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I n t r o d u c t i o n  

I .  T h e  m a i n  t h e o r e m .  A closed convex curve in the plane E2 is usua l ly  defined 

as the bounda ry  of a compact  convex set. 1 Al ternat ively ,  if the curve is given in 

parametr ic  form we could say tha t  the curve is convex provide(1 it  never  crosses a 

s t ra ight  line more t han  twice. The second defini t ion has the advan tage  of ex tending  

in a na tu ra l  way to closed curves in an even-dimensional  space Ezn as follows: 

Let 

( l)  C: x~=x t ( t ) ,  ( i = l  . . . . .  2 n ;  0 ~  t:5 2~) ,  

where xt(t)  are con t inuous  funct ions  of period 2 z ,  be a close(I curve in E 2 , .  We 

shall say tha t  C is convex in E.z~ provided tha t  it never crosses a hypcrplane more 

than  2 n  times. If C is convex in E,,~ and  spans  the space E.,~, i.e. is not  conta ined 

in a lower-dimensional  flat space, then we shall say tha t  ( '  is convex on E . , , .  I t  

A s  a l l  will be shown below (Article 5) tha t  curves convex in E.,n are rectifiable. 

example of a curve convex on E.,= we ment ion  the curve 

(2) Co: 

Indeed,  C o is 

subs t i tu t e  the x~ 

1 
x l = e o s t ,  x3= � 8 9  ~ =  c o s n t ,  

n 

1 . 
x 2 -- sin t, x 4 = �89 sin 2 t . . . . .  x., n = - sin n (, (0 ~ l ~< 2 ~) .  

n 'o 

convex in E2, ,  for if l ( x  z . . . . .  x.zn) is any  l inear funct ion  and if we 

as defined by (2), we find tha t  l = T n ( t )  is a real t r igonometr ic  

* This  work  was  pe r fo rmed  on a N a t i o n a l  B u r e a u  of S t a n d a r d s  c o n t r a c t  w i t h  the  U n i v e r s i t y  of 

Cal i fornia ,  Los Angeles,  and  was  sponsored  (in pa r t )  by  the  Office of Scient i f ic  Research ,  USAF.  

x See [1], page  3, in the  l is t  of references a t  the  end  of th i s  paper .  

l O -  533807. Acta mathematiea. 91. Imprimd le 27 octobre 1954. 
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po lynomia l  of order  n which is known  never  to change sign more t han  2 n  t imes  

wi th in  a period.  

The ma in  resu l t  is  the  following theorem 

I. Let C be a closed curve convex in E2 ~ and let L denote its length. Let K = K (C) 

be the convex hull o/ C and let V = V (K) denote the 2 n-dimensional volume o / K .  Then 

the /ollowiny inequality holds 

(3) L2n>_(2~n)n n! (2n) !  V ( K ) ,  

with the equality sign if and only i/ the curve C agrees up to a rigid motion and a 

similitude, [ollowed perhaps by a reflexion, with the curve C O 2 defined by (2). 

I f  n =  l ,  (3) reduces  to the  c lass ical  i soper imet r i c  i nequa l i t y  L 2 _  > 4 ~  V for curves  

convex in the  p lane ,  V now denot ing  the  area  enclosed b y  C, and  where e q u a l i t y  

holds  only if C is a circle. The i nequa l i t y  (3) shows t h a t  among  all  c losed curves  

convex in E2n a n d  of given length  L,  only  those  which are  s imi lar  to C 0 will  max i -  

mize the  vo lume V (K (C)) of the i r  convex hull.  

2. T w o  r e l a t e d  t h e o r e m s .  Theorem I will  follow from the  following theorem in 

which there  is  no reference to  convex curves :  

I I .  Let xt (t), (i = 1 . . . . .  2 n), be absolutely continuous functions of period 2 ~, not all 

being constant and such that x[ (t) E L~ (0, 2 z~). Then the following inequality hold~ 

2 n  2 n  2 ~  
I f '  / 2 n  \ ~ n i" [. 

/ I 

0 0 0 

the inteqrand o/ the right-hand side being a determinant o/ order 2 n whose ith row is 

written out. Moreover, we have the equality sign if  and only i/ the functions x~ (t) arise 

/rant the special set o/ /unctions (2) by a right-handed orttmyonal transformation followed 

by a similitude with positive ratio and a translation,. 

This  theorem will  be e s t ab l i shed  b y  means  of Four i e r  series,  a me thod  f i rs t  used  

b y  A. Hurwi t z  a for  the  special  case when n =  1. I n  t h i s  c lass ica l  case,  Four i e r  expan-  

sions reduce the  p rob lem to a quad ra t i c  i ne qua l i t y  eas i ly  e s t ab l i shed  b y  comple t ing  

squares .  I t  will be seen b y  means  of Four i e r  expans ions  t h a t  Theorem I I  is  equi-  

va len t  to  the  fol lowing theorem 

z The curve C O is a simple example of a closed screw-line in Esn (see [10]). A curve Ca, related 
to C o by similitudes, and the corresponding K(CI)  , play an important role in C~.~tA~ODORY's 
paper [2] .and also in the so-called trigonometric moment  problem. 

, See [8]. 
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I I I .  Let 

(5) M = l l a , l , b t ~ , a , 2 ,  b,2 . . . .  ,a~m,b, . . . . .  [[, ( i = 1  . . . . .  2n) ,  

be a real matrix o/ 2 n rows and in/initely many  columns, M ~: O, and such that the 

sum o/ the squares o/ the elements in every row converges. Let 

(6) n (fl, i2 . . . . .  in ) = det  [[aij,, b~,, a~,, b~j . . . . . .  a*~n, btJn [I, 

(1-<?',<?'2< "'" <}n) .  
Setting 

oO 2 n 

(7) S =  2 Z ( a ~ , + b ~ )  
vffil i - I  

and 
1 

(8) ~b = ~ - -  D (]1, S2, " ' ' ,  in), 
t . . . . . .  ,~ i ,  i2.--Jn 

then the last series converges absolutely and we have the inequality 

(9) S n_> (2n) n n! ~ ,  

with equality holding i/ and only i/ the matrix (5) has only zero elements, except in its 

/irst 2 n columns which ]orm a square matrix with elements positively proportional to a 

right-orthogonal matrix. 

The sect ion-headings describe the contents  of the paper.  The  discussion s ta r t s  

with an account  of indispensable  propert ies  of convex polygons  and  curves.  

w 1. On closed carves  c o n v e x  in E 2 ,  and the  v o l u m e s  o f  their convex  hul ls  

3. O n  c o n v e x  p o l y g o n s .  Let  

(1.1) II = P o P 1  . . .  P ~ ,  Pt = (x~l, xl2 . . . .  , x,m) 

be a polygon with ver t ices  in Era. We assume t h a t  l-I spans  Era, which is the case 

provided the ma t r ix  

(1.2) x = l l l , x . , x , 2  . . . . .  x,~ll ,  ( i = 0  . . . . .  k; k > m ) ,  

is of rank  m + 1. We int roduce the following 

Definition 1. We say that the polygon H is convex on Em provided it sparbs Era and 

crosses no hyperplane more than m times. I /  in this definition we do not require that 

I-I should span Era, then we say that II is convex in Em. 

The convexi ty  of H in (or on) Em evident ly  means  the following: I f  l ( P ) =  

= l ( x l  . . . . .  Xm) is an a rb i t r a ry  l inear funct ion of the coordinates,  then  in the sequence 
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of numbers  l(P0), l(P1) . . . . .  l(Pk),  we should have at  most  m changes of signs. Now 

the impor t an t  difference between "convex i ty  in E ~ "  and  "convex i ty  on Era" becomes 

apparent .  Indeed,  for "convex i ty  on Era" the following lemma is identical,  except in 

terminology,  to a theorem of F. Gan tmakhe r  and  M. Kre in4:  

Lemma 1. The polygon II is convex on Em i / a n d  only i / t he  matrix X ,  de/ined by 

(1.2) is el rank m + 1 and all its non-vanishing minors o/ order m + 1 are o/ the 

same sign. 

This lemma seems in tu i t ive ly  clear for the case of the plane Ez,  for it  says tha t  

the convexi ty  of II on E2 requires tha t  no two among the tr iangles P~ Pa P~ (a </~ < ~) 

should have opposite orientat ions.  

We are now confronted with a basic d is t inct ion depending  on the par i ty  of the 

dimension n u m b e r  m. If  m is even we readily see t ha t  if [I is convex on Ez ,  then  

also the closed polygon 

[I1 = P0 PI "'" Pa P0 

is convex on Era. Indeed,  if Jr ( l ( P ) = 0 )  is a hypcrplane  and  I I crosses Jr less t han  

m times, then also Il I will not  cross ~ more than  m times. However,  if H crosses 

:r exact ly m times, then P0 an(l Pk are never  on opposite sides of zr (m being even), 

so tha t  the last side l 'k  P0 does not  cross ~r. For  the closed polygon IIx it  does not  

ma t t e r  which vertex is taken to be the first, as long as the correct cyclic order of 

the vertices is preserved. The convexi ty  of IIl  may  also be described in a way which 

ignores ab init io which vertex might  be the first:  111 should never  cross 7r more 

than  m times, as we go once a round the polygon. Notice t ha t  the n u m b e r  of such 

crossings is always even.  The same indifference to cyclic pe rmuta t ions  is also shared 

by  the criterion of Lemma  1: Cyclic pe rmuta t ions  of the rows of the matr ix  X will 

not  change the common sign of its minors of the odd order m +  1. 

The s i tua t ion is qui te  different if m is odd. In  this case it  can be shown tha t  

the first and the last  vertex of a polygon, convex on E, , ,  can never  coincide. 

/*. O n  c o n v e x  c u r v e s .  The above def ini t ions and  results ex tend readily to con- 

t inuous  arcs and  closed curves. I n  view of our par t icular  a im we restrict  the discus- 

sion to even dimensions m = 2 n and closed curves. The basic def ini t ion is as follows: 

4 See their recent book [4], Theorem 3, page 297. Also proved in [14], Theorem 1. AN~. WHXT~EY 
and the author were unaware of the book by GANTMAKHER and KREIN when [14] was published. 
However, the priority clearly belongs to the Russian authors. See also footnote 5 for the connection 
with tha work of J. HJELMSLEV. 
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D e f i n i t i o n  2. The closed curve 

'(1.3) C: x~=x~(t) ( i = l  . . . . .  2 n ;  0 _ < t _ < 2 z ) ,  

where the continuous /unctions x~(t), de/ined /or all t, have the period 2~ ,  is said to be 

convex on E2n provided C spans E2n and all closed polygons inscribed in C are convex 

in E2n. I] in this de/inition we do not require that C should span E2n, then we say 

that C is convex in E2n. 5 

A c r i t e r i o n  is  g i v e n  b y  

L e m m a  2. The closed curve C, de/ined by {1.3), is convex on E.~n i/ and only i] 

the determinants 

(1.4) A = d e t  I] 1, x l  (t,), . . . ,  x.~ ~ (t~)][ (t o < t I < . . .  < t2 ~ < t o + 2 ~ )  

do not all vanish and the non-vanishing ones have the same sign. 

P r o o f .  L e t  u s  i n s c r i b e  in  C a c l o s e d  p o l y g o n  [I  - P 0  P I  . . -  P k  P0  c o r r e s p o n d i n g  t o  

t h e  p a r a m e t e r  v a l u e s  

(1.5) t0 < tl < . . .  < t k  < t 0 +  2 z .  

The conditions are necessary. A s s u m e  C c o n v e x  o n  E , ~ .  L e t  I f  s p a n  E2n .  B u t  

t h e n ,  b y  L e m m a  l ,  t h e  m a t r i x  

x = II 1,  x ,  (t ,)  . . . . .  x . .  (t ,)[I  ( i  = 0 ,  1 . . . .  , k)  

5 Professor  W. FENCHEL kindly called to my  a t t en t ion  the  fundamen ta l  paper  [7] of HJELMSLEV. 
]~JELMSLEV ([7], pp.  4, 6, 7, 23, 41) calls the  polygon IT, of ( l . l ) ,  nmnotone, prov ided  the  ma t r ix  
(1.2) satisfies the  condi t ions  of L e m m a  I. By  L e m m a  l we thus  see t h a t  II  is convex on Ern if and  
only if ] I  is mono tone  in the  sense of HJELMSLEV. Similarly, in view of our  Defini t ion 2 and  Lemma 2 
we see t h a t  the  curve (1.3) is convex on E2n if and  only if i t  is mono tone  in the  sense of HJELMSLEV 
([7], p. 60). We should also po in t  ou t  the  connect ion w i t h  tile concept  of an arc of order  m in Em 
due to C. JUEL; see MARCHAUD [9] and  SCHERK [13], also for references.  Arcs of order  m in Em are 
convex on Em bu t  no t  conversely.  A theorem of ]-IJELMSLEV ([7], p. 62) should be especially quoted ,  
being closely re la ted to our  L e m m a  2. I t s  s t a t e m e n t  for the  closed curve (1.3) in E2n is as follows: 
1] no subarc o/ C is in a E2n-1, then C is of order 2n if and only i/ all determinants (1.4) arepositive 
or all are negative. One m a y  even omi t  in the  s t a t e m e n t  the  a s sumpt ion  concerning tile subarcs  of C. 
In  [15] I have recent ly  said (p. 227) t h a t  by  th is  theorem HJ~-LMSLEV has  essent ial ly  an t ic ipa ted  the  
result  of GANTMAKHER--KREIN. Th is  view was pe rhaps  exaggera ted .  

I also owe to W. FENCHEL the  following reference:  E.  EOEI~VXRY, On the smallest convex cover of 
a simple arc o/ space-curve, Publ .  ma th .  Debreeen,  1 (1949), 65-70, in which i ts  au tho r  solves the  
p rob lem of the  p resen t  pape r  for open arcs  in E a . As ye t  unso lved  is the  p rob lem for the  par t icu-  
larly in te res t ing  case of closed curves  in E a (see [1], foo tnote  on p. 111). 
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has all non-vanishing minors of order 2 n +  1 of the same sign. Given two non- 

vanishing determinants  Ax, A2, of the form (1.4), we m a y  so choose the parameter  

values (1.5), tha t  A 1 and A 2 are among the minors of X.  But  then A1A2>0. 
The conditions are suf/icient. This follows directly by  Lemma 1 and Definitions 

1 and 2. 

Remarks.  1. Our old definition of a closed polygon convex on E2n agrees with 

the new definition if applied to the polygon considered as a closed curve. 

2. Lemma 2 m a y  be rephrased in geometric terms as follows: The continuous 

closed curve P = P ( t )  in E2n is convex on E2n if and only if it has the following 

properties:  If  P0, P a , . . . ,  P2n are 2 n +  1 points on C, in correct cyclic order corre- 

sponding to increasing values of t, then the 2n-dimensional  simplices [P0, P1 . . . . .  P2n] 

should not  be all degenerate and the non-degenerate ones should have the same 

orientation. 

3. I t  seems natural  and useful to classify the curves convex on E,,n into posi- 

tively convex and negatively convex curves, depending on the common sign of the de- 

terminants  A, or the common orientat ion of the simplices [P0, Px, .--, P2n]. 

4. An adapta t ion  of these definitions and results to open arcs in even or odd- 

dimensional spaces seems perfectly straight-forward.  As an example we ment ion  tha t  

one full turn (but no longer arc) of a r ight-handed circular helix in E a is positively 

convex on E 3 )  

5. Lemma 2 applies easily to show tha t  the curve Co, defined by  (2), is posi- 

t ively convex on E,,,.  Indeed,  in this case the de terminant  (1.4), familiar from the 

problem of tr igonometric interpolation, may  be evaluated explicitly and we find 

2 2 n' ~ , ,  
A = -n-i- H sin ! > 0. 

I~>Y 

5 .  C o n v e x  c u r v e s  a r e  r e c t i f i a b l e .  7 W e  n e e d  the following 

D e f i n i t i o n  3. The bounded real /unction / (t), a < t < b, is said to be non-oscillatory 

provided there is a fixed natural integer N such that for every real c the f u n c t i o n / ( t ) -  c 

changes sign at most N times in the range [a, b]. 

With  this definition we have 

* In  this  example  wh ich  can be wide ly  general ized we are especial ly  close to P6LYA'S paper [12]. 

7 The  contents  of Art ic le  5 where  deve loped  in the  course of a conversa t ion  w i t h  TH. S. MOTZKIN. 

Here  we are close to MARCHAUD's w o r k  [9], Chapitre  I. 
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L e m m a  3. I /  /(t) is non-oscillatory in the range [a, b], then [(t) is o[ bounded 

variation, in /act 

(1.6) To ta l  va r i a t ion  of [(t) < N (sup [ -  in f / ) .  

ProoL Let  a 0 = t o < t t < ..- < tk = b and  let  P~ = (t~, / (6)) be the  corresponding po in t s  

on the  graph  x =  [(t).  Consider  the  po lygon  PoP1 . . .  P~ a n d  i ts  o r thogona l  p ro jec t ion  

Po P~ P '  �9 .. k into the  segment  I =  [ i n f / _ < x < s u p / ]  of the  x-axis .  Since PoP1  .. Pk 

m a y  cross a hor izonta l  line x = c  a t  most  N t imes  we conclude t h a t  the  k open (or 

void) segments  PoP~ P I P '  ' P' , ' 2, . . . , P k - 1  k m a y  cover  a po in t  of I a t  most  N t imes .  

k 1 

P:P:+I <-N 'm( I )  
~ffiO 

o r  
k - 1  

I / ( tv+l) - / ( t~) l<N ( s u p / - i n f  1), 
~ 0  

whence (1.6) follows on t ak ing  the  sup remum of the  left  side. 

This  resul t  c lear ly  implies  

L e m m a  4. A closed curve C convex in E2n is necessarily recti[iable. 

Indeed,  let  C be def ined b y  the  equa t ions  (1.3), say.  Now / ( t )=x,( t )  being con- 

t inuous  is also bounded  in t he  range  [0, 2 ~r]. However ,  th is  funct ion  is also non- 

osci l la tory,  with N = 2 n in Def in i t ion  3, because  C m a y  cross the  hype rp lane  xt = c 

a t  most  2 n  t imes.  By  L e m m a  3 all xl(t)  are of bounded  var ia t ion ,  which proves  

L e m m a  4. 

6. O n  the  v o l u m e  of p o l y h e d r a  s p a n n e d  b y  c o n v e x  p o l y g o n s .  Let  II be 

a closed po lygon  convex on E2n. We wish to express  the  vo lume of the  convex 

po lyhedron  K ( H )  in te rms of volumes of simplices.  We  res t r ic t  our  discussion to  

the  first  s ignif icant  case when n = 2. The s impl i f ica t ion  in no ta t ions  thus  af forded is 

considerable,  i t  being obvious  a t  all  t imes  how the  general  case is to be t rea ted .  

L e m m a  5. Let II = Po P t . . .  Pm Po be a closed polygon in E 4 which is convex on E 4. 

Let K = K ( H )  denote its convex hull, V (K) the volume o/ K. Let 0 be a point in the 

interior o/ K. The volume o/ K is given by the [ormula 

1 
V [0, P~, P ,+I ,  P j ,  Pj+,] ,  (Pro+,=  Po), (1.7) V ( K ) =  ~ , . j-o 

where the summand is the volume o/ the simplex of vertices O, P,, Pt+l, PJ, Pj+I, it 

being zero i/ the simplex is degenerate. 

But  then  
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Proof.  (i) By  L e m m a  1 we know t h a t  the  m a t r i x  

(1.s) x = II 1, x~,, x,~, x,~, x . l l ,  ( i =  o, 1 . . . .  , m),  

is of rank  5 and  t h a t  all  non-van ish ing  minors  of order  5 are  of the  same sign. 

There  is no res t r ic t ion  in assuming  these minors  to  be posi t ive ,  i.e. the  po lygon  M 

to be pos i t ive ly  convex on E 4. However ,  we shall  assume for the  m o m e n t  t h a t  

(1.9) All  5th order  minors  of X are posi t ive,  

showing la te r  how th i s  res t r ic t ion  can be  removed .  

To abb rev i a t e  our  no ta t ion  le t  

D (x, x~, xi, xk, x~) = 

1 x~ x2 x3 z4 

1 Xil  Xt2 Xi 3 Xi 4 

1 xjl xj.~ xj3 xj4 

1 Z k l  Xk2 Xk  3 Xk  4 

1 xt~ x~2 xt3 x~4 

The a s sumpt ion  (1.9) impl ies  t h a t  every  four  poin ts  Pt,  Pj ,  Pk ,  Pz (0_< i < j < k < l < m) 

de te rmine  un ique ly  a 3-f lat  ,~ (i, j, k, l), of equa t ion  D (x, xi, xj, x~, x l ) =  0, conta in ing  

no o ther  po in t  t'v since D ( x , . , x , ,  xj, x ~ , x l ) * O  if v~ : i ,  j, k , l .  We  now asser t  the  

following: All  3-dimensional /aces o/ K ( [ [ )  are precisely in the 3-/lats 

( l .10) 
zc ( i ,  i i 1, j, j +  1), 

~ ( 0 ,  i, i +  l ,  m), 

(0< i<  i+  1 < j < j +  l_<m),  

( 0 <  i <  i-t l < m ) .  

Indee(l,  t h a t  these 3-flats  conta in  3-faces of K (H) is seen as follows: The  assump-  

t ion (1.9) implies  the  inequal i t ies  

(1.11) 

which show 

D ( x , ,  xt, xt+l, xj, xj+~)>O if ) , ~ = i , i + l , j , j + l ,  

D ( x , , x o ,  Xt, X~+l,xm)<O if v ~ : O , i , i + l , m ,  

t h a t  each of the  p lanes  (1.10) leave all  the  o the r  ver t ices  s t r i c t ly  on 

one side. The 3-flats (1.10) are  therefore  p lanes  of suppor t  of  K ( H ) .  On the  o ther  

hand  none of the  3-flats  th rough  four  of the  points ,  o ther  t h a n  the  3-f lats  (1.10), 

can poss ib ly  be a p lane  of suppor t  of K ( 1 ] ) ,  for such a 3-f lat  is seen to  have  some 

of the  vert ices oll one of i ts  sides and  o thers  on the  o ther  side. We conclude s t h a t  

s From this result and its extension to E2n it  is easy to derive the following: The curve C convex 
on Ez n is on the boundary o/ its convex hull K (C). This is closely related to a result of W. GUSTI~ [5]. 
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the 3-dimensional faces of K (II) are the simplices [Pc, P~+I, Pj,  Pj+I], where the pair 

(i, j) runs over the set S of pairs (i, j) defined by  the conditions 

O < _ i < i + l < j < j + l < _ m  or O < i < i + l < j = m .  

We may summarize the situation by the relation 

Boundary of K ( I I ) =  ~. [P~, P ~ I ,  Pj,  Pj+~], (Pm+l =P0)- 
s 

I f  0 is a point interior to K = K ( I I )  we obtain, by central projection from O, 

the relation 

(1.12) K =  Z [0, Pc, P,+,,  Pj,  Pi+l] 
s 

which describes a dissection of K into 4-dimensional simplices. On passing to volumes 

we obtain 
V ( K ) =  ~ V [0 ,  Pc ,  P , + I ,  Pj, Pj+l]. 

s 

Let us observe now that  all simplices on the right-hand side of (1.12) are positiveJy 

oriented. Indeed, by ( l . l l )  we see tha t  if (i, j )E S then all determinants D(x~,  x~, 

x ,~ ,  xj, xj+l) i f * i ,  i +  l, ], j +  l) are positive. But  then also D ( x ,  xi, xi~j,  xi, xi+ l )>0  

if the point (x) is in the interior of K, this determinant  being a linear combination 

with positive coefficients of non-negative determinants  some of which must be positive. 

On choosing the point 0 as the origin of the coordinate system we have 

1 
V ( K ) =  ~ V [O, Pc, P, , , , I s ,  PJ+,] = 4i ~s D (O' x ' '  x , . , ,  z j ,  xj, ,). 

Finally, the last expression may be written as 

1 m 
(1.13) V ( K ) =  2TT.v ~ (let I1 ., 

�9 �9 t , / - O  

since all new terms entering into the double summation will vanish if they have 

coincident rows while the duplication of old terms is offset by the new factor 2! in 

the denominator. Now (1.13) is precisely the relation (1.7) we wished to establish. 

(ii) We now wish to remove the assumption (1.9) on which we relied heavily in 

our previous discussion. We do this by the following simple device. We need the 

matrix 
]]q('-"l],.Jo0 . . . . . . .  ( 0 < q <  1). 

I t  follows from a theorem of P61ya 9 tha t  all minors of this matrix, of all orders, 

are positive. Moreover, this matrix clearly converges to the unit matrix as q-~0. 

9 See [11], Problem 76, page 49. 
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Dividing the elements of each row by  the sum of all elements in t h a t  row we obtain 

a new matr ix which we denote by Hq. Returning to the matr ix  (1.8) we form the 

product  

X * = H q X = l l l ,  x*l, * x~:~, m x,,,, x .  ll,-0 . . . . .  

and easily infer the following: The new matr ix  X*, whose elements depend on q, 

enjoys the proper ty  (1.9) and defines a closed polygon 

II* = P ~  P~' . . .  P *  P~) in Ed, 

whose vertices are as close to those of H as we wish, provided q is sufficiently small. 

Let  K * = K ( l l * ) .  By  our previous discussion we know tha t  V ( K * ) m a y  be expressed 

by the analogue of (1.13), Also V ( K * ) - + V ( K ) ,  as q->0. By  cont inui ty  we see tha t  

(1.13) again holds even if the condit ion (1.9) is disregarded. 

7. T h e  v o l u r a e  V ( K ( C ) )  e x p r e s s e d  a s  a n  i n t e g r a l .  We are now turning to 

the main  result of this section: 

Theorem 1. Let C be a closed curve convex on E2n de/ined by 

(1.14) C: x ,=x , ( t ) ,  ( i = 1  . . . . .  2 n ;  0_< t_< 2z ) .  

We assume the x~ (t) to be absolutely continuous in [0, 2 z~], a condition which is auto. 

matically /ul/illed i/ the parameter t is proportional to the arc-length along C. Then the 

volume o/ the convex hull K (C) may be expressed by the /ollowing Lebesgue integral 

2 ~  2 ~  

(1.15) V ( K ( C > )  n! (2n)!~ f fdetllx'(t')'x;(t') . . . .  , x , ( t n ) , x : ( t n ) l l d t ,  d t n ,  
0 0 

where e = + 1 or - 1 depending on whether C is positively or negatively convex on E2, .  1~ 

Proo| .  Again, to simplify our nota t ion we assume tha t  n = 2 .  Let  us assume 

tha t  C is positively convex on E 4. Divide the range [0, 2z~] in 2 k equal parts  by  

the pohlts 
t ~ = 2 ~ t v / 2  k, ( v = 0 ,  1 . . . . .  m = 2  ~ -  1), 

and let P ,  be the corresponding point  on C. The inscribed polygon I I  = P0 PI  . "  P~  P0 

being positively convex on E , ,  provided k is sufficiently large, by  (1 .13 )we  have 

1 
V ( K ( H ) ) =  2.T~. ,.~.o det [[z:(t,), x:(t,+,), x,(tj), 

a0 We lose no generality by restricting our discussion to curves convex on E2n, for if C is con- 
tained in a lower-dimensional flat space, then both sides of (1.15) evidently vanish. 
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Subtracting the first and third column of the determinant from those just ahead 

we obtain 
t t+ l  t]+l 

1 ~ det I[ xr (tt), f x: (T1)dr,, xv (tt), f x: (32)d~'211 V ( K ( I I ) ) =  ~ ~.j-0 
tt t i 

and finally 

(1.16) 

t I+ l  t j+l  

, ff , , 
V(K(I I ) )  = 2t 4! det IIx,(t,), x,(vx), x,(tj), x,(~,)]l dv~ d ,  2. 

t , j~O 
tt t I 

A passage to the limit in this relation, as k-->c~, presents no difficulties. On 

the left side V ( K ( H ) ) ~  V (K(C)). Indeed, the inclusion K ( H ) c  K(C) implies tha t  

(1.17) V (K (H)) _< V (K (C)). 

On the other hand the increasing sequence of sets K ( I I )  converges to a limit which 

includes the set Ko(C ) of interior points of K(C). This remark and (1.17) imply 

measure of Ko(C ) <_ lim V(K(II))__< V (K (C)) 
k--~ oo 

and the equality of the extreme terms implies the desired conclusion. 

There remains to show that  the sum S oll the right-hand side of (1.16) con- 

verges to a double integral which we may write as 

j =  
ti-el tJ+l 

f ,J-O 
ti tj 

In  order to show tha t  S ~ J ,  we expand each of the two determinants  into 4! terms 

and find for their difference the expression 

:~ + x:, (~1) x', (T~) Ix,. (t,) x,. (tj) - x,. (~1) x,, (~)]. 

Given e > 0 ,  the equi-uniform continuity of all products x,(vl)x,(v2) shows that  all 

square brackets will be in absolute value less than e, each within its respective cell 

t,<-vl <-tt+l, tj<-v2<-tj+l, 

provided tha t  k is sufficiently large. But  then 

2~ 2~ 

I S - J l - < 2 e  ~, f .f i x',(v')l'ix:,(v2)ldv'dv2=A'e" 
0 0 
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This concludes a proof of Theorem 1 for n = 2 .  The alterations necessary to deal 

with the general case of E,2~ are deemed to be obvious in every respect. 

8. A p r o o f  t h a t  T h e o r e m  I I  i m p l i e s  the  i s o p e r i m e t r i c  i n e q u a l i t y  of T h e o -  

r e m  I. Let  the curve C, defined by  (1), be positively convex on E2n. Let  us assume, 

moreover,  t ha t  the parameter  t = 2 ~ t  s /L ,  where s is the arc length along C. For  

these functions x~ (t) we have the inequali ty (4) of Theorem I I  which we take  for 

granted for the moment .  Bo th  sides of (4) have a geometric meaning which we wish 

to derive. By  (1.15), the r ight -hand side of (4) is equal to 

nn n! (2n)!  V (K (C)). 
Since 

2n  

7 \d t/ 4 n ~ 

holds almost  everywhere, the left-hand side of (4) equals 

2 ~  (f-)" 4--xzdt =(2~) ~L ~.  
0 

Thus (4) reduces to the isoperimetrie inequali ty (3) with equal i ty  only if C is 

similar to C o. 

w 2. Further  properties  o f  F(K(C)) and re formula t ion  of  T h e o r e m  II  in t e r m s  
o f  Fourier  series  

9.  A n  e x p r e s s i o n  for  V(K(C)) in  t e r m s  of a r e a s  of 2 - d i _ ~ e n s i o n a l  p r o j e c -  

t i o n s  of C. Assuming the curve C to be positively convex on Ezn, we have found 

the expression 
2~t 2 ~  

1 (2.1) . . . .  | - . . |  det  llxt(tl), x~ (tl), xt (tn), x~ (tn)ll dt l  ... dtn. 
n! (2n)!  ~ , .... 

0 0 

We now expand the determinant ,  by  a repeated application of Laplace 's  rule, by  

second-order minors formed from the pairs of columns (1, 2), (3, 4), ..., ( 2 n - l ,  2n) ,  

obtaining a sum 

x,,,(q) x. , (2)  x,,,~(t.) ' 
t t t x~, (q) x~, (2) x~. (t.) xv,, (t.) [ 

:~ + lx",(t') x"(tO 

xv, (tO x;, (tl) 

which after integration becomes 

(2.2) 2 n ~ •  (/uj, u~) A (ft2, v2) ... A (~tn, u,), 
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where A (i, j) represents the area of the projection of C on the plane x~0xj, while 

(2.3) /~1, vl,/~2, ~2 . . . . .  /~n, vn 

is an arrangement of the set of numbers 1, 2, ..., 2 n  into pairs such t h a t / ~ < u s .  I t  

is clear that  those arrangements (2.3) which differ only in the order of their pairs 

will contribute identical terms to the sum (2.2), there being n! such. Thus (2.2) re- 

duces to 

(2.4) 2 n n !  ~ -~ A (/t~l, v1) . . .  A (/~,  u~) 

where we sum only over such arrangements (2.3) in which the n pairs are arranged 

lexicographically: / ~ l < / ~ <  ... <ju~. The sign of each term of (2.4) is ( .1) I, where I 

is the number of inversions in the permutation 

... 2n  

The number of terms in (2.4) is obtained by first counting pairs indiscriminately and 

then dividing by n! ,  to throw out their order. We thus find in (2.4) 

( ? )  (2 2 - 2 ) . . .  ( ; ) ( ; ) / n !  2n(2nZ-1.3.5n! .... ( 2 n - 1 )  

terms. On replacing the integral in (2.1) by its equivalent expression (2.4)we obtain 

the following 

Theorem 2. I[  the closed curve C is positively convex on E.~, then 

2" 
(2.5) V (K (C)) = (2 n)~ Z ( - 1)' A (/ta, v~) A (/~2, ~2) ..- A (/~,, v,), 

where A (i, j) denotes the area o/ the projection o/ C on the plane x tOx j ,  while the 

summation runs over all 1 �9 3 . 5  ... (2 n -  1) permutations /~x, vx,/~2, v2 . . . . .  /un, vn, o/ 

the numbers 1, 2 . . . . .  2 n, such that /~ < v~ and /~1</~2< ... </~,. Final ly  the exponent I 

is the number o/ inversions in the corresponding permutation. 

Examples. 1. For n = 2 ,  (2.5) becomes 

V (K (C)) = ~ {A (1, 2) A (3, 4) - A (1, 3) A (2, 4) + A (1, 4) A (2, 3)}. 

2. Let us evaluate V(K(Co)  ) for the curve C o defined by the equations (2) of 

our Introduction. For this case we find on inspection that  

2n 

A(/~,v)= fx,(t) x:(t)dt=O, (/~<~), 
0 
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unless /t is odd and  ~ = # +  l,  when 

7~ 7~ 
A ( 1 , 2 ) = z e ,  A ( 3 , 4 ) =  ~ . . . . .  A ( 2 n - l , 2 n ) =  -'n 

The sum (2.5) reduces now to one t e rm only 

2 n 2 n ~n 
V (K (Co)) = {-2 n)! A (1, 2) A (3, 4) ... A (2 n - 1, 2 n) ~- 

n !  (2 

Also the  length of C o is easily found f rom (2): 

2~ 

0 

These values are seen to ver ify the isoperimetr ic  relat ion (3) wi th  the  equal i ty  sign 

holding. 

10 .  R e f o r m u l a t i o n  o f  T h e o r e m  I I  in  t e r m s  o f  F o u r i e r  s e r i e s .  W e  re turn  

to Theorem I I  of the  In t roduc t ion  and  expand  xt (t) in its Fourier  series 

(2.6) x, (t),,, ~ [ cos vt  sin ~t~ 
~.,~a,~- ;- §  ) ,  

where we assume the cons tant  t e rm to vanish wi thou t  loss of general i ty.  

(2.7) x~ (t) ~ ~_ ( - air sin vt  + b,v cos vt), 
y - [  

and Parseval ' s  re lat ion gives 

whence 

But  then  

x, dt = ~ Ca~, + b~,), 
0 

(2.8) x~ ~ d t = ~  ~ ~ (a~2,+b~,). 
| - I  i , - I  

O 

We also wi~h to express the  r igh t -hand  side of (4) in t e rms  of the  Four ier  

coefficients air ,  bi,. This can be done in two ways  leading to formal ly  different  b u t  

necessarily equiva len t  expressions. 

A. We wish to  show t h a t  the integral  

2n 2~ 

(2.91 J= aet 

0 9 
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where 

(2.11) 
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may be expressed as 

1 
J = (2 ze) n n!j,< "~<Jn'" Jl J2"'" in n (Jl, J2 . . . . .  in), 

D( j l ,  j., . . . . .  in) : det [[a.,, b, . ,  a,h, b,h, ..., a,,n, b.nl [ 

157 

Introducing now the new expressions 

Formally, there is no difficulty whatsoever. Indeed, if we introduce the expansions 

(2.6) and (2.7) into (2.9), writing the determinant  as a sum of determinants  obtained 

from the individual terms of the Fourier series, on using the orthogonality properties 

of the trigonometric system we find the expansion (2.10). A proof of the validity 

of (2.10), which includes a proof of the absolute convergence of the n-fold series 

(2.10), follows from the following remark:  The integral J is essentially the constant 

term of the n-fold Fourier expansion of the determinant under the integral sign. 

As we operate throughout within the class L2, we will actually obtain tha t  constant 

term by introducing formally the Fourier expansion of each element and gathering 

all terms which contribute to it. This, however, is precisely what  was done above. 

In  terms of the quantities S and ~ ,  defined by (7) and (8), aml using (2.8) 

and (2.10), the inequality (4) becomes 

~n Sn_> (2~n)  ~ n! ~ ,  

which is equivalent to (9). The equivalence of the Theorems I I  and I I I  is now 

apparent  if we refer to the Riesz-Fischer theorem. 

B. An alternative expression for J ,  or equivalently for 

1 
q) . . . .  J ,  

(2 :~)~ n ! 

may now be derived by observing the following: In Theorem 2 we have expressed 

V(K(C)) in terms of the A(i,  j) by  the formula (2.5). I t  is clear that  this result 

amounts to a similar expression for the integral J without any reference to curves 

convex on E~n. In  fact, by (2.1) and (2.5) we find 

J = 2 n n! ~ ( - 1) n A (/L I , vl) ... A (~n, vn), 

while Parseval 's relation gives 

2~ 

A (i, j) = x~ xj dr = ze ~ (aik btk - a t k  btk). 
k - 1  

0 
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1 
(2.12) (i, ] ) :  ~ ]c (a~b j~-%~b~) ,  

k ~ l  

we find, on combining the last four relations, the desired expression 

(2.13) q~ = ~ ( - -  l )  I (/~/1, Yl) (/t/2, ~2) "'* (/t/n, Yn), 

which will be found useful in the next section. 

w 3. A proof of Theorem III 

11. A f i r s t  spec ia l  case  of T h e o r e m  I I I .  Let us first establish tlle following 

Lemma 6. Let 

(3.1) D =  det I[c.II 
be a real determinant o/ order m. Then 

(3 .2 )  ~ C~ ~ 7n m D 2, 
\d, j= t  / 

with the equality sign i/ and only i[ the elements o[ D are proportional to the elements 

o[ an orthogonal matrix. 

Proof. By Hadamard ' s  inequality 11 we have 

By the inequality between the arithmetic and geometric mean we have 

Notice that  (3.3) and (3.4) imply (3.2). Moreover, equality in (3.2) implies the equality 

signs in both (3.3) and (3.4). Equali ty ill (3.3) shows that  the rows of D are ortho- 

gonal to each other and the equality in (3.4) requires tha t  

t ) 1 

which concludes a proof of Lemma 6. 

The special case of Theorem ] I I  which we have in mind is the case when all 

columns of the matrix M vanish except the first 2 n  columns. The inequality (9) 

reduces then to 

11 See [6]. 
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/ (3.5) E (a~, + bPv) -> (2 n)" D 0 ,  ~ . . . . .  n). 
U ~ I  v-1  

However, this inequality is implied by (3.2) for m =  2 n  and IIc~,ll = M. Moreover, the 

equality sign in (3.5) does not only imply, by Lemma 6, that  the elements of M are 

proportional to those of an orthogonal matrix,  but even that  they are positively pro- 

portionM to a right-orthogonal matrix. This establishes Theorem I I I  in this special ease. 

12. An algebraic l e r n m a .  Let  

(3.6) :~ = I1o.11,.~-, ..... 3 .  

be a real skew-symmetric matrix,  which means that  ~ ' = -  ~. We first establish the 

following identi ty in x: 

- x I  E I (3.7) = (P~ (x")) ~', 
E' - x l  

where Pn (z) is a real polynomial of degree n. 

Proof. By matrix multiplication we find 

i/Ollx,  = [ Y.' x l  E' - x l  0 E 'E -xZ l  

and passing to determinants we have 

I - x I  E ] 
�9 ~ "  = ( - x )  ~" 1,2.' ,= - x 2 I I ,  

E' - x l  

whence the identity in x 

(3.8) Z '  = [E'E-x~'I[" 

The right-hand side of this identi ty may  now be factored. Indeed, by tile skew- 

symmet ry  of E we have 

( E ' -  x I )  ( E - x I ) = E ' Z - x ( E + E ' ) + x 2 I = Z E ' + x 2 I ,  
whence 

(3.9) 

On the other hand 

4(x)  = I ~ - x l I  
11 -- 533807. Acta mathe~t iea .  91. I m p r i m 6  lo 27 oe tobre  1954. 
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is an even polynomial in x, because 

~ ( - x )  = ly~ + x i t  = I - x - x ~ [  = I ~ ' - x ~ [  = I y ~ - x I I  = + (~). 
Thus 

] E - x l l = P , ( - x 2 ) ,  

and by (3.9) we have 
IE 'E  + x 2 I I = ( P ,  (-x~))2. 

Replacing x 2 by - x  2 we now obtain, via (3.8), the identi ty (3.7) which we wished 

to establish. 

We may now state our 

Lemma 7. I f  E is a real skew.symmetric matrix o/ order 2 n, then the symmetric 

matrix 

(3.10) .Q= '~v, E , 
Z 0 

o/ order 4n, has at most n distinct and positive characteristic values. 

Indeed, the identity (3.7) gives precise information on the characteristic values 

of tile matrix {3.10). I t  shows tha t  they are all of multiplicity 2 and in pairs sym- 

metric with respect to the origin, from which the conclusion of Lemma 7 follows. 

13. A s e c o n d  s p e c i a l  c a s e  of T h e o r e m  II I :  T h e  m a t r i x  M h a s  o n l y  a 

f i n i t e  n u m b e r  of  n o n - z e r o  c o l u m n s .  We assume throughout  this  Article 13 that  

a i j = b t j = 0 ,  ( i=1 ,  . . . , 2 n ;  j = m + l ,  m + 2 ,  ...), 

where m is a fixed number > n. Let  us normalize the problem by requiring tha t  

(3.11) 

We are to show, then, tha t  

2 n  

S -~ ~_ (a~, + b~)= 2n. 
v - I  t - 1  

1 
(3.12) ~5 < n! 

with equality only under conditions as stated in Theorem I I I .  This will be shown 

by maximizing the function ~b= qb(atv, bt,) subject to the relation (3.11), a procedure 

which requires the first partial derivatives of the function ~b. These derivatives are 

obtained as follows: 

Let us denote by a~ j ( i< j )  the sum of those terms of the expression (2.13)which 

contain (i, j) as one of their n factors, with that factor (tx~, vs)= (i, ~) removed. Let  i 

be fixed ( =  1, .. . ,  2n). On replacing the removed factors, (2.13) may  now be writ ten as 
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i 1 2n 

(3.13) ~ = ~ (j, i) 0.~, + ~ (4 j) 0 . , .  
J= l  j = i + l  

Indeed,  this way of writing ~b represents a classification of the original terms of the 

sum (2.13) where all terms having (j,i) as a factor  ( j < i )  form the class (j,i) aj~, 

and all terms having (i, j) as a factor  ( i<  j) form the class (i, j)(~j.  Thus in the 

case when n = 2  
~ =  (1, 2) ( 3 , 4 ) - ( 1 , 3 ) ( 2 , 4 ) + ( 1 ,  4) (2,3);  

if i = 3 ,  the classification (3.13) amounts  to writing 

r = (1, 3) a13 + (2, 3) a~3 + (3, 4) %4 
where 

o'13 = - (2, 4), 0"23 = (1, 4), aa4 = (1, 2). 

We m a y  also write (3.13) as 

t - 1  2 n  

= Z (4 j) ( - ~J,) + ~ (i, j) ~,j .  
J - I  J = i + l  

If  we extend the meaning of the symbol  au by  agreeing tha t  it be skew-symmetr ic  

in its subscripts, we m a y  write the last relation as 

2 n  

(3.14) (/) = ~ (i, j) a,j ,  (i = 1, ..., 2 n). 
j - I  

However,  
1 

(3.15) (i, j) = ~ ~ (a,k bjk -- aj~ b,k), 
k - I  

and atj is independent  (for all j) of the variables a,k, b,k ( k=  1, ..., m), by  its con- 

struction. F rom the last two relations we obtain the part ial  derivatives 

D~5 ,~n 1 ~ '~n 1 
- -  = ~ o , ,  k a,~.  8a~k j_~ Gu k bjk, ~b~ j . ,  

Let  us now assume t h a t  the elements of the matr ix M are such as to make ~b 

assume its absolutely maximal  value subject to the condition (3.11), or Sn=(2n)  n. 

The Lagrange multiplier rule assures us of the existence of two constants  # and ~, 

not  both vanishing, such tha t  all first partial  derivatives of the funct ion 

vanish. 12 We therefore have the 4 n m  equat ions 

12 See CARATH~ODORY'S book [3] for the formulation of the multiplier rule in the form 
needed here. 
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k ~G - -  _~ u ~ a~ j btk - 2 n ,~ k Sn -  l at~ = O, 

(3.16) 
~ G  

kob~k -: / ~ ( ~ u a s k - 2 n ~ l c S ~ - l b ~ k = O ,  

( i = 1  . . . . .  2 n ; k = l  . . . . .  m). 

I f  we mu l t i p ly  these equa t ions  b y  a~k/]c and  b~k/k, respect ive ly ,  and  add  them all  

together ,  we obta in ,  in view of (3.15) and (3.14): 

O=,u ~ a~j (i,  j) - 2n,~ S ~ = 2 n  /t q ~ -  2n ,~  S n 
t ,]  

o r  

(3.17) /~ (/) = 2 S ~ . 

However ,  the  m a x i m a l  value  ~5 is c lear ly  posi t ive  (because r e > n )  a n d  so is S = 2  n. 

We conclude t h a t  bo th  cons tan t s  /~, 2 are non-vanish ing  and  we m a y  therefore  assume 

t h a t  /~ = 1 and hence t h a t  2 is  positive. 

The equat ions  (3.16), wi th  /t = 1, m a y  be in t e rp re t ed  as follows: In  te rms of the  

mat r ices  

II 0:11 Z '  

a n d  the  column vectors  

(3.19) V k = ( a l k  . . . . .  a,~n,k, b lk  . . . . .  b.,.n.k), ( k - - 1  . . . . .  m), 

the  4 n m  equat ions  (3.16) m a y  be wr i t ten  as m m a t r i x  re la t ions  

(3.20) ~ vk = (2 n) ~ k 2 vk, (k = 1, . . . ,  m). 

W e  have therefore  reached  the  following conclus ion:  I [  the elements o/ M maxi -  

mize  q5 subject to the condit ion (3.11), then there exists  a posi t ive constant ,~ sat is /y inf f  

the relations (3.20). 

These re la t ions  show t h a t  if v k *  0, then  (2n) ~ k 2 is a charac te r i s t i c  value  of the  

m a t r i x  .Q. By  L e m m a  7 we know t h a t  ~2 can have  a t  mos t  n d i s t i nc t  posi t ive  

charac te r i s t i c  values.  We  conclude t h a t  a t  most  n among  the  vec tors  (3 .19)a re  non- 

vanishing.  Le t  these  be among  the  n vectors  vj . . . . . .  vjn ( l_< j l  < "'" < j n < - m ) .  But  

then ,  the  expans ion  (8) reduces  to a single t e r m :  

1 
= D ( J l ,  - - - ,  i n ) .  

h .-- h 

Since ~ > 0 ,  we conclude t h a t  none of the  vec tors  vj . . . . . .  vj ,  vanishes.  
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Now the  solut ion of our p rob lem is clear:  1. I f  71 = 1 . . . .  , ~ = n, t hen  our  pro-  

b lem has a l r eady  been solved {Article l l ) .  2. I f  i n>n ,  t hen  b y  the  inequa l i t y  (3.5) 

app l ied  to D {]1, "-', ]-)  we f ind 

n!  S n 
n! ~b = )'t "~-- )~ D (]1, . . . ,  ] , )  < D (?'1, . . . ,  ?',) ~ (2 n) ~ = 1 

whence ~b< 1In! ,  in con t rad ic t ion  to the  fact  t h a t  the  m a x i m a l  va lue  of ~b should 

be a t  least  l / n ! ,  b y  the  resul t  in the  special  case discussed in Art ic le  l l .  This  

completes  a proof of Theorem I I I  for a " f in i t e"  m a t r i x  M,  or if we wish, a proof  

of Theorem I I  for the  ease when the  x~(t) are  t r igonomet r i c  polynomials .  

14. C o m p l e t i n g  a p r o o f  of T h e o r e m  I I I .  Le t  us now drop  the  a s sumpt ion  

of a f ini te  m a t r i x  M.  Le t  aga in  

{3.21) S = 2 n 

hold and  le t  us show t h a t  

(3.22) Sn ~ (2 n)n n ! q5 

a lways  holds,  wi th  the  e q u a l i t y  sign only as s t a t ed  in Theorem I I I .  

1. We can never have the reverse inequality 

S" < (2 n) ~ n ! r  

Iudecd,  if this  inequa l i ty  were correct,  let  us t r unca t e  the  m a t r i x  M by  replac ing 

all  columns beyond  the  2 ru th  one by  zero columns.  F o r  m suff ic ient ly  large, the  

reverse inequa l i ty  would st i l l  hold,  in con t rad ic t ion  wi th  the  f ini te  case a l r eady  set t led.  

2. We can have the equality sign in {3.22) only in the case described by Theorem I I I .  

Imleed ,  let  us assume t h a t  
S ~ = (2 n) ~ n ! qS. 

~Te m a y  clearly assume M to have  inf in i te ly  m a n y  non-zero columns.  We now pro-  

ceed as follows: Le t  m be a f ixed number  > 2 n  and  let  us "unf reeze"  the  first  2 m  

columns of the  m a t r i x  M in such a way  t h a t  (3.21) is preserved.  To these 4 r a n  

var iables  we a p p l y  the  mul t ip l i e r  rule as above,  there  being no difference from the  

previous  case except  t h a t  the  f in i te  sums (3.15) now become inf in i te  series. E v e r y t h i n g  

is the  same as in Art ic le  13, wi th  the  excep t ion  of the  re la t ion  (3.17) which now 

becomes 
# r  ~ -1S~ ,  

where 
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2n ~ 1  
r = y~ a .  ~ (a~  bjk - aj~ b~),  

i , j ~ l  k = l  

2n  

b ~ 
k=l i=l 

However,  since r  and  Sm-+S, as m - > ~ ,  i t  is clear t ha t  on choosing m suffi- 

c ient ly large, we have ~bm > 0, S~ > 0, hence again /z = l,  )~ > 0. :But then we find, as 

before, tha t  a t  most  n among the vectors (3.19) ma y  be non-zero. For sufficiently 

large m, this conclusion contradicts  our  assumpt ion  tha t  M has inf ini te ly  m a n y  non- 

zero columns. 
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