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I n t r o d u c t i o n  

In a series of papers during the last several years, ([1], [2], and references therein), 

one of us has developed a theory of the solutions of linear differential equations as 

analytic functionals of the coefficient functions. In the present paper, we consider a 

more general situation in which the differential equation is not restricted to be linear 

and use different methods. Even in the linear case, the results are a little different. 

The method is to establish an implicit function theorem for analytic functions 

on one complex Banach space to another, and then apply this theorem to the differ- 

ential equation. 

Implicit functional equations in abstract spaces have been studied by various 

authors 1, and from various points of view. Since we restrict ourselves to the analytic 

case, it seemed appropriate to develop a theorem by generalizing the classical method 

of series expansions and dominating functions. A result similar to our theorem of 

Section 1 was given without proof by Michal and Clifford [3]. 

In the second section the implicit function theorem is used to study the solution 

of the differential equation dy/dr=/('c,y) as a functional of the function /. Here T 

is a real variable while y may range over a subset of a complex Banach space. 

In particular the theory will include systems of ordinary differential equations and 

certain types of partial differential equations. 

1.  I m p l i c i t  F u n c t i o n s  

In the present section we shall make use of the abstract differential calculus 

and of the theory of analytic functions in complex Banach spaces. ~ In  particular 

1 See, e. g. HILDEBRANDT and GRAVES [11]. 

2 For  a s u m m a r y  of these  theor ies  in  co mp lex  Ba n a ch  spaces see ~-]ILLE [6], chap.  4. For  real 

as  wel l  as  complex  B a n a c h  spaces  see MICHAL [ l ,  8]. MICHAL and  MARTIN [9], MARTIN [ |0] .  
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we use the notation d / ( x  o ; h) for the Gateaux differential lim ~ 1 {1 (x ~ + 2 h ) -  / (x0)) 
).-~0 

of the function / (x)  on one complex Banach space E~ to another E~ and the notation 

d~/ (xo;hz  . . . . .  h~) for the Gateaux differential of the nth order at x = x  o with incre- 

ments h~,. . . ,  hn. I t  is of importance to observe that  these "Gateaux differentials" 

are indeed Frdchet differentials a for the analytic / (x)  and tha t  the homogeneity of 

degree one in each increment is with respect to complex number multipliers. 

Lemma 1. Let  El, E2 be complex Banach spaces and let / (x)  be analytic for 

the sphere II x ]l =< Q of E 1 with values in E2 and suppose that  II/(x) I]-~ i for II x II g Q. 

Then, given e>  0, there exists a positive integer n o such tha t  

II d~l(O; X ,  X l , . . . , x ~ )  < ( M + D e  ~ 

for all n > n  o and all Xl, X 2 . . . . .  X n in E 1. Hence, if m~ is the 

l d ~ / ( O ; x , , x 2 , . . . , x ~ ) ,  the series ~ m ~ ) J  converges for 0<~t<Q/e .  
�9 rt--1 

modulus of 

Proof. Put  

and in general, 

Then 
(~ (~1' ~2' " '" ~ n ) =  / ( ~ l X l  ~-~2X2 "~- "'" "~-~n~n). 

a n q, (~'x .... ~)  I k 1,... n, 

and q~(~l,... ~ )  is analytic for tl xk II < q- and I ~k t < 1. Let  
n 

in the complex plane. Then 

1 0~1 /C,-o 27~i v~ dVl, 
F 

( a ~  (~1' ~ '  "'" $n)l 

and, by induction, 

d n / (0 ; Xl, ~ ,  - . .  x~)  

/" denote the unit  circle 

T T  

1 

F P 

(31, 3 2 , - . .  , 3n)  d T1 d 3 2 . . ,  d 3n 

" See :FRI~CHET [7].  
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Now for I I ~ l l < _ o / n , k = l ,  2,...,~ and I ~ l = ] , k = l , . . . ~  we have I1~1~,=~11_< 

~ ~l l l  ~ II-< 0- Hence II ~0 (~1, ~,., . - .  ~ , ) I I - <  M. It eollows that II d" /(0;  =1, =~, . . .  = - ) I I - <  M 

when II=* II-<o/n, k = l , . . . , n .  Now, for any x 1 . . . .  xn in E 1 with I l l ,  l i f o ,  put  

:Q= O 
,, II =,  II 

and hence 

- - . = ~ ,  so that II=kl l=e/n.  We have 

IId"/(O;x; . . . .  =~ ) [ I -<M,  

< Mnn 
II d"/(O; =1 . . . .  , = , ) I 1 - - - ~ - I 1 = 1 1 1 "  II == II . . .  II ~ ,  II, since d" / 

is homogeneous in each xk. Now by Stirling's formula, 

n!=( l+e~) I /~nn+ie  ~ ,  where e~-~0 as n-+o~. 

Hence, given e > 0 there exists a positive integer n o such that  

d"l(O;=, := , , . . .~ , )  <_ �9 I1=111.-.11=,11 

for n>n o and all =l, xz . . . .  x ,  in E 1. 

If mn is the modulus of .d"[(O;  xl, x2,...Xn) then clearly m , <  ~ / ~  for 

n > n  o . Hence if O < 2 < o / e ,  

m , ) . , < M + e  (2eln ' where 0 <  2e - - < 1 .  

Hence ~ rnn 2" converges. 

Lemma 2. Let  El, E~ and E a be complex Banach spaces and let =EEl ,  yEE2,  

Let /(x, y) be analytic for ]]xl[ -<Q, ][Yl] -<0, with values in El, and suppose that  

I]](x,y)]l is bounded for ][=[[_<0, [[y[[_<0. Then if mjk is the modulus of the multi- 

linear function 

1 
(j + k) ! dj+~ / (0, 0 ; =1, =~ . . . .  =J, Yl, Y v - . .  yk), 

the series ~ mjk 2 j/z k converges for 12] <0 /e ,  l/z I< o/e. 
t . k - O  

Proof. Put 
z = ( = , y ) ,  l l z l i=Vl l= l l ,+ l l y l l  2, v ( z ) = / ( = , y ) .  
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T h e n  q~(z) is a n a l y t i c  

h a v e ,  for  n > no, 

(1.1) 

~ o w ,  
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in the sphere II II of the space E~E~. 

dnq)(O;Zl, Z2,...,zn) <(M+8) e__nn]]Zl]I...Hzn H 

d q9 (0 ; zx) 

d~ q~ (0 ; z~, z~) 

= d / x  (0, 0 ; x~) + d / v  (0, 0 ; y~) 

= de/x:: (0, 0 ; x 1, x2) + d2/ ,v  (0, 0 ; Xl, y~) 

+ d~/x~ (0, 0 ; x~, y~) + d~/v~, (0, 0 ;y~, y.,) 

B y  L e m m a  1 we 

d 3 ~ (0 ; z 1, z 2, za) = d a / ~  (0, 0 ; x 1, x 2, xa) + d a / ~  (0, 0 ; Xl, X2, Y3) 

+ d a / ~ v  (0, 0 ; x 1, x a, Y2) + da/~:~,v (0, 0 ; x 1, Y2, Ya) 

-+- dS /~x~ (0, 0 ; x 2, x 3, y~) + dS /::~v (0, 0 ; x~, y~, ya) 

+ da/xy~ (0, 0 ; x 3, Yl, Y2) + d a / ~ v  (0, O; Yl, Y2,Y3) 

dncf(O; z I . . . .  z ~ ) =  ~ ~ dt~.j~/(O, O; xk . . . . .  xki, yl . . . . .  , yzl) t+j~n 

1 
n!  dJ~.jv / (0, 0 ; x 1, x 2 . . . .  , x~ ; yt+~, yt+2 . . . . .  yn) 

(M + e) e" 
~)nV2~= n- Z1]]'HZ1]I''']]Xt]]'[] yI+IH''*I]ynH 

< ( M + e ) e "  
m~ t _ i + j = n.  

V2 ' 

H e n c e  if 0 < ~t < Q/e a n d  0 < / t  < e / e ,  

/ ~ - V 2 ~ ( i + i )  \ Q /  \ Q /  

a n d  ~ mtj).t  #J converges ,  s ince  0 < 2~..~ < 1 a n d  0 < t t e  < 1. 
Q Q 

for  n > n 0 ,  so t h a t  

whe re  k l , . . . ,  kt r a n g e s  ove r  a l l  s u b s e t s  of i m e m b e r s  of t h e  i n t e g e r s  1, 2, 3 , . . . , n ,  

whi le  11 . . . . .  lj is t h e  c o m p l e m e n t a r y  se t  to  k 1 . . . .  , kt. 

R e c a l l i n g  t h a t  I ] z ] ] - l / ] ] x l ] 2 + l l y l l  2 , u s ing  the  i n e q u a l i t y  (1.1) a n d  p u t t i n g  

xt+l=x~+2 . . . . .  x,~=O a n d  YI=Y2  . . . . .  y~=O we h a v e  
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L e m m a  3. Let  E 1 and  E 2 be (real or c o m p l e x ) B a n a c h  spaces. I f  .F(x,y)= 

= ~ hj~ (x , . . . x ,  y , . . . y ) ,  where  hj~ (x 1 . . . .  xj, YD-.. yk) is a mul t i l inear  funct ion,  sym-  
),k=0 

metr ic  in the x 's  and  in the  y 's  on E~E~ to E 2 and hol ( y ) = 0  and  if the  modul i  

mjk of hjz sat isfy ~ m j ~ r  ~ < ~  for some r > 0  and  ~ > 0 ,  then there  exists  a unique 

analyt ic  solution of the  equat ion y =  F(x, y) in the neighborhood of x=O, such tha t  

y = 0  when x = 0 .  

Proof. Firs t  we exhibi t  a formal  solution, and then  prove  convergence.  In  the 

equat ion  

(1.2) y = F (x, y) = hlo (x) + h20 (X, X) -~ hll  (X, y) + h02 (y, y) 

+ hao (x, x, x) + h21 (x, x, y) + hi2 (x, y, y) § h03 (y, y, y) 

(1.4) 

Symbolical ly ,  we m a y  write relat ions (1.3) as 

]cx = hi0, 

]C2 -- h2o + hi1 ]Cl + ho2 k~, 

]Ca = hso § h21 ]el -}- h12 ]C~ § h0s ]C~ + hll k2 + 2 h0z ]Cl k2, 

= hao § hal k 1 -t- h22 ]el 2 -}- his ks + ho4 ]C~ + h21 ]C2 

]C4 etc.  

+ 2 h12 ]el ]C2 + 3 h0s k~ k 2 + hll ]c a + 2 ho~ ]C! k 3 

+ ho2/~, 

subs t i tu te  the  generalized power  series y= ~ kn (x), where k~ (x) is a homogeneous  

polynomial  on E 1 to Ee which remains  to be de termined,  and equa te  the result ing 

homogeneous  polynomials  of like degree. We  have  

kl (x) = hlO (x), 

k2 (x) = h2o (x, x) ~ hl l  (x, kl (x)) + ho~ (k~ (x), k~ (x)), 

k3 (x) = h3o (x, x, x) + h2~ (x, x, kl (x))+ h~2 (x, k~ (x), k~ (x)) 

§ h03 (]CI (X), ]Cl (X), ]Cl (X)) %- hi1 (x, ]C2 (x)) 4- 2ho2 (k 1 (x), k z (x)), 

(1.3) k4(x)=h40(x,x,x,x)+h31(x,x,x, kl(x))+hz2(X,X, kl(x),kl(x)) 

+ h43 (x, k~ (x), kl (x), k~ (x)) + ho4 (k~ (x), kl (x), k~ (x), k~ (x)) 

§ h21 (x, x, ]C2 (x)) + 2h12 (x, k 1 (x), k 2 (x)) + 3hos (]C~ (x), ]C~ (x), ]C2 (x)) 

+ hit (x, ]cs'(x)) + 2h02 (]C1 (X), k s (x)) + h02 (]C2 (x), ]cz (x)), 
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^ 

where (hmn k~,, h:,, k~, . . .k~,n) x = hmn (x, x . . . .  x,  k~,, (x), k~,, (x), . . . k~,~ (x) ) is a homogeneous  

polynomial  of degree N = m + ~ x + . . ' + ~  in x. Pu t t ing  ~=] lx l ] ,  ~ = [ ] y l ] ,  we see 

tha t  the series 

(1.5) ($, ~]) = ml ~ ~ + m2 ~ ~z § ml 1 ~ ~ § mo 2 ~2 

+ m3 ~ ~:a + m2 t $~ ~ § ml 2 ~ ~2 § m0 a ~3 
-~- . . .  

ddminates  (1.2). By  hypothesis,  this series converges for 0_< ~ ~< r, 0_< ~ ~ ~). Eq.  (1.5) 

has a unique analyt ic  solution for ~] in terms of ~, and the coefficients in the series 

= ~ c~ ~n for this solution m a y  be determined by  subst i tu t ing the series in Eq. (1.5). 

These coefficients are determined successively by  the equat ions  

el  = / 1 0 ,  

C 2 = m2o  § i l l  Cl § m02  c 2, 

c a = mao § m21 c 1 + ml2 c~ § m03 c~ § mll c e § 2 m02 c 1 c 2, 
(1.6) 

c a = m4o § real c 1 § m22 c~ + mla c~ § m o~ c~ § m21 c 2 § 2 m12 c 1 c 2 

+ 3 moa ct ~ c 2 + mll c a + 2mo2 c~ c a + rn0~ c.~, 

which are of the same form as Eq. (1.4). 

Since IlhtJ[l=m~J, it, follows t h a t  I]kn[l~cn, where IIh~sll is the modulus  of 

h,~(x, y)  and [] kn I] tha t  of k~(x). Hence, since for some ~ > 0 ,  ~ c.  ~" converges for 
1 

[~l < a, then ~ k ,  (x) converges for II x tl < a. Thus  y = ~ k a (x) is the unique analyt ic  
1 1 

solution of equat ion y = F (x, y) in the neighborhood of x = 0, sat isfying the condit ion 

y (0) = 0. 

Theorem 1. Let  El,  E 2 and E a be complex Banach  spaces and let / ( x ,y )  be 

analyt ic  in a region R 1R e where R l ~ E  l, R e ~ E  2. If  the equat ion 

(1.7) / (x, y) = 0 

has a solution at  x = x o ,  Y = Y o  where x o E R l ,  y o E R  2, and if the differential 

d~](xo ,  y o ; ~ y  ) is a solvable linear funct ion of (~y then there exists a sphere S 

around the point  x 0 in the space E l and an analyt ic  funct ion q(x)  on S to E 2 such 

tha t  y =  ~(x) is the unique analyt ic  solution of Eq. (1.7) on S such t h a t  yo=~(xo) .  

This solution ~p(x) m a y  be calculated recursively by the method  of Formula  (1 .3) in  

the proof of L e m m a  3. 



(1.8) 

where 
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Proof. For convenience, we may assume that  x 0 = 0, Y0 = 0. Expanding the left 

member of (1.7) we obtain 

v~ (x) + po~ (y) + ~ Z p,, (z, y) ~ 0, 
k - 2  t + ] - k  

1 
p ,  (x, y) (i + j) ! dt+j ~ , , / ( O , O ; x , x  . . . .  x , y  . . . .  y) 

is a polynomial of degree i in x and j in y, and where in particular Pol (Y) = d~ [ (0, 0 ; y) 

is a solvable linear function of y. Hence Eq. (1.8) may be rewritten in the form 

y = G (x, y) = - Pot 1 (Plo (x)) - ~ Z po2' (Pti (x, y)) 
k - 2  I.t-.l-k 

o r  

(1.9) y = h l o ( x ) +  ~ h i j ( x , x  . . . .  x , y , . . . , y ) ,  
f+j>l  

where pot denotes the inverse of P~1 and where 

h,, (x~, x 2 . . . .  x ,  yl,  y~ .. .  yj) = po~t [ ~ - ) s  d'+' [ (O, O ; x l  . . .  x,, y , ,  . . .  y,)] �9 

I t  is sufficient to show the existence of a unique analytic solution of Eq. (1.9). By 

hypothesis, the left member of (1.8) and hence the right member of (1.9)is bounded 

and convergent in the neighborhood of (0, 0), say for ][ x I[ ~ ~, ]] Y II Z a. By Lcmma 2, 

rots St/~t converges, for 
Izl<~h, Izl<~h, 

where ml! is the modulus of h ,  (xL,... x ,  Yx-.. YJ). 

Hence by Lemma 3, there is a unique analytic solution of Eq. (1.9) which 

reduces to 0 for x = 0 ,  and the theorem is proved. 

(2.1) 

2. Differential Equations 

Consider the differential equation 

d y =  
d r  ] ( z ' Y )  

subject to the initial condition Y = Y o  for ~ = v  o. Here T is a real variable on 

I v - T 0 1 ~ a ,  while y and ] ( v , y )  are elements of a complex Banach space B. We 

assume that  l (r, y) is continuous in the pair (v, y) for I v -  3o I -< a and II Y -  Yo II -< b, 

tha t  there exists a positive number M such that  I I / ( r , y ) l l ~ M  for IV-Vol-<a,  

6 -  543807. Acta mathemat lca.  91. Imprimd le 14 mai 1954. 
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[lY--Yo]] -<b, and tha t  for each % / (%y)  is an analytic function of y for HY-Y01] <b" 

Then if 0 < fl < b, / (3, y) satisfies a Lipschitz condition 

H/(Tf, yl)--  /('K, y2) H~NHyl - -Y2][  

for all v in I ~ - ~ o l _ < a  and all Yl, Yz in the sphere I lY-YolI</~.  

For, if C is the unit  circle in the complex plane, then by  Cauchy's integral 

formula 1 

1 f / ( v , y + a h )  (~ l ( ~ , y ; h ) = ~ i " a2 d a , 
c 

for Ily-y011<~, Irhtl-<b-fl. 
Hence [[3/ (v ,y;h)  il<_M for I r - ~ 0 l ~ < a ,  IIV-Y011<~, I l h l l - < b - ~ .  

Since 5[(v ,y ;  h) is homogeneous in h of degree one, it follows tha t  ][al(v ,y;h)II  < 

M 
~N I Ih] l  for I.r-.rol<_a, I l y - yo l l< f l ,  where N=b--- ~ .  

1 
Now /(r,  y 2 ) - / ( r ,  y l ) - f S / ( % y l + 2 ( y 2 - y l ) ;  y 2 - y l ) d 2  for all Yl and Y2 in 

o 

II Y -  Y0 II < fl- I t  follows tha t  

II / (~, y~)-  / (~, y,)f1-< N II Y2- Y~ II 

for all V,, Y2 in the sphere II Y -  Y0 II "= ~. 
Thus, all the hypotheses of a known existence theorem ([6], p. 95) for differential 

equations are satisfied. I t  follows that  Eq. (2.1) has a unique continuous solution 

y = f f ( r )  satisfying the initial conditions y = y o  for T= v0, and defined for [ v - r 0 1 ~ a  , 

where a - :  rain (a, f l /M).  

Also, 

(2.2) I l f f ( ~ ) - y o l l _ < / ~ < f l  for I~-~o1_<~. 

We use the following no ta t ions :  I is the interval I r - r 0 l _ < a ,  s the sphere 

II Y - Y o  II < ~ of the Banach space B, while X will denote the space of all functions 

x = x ( v , z )  on I S  to B which are continuous in the pair (%z), bounded, and analytic 

in z for each r. With the norm defined by  

II~ll=sup {llz(~,~)ll~; veI ,  z e S } ,  

X is evidently a normed (complex) vector space. I t  is also complete, since if 

[ [x~-x~[[->O as m and n tend to infinity, then the sequence of functions xn(v,z)  

I See  [6]~ p .  74.  
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converges uni formly  to a l imit ing funct ion x0(v, z) which is cont inuous and bounded  

on IS .  B y  the generalized convergence theorem of Weiers t rass  (see A. E. Taylor ,  [4]) 

i t  follows tha t  xo(~ ,z) is also analy t ic  in z for each ~ E I ,  and  for z E S .  Hence  X 

is a complex Banach  space. 

Le t  Y be the complex Banach  space of all cont inuous funct ions  on I to B with 

the  norm ]lYi]= m a x  {l ly(~)II ;  ~ 6 I } .  

p u t t i n g  
T 

(2.3) G (x, y) = y0 + S x (a, y (a)) d (~, 
TO 

we shall be concerned wi th  the  equa t ion  

(2.4) y = G (x, y), 

where G(x,y) is defined on X K  to Y, and where K is the  sphere rly-yoll<~ in 

the space Y. I t  follows f rom inequal i ty  (2.2) t h a t  77 6 K .  I t  is clear t h a t  G(x, y) is 

single valued and well defined for x E X, y 6 K,  and t h a t  G(x, y) is locally bounded  

in the  region X K .  For  if x 1 is any  given e lement  of i and if ]]x-xl l I<? and 

y E K then  

II (x, y)II -< II y0 II + (11 x, II + y) 

G (x, y) is Ga teaux  different iable a t  each point  of the region X K. For  if (x, y) 

and (x§ y + k )  are points  of this region we have  

(2.5) 

P u t  

G(x + 2h, y+,~k)-  G(x, y) 

TO 

T 

+ S h [(r, y (a) + ~t/r (a)] d a 
TO 

T 1 

= SdaSSx[(r,y((r)+).vk((r); k ( ~ ) ] d v  
Vo 0 

+ 

A =G(x+]th, y+~tk)-G(x,  
1 

S h  [a, y (a) + ~t k (a)] d a. 
TO 

T 

Y) f (~ x [a, y (a) ; k (a)] d a - 

TO T o 

h [a, y (a)] d a. 
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Then from (2.5), A = A1 + A~ where 

T: 1 

A~= f da f {Sx[a, y(a) + 2vk(a); k(a)]-(~x[(~, y(a); k(a)]} d~, 
"r a 0 

T 

A 2 = ~ {h [a, y (a) + 2 ]c (a)] - h [~, y (a)]} d a. 
T0 

We must  show tha t  A-+0 in the space Y as 4-+0. Now the norm of the integrand 

of the second integral is a continuous function of (a, 2) on I A, where A is an 

interval around zero. Hence the integrand of the second integral tends to zero 

uniformly with respect to a when 2 ~ 0 ,  and the second integral A~ tends to zero in 

the space Y, as 2 ~ 0 .  

Since the range of the function y((~) is a compact  subset of the open sphere 

S c B ,  the distance of the subset from the boundary of S is a positive number  & 

Choose w such tha t  0 < e o < S / I  I/elI where ]{kH is the norm in the space Y. Then 

y ( a ) + ~ k ( a )  ES for all a E I  and all complex numbers ~ with ] ~ ] < w .  

We may rewrite A x as 

v 1 1 

(2.6) Al=2 f daf  dv f ~,~x[a,y(a)+ ~tt~,k(a); k(a)]dl u. 
"% 0 0 

Now by the generalized Cauchy integral formula, if we select C as a circle with 

O) 
center at  the origin and radius 2 '  and take I2 l<~~  

2 ' 

(2.7) 52x[a,y+2#vk;k] = ~l _ f x[a,y+(a~,~+r162 ~ 
C 

The integrand is well defined, since ]~t/tv + ~{ _< la l  + Ir < 

y ( a ) + ( ) . # v + ~ ) k ( a ) E S .  I t  follows from (2.7) that  

I1 ~=* [~, u + ~f*,,k; k] I1_< s~-= l l~ l l .  

so tha t  

Hence, by (2.6), II AIlI~s~ 21~1 ~11.11, so that A I ~ 0  in the space Y as X-~0.  

Therefore G(x, y) is Gateaux differentiable and locally bounded, and hence analytic 

in K, with its differential given by  

(2.8) 
T 

dG(x,y; h,k)= f (~x[a,y(a); ~(a)]da+ f h[a,y(a)]da. 
TO ~0 
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Pu t t ing  F(x,  y)= G(x, y ) - y ,  Eq. (2.4) m a y  be wr i t ten  in the  form F(x,  y)=0.  The  

differential  d Fy (x, y; k) t akes  the  fo rm 

d F~ = d G~ (x, y ; k) - k 
T 

= f ~ x [a, y (a) ; k (a)] d a - k (3). 
~0 

is the solution of Eq.  (2.1) with the  initial  value of Y0, we 

We pu t  �9 = / ( 3 ,  y). 

Then since ?~(3) 

have  F (~, ?~) = 0. 

The differential  d F~(x ,y ;  k) is a 

integral  equa t ion  

solvable l inear funct ion of k if the l inear 

(2.9) k (3) - f ($x [a, ~ (a); k (a)] d a = z (3) 
T0 

has a cont inuous solution k(3) defined for 13-301  -< :r for every  cont inuous z(v) on 

I to B. I t  follows by  using the Cauchy integral  fo rmula  as before t h a t  there exists  

a cons tant  # > 0  such t h a t  

(2.10) II (o); II-< II k II 

for  all a EI  and all k E B. Hence  it  is easily shown t h a t  the  abs t rac t  Vol ter ra  

integral  equat ion (2.9) has a unique cont inuous solution. 

Thus  all the hypotheses  of the  implici t  funct ion Theorem 1 are satisfied, and we 

conclude t h a t  Eq.  (2.4) has  a solution y =  ~b(x) analy t ic  in x in the neighborhood of 

= / ( 3 ,  y). Thus  we have  proved  the  following resul t :  

Theorem 2. Under the restrictions and de/initions given above, the solution y (3) o/ 

the di//erential equation 
dy  
d--v = x (v, y) 

with y(vo)= Yo, considered as a /unction o/ the right hand side x(v,  z)E X with values 

in Y, is an analytic /unction o/ x in the neighborhood o/ ~ =/(3,  z). 

Corollary. I f  / (3,  y) is a po lynomia l  in y, and  cont inuous in v for I v - 3 o l ~ < a  

then  all the  hypotheses  on / (3, y) will be satisfied for an a rb i t r a ry  sphere II Y - Y0 II --< b, 

so Theorem 2 will hold. 

Proof.  Is  follows f rom a result  of Kerne r  1 t h a t  /(3,  y) is cont inuous in the pair  

(3, y) and  t h a t  if 3 var ies  in a sufficiently small  neighborhood,  II f(3,  y)II is bounded  

, See  [5] ,  p.  548 .  
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for II Y-Yo II < b where b is any positive number. B y  an application of the Heine 

Borel theorem to the interval I ~ -  % [ < a, there exists an M > 0 such that Ill (T, y II < M 

for all z in the interval I ~ - ~ 0 1 _ < a  and all y in the sphere IlY-Yo[l<b, Thus all 

the hypotheses are satisfied. 

Another important special ease of Theorem 2 is that of a system of n numerical 

differential equations. Since in this ease the space B is a finite dimensional space 

of n complex variables, the hypothesis  of the boundedness of the norm [I [ (z ,  Y)1[ is 

redundant providing the numbers a and b are finite. 

B y  taking B to be a function space, it is also possible to include certain types  

of partial differential equations under Theorem 2. 

California Institute o/ Technology and the 
University o/ Southern Cali/ornia 
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