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COMPACTUM* 

1. Introduct ion.  Numerous studies have been made concerning the topology of 

spaces of t ract ions of various types (continuous, measurable, etc.) over various types 

of topological spaces. These functions generally take values in a linear normcd space. 

I t  seems also desirable to consider the set of algebraic functions (that is, binary, single- 

valued operations) defined in a given space. This is the object of tile present paper. 

We restrict at tention to the case when our underlying space is a compactum 

( =  compact metric space). Our definition of distance in the space of groupoids applies 

to any bounded semimetric space and a similar function may  be defined even in the 

case of an unbounded semimetric space by the introduction of a "convergence factor" 

such as is used by Busemann 1 in the group of motions of a distance space. However, 

the restriction to a compactum is used in the present paper  to obtain our desired 

results. 

Throughout,  we use the axiom of choice without further comment.  We also employ 

as a Lemma in Section 3 the well-known Policeman's t h e o r e m :  

L e m m a  0. Let M be a compactum and e>O. There is a finite subset o / M  which 

is e-dense in M.  

We consider first some fundamental  metric and topological properties of the space 

of groupoids and then turn to the closure of certain subsets of this space whose 

elements are of particular interest in topological algebra. The final section discusses 

the major  unsolved problem and a suggestion for related study. 

* Presented to the American Mathcmatical Society; April 20, 1951. 
1 HERBERT BUSEMANN, Local metric geometry, Trans. Am. Mttth. Soc., vol. 56 (1944), pp. 2C0 

--274. 
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2. Terminology and notation. M is a compactum with distance function (~ (x, y). 

Let  63 be the set of all groupoids over tlle point set of M (that is, 63 is the set of 

all single-valued functions on MM to M). Throughout,  small letters refer to elements 

and capitals to sets. English letters refer to M, german letters to 63, and greek letters 

to real numbers. The elements of 63 are defined by their labels; that  is, a is the 

element of 63 whose operation is denoted by x ay. I t  is clear that  (~ is finite when 

M is finite and that  63 has cardinal 2 N when M is infinite of cardinal N ( N < v  

since M compact). 

We define distance in 63 by 

~ ( a , b ) = s u p  ~(xay, xby). 1 
x, yEM 

I t  is clear tha t  63 forms a semimetric space under this distance function and the 

triangle inequality is easily verified. The resulting metric space, (~, is referred to as 

the s~ace o/ groupoids over M. 

Only the metric topologies are employed in M and q~. Thus, in M, lim 1% = 

~.  ~ �9 lira 8 (~o, p,) = 0 3, and similarly in q~. 
7--1. O0 

We denote by 2 the subset of 63 consisting of commutative groupoids, by 

the subset consisting of semigroups, by ~ the set of quasigroups, by ~ the set of 

loops, and by $ *  the set of groups. 

Other terminology and notation will be introduced as needed. 

3. Fundamental metric and topological properties of 63. 

T heo rem  3.1. a, bE63.).3a,  bEM~(a,~)=~(a,b) .  (For an explanation of the 

notation see footnote 2). 

Proo/. By definition of ~t(a,b) there is a pair of sequences {x,}, {x,} with 

lim 8(x,, y,) = O (a, b). Since M is compact, there are convergent subsequences of 

these sequences {xxr }, {yx,} (the usual process yields convergent subsequenees having 

the same original indices on x's and y's). Let  lim x~, = a, lira y~, = b. Then, since the 

metric of M is continuous, ~ (a, lb) = 8 (a, b). 

1 We employ (~ for the distance function in both M and 63. This causes no confusion since the 
argument indicates which function is meant. 

a We employ the following logical symbols most of which are due to E. H. MOORE : 
":1" is read "there exist(s)", 
"V" is read "for all", 
" ' )" ", ": ) :", etc. are read "implies", 
"" . . . .  is read "if and only if", 
"~" is read "such that", 
"A" is read "and". 
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~orol lary.  ( ~ M  (modA). 

Explanation. If S is a semimetric space we denote by ~ (S) the distance set of 

S. (~ ~ M  (mod ~)  is read " $  is distancial to M" and means /L (('~)= A (M). 

Proo] o[ Corollary. The corollary follows immediately from Theorem 3.1 and the 

obvious fact that R, the set of constant elements of 63, is congruent to M, R ~  M. 

Thus, A (M) = A(iD) and ~ ((D) ~ ~ (M). 

T h e o r e m  3.2. (~ is complete (in the sense o/ Frdchet). 

Proo]. Let ax, as, . . .  be a Cauchy sequence of elements of {D. We have then 

(1) e>O:):3~r f l > ~ ' ) ' O ( x ~ y , x ~ y ) < e ;  y x ,  yEM. 

Select x, yEM. From (1), the sequence {xa~y} is a Cauchy sequence of points of 

M (which is compact and hence complete). Let lim x a, y = x a y  to define a E~;  

yx ,  yEM. Now, the metric of M is continuous so that (1) yields 

(2) 

And, hence, 

(a) 

e > O : ) : 3 ~ > ~ . ) . 6 ( x a y ,  xa,  y)<_e; Vx,  yEM. 

~ > 0 : ) : 3 ~ > 0 ~ : ~ > ~ - ) - ~ ( a ,  ao) <e. 

But (3) implies lim a~ = a, and the theorem is proved. 

Remark. I t  is clear that the preceding proof applies if M is merely complete and 

bounded (not necessarily compact). It  is also clear that ~t, although complete, is not, 

in general, either compact or separable. This may be seen either from consideration 

of the cardinal of ~ or by construction of actual examples. Theorem 3.3 below, is, 

however, of interest in this respect. 

C~orollary. Every closed subset o/ ~ is complete. 

T h e o r e m  3.3. I/  M is in]inite, then ~ contains a subset ~) with the properties: 

(1) ~) consists o/ ]inite-valusd groupoids and (2) ~) is dense in ~.  

Proo/. We shall exhibit the required set ~). It  is then easy to verify that every 

neighborhood of an arbitrary element of (D contains an element of ~ so that (~ = 5 .  

Let M be infinite and let el, ~ . . . . .  e, . . . .  be a sequence of positive real numbers 

with lira e ,=0.  By Lemma 0 (Policeman's Theorem) there is a subset (finite) p l ,  

~( ')  of M which is en-dense in M. Select such a subset for each ~ and P $ ~ ,  . � 9  t -~  

denote it by P,. Let ~ ,  be the set of all elements of (D all of whose values (xa y; 

yx ,  yEM) lie in P, .  Let ~)= U~, .  
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T h e o r e m  3.4. I /  M is convex l, then 63 is convex. 

Proo]. Let a, b E 63. For x, y E M consider x a y and x b y. I f  these coincide, let x c y = 

x a y. If  xa  y # x b y, let x r be the midpoint of xa  y and x5 y (such midpoints exist 

since M is metrically convex1). Then, for any  x, y E M :  

~(xay,  xcy)=(~(xby,  x cy )= �89  xby) ,  and, 

clearly, c is a midpoint in 63 for a and 15 unless a and ~ coincide. 

C o r o l l a r y .  I /  M is convex, 63 is segmentally connected. 

Proo/. This is immediate from Theorems 3.2 and 3.4 and the fundamental  theorem 

of the theory of metric convexity. 1 

4. Continuity of elements of 63. 

By continuity of aE63 at x, y E M  we mean 

lim x, = x ^ lim y, = y .  ). lira x, a y, = x a y. 

That  is, by continuity, we mean simultaneous continuity in both arguments,  aE63 is 

continuous if it is continuous at  each pair of points of M. 

We denote by  ~ (x ,y )  the set of all elements of 63 which are continuous at  x,y,  

and by ~ the set of all continuous elements of 63. 

T h e o r e m  4.1. l[ a E63is discontinuous at x, y E M  then there is an e>O so that 

b E 63 ^ (~ (% 5) < ~ imply the discontinuity o/ ~ at x, y. 

Proo]. Let a be discontinuous at  x,y.  Then there are sequences {x,} and {y,} 

with lim x , = x  ^l im y , = y  so tha t  either lim x~ay~ fails to exist or does exist and 

is distinct from xay .  Suppose tha t  for each e > 0  there is 1)e63 with d i (a ,b )<s  and 

with b continuous at  x, y. 

~]'OW, 

(1) ~(xaay~,xf ly)<_(~(x~,y~,x~Sya)+~(x~by, ,xay)  

<_ ~(x~ay~, x~by,,) +(~(xaby,, xby)  +(~(xay, xw 

Also, 

(2) ~>o: ): 3fl>O~> fl. ).O(x~5ya, x~y)<~. 

i See KARL MENGER, Untersuchungen i~ber aUgemeine Metrik, Math. Annalen, vol. 100 (1928), 
pp. 75--163; or L.M.  BLUM~-NTHAL, Distance geometries, University of Missouri Studies, vol. X I I I  
{1938), pp. 1--142. 
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Hence, for :r > fl, 
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~(xany~, xay)  < 2 e + ~ .  
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However, e and ~/ are both arbitrarily small so that (3) implies lira z~ay~= 
Q--~ c o  

x ay, contrary to assumption. We infer the validity of the theorem. 

Corollary. ~ (x, y) is closed ; V x, y E M. 

Corollary. ~ is closed. 

Proo[. The first corollary follows from the Theorem immediately since it has been 

shown that each point of the complement of ~ (x, y) is an interior point. The second 

corollary follows from the first since a (set-theoretic) product of closed subsets of a 

metric space is closed. 

For ~ ( ~  we denote ~ N ~ by %. 

Let aE~.  We define a E ~  provided a E ~  r and 

lim aa = a .4 lim ba = b ̂  (an a xa = ba ̂  ya a a~ = b~ (u ~r 
a - - ~ o o  a - . ~ o o  

�9 )" 3 x, y E M~ l i m  x~ = x ^ l i m  y .  = y ^ a a x = y a a = b .  

We also define ~ , = ~  O ~ ,  and ~ * , = $ *  N ~ , ( = ~  N ~,). Clearly, the elements of 

~, and ~*, are topological loops and groups, respectively, in the usual sense of these 

terms. 

5.  C losure  o f  c er ta in  i m p o r t a n t  s u b s e t s  o f  ~. 

In the preceding section, we showed that ~ is closed. In the present section we 

show that certain subsets of ~ (namely 2, %, ~ ,  ~ ,  ~ ,  and ~*,) which are of in- 

terest from the viewpoint of topological algebra are also closed. One may construct 

examples to show that some of the larger algebraically defined sets such as 6 ,  2 ,  

CI~, ~r, and (~*y are not, in general, closed. Of course, one would not expect the 

limit of quasigroups to be a quasigroup without assumption of continuity of inverses 

so that this is not an unsatisfactory state of affairs. 

We shall prove the theorems concerning the closure of 9/ and of ~,. (The proof 

of the closure of ~ is really only outlined since a full proof is very long by our 

methods). The case for ~r  is quite straightforward and easy. The closure of ~ may 

be inferred from the proof of that of ~ since this proof shows that unit elements 

will be preserved in the limit. The closure of (~*~ follows from the closures of ~ 

and ~,.  
! 4 -  533805. Aeta Mathematica. 89. Imprim6 le 5 aotit 1953. 
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!ira 

T h e o r e m  5.1. 9~ is closed. 

Proo]. Let lira a n = a, a T E 9/. This implies lim x a T y = x a y; V x, y E M. But  lim x a n y = 

y a n x = y a x, since % E 9~. Hence, a E ~.  

Co ro l l a ry .  9/y is closed. 

T h e o r e m  5.2. ~v  is closed. 

T h e o r e m  5.3. ~ ,  is closed. 

Proo]. Let lira a T = a, a,  E ~ ,  r ~. Then a E @. Now, lira a n = a implies 

(1) l imxany=xay; Vx, yEM. 

Select p, qEM. There is (by definition of quasigroup) a unique x n for each ~ so tha t  

pa, x~=q. Since M is compact,  there is a convergent subsequence {x,n} of {x,} .Le t  

lira x, ,  = x. 
tt-~ r162 

~OW,  

(2) l impa~x=pax ,  by( l ) .  

However, an E@ so tha t  for ~/ sufficiently large and e > 0, 

(3) 

But  pa~x~n=q; V,. Hence,. 

(4) l imp a, ,  z = q, and, 

since {pa,nx } is a subsequence of {panx}, ~ax=q. This shows tha t  pax=q  has a 

solution for each p, q EM. The argument  which follows indicates how one may  show 

the uniqueness of such a solution and the continuity of the x in this equation. The 

equation y a ~ = q  may  be treated, of course, in analogous fashion and we will conclude 

tha t  a E ~ , .  

Define x n by panxn=q. Then, 

(5) ~(~anx n , p a z ) = 0 ;  V,/. 

(6) ~ > 0 : ) : 3 ~  > 0 , ~ > a . ) . ~ ( v a n x ,  pax)<, ,  

since lira aT= a. 

From (5), (6), and the triangle inequality, 

(7) ~ > 0 : ) : 3 a > 0 ~ > a - ) - O ( p a , x  n, panx)<~. 
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Also, since %E~, ,  we have 

(8) e > O : ) : 3 ~ > O ~ q , q ' E M ^ 8 ( q , q ' ) < ~ ^ p a ,  x = q ^ p a ~ x ' = q " ) ' 3 ( x , x ' ) < e .  

Combining (7) and (8) one obtains: 

(9) e>Oi ) : :3 / x>O! ) i3 : t>O~>~: ) :~ (pa ,  x , , p a ,  x ) < # . ) . ~ ( x , x , ) < e .  

Hence, lim x ,=  x. 

The replacement of the constant p and q by {p,} and {q,} in the equations 

p a~x=q to obtain the equations p,a~x,=q,  raises no real additional difficulties 

when lim q,=q and lim p ,=p .  

T h e o r e m  5.4. ~ and (~*~ are closed. 

6. Unsolved problems. 

The writers intend further study along the lines of the present paper at a later 

date. One of the maior problems which we have studied without success is: 

Given a metric space M, under what conditions does there exist a compactum K so 

that the space o/ groupoids over K is congruent to M? This is, of course, the charac- 

terization (metric) problem for spaces of groupoids (in the sense of this paper)among 

metric spaces. 

The case where M is finite appears of little interest. The problem appears very 

difficult when M is infinite. Some necessary conditions were given in the early part 

of this paper but we have found no non-trivially sufficient conditions. The only obvious 

approach lies in trying to construct K from M which means finding the metric struc- 

ture of M from metric relations among two-variable operators upon it and this we 

have been unable so far to do. 

One may also note that mappings of a compactum into itself may be considered 

as elements of the space 1~ which are independent of one of the arguments and may 

thus be included in the study of ~.  

Another interesting question is: What algebraic conditions (i] any)characterize the 

closures o/ ~ ,  ~ ,  ~, and ~*? Stated di/]erently: What types o/ groupoids (on a com- 

pactum) may be approximated by semigroups, by loops or quasigroups, by groups? 

The University of Florida. 


