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Introduction. 

A non-harmonic Fouri(r  s(ries in an expression of the type 

~ c n d  ~n', - ~ < r ] < ~ ,  (1) 
n 

in which the numbers ~tn (n = 0, _+ 1, • 2, . . .) are not all integer:~. Paley and Wiener [6] 

began a systematic study of such series; and Levim:on [5] continued tt:eir work. The 

central problem is to discover necessary and sufficient conditions upon the numbers 

(~tn} such that  to each real function /(z]) of a given class there corresponds an ex- 

pression of the type (l) summable to / for all or almost all ~ in - z t < ~ l < z t .  So 

far as I am aware, the best answer to this prol)lcm is due to Levinson ([5] Theo- 

rems XVIII  and XIX), and is to this effect: if the 2n are real, and if there exists 

a real constant D such that  

12~-n]~n<(p-1)/2p, l < p _ < 2 ,  (2) 

then to every /(r]) belonging to the Lebesgue class L P ( - ~ ,  ~) there corzcsponds a 

series (1) which is summable to /(rl) in the same sense as an ordinary Fourier series 

C'n C~n'; and that  these conclusions are false for the set 
n 

]t-n=-n+(p-1)/2p, ~0=0, ,~n=n-(p-1)/2p, n = l , 2  . . . .  (3) 

On account of this last clause, Levinson refers to (2) as a "best possible" result. 

This phrase is perhaps unfoItunate; since, as we shall show, it is not true that  every 

set (),n} which violates (2) does not admit representations of type (1) for every func- 

tion of L p ( - ~, =t). Secondly Levinson's theorem does not cater for the class L ( - n, ~r), 

which is the appropriate class for ordinary Fourier analysis and which is wider than  

and includes the classes L ' (  - z t ,  ~) for p >  1. Thirdly Levinson's theorem does not 

admit complex numbers 2n- 

1 This work was performed under contract of tile National Bureau of Standards with American 
University. 
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This paper does not at tempt a general discussion of the problem; it merely in- 

dicates tha t  further work is needed on this question, by showing that  a particular 

set of numbers 4,, which are in general I complex, and which always violate (2), never- 

theless allow representation of all functions in L ( - ~ ,  ~). The resulting series (1) is 

useful in studying the uptake of fl-indolyl acetic acid by plant tissue. The final 

section of the paper treats of this application. 

Statement of theoretical results. 

Let / '  consist of the complex numbers ? = 0 and ~ = - �89 (1 + cos z) where z = sin z. 

This set /~ is discrete and enumerable; and the only real numbers belonging to it are 

0 and - I .  Let c be any complex number not belonging to F. Hereafter we regard 

c as fixed. The exclusion of the set /~ is, I believe, only a matter of convenience. 

I suspect, without havi.ng attempted to verify these suspicions, that  the results of 

Theorems 1 and 2 would remain true even if c belonged to / '. 

The numbers 4, which will concern us throughout this paper are the roots of 

the equation 
~4 cos ~4 + c sin ~4 = 0. (4) 

The exclusion of / '  means that  this equation has no multiple root. We write 40 = 0 

for the zero root of (4}. All other roots may be arranged in pairs (4,, 4_ , ) such  that  

4 , + 4 _ , = 0 ,  and such that  - � 8 9 1 8 9  n = l ,  2 , . . . .  Further 

Theorem ~. The su//ices o] 4, may be so chosen that the real ~art o/ 2, is not 

zero /or n = 2, 3 . . . .  and 

4 .  = n - �89 + ( c / ~  ~ n)  + 0 (1/n 2) a s  n ~ c r  (5) 

Hereafter we suppose this system of suffices adopted. Theorem 1 shows tha t  in 

general the 4, are complex and that  (2) is always violated, since the maximum value 

of ( p - 1 ) / 2 p  in (2) is 1/4. 

Theorem 2. Let /(7) be any /unction o/ L ( - g ,  ~), and define 

( {cos ~, ~ - cos =~t,} / (7) d~ 
c 8 + y~2 4~ 

a,= z { c ( c +  1)+~s42} 
-" (6) 

1 T he  poss ibi l i ty  t h a t  t he  2n m a y  be complex is not ,  however ,  r e spons ib le ;  for  t h e  An are  all  

real  in the particular case [see e q u a t i o n  (4)] w h e n  c is real  a n d  --  1 < c ~ 0. 
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Let s (rl) denote the Abel sum 1 

s (r/) = (9/) ~ (a. cos 2 . 7  + b. sin 2 .7) .  (7) 
n - 1  

Suppose -zt<~? < ~t. Then s (7)=/(7)  almost everywhere. I /  /or some particular value 

ot 7 there exists a number 1o such that 

tr 

lira I | { / ( 7 + e ' ) + l ( 7 - e ' ) - 2 / o } d e ' = O ,  (8) 
�9 -~0 e d 

0 

then s (~)=10. In  particular, il 1 (~1) has an ordinary discontinuity at ~1, then s (~)= 

= � 8 9  and, il 1(~) is continuous at ~, then s(r/)=t(r /) .  Finally, in 

any closed subinterval o/ ( - z  t, ~t) in which /(~) is continuous, the series (7) is uni- 

/ormly summable to /(~). 

These results are so close to those of ordinary Fourier series that  it is surprising 

to find two points of difference. In ordinary Fourier expansions the terms cos n~  

occur with n = 0 ,  1, 2 . . . . .  Here we have e o s 2 , ~  for n = l ,  2 . . . .  : that  is to say, 

no constant function occurs in the expansion. Secondly, in any ordinary Fourier 

expansion, if / (r/) is continuous and / ( - ~t) = / (~), then s ( + zt) = / ( +- ~t). That this 

is no longer true in our case follows from 

T h e o r e m  3. I /  t is any complex number 

. ~  ( + c , i n ~ ! ~  2. (2. cos 2 . 7  + i t  sin 2 . 7 )  
. - 2 c  cosztt  ~tt / (2~- t~){c(c+l)+zt~2~}coszc~t .  = 

. 7 = + _ n  
(9) = ~ tt~ / s i n n t \  

1 '  - 
and in particular. ]or t = O. 

.~x cos ~1. r/ { 1 .  - ~ < ~ / < z t  (10) 
- 2 c ( e + l )  _ { c ( c + l ) + ~ 9 2 ~ } c o s n 2 ,  = c, 7 = - + n .  

Equation (4) has attracted some attention in applied mathematics. In certain 

solutions of the heat equation (see Sommedeld [7] p. 28) it is conventional to re- 

present t (7) by a sine series ~ bn sin 4.  ~/ over the range (0, ~). Again the analo- 
n - 1  

gous equation ~2'  sin ~2'  + c cos ~z2' = 0 arises with series ~ an cos ~ 7' In each 
n - 1  

1 See  HAx~vY [1],  p.  71. 

16 - 533805. Acta mathematica. 89. ] m p r i m 6  le 6 aoOt 1953. 
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of these examples the functions of the serie~ arc orthogonal. Over the complete range 

( - ~ ,  ze), when both sines and cosines have to be used, orthogonality of one or other 

set fails; and this seems to have discouraged analysis. I have little doubt that  an 

analysis, similar to that  of this paper, could be given for the equation ~;t' sin z 2 ' +  

+ c cos :r2' = O. 

P r o o f  o f  theoret ica l  results .  

If z=x+iy ,  

Iv t a n ~ z l  = I;l*~'n~x~~ + c~ : ) ' _<  [ [cl[cOthy[, , (ii, 
I;ll,e~ 

since 0 _< sinh ~ y_< cosh ~ y. Let S (v) denote the square with vertices ~ v ( + 1 _ i), where 

is a positive integer. On the vertical sides of the square [ s e c x ] =  1, and on the 

horizontal sides [ coth y I -< coth z.  Hence on S (v) 

I I : c t a n ~  =0(_1) as v~cx~. (12) 
Z 

Thus [z cos z [ > I c sin z [ on S (v) for all sufficiently large v. Now S (v) contains 2 v + 1 

zeros of zcosz, namely 0, + �89  . . . .  , + ( v - � 8 9  Hence by Rouch~'s theorem S(v 
contains precisely 2 v + 1 zeros of z cos z + c sin z, provided v is large enough; and thus 

there are precisely two such zeros in the annulus between S ( v ) a n d  S ( v +  1). Suppose 

e > 0 prescribed; and let S'  (v) be the square with vertices ~ (v + �89 + e ( _+ 1 + i). We 

can choose vl = vl (e) such that  

[c[] coth e [ / { ~ ( v + � 8 9  < 1 
and 

I 11 cosec I/l  < 

using the upper and lower foims of (11) upon the horizontal for v> vl. Thereupon, 

and the vertical sides of S' (v) re:pectively, we have [z cos z] > I c sin z] upon S' (v). 

I t  follows that  one of the two zeros of z cos z + c sin z in the annulus between S (v) 

and S ( v +  1) lies within S'(v).  By symmetry the other lies near - n ( v + � 8 9  Hence, 

we can choose the suffices of 2n such that  n2, ,=(n- �89 n-~oo.  Write 

n 2 ,  = ( n -  �89 n + 0n. Then, upon substitution in (4), { (n -  �89 ~ + 8n} sin 8n = c cos (~n. 

Expand both sides of this equation in power3 of (~n, and note tha t  ~n~0 ,  so that  

we can solve and get 0n =c/nn + 0 (n-2). This gives (5). For the remainder of Theo- 

rem 1, suppose z = iy  satisfies z cos z + c sin z = 0. Then y cosh y + c sinh y = 0. This 



A Non-Harmonic Fourier Series. 247 

equation has no real root unless c is real and less than or equal to - 1 .  In the ex- 

ceptional case c < - 1  (c= - 1  being an excluded point of / ' ) ,  there is just one posi- 

tive root, which we may denote by zebra, because we have so far only imposed an 

ordering upon zt2, for sufficiently large In] in satisfying (5). This completes Theo- 

rem 1. I t  follows from Theorem 1 that  no zero of z c o s z + c s i n z  lies upon S(v) 

provided v is large enough. Hereafter we restrict ourselves to such sufficiently large v. 

Let T(v) denote a given part  (possibly the whole) of S(v). Let  g(z) be an 

analytic function of z, and let G (v) be the least upper bound of I g (z)/cos z I for z 

on T(v). Then we assert 

lim f g(z) dz = lim (g_(z) dz (13) 
,~= z c o s z + c s i n z  ,~= j z c o s z '  

T (v) T (~) 

provided G(v)=o(v) as v ~ c ~ .  For large v, (12) shows 

Hence 

c tan _z I 
1 - 1  1 + c t a n z  < _ O(v-~). (14) 

z l _ [ c t ~ _ _ z  1 - O ( v  -~) 

f{  a (z) 
z cos z 4- c sin z 

TO,)  

and (13) is established. 

z c o s z / d z = O 0 ' - ' ) O l r  i z i l  = 
T 0') 

We shall now suppose (temporarily and until further notice) that  c is not a real 

number less than - l ,  and that  t is any complex number not lying upon the imag- 

inary axis and not equalling 2, for any integer n. Thus z c o s z + c s i n z # 0  on the 

imaginary axis. Let ~ and ~/ be real numbers satisfying ~ < 0, - ~t < ~ < ~t. Wlite 

~=~+i~l,~'=-~+i~. Let  S ( v + )  denote the rectangle with vertices +_i~v and 

~tv (1 •  v being a positive integer, and having a small semi-circular indentation 

l z l = ~  at the origin, where 6 < l z t t  I and d}<[~t2,1 for n =  •  •  . . . . .  Let  S ( v - )  

denote the reflection of S (v + )  in the imaginary axis. All contour integrals which 

follow are taken once anti-clockwise. Consider 

J0=lim lim 1 { f eCZ'"dz f er 
~-,o+ ,-.~ ~ z cos z + c sin z + z cos z + c sin zl 

S(v+) S(~-) 

~_.o+ ,_,~ o~-i (z-ztt)(zcosz4-csinz) + (z-~tt)(zcosz+csinz) 
S(=,+) S(v- )  
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We shall show first that  the contributions to Jo and Jt  from integrations along 

parts of S(v) are zero. On the common part of S(v) and S ( v + )  

I eCzl= I e(x~-Y'~)I# ely l 
I = _< o ( ] ) ;  ( 1 5 )  
cos z I V(cos ~ x cosh 2 y + sin S x sinh 2 y) I sinh Y l 

and a similar result holds for l e~'~/"/cos z I on the common part of S (v) and ~ ( v - ) .  

The same conclusions hold a f o r t i o r i  if ( z - z e t ) c o s z  replaces cos z. Hence by (13) 

we may disregard the quantity c sin z in the denominators of the integrands. On the 

common part of S(v) and S ( v + ) ,  we have for z = R e  ~a 

er z = 2 eX v'/{# I e -n ,in 0(1-,/,) + #3 en sin e(t +,/,)}, (16) 

where I vql I = I#~l = 1. Now x ~/= is non-positive, and 1 _+ ~/~t are both strictly posi- 

tive. Hence to each prescribed e > 0, we can find v2= v2 (e, 7) such that  the modulus 

of the right-hand Ade of (16) is less than e for R>zv~ ,  provided 10]>e. For the 

exceptional set [ 0[ < e, the left-hand side of (16) is bounded, by (15). Hence the contri- 

bution to the first integral of J0 must be zero when , ,~c~.  A similar conclusion holds 

for the common part of S ( v - )  and S (v), e r replacing e~/"; and a fortiori the 

contributions to J t  are zero. 

Next consider the contributions to J t  from the integrals along the imaginary axis. 

They are 
- b  n v  

~-.o+ ,-*- 2 zt i (i y -  zt t) (i y cosh y + i c  sinh y) i d y" 
- ~  

After a little algebra this reduces to 

2 7 {~t t cosh (y ~/~t)- i y sinh (y ~/zt)} sin (y ~/zt) d y. 
~t .1 (y~ + ~ t ~) (y cosh y + c sinh y) 

0 

Similarly the contribution to 

out to be 

2 

Jo from the integrals along the imaginary axis turns 

cosh (y ~/~) sin (y ~/~) 
d y. 

J y cosh y + c sinh y 
0 

The contributions to J0 and Jt  from the small semicircles at  the origin are half 

the sum of the two residues; and turn out to be - 1 / ( c + l ) a n d  1 / r ~ t ( c + l ) r e -  

spectively. 
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We can, on the other hand, determine J0 and J t  as the limits of the sum of 

residues within the contours. Since at z=z~2, 

d ( z eos z+cs in z )=[ ( l  + c ) - z t a n z ] c o s z =  ( l  +c+ ~2:~) c o s ~ , ,  

by (4), we have 

cean~(e~an'7+e-tan'7) =2  ~r can ~ c~ 2n ~/ 

For Jr, the pole at  zt t will fall within S (v+)  or S ( v - )  according as ~ > 0 or ~b < 0 

where r = sgn {~ (t)}. Wd therefore find 

e an r (t cos 2,, ~? + ian sin 2,~ ~) eeP ~t+''~t 
j r= 2c ~ (2~- -t~) {c(c+ 1)+~'~-~os ~2~ + zt .-x re t cos = t 4- c sin ~t t 

Collection of the results for J ,  yields 

** e a" r cos 2. ~/ 
l = - 2 c ( c + l ) ~ . l { c ( c + l ) + z t 2 2 ~ } c o s ~ 2 .  

2 (c+ 1) ( cosh (y~l/ze) sin ( y~ /~ )dy ;  
j (17) 
0 

and similarly the terms for Jt provide 

e+ ct+''Tt 1 2__c ~ ea- ~ (t cos 2. ~/+ i ;t. sin 2. ~/) 
z t t cosz t t+cs in~ t t  ~tt (c+ 1) ~t ._~(22.-t~){c(c+l)+n~a2.}cos:t;t. 

+ 2 f {ztt eosh (y~ / z t ) -  iy  sinh (y~/zt)} sin (y~/z t )dy.  (18) 
n j (y2 + n~ t 2) (y cosh y + c sinh y) 

0 

Let us now examine the effect of relaxing the condition that  c should not be 

a negative real number less than - 1 .  In case c is real and c < - 1  the term 

z cos z +c  sin z in the denominators of the original expression for Jo and Jt would 

yield poles on the imaginary axis at  _+n2 v We could exclude these by small semi- 

circular indentations [z_+n;tl[=& The integrals around these semicircles would yield 

the term 2 c e a' r cos ;t x ~ / {c (c + 1) + zt ~ 2~ z} cos z~ 21 in Jo and a corresponding term in 

Jr. The integrals along the imaginary axis would yield the same result as before, 

except that  the integral in J0 

( cosh (yr / /n)s in  (y_~_/n) d 
J y c o s h y + c s i n h y  - y 
0 
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would be taken as its principal value at  the point y = - i r e 2 1 .  The corresponding 

integral in Jt must be interpreted in the same way. Again if we relax the condition 

that  t shall not lie on the imaginary axis, we make a small indentation I z - r e t [ = 6 ;  

and proceed as before. I t  follows that  (17) and (18)a re  true, provided that  the 

integrals are taken as principal ones, for all c (except of course the set _P) and all 

complex t except 2n, n = 0 ,  +_1, _+2 . . . . .  

Now multiply (17) by 1/ret(c+l) and add the result to (18). This gives, for 

~e<0, - r e  <r /<re ,  

[ sinre t] ea=r (2n COS 2. r /+ it sin 2n r/) e ch~t+~t= --2c ~ c o s r e t + e  
.-1 ~ ret ] (2~--t ~) {c(c+ 1)+~'2~,} cos re2. 

2 (cos re, -~- e sin ~7"~ t l  f {y cOsh (y~/~T~) "~ /~'~ ' sinh (yr//~'~)l y sin (y ~/re) d y  (19) 
re ~ t ! .~ (y2 + ~2 t2) (y eosh y + c sinh y) ' 

0 

the integral being a principal one. We now assert tha t  this relationship is true for 

all complex t. We have so far proved it for t # 2 , .  In case t = 2 o = 0  , (19) reduces 

to (17), the term sin re0/re0 being taken equal to 1 in the usual way. Again if we 

interpret in the same spirit 

2, cos re 2, + c sin re 2, re t cos re t + c sin re t 
= lim = - ~ {c(c+ 1)+n~2~} cosre2~, 

2 .  - 2 .  t-~a. 2 .  - t c 

then the formal substitution of t = 2 .  (n#O) in (19) reduces it to the trivial identity 
ean r = e;tn r 

Putt ing ~ = 0  in (19) gives Theorem 3 in case - r e < r / < r e .  To deduce the rest 

of Theorem 3 consider 

K o  ( + re) = l ira 2 ~  z co,~ z + c s i n  z '  K t  ( _+ n )  = - �9 . . . . .  2 re i (z - re t) (z c o s  z + c s i n  z) 
8 (~) 8 (v) 

A glance at (15) shows it is valid for r/=_+re. Hence we may omit the term cs inz  

in the above integrals. Next e~f*/cosz is bounded on S (v), as we may see by multi- 

plying (11) by [z/c]. I t  follows that  K t ( + ~ ) = 0 ,  since 

i_azj  
8 0') 8 0') 

On the other hand 

K o ( + n )  = lim 1 { f d z  f t a n z  d } 
- , - ~  2 rei -z- +- z z =1,  

8 8 0') 
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because tan z/z is an even function of z and S (v) is symmetrical about  the origin. 

Evaluating Ko(__+zt) and Kt (+_~t) as the sum of their residues, we deduce the rest 

of Theorem 3 without difficulty. 

We now and henceforth take t to be a positive integer. Combining (19) with 

the result obtained by writing - ~  for ~, we get for any pair of numbers a' and b' 

(a' cos v/t + b' sin ~ t) e ~t = ( - )t+~ 2 c 
2= (a' 2~ COS 2, + b' t sin 2~ ~) ean~ 

n-~ ( 2 ~ - t  ~) {c(c+ 1 ) + ~ 2 ~ }  cos~Xn 

+ ( _ )t+~ 2 ( (a' y cos hy + b' t sinh y) y sin y$ dy 
J ( y ~ y c o s h z t y + c s i n h z t y ) '  ~<_0, - ~ < ~ / < ~ .  (20) 
0 

Here the integral has been modified slightly by the substitution ~t y for y. Should 

the integrand have poles, the integral is to have principal value. Let  / (~)  be any 

given function of L ( - z t ,  zt) with ordinary Fourier coefficients a~ and b~ 

, 1 f /  at (~)cos~td~/ ,  b ' -  1 = - t ( ~  i ~ . d . . , . , , s _ n . _ _ . , .  

- ~  - ? [  

t=O, 1, 2 . . . .  

Let  s '(~) denote the Abel sum 

s' (~/) = �89 a0 + (~[) ~ (a~ cos ~ t + b~ sin t ~). 
t - I  

Then 

s' (y) - �89 a~ = lim lim ~ (a~ cos t r/+ b~ sin t ~1) (re~) t 

= - 2 c l i m  S ( ~ , ~ ) - 2 l i m I ( ~ , ~ )  
$ ~ 0  - ~. . -*0 - 

where 

S ( ~ , ~ ) =  lim ~ ~ (-)trt2"(a;2nc~ 
~ 1 -  ,-1 ~-1 ( ~ - t  ~) {c (c + 1) + : t ~ }  cos ~ 

(21) 

(22) 

I (~, ~/) = lim ~ ; (  - )t r t (a~ y cosh y~ + b~ t sinh y~) y sin y~ dy 
~-~1- t-~ (y~ + t 2) (~z y cosh :~ y + c sinh ~ y) 

0 

(23) 

We shall first show that  I(~,  ~)-~0 as ~ 0 -  uniformly in ~ for every ~ in a 

closed interval - ~t + ~ < ~ _< z~ - ~ for arbitrary (~ > 0. 

For brevity let us write Q (y, ~) = y sin y ~/(zt y cosh zt y + c sinh zt y). Consider first 

I(~,~)=$1= lim r t Q(y ,~ ) ( - )  (atycoshyy bttsinhyy)dy" 
r.-,1- t =1 y~ + t z 

0 
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This as a power series in rt; and hence by Abel's theorem 

$1 = Q(y, ) (atycoshy~l+bttsinhy~l) 
t - 1 y~ + t~ d y, 

0 

(24) 

provided that the right-hand side of (24) exists. Let 

t ' 
S~ = ~ ( - ) bt t-~.I t Q(y, ~)sinh y~dy,  

0 

(25) 

where (for the moment) we assume the existence of S~. Then 

o O  

[ S ' - S ~ l = l ~  y~+t' - ( - ) ' b~y ' s inhy~}d  ~ Y] 
0 

t t 

_ + y ' l s i n h y , I  
t-1 t - 1  t / 

0 

< Kt f y2 cosh y~/]Q (y, ~)l dy, (26) 
0 

for some constant K1, since a~ and b~, being Fourier coefficients, tend to zero as 

t ~ c ~  (Hardy and Rogosinski[2] Theorem 30). However, since we can 

find K z such that the right-hand side of (26) is less than 

oO 

K2 f y2e-t~V[siny~[dy, 
0 

which tends to zero (obviously without depending upon ~/) as ~ 0 - .  It  is there- 

fore enough to show that $2 exists and tends to zero as ~ 0 -  uniformly in ~/. But 

Q(y, ~)sinh y~/ is independent of t, and so 

t ' 

S~ = ~ ( - ) bt Q (y, ~) sinh y ~/d y; 
t - 1  t 

0 

and, by the same argument as before, $2 will have the required properties if 

S3 = 
( -  )'b~ 

t - 1  t 

exists. But (Hardy and Rogosinski [2] Theorem 44) a Fourier series may be inte- 

grated term b y  term; whence it is easy to verify 
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1 ;  
Sa=�89 ~ a o -  ~ (xe+7)l(7)dT' 

which exists because /(7) belongs to L ( - z ,  zt). We remark in conclusion that  the 

above argument is not affected by the possibility that  the integrals may be principal; 

for the pole of the integrand is simple if existent. Thus if c is real and c < -  1, we 
-|~I -2f21 ; 

can write the integral in the form = f + J" + ; and then by writing - y  
0 0 -~ A I -2 t  2 x 

for y in the first integral and combining it with the second, the factor (rcycoshr~y+ 

+ c sinh z y ) - i  will be converted into a bounded term. This disposes of I (~, 7), and we 

now turn to the more difficult t reatment of S (~, 7). 

For brevity write 

( - ) t2~ (a~ 2. cos 2 . 7  + b~ t sin 2 .7)  e(a"-">~ 
~ t " =  ( 2 ~ - t  ~) {c(c+1)+z22~} cosr~2. ' (27) 

so that  

S(~, ~/)= lim ~ ~ p , . ,  r' e "r (28) 
r - -~ l -  t - 1  n - 1  

Until further notice we shall suppose that  ~ has a fixed value ~ < 0. We notice that  

2 " r  for if this were the case 

0 = zt2. cos ~t2" + c sin ~t~t. = zt t cos ~ t + c sin ~t t = ( - )t ~t t, 

which is impossible since t is a positive integer. Also, for large n, 2 . -  t differs from 

an integer by �89 -1) by (5). Hence for all n and all t, ( 2 . - 0  -1=0(1 ) .  Next 

2./(2~ +t)  and t / (2.+t) are both O(1). Equation (5) shows that  

' b' whence 2./{c(c + 1 ) + ~ 2 ~ }  c o s ~ 2 . = O ( 1 ) .  Finally at, t, cos2 .7 ,  sin 2 .7 ,  and 

e an-")~ are all bounded. Consequently ~ , .  is bounded, for all t and all n. Then 

for every fixed r < l  and every fixed ~<0 ,  ~ ~ ~t . . r  tent is absolutely convergent, 
t -1  n - 1  

and is therefore convergent; and its sums by rows and by columns both exist. Hence 

we may invert the order of summation and deduce 

s 7)= lim e (29) 
r -~ l -  n - l t - 1  
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The next step is to prove 

qn (r) = ~ Vt. n r t = 0 (n) (30) 
t f f i l  

uniformly in r for r 0 < r <  1 for some value of r 0 < 1. Since we may omit multipliers 

which depend only upon n and are bounded for all n, it is enough to prove 

un(r )=  ~ ]t~a~(-r)t- = O(n), vn(r)= ~ tb;(-r) t  O(n) (31) 
t - 1  ),2 n __ t2 2 t2 t - 1  An  - -  

uniformly in r for ro<_r<l. Now S3(r)= ~ b~(-r)t/ t  is obviously independent of 
t - 1  

n and it exists because $3(1)=$3 exists, as already proved. Moreover lim S3(r)= 
r---~l - 

=$3(1) by Abel's theorem. Hence there exists %<1 such that  S3(r) is bounded for 

r0_<r<l ,  and (obviously) therefore uniformly bounded in n. Thus instead of the 

second relation of (31) it is sufficient to prove 

2~ b~ ( r )  t 
w~ (r)  = vn (r)  + S 3 ( r )  = Y - 0 (n )  

~-1 t ( ~  - t ~) 

uniformly in 

exist and be 0 (n) uniformly in r 0_< r_< 1 if 

V.  - t _ ,  ~;t~-, ,~-l = O (n). W n  : : 0  t-, t~-22-t-fl (n), 

' b' because at, t are bounded. However 

U~- ~2~]1  + n. O(1) + 0 ( ~ )  /_ t - 2 = O ( n )  
t - 1  t - n + l  t - 1  

r o_<r_< 1. Since u~ (r) and w~ (r) are both power series in r, they will 

(32) 

a n d  W n  behaves similarly. Thus (30) is established. We now see that  for each fixed 

< O, ~ q. (r)e n~ is uniformly convergent for re_< r_< 1, and hence 
n - 1  

S ( ~ , ~ ) =  lim ~ q.(r)e ~ =  ~ l imq~(r )e  ~. (33) 
r - } l -  n - 1  n - 1  t - * l -  

Next we invoke Abel's theorem once more to show that  

lim qn (r)= lim ~ pt.n rt= ~ Pt.n, 
r - ~ l -  r - ~ l -  t - 1  t - 1  

(34) 

for we have already demonstrated the existence of ~ pt.n. 
t - 1  

so far obtained yields 

Collection of the results 
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S(~, ~ )=  ~ [ { ~ ( = } t a ~ 2 n [  {~1(_ ) tb~ t  / ] 
,~-~ t ).~_t~ ]cos2n* /+  t ) . ~ _ t ~  s i n 2 ~  �9 

�9 [ ha e "~n ~ 
{c (C+ 1) + ~ }  cos z).n] ' (35) 

Now (Hobson[4] p. 581) an ordinary Fourier series may be multiplied by a 

function of bounded variation and integrated term by term, provided the resulting 

series converges. Thus 

F ~ =  ] ( ~ ) - � 8 9  a t c o s t ~ + b t s m t  v c o s 2 n ~ d ~  
t 

~-1 {at cos t r/+ b' = ' ' t sin t */} cos An *l d ~ at cos t r/cos ).n r/d ~/ 
~t= t=l 

= 2 sin zt~, ( - )  at ~ln (36) 
t-1 ~ - t  2 ' 

for we have already shown that tile right-hand side of (36) exists. Similarly we have 

i oO t P 
G,~= /(r/) sin)., r / d r /=2  sinze).n 5" !_-)]b~t.  

- - ? t  

(37) 

However, /(~j) belongs to L ( - z t ,  n); and it therefore follows from the Riemann- 

Lebesgue lemma (Whittaker and Watson [8] p. 172) that  

Fn=o(1 ) ,  Gn=o(1)  as n-+c~. 

Consequently as n--~ oo 

~n = ~r (r/) = [F~ cos ~t~ ~ + Gn sin ),n ~1] {c (c + 1) + zt ~ ~t~} 2 sin zest, cos zt~n 

and (35) reduces t9 

8(~, ~ )=  ~. ~ndn~. 
n - I  

=o(1)  (38) 

(39) 

We now remove the restriction that  ~ < 0 is fixed; and we assert that  lim S(~, ~) 
& - * 0  - 

exists whenever s'(~) exists. This follows from (21): for c # 0  by hypothesis, and 

lim I (~, 7) = 0 in - zt < ~ < n because we have already proved this for - zt + 5 _< ~/_< 
~ 0  - 

_< ~t - ~ for arbitrary (~ > 0. However, s' (7) exists for almost all ~ (Hardy and Rogo- 
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sinski [2] Theorem 75). We hereafter ~ consider any fixed value of ~ for which s' (7) 

exists. For this value of 7, S(~, ~) exists for ~<0; and we define S(0, ~?)=limS(~, ~). 

For every given closed interval $1 < ~ < ~2 < 0, the series S (~, ~) converges uniformly 

in ~. Writing ~(~)= ~ (~/2~)e  ~ ,  ~<0,  we have 
~ 1  

f f (])(~)--(~(~l)--n. 1 ~.eantd~ = ~ ane~nCd~ = S(~, ~/)d~, ~<~2. 

This relationship is true for arbitrary ~2< 0; and hence for all ~ < 0. I t  follows that 

o 

lira r (~) = r (~1) + f S (~, 7) d 
~ 0  - 

exists, by virtue of the existence of S (~, 7) up to and including ~ = 0. Now 

The existence of lim ~ (~) therefore demonstrates the existence of 
~ - * 0 -  

lim Z - - ~ ' .  (40) 
~-I,0- n - I  n 

As a consequence of (5) there exists a positive constant M such that 

for n = 1, 2 . . . .  and all sufficiently small non-positive ~. Hence 

I I " S (~, 7 )  - -  ~1~2 n~,l n . - 1  - -  " - 1  '• 

Let ~ - ~ 0 - ,  notice the existence of (40), and deduce 

lira 8(~, ~/)= lim Y ~.e("-t)r l ime  -~12 OCnenS=~ ~n. 
~--~0 - ~--~0 - n - I  ~ ' -~-  n - I  n - I  

Since Abelian summation is regular, Theorem 3 gives 

1 I cou ld  h a v e  c o n d e n s e d  t h e  e n s u i n g  ana lys i s ,  h a d  I k n o w n  of a T a u b e r i a n  t h e o r e m  va l id  fo r  

Abe l i an  s u m m a t i o n  w i t h  complex e x p o n e n t s .  I a m  o n l y  a w a r e  of  T a u b e r i a n  t h e o r e m s  of t h e  a p p r o -  

p r i a t e  t y p e  r e s t r i c t ed  to  real  e x p o n e n t s  (e.g. H a r d y  [1] T h e o r e m  104). 
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1 
y t  

f c,o§ oos .  f 
1 (~ )d~  = (2)._~1= {c (c + 1) + zt~ ~t2~} cos zt ;tn 101)d~1. 

We collect these last two results with (36), (37) and (38) and deduce 

�89 ao - 2 c lim S (2, 7/) = (9~) ~ (a~,' cos 2. ~7 + b~' sin ;t. ~7), 
~ - ~ 0  - n - 1 

where 

(41) 

c(c+ 1) f t(w/) d~ 
pp -~  

a n ~ _ {c(c+ 1) + ~;t~} cos ~ .  

,, c~.  f b. = - {e(c+ 1)+=Ut~} s i n = ~ ,  cos= ; t .  / (~)  s i n ; t . ~ d ~ .  

However (4) shows that 

tan r c ~ .  = - ~ n / c ,  c o s  2 ~ ; t .  = c~/(c ~ + rc B ~ ) .  

After some algebra we deduce a"  =an, b~' =b. .  Equations (21) and (41) now yield 

s '  ( 7 )  = s ( 7 )  - 2 l i r a  I ( 2 ,  t / ) .  ( 4 2 )  

However the conclusions of Theorem 2 are true if we replace s 07) by s' (~) (Hardy 

and Rogosinski[2] Theorem 75). Also I(2, 7)'-*0 as 2 - + 0 -  uniformly in ~ for 

- z~ + ~_< ~_< z~- ~, for arbitrary ~ > 0. Accordingly (42) completes the proof of 

Theorem 2. 

Practical appHcafion. 

In an experiment to determine the rate of uptake of growth stimulant by plant 

tissue, some thin disks (of uniform thickness 2 ~) of carrot root are plunged into an 

agitated solution of fl-indolyl acetic acid; and, as the acid diffuses into the disks, 

the concentration of acid in the circumambient solution falls. The object of the ex- 

periment is to determine D, the diffusion constant of fl-indolyl acid in carrot root, 

by observing y (t), the ratio of concentration of acid in the external solution at time 

t to that at zero time, when the carrot roots were plunged into the solution. The 

disks are sufficiently thin to presume that all acid enters normally to the flat sur- 
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faces of the disks, and that  edge effects are negligible. We shall show that ,  if c is 

the ratio of the total  volume of the carrot roots to the total volume of the circum- 

ambient  solution, then 
1 oo 2 C e -Dn222n tl6z 

where ~n are the quantities defined by  (4). This series converges very rapidly; and 

for reasonably large t it is only the first term which matters .  Under these circum- 

stances it is easy to determine D from a knowledge of c and ~0 (t). 

Let  v and V denote the actual volumes of carrot root and of external solution 

respectively; so that  c = v/V. Let x denote a distance coordinate (-(~_< x ~ )  taken 

from the centre of a disk in a direction normal to the flat faces. Let  k(t) denote 

the concentration of acid in the external solution at  t ime t, this concentration at  

any instant being uniform throughout the acid due to the agitation of the liquid. 

Let K (x, t) denote the concentration of acid within the disks at  the point x and at  

time t. Since acid diffuses into a disk from both its flat sides, we have to seek an 

even function of x for K(x ,  t). At the instant of immersion there is no acid inside 

the carrot root, so 

K(x, 0 ) = 0 ,  0 _ < x < &  (44) 

At all instants the concentration of acid on the surface of a disk 1 is k(t); so 

K ((], t) = k (t), t >_ 0 (45) 

The total amount  of acid remains constant throughout  the experiment; so 

v | K (x, t)dx+ Vk(t)= const., 26 

whence by  (44) 

c f K(x, t)dx+6k(t)=Jk(O), t~O. 
o 

Inside the carrot  root the diffusion equation holds; so 

(46) 

1 There  is n o t  m u c h  prac t ica l  ev idence  for e i the r  be l iev ing  or d isbe l iev ing  (45). I n  genera l  o n e  

m a y  expec t  d i scon t inu i t i e s  of concen t r a t i on  a t  t he  su r faces  of t h e  ind iv idua l  ceils of t he  car ro t  root  

(i.e. in t h e  microscopic  pic ture) ;  b u t  th i s  does  n o t  of course  imply  a d i s c o n t i n u i t y  a t  t he  su r face  of 
t h e  disk in t he  macroscopic  p ic ture .  I n  t he  prac t ica l  i nves t iga t ion  of abso rp t ion  by  t he  car ro t  root ,  
i t  will be of in te res t  to see w h e t h e r  or  no t  (43) r ep resen t s  obse rved  da ta :  and ,  if it does  not ,  d o u b t  

will be t h r o w n  u p o n  t he  a s s u m p t i o n s  impl ic i t  in (45) a n d  elsewhere.  
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~K (x, t) D O~K(x,t). 
t ax ~ 

Consider the trial solution 

K ( x , t ) = K  0§ ~ anexp - 52 

where the 2n are parameters to be chosen presently. 

(47). Substitution of (48) into (46) yields, by (45), 

Thus 
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(47) 

cos ( ~ ) ,  (48) 

This solution certainly satisfies 

(46) will be satisfied if we choose the )In in accordance with (4); and if we 

take Ko=k(O)/( l+c ). When t=0 ,  we have, by (44), 

k(0) (~2~xx) l 0  for 0 < x < ~  
K (x, 0)= ~ c  + ~ an cos = - 

n-~ t k (0) for x = 6. 

Thus 

" (zt~,x) [ - k ( O ) / ( c + l )  for O<_x<~ 
an cos . . . . .  - 

n-1 ~ k(O)c/(c+ l) for x=5 .  

Comparison with Theorem 3 shows that  this will be true if 

an = 2 c k (0)/{c (c + 1) + g~ ~ }  cos g~tn; 

and (43) follows at  once. 

This particular problem call be solved by the method of the Laplace transform; 

but the solution is then very much longer than the above method. Moreover the 

Laplace transform method becomes awkward in the more general case when the carrot 

roots already have a given distribution of acid concentration at the initial instant 

of immersion. Our method deals with this generalisation immediately; for if 

is this initial distribution, then the subsequent distribution at  time t is 

In fact the method exposes at once the Huygens semi-group property to be expected 

from partial differential equations of the type (47), (Hille [3], p. 400). 
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