ON CERTAIN THEOREMS IN OPERATIONAL CALCULUS.

By
S. C. MITRA and B. N. BOSE

Lucknow, India.

The object of this paper is twofold: firstly to establish certain theorems in Operational Calculus and secondly to obtain the Laplace transforms of several functions.

1. Let us suppose [1]

$$
\begin{equation*}
\Phi(p)=p \int_{0}^{\infty} e^{-p t} f(t) d t \tag{1}
\end{equation*}
$$

where p is a positive number (or a number whose real part is positive) and the integral on the right converges. We shall then say that $\Phi(p)$ is operationally related to $f(t)$ and symbolically

$$
\begin{equation*}
\Phi(p) \doteqdot f(t) \text { or } f(t) \doteqdot \Phi(p) \tag{2}
\end{equation*}
$$

Many interesting relations involving $\Phi(p)$ and $f(t)$ have been obtained. The following will be required in the sequel.

$$
\begin{align*}
& p \Phi(p) \div \frac{d}{d t} f(t), \text { if } f(0)=0 \tag{3}\\
& p \frac{d}{d p}[\Phi(p)] \doteqdot-t \frac{d}{d t} f(t) \tag{4}\\
& \frac{\Phi(p)}{p} \doteqdot \int_{0}^{t} f(t) d t \tag{5}\\
& p \int_{0}^{\infty} \frac{\Phi(p)}{p} d p \doteqdot \frac{f(t)}{t} \tag{6}\\
& p \frac{d}{d p}\left[\frac{\Phi(p)}{p}\right] \doteqdot-t f(t) \tag{7}
\end{align*}
$$

15-523804 Acta mathematica. 88. Imprimé le 20 novembre 1952

Also Goldstein [2] has proved that if

$$
\Phi(p) \because f(t), \psi(p) \because g(t)
$$

then

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\Phi(t) g(t) d t}{t}=\int_{0}^{\infty} \frac{\psi(t) f(t)}{t} d t \tag{8}
\end{equation*}
$$

provided the integrals converge.
It is known that if $h(t)$ is another function which satisfies (1), then

$$
f(t)-h(t)=n(t),
$$

where $n(t)$ is a null-function, i.e. a function such that

$$
\int_{0}^{t} n(t) d t=0, \text { for every } t \geq 0
$$

If $f(t)$ is a continuous function which satisfies (1), then it is the only continuous function which satisfies (1). This theorem is due to Lerch [3].
2. Our object is to investigate that if either of the two functions $f(t)$ and $\Phi(t)$ has an assigned property, then will that property or an analogous property be true of the other function?

We know that

$$
\begin{equation*}
\frac{p}{\left(p^{2}+b^{2}\right)^{n+\frac{1}{2}}} \doteqdot \frac{V_{\pi}}{2^{n} \Gamma\left(n+\frac{1}{2}\right)}\left(\frac{t}{b}\right)^{n} J_{n}(b t) . \tag{9}
\end{equation*}
$$

Applying Goldstein's theorem, we get

$$
\begin{equation*}
b^{2} \int_{0}^{\infty} \frac{f(t) d t}{\left(b^{2}+t^{2}\right)^{n+\frac{1}{2}}}=\frac{\sqrt{\pi} b}{2^{n} \Gamma\left(n+\frac{1}{2}\right)} \int_{0}^{\infty}\left(\frac{t}{b}\right)^{n-1} \Phi(t) J_{n}(b t) d t, R(n)>-\frac{1}{2} . \tag{10}
\end{equation*}
$$

Les us now put $b^{2}=p$ and interpret. Assuming that $\frac{1}{p} \div x$, we get

$$
\begin{equation*}
x^{n-\frac{1}{2}} \int_{0}^{\infty} e^{-t^{2} x} f(t) d t \vdots \frac{\sqrt{\pi}}{2^{n}} \frac{1}{p^{\frac{1}{2}-1}} \int_{0}^{\infty} t^{n-1} \Phi(t) J_{n}(\sqrt{p} t) d t, \tag{11}
\end{equation*}
$$

provided the integrals converge.
Again let us divide both sides of (10) by b and put $b=p$. On interpretation, we get

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{\varkappa}{t}\right)^{n} f(t) J_{n}(\varkappa t) d t \div \int_{0}^{\infty}\left(\frac{t}{p}\right)^{n-1} \Phi(t) J_{n}(p t) d t, R(n)>-\frac{1}{2} . \tag{12}
\end{equation*}
$$

This can also be written in the form

$$
\begin{equation*}
x^{n-\frac{1}{2}} \int_{0}^{\infty} \sqrt{x t} t t^{-n-1} 2 f(t) J_{n}(x t) d t \div \frac{1}{p^{n-1}} \int_{0}^{\infty} t^{n-1} \Phi(t) J_{n}(p t) d t \tag{13}
\end{equation*}
$$

Suppose $t^{-n-\frac{1}{2}} f(t)$ is self-reciprocal in the Hankel transform of order n. Then

$$
\begin{equation*}
f(x) \left\lvert\, x \div \int_{0}^{\infty}\left(\frac{t}{p}\right)^{n-1} \Phi(t) J_{n}(p t) d t\right. \tag{14}
\end{equation*}
$$

But by (6),

$$
p \int_{p}^{\infty} \frac{\Phi(p)}{p} d p \doteqdot \frac{f(\varkappa)}{\varkappa} .
$$

Therefore

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{t}^{n-1} \Phi(t) J_{n}(p t) d t=p^{n} \int_{p}^{\infty} \frac{\Phi(p)}{p} d p, \tag{15}
\end{equation*}
$$

provided the integrals converge.
Dividing both sides by p^{n} and differentiating with respect to p (assuming that differentiation under the sign of integration is permissible and that $\Phi(t) / t$ is a continuous function of t in $(0, \infty)$), we get on writing $n-1$ for n,

$$
\begin{equation*}
\int_{0}^{\infty} \sqrt{p t} t^{n-\frac{3}{2}} \Phi(t) J_{n}(p t) d t=p^{n-\frac{3}{2}} \Phi(p), \tag{16}
\end{equation*}
$$

showing that $t^{n-\frac{3}{2}} \Phi(t)$ is self-reciprocal in the Hankel transform of order n, when (16) converges.

Thus we have
Theorem I. If $t^{-n-\frac{1}{2}} /(t)$ is self-reciprocal in the Hankel transform of order n and $\Phi(t) / t$ is continuous in $(0, \infty)$ then $t^{n-\frac{3}{2}} \Phi(t)$ is self-reciprocal in the Hankel transform of order n.

We can also write (12) in the form

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{\varkappa}{t}\right)^{n} f(t) J_{n}(\varkappa t) d t \doteqdot \frac{1}{p^{n-\frac{1}{2}}} \int_{0}^{\infty} \sqrt{p t} t^{n-\frac{3}{2}} \Phi(t) J_{n}(p t) d t . \tag{17}
\end{equation*}
$$

Let $t^{n-\frac{3}{2}} \Phi(t)$ be self-raciprocal in the Hankel transform of order n. The (17) becomes

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{x}{t}\right)^{n} f(t) J_{n}(x t) d t \doteqdot \frac{\Phi(p)}{p} \tag{18}
\end{equation*}
$$

But by (5),

$$
\frac{\Phi(p)}{p} \doteqdot \int_{0}^{\chi} f(t) d t .
$$

Hence by Lerch's theorem

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{x}{t}\right)^{n} f(t) J_{n}(x t) d t=\int_{0}^{x} f(t) d t . \tag{19}
\end{equation*}
$$

Differentiating both sides with respect to x (assuming that differentation under the sign of integration is permissible and $f(t)$ is a continuous function of t), we get on writing $n+1$ for n

$$
\begin{equation*}
\int_{0}^{\infty} \sqrt{x t} t^{-n-\frac{1}{2}} f(t) J_{n}(x t) d t=\varkappa^{-n-\frac{1}{2}} f(x) \tag{20}
\end{equation*}
$$

showing that $t^{-n-\frac{1}{2}} f(t)$ is self-reciprocal in the Hankel transform of order n. We thus have conversely,

Theorem II. If $t^{n-\frac{3}{2}} \Phi(t)$ is self-reciprocal in the Hankel transform of order n and $f(t)$ is continuous, then $t^{-n-\frac{1}{2}} f(t)$ is self-reciprocal in the Hankel transform of order n.

In (12) let us put $n=\frac{1}{2}$. We obtain

$$
\begin{equation*}
\int_{0}^{\infty} \frac{f(t)}{t} \sin x t d t \doteqdot \int_{0}^{\infty} \frac{\Phi(t)}{t} \sin p t d t \tag{21}
\end{equation*}
$$

By (4), we get

$$
\begin{equation*}
x \int_{0}^{\infty} f(t) \cos x t d t \doteqdot-p \int_{0}^{\infty} \Phi(t) \cos p t d t \tag{22}
\end{equation*}
$$

where we again assume that differentiation under the sign of integration is permissible.

If $\Phi(t)$ is self-reciprocal in the cosine transform, we obtain

$$
\begin{equation*}
\sqrt{\frac{2}{\pi}} x \int_{0}^{\infty} f(t) \cos \varkappa t d t \doteqdot-p \Phi(p) . \tag{23}
\end{equation*}
$$

But by (3),

$$
p \Phi(p) \doteqdot f^{\prime}(\varkappa) \text {, if } f(0)=0
$$

Hence

$$
\sqrt{\frac{2}{\pi}} x \int_{0}^{\infty} f(t) \cos x t d t=-f^{\prime}(x)
$$

Integrating the left hand side by parts, we have

$$
\begin{equation*}
\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f^{\prime}(t) \sin x t d t=f^{\prime}(x), \text { when } f(\infty)=0 \tag{24}
\end{equation*}
$$

showing that $f^{\prime}(t)$ is self-reciprocal in the sine transform. We therefore have
Theorem III. If $\Phi(t)$ is self-reciprocal in the cosine transform and $f(0)=f(\infty)=0$, then $f^{\prime}(\mu)$ is self-reciprocal in the sine transform. Again integrating the left hand side of (22), we have

$$
\int_{0}^{\infty} f^{\prime}(t) \sin x t d t \doteqdot p \int_{0}^{\infty} \Phi(t) \cos p t d t
$$

provided $f(\infty)=0$.
If $f^{\prime}(t)$ is self-reciprocal in the sine-transform, we get

$$
\begin{equation*}
f^{\prime}(x) \doteqdot \sqrt{\frac{2}{\pi}} p \int_{\dot{0}}^{\infty} \Phi(t) \cos p t d t \tag{25}
\end{equation*}
$$

But when $f(0)=0$, we have by $(3), f^{\prime}(x) \doteqdot p \Phi(p)$, so that

$$
\begin{equation*}
\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \Phi(t) \cos p t d t=\Phi(p) \tag{26}
\end{equation*}
$$

showing that $\Phi(t)$ is self-reciprocal in the cosine transform. Hence the converse theorem follows, viz.,

Theorem IV. If $f(0)=f(\infty)=0$ and $f^{\prime}(\varkappa)$ is self-reciprocal in the sine transform, then $\Phi(t)$ is self-reciprocal in the cosine transform.

Again in (22) let $f(t)$ be self-reciprocal in the cosine transform. Then

$$
x f(x) \div-\sqrt{\frac{\overline{2}}{\pi}} p \int_{0}^{\infty} \Phi(t) \cos p t d t .
$$

But by (7),

$$
\varkappa f(x) \doteqdot-p \frac{d}{d p}\left[\frac{\Phi(p)}{p}\right]
$$

so that

$$
\begin{equation*}
\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \Phi(t) \cos p t d t=\frac{d}{d p}\left[\frac{\Phi(p)}{p}\right] \tag{27}
\end{equation*}
$$

Integrating both sides with respect to p between the limits zero and p and changing the order of integration on the left (if that is permissible), we notice that if $\Phi(p) / p \rightarrow 0$ as $p \rightarrow 0$,

$$
\begin{equation*}
\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{\Phi(t)}{t} \sin p t d t=\frac{\Phi(p)}{p}, \tag{28}
\end{equation*}
$$

showing that $\Phi(t) / t$ is self-reciprocal in the sine transform. Hence we have
Theorem V. If $f(t)$ is self-reciprocal in the cosine transform and $\Phi(t) / t \rightarrow 0$ as $t \rightarrow 0$, then $\Phi(t) / t$ is self-reciprocal in the sine transform. Conversely, if $\Phi(t) / t$ is selfreciprocal in the sine transform, we have

$$
\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \Phi(t) \sin p t d t=\frac{\Phi(p)}{p} \doteqdot \int_{0}^{x} f(t) d t, \text { by }(5) .
$$

Hence by (4),

$$
\sqrt{\frac{2}{\pi}} p \int_{0}^{\infty} \Phi(t) \cos p t d t \doteqdot-x f(x)
$$

provided $f(t)$ is continuous and differentiation under the sign of integration is permissible.

But by (22),

$$
x \int_{0}^{\infty} f(t) \cos x t d t \div-p \int_{0}^{\infty} \Phi(t) \cos p t d t .
$$

Hence

$$
\begin{equation*}
\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \cos x t d t=f(x) \tag{29}
\end{equation*}
$$

showing that $f(t)$ is self-reciprocal in the cosine transform. Thus we have
Theorem VI. If $\varphi(t) / t$ is self-reciprocal in the sine transform and $f(t)$ is continuous, then $f(t)$ is self-reciprocal in the cosine transform.

Theorem IV can also be extended to reciprocal functions.

$$
\text { Let } \Phi(p \doteqdot f(x), \psi(p) \doteqdot g(x)
$$

and

$$
f(0)=g(0)=f(\infty)=g(\infty)=0
$$

Then if $\Phi(p)$ is reciprocal to $\psi(p) ; f^{\prime}(x)$ is reciprocal to $g^{\prime}(x)$ in the sine transform.

For, by (22)

$$
\begin{aligned}
\sqrt{\frac{2}{\pi}} x \int_{0}^{\infty} f(t) \cos x t d t & \doteqdot-\sqrt{\frac{2}{\pi}} p \int_{0}^{\infty} \Phi(t) \cos p t d t \\
& \doteqdot-p \psi(p) \\
& \doteqdot-g^{\prime}(x)
\end{aligned}
$$

Integrating the left hand side and applying Lerch's theorem, we obtain

$$
\begin{equation*}
\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f^{\prime}(t) \sin \varkappa t d t=g^{\prime}(x) \tag{30}
\end{equation*}
$$

showing that $f^{\prime}(x)$ is reciprocal to $g^{\prime}(x)$ in the sine transform.
Conversely, let $f^{\prime}(x)$ be reciprocal to $g(x)$ in the sine transform, where $g(x)$ is continuous in the arbitrary interval $(0, x)$. Let $G(x)=\int_{0}^{\infty} g(x) d x, \Phi(p) \doteqdot f(x)$ and $\psi(p) \doteqdot G(x)$. Then if $f(\infty)=0 ; \Phi(p)$ is reciprocal to $\psi(p)$ in the cosine transform. We have

$$
\begin{equation*}
\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f^{\prime}(t) \sin \varkappa t d t=g(\varkappa) \tag{31}
\end{equation*}
$$

On integration, the left hand side becomes

$$
-\sqrt{\frac{2}{\pi}} x \int_{0}^{\infty} f(t) \cos x t d t
$$

which, by (22) is equal (\because) to

$$
\sqrt{\frac{2}{\pi}} p \int_{0}^{\infty} \Phi(t) \cos p t d t
$$

Therefore

$$
\begin{aligned}
\sqrt{\frac{2}{\pi}} p \int_{0}^{\infty} \Phi(t) \cos p t d t & \ddots g(\varkappa) \\
& \ddots G^{\prime}(\varkappa) \\
& \fallingdotseq p \psi(p) .
\end{aligned}
$$

Hence

$$
\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \Phi(t) \cos p t d t=\psi(p)
$$

showing that $\Phi(t)$ is reciprocal to $\psi(p)$ in the cosine transform.

3. A Functional Relation.

Let us now consider the relation (10). Putting $b^{2}=p$ and interpreting, we obtain

$$
\frac{2^{n}}{\sqrt{\pi}} x^{n-\frac{1}{2}} \int_{0}^{\infty} e^{-t^{2} x} f(t) d t \doteqdot \frac{1}{p^{\frac{1}{2}-\frac{3}{4}}} \int_{0}^{\infty} t^{n-\frac{3}{2}}\left(V^{-} p\right)^{\frac{1}{2}} \Phi(t) J_{n}\left(V_{p}^{-}\right) d t
$$

which is our relation (11).
Suppose $t^{n-\frac{3}{2}} \Phi(t)$ is self-reciprocal in the Hankel transform of order n. The right hand side is $\Phi\left(V^{\prime}\right)$. But if $\Phi(p) \doteqdot f(t)$, then

$$
\Phi\left(V_{p}^{-}\right) \doteqdot \frac{1}{\sqrt{\pi x}} \int_{0}^{\infty} e^{-t^{2} / 4 x} f(t) d t
$$

so that

$$
\begin{equation*}
2^{n} x^{n} \int_{0}^{\infty} e^{-t^{2} x} f(t) d t=\int_{0}^{\infty} e^{-t^{2} / 4 x} f(t) d t \tag{32}
\end{equation*}
$$

If we write

$$
F(x)=\int_{0}^{\infty} e^{-t^{2} x} f(t) d t
$$

the functional relation becomes

$$
\begin{equation*}
2^{n} \varkappa^{n} F(\varkappa)=F\left(\frac{1}{4 x}\right) \tag{33}
\end{equation*}
$$

4. If $\Phi(p)$ is given by (1), then by Mellin's inversion formula [4],

$$
\begin{equation*}
f(t)=\frac{1}{2 \pi}{ }_{c} \int_{c-i \infty}^{c+i \infty} e^{\lambda t} \frac{\Phi(\lambda)}{\lambda} d \lambda,(c>0) \tag{34}
\end{equation*}
$$

The question naturally arises: if $f(t)$ and $\Phi(t)$ have these assigned properties, are there formulae for determining them otherwise if either of the two functions is known?

We know that

$$
\begin{equation*}
\frac{x^{n}}{(t+x)^{n+\frac{1}{2}}} \doteqdot 2^{n+\frac{1}{2}} \Gamma(n+1) \sqrt{p} e^{\frac{1}{2} p t} D_{-2 n-1}(\sqrt{2 p t}) \tag{35}
\end{equation*}
$$

Applying Goldstein's theorem, we get after slight changes in the variables

$$
\begin{equation*}
\frac{1}{2^{n+\frac{1}{2}} \Gamma(n+1)} \int_{0}^{\infty} \frac{t^{n-1} \Phi(t) d t}{(t+p)^{n+\frac{1}{2}}}=\int_{0}^{\infty} t^{-\frac{1}{2}} e^{\frac{1}{2} p t} D_{-2 n-1}(\sqrt{2 p t}) f(t) d t \tag{36}
\end{equation*}
$$

Writing t^{2} for t and p^{2} for p, the above relation becomes

$$
\begin{equation*}
\frac{1}{2^{n+\frac{1}{2}} \Gamma(n+1)} \int_{0}^{\infty} \frac{t^{2 n-1} \Phi\left(t^{2}\right) d t}{\left(p^{2}+t^{2}\right)^{n+\frac{1}{2}}}=\int_{0}^{\infty} e^{\frac{1}{2} p^{2} t^{2}} D_{-2 n-1}(\sqrt{2} p t) f\left(t^{2}\right) d t \tag{37}
\end{equation*}
$$

Multiplying both sides by p and interpreting, we have on simplification,

$$
\begin{align*}
& \frac{x^{n-\frac{1}{2}}}{\Gamma(2 n+1)} \int_{0}^{\infty} \sqrt{x t} t^{n-\frac{3}{2}} \Phi\left(t^{2}\right) J_{n}(x t) d t \\
& \tag{38}\\
& \vdots \sqrt{2} p \int_{0}^{\infty} e^{\frac{1}{2} p^{2} i^{2}} D_{-2 n-1}(V \overline{2} p t) f\left(t^{2}\right) d t, \overparen{R}(n)>-\frac{1}{2}
\end{align*}
$$

If $t^{n-\frac{3}{2}} \Phi\left(t^{2}\right)$ is self-reciprocal in the Hankel transform of order n, we get

$$
\begin{equation*}
\Phi\left(\varkappa^{2}\right) \varkappa^{2 n-2} \doteqdot \sqrt{2} \Gamma(2 n+1) p \int_{0}^{\infty} e^{\frac{1}{2} p^{2} t^{2}} D_{-2 n-1}(\sqrt{2} p t) f\left(t^{2}\right) d t \tag{39}
\end{equation*}
$$

If $\Phi\left(t^{2}\right) / t$ is self-reciprocal in the sine transform,

$$
\begin{equation*}
\Phi\left(\varkappa^{2}\right) / \varkappa \doteqdot \sqrt{2} p \int_{0}^{\infty} e^{\frac{1}{2} p^{2} t^{2}} D_{-2}(\sqrt{2} p t) f\left(t^{2}\right) d t \tag{40}
\end{equation*}
$$

Let us revert back to relation (10) once more. We can write it in the form

$$
\begin{equation*}
\frac{2^{n}}{\sqrt[V]{\prime}} \Gamma\left(n+\frac{1}{2}\right) \int_{0}^{\infty} \frac{b^{n+\frac{1}{2}} f(t) d t}{\left(t^{2}+b^{2}\right)^{n+\frac{1}{2}}}=\int_{0}^{\infty} \sqrt{b t} t^{n-\frac{3}{2}} \Phi(t) J_{n}(b t) d t . \tag{41}
\end{equation*}
$$

If $t^{n-\frac{3}{2}} \Phi(t)$ is self-reciprocal in the Haukel Transform of order n, then

$$
\begin{equation*}
\Phi(b)=\frac{2^{n} \Gamma\left(n+\frac{1}{2}\right)}{V \bar{\pi}} b^{2} \int_{0}^{\infty} \frac{f(t) d t}{\left(t^{2}+b^{2}\right)^{n+\frac{1}{2}}} . \tag{42}
\end{equation*}
$$

Conversely if $\Phi(b)$ is given by (42), then putting $b==p$ and interpreting, we get after a bit of reduction that $t^{-n+\frac{1}{2}} f(t)$ is self-reciprocal in the Hankel transform of order $n-1$, provided $f(t)$ is continuous and $n>0$. If (42) holds and $t^{-n+\frac{1}{2}} f(t)$ is selfreciprocal in the Hankel transform of order $n-1$, then $\Phi(p) \doteqdot f(t)$. Again expressing the right hand side of (1) as a double integral and changing the order of integration (if that is permissible) we can prove that if $t^{-n+\frac{1}{2}} f(t)$ is self-reciprocal in the Hankel transform of order $n-1$, then $\Phi(b)$ is always given by (42).

We might also have derived similar relations by considering that [5]

$$
\begin{equation*}
f\left(t^{2}\right) \div \frac{p}{\sqrt{\pi}} \int_{0}^{\infty} e^{-p^{2} x^{2} / 4} \Phi\left(\frac{1}{\varkappa^{2}}\right) d \varkappa . \tag{43}
\end{equation*}
$$

5. A double Integral theorem for $\Phi(t)$.

Let us consider the relation (12) again, Since by (7)

$$
p \frac{d}{d p}\left[\frac{\Phi(p)}{p}\right] \doteqdot-\varkappa f(\varkappa)
$$

we get on differentiating under the sign of integration (if that is permissible)

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\varkappa^{n+1}}{t^{n}} f(t) J_{n}(\varkappa t) d t \doteqdot \int_{0}^{\infty} \frac{t^{n}}{p^{n-1}} \Phi(t) J_{n+1}(p t) d t, \widetilde{R}(n)>-\frac{1}{2} . \tag{44}
\end{equation*}
$$

Also we know

$$
\begin{equation*}
\frac{\sqrt{\pi}}{2^{n+1} \Gamma\left(n+\frac{3}{2}\right)} \frac{x^{n+1} J_{n}(c x)}{c^{n}} \div \frac{p^{2}}{\left(p^{2}+c^{2}\right)^{n+\frac{3}{2}}}, R(n)>-1 . \tag{45}
\end{equation*}
$$

Making use of Goldstein's Theorem, we obtain

$$
\begin{align*}
& \int_{0}^{\infty} \int_{0}^{\infty} \frac{x^{n+2} f(t) J_{n}(x t)}{t^{n}\left(x^{2}+c^{2}\right)^{n+\frac{3}{2}}} d t d x=\frac{\sqrt{\pi}}{2^{n+1} \Gamma\left(n+\frac{3}{2}\right) c^{n}} \times \\
& \times \int_{0}^{\infty} \int_{0}^{\infty} x t^{n} \Phi(t) J_{n}(c x) J_{n+1}(x t) d t d x . \tag{46}
\end{align*}
$$

Let $c=\frac{1}{p}$ where we now assume that $\frac{1}{p} \doteqdot y$. Then on simplification, we have

$$
\begin{equation*}
y^{n+1} \int_{0}^{\infty} \int_{0}^{\infty} \frac{f(t)}{t^{n}} J_{n}(\varkappa t) J_{n}\left(\frac{y}{x}\right) \frac{d t d \varkappa}{\varkappa} \doteqdot \frac{1}{p^{n+1}} \int_{0}^{\infty} \int_{0}^{\infty} x t^{n} \Phi(t) J_{n}\left(\frac{\varkappa}{p}\right) J_{n+1}(\varkappa t) d t d x . \tag{47}
\end{equation*}
$$

Writing $\frac{x}{t}$ for x, we get since x and t are independent variables,

$$
\begin{align*}
y^{n+\frac{1}{2}} \int_{0}^{\infty} \int_{0}^{\infty} \frac{f(t)}{t^{n+\frac{1}{2}}} \sqrt{y t} J_{n}(x) J_{n}\left(\frac{y t}{x}\right) & d t \frac{d x}{\varkappa} \\
\doteqdot & \frac{1}{p^{n+1}} \int_{0}^{\infty} \int_{0}^{\infty} x t^{n} \Phi(t) J_{n}\left(\frac{\varkappa}{p}\right) J_{n+1}(\varkappa t) d t d x \tag{48}
\end{align*}
$$

Professor Watson [6] has shown that

$$
\tilde{\omega}_{\mu, v}(\varkappa y)=\sqrt{\varkappa y} \int_{0}^{\infty} J_{v}(t) J_{\mu}\left(\frac{\varkappa y}{t}\right) \frac{d t}{t}
$$

can be taken as the kernel of a new transform. Let $f(x)$ be an arbitrary function, and let $g(x)$ be its transform with the Kernel $\tilde{\omega}_{\mu, v}(x y)$, so that

$$
g(x)=\int_{0}^{\infty} \tilde{\omega}_{\mu, \nu}(x y) f(y) d y
$$

Then assuming that the various changes in the order of integration are permissible, we have

$$
\begin{equation*}
\int_{0}^{\infty} \tilde{\omega}_{\mu, v}(\varkappa y) g(y) d y=f(x) \tag{49}
\end{equation*}
$$

When $f(x)=g(x)$, we say that $f(x)$ is self-reciprocal under this new transform. Hence in (48), if $t^{-n-\frac{1}{2}} f(t)$ is self-reciprocal under this transform ${ }^{1}$, the left hand side is $f(y)$, so that

$$
f(y) \doteqdot \frac{1}{p^{n+1}} \int_{0}^{\infty} \int_{0}^{\infty} \varkappa t^{n} \Phi(t) J_{n}^{\prime}\left(\frac{\varkappa}{p}\right) J_{n+1}(\varkappa t) d t d \varkappa \doteqdot \Phi(p) .
$$

Therefore

$$
\begin{equation*}
\Phi(p)=\frac{1}{p^{n+1}} \int_{0}^{\infty} \int_{0}^{\infty} x t^{n} \Phi(t) J_{n}\left(\frac{\chi}{p}\right) J_{n+1}(\varkappa t) d t d \varkappa . \tag{50}
\end{equation*}
$$

This can be written in the more symmetrical form, after considerable simplification,

$$
\begin{equation*}
\Phi(p)=-p^{2} \frac{d}{d p} \frac{1}{p^{n}}\left[\int_{0}^{\infty} \int_{0}^{\infty} t^{n-1} \Phi(t) J_{n}\left(\frac{\varkappa}{p}\right) J_{n}(\varkappa t) d t d \varkappa\right], R(n)>-\frac{1}{2} . \tag{51}
\end{equation*}
$$

provided $\Phi(p) / p$ is continuous. Conversely if (51) holds, then $t^{-n-\frac{1}{2}} f(t)$ is self-reciprocal under this transform.

II.

6. Laplace transforms of certain functions.

Let us us now consider the relation (11). We know that

$$
\begin{equation*}
J_{\nu}\left(\frac{a}{p}\right) \doteqdot J_{\nu}(\sqrt{2 a t}) I_{\nu}(\sqrt{2 a t}) \tag{52}
\end{equation*}
$$

Lèt

$$
f(t)=J_{v}(\sqrt{2 a t}) I_{v}(\sqrt{2 a t}) \text { and } \Phi(t)=J_{\nu}\left(\frac{a}{t}\right)
$$

We thus obtain

$$
\begin{equation*}
\frac{2^{n} x^{n-\frac{1}{2}}}{\sqrt{\pi}} \int_{0}^{\infty} e^{-t^{2} x} J_{v}(\sqrt{2 a t}) I_{v}(\sqrt{2 a t}) d t \doteqdot \frac{1}{p^{\frac{1}{2}} \frac{1}{n^{-1}}} \int_{0}^{\infty} J_{v}\left(\frac{a}{t}\right) J_{n}(\sqrt{p} t) t^{n-1} d t \tag{53}
\end{equation*}
$$

[^0]But

$$
\begin{equation*}
J_{v}(a z) I_{v}(a z)=\sum_{m=0}^{\infty} \frac{(-1)^{m}\left(\frac{1}{2} a z\right)^{2 v+4 m}}{\Gamma(m+1) \Gamma(v+m+1) \Gamma(v+2 m+1)} \tag{54}
\end{equation*}
$$

Integrating term by term and applying a result due to Hanumauta Rao [7], we obtain

$$
\begin{align*}
& \frac{2^{n-2 v-1} x^{n-\frac{1}{2} v-1}}{\Gamma\left(\frac{1}{2} v+1\right) \Gamma(v+1)}{ }_{0} F_{2}\left(\frac{1}{2} v+1, v+1 ;-\frac{a^{2}}{16 x}\right) \\
& \doteqdot\left\{\frac{\Gamma\left(n-\frac{1}{2} v\right)}{2^{2 v-n+1} \Gamma\left(\frac{1}{2} v+1\right) \Gamma(v+1)} \frac{1}{p^{n-\frac{1}{2} \nu-1} 0^{2}} F_{3}\left(\frac{1}{2} v+1, v+1, \frac{1}{2} v-n+1 ; \frac{a^{2} p}{16}\right)\right. \tag{54}\\
& \left.+\frac{\Gamma\left(\frac{1}{2} v-n\right) a^{2 n-v} p}{2^{3 n+1} \Gamma(n+1) \Gamma\left(\frac{1}{2} v+n+1\right)} 0^{2} F_{3}\left(n+1, n-\frac{1}{2} v+1, n+\frac{1}{2} v+1 ; \frac{a^{2} p}{16}\right)\right\} ; \\
& \\
& \left\{-R\left(n+\frac{3}{2}\right)<R(n)<R\left(v+\frac{3}{2}\right) \text { and } a>0\right\} .
\end{align*}
$$

Again we know that

$$
\begin{equation*}
(2 t)^{-1} J_{0}\left(\frac{y^{2}}{4 t}\right) \doteqdot p J_{0}\left(y \sqrt{\frac{1}{2} p}\right) K_{0}\left(y \sqrt{\frac{1}{2} p}\right) \tag{55}
\end{equation*}
$$

Let

$$
f(t)=(2 t)^{-1} J_{0}\left(\frac{y^{2}}{4 t}\right) \text { and } \Phi(t)=t J_{0}\left(y \sqrt{\frac{1}{2} t}\right) K_{0}\left(y \sqrt{\frac{1}{2}} t\right)
$$

We get (when $n=0$)

$$
\begin{equation*}
\frac{1}{2 \sqrt{\pi x}} \int_{0}^{\infty} e^{-t^{2} x} t^{-1} J_{0}\left(\frac{y^{2}}{4 t}\right) d t \doteqdot p \int_{0}^{\infty} J_{0}\left(y \sqrt{\frac{1}{2} t}\right) K_{0}\left(y \sqrt{\frac{1}{2} t}\right) J_{0}(\sqrt{p} t) d t \tag{56}
\end{equation*}
$$

Putting $t=2 z^{2} / y^{2}$, the right hand side becomes

$$
4 p y^{-2} \int_{0}^{\infty} z J_{0}(z) K_{0}(z) J_{0}\left(\sqrt{p} \frac{2 z^{2}}{y^{2}}\right) d z
$$

By a result due to Mitra [8], the integral can be evaluated and we finally obtain

$$
\begin{equation*}
\frac{1}{\sqrt{\pi x}} \int_{0}^{\infty} e^{-t^{2} \varkappa} t^{-1} J_{0}\left(\frac{y^{2}}{4 t}\right) d t \doteqdot V^{\prime} \bar{p} I_{0}\left(\frac{y^{2}}{8 \sqrt{p}}\right) K_{0}\left(\frac{y^{2}}{8 \sqrt{p}}\right) \tag{57}
\end{equation*}
$$

The integral on the left can be evaluated by expressing it as a contour integral.
Again let

$$
\Phi(t)=e^{-1 / t} t^{-1 / 2} ; f(t)=(\pi)^{-\frac{1}{2}} \sin 2 \sqrt{t}
$$

We get

$$
\begin{align*}
(\pi)^{-\frac{1}{2}} \int_{\theta}^{\infty} e^{-t^{2} x} \sin 2 \sqrt{t} d t & \doteqdot p^{1 / 2} \int_{0}^{\infty} e^{-1 / t} t^{-3 / 2} \sin \sqrt{p} t d t \\
& \doteqdot(\pi)^{2} e^{-\sqrt{2} p^{4}} \sin \sqrt{2} p^{1} \tag{58}
\end{align*}
$$

The integral on the left is easily obtainable by direct term by term integration.
Lucknow University and Calcutta University.

References.

[1] Carson, Electric circuit theory and the operational calculus (1926), 23.
[2] Goldstein, S., Proc. Lond. Math. Soc. 34 (1931), 103.
[3] Lerch, Acta Mathematica 27 (1903), 339-52.
[4] Mellin, Acta Mathematica 25 (1902), 156-62.
[5] Mclachlan and Humbert, Formulaire pour le calcul symbolique (1941), 12.
[6] Watson, G. N., Quart. Journ. Math. 2, No. 8 (1931), $298-309$.
[7] Rao, C. V. H., Messenger of Mathematics 47 (1918), 134-137.
[8] Mitra, S. C., Proc. Acad. Sciences. U. P. 4 Pt I (1934), 47-50.

[^0]: 1 The senior author has been able to construct certain examples giving functions which are self-reciprocal under this new transform and also the formal solutions of (49), when $f(\varkappa)=g(\varkappa)$.,

