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The 

Operational Calculus and secondly to obtain the Laplace transforms 

functions. 

object of this paper is twofold: firstly to establish certain theorems in 

of several 

I. 

oo 

+ (~) = ~ f e =~ / ( t )  d t  (1) 
o 

where p is a positive number (or a number whose real part is positive) and the 

integral on the right converges. We shall then say that  O (p) is operationally related 

to /(t) and symbolically 

(v) -= / (t) or / (t) - -  ~ (p). (2) 

Many interesting relations involving q5 (p) and /(t) have been obtained. The following 

will be required in the sequel. 

P ~ ( P )  ' dt  (t), if / ( 0 ) = 0  (3) 

d d 
P apT= [q5 (p)] =-::= - t ~ / (t) 

q~(p) 
- J / ( t )  d t  (5) 

P o 

~ v , = (6) 

p ~  - - -  : -  - t f ( t ) .  

15--  523804 Acta matt*ematlca. 88. I m p r i m d  le 20 n o v e m b r e  1952 

(4) 

(7) 

1. Let us suppose [t] 
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Also Goldstein [2] has proved that  if 

r (v) :: / (t), ~ (~)::  g (t), 
then 

0 0 

provided the integrals converge. 

I t  is known that  if h (t) is another function which satisfies (l), then 

I (t) - h (t) = n (t), 

where n (t) is a null-function, i.e. a function such that  

t 
f n( t )  dt=O,  for every t_>O. 
0 

If /( t)  is a continuous function which satisfies (1), then it is the only continuous 

function which satisfies (1). This theorem is due to Lerch [3]. 

2. Our object is to investigate that  if either of the two functions /(t)  and r  

has an assigned property, then will that  property or an analogous property be true 

of the other function? 

We know that  

~o 1 : 2, F ( n + � 8 9  Jn(b t ) .  (9) 
(202 + b2) n+ 2 

Applying Goldstein's theorem, we get 

b 2 j - 1 2 ~ q5 (t) J~ (b t) d t, R (n) > - �89 
(b 2 + t2)~+~ F(n  + �89 

0 0 

1 
Les us now put b 2 = p  and interpret. Assuming that  =~: ~, 

P 
we get 

nil ( 2 e t ~ ] ( t ) d t  i V ~  1 t n _ l q S ( t ) j ~ ( V p t ) d t ,  
2 ~ ! -,-7. 

o p2 o 

provided the integrals converge. 

Again let us divide both sides of (10) by b and put  b = p .  

we get 

(~0) 

(11) 

On interpretation, 
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~r c,o 
; ( t )n  f (~)n 1 /(t) J~ (~ t) dt ::- (I)(t) J~ (pt) dt, R ( n ) >  - �89 

0 0 

(12) 

This can also be written in the form 

; f  1 . 1 n 1/~tt --~ 2/( t )J~(xt)dt  _ ph-:i t n-1 q)(t)J~(pt)dt. 
0 0 

(23) 

1 
Suppose t -~2/ ( t )  is self-reciprocal in the Hankel transform of order n. Then 

But by (6), 

Therefore 

/(~)/n : : ~ =  ~(t )J~(pt)dt .  
0 

oo 

p 

= / ( C lO(t)  J , , (p t )d t=p ~ qS(P)dp, 
0 p 

(14) 

(15) 

provided the integrals converge. 

Dividing both sides by p= and differentiating with respect to p (assuming that  

differentiation under the sign of integration is permissible and that  q5 (Off is a con- 

tinuous function of t in (0, oo)), we get on writing n - 1  for n, 

or 

V p t t  2qS(t)J~(pt)dt=p qS(p), 
0 

(16) 

3 
showing that  t ~ 2 r  is self-reciprocal in the Hankel transform of order n, when 

(16) converges. 

Thus we have 

1 
T h e o r e m  I. If t-n--2/(t) is self-reciprocal in the Hankel transform of order n 

3 
and O(t)/t is continuous in (0, oo) then t ~ 2~b(t) is self-reciprocal in the Hankel 

transform of order n. 

We can also write (12) in the form 
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/(:) ( . 1 V p t t n - i q ~ ( t ) J , ( p t ) d t .  / ( t ) J , ( u t ) d t - -  ~ 
o p 25 

(17) 

3 

Let t n ~ ~b (t) be self-reciprocal in the Hankel transform of order n. The (17) becomes 

But  by  (5), 

Hence by Lerch's theorem 

/ (t) "/(')J'('t,dt--~jp~!'. 
0 

qS(p)p _ / /(t)dt. 
0 

(18) 

((t) ' / ( , ,  , f / (  t ~(ut  d t  = t) dt. 
0 0 

(19) 

Differentiating both sides with respect to ~ (assuming that  differentation under 

the sign of integration is permissible and f(t)  is a continuous function of t), we get 

on writing n + l  for n 

1 1 ( 2 0 )  
V ~ t t  n 2/( t)  J n ( ~ t ) d t =  - n - 2 / ( ~ ) ,  

0 

1 

showing that  t -n 2/(t)  is self-reciprocal in the Hankel transform of order n. We 

thus have conversely, 

3 
T h e o r e m  II .  If t '~-~ ~5(t) is self-reciprocal in the Hankel transform of order 

l 

n and /( t)  is continuous, then t ~-2]( t)  is self-reciprocal in the Hankel transform 

of order n. 

In (12) let us put  n=�89  We obtain 

By (4), we get 

//(t~)sinutdt--/~5(t)t t 
0 0 

sin p t dt  

oo 

0 ~0 

(21) 

(22) 
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where we again assume that differentiation under the sign of integration is per- 

missible. 

If ~b(t) is self-reciprocal in the cosine transform, we obtain 

0 r  

f / (t) cos ~ t d t -: - p ~ (p). (23) 

0 

But by (3), 

Hence 
p ~ (p) - - / '  (z), if / (0) = O. 

c ~  

0 

Integrating the left hand side by parts, we have 

oo  

~. /'(t) sinxtdt=/'(~), when [ (oo)=O,  
0 

(24) 

showing that / ' (t) is self-reciprocal in the sine t r ans fo rm.  We therefore have 

T h e o r e m  III .  If r (t) is self-reciprocal in the cosine transform and / (0) = / ((x)) = 0, 

then / '  (~) is self-reciprocal in the sine transform. Again integrating the left hand side 

of (22), we have 

provided / (or = O. 

c ~  o r  

f / ' ( t )s in  n t d t - - p f  qS(t)cos ptdt, 
0 0 

If [' (t) is self-reciprocal in the sine-transform, we get 

0 

(25) 

But when / ( 0 ) = 0 ,  we have by (3), /'(~)~. pqS(p), so that 

I/ I 
0 

(26) 

showing that  ~b(t) is self-reciprocal in the cosine transform. Hence the converse 

theorem Iollows~ viz., 
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T h e o r e m  IV. If / ( 0 ) = t ( c ~ ) = 0  and / '(u) is self-reciprocal in the sine trans- 

form, then qs(t) is self-reciprocal in the cosine transform. 

Again in (22) let /(t) be self-reciprocal in the cosine transform. Then 

But  by (7), 

so that  

/-7- I ~( t )  cos pt dt. ! ( ~ ) - =  _ , P .  

0 

~1(~) - : - -  -~2~ - - - -  ' 

lJ l [ i d r  
�9 qS(t) cosptdt = ~ t  P �9 
0 

(27) 

Integrating both sides with respect to p between the limits zero and p and changing 

the order of integration on the left (if that  is permissible), we notice that  if 

~(p)lp~O as  p - ~ 0 ,  
co 

i" +(') r ~ . !  7 - s i n p t d t -  , (28) p 
0 

showing that  q~(t)lt is self-reciprocal in the sine transform, tIence we have 

T h e o r e m  V. [t l(t) is self-reciprocal in the cosine transform and q~(t)lt-~O as 

t-~0, then q~(t)/t is self-reciprocal in the sine transform. Conversely, if r is self- 

reciprocal in the sine transform, we have 

Hence by (4), 

V l q3(P) " ] l(t)dt' by (5) 2 r  sin ptdt= =.== 
~ .  t p . 

0 0 

v r (t) cos  p t d t =: - ~ / (~), 

0 

provided /(t) is continuous and differentiation under the sign of integration is per- 

missible. 

But  by (22), 
oo c~ 

~.( /(t) cos~tdt::~=:-p f qS(t) cosptdt. 
0 0 
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Then if ~b(p) 

transform. 

For, by (22) 

V ~ n  f /(t) cosgtdt-: - V 2 p  . qS(t) cosptdt 
0 0 

- :  - p v~ ( p  ) 

"-  a ' ( ~ ) .  

Integrating the left hand side and applying Lerch's theorem, 

f ,, (,, sin 
0 

showing that / '(~) is reciprocal to g'(~) in the sine transform. 

Conversely, let / '(~) be reciprocal to g(x) in the sine transform, where g(~) is 

continuous in the arbitrary interval (0, ~). Let G (~) = f g (x) d x, ~b (p) :::i~ / (~) and 
0 

~o(p)--G(~). Then if / ( o o ) = 0 ;  ~(p)  is reciprocal to ~o(p) in the cosine transform. 

We have 
c~ 

7r . !  
0 

On integration, the left hand side becomes 

we obtain 

(30) 

co 

~ f  /(t)oosatdt--/(g), (29) 
0 

showing that  /(t) is self-reciprocal in the cosine transform. Thus we have 

T h e o r e m  VI. If qo(t)/t is self-reciprocal in the sine transform and /(t) is con- 

tinuous, then /(t) is self-reciprocal in the cosine transform. 

Theorem IV can also be extended to reciprocal functions. 

Let q} (p -- l (• W (P) - -  g (~) 
and 

/ (0) = a (0) = 1 (oo )  = v (oo)  = 0. 

is reciprocal to ~v(p); / '(~) is reciprocal to g ' ( ~ ) i n  the sine 
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0 

which, b y  (22) is equal ( - - )  to 

0 

Therefore 
oo 

0 

Hence 
oo 

0 

/ (t) cos ut dt, 

r (t) cos p t d t. 

~b (t) cos p t d t ::~= g (~) 

=:: G '  (~) 

:'= p ~ (P)- 

~5 (t) cos p t d t = V (P), 

showing t h a t  ~b (t) is reciprocal  to yJ (p) in the cosine t ransform.  

3. A Functional Relation. 

Le t  us now consider the relat ion (10). P u t t i n g  b 2 = p  and interpret ing,  we obta in  

-]//~ ~ 2 e- t~/( t )dt - -  
0 

t 2(|/pt)'zqS(t)Jn (]/l~t) dt, 
I n ! 

which is our relat ion (11). 
3 

Suppose t n-~ ~(t) is self-reciprocal in the Hanke l  t r ans fo rm of order n. 

r ight  hand  Side is ~ ( V p ) .  Bu t  if ~ (p) - -  / (t), then 

1 
~ ( V p ) -  V ~ J  e-t~/'~/(tidt' 

0 

I f  we write 

f e t~/( t )dt  = e-t~14~](t) dt. 
0 0 

so t h a t  

F(n) = . ;  e t2*/(t)dt, 
0 

The 

(32) 
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the functional relation becomes 

(33) 

4. If ~b(p) is give n by (1), then by Mellin's inversion formula [4], 

c+i r 
1 at 0 (~t) a)~ 

/(t) = 5xli . f  e - ~ - ~  , (c>0) 
C-ice 

(34:) 

The question naturally arises: if /(t) and q} (t) have these assigned properties, are 

there formulae for determining them otherwise if either of the two functions is known? 

We know that 

~n  1 1 
1-'- 2n+2 F(n§  1) ]/pe ~vt D-2n-i (]/~pt) �9 (35) 

( t+  ~)"+~ 

Applying Goldstein's theorem, we get after slight changes in the variables 

r162 / 1 l p t  
1 i ' t " -A~( t - - )d t -  t-2eZ D-s.  l (V2pt) / ( t )d t .  (36) 

n+ 1 ! ,n+2 J 
2 2 / ' ( n +  1) ~ (t+p) o 

Writing t ~ for t and p2 for p, the above relation becomes 

0o 
1 / t 2n l~(t2) dg 

n+l 7 
2 2 / ' ( n +  11 (p2 q- t2)n+2 

qr 

J 
* l p 2 t ~  " 

- e2 D - 2  ~--1 0 / 2  P t) / (t ~) tit. 
0 

(37) 

Multiplying both sides by p and interpreting, we have on simplification, 

~r 2 ] - -  n -  
/ ' ( ~ n + l ) .  V ~ t t  2(I)(t2)Jn(zt)dt 

0 [,1 
-~ V2p e2"~t~D_~n_l(l/2pt)/(t~)dt, ~(n )>  - �89  

0 
a 

If t ~-5 ~ (t 2) is self-reciprocal in the Hankel transform of order n, we get 

(38) 

l n 2 t  2 
q~(u~)u2n-2-- V S [ ' ( 2 n + l ) p  e ~ 2n_l(VSpt)/(t2)dt. 

5 
(39) 

If O(t~)/t is self-reciprocal in the sine transform, 
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oo 

if " l v 2  t 2 
q5 (~2)1~ -- V2 p e2 D e (V2 p t) / (t 2) d t. 

0 

(40) 

Let  us revert back to relation (10) once more. We can write it in the form 

fl 2 n b"+2/(t)dt 
...... Vbt  t=- i O (t) J= (b t) d t. r ( n +  - -  

�9 ( t2§ b 2) ~ �9 
0 O 

3 

If  t~-'~q~(t) is self-reciprocal in the Haukel Transform of order n, then 

(41) 

oo 

2 ~ F(n+ �89 b2 f ] (t) d t (42) 
qS(b) V ~  J (t~+b2)~+~ ' 

Conversely if ~b (b) is given by (42), then putting b = p  and interpreting, we get 
x 

after a bit of reduction that  t-n+-2](t) is self-reciprocal in the Hankel transform of 
1 

- - n + ~  
order n - 1 ,  provided /(t) is continuous and n > 0 .  If (42) holds and t ](t) is self- 

reciprocal in the Hankel transform of order n - 1 ,  then ~ (p):~-/(t). Again expressing 

the right hand side of (1) as a double integral and changing the order of integration 
1 

(if that  is permissible) we can prove that  if t-~+2/(t) is self-reciprocal in the Hankel 

transform of order n - 1 ,  then ~5(b) is always given by (42). 

We might also have derived similar relations by considering that  [5] 

(1) 
0 

(43) 

5. A double Integral theorem for ~ ( t ) .  

Let  us consider the relation (12) again, Since by (7) 

- 

we get on differentiating under the sign o f  integration (if that  is permissible) 

~ - / ( t )  J n ( u t ) d t - -  p~ziqS(t)Jn+l(pt)dt,  ~ ( n ) > - � 8 9  
0 0 

(44) 
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Also we know 

2 n + l F ( n + . ~ )  c n a, ~ ( n ) > - 1 .  
@2 + c~) "+ 

(45) 

Making use of Goldstein's Theorem, we obtain 

/ d t d x = 
~ : + 2 ]  (t) Jn  (~t) 

o o t n ( ~ + C ~ )  n+~ 

V~ 
X 

2 "+~ F ( n  + ~) c" 

• f . (  nt" qb(t)Jn(cn)J.+.(nt)dtdn. 
0 0 

(46) 

1 1 
Let  c = -  where we now assume t h a t  - -  y. 

P P 
Then on simplification, we have 

�9 . t" \~! -Z- - -  p ,+l  . ~t"C)(t)J, J,+l(~t)dtd~. (47) 
0 0 0 0 

Writ ing t for x, we get since ~ and t are independent  variables, 

.+ (.tl.,.- 

1 o r  N 

0 0 

Professor Watson  [6] has shown tha t  

(48) 

0 

(48') 

can be taken as the k ~ n e l  of a new trans/orm. Let  ](n)  be an a rb i t ra ry  function,  

and let g(n) be its t ransform with the Kernel  cS~.,(uy), so tha t  

~o 

g(u) = f rS,.,(uy)/(y)dy. 
0 

Then assuming tha t  the various changes in the order of integrat ion are permissible, 

we have 
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oo 

f eS.,~ (u y) g (y) d y = [ (~). 
0 

(49) 

When /(z) = g(u), we say that  /(~) is  self-reciprocal under this new transform. Hence 
1 

in (48), if t n 2 /(t) is sel/-reciprocal under this trans/orm 1, the left hand side is / (y) ,  

so that  

/(Y) : - p , ~ i . .  ~tnqS(t)J~ J ~ + ~ ( ~ t ) d t d z - : q D ( p ) .  
0 0 

Therefore 

1 f ;  
q~(p) = ~+~.  . x tnqS( t )J~  J~+l (~ t )d td~ .  

0 0 

(50) 

This can be written in the more symmetrical form, after considerable simpli- 

fication, 
~ oo 

0 0 

1 

provided ~(p) /p  is continuous. Conversely if (51) holds, then t -n -e / ( t )  is self-reci- 

procal under this transform. 

II. 

6. Laplace transforms of certain functions. 

Let us us now consider the relation (11). We know that  

Let 

We thus obtain 

(~ /(t) = J~ (V2at) L ( V ~ t )  a n d  ~ (t) = J ,  t " 

1 

2n n -  
oo oo 

- -  l e I v ( W 2 a t ) d t  "z 11~_1 ]'Jv(~)Jn (Wpt) t  n ld t .  
1 / ~  �9 

o p 2  o 

(52) 

(53) 

1 T he  senior  a u t h o r  ha s  been  able  to c o n s t r u c t  ce r t a in  e x a m p l e s  g iv ing  func t i ons  wh ich  are  

self-reciprocal  u n d e r  t h i s  new trans]orm a n d  also t h e  fo rmal  so lu t ions  of (49), w h e n  ] ( ~ ) ~  g (~)., 
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But 
( - -  1 )  m (�89 az) T M  

J~ (az)I~ (az) = m~=o F(m+ 1 ) F i ~  ~ ~ ~ v  ~-2 m+ 1)" (54) 

Integrating term by term and applying a result due to Hanumauta Rao [7], we obtain 

1 
2n 2~ 1~4n-2~-1 ( a 2 ) 

{ _F(n-�89 v) ~_1 oFa (~ v + l ,  ~+1, ] a~P~ .(54) 
2 ~ ~+~F(�89 F(v+l )  P . . . .  v - n + 1 ;  16] 

_F(�89 ~,--n)a 2~ ~ p ( ~ ) }  

{-R(n+i)<R(n)<R(v+i) and a>0}. 
Again we know that 

(2t) ~ Jo 4tt -'= P J ~  K~ 

Let 

/ (t) = (2 t) 1 Jo 4t 

We get (when n=0)  

and ~b (t) = t J o (y V ~t) K o (y ]/ i t) . 

(55) 

1 ; e_t~x t- 1 

0 0 

dt. (56) 

Putting t=  2 z~/y 2, the right hand side becomes 

t" V; z- i �9 y2 ! �9 
0 

By a result due to Mitra [8], the integral can be evaluated and we finally obtain 

V ~ . ( e - t ~ ' t - 1 J ~  dt -- Vp I o ~ 8 ~ p j K o ~ 8 ~ p ] .  (57) 
0 

The integral on the left can be evaluated by expressing it as a contour integral. 
Again let 

1 
( t )  = e - l i t  t-112; / (t) = (xe)- 2 sin 2 Vt.  



240 S. C. Mitra and B. N. Bose. 

We get 1/ 
(~) 

0 

e - t~  sin 2 V-t dt -- pl, f e 1/t t ~/2 sin V p t  dt 

0 

1 
1 1 

- (~)2e-v2V4sin V2p4. 

(5s) 

The integral on the left is easily obtainable by direct term by term integration. 

Lucknow University and Calcutta University. 
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