t  the integral 

actually represents ux. Thus ux and uu exist almost everywhere. 

Let  us, however, differentiate the integral (4) formally once more, with respect 

to x and with respect to y. We get the integrals of type (2) with 

x ~ _ y2  2 x y 
(5) K (x, y) (x 2 § y~)2, K (x, y) (x 2 + y2)2' 

respectively. These two kernels are not essentially different, since one is obtained 

from the other through a rotation of the axes by 45 ~ I t  may also be of interest 

to observe that  they appear respectively as the real and imaginary parts of 

1 1 

z ~ = i x + i y ) 2 "  

The existence almost everywhere of the integrals (2) in the cases (5) has been 

established by Lichtenstein for functions ] which are continuous (or, slightly more 

generally, Riemann integrable). This result seems not to have been superseded so 

far, though the existence almost everywhere of uzx, u~y, u ~  together with the rela- 

tion Ux~ + uy~ = - - 2 ~ / . w a s  established by Lichtenstein [6] (see also [2], [8]) in  the 

much more general case of ] quadratically integrable. 

The kernels (3) and (5) have one feature in common: they are of the form 

g ( ~ ) - 2 ,  x = Q c o s %  y = ~ s i n %  

where g(~) is a function of angle ~ (actually a trigonometric polynomial)whose 

mean value over (0, 2 z) is zero. Several examples of kernels of this type could be 

considered, but  we shall now state the problem in a more general form. 
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Suppose we have a function /(Xl, X2 , . . .  Xn) integrable over the whole n-di- 

mensional space, and a kernel 

K(xl, z2, . . .  x~) = ~-~2(~1, ~2 . . . . .  ~ ) ,  

where x j - ~  cos ej for all j, and :q, e2 . . . .  , ~ are the direction angles. Wha t  can 

be said about the existence and the properties of the integral 

(6 )  ] ( x l ,  . . . .  , f /(s,, . . . ,  sn) d s l . . . d s n ?  

An answer to this problem is our main object here. 

This is the plan of the paper. 

in  Chapter I it will be shown that,  i/ / E L  p, ] < p  < co, then the integral (6) 

converges, in the metric L p, to a /unction ]E L p, provided 

a) the mean value o/ [2 over the unit sphere is zero, 

b) the /unction ~ (~.1, ~2 . . . . .  ~ )  satis/ies a smoothness condition (See Chapter ]I) .  

(In the case p = 2 condition b) can be considerably relaxed). 

The function ]" satisfies the condition analogous to (1). The cases p = 1 and 

p = ~ are also investigated. 

The main result of Chapter I I  is tha t  under conditions a) and b) the integral 

(6) exists almost everywhere not only for p >  1, but  also for p = 1. The result 

holds, if / d s ~ . . .  dsn is replaced by d/~, where # is an arbi t rary  mass distribution 

with finite total  mas~. I f  / E L ~, p > 1, the part ial  integrals of the integral (6), tha t  

is the integrals ovei' the exterior of the sphere of radius s and center (x~, x 2 . . . .  x~) 

are majorized by a function of L p, independent of e. 

Chapter I I I  is devoted to some applications of the results previously obtained 

to the problem of the differentiability of the potential.  

Other problems connected with our main topic will be considered in an an- 

other paper.  

C H A P T E R  I. 

Mean Convergence of Singular Integrals. 

Let  E ~ be the n-dimensional euclidean space, i f  P and Q axe points in E ~, 

( P -  Q) will denote either the vector going from Q to P, or the point whose coordi- 

nates are the components of ( P - Q ) .  The length of ( P - - Q ) w i l l  be denoted by 

I P -  Q [, and E will stand for the surface of the sphere of radius 1 with center a t  

the origin of coordinates, O. 
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We shall be concerned with kernels of the form 

K ( P - - Q )  = I P - - Q [ - ~  f 2 [ ( P - Q ) ] P - Q I - - 1 ] ,  

where ~Q(P) is a function defined on E and satisfying the conditions 

(~) .( ~ ( P )  d~ = 0 
2: 

and 
I ~o(P) - 9 ( p ) [  _< o 9 ( ] P -  Q]), 

where w is an increasing function such that  o9 (t) -> t, and 

1 oo 

�9 t = co t < ~ c ~ . a  

0 1 

More precisely, we shall investigate the convergence of the integral 

(2) /r. (P) = f K~ (P - -  Q) / (0) d Q, 
E n 

where / (Q) is a function of L' ,  p >- 1 in E ~, dQ is the element of volume in E n and 

K~. (P Q) = 
o t h e r w i s e .  

Using HSlder's inequality, or the boundedness of K~., we see tha t  (2) is absolutely 

convergent for 1 < p < c~ and p : 1 respectively. 

We shall begin by proving that  in the case when the /unction / in (2)belongs to 

L2: ~ converges in the mean o~ order two as 2-~ oo. 

Let  
K~. : I K ( p -  ~  i f , .  > IP-O[>-~/~, 

[ 0 otherwise. 

As we shall see, the Fourier transform of K~, converges boundedly as ,u and ;t tend 

to infinity successively, and then the desired result will follow easily. 

In polar coordinates we have the following expression for the Fourier transform 

/s of K~,, 
# 

t f l d ~  D(Q, )e  i . . . . .  ~dcr, K)4t (P)  : f K~/, (Q) e i r e c ~  : 1  
E n 

oo 

1 T h i s  i m p l i e s  t h e  c o n v e r g e n c e  of o9 ' i -  for  e v e r y  e : >  0 ,  a fae~ we  sha l l  u se  in  w h a t  fo l lows .  

I t  m a y  be  a d d e d  t h a t  t h e  c o n d i t i o n  o9 (t) --> t is q u i t e  h a r m l e s s ,  s i n c e  we  c a n  a l w a y s  r ep l ace  

Co (t) b y  ~VIax { 0  (t),  t}.  T h e  ease  co (t) = t", ~ > 0 ,  is, of cou r se ,  t h e  m o s t  i m p o r t a n t  one.  
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where r = I P - -  01,  e ~ I Q - -  01,  Q' = ( Q -  O) I Q -  0) 1 1, and (~ is the angle be- 
tween the vectors (P --  O) and (Q - 0). Introducing the variable s = ~ r we can write 

r/t 

y ,f -fr~"(P)= s t2(Q')e'~~176 
rl~ Z 

and owing to the fact that 

f ~(Q')da = O, 
X 

we also have 

d s ((2') [J . . . .  
= f T f " e S] 

rl). X 

da 

rtt 

8 U s ,  

Z r/)~ 

Now, if ~ 7 < 2 '  the inner integral in the last expression converges as 2 and # tend 

C 
to infinity, and it  is not difficult to verify that  it never exceeds 2 log ] ~  in ab- 

solute value, where c >  1 is a constant. But  D(Q')  is a bounded function and 

the integral 

X 

is finite, and therefore i/2~ is bounded and converges, as # and 2 tend to infinity 

successively. Therefore, if /~x is the Fourier transform of Ka ( P -  O)E L 2, we have 

l i m / ~ ,  = /~a ,  
/ t~Oo 

and /Y~ converges boundedly to a func t ion /~  as 2-~ oo. 

Let  now 

/~ (P) = f K~. (P - Q) / (Q) d Q. 
E n 

Then, if /~  is the Fourier transform of i ~ ,  we have 

and since K~,-~ K~ boundedly as /~ - ,0%/~ ,  converges in the mean to K~/ .  On the 

other hand, h ,  converges to /~ as # -+  co and therefore we have 

a) = & i. 
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Letting now ~ tend to infinity, ] ~  will converge boundedly to /~ ,  and ]~. will converge 

in the mean to K / .  Therefore [~ will converge in the mean to the Fourier trans- 

form of /~ s This completes the argument. 

R e m a r k .  In the above argument we used the fact that  t9 (P') was merely 

bounded. Actually the only property of Y2 we need (except for (1)) is the uniform 

boundedness of ; I z g ( Q ' ) ]  log I~,~:~-J d a .  This condition is certainly satisfied if 
X 

log + 191 is integrable. 

Before we pass to the general case we shall prove some lemmas which will be 

needed also in a later section. 

Given a non-negative function / (P)  not identically zero in E ~, we shall denote 

by /* (t), 0 ~ t ~ c~, any non-increasing function equimeasurable with / (P) .  If  ] be- 

longs to L ~, 1 < - p ~ ,  in E ~ , then  ]*(t) belongs to L p in 0 ~ t ~ c ~  and thus is 

integrable over every finite interval. In this case we introduce also the function 

l / / ,  y = fli(x) = x (t) dt; x > O ,  
0 

which is continuous and either strictly decreasing or possibly constant in an interval 

(0, xo) and strictly decreasing for x-> x o. In both cases we have fir (x)-+ 0 as 

x-~c~.  The function inverse to y = f l r ( x )  will be denoted by x = f l r ( y ) .  If fir(x) 

tends to infinity as x tends to zero, f i r (y) is  well defined for y ~  O. If f l I (x) is  

bounded, fll (y) is well defined for all y less than the least upper bound Yo of fir (x). 

In this case we extend the domain of fir(y) by defining f i r (y)= 0 for y ~ y o  and 

fir (Y0) -- lira flf (y). 
Y ~  Yo 

Thus we have 
flf [/~I (X)] ~ x, fir [ff (Y)] -< Y 

lim fir (y )  = c<), lira fir (y )  = O. 
y ~ 0  y ~ o O  

We now have the following: 

L e m m a  1.1 Given an / (P) >- 0 o] L' ,  p >- 1 and any number y ~ O, there is a 

sequence o] non-overlapping cubes Ik such that 

1 In  the  one-d imens iona l  case th i s  l e m m a  is conta ined  in a l emma b y  F. RIEsz (See [7J, 
page  242). 
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, f  y <- i i~ l  / ( P )  d P  <- 2~y;  ( I t=  1, 2 , . . . ) ,  

ltc 

and / (P) <-y almost everyu,]tere outside Dy = O Ik . Moreover 
k 

if  Y <- iDyi. /(P)dP <- 2~Y 
Dy 

D~ I <- ~ (y) and 

Proof .  On account of the properties of /~s (x), for the given y we can find an 

x such tha t  f i r ( x ) < y .  Then over any cube I of measure x we have 

iII /(P)dP<-Z f ( t ) d ; < ~ ( ~ ) < y .  
I 0 

Divide now E n into a mesh of cubes of measure x and carry out the following 

process: divide each cube into 2 ~ equal cubes and select those where the average of 

the function / ( P )  is larger than  or equal to y. Then divide the remaining ones 

again in 2 ~ equal cubes and select those where the average of the function is larger 

than or equal to y. Continuing this process we obtain a sequence of cubes Ik which 

we shall show have the required properties. First  of all, we obviously have 

[-a I ~ f (p) d P  >~ y. 
I k 

Moreover, since every selected cube I~ was obtained from dividing a cube I where 

the average of the function / ( P )  was less than y, we also have 

and therefore 

f / ( e ) d P  <_ f / ( P ) d P  Z l i l y  = l a i ~ y ,  
I k I 

l a l  / (P)dP <~ y. 
Ik  

Now, every point outside Dy = U Ik is contained in arbitrari ly small cubes over 

which the average of / ( P )  is less than y. Therefore the derivative of the indefinite 

integral of / cannot exist and be larger than y, and since ] (P )  iS almost everywhere 

equal to the derivative of its indefinite integral, we conclude tha t  / (P)_<  y almost  

everywhere outside Dy. 

Finally we have 
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and hence 

o r  

yls,~l _~ f l (P)dP <_ 2~yls,<l, 

m m 

y~:lz,~l < f l (P)dP <_ 2ny~;Is~I, 
1 m 1 

U I k 
1 

1 ; I ( P ) d P <  2"y.  
Y<~ m I 

1 U I k 
1 

Since ]~J I,~l= ~ l I ~ l ,  it follows that 
1 1 

1 U I k 
1 

Therefore 

and 

1 

and letting m tend to infinity we get I D~ I_< fir(y). Therefore ]D~ l is finite, and 

repeating the argument above, replacing now ~ ' l I~ I by ~ l I k  I = i Dy I, we shall 
1 1 

finally get 

' ( 
Y-< iD;i .  /(P)dP<-2~Y" 

D y  

This completes the proof. 

L e m m a  2. Let / >  0 belong to L p, l <_ p <_ 2, in E ~, and let Ey be the set o/ 

poTnts where the ]unction 

T~ (P) = f K~ (P -- Q) / (Q) d Q 
E n 

exceeds y in absolute value. Then 

(3) lEvi<_ ;12 . f  [/(P)]~dP + c2fiS(y), 
E n 

where [/(P)]y denotes the /unction equal to i (P) i/ /(P) <_ y and equal to y otherwise, 

and cl and c2 are constants independent o/ ~. 
Proof. In order to simplify notation, every constant depending o~lv on the 

dimension n and the function t9 will be denoted by c simply. 
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Let D.~ be the set of Lemma 1 and define 

h (P) = 

[ / ( P )  otherwise. 

Then / (P) = h (P) + g (P), with g (P) = 0 outside Dy, and 

f g (P)dP= O, k= ~, 2 . . . . .  
Ik 

Define now 

~ (p) = f K~ (P --  Q) h (Q) d Q, 
E n 

77~ (P) = f K~ (P --  Q) g (Q) d Q, 
En 

and denote by E1 the set of points where IL(P)I ~ y/2, and by E 2 that  where 

I~ (P)  I -> u/2. 
As we have already shown (see (2 a)), 

(4) f l~(P)l~dP < c f  /~(Q)~dQ, 
E n En 

where c is a constant independent of 2. From this it easily follows that  

4c( 
I E11 <- ~-. h (Q)~ d Q. 

En 

Now, on account of the definition of h, we have h ( P ) = / ( P )  < y outside D~ and 

therefore h (P) = [] (P)]~ outside Dy ; moreover h (P) <_ 2ny in D~. Therefore, denoting 

by D~ the eomplement of D~, we have 

f h(Q)2dQ = .f h(Q)2dQ + .(h(Q)~dQ <_ 2~"y~lD~t + f [/(P)]~dP, 
E n Dy D'y En 

and 

I EI] -< [/(P)]y d P +  clD~ I. 
En 

To estimate the measure of E2 we proceed as follows. Denote by S~ the sphere 

with the same center as Ik,  and radius equal to the diameter of Ik, and call 
oo 

D~ U S~ and - '  = Dy its complement. Then t D ~ I <  c lDul  and 
1 

IE~I _< IDol+ IE~n~; I _< ~ID~I + IB~n~; I. 
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Since g ( P ) =  0 outside D~, we have 

~. (P) = ~ f g (Q) Kx (P --  Q) dQ. 
Ik 

L e t  us  n o w  e s t i m a t e  t h e  i n t e g r a l  of I g ~ (P ) [  o v e r  D ~ .  S u p p o s e  t h a t  P b e l o n g s  
- - !  

to Dy and consider one of the cubes Ik. If Ik has no points in common with the 

sphere with center at P and radius 1/~ we have 

f g (Q) K~ (P -- Q) d Q = f g (Q) K (P --  Q) d Q 
Ik Ik 

since K~. = K outside that sphere. Since the integral of g over Ik is zero we have, 

furthermore, 

f g (Q) K~ (P -- Q) dQ = .f g (Q) [K (P -- Q) - K (P -- Ok)] dQ, 
Ik lk  

where Qk is the center of Ik. Now, if P is outside Sk and Q is in Ik,  from the 

continuity properties of D and, by an elementary geometrical argument, we deduce 

that 
I K ( P  - -  Q)  - - g  ( P  - -  Qk) l _< c 1 P  - Qk I n o) [c  I 11'  I P - Qk I-1], 1 

and therefore 

f g(Q)K~ ( P - Q ) d Q I  < c I P - Q k l  n ~[~l/kl'~IP--Qkl 1].f ta(Q)ldQ. 
1 k I k 

On the other hand, if Ik intersects the sphere of radius 1/2 and center at P, and P 

is outside Sk, lk is entirely contained in the sphere of radius 3/2, and center at 

1 Since this argument is going to be used repeatedly, we shall give it here. Let us denote 
by R and S the projections of Q and Qk on the unit  sphere with center at P.  Then K ( P - - Q ) - -  
K ( P - - Q k )  can be writ ten 

s (R) s (S) s (R) - s (S) 

I P - q l  n IP -Qk l  '~ I p - q k t  n 

The second term on the right is numerically 

< c Ilk I lln < c 
- I P - Q k l  '~ I P - Q k l -  IP-Qk]  n 

For tile first term on the right, we have 

1 1 } s (R). 
+ { I P - Q  I ~ - LP-Q~ [~ 

{llk i .~ 

and thus 
IR--SI ~< c]Ik[ 11" IP-Qk1-1, 

I s (R) - s (S) [ ~ o) (I R - S [ ) <-- eo (c I I k  I1/n I p _ Qk 1-1). 

Collecting the results we obtain the desired inequality. 
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P, so that,  if y(t)  is the characteristic function of the interval (0,3) and c is a 

bound for /2, we have 
[K~(P--Q)] < c,U, 

or, for all Q in Ik ,  
IK~(P--Q)] <- c~  Y['~[ P - Q I ] .  

From this it follows that  

f g(Q)K~(P--Q)dQ < c,P fr(~[P-QI)Ig(Q)[dP, 
Ik I k 

and this combined with the estimate above gives 

15~(P)] <- ~ {c lP -Q~[  -~ o,[c[Ik]'~l P -  Q~l-~],fllg(Q)ldQ + 
Ik 

+ c2~fy(21P--Q])lg(O)ldQ} 
or lk  

15~(P)[ <- c,~ f y(),IP-QI)]g(Q)ldQ + 
Dy 

+ ~{c]P--Qk] "oo[c]Ikl""lP--Okl -~] f]g(O)}dO}. 
I k 

Integrating this over the complement - '  Dy of /)y we get (denoting by S' k the comple- 

ment of Sk) 

f ISz(P)[dP <_ c flg(Q)ldQf ~ 7(2{P--QI)dP + 
D'y .Dy E n 

+ { fllP-Q l o [clZ l'lnlP O~]-~]dPflg(Q)ldO}. 
S' k I k 

Now, on account of the properties of ~o (t), the integrals with respect to P inside the 

summation sign are easily seen to be less than a constant, and the inner integral in 

the first integral on the right is a constant, regardless of the values of 2 and P. Thus 

the last inequality reduces to 

f lev <_ cf lg(Q) ldQ. 
~ 'y  Dy 

Now, according to the definitions of g and h, we have 

[g(P)[ -< / (P )  + h (P), 
and 

f ]g(P)IdP <_ f [ / (P)  + h(P)]dP = 2 f / (P )dP ,  
Dy Dy Dy 

and by Lemma 1 the last integral does not exceed 2~y lDy l .  Therefore 
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f I~.(P)ldP <_ cyJD.I 
-D'y 

and 
IE.n~;I < c iv i l .  

Collecting all estimates we get 

[ E , l + l E . [ _ < y C  / [ / (P)]gdP+clD~ I. 
E n  

Since Evr 'E 1 O E2 and ] D~ I < / 3r (Y), Lemma 2 follows from the preceeding inequality. 

T h e o r e m  t .  Let ] (P) belong to L ~, l < p < co, in E ~, then the /unction 

j~ (P) = f K~ (P -- Q) / (Q) d Q. 
E n 

also belongs to L p, and 

[ f  l]~(e)l" dP] '"< A , [ f  l/(P)l" de/1" , 
E n E n 

where Ap is a constant independent o~ 2 and /. 

Proof .  Without loss of generality we may assume tha t  / (P)> O. 
start with the case 1 < p < 2. According to Lemma 2, 

E n 

We shall 

where E~ is the set of points where I[~ (P)] exceeds y, and cl and c~. are absolute 

constants. 

We have 
oo 

f [[~(P)['de=p f lE~[-'-ld Y Y ,  
E n  0 

and replacing on the rig~ht [Eul by its estimate we get 

oo oo  

i (P)I'dP <_ c. + c. / ( y ) p + - ' d . .  
Err 0 E n 0 

For the first integral on the right we have 

o0 r  

c,f'P--~ - [/(P)J2udPdy=c, dP p y  .-'[/(P)]2u y~ dy, 
0 E n  E n  0 

7 -  523804.  Acta mathematica. 88. I m p r i m 6  le 29 oc tob re  1952. 
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and since [/(P)]~ = y for y <_/(P), and [/(P)]~ = / ( P )  for y >>_/(P), the right hand 

side of the last expression can be replaced by 

f ( P )  r162 

c. f ..[ f ... ,... f ... 
E n 0 f ( P )  

c 2 

E n E n 

To estimate the second integral, we set y =f i f  (x) and get 

.['flr (y)pyV l dy = _ f xdf l f  (x). 
0 0 

Now 
x x 

If [ j,. x N  (x) = ~ l : i  /*(t)dt < (t)Vdt, 
0 0 

and since ](p) belongs to L p so does /*(t), and x f l f @ ) ~ 0  as x -~0 .  Therefore 

we have 

- f  xdflf (x) < .f flf (x) dx 
0 0 

and by a familiar theorem of Hardy (See [7], p. 72) the last expression does not exceed 

( . ) ' I ' , .  p- i . (t) ~dt = / ( P ) ' d P .  
0 E n 

Collecting all inequalities, we finally get 

(5) f l j~ (p)  l,d p _< [ 2 ~  p " [2-+c.(-:~) ]f  /(P)VdP. 
E n  E n 

In the case when ] belongs to L v with p >  2 let g be any function belonging to 

L q (1 /p+l /q=l )  and vanishing outside a bounded set. Then 

f g (P) 7~ (P) dR = f g (P) dP fK~ (P - Q) / (Q) d Q, 
E n  E n E n 

and inverting the order of integration, which is justified since the double integral is 

absolutely convergent, 

f g(P)[~(P)dP = f /(Q) dQ f K ~ ( P - - Q ) g ( P ) d P  = f / ( - -Q)~j(Q)dQ,  
E n E n E n E n 

where g' (P) = g (--  P). 
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Therefore 

E n En En Ert 

and since q < 2 we may replace the last integral by the corresponding integral of 

]g (Q) t times Aq q, and we get 

- -  q ~ l l q  

f g(e)[ (P)dP < A [f l/(Q)I'dQ] [flg(Q)l dQj , 
E ~ E n Er t  

which implies that 

[f l] (p)l A,[f l/(P)l" dP]< 
E n E n 

This completes the proof. 

Remark .  The inequality (5) leads to a very crude estimate for the least value 

A* of Av,  namely 

This can easily be improved to 

For, anyway, A* is finite, and so, using instead of (4) the inequality 

E n E n 

and repeating the proof of Lemma 2, we obtain instead of (3) the inequality 

elf [ E~ [ <- y4 [ / (P)]~dP + c~flr(y) 
~ n  

for all ] E L  p, 1 < p < 4 which, by an argument similar to the one used in the 

P preceding theorem, leads to (7). Since Ap = Aq for q p - - 1 '  we have 

Aq = O(q); q >_ 2. 

Another way of obtaining (7) would be to apply the theorem of M. Riesz on the inter- 

polation of linear operations (See [7], p. 198) to the two exponents p < 2 < q. 
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T h e o r e m  2. Let / (P)  be a /unction such that 

f l/(P)lO + log+] / (P)] )dP  < c~. 
E n 

Then ]~ i s  integrable over any set S o/ /inite measure and 

n + l  1 

f lL IdP<-c f l / IdP+cf l / I  log + ( ISI"  I/I)dP +elSI  -~, 
S E n E n  

where c is a constant independent o~ S and 2. 

Proof .  We may assume, without loss of generality, that  / (P)  ~ 0. Let Ev be 

the set of points where ]~(P)  l > y  and E'~ = E y f l S .  Then 

f l]aldP = .fllE'~ Idy. 
S 0 

z,,~ow I E'~I_< IE~ I and IE'~I_< ISI, and therefore we may write 

YO r Oo 

.f li~ldP <-.f l~ldy + f lE~ldy = I~lYo + f lE~ldy, 
S 0 YO YO 

Yo being any positive number. 

According to Lemma 3, we have 

IE I f E/(P)I dP + c2r 
E n 

and from this it follows that  

I E ,  I dy  <_ cl dy  [/(P)]~ d P  + c2 (y) dy. 
Yo 0 E n Yo 

Now, in the proof of Theorem 1 we have shown that  the first integral on the right 

does not exceed a constant multiple of the integral 

f / (P) d P. 
E n 

On the other hand, if we select Y0 = flI(]S]),  the integral on the right reduces, after 

introducing the variable x = fll (y) and integrating by parts, to 
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o ISI ISI x 

f ,. (.) ,. = f . , ,. (x) f ,. (.) ,. : f ,x f (,).,= 
Y0 lSI o o o 

n+l 
Now, the convex functions q) (x) = x log + (IS[ '~ x) and 

n~l 
y l S I -  '~ for 0 _ < y <  l, 

~/J (Y) = ~+1 

e ~-1 IS I- '~ for l < y ,  

ISl 

fl * (t) log IS I dr. 
t 

0 

are conjugate in the sense of Young 1, so that Young's inequality gives 

Is l  ISl 

f t'/, 1 IS[ f n+l /*(t) l o g l S ~ d t  2 (t) 21og d t < 2  /log§ ~ / ) d P +  
t ~ t 

0 0 E n 

ISl 

- '+'  l i!~Iil/~dt ( "-~ . + 2 1 s l  ~ = 2  / l o g + ( I s l  ~ / ) d P + ~ l s l  " "  

J \ t l  
o E n 

Finally, collecting results and observing that 

IsI yo = 

we establish our assertion. 

ISl 
s l P s ( I s I )  = f /* (t)dt  <_ .f / dP ,  

o E n 

T h e o r e m  3. 

w e  h a v e  

Let / be mtegrable in E ~. Then i/ S is a set o/ /inite measure 

f ", If l [7~(P)F~dP <_ Is I / (m) ldP  , 
S E n  

where c is a constant independent o/ s, S, 2 and /. 

ProoL Again we shall only consider the case when / >  0. We have 

E n 

From this it follows that 

+ c, g (y). 

Y lE~ [ <- c l f  [/(P)Jy [/(P)]Yy d P  + c2 yfir (y). 
E n 

1 See [7], p. 64. 
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Since 1 [/(p)]~ _< 1, and since for fir (y) = x we have 
y 

we get 

x 

y fir (y) = x fir (x) = f / *  (t) d t <_ f t (P) d P, 
0 E n 

yIE~I ~ cf/(P)dP. 
E n 

If we write E'~ = E~ 0 S, we have 

Iz'~l-< Isl ,  IE'~I -< levi 
and 

S 

If we set here 

co oo r 

0 0 

[f ]ff < ( l - - s )  d y +  ( 1 - - E ) c  / ( P ) d P  
0 E n Y o  

Yo = [Sl-* c f /(P) dP, 
E n  

our assertion follows. This completes the proof. 

T h e o r e m  4. Let # (P) be a mass-distribution that is a completely additive/unc- 

tion o/ Borel set in E ~, and suppose that the total variation V o/ # in E n is /inite. 

Then i/ 
]~(P) = f K ~ ( P -  Q)d# (Q), 

E n 

over every set S o /  /inite measure we have 

f c is VI_~ ]~(P)I I -~dP < -  IS . 
S 

Proof .  This theorem is a straightforward consequence of the preceding one. 

Let  H (P) be a non negative continuous function vanishing outside a bounded 

set and such that  

f H ( P ) d P  = 1. 
E n 

Then it is known that  (see e.g. Lemma 1 in Chapter II) 

/~ (P) = l i m  k n f H [k (P - -  Q)]/~ (Q) d Q 
E n  
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ahnost everywhere. But  

k n f H [k (P --  Q)] T~ (Q) d Q = k n f H [/c (P --  Q)] d Q f K~ (Q - R) d#  (R) = 
E n E n E n 

= f K~ (P --  Q) [/~ f H [k (O -- R)] d/~ (R)] d Q, 
E n E n 

and thus from the preceding theorem it follows that  

S E n E n E n 

I t  is now readily seen that  the last integral on the right does not exceed V. 

Therefore, substituting V on the right and applying Fatou's Lemma to the left-hand 

side we get the theorem. 

T h e o r e m  5. Let / (P)  be a /unction in E n such that 

fl/(P)l(1 + tog+ I P - o l  + log + I/(P)lldP<oo; 
E n 

then /o~" ~ >_ 1 the /unction 

~ (P) : L (P) - K1 (P - o) f / (Ql.d Q 
E n 

is integrable and 

f l -~(P) ldP ~ e f l/(P)[(1 + log+ I P - - O [  + log + I/(P)I)dP + c, 
E n E n 

where c is a constant independent o~ ~ and /. 

Proof .  

Let 

For the sake of simplicity of notation we shall denote any constant by c. 

]o(P) = / ( P )  if l P - O l  <_ 1, 
and 

/o (P) = 0 

otherwise, and /k  (P) = / (P) if 2 k-1 ~ ] P --  0 [ _< 2~,/k (P) = 0 otherwise, k = 1, 2, . . . .  

Let 

and 

] ~  (P) = f K~(P-- Q)/~ (Q) dQ 
E n  

Fk~ = ]k~ --  K1 (P --  O) f ]~ (Q) dQ. 
E n 
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Now, if k >  1 and Sk denotes the sphere [ P - - O ]  < 2 k+l, then ] S k i =  c2 (k+~)~, and 

Theorem 2 gives 
n ~ l  I 

jl]~ldP <_cfl/~ldP +cfl/~llog+(l&l ~ I /~l)dP + c l & l  -~ _< 
S k E n E n 

_< c f l / ~ l ( 1  + log + I P - - o l  + log'[hi)elF + c2 ~ 1, 
E n 

since I P --  0 1 _> 2 k-1 wherever/k (P) 7 z 0. As easily seen, this inequality, with suitable 

c, also holds for k = 0. On the other hand, 

so that  

f l K I ( P - - O )  IdP <_ c log 2 k+l, 
S k  

f KI(P-- O) dP f/~ (Q) d r ~_ c log 2 k+l f l/~ (Q) I d Q 
S k E n E n 

<_ c f O  + log+ l P - -  o l)I/~ (Q)dQ. 
E n 

This, together with the estimate for the integral of l [~z(P)] ,  gives 

f l ~ l d P  <_ c f l/ ,l  (1 + log + I P - o l  + log + I/~l)dP + c2 -~ 1. 
S k E n 

Since for ~ >  1 and [ P - - Q ] >  1 we have K~ (P -- Q) = K (P - -  Q), and since /k(P)  

vanishes outside Sk ~, for P outside Sk we have 

-Yka (P) = f [K~ (P - -  Q) - -  K1 (P - -  0)] /e  (Q) d Q = 
S k  1 

= f [ K  ( P - - Q ) - - K ( P - -  0)]/~ (Q)dQ. 
S k - 1  

Now, an argument already used (see footnote to Lemma 2) shows that,  on account 

of the continuity condition satisfied by z9 (P), for every P outside Sk and Q inside 

Sk-~ the following inequality holds: 

] K ( p _ Q ) _ K ( P _ O )  I < c l P _ O i  n ~o(c2k+llp__oi ~). 

Thus, if S~ denotes the complement of Sk, we obtain 

f l-~l dP ~_ f dP f c I P - -  0 1 ~ 09 (c2~+1]P-- O[ 1) Ilk (Q) IdQ = 
S" k S '  k E n 

oo 

= c f l / ~ ( Q ) l d p f ~  -~ ~ ( c 2  ~+l<i) r~ i d r = c f [ / ~ ( Q ) l d O ,  
E n 2 k + l  E n 

and collecting the results we have 
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f l ~ l d P  ~ c f [ A l ( 1  + log+ I P - o l  + log + I/,[)dP § C2 -(k+l) .  
E n E n 

Since / } z ( P ) =  ~Ek~,(P) ,  the theorem follows by adding the above inequalities. 
0 

This result can be worded in a different manner.  Since the functions 

q~ (x) - x log + gx  
and 

{y~ - i  for 0_<y_< 1 

gJ (Y)=  e '  1 -1 for y >  1 

are conjugate in the sense of Young, setting x - ] / ( P ) ] ,  e 1 + [ P - -  0[~+~ and 

y = 1 log+ l P 0 ] ,  for y > 1, Young's  inequali ty gives 

~]/(P)llog+lP--O[ <_ [ / ( P ) [  log+ [(1 + IP-Ol~+l)l/[] + 
§ ]P - -0 [1 /2 (1  + I p - -  0['~+~) -~ 

so tha t  if I /I  log + K(1 + I P - o I~+~)l/1] is integrable the same is true for the prod- 

uct I/l log' I P - o I, and sinoe [/I -< I/I l~ ~ I P - -  O I for I P - -  O I > c, and 1/] < 1 + 

+ I/I ~og ' ] / I  for I P - 0 ! < e, it follows tha t  

f l / l ( 1  + log ~ I P - - o l  ~-log' I / I ) d P - < c ( l / l l o g  ~ [(1 t I P - - o l  ~ '~) l / I ]dP + c ,  
E n E~? 

and we have the following: 

C o r o l l a r y .  The function / ~ ( P )  of the preceding theorem satisfies the inequality 

j'lf~z(P)ldP<_cfl/(P)l log + [(1 + IP O ] n ~ l ) [ / ( P ) I ] d P + c .  
E n En 

I f  the integral of / extended over the whole space is zero, then in the last  

inequality we can replace /}~ by  /~.. For n = I this result reduces to a known 

theorem about  Hilbert  transforms of functions on the real line [5]. 

T h e o r e m  6. Let / (P )  be a /unction bounded in E ~ and I / (P)  I <~ M. Then the 

integral 

F~ (P) = f [K~. (P - -  Q) - K 1 (0 - -  Q)] / (Q) dQ 
E n 

is absolutely convergent, and 

f ~ J f C  l ] ~ l r - l [ F ~ t ( P )  I , P ] d P  ~ 1, 

En 

where c is a constant independent o! / and 2 ~ 1, and ~ (y, P) is the/unct,ion de!]ned by 

W (y ,P)  = yoC1 /or O < y < l ,  ~P (y,P) = eY-l o~ 1 /or y >_ l ,  c ~ = l + l P - - O p  +1. 
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Proof .  First we observe that  for fixed P and 2 the function 

Ka(P--Q)--KI(O--Q) 

is bounded. Moreover as Q tends to infinity this function is of the order 

[Q-Ol  o f t['-ol lQ-ol 

and thus is absolutely integrable, and the integral of its absolute value is a func- 

tion of P bounded on every bounded set. Consider now the functions 

(x, P) = x log + [(1 + I P - -  0 ] n+l) X] 
and 

T (y,p) = {y(l  + [P--Op~1) 1 f o r 0 < y < l  

ey-l(1 + rp_oln+ ) 1 for y >  1, 

which, for fixed P, are conjugate in the sense of Young, and let g ( P ) b e  a function 

vanishing outside a bounded set and such that  

Then we have 

.f q~(lg(P)[, P)dP <_ 1. 
En 

f g (P) _~z (P) d P = f g (P) d P f [K~ (P - -  Q) - K~ (0 --  Q)] / (Q) d Q, 
Err Er~ E• 

and since the double integral is absolutely convergent we may invert the order of 

integration and write 

f g (P) _Fx (P) d P = f / (Q) d Q f [K~ (P --  Q) - K1 (0 - -  Q)] g (P) d P. 
Err Err E n 

But, according to the corollary of Theorem 5, 

f[ f [K~(P--Q)--K~ (O--Q)]g(P)dP dQ <_ c 
E~Z .Err 

and therefore, if ] / (P) [ < M, then 

] f g(P)-Y~(P)dP <_ cM. 
E n 

The same conclusion holds if we multiply g by any function of absolute value 1; there- 

fore we also have the stronger inequality 

(ra) f lg(P)l [IT~(P) l dV <_ c M .  

En 
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Let  us now define 

(P)],  if [/}~ (P)[ < k and I P -  e l  _< k, 
otherwise, 

d T '  and denoting the function dxx T (x, P) by  (x, P) let us also define 

I T '  [ c-x fl M-1 Fk (P), P] for Fk (P) ~ O, 
a k ( P ) = ] 0  for F ~ ( P ) = 0 ,  

where c is the same as in (7a) and where, assuming that  F k ~ 0 ,  we select the 

constant fl in such a way that  

f q~ (g~ (P), P) dR = 1. 
E n  

Then (see [7], p. 64) Young's inequality degenerates into equality, 

gk (P)" [c -~ fl M -1/~k (P)] = ~b (gk, P) + W (c -~ fl M -~ Fk, P), 

and integrating with" respect to P we get 

c ~f lM- ' fg~ (P) Fk (P) dP = f q3(gk, P) dP + f T ( c - ' f l M - ' F k ,  P) dP = 
E n E n  E n  

But we also have 

Thus we get 

= 1 + f T [ c  I f lM-~Fk(P),P]dP.  
E n 

f gk (P) Fk (P) d P = f gk (P) [ ~'~ (P) ] d P <_ c M. 
E n  E n 

1 + f ~ [c -1~  M -' ~ (P), P] d P  _< 8" 
E n 

This implies, first of all, that  fl > 1 and secondly that  

f l  flTt[c-~flM-~F, (P), P]dP <_ 1. 
E n  

Now, since ~ (x, P) is convex, increasing and vanishes for x = O, and since fl > 1, 

we have 

1_ T [c-lfiM -1F~ (P), P] > ~ [c-: M -~ Fk (P), P], ~ - 

and from this and the inequality above it follows that  
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f ~"[c-~M-~F~ (P)~ P] < 1, 
E n 

a relation which also holds for Fk ~ 0. Finally since Fk (P) -~ I F~ (P) I as k -~ cx~, 

an application of Fatou's lemma establishes our assertion. 

T h e o r e m  7. Let / ( P )  belong to L ~, l < p < c~ then 

]~ (P) = f K~ (P -- Q) / (Q) d O 
E n 

converges in the mean o] order p as ~--> c~, to a/unct ion / (P) o / L  p in E n. 

I /  / ( P )  is such that 

(7 b) f i l l  loz  + [ ( ]  + IP--OIn+~)II.I]dP< oo, 
E n 

then Fx (P) converges in the mean .o/ order 1 to a /unction F (P) integrable in E ~. 

Proof .  If g(P) is a function with continuous first derivatives and vanishing 

outside a bounded set, then 

~ (P) = f K~ (P --  Q) g (Q) d Q 
En 

converges uniformly to a function ~ (P) and moreover, outside a bounded set, 

~x(P) = g(P)  for 2 >_ 1. This is easy to verify on account of the properties of 

Kx ( P -  Q), of the differentiability of g, and of the fact tha t  

~ (P) = f K~ (P - -  Q) [g (Q) - g (P)] d Q. 
E n 

Therefore, not  only ~ (P)-~  ~ (P) but  also 

f l~, (P) - ~ (e)]~ d e  --> o 
E n 

as ~-->oo for any p >  1. 

Let  now / be a function of L v, l < p < o o .  Given any e > O  there exists a 

function g with continuous first derivatives and vanishing outside a bounded set 

such that  

[ f l / ( P ) - - g ( P ) ] ' d P ]  *r~ <e.  
E n  

Then, if h = / - - g ,  
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and 

E n 

Now, since 

f~ = ~ + ~ ,  

[f lj~-[,l~ aP]~"<_ [f  lo~-~.l" dP]'~ + [f  IL-LI" dPJC 
E n E n  

Theorem 1 gives 

and thus we get 

[f  lhl  dP] < 
E n 

E n  

E n E n  

+ 2 A ~ e .  

As 2 and tt tend to infinity, the integral on the right tends to zero; therefore for 

2 and /t large we shall have 

[flT  - "dP - f . I  j < 3 A ~ ,  
E n  

and, since s is arbitrary,  the first pa r t  of the theorem is established. 

For the second par t  we shall begin by showing that ,  given any e > 0, there 

exists a function g with continuous first derivatives and vanishing outside a bounded 

set, such tha t  

E n 

For let S be a sphere with center a t  0 and so large tha t  

S '  

For the points P inside S we shall have 

x log + [(1 + [ P -  O["+l)x] _< cx', 

for all x >_ 0 and a suitable c. 

We now select k so large tha t  

--~/~ log* (1 "+ ] P - -  - -  d P  <_ �89 

S 

and then g in such a way tha t  g = 0 outside S and 
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~/2-- dR <_ ~ .  
S 

Then 

S 

and, applying Jensen's inequality, 

S 

+ 

which in conjunction with (9) gives (8). 

Let  now h (P) = / (P) - -  g (P) ; then 

where 

f l~,-~.ldP <- }'l~,--~ldP + f l&-&laP, 
E n E n  E n 

~(P) = f Ka (P  - -  Q) / (Q) d Q - -  K x (P  - -  O) f / (Q) d Q, 
E n E n 

and similarly for Oa and /Ia. 

Now 

flO~--8.ldP+O 
E n 

as 2 and # tend to infinity. On the other hand, since 

flall~ 'ae<-I 
E n 

by the corollary of Theorem 5 we have 

E. n 

therefore for 2 and /~ large we shall have 

f l~'x--~.ldP <_ 4ce, 
E n  

and since s is arbitrary the theorem is established. 

R e m a r k s  t ~ Under the assumptions of Theorem 2, the funct ion/a  (P) converges 

to a limit /(P), in the mean of order 1, over every set of finite measure. Under 

the assumption (7b), this mean convergence holds over E n, but, unless f/dP= 0 
E n 

(or K ~ 0 ) ,  neither /~ nor / are of the class L. 



On the Existence of Certain Singular Integrals. 111 

2 ~ Under the assumptions of Theorem 3, the function ]~ (P) converges t o / ( P ) ,  

in the mean of order 1 -  e, over any set of finite measure. 

3 ~ If / (P )  satisfies the assumptions of Theorem 6 and, in addition, vanishes 

in the neighborhood of infinity, the function exp {c - IM-~ / (P)}  is integrable over 

any bounded set S. If / is also continuous, exp k I/] is integrable over S for any 

k > O .  

CHAPTER II. 

The pointwise convergence of the singular integrals. 

In this section we shall investigate the convergence of the singular integrals at  

individual points. In the case where ] (P) belongs to L p, p >  1, we shall prove that  

the singular integrals converge almost everywhere and that  moreover they are domi- 

nated by a function of L p, uniformly in 4. On the other hand, we shall show that  

the pointwise limit still exists almost everywhere even if the function / ( P )  is replaced 

by a completely additive function of Borel set of finite total variation. 

We shall begin by proving two lemmas. 

L e m m a  1. Let N (P) be a ]unction in E n and suppose that 

IN(P) I (IF -o l ) .  
where q)(x) is a decreasing /unction o/ x such that 

.f q~ (I P -  0 ] ) d R <  co. 
E n 

Then, i/ / (P )  is a /unction o/ L p, ] <_ p <  co we have 

lira Xn f N[X(P-- Q)]/(Q)dQ =/(P)fN(Q) dQ 
~--> oo 

E n E n 

at every point P o/ the Lebesgue set o/ / (P) .  

(One says that  P is a Lebesgue point for / if the derivative of f I / (P)  - -  ] (0) I d Q 

is equal to zero at  P. This implies in particular that  the derivative of f ] ( Q )  d Q 

at P i s / ( P ) ) .  

P roof .  Let  P be a point of the Lebesgue set of / (P )  and let I ( ~ ) b e  the 

integral of I / ( P ) - - / ( Q ) [  over the sphere with center at P and radius ~. Then 

I (~)~-= is a bounded function and tends to zero as ~ tends to zero. 
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We have 

,~nf N[, t (P--Q)]/(Q)dQ=;r f N[~(P Q)][/(Q)- / (P)]dQ+ 
E g  E ~2 

+ / ( P ) f  2 '~ N [4 (P - -  Q)] dO 
E n  

and the second integral on the right is equal to / ( P ) f N ( Q ) d Q  so tha t  if we show 
E n 

that the first integral tends to zero as 2-~ co the lemma will be established. Now, 

this integral is in absolute value less than or equal to 4nf  q~ (~ o)dI (0), and thus it 
o 

suffices to show tha t  the lat ter  tends to zero. 

Since q)(~) is decreasing and 
o~ 

J = . ( ~ ( 0 ) @  n l d 0 < c ~  
0 

(0)@ n tends to zero as @-~0 and @ ~ c ~  On the other hand, we haveI(@)@ n < c  

where c is a constant, or I (@)_< co n, so tha t  integrating by  parts  we have 

oo oo 

4 n f ~ (4 0) d Z (0) = - -  4 ~ . [ I  (~) d ~ (X ~o), 
0 0 

and since ~v is a decreasing function, if c ((3) denotes the least upper bound of I (0) 0 -n 

in 0 < 0  <(3 we can write 

d 0o 

- - ~ f I ( 0 ) d ~ ( ~ 0 )  _< - -~c ( (3 ) fo~d~(~o)  - Xn~.fl0~d~(Z0)_< 
0 0 d 

6 

<- nc((3) f ,v ~(,~z)o ~ I do + nc.[',t~r do + 4" c(3~ q~(4(3) = 
0 d 

2t6 

0 ~d 

Now as 2 - ~ c ~  the two last terms tend to zero and the first remains less than 

n c ((3) J .  Therefore 
o~ 

lim 4 ~ fl ~--,~r . q~(2@)dI(@) < nc((3)J, 
0 

and since c( (3)~ 0 as (3-~ 0, we have 

o~ 

lim 2n f q~ (2 O) d I  (0) = O, 

and the lemma is established. 
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L e m m a  2. Under the assumptions o~ Lemma 1, the /unction 

2~ f  N[~(P Q)J/(Q)dQ 
E n  

converges to / (P). f iN (Q)dQ in tlte mean o/ order p. 
E n 

Proof .  Let  us denote by ]~. the integral in question and by f its pointwise 

limit. If / is bounded and vanishes outside a sphere of radius r with center at O, 

where c is a constant. Inside the sphere I P - - O  I < 2r ,  /~ converges to f bound- 

edly and almost everywhere. Thus over the sphere I P - - O  I <  2 r we have 

lira f ] ] a - - ] l ~ d P = O .  

Over the exterior of the sphere we have 

and the last expression tends to zero as ,t-> co. 

To extend the result to general functions we observe first that,  with 1 /p  + 1/q = 1, 

and since 

f l]~l~dP : f dP f ,VN[,t(P Q)]/(Q)dQ "< 
E n  E n E n 

E n E n 

<_ f dP { f Z n q~(,IIP-Q])dQ}'/q { f ,V q~(~IP-QI)t/Ip dQ}, 
E n E n E n 

E n E n E n 

we obtain 

[ f  l]~(p)l" dPJ~'~ <- ~[f  l/(Q)I" dQf', 
E n E n  

w h e r e  c = flv(IP--Ol)dP. 
E n  

Thus, given / E L p, we may split / into two functions, / = g + h, where g is bounded 

and vanishes outside a bounded set and [ f l a I ~ dP]l'~ < ~. Then we have 
E n  

]~ = ~ + ~ and 
8--  523804. A c t a  m a t h e m a t l c a .  88. I m p r i m 6  le 29 oetobre 1952. 
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[fl/~--fl~dP]~;'<[flL--s +[f[~z--g[VdP] 1~. 
E n E n E n 

As 2-~ c~, the last integral tends to zero, and since 

[ f  l~a--hl~ dP]~!~ < [ f  f~al~ dp]l/~' + [ f  lhI~ dP] ~'" 
E n E n E n 

_<(c+ 1)~, 

for 2 sufficiently large we shall have 

[ f  (c + 2)e, 
E n 

and the assertion follows from the fact that e is arbitrary. 

L e m m a  3. Let N I (P)  be equal to 1 in the sphere o/ volume 1 and center at O, 

and zero elsewhere; and let ] (P) be de/ined by 

] ( P ) = s u p  2 ~ f N  1 / 2 ( P - Q ) /  /(Q) dQ. 
A E n  

Then, i/ / belongs to L p, 1 < p < c~, the same is true o/ ] (P) and 

f / ( P ) "  dP  <_ c f l / ( P ) [ ' d P ,  
E n E n 

where c is a constant depending on p only. X/ I11 log+ Itl is integrable then j (P) is 

locally integrable, and over every set S o /  /inite measure we have 

n + l  1 

f / ( P ) d P  <_efs [/(P) ldP  +cfs log+ [IsI ~ - I / ( P )  l ] d P + c l S I  -~.  

In general, under the assumptions o/ Lemma 1 we have 

sup ~nf N[2(p--Q)]/(Q)dQ] ~](P) f q~(]P--O[)dP, 
E n E n 

where [(P) is the /unction de/ined above. 

Proof. Without loss of generality we may assume that / ( P ) >  0. Denote by 

Du the set of points where / ( P ) > y .  The Sets Dy are closely related to the sets 

Dy of Lemma 1 of the preceding chapter and we shall refer part of the argument 

to that lemma and Theorems 1 and 2 in that section. 

Let P E/)y. On account of the definition of D~ then there exists a sphere with 

center at P over which the average of /(Q) is larger than y. Suppose that r is the 

radius of this sphere and consider a subdivision of the space in equal cubes of edge not less 
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than r / 2  and less than r, as in Lemma 1 of the preceding chapter. Consider all the cubes 

in the subdivision intersecting the sphere. Their total measure or volume does not exceed 

a fixed positive number 1/:r (depending only on the dimension of the space) times the vol- 

ume of the sphere. Therefore the average of / ( P )  over the union of those cubes is 

larger than ~y, and hence there exists at least one cube where the average of the 

function exceeds ~y, and which is therefore contained in D ~ .  If we define D* to 

be the set obtained from Dy by enlarging five times the edges of the cubes whose 

union is Dy, while keeping their centers and orientation fixed, it will turn out tha t  

the center of our sphere, tha t  is P, is contained in D,~. But  since P is an arbitrary 

point of / ~  it follows that  D~ c D~*~ and thus 

[/3. I_< ID*.} _< 5~ID.~[ _<5~g(~y). 

From this the assertion on the class of [ ( P )  would follow as in Theorems 1 and 2 

of the preceding chapter. We omit the argument because it would be a mere re- 

petition. 

In the general Case we have 

j X n N [ 2 ( P - Q ) ] / ( Q ) d Q I  <_ f 2~ v()~IP--QI)I/(Q)ldQ, 
Er~ E~t 

and, denoting by  I (o)  the integral of [/(Q)[ over the sphere with center at P and 

radius 9, the last integral can be written as follows 

f ~n ~ (4 9) d I (9). 
0 

Now, if vn denotes the volume of the sphere of radius 1, we have I (9) -< v~ 9 '~ / (P) ,  

and since q) (;t g) 9~ -~ 0 as 9 tends to zero or infinity, we can integrate the last 

integral by parts and write 

0 0 0 

= ) - ( P ) . f X  ~ ~ (hg )dv~  9 ~ = ] ( P )  f (I P - o I ) d e .  
0 E n 

This completes the argument. 

R e m a r k .  The first part  of Lemma 3 concerning N, and for n = 1 is the very 

well known result of Hardy  and Litt]cwood (see [7], p. 244). In the general case 

spheres with center a t  P can be replaced by  cubes with center at  P (which also 
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follows from the result concerning the function N). In this case, and for p > 1, the 

case of general n can easiiy be deduced from the original Hardy-Lit t lewood result 

by induction and the cubes can even be replaced by  arbi t rary  n-dimensional inter- 

vals with fixed orientation. (See [4]). However,  the case of I/] l~ + I/]  integrable 

seems to require a special t reatment .  

An alternative proof for the lat ter  case was communicated to us by Professor 

B. Jessen. He pointed out tha t  it is enough to prove the result for differentiation 

with respect  to a net of cubes, and tha t  in this case the result for general n is 

deducible from the result for n = l by a measure preserving mapping of E = onto 

E ~, which transforms the cubes of the net into intervals of E ~. 

T h e o r e m  1. I /  / (P) belongs to L p, l < p < co then 

]~ (P) = f K~ (P - -  Q) / (Q) d Q 
E n 

converges almost everyw/~ere to a /.unction [ (P)  as .~ ~ oo. 

sup L(P) I belongs to L~ and 

f sup ]L(P)]PdP ~ c f [/(P)F dP,  
E n E n 

Moreover the /unction 

c being a constant which depends on p and on the lcernel Kx only. 

P roo f .  In  the preceding chapter we have shown tha t  j~. converges in the mean 

of order p to a function [ of L p. 

Let  H (P) be a non negative continuous function with everywhere continuous 

first derivatives, vanishing outside the sphere with center at  0 and radius 1, and 

such tha t  

Then the function 

f H ( P ) d P  = 1. 
E n 

j.  (p) = ~nf  H [~ ( P -  Q)] ] (Q) dQ 
E n  

converges almost  everywhere to ] as ~t ~ co and moreover 

f sup lf,,l~ dP_< c f lYl" dP <_c' f l/l~ dP, 
E n l x E n  E n 

c and c' being two constants independent of /. Since T~ converges in the mean 

of order p to T and H [/x ( P -  Q)] belongs to all classes L v we have 
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],  (P) = li~n f #~ H [/~ (P - -  Q)]/~ (Q) d Q = 
E n 

= ;!i~ f #n H [# (P Q)] f K~ (Q -- S) / (S) dS, 
E n E n 

or, interchanging the order of integration, 

].(P) : l i r a  f /(Z)dS[f /H[~(P Q)]Kz(Q--S)dQ]. 
~-->oe E n  E n  

Now, since H [/~ (P - -  Q)] belongs to all classes L p and has continuous first derivatives, 

P as 2 -~  oo the inner integral converges pointwise and in the mean of order q -  

so tha t  we can pass to the limit under the integral sign and write 

/ , ( P ) :  f /(s)[2insf ~nH[~(P Q)]K,.(Q--S)dQ]dS. 
E n E n 

Since Kx (Q S) = 2 = K 1 [2 (Q - -  S)], introducing the variable /~ (P - -  Q) = R the inner 

integral can be written as 

and, setting 

w e  have 

and 

2n - R]} d R 
E n 

/ I  (P) = lira f A n K 1 [A (P - -  Q)] H (Q) d Q, 
.~---> ~ E n 

lira f n H [~ (P-- Q)] K~ (p S) d Q = ~ ~ [z ( P -  s)] 
E n 

L(P) = f / H [ z ( P - - S ) ]  / (S)dS. 
E n 

Now H(P) has continuous first derivatives and vanishes outside the sphere with 

center at  0 and radius 1 and therefore H ( P )  is bounded and, for I P - - o [  >_ 2, 

/ I  (P) = f K 1 (P - -  Q) H (Q) d Q. 
E n 

On the other hand, since 

f u(P) dP = l, 
E n 

for I P - - 0 [ > _  2 we have also 
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(P) --  K 1 (P -- 0) = f [K~ (P --  Q) -- K 1 (P - -  0)] H (Q) d Q, 
E n 

and on account of the conditions satisfied by the function Y2 in the definition of 

K ~ ( P - -  Q) it follows that,  for large [ P - -  O] and ] Q -  O] < 1, 

]K1 (P - -  Q) - -  K1 (P - -  O) l <_ c lP - ol  -~ o)(IP - o l  -1) 
and thus 

]ITI ( P ) - - K ~  ( P - - O ) ]  <_ c I P - - O l - " c o ( I P - - O l - ~ ) ,  

where c is a constant. Now K1 ( P -  0) is bounded, as well as / t  (P), so tha t  for all 

P the inequality 

I[I ( P ) - -  KI (P - - O) ]  <_ c min {1; IP-Ol -"  ~o(lP-Ol-~)} 

will hold, c being again a constant. 

Now 
f,  (P) --  [,  (P) = j"#~ {/t [/~ (P --  Q) --  K 1 [# (P --  Q)]} / (Q) d Q. 

E n 

Thus from Lemmas 1 and 3 it follows that  f .  ( P ) - - / ~  (P) converges ahnost every- 

where and that  

f sup ]f.(P)-- [~,(P)t" dP <- e f l/ (e) l" dP. 
E n I ~ E n  

Since 

almost everywhere, and 

lim f~ (P) = ](P) 
/~ ---> O0 

f s u p  [/.(P)]V dP  <_ c' f [/(P)[V d P  
E n U E n 

and [ , - + /  in mean of order p, the theorem follows. 

T h e o r e m  2. Let # (P) be a mass distribution, that ~s a completely additive/unc- 

tion o/ Borel set in E n and suppose that the total variation V o / ~  (P) in E n is / ini te .  

Then the integral 

Y~ (P) = f K~ (P -- Q)d~ (Q) 
E n  

has a limit [ almost everywhere as ~ tends to in/inity, and over every set S o/ /inite 

measure we have 

f lTl~-~dp < ~-ISl. V ~-.. 
8 

S 
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P roof .  We may  assume tha t  / t ( P ) >  0, and we shall show that ,  given any 

sphere of finite radius and an e > 0, the integral converges in tha t  sphere outside a 

subset of measure less than s. We shall begin with the following observation. Let  

P be a point, IQ a cube with center at  P and edge equal to Q, and D any set con- 

tained in b such tha t  I D I >  ~ [ b l ,  ~ being a fixed positive number. Then 

lira # (D) 
~-*o ]D] 

exists and 
/~ (D) 

s u p  IDf 
is finite for almost every P in E n. 

Let  now S be an arbi t rary  sphere and S the sphere with the same center as S 

and radius twice as large. Fix ~ = 2 -2~. Given an e >  0 choose y so large tha t  

the set of points P in S such tha t  

# (D) 
sup > 

be of measure less than e2 -n n -~/2, and let A be an open set covering this set and 

the set of measure zero carrying the singular par t  of # in ,q, and such tha t  also 

] A ] < e 2 -= n -~/2. Now call x~ ,  x2 ,  . . . ,  x, ,  the coordinates of a point in E ~ and cover 

A by  means of half open cubes 

m~ m~ + 1 
2- T _ < x ~ < ~ - ;  ( i =  1, 2 . . . .  , n) 

where m~ and k are integers, in the following manner :  first let k o be the smallest 

value of k for which there is a cube of the above form entirely contained in A, and 

take all such cubes contained in A.; then let k = k 0 + 1 and take all the new cubes 

contained in the remaining par t  of A and so on. Thus we shall obtain A as the union 

of non-overlapping half-open cubes which we shall denote by  Ik with the proper ty  

tha t  every Ik is contained in a cube with edge twice as long and containing a 

point outside A. 

Denote by  A 1 the union of all those Ik intersecting S. Then it is clear that ,  

if e is sufficiently small, every Ie  in A 1 will be contained in a cube with edge twice 

as long and containing a point P outside A and in S. Thus from the definitions 

of A and of ~ it  follows tha t  # (Ik) _<_ y [Ik [ for every Ik E A1. Moreover, outside A 

and in S, and therefore also outside A 1 and in S, the function /~(P) is absolutely 

continuous and its derivat ive does not exceed y. Let  finally A2 be the union of all 
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spheres Sk with center at the centers of Ik and radius equal to the diameter of Ik c A i. 

Clearly, I A~ 1 < n~j2 2~ I As I < e. We shall show that  outside A~ and in S the integral 

converges almost everywhere. For this purpose let g(P)  be the function equal to 

the derivative of re(P) outside A 1 and in S, equal to ,u(Ik) ]Ik1-1 in every cube 

Ix of A1, atxd equal to zero elsewhere. Let  also r (P )  be equal to / t (P)  minus the 

indefinite integral of g(P). Then u ( I x ) =  0, g(P)  is less than or equal to y, and 

f ld (P)l <_ 2 y l z k [ .  
Ik 

Let now P be a point interior to S, outside A 2, and where the density of A1 is 

zero. Then, denoting by a prime the complement of a set, 

f (P --  Q) d r (Q) = f --  Q) d (Q) + 
E n (A1 U S)" 

+ fK~(P--Q)g(Q)dQ + fK,.(P--Q) dv(Q). 
E n A I  

Since P is interior to S, its distance to the set (A 1 U S)' is positive and therefore 

the first integral converges. Moreover since g(P) is a bounded function which 

vanishes outside a bounded set the second integral converges almost everywhere, so 

that  the whole problem reduces to showing the convergence of the last integral. 

We have 

A 1 Ik, I1r 

where the first sum is extended over the cubes of A~ intersecting the sphere with 

center at  P and radius 1/4 and the second over those entirely outside this sphere. 

Now, since P is outside A2, if I~ intersects the sphere with center at P and radius 

1/2 it follows that  Ix is contained in a sphere with center at P and radius equal 

to 3 /4 .  Therefore we have 

I~af  Kx(P--Q) dv(Q) I ~ 4 ~c~_,~f ld~,(Q)l <_ 2y4 '~c~.~lI~ I. 
1 k l k  

But  since all the cubes in ~1 are contained in the sphere of radius 3/4 and P is a 

point of density zero of A1, we have 

lira R ~ I l I ~  ] -  0, 

and therefore 
~1 f ~Y~)I (P  - -  {~) d %' (Q) -~ 0 

I x 

as 4 tends to infinity. 
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On the other hand, since v ( I k ) =  0, for every Ik in ~2 we have 

.;K;~(P--Q) du(Q)- f [K(P Q)--K(P Qk)]dv(Q), 
l ~  I k  

where Qk is the center of Ik .  Now, on account of the conditions satisfied by 

and the definition of A~ it follows, as in Lemma 2 of the preceding chapter, tha t  

for every Q in I~ and P in A',~ we have 

r U (P  - -  Q) - -  K (P  - -  Q~)I -< c I P Q~ l -n ~ [c [I~ I TM [ p  - Q~ [_i], 

and therefore 

. f l I K ( P - - - Q )  K(P Qk)[dP< fcIe--Q~[-n~o[c[Ik[~/n[P Qkl ~]dP<c, 
A~2 A '  2 

c being a constant. Hence 

f d P Z  f IK(P--Q)--K(P--Qk)[ldv(Q)] <_ c~_,.f ld,(Q)[ <_ 
A '2 s k  I k  

<_2cuZII~l=2cyIA~l, 

the stun being extended over all intervals in A 1 . But  this implies tha t  for almost  

every P in A~ we have 

Y.~I f K~(P--Q)d~,(Q)[ ~ ~ f lK (P--Q)-- K (P--Q~)I [du(Q)I < ~, 
I k I k 

and since each of the terms on the left hand side converges as A-~ c~ and is ma- 

jorized by the corresponding term on the right which is independent of A, it fol- 

lows tha t  

Z~ f K~ (P -- Q) d ~ (Q) 
1 k 

converges as ~ -+ c~. 

Thus we have proved tha t  ]~ (P) converges almost everywhere to a finite limit. 

Finally, the last par t  of the theorem is an immediate consequence of Theorem 4 

of Chapter I and Fa tou ' s  lemma. 

R e m a r k .  Suppose that the mass distribution is differentiable at the point P. De- 
noting by ix' (P) the value of the derivative (of course, /~' (P) is a real-valued function 
o/ tlte point) let us consider the mass distribution /~p (Q) = ~t ( Q ) - - f t '  (P) Z (Q), where 
z(Q) is the indefinite integral of 1. Due to the properties of the kernel K, the two 
integrals 

f K (P-- Q) dtt (Q), f K (P -- Q) d#, (Q) 
E n E n 
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converge or diverge simultaneously, and in the case of convergence their values are the 
same. Let Fr (P) denote the sphere with center P and r~idius ~. At almost every point 
P we have 

f ]dt~(Q)] =o@) (e+O), 
/"0 (P) 

(an analogue of Lebesgue's condition). At every point P at which this condition holds, 
the convergence of the second integral is to a great extent independent of the shape of 
the neighborhood excluded around P. For let D~ (P) be any set containing F~ (P) and 
contained in FM~ (P), M being a fixed number. Then the difference between the integrals 

f K ( P - - Q )  d#p(Q) ,  f K ( P - - Q )  d/~p(Q) 
D'e (P) /"'e (P) 

(where /~' and D'  are the complements of F and D) is numerically 

<- flK(P--Q)I ]d/ze (Q)[ = O(e-")o(Me) ~ = o(1), 
l"Me (P) - Y'e (P) 

and so tends to 0 with e. Thus, for almost every P, and for the sets D~ of the type 
just described (we might call them regular neighborhoods) we have 

] ( P ) : l i m  { f  K(P--Q) d#(Q) + #'(P) f K(P--Q)dQ} 
e--->O D,s(p) D,e(p) 

almost everywhere. The second integral on the right here exists for every e > 0. If it 
tends to 0 with e (a situation which can occur, due to possible symmetries in the 
structures of K and of D), then in the last formula we may drop the second term on 
the right. This is, for example, the case of the kernels (3) and (5) of Introduction, if 
D~ (P) is anY square with center P and sides 2 e. 

C H A P T E R  I I I .  

The preceding results can be used to establish differential properties of certain 

functions. We shall primarily consider the problems of the existence of the first 

derivatives of the Newtonian potential  of a single layer, and of the second derivatives 

of the logarithmic potential  (more general situations we shah consider elsewhere). 

Thus again we shall be concerned with the kernels of the forms 

X x~--y 2 xy 
(1) (X 2 + y2)312' (X ~ + y~)~' (X 2 + y2)2" 

Let  us consider a mass distribution /z over the plane, and the Newtonian 

potential  
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j.fl u ( x , y , z )  = R d / ~ ( s ' t ) '  R =  [ (x - - s )  2 +  ( y - - t )  2+z2]  1/2 
E 2 

in the half-space z >  0. We assume that  the total mass f ld#[ is finite. Obviously 

f E s f  8 - - X  uz (x, y, z) = ~ -  d~t (s, t). 

Suppose that  the point (x o, Yo, z) approaches (Xo, Yo, 0) vertically, and that  the mass 

/~ has a density at (Xo, Yo) (by this we mean that  /~ is differentiable at (xo, Yo), 

with respect, say, to concentric circles). Without loss of generality we may assume 

that  (:Co, Yo)= (0, 0) and that  the density in question is zero. Let  us split the last 

integral into two, P and Q, the former extended over the circle Fz defined by the 

equation s2+  t~< z ~, and the latter over the complement /'~ of Fz. If we set 

I (r) = J J s d l ~  (s, t) 
rr 

then, as easily seen, I (r) = o (r 3) for r -+ O. Hence 

z z 
" d I ( r )  I (z)  s r I ( r )  d r  

P : .  (r ~ + z~) 3'~ (2 z~p '~ + s j  (~ ~ z~)~ 
0 0 

z 

o(1) + z -5 ['o(r4)dr = o( i ) ,  

0 

oo 

-(I  ] Q j j ( s  ~ + t2)312 . (r ~ + z2)31e (r2)3/2 dI  (r)' = 

/~'z z 

r162 

z 

oo 

z 

o0 

= o (1) + z2 fo  (r -3) dr = o(1). 
z 

1 1 ] d r =  
Z2)5/2 r 5  

Collecting the results, we see tha t  at every point of differentiability of # the 

difference 
X - - 8  

u~ I~, ~, ~) f f ~l~ 8~ + I~ ~1~ ~,~ ~' tl 
F'~ 
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converges to 0 as z-> + 0. In particular, since the integral 

exists almost everywhere, we see that  lira Ux (x, y, z) exists for almost every (x, y) 

as z-+ + 0. A s l i g h t -  and well k n o w n -  modification of the above argument 

shows that  lira ux (x, y, z) exists for almost every point (x, y) as (x, y, z) approaches 

(x, y, 0) non-tangentially. 

Let  us now assume that  # is absolutely continuous, tha t  is that  d # - / d  s d t ,  

We shall investigate the problem of the differentiability of the with / integrable. 

function 

fE~f / (s, t) d s d t 
(2) u (x, y) = [ ( x -  s) 2 + ( y -  t)~] ~:2 

which is the potential u in the plane z = 0. 

In what follows, we shall systematically denote by Fr (X, y) the circle with 

center (x, y) and radius r. The complementary set will be denoted by /'~ (x, y). 

Instead of / 'r (0, 0) and /'~ (0, 0) we shall simply write / 'r and /~ .  

T h e o r e m  i .  

a) Suppose that / is integrable over the whole plane and that Ill log +I / I  is inte- 

grable over every /init~'. circle o~ the plane. Then the integral (2) converges over almost 

every line parallel to the x-axis and represents an absolutely continuous 1 /unction o~ x. 

In  particular, ux exists almost everywhere. Moreover 

~ f  (s - x) / (s, t) 
ux (x, y) = [ (x - -  s) 2 + (y t)213:2 ds  d t  

almost everywhere. 

b) I /  / is integrable over the whole plane and belongs to L q, q ~ 2, over every 

/inite circle, then u (x, y) has a complete di//erential at almost every point o~ the plane. 

Proof .  I t  slightly simplifies the argument (though it is not essential for the 

proof), if we assume that  / vanishes outside a sufficiently large circle. 

Let  us consider 

U (3) u (~)(x, y) = / ( x - - s ,  y - - t ) ( s  2 + t 2 + s 2 ) l / 2 d s d t '  

1 i.e. absolutely continuous over every finite interval. 
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and let us compare 

with the function 

s ,  

I "  e 

We have 

8 

, y - -  t) (s ~ + tz + s2)aj2ds dr, 

s 
y- -  t) (s2 + t~)a~ds dt. 

u(~)(x,y)§ T~(x, y) = ff/(x- 

,§ f f 
and if we set 

N (x, y) = 

it  is readily seen that  

8 
s , y - - t )  (s =+ tz + e2)3i~dsdt + 

s s ] 
+ t2 + e2)312 (s 2 ~ t  2 d s  dr ,  

x 
(x 2 + y 2 ~  1)3s2 for x ~ + y ~  < 1 

x x yZ 
(x 2 § y2 § 1)312 (x ~ + y~)312 for x 2 + > 1 

E ! 

,t) N ( x - - s  y~_t) dsd t  

0 - - u  ( ' ) ( x , y ) +  Now, an application of Lemma 2 in Chapter I I  shows that,  as e -*  , 

+ T~(x, y) converges to zero in the mean of order 1, and, according to Theorem 7 

of Chapter I, over every set of finite measure 7~ (x, y) converges in the mean to the 

function 

f(x,y)=- ; i )3j asdt. 

Thus, over every set of finite measure, u~ ")(x,y) converges in the mean to [(x,  g). 

Now we can select a sequence en ~ 0 such that,  for  almost every line y = go, 
(0 u~ (x, Yo) converge in the mean to ] (x ,  Yo) over ~ets of finite raeasure !, and thus 

1 If  /n (x, y) converges  in  the  m e a n  to  / (x, y), we h a v e  

f dy f [/n(x,y)--i(x,y)idx-~o, 
Thus  the  i nne r  in tegra l ,  as  a func t ion  of y, converges  in  t he  m e a n  to  zero, and  we can  select  a se- 

quence  n~ such t h a t  

for a l m o s t  eve ry  y. 
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x 

lira [u r (x, Yo) u r (xo, Yo)] = f ] (s, Yo) d s. 
n --> c>~ XO 

If (as we may assume) ] > 0, the integrand in (3) increases as e decreases, and this 

implies that  

limu(~)(x,y) = / ( x - - s , y - - t )  t2)ll2dsdt r u(x,y). 

Combining the two last results, part a) follows. 

Part  b) of Theorem 1 asserts that  in the neighborhood of almost every point 

(xo, Yo), the difference u ( x  o + h ,  Yo + k ) - u ( x o ,  Yo) is of the form A h + B k +  

+ o ( h  ~+k~)  112, where A = A ( x o ,  yo), B = B ( x  o,yo). This is more than the mere ex- 

istence of the partial derivatives ux (x o Yo) and uu (x o, Yo) established in a), and it 

implies, in particular, that  u is bounded in the neighborhood of (xo, Yo). The mere 

boundedness of u, however, over every finite circle is a direct consequence of H61- 

der's inequality applied to the integral in (2), since the kernel (s ~ + t2) -1/2 belongs to 

L ~, p ~ 2, over every finite circle. 

Let us now consider any point (xo, Yo) at which the integral of I /(x,  y) - - / ( x  o, Yo)[q 

is differentiable and the derivative is zero. (Generalized Lebesgue c o n d i t i o n -  it 

implies ordinary Lebesgue condition with q = 1). Let us also assume that  both 

integrals 

A = -- ] (x -- s, y - -  t) (s ~ + t~)al2 d s d t, 
(4) E* 

Y--t)(s ~ t  B = - -  / (x  ~ s ,  + t~)3,~ d s d t .  

exist. Let (h2+ k2) lj2= e, and let us split the integral defining the difference 

A = u(x  o + h, Yo + k)--U(Xo, Yo) into two, extended respectively over the circle 

/'2~ (xo, Yo) and its complement F ~  (Xo, Yo). Let us denote the integrals so obtained 

by P and Q respectively. Without loss of generality we may assume that  (Xo, Yo) = 

(0,0) and that  /(Xo, Yo)= 0. Then, with H (x, y ) =  (x2+ y2)-~/2, we have 

f f /(s,t) [H (s--h, t - - k ) - -  H (s,t)]dsdt = hA2~ + kB2~ + Q 
I"2e 

+5 ] ( s ' t ) [ h 2 H ~ ( s - - O h ' t - - O k ) + 2 k h H ' u ( s - - O h ' t ~ - O k ) +  
/ " 2 e  

+ k~H~u (s-- Oh, t - -  Ok)] ds dt 
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where 0 is a function of s and t such tha t  0 < 0 < 1 ,  A2~ and B2~ are the inte- 

grals ( 4 ) ex t ended  over F ~ .  

I f  we replace here A2~ and B2~ by A and B, we ult imately commit  an error 

o ( Ih l )  + o ( Ik l )  = o (h ~ + U) I~2. The first o f  the remaining three integrals is numeri- 

cally 

O(h~) fl ] ' l / ( S , t ) I [ ( s - - O h )  2 + (t--Ok)2] -3'2 ds d t  = 
. /  . J  

_r"2 e 

c o  

F'2e 23 

where I ( r )  is the integral of ]/1 extended over the circle F , .  Integrat ion by parts  

and the fact that ,  by  assumption, I ( r ) =  o (r2), shows tha t  the last expression is 

0 (~)  o (~-1) = o (~). 

The same remark  applies to the remaining two integrals constituting Q. Hence 

(5) Q = A h  + B k  + o(s). 

An application of HSlder 's  inequality to the integrals defining P gives, with p = q--_l 
q 

[ P ]  _< I f  f l~[ ~ ds dt]'"{[ff H" dsdt]" + [ f f  H (s-h,  t-k)" dsd,] I''} < 
r2. r~. r2. 

__ d t ]  1Iv <2[f f l / l~dsdt] l /~[ f fH" ds =o(e). 
r2~ r4~ 

Hence, using (5), we get A = P + O - A h + B k . §  and par t  b) of Theo- 

rem 1 is established. 

R e m a r k s .  Neither par t  of Theorem 1 admits  of much .improvement.  For, 

beginning with par t  ~a), let us assume tha t  /(s,  t) vanishes outside the square 

S, 0 _< s < ], 0 < t < 1, and tha t  it is constant, equal to ~ (so), along every segment 

s = s o, 0 < t _< ]. Then, integrating with respec t  to t, one finds tha t  in every smaller 

square concentric with, and situated, similarly to, S the function u (x, y)dif fers  from 

the logarithmic potent ial  

1 

(6) L (x, y) = L (x) = f ~v (s) log [ x - -  s 1-1 d s 
0 

by  a bounded function. Let  us suppose tha t  ~v is non-negative. I f  o~ (x) is any  

function tending to co with x, then the integrabili ty of o)(/) over S is equivalent 

to the integrability of ~ (q~) over 0 < s < 1. I f  co (x) = x log + x, then an application 
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of u  inequal i ty  (see [7], p. 64) to the  in tegral  shows t h a t  the  in tegrabi l i ty  of 

log + ~ implies  the  boundedness  of L (x, y) over  S. Suppose,  however ,  t h a t  e) (x) 

tends  to + oo more  slowly than  x log x. We can then  find a posi t ive funct ion ~ (s), 

0 _< s _< 1, with (o [~v (s)] integrable  and such t h a t  the  integral  (6) diverges to + oo 

in a set of points  x dense in (0, 1). (See [7], p. 99). Hence  u (x ,  y) equals  + oo 

on a set  of segments  s = s 0 ,  0 < t <  1, dense in S. This shows t h a t  a t  no point  

inter ior  to S can  u (x, y) have  a direct ional  de r iva t ive  in the direct ion mak ing  an 

. 
angle of _+~-wl th  the  x-axis.  Ro t a t i ng  the  whole p ic ture  by  ~r~ we obta in  a mass  

dis t r ibut ion with dens i ty  / (s ,  t) such t h a t  m (/) is in tegrable  and ye t  the  poten t ia l  

u (x, y) has no par t ia l  de r iva t ive  ux or u~ a t  any  point  inter ior  to a square  S '  ob- 

ta ined  by  the  ro ta t ion  of S�9 

I t  is easily seen t h a t  ux and  u~ will be non-ex is ten t  a t  a lmost  every  point  of 

S ' ,  no m a t t e r  how we modi fy  u (x, y) in a n y  set  of measure  0. For,  ~ being > 0, 

the  funct ion L (x) is lower semicontinuous.  Hence  given a n y  n m n b e r  M > 0, no 

m a t t e r  how large, we shall have  L (x) - L (x, y) > M in a set  of str ips parallel  to the  

y-axis  ( s_<y_<  1 - - ~ )  and dense in 0 < x <  1. Thus no m a t t e r  how we modi fy  u i n  

set  of measure  0 it  will be discontinuous,  in the  direct ion 7 - 4 '  a t  a lmos t  a e v e r y  

poin t  (x, y) E S. 

T h a t  in p a r t  b) we cannot  replace the in tegrabi l i ty  of I/]Q, q > 2 b y  the inte-  

grabi l i ty  of / i  (over every  finite circle) is even simpler.  For  the  kernel  H'(x,  y) - 

_ (x2 + y2)~/2 is not  quadra t ica l ly  in tegrable  near  the origin. We can therefore  cons t ruc t  

a funct ion / (s ,  t) > 0 quadra t ica l ly  in tegrable  over  every  finite circle and such t h a t  

the  convolut ion u of / and  H diverges to + oo in a set  dense over  the whole plane.  

I t  follows t h a t  u remains  unbounded  in eve ry  circle no m a t t e r  how we change u in 

a set  of measure  0. Thus u cannot  have  a comple te  differential  a t  any  point,  even 

if we modi fy  u in a set  of measure  0. 

Of course, we could sl ightly sharpen p a r t  b) by  in t roducing the logar i thmic  

scale of integrabi l i ty ,  bu t  this general izat ion would be of lit t le interest .  

I t  m a y  also be added tha t ,  under  the  assumpt ions  of Theorem 1, the  funct ion 

u (x, y) is absolu te ly  cont inuous in Tonell i ' s  Sense over  every  finite square I wi th  

sides parallel  to the  axes�9 This follows f rom the fact  t h a t  u is abso lu te ly  cont inuous  

on ahnos t  every  line paral lel  to one of the axes, and t h a t  bo th  Ux and uv are in- 

tegrable  over  I .  

On account  of cer tain appl icat ions  we shall s ta te  the  analogue of Theorem 1 in 

n dimensions�9 
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T h e o r e m  2. Suppose that / (xi, x2 . . . .  , xn) is integrabIe over the whole space 

E ~, and ]/]log +I / I  is integrable over every finite sphere in the space. Then the po- 

tential 

u (x l  . . . .  x , ) =  u ( P ) =  f [ P - - Q I - ~ + I / ( Q )  dQ 
E n  

converges over almost every line x~ -- const, i = 2, . . . ,  n and represents an absolutely 
~ u  

continuous /unction o/ x v In  particular the partial derivative ~x  1 = u, 1 exists almost 

everywhere. Moreover 

u~l = ( n -  1) f ( s l  --xi) lP-QI-~-~/(Q) dQ 
E n 

almost everywhere, xi and sl being the first coordinates o/ P and Q respectively. 

I / /  is integrable over the whole space E ~ and belongs to i q, q ~ n, then u (P) 

has a complete di/[erential at almost every point o/ the space. 

The proof follows very closely tha t  of Theorem 1. 

R e m a r k .  I t  is not difficult to see tha t  for the most  general mass distribution 

d #  the potential  u has a t  almost every point P =  (xi, x2 . . .  xn) an approximate 
n 

di//erential, tha t  is u (xz + h i , . . ,  x~ + h~) - -  u (xi . .  �9 xn) = ~. A, h, + o ( ~  I h~ J), pro- 
1 1 

vided the point (hi, h2 . . .  h~) tends to (0, 0 . . . .  0) through a certain set (depending, 

in general, on (xl x 2 . . .  xn)) having the origin as a point of strong density. For  let 

us make the usual decomposition d #  = g  + dr, where g is bounded and coincides 

with d #  in a perfect set S and equals the average value of /~ in certain n-dimen- 

sional cubes constituting the complementary  open set S' .  Correspondingly u = ug + u~ .  

Since g is bounded, u~ has a differential almost  everywhere.  Lemma 2 of Chapter I 

easily shows tha t  ua~ has at  almost every point a differential with respect to S. 

Making S expand, we obtain the result. This argument  shows tha t  u has almost 

everywhere all the approximate  partial  derivatives u~ .  

We now turn to the logarithmic potential  

(8) u (x, y) = / ( x - - s ,  y - - t )  log (s 2 + t2)ll2 ds dt. 

Since we are only interested in the differential properties of u, we may  again assume 

tha t  ] vanishes outside a sufficiently large circle. We shall investigate the existence 

9 -- 5 2 3 8 0 4 .  A c t a  m a t h e m a t i c a .  88. I m p r i m 6  le 30 o c t o b r e  1952 .  
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of the derivatives of the first two orders of u, and the existence of the second dif- 

ferential of u. We shall say that  u has a second differential at  a point (xo, Yo) if, 

for It and k tending to 0, 

(9) u ( x  o + h, Yo + k ) - - u ( x  Oyo)= A h  + B k  + �89 e + 2 D h k  + E k  2) + o(h 2 + k s) 

where A , . B , C , D , E  are independent of h and k. The existence of the secoild dif- 

ferential implies that  of the first, and in particular that  of ux (xo, Yo)= A and 

u~ (x o, Y0) = B. In general, however, it does not imply the existence of the Second 

partial derivatives in the classical sense. For example, for k = 0 the preceding 

equation reduces to 

u (x o + h, Yo) - -  u (xo, Yo) = A h § 1 8 9  2 + o ( h 2 ) ,  

which only implies that  u (x, Yo) has, for x = x o, a second generalized derivative in 

the sense of Peano and de la Vall~e Poussin (see e.g. [7] p. 257). 

T h e o r e m  3. Suppose that / (s ,  t) vanishes outside a circle and that [/I log + I/ 

is integrable (in particular /E  L). Then 

a) the integral (8) converges absolutely and represents a continuous/unction u (x, y). 

b) On almost every line parallel to either axis, u (x, y) is continuously di//erenti- 

able and the integrals 

s fE~f t ds  dt  - -  ] ( x - - s , y - - t ) ~ d s d t ; - -  ] ( x - - s ,  y - - t )  s - ~ t ~  

obtained by /ormal di//erentiation o/ the integral (8) converge and represent ux (x, y) 

and uy (x, y) respectively. 

c) On almost every line parallel to either axis the derivatives u~ and u~ are ab- 

solutely continuous /unctions. I n  particular, ux~, u~y, u~y, uy~ exist almost everywhere. 

They are given almost everywhere by the /ormulae 

s uxz(x, y) = - - ~ / ( x ,  y) + / ( x - - s ,  y - - t )  (s 2 + dt 

f f t2 __ s ~ (9a) u~y(x, y) = - - ~ / ( x ,  y) + / ( x - - s ,  y - - t )  (s 2 + t~)2dsdt  
E 

u~.  (x, y )  = u .~  (x, y )  = / (x - s ,  y - t) (s  ~ + t~)~ d s  d t ;  

in particular, ux~ + u ~  = - - 2  7~ / almost everywhere. 
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d) The /unction u (x, y) is absolutely continuous (i.e. is an integral). 

e) The /unction u has almost everywhere a second di//erential, with C, D and E in 

(9) equal to u,~, Uxy and uy~ respectively. 

Proof .  That  the integral (8) converges uniformly and absolutely follows from 

the inequality 
x y _ < x l o g  +x + e  y-~, 

(See [7] p. 64) applied to the product  ]/1"�89 log r. 

Whithout  loss of generality we may  assume t h a t  / >  O. Let  us consider the 

function 

ff (10) u(~)(x,Y)=�89 / ( x - - s , y - - t )  l o g s 2 + t 2 + 8 2 d s d t  ' 
E2 

and let us compare u(~ ) with the function 

W e  h a v e  

and if we set 

we may  write 

f f 82 -- t2 [~(x, y) = / ( x - s ,  y - t ) ( s  ~ + t2~2 
! r , , -  

d s d t .  

ff 
82 __ t 2 __ 82 

- - s ,  y - - t )  (s  ~ + t2 + 8~)~ ds dt + 

f f | S 2 - t e _ 82 S ~ - t 2 | 
+ / ( x - - s , y - - t ) [ ( ~ _ ~ + s e ) 2  ( ~ ) 2 ]  d s d t '  

W 

N ( x ,  y) = 

x 2 __ y2 __ 1 
f o r x  2 §  1, 

(x 2 + y2 § 1)2 

x 2 _ y2 __ 1 x 2 __ y2 
(x 2 + y2 + 1)2 (x 2 § ye)2 f o r x  2 + y 2 > 1 ,  

u ( ~ ) - - T ~ = ~  / ( s , t )  N s , y ~ t  d s d t .  

Then, by  Lemma 2 in Chapter I I  it follows that ,  as s--> 0, u(2)~--]~ converges 

to --7~](x, y) in the mean. But  according to Theorem 7 in Chapter I, over every 

set of finite measure /~  (x, y) converges in the mean to the function 

and thus 

[ ( x , y )  = / ( x -  
s 2 __  t 2 

s, y - - t )  (s 2 q- t~)2 ds d t  
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(11) 
E 2  

Similarly we get  

U(s) ~ f E 2 f  1.i.m. ~ / ( x - -  
~ ---)- 0 

(11) 

f f S2 __ t 2 
1.~oi. m .  u(~)~ = . ~ / (x, y)  + / (x - -  s, y - -  t) (s ~ + te)e ds  dt = / l l  (xy). 

2 s t 
s, y - - t )  (s ~ + t2)2 d8 d t  =/12 ( x  y ) ,  

~E[f  t2 - -  S 2 ~ - - T C / ( x , y ) +  / ( x - - s , y - - t l i s 2 ~ t @ d s d t = / 2 2 ( x y ) .  1. i. m .  ~ = 
~--~0 

For  the first der ivat ive of u (~) we have 

,-~o ,-~o]-- / ( x - - s '  y - - t )  s2 ~---t2+-~J = --  J(x s, y - - t )  s~ds~d! . 8 2 § t 2 

at  every  point  where the integral  

j y  1 [(x--s,y--t)(s 2+t2)l/2dsdt 
E 2 

is finite. But  according to Theorem 1 of this chapter ,  this is in fact  so at  all points  

of a lmost  every  line y = Y0. 

Thus for a lmost  every  y and every  x we have tha t  u (*)(x, y) converges and 

(12) lira u~ ~) = - - ;  f / ( x - -  s, y - - t )  s ds dt  = /1 (x, y). 
e~o  .j .j 8 2 § t 2 

E~ 

An analogous result  holds for u(~ ~) (x, y). 

Final ly  for u (~) (x, y) itself we have 

lira u (~) (x, y) = u (x, y) 

everywhere,  since the in tegrand in (10) increases as s decreases. 

We now select a sequence sn--> 0 such that ,  over every  set of finite measure  

of a lmost  every  line y = Yo, the lef t -hand sides of (11) converge in the mean  to the  

r ight  hand  sides. Le t  y = Y0 be such a line where in addit ion (12) is satisfied, and 

take  a ny  point  (x0, Y0) on it. Then 

u (~') (x, yo) = f ( x  - s )u ( :~  ) (s, yo) ds  + ( x - -  Xo)u(; n) (%, yo) + u(")(x0,  y0) 
z 6 

T 

u (~n) (x, yo) = .[~(;~) (s, yo) ds + u (~') (x0, y~ 
x o 
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and passing to the limit we obtain 

x 

u (x, yo) = f ( x - - 8 )  111 (s, yo)ds  + (~--Xo)/1 (2"0, yo) + u (~o, yo), 
x o 

x 

h (z, yo) = f ll~ (s, yo) d8 + h (~o, Yo), 
x o 

for all x. A similar result holds for almost every line x = x  o. This proves the ab- 

solute continuity of ux and u~, and gives the first two formulas (9 a). 

Let  now (x0, Yo) be a point such tha t  u be continuously differcntiable on x = x o 

and on y = y o .  Then 
x y 

u (~) (x, y) = j" ~" u (~) (s, t) d s  d t  + u (~) (x, Yo) + u(~)(xo, Y) u(~) (Xo Yo) .] X y 
XO Yo 

and passing to the limit we have 

x y 

(x, y) = f .f /l~ (~, t) ds  d t  + ~ (x, Yo) + U(Xo, y ) - - u  (Xo, Yo). 
To Yo 

But  by a theorem of Tonelli and Fubini  [3] for almost every y -  Yo the derivative 

with respect to y of the double integral above exists for all x and is equal to 

x 

. ; / 1 2  (8,  YO) d 8 ,  
x o 

and thus is an absolutely continuous function of x whose derivative with respect to 

x is /12 (x, Yo). This completes the proof of par t  c). 

The last formula also shows tha t  u (x, y) is absolutely continuous. 

I t  remains to prove tha t  u (x, y) has almost everywhere a second differential. 

Let  (x o, Yo) be a point such tha t  

1) the indefinite integral of Uxy is differentiable a t  (xo, Yo) with respect to regular 

rectangles and its derivative is Uxy (xo, Yo); 
h 2 

2) u (Xo + h, yo) = u (Xo, Yo) + h ux (Xo, yo) + ~ Ux.~ (Xo, yo) + o (h~); 

k 2 
3) u (Xo, Yo § k) = u (x o Y0) § kuy (x o Yo) § ~-uyy (x oyo) § o (]c2). 

Since each of these conditions is fulfilled almost everywhere, they will also be sat- 

isfied simultaneously almost everywhere. Now 

h k 

+ h, yo + = f + 8, Uo + t )d8 d t  + § h, yo) + 
0 0 

+ u (Xo, Yo + k) - -  u (x o, Yo) 
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and on account of 1) the double integral is equal to h k Ux, (xoyo) + o (h 2 + k2) ~. 

Thus, taking 2) and 3) into account part e) follows. 

We conclude this paper with an extension of Theorem 3 to the potential 

(13) u(P) = f /(Q)IP--QI-(n.~)dQ ( n > 2 )  
E n 

in  F~ n. 

T h e o r e m  4. Suppose that / ( P ) = / ( x l ,  x2 . . . .  , x~) is integrable over E n and 

that //l log+ [/I is integrable over every sphere. Then 

a) The integral (13) converges on almost every two-dimensional plane parallel to 

a /ixed plane and represents a continuous, indeed an absolutely continuous,/unction there. 

b) On almost every line parallel to a / i x ed  line, u (P) is continuously di//erentiable 

and the derivative is absolutely continuous. On almost every line parallel to any coor- 

dinate axis all the derivatives ux~, u x , , . . ,  ux n are absolutely continuous and are given 

by the ]ormulas 
[ ,  

(!4) ux, (P)= ~ ] / ( Q )  ~ IP - -  Q[-(~-2) dQ. 

E n 

I n  particular, all the second derivatives Ux,xj exist almost everywhere. They are given 

almost everywhere by the /ormulas 

(15) 
f ~ 

En 

~2 

En 

v~ denoting the volume o/ the n-dimensional unit sphere. I n  particular ux~,~ + . . .  + 

+ ux~x~ - n v~ / almost everywhere. 

17] / E  L q, q > 2 '  then u has a second di//erential almost everywhere. c) 

Proof.  We begin with c). Let P be a point such that 

k 
1 Suppose,  in fact, t ha t  0 ~ h ~ k. I f  - ~ h ~ Is our  asser t ion is obviously t rue.  

2 
k 

other  hand,  if h ~ the integral  is equaZ ~o 
2 

k k  k k 

O0 /tO 

On the  
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(]7) 

where 

ld ul 
u ( P + e ~ ) - - u ( P ) - - e  dE - - 1  ~dee]  = A(e) 

d u O u d2 u ~2 u 

the partial derivatives being taken at the point P. 

If we show that  A (e )=  o (e ~) uniformly in ~, our assertion will be established. 

Let  us replace in (17) the corresponding integrals. Denoting the complement of 

Fe by F~, we have 

A(e ) =  f [ I P + e ~ - - Q I - ' ~ + ~ - - [ P - - Q I - ~ + 2 ] / ( Q ) d Q  - 
] 

r~ 

--e ~[P--  /(Q)dQ--~e ~. de~IP--Q[-~+'/(Q)dQ+ 
r~ r2o 

+ I P + e e - - Q l - n + 2 - - l P - - Q l - n + : - e ~ l P - -  Q - -  

r'2q 

aeo j 

First, let us remark tha t  on account of our assumption that  / ( P ) =  0 in each 

of the preceding integrals we may replace /(Q) by / ( Q ) - / ( P ) .  

Then, by HSlder's inequality, we have 

iil < 2[ f  l/ (O)_l(P)lq o]l/q [ . f l y  - Ol(:_~), dO]l,~ 
r~ r3~ 

and on account of (16) we get [ A ] =  o(e2). 

For B we have, again on account of (16), 

1 i t  is no t  diff icul t  to show t h a t  I o = o (O n) impl ies  t h a t  Je  = o (Qn). I n  fact  th is  follows 

easi ly b y  app ly ing  t t61der 's  inequa l i ty  to  Je" 

(16) IQ = .f[ /(Q) -- / (P)I q dQ = o (en); 
% 

g~ = f l / ( Q ) - - / ( P ) ] d Q  = o(en) 1 
r, 

where /'0 denotes a sphere of radius e with center at  P. Let us suppose in addi- 

tion that  (14) and (15) hold at P. Without any loss of generality we may further 

assume that  / ( P ) =  0. 

Let ~ be an arbitrary unit vector with components ~, and consider the expression 
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2 O  

IBI < (n 2)efr-"+ dJ. (n__2 )  2-n+l - n + 2 ~  _ - -  = ~) a ~  + 

0 
2~ 

+ (n --  2 ) (n - -  l ) ~ f ~ d r = o (~2). 
0 

The integral  in C converges to zero and thus it follows tha t  also l C I =  o (~o2). 

Finally,  . it  is easily seen t h a t  the quan t i ty  in square brackets  in the integral D 

does not  exceed c @ [ P - -  Q 1-~-1. Thus 

o r  r  �9 

,,..=.,-.-,, +c (n  + 1)@ . f rn+. J" d r = o (@), 
2 9 2~ 

and c) is established. 

The cont inui ty  of u (P) in almost  every  plane parallel to a given plane, under  

the assumptions of the integrabi l i ty  of I/I l~ + [ / ] ,  is less trivial  here than  the 

cont inui ty  of u(x,  y) i n  Theorem 4. I t  is enough, however,  to sketch the proof. 

We m a y  take the Xl x2 plane for the fixed plane. 

First  we consider the  funct ion 

u(~)(P) = f [ I P - Q ]  ~ + s2]-~-(n-m/(Q) dQ (/>_ O) 

and prove t h a t  u(~ ) converges everywhere  to u(P),  and t h a t  its first and second 

derivatives converge ~n the  mean  of order 1 over every  set of finite measure. Then 

we select a subsequence u (~n) in such a way  t h a t  the derivat ives  converge in the 

mean  over every  set of finite measure on a l m o s t  every  plane parallel to  the xl x2 

plane, and on almost  every  line parallel to the Xl or x 2 axis. We may  suppose t h a t  

the x 1 x 2 plane is such a plane and the xl and x2 axes are such lines. Then 

x 1 x 2 

u ~ (Xl, x~, 0, . . . ,  0) = u (~ (0, 0 . . . . .  0) + e xl ~ x2 
0 0 

x 1 x 2 

s 8 u (~) ~ 8 u (~) 
-[- . j l  ~ d Xl ~- l ~ x  Z1 d x2 , 

o o 
and, passing to  the limit, 

x I x 2 

U(Xl, x2, 0, . . . ,  0) = u (0, 0, . . . ,  0) §  lira Ox 1 ~x~ 
0 0 

x 1 x ~  

+ l im 0 x  1 d x ~ +  l i m - ~ - d x 2 .  
0 0 

- -  dxl dx2 + 

d x  1 dx~ + 
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This shows the existence almost everywhere of the derivatives u~,  u~ ,  u~x~, 

and the continuity - -  even absolute continuity - -  of u in the x~ x2 plane. The proof 

of the remaining statements in Theorem 4 is similar. 

As in the ease of Theorem 2, we may supplement Theorem 4 by the following 

remark. Let  u (P) be the potential of a general mass distribution d,u. Then almost 

everywhere u has an approximate second differential, in the sense that  in the for- 

mula (17) the expression A (~) is o (~2) for almost every P, ~ g tends to 0 through 

a set of points having 0 as a point of strong density. The proof follows from the 

same decomposition d ~ - g  + d r  as in the case of Theorem 2. The argument also 

shows that  the approximate second derivatives Ux~j exists almost everywhere (being 

defined as the approximate first derivatives of the ordinary first de r iva t ives )and  

satisfy the equations (15). In particular, the ux~sa t i s fy  Poisson's equation. 

Added in proof, 1. VIII. 52. 

1 ~ When this paper was already accepted for publication, Prof. W. J. Trjitzinsky 

called our attention to an interesting expository article by S. G. Mikhlin, "Singular 

integral equations", Uspekhi Matematicheskikh Nauk, No 25 (1948), 29 112, which 

treats topics similar to thos~ discussed in the present paper and describes the earlier 

work of Giraud, Tricomi and the author himself. However, only functions of the 

class L ~ are considered there, and singular integrals are treated in the sense of mean 

convergence (in the metric L2). On the other hand, considering vector-functions and 

matrix-kernels leads the author naturally to the problems of inversion and of the norm 

preservation of the transform. (For the case If(z)= 1/e 2, /E L 2, th~s~ problems have 

also been solved in an unpublished work of Prof. A. Beurling.) Combining those results 

with the theorems of the present paper, one may present the former in a stronger 

form, as we hope to show elsewhere. 

2 ~ . In Chapters I and II  of the present paper we discussed the case of func- 

tions / non-periodic and defined over the entire space E n. Analogous results can be 

obtained for periodic functions. We shall limit ourselves here to describing only the 

general idea. Let  e~, e2, . . . ,  ~ be a system of n independent vectors in E n, which 

for simplicity we assume to be mutually orthogonal and of length 2 ~. Let  Po - O, 

PI ,  P 2 , . . .  be the sequence of terminal points of the vectors (P~--Oy)-l~g~+ 
+ k2 e2 + "'" + k~ g~, where the ks are arbitrary integers. The series on tile right in the 

formula 

K* (P--O) = K (P--O) + ~, {K (P-- I t )  -K (O--P~)} 
v-l .  
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converges absolutely and uniformly over any finite sphere in E ~, provided we drop the 

first few terms. The function K* is periodic, of period 2 n, in each Cartesian coordinate, 

and the Fourier coefficients of K*, taken in the principal value sense, are equal 

to the corresponding values of Fourier transform of K. If 

/ (P) - E ckl.. k= exp i (k 1 x 1 + ... + kn x=), the function 

1" (P) = (2 :~)-nf / (Q) K* (P-Q)  dO, 
R 

where R stands for the cube [xjl -< :~, J=  l, 2, . . . ,  n, plays a role similar to tha t  of 

the ordinary conjugate function in E 1. If /* is integrable, its Fourier coefficients 

are c~1...kn/~k,.. .  ~ ,  where K ~ . . .  ~ denote the Fourier coefficients of K*. Familiar 

results about /* in E 1 (in which case K (t)= 1/t, K* (t) = ~ cot �89 t) are simple conse- 

quences of the theorems established in Chapters I and II  and are easily extensible 

to general n. The simplest cases for n=2 are the kernels K(z)=z~/Iz[ k+~, k =  +1 ,  

++2 . . . .  The kernel K* associated with K(z )= l / z  2 is the classical ~ function of 

Weierstrass. 

3 ~ Let  el, e2 . . . . .  g~ be any system of independent vectors in E ~ and P c - O ,  

P1, P 2 , . - -  the set of lattice points generated by this system. Let Xo, x l , . . ,  be 

any sequence of complex numbers such that  E [ x . ] P ~  0% where p >  1 is a fixed 

number, and let 

(*) ~ =  Ex, K (P~--P,). 
t ~ v  

Theorem 1 of Chapter I leads to the inequality 

< 

(For n =  1 this remark is due to M. Riesz [9], and the proof in the case of general 

n follows a similar pattern). The last inequality can be written in the form 

[ E x. y,, K (P~--P.) ]  <_ A~ (E Ix. IP) 1/" (E l Y~ [q)~/q, 

where p > l ,  q > l ,  1 / p + l / q = l .  The case n = 2 ,  K(z )= l / z  ~ is of special interest. 

The equations (*) can then also be written 

where /~ and v now run through all complex integers. This may be considered as 

the simplest generalization of the Hilbert-Toeplitz linear fornl to space E 2. The norm 

of this transformation is the upper bound of the modulus of the function defined 

by the Fourier series E ' (k  + il) -2 exp i (kx  + ly). 
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4 ~ . Theorem 1 of Chapter 1 can be written in the form (which again for n =  1 

was pointed out by M. Riesz) 

I f f / (P)g(Q) K (P--Q) dP dQ =A,]l/ll, [Igll~ (1/p + l/q= l), 
E n E n 

where the integral on the left is considered as the limit, for s-~ 0, of the integral 

extended over the portion I P - -  Q[ -> s of the space E ~ • E ~. 

5 ~ . The case K ( P - -  O) = ( P - -  O) I P -  OI ~ 1 / e L  2 is also discussed in a recent 

unpublished paper of J. Horvs 
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