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I. Introduction 

I .  Let  the funct ion w = / ( z )  be meromorphic  in the uni t  circle [z I<  1 and 

denote  by  C~ = C o (/, e t o) the radial cluster set o/ / (z) at the point  z = e i 0 which is defined 

as follows: a E C e ( / , e  i~ if there is a sequence r l < r  z < . . . < r n < . . . ,  l i m r ~ = l ,  such 
n - - ~  

t ha t  l i m / ( r=  e t~ =a .  Evident ly  Ce(], e t~ is a closed non -empty  set and is either a 

single point  or a continuum. In  the former case we say tha t  / ( z )  has a radial  limit 

at  the point  z = e ~~ 

If  we donote  by  ~)(q) the chord of the uni t  circle through a point  z =  e ta and in- 

clined at  the angle ~v, - ~  < ~v < ~, to the r ad iu s  through e ~~ positive angles being 

measured to the r ight  of the radius and negative angles to the left, we define the 

chordal cluster set C~(q~)(/, e t~ in a similar way. We say tha t  a EC~(~)(/ ,e t~ if there 

is a sequence t l > t 2 >  ""  > t n >  " " ,  lim t = = 0 ,  such tha t  l i m / ( e t ~ 1 6 2  Again, 

Cq(r tO) is either a single point  or a cont inuum, and Co(o)([,e t~ is the radial 

cluster set (:c, (/, et o). 

Similarly, let A t)e an angle in the uni t  circle formed by  two chords passing 

through e t~ and define the corresponding angular  cluster set Cz  (/, e~~ We say tha t  

a EC, j ( / ,  e t~ if there is a sequence of points {z , }  contained in A such tha t  lim z n = e  t~ 

and l i r a / ( z , ) = a .  Again, C d ( / , e  ~~ is a closed non-empty  set and is either a single 

point  or a continuum. 1 Further ,  if zl x_= LJ 2 then plainly Ca, (/, e ~~ =- Cz,(/, et~ 

2. We now define the o~tter angular  cluster set 2 of /(z) at  the point  z = e  t~ as 

the union 
C~ (/, e ~ 0) = LI C~ (I, e ~ 0) 

A 

1 This is the nota t ion introduced in COLLINGWOOD and CARTWRIGHT [ 5 ] ,  1 ). 139. Generally, the 

no ta t ion  we use is either taken from tha t  paper,  which will be cited hereaf ter  as C-C, or is derived 

f rom it h~ an obvious  way. A different convention has  been adopted by  Japanese  authors .  (Numbers  

in brackets  refer to the list of references a t  the end of the present  paper.)  
The connectivi ty of CA and o ther  cluster  sets on locally connected sets can be es tabl ished by  

ad hoc a rgumen t s  (cf. C -C, pp. 90-92). The following general topological method,  which pu t s  the ma t t e r  

in a few lines, I owe to Professor WILFRED KAPLAN. Let  Dt be the set of values taken by  ] (z) in the inter- 

section of ~ with the disc e t 0 _  z < t. Then,  wri t ing Dt for the closure of Dt, an equiva lent  defini- 

tion of C A ( / , e  t0) is CA(/,e tO)= N D t  n, where tn'->O as n -->oo. Since Dt is connected for all t it 
n 

follows by  a well-known theorem (see, for example,  I-IAUSDORI~F, Mengenlehre, p. 163, X V I I I )  t ha t  

CA (] e tO) is connected. 

GROSS [6] used the te rm innere Hdu]ungsbereich for this  set. 
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t aken  over all angles A! between pairs of chords th rough z = e  ~~ CA(/, e t~ is a non-  

emp ty  F . .  

We can clear ly  define the cluster set of /(z) a t  z = e  ~~ with respect to any  curve 

in Ix I<: 1 ending at  this  point ,  or a ny  c o n t i n u u m  or any  sequence having this  po in t  

as a frontier  or l imit  point .  Bu t  these defini t ions will be in t roduced as they  are 

required.  

The cluster set C([, e ~~ of ](z) at  the point  z = e  ~~ is a famil iar  not ion1 defined 

as follows: a E C ( [ , e  ~~ if there is a sequence of poin ts  {zn} conta ined in the un i t  

circle such tha t  lim zn=e  i~ and  lira ] (z~)=a.  C([, e i~ is ei ther a single point  or a 

closed con t inuum.  

We shall say t h a t  a cluster set or un ion  of cluster sets is degenerate if it  consists 

of a single p o i n t ;  otherwise it  is non-degenerate. 2 We denote the  complements  of 

ch,ster sets with respect to the closed plane or the sphere on which the plane is 

projected stereographically by  C C 0, C Ca, C CA, "" etc. A cluster set or un ion  of cluster 

sets whose complement  is empty ,  so t ha t  it covers the whole w-plane or the whole 

w-sphere, we shall call total; and  one whose complement  is no t  e m p t y  we shall call 

st~b-total, 3 the degenerate cluster sets being a sub-class of the sub- to ta l  cluster sets. 

3. The classical Theorem of  F a t ou  4 states tha t  i] ](z) is regulclr and bounded in 

, < ~ - ~  [or ]z]~. l  then lira [(z) exists uni]ormly as z-~e ~~ in the angle ]arg ( 1 - z e - ~ ~  2 

all ~ > 0  and p.p. on the circum[erence I z I:: 1. T h a t  is to say, [(z) has an  (outer) 

angular  l imit,  and  therefore also a radial  l imit  p.p.  I t  was subsequent ly  proved 

by  R. N e v a n l i n n a  t h a t  the same proper ty  holds in  the  more general case of a 

meromorphic  funct ion [(z) whose characterist ic T(r ,  [) is bounded.  

The companion Theorem o] F and M.  Riesz states t ha t  i[ !(z) is regular and 

ounded in I z I< 1 and has the same radial limit a, that is to say, i[ Ca([, e t~  ]or 

a set o[ points e ~~ o[ positive measure on I z l =  l, then [(z)F---a. This theorem was also 

extended by R. Nevan l inna  to meromorphic  funct ions  of bounded  characteristic,  s 

Notation of C-C, p. 120. 
2 Cf. WHYBURN, Analytic Topology, p. 30. 

These notions, like that of the cluster sot itself, go back to PAINLEV~, C. R. 131 (1900), pp. 
487-492, who spoke of singularities of a function as being points of complete or incomplete indeter- 
mination. We avoid the word "complete" because of its other uses in set theory 

4 We use the notation p.p. to denote almost every.where; and mE  or m (E) to denote the measure 
of a set E. 

R. NEV~,NLIN~., Eindeutige analytlsche Funktionen (1936), pp. 190-197. Cited hereafter as 
E.A.F. 
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4. These famous theo rems  have  been deepened  and  e x t e n d e d  in a v a r i e t y  of 

ways  and  have  given rise to  wha t  is now an extens ive  theory .  An  i m p o r t a n t  gener- 

a l i sa t ion  of F a t o u ' s  Theorem for an unres t r i c t ed  meromorph ic  funct ion  is due  to  

Plessner .  To s ta te  the  theorem,  and  for subsequent  deve lopments ,  i t  is convenien t  

to  in t roduce  some fu r the r  def in i t ions  and  technica l  te rms.  We shal l  call a po in t  z = e ~~ 

a Fatou point /or ](z) i/ CA(l, e i~ is degenerate and i/ l im /(z) exists uni/ormly as 

z-~e i~ in any angle A between chords through e~~ and  the  set of F a t o u  po in ts  f o r / ( z )  

on the  circumference I z i = 1 we shall  denote  b y  F (/). 1 We shall  call z = e t 0 a Plessner 

point /or /(z) i/ CA (/, e ~~ is total /or every angle A between pairs o/ chords through d o 

however small the angle may be; and  the  set of Plessner  poin ts  for /(z) on [z l= 1 we 

shal l  denote  b y  I ( / ) .  Anothe r  no t ion  t h a t  will be useful  to  us is t h a t  of a Fatou 

arc /or /(z). This is def ined as an arc  of the  circumference I z l =  1 which is an  open 

arc  of the  f ront ie r  of a s imply  connected  J o r d a n  domain  in ] z l <  1 in which e i ther  

[(z) or, for some a ~ ,  1 / ( / ( z ) - a )  is bounded .  I t  follows a t  once from F a t o u ' s  

Theorem,  b y  conformal  mapping ,  t h a t  F ( / )  is p.p. on a Fatou arc. 2 

The theorem of Plessner  referred to above  is 

Plessner 's  Theorem A.3 I /  /(z) is meromorphic in ]z ] < 1, then almost all points o/ 

I z l=  1 belong either to F(])  or to I ( / ) .  

We note  t h a t  I(]) ~ _ C F( / ) .  4 Indeed ,  a Plessner  po in t  is in an  obvious  sense the  

ant i thes is  of a F a t o u  point .  

Fo r  a bounded  funct ion,  I ( [ )  is e m p t y  and  the  theorem reduces  to  F a t o n ' s  

Theorem.  

A second theorem of Plessner  general ises  the  Riesz Theorem in a s imi lar  way.  

This  theorem is 

P l e s s n e r ' s  T h e o r e m  B. 5 I /  /(z) is meromorphic in [ z [ <  1 and i/ ](z) has the same 

outer angular limit a, that is i[ C~(/, e~~ /or a set o/ points e t~ o/posit ive measure, 

then [ ( z ) ~ a .  

i Notat ion and terminology of C-C, p. 95. 
2 Cf. C-C, p. 98. 
a PLESSNER [10], p. 220. Plessner states his theorem in the s l ightly weaker  form wi th  the set 

(et 0} for which CA (f, e ~ 0) is degenerate in place of the set F (/) for which the angular l imits CA (t, e ~ o) 
are also uniform. His  argument,  however,  actual ly  proves the theorem as we  state  it here (arid as it 
is stated in C-C). It  will  be noted that  C A (], e t 0) degenerate does not  necessarily imply  that  lira ] (z) 
exists  uniformly in every Stolz angle • at e ta as is the ease if e teE F(]). 

4 For sets on the circumference I z I = 1 the notat ion C of course denotes  the  complements  w i th  
respect to that  space. 

6 P L ~ S S ~ R  [10], p. 224. This theorem was  first proved for regular functions by  PRXVALOFF 
(see BI~BERBACH, Funktionentheorie, vol. II, 2nd ed.,  p. 158, or L v s I ~  and  PRIVALOFF [8], p. 164). 
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I t  has been shown by  counter  examples 1 t ha t  radial  l imits cannot  be subs t i tu ted  

for outer  angular  l imits  in this theorem. To prove a uniqueness  theorem of this k ind  

for radial  l imits a more s t r ingent  condi t ion mus t  be imposed on the set of points  e ~~ 

at  which the l imit  is a t ta ined.  Lusin  and  Privaloff  were the first to s h o w  the signi- 

ficance of sets of category I I  2 in this  problem. I n  order to s ta te  their  theorem we 

require the following defini t ion.  A set E is said to be metrically dense in (or on) an 

interval :r i/, given any sub-interval fl c ~, tile intersection E ~ fl is el positive measure. 

For  an open in terva l  this  is equivalent  to saying tha t  E is metrical ly dense at  every 

point  of the interval .  3 

We can now sta te  the  

Theorem of Lusin and Privaloff, ~ I[  [(z) is regular in I z l <  1 and ha,~ the same 

radial limit a, i.e., i /  C~([,e~~ /or a set ~ ( 0 )  o/ points z = e  ~~ ~a(O)  being both 

metrically dense and o] category I I  on an arc ~ of ] z ] = l ,  then [ ( z ) ~ a .  

More recently,  in 1939, F. Wolf 5 proved a related theorem which we state in 

language of cluster sets as follows: 

WoiI 's  Theorem. Suppose that /(z) is regular in [z I< l and that there is a set 

~ ( 0 )  of points z = e  ~~ "re(O) being a Go dense on an arc Qr of [ z l = l  , such that 

~ E C  Cq(/, e ~~ /or all e~~ E ~ ( O ) .  Then i/ there is a number a r  ~ such that aEC(,( / ,  e l~ 

p.p. on :~, we have ] ( z ) ~ a .  

5. By combining the ideas in the proofs of these last two theorems we prove 

a new theorem, no longer restricted to regular  functions,  which contains  them both. 

This  is Theorem 1. of the present  paper.  I n  addi t ion  to the known theorems of 

Lusin  and  Privaloff  and  of Wolf, which emerge as corollaries, Theorem 1 leads to 

new results on the coverage of the radial  cluster sets of / (z)  on a sufficiently exten-  

sive set of points  of the circumference I zl = 1. The typical  result  is Theorem 2. This 

in t u rn  leads to the in t roduc t ion  of a new notion,  namely  tha t  of the set, which we 

denote by S (/), o/ points z = e t o at which the radial cluster set CQ (/, e t o) is total, and  the 

inves t iga t ion  of its properties. 

1 LusIN and PRIVALOFF [8] ,  pp. 183-185. 
2 Sets of the first and second categories are called of category I and of category II  respectively. 
a Cf. HoBsoN, Theory o] Functions o/ a Real Variable, vol. I, 2nd ed., pp. 178-179, for the 

definition of a set metrically dense at a point. A set metrically dense on an interval is called by 
LusI~ and PRXVALOFF (I.c.p. 187) rdduit on that interval. 

LusI~ and PRIV~.LOFF [8], pp. 187--1~8. 
i F. WOLF [13]. 



170  E . F .  COLLING'~V00D 

This set S(/)  is the  an t i thes i s  of the  set a t  which /(z) has a r a d i a l  l imit ,  which 

l a t t e r  is the  set t h a t  has  h i the r to  been  mos t  closely s tud ied ;  and  the  re la t ionsh ip  

1)etween the  two sets mav  be expec ted  to  be analogous  to  t h a t  be tween  I ( / )  and  F (/). 

There is no simple re la t ion  be tween S(/)  anti  I(/) ,  such as inclusion of one in the  

other .  We prove,  however,  t h a t  S(/)  and  I ( / ) a r e  topologica l ly  equ iva len t  in the  

sense t h a t  t h e y  differ  only  b y  a set which is of ca tegory  I on the  c i rcumference 

I z l =  1 (Theorem 5) and  t h a t  if e i ther  is dense on an  arc  :r of the  c i rcumference then  

bo th  are res idual  on ~ (Theorems 3, 6 and  7). We  thus  ob ta in  exis tence theorems  

for S( / )  and  I ( / )  in t e rms  of one ano the r  and ,  in v i r tue  of Plessner ' s  Theorem A, in 

t e rms  also of the  set F(/).  We can prove,  for example  (Theorem 9), t h a t  for the  

modu la r  funct ion  /~(z) def ined in the  circle I zl < 1, S(/e) is res idual  on l ul = 1. 

Al though  our  resul ts  are  s t a t ed  for the  most  p~r t  for r ad ia l  c lus ter  sets our  

me thods  are equa l ly  appl icab le  to  chordal  or  more  general  cluster  sets, and  the  bas ic  

lemmas  are proved  i H a  form suff ic ient ly  general  to y ie ld  these extens ions  of the  ma in  

results ,  the  fo rmula t ions  of which are obvious .  

By the same n~etho(ts we prove a somewha t  s t ronger  form of a recent  theorem 

of ) Ic ier  on the  d i s t r ibu t ion  of the  chords a t  a given Plcssuer  po in t  on which the  

chordal  cluster  sets arc to ta l .  This resul t ,  which is Theorcm 10, does not ,  howcver,  

es tabl ish  the  exis tence of any  po in t  z - - e  t~ a t  which the rad ia l  c luster  set or a chordal  

cluster  set iu a givc,l  d i rcct ion is to ta l .  I t  is Theorem 6 t h a t  is the  exis tence theorem 

for such points .  

F ina l ly ,  for completeness,  and  a l though  it does no t  accord s t r ic t ly  wi th  the  t i t le  

~)f this  paper ,  we give a theorem on the  dis t r i t )ut ion of the  to ta l  l inear  cluster  sets  

of ~t uniform funct ion a t  au isolate(l essent ia l  s ingular i ty .  This  is Theorem I I .  I t  is 

an obvious analogue  of Theorem l{) and  is provc(l  in the  same way.  

II. A general theorem on linear cluster sets 

6. We begin by  proving as a l emma  wha t  a m o u n t s  to a genera l i sa t ion  to mcro-  

morph ic  funct ions  and  to l inear,  bu t  no t  necessar i ly  radia l ,  c luster  sets of the  pre-  

l imiuary  pa r t  of Wolf ' s  theorem.  The  proof  der ives  p a r t l y  from Wolf  and  p a r t l y  

from Lusin and Privaloff .  We shall use 7~/(0) anti  7/(0) t h roughou t  to  denote  sets  

of poin ts  e t~ on the  circumference l zl = 1. 

L e m m a  1. Suppose that ](z) is meromorphic in I zl < 1 and that /or some ]ixed 

~, - 2  <q J<2,  and some complex number a, /inite or in]inite, there is a set ~ ( 0 )  o/ 
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points z = e ~~ o/ category I I  o n  a certain arc ~ o/ the circum/erence [z I = 1 and such that 

aE CCe ( r  ~~ /or all e*~  Then the arc cr contains an arc fl such that (i) fl 

is a Fatou arc /or [(z) in the neighbourhood o/ which either [(z) or 1 / ( [ ( z ) - a )  is uni- 

/ormly bounded according as a =  ~ or a #  ~ ,  and (ii) ~ ( 0 )  is dense on ft. 

I t  is sufficient to prove the lemma for the case a = ~ since otherwise we have 

only to  make a linear t ransformat ion  of /(z)  which carries a into ~ .  

Denote by  A , ( T ,  N,  O) the set of points  e *~ 0_<0_<2,~, such that ,  for all values 

of t in 0 < t < T ,  
I/(e~~ - t e ~ ) ) l < N .  

T~ > T2 > ... > T~ > ... , lira T~=0.  
Now take 

Then 

Also, for any  ~/> 0, 
A ,  (T~, N, O)~_A,(T,,+1, N,  0). 

A r  N,  O)c_Ar N-§  O) 

so tha t  if we take N 1 < N 2 < - - - <  N~ < . . . ,  lim N, = ~ ,  we have 

while plainly 
A , = A ~ ( T ~ ,  N~, O)c_Ar247 N,,+~, 0)--A,,~t, 

7~ (o) = ( O A,,) n or 
v 

( l)  

Since, by  hypothesis,  ~ ( 0 )  is of category I I  in ~ it follows that  at  least one 

of the sets A,,(1 a, say Ak(1 :r is of category I I  ill :r There is therefore an arc fl___:( 

such tha t  Ak is (lense (m /~; and, since A ~ _ ~ ( O ) ,  the set ~ ( 0 )  is <lense on ft. 

For  e ~~  and for all 0 < t < T k  we have 

I/(e~~ 1 - t e'~)) I < N~ ; (2) 

and, since Ak is dense on fl, it follows from this tha t  the inequali ty 

Jl(z)i<_w~ (3) 

is satisfied th roughou t  the annular  quadri lateral  B (not containing the or ig in)def ined 

by  the arc fl, the two chords at  the end points of fl inclined at  the angle q to the 

respective radii at  these points, and the circular arc [ z l = 1 - Tg cos q joining the two 

chords. For  every interior point  of B is, by  (2) and the fact  tha t  A~ is dense on fl, 

a limit of points at  which [ / ( z ) ] < N k ,  so tha t  /(z)  can have no poles in B and is 

therefore continuous at  every interior point  of B, and (3) is therefore satisfied a t  

every  such point.  This completes the proof of the lemma. 
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For  ~ = 0  the chord 9(q~) th rough  e ~~ becomes the radius at  this point  and 

Ce(o)=Ce(/ ,e i~ is the radial  cluster set at  z = e  ~~ Since in the lemma radial  and 

chordal cluster sets are on exactly the same footing we shall as a rule l imit the later 

applications of the results of this section to radial cluster sets, except where the 

chordal cluster sets are necessarily involved in the s ta tement  of a theorem, leaving 

the corresponding generalisation for chordal cluster sets to  be understood.  

As a first application of Lemma 1 we obta in  our general theorem, namely  

7g 
Theorem 1. I /  /(z)  is meromorphic in [z[ < 1 and i/, /or a constant q~, - ~ < q~ < 2 ,  

there is a set ~ ( 0 )  o/ points z = e  ~~ o/ category I I  on an arc :r o/ the circum/erence 

] z [ - 1  such that the intersection [1 CC0(~)(/, e ~~ is not empty and i/, /urther, there 
ei 0 ~ ?M (0) 

is a number b, /inite or in/inite, and a set ~ ( 0 )  metrically dense on ~ such that 

bE n Co(,t~((/,et~ then / ( z ) ~ b .  
e t 0 ~ }l(O) 

By Lemma 1, :r contains an arc /~ which is a Fa tou  arc fo r / ( z ) .  Therefore, by  

Fa tou ' s  theorem, F(J)  is p.p. on fl and so, since m(~l(0)N f l ) > 0  by  hypothesis,  it 

follows tha t  
(m (~  (0) n F (1)) ~: m (~  (0) n f ln  F (1)) > o. 

Now, for e t~ E F (/) we have CA (/, e t~ = Cr (f, e t~ and, by  hypothesis,  Co(q, ) ([, e ~ o) = b 

for el~ E ~ (0) N F (1). Since m (TI (0) N F (f)) > 0 it now follows from Plessner 's  Theorem 

B tha t  / ( z ) - : b  and the theorem is proved. 

Corollary 1. I /  /(z)  is meromorphic in I z l <  1 and there is a number b and a set 

~b(O)  which is both metrically dense and o/ category I I  on an arc cr o~ the circum- 

]erence I z I = 1, such that the radial cluster set C o (f, d o) = b for all e t o ~ ~lb (b), then f (z)---- b. 

This is immediate.  We have only to pu t  

(0) = ~ (0) -- ~ (0). 

This corollary extends to meromorphic  functions the theorem of Lusin and 

Privaloff quoted in the In t roduc t ion  (w above). These authors  also constructed 

counter examples which show tha t  their theorem is best possible in the sense that ,  

given the condit ion tha t  ~ ( 0 )  is of category I I  on ~, the condition t h a t  it must  

also be metrically dense on cr cannot  be dispensed with, and conversely. 1 Theorem 1 

must  therefore also be best  possible in a similar sense. 

1 LusIN and PRIVALOFF [8] ,  pp. 185-186. 
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7. We conclude this section with a remark on the extension of L e m m a  1 and 

its consequenses to more general linear cluster sets. Consider a curve 2 in I zl < 1 

tending to the circumference I z l =  1. The "end"  of 2 m a y  be either a point  or an 

arc of I zl = 1 or, as in the case of a spiral, the whole circumference. For  simplicity 

we m a y  assume tha t  ). has only one point  of intersection with every circle I z I = r < 1 so 

that ,  on 2, I zl is str ict ly increasing as z tends to the circumference ] z l - 1 .  To define 

the orientat ion of 2 we m a y  take the a rgument  00 of any  point  z 0 on 2 other  than 

the origin. By  rota t ion about  the origin through an angle 0 - 0 0  we obtain the 

family {2(0)} of rota t ional  t ransforms of 2=2(00) ,  the original curve. Evident ly ,  as 

0 sweeps out  an interval  the curve 2(0) sweeps out  a domain in I z [ < l  whose frontier 

includes an arc of the circumference I z [ =  1 which may  be wholly or par t ly  inaccessible 

f rom the domain.  The cluster set C~(o)(]) of /(z) on a curve )L(0)is defined as 

follows: a E C~(0)(/) if there is a sequence of points (z~} on ,~ (0) such tha t  lim I z~ I = 1 

and l i m / ( z n ) = a .  C~(o)(/) is again a non-empty  closed set which is a cont inuum if 
n - - ~  o o  

it is non-degenerate.  For  a given family of curves (~(0)} the result  corresponding 

to L e m m a  1 is 

Lemma 1 a. Suppose that /(z) is meromorphic in I zl < 1 and that, [or a given 

/amily o/ curves {~(0)~, which are rotational trans/orms o/ om~ another and on w h i ~  

I zl is strictly increasing as z tends to the circum/erence [zl:: l, there is a complex 

number a, /inite or in/inite, and a set F~(O) o/ v~ints 0 o/ category I I  in an interwd 

~r ~ (0, 2~) such that aECC~(o)(/) /or all OEE(O). Then the interval :r contains an 

interval ~ such that (i), according as a==r or a r  either / ( z ) o r  1 / ( [ ( z ) - a )  is 

uni/ormly bounded in that part o/ the domain swept out by 2(0) as 0 sweeps out the 

interval fl which lies in a certain annulus r o < [z I < l, and (ii) l~ (0) is dense in ft. 

Again, there is no loss of general i ty in taking a =  ~ .  For  a given value of 0 

every point  of ).(0) is determined by I zl, z E).(0). Denote by L ( T ,  N, 0) the set of 

- -  ~ Z ~ values of 0 , 0 ~ 0 ~ 2 ~ ,  such that ,  for all values of zE).(0),  where 1 T I ,]  1, the 

inequali ty I/(z) l < N  is satisfied, Taking T I > T  2 > . . . > T v > . . . ,  lim T~=0 ,  and 

N 1 < N  2< ... < N~ < . . . ,  lim N~= ~ ,  we have, as before, 
r - ~  o o  

and 
L~=L(T~, N~, O)~_L(T~+I, Nv+l, O)=L,,+1 

s  = ( U  Lv) N a. 
v 

Since s  is, by  hypothesis,  of category I I  in :~, at  least one of the sets Lk N a is 
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of category l I  in :r and is therefore dense in a sub-interval  fl_~a. The proof now 

proceeds exact ly as for L e m m a  1 and need not  be repeated. 

The result can easily he generalized by rclaxing the restriction tha t  I z], z E).(0), 

is one valued for a given 0. 

I l L  A theorem on the coverage o f  the radial cluster sets 

8. As a fur ther  consequence of Theorem 1 we prove 

Theorem 2. I[  /(z)  is meromorphic in I z l <  1 and i/ there is a set ~ ( 0 ) o /  points 

z = e  '~ metrically dense on an arc ~ o/ the circum/erence [zl = 1 such that N Ce([, e ~~ 

is not empty, then either given any set ~ ( 0 )  o/ category I I  on ~, the union LJ C~([, e ~~ 
m (0) 

is total, or /(z) is a constant. 

Suppose tha t  I,J Ce(/, e ~~ is sub-total  so tha t  its complement  I"1 C CQ(/, e ~~ is 
m (0) r~ (0) 

not  empty .  Since ~ ( 0 )  is of category I I  on a the condit ion of Theorem 1 is satis- 

fied and it follows tha t  if there is a number  bE N Co(/,el~ t h e n / ( z ) ~ b .  This proves 
(O) 

the theorem. 

We denote by W(/) the set of (Weierstrass) points z = e Is for/(z), i.e. the points 

e ~~ for which C (/, e t~ is total. 1 Theorem 2 supplements the following quite trivial 

ot)servation, namely,  t ha t  i/, /or a set ~ (0) metrically dense on ~, N C~([, e t~ is not 
~(0) 

empty, then ~ - W ( ] ) .  For  if e t~  W(/) so tha t  C C ( / , e  ~~ is not  empty ,  then e ~~ 

is contained in a Fa tou  arc fl; an(l, for e~~ ~(0) ,  we can take f ig: r  Bu t ,by  Pless- 

net 's  Theorem B, we must  have m( ) l (0 )N f l ) = 0 ;  for otherwise there is a subset of 

F ( / )N  fl of positive measure in which the angular  limit of /(z) is constant ,  so tha t  

[(z) is a constant .  This contradicts  the hypothesis  t ha t  ~ (0 )  is metrically dense on 

:r and our assertion is proved. 

An immediate  corollary of Theorem 2 is 

Corollary 2, I /  / (z) is meromorphic in I z [ < 1 and i / a  E Cq (/, e ~ o) /or all e ~ ~ E ~ (0), 

where ~ (0 )  is metrically dense on an arc ~ o] [z I= 1, then either C ~ ( O )  is residual 

on r162 and [.J Ce(/, e t~ is total, or / ( z ) ~ a .  
C~(O) 

For, if ~ (0 )  is of category I I  on ~, then / ( z ) ~ a ,  by  Corollary 1. 

This corollary is i l lustrated by  a number  of known examples, as for instance 

i C-C, p. 137. 
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Koenigs '  funct ion K (z ) l ,  a funct ion  co(z) cons t ruc ted  by  Lus in  and  Pr ivaloff  2 and  a 

funct ion  /(z) recen t ly  inves t iga t ed  b y  Bagemihl ,  Erd6s  and  Seidel.  a I n  all  these 

cases there  is a r ad ia l  l imi t  a = C o ( / , e  ~~ in a set T/(0) which is p.p.  on the  c i r c u m  

ference;  and  i t  is easi ly  verif ied t h a t  the  c omple me n ta ry  set C ~ (0) is in each case 

res idual  on the  circumference.  

IV. A property of  the set l ( f )  

9. We shall  prove t h a t  if the  set I ( / )  of Plessner  poin ts  of /(z) is dense on an 

arc  :r then  i t  is also res idual  on t ha t  arc. To do this  we require  two fu r the r  l emmas  

to  supp lemen t  L e m m a  1. F i r s t  we prove  

H 
I /  /or 8sine % 

- < ~ < 2 
L e m m a  2. l(z) is meromorphic in I z l<  1 and il, fixed 2 

there is a set ~1(0) o~ category I I o u  an arc ~ o I the circum/erence I z l=  1 such that 

Co(q,)(/,e ~~ is sub-total /or all e*~ ETtl(O), then there is a sub-set ~/0(0)_~]ff/(0), also o/ 

category I[ on a, such that ['1 C Co(r e*~ is not empty. 
~o 0 

If  (~,(~,)(/, e ~~ is sub - to t a l  we can f ind a circle conta ined  in C (',,(q.)(/, e i~ since 

this  is an ()pen set. 

Now suppose  the  w-plane  to  I)e p ro jec t ed  s tereogral )hical ly  onto  the  uni t  W-sl)here 

so t h a t  a circle in the  phme is p ro jec ted  onto a circle on the  sphere.  A d a p t i n g  

Plessner 's  method ,  we cons t ruc t  on the  sphere a sequence of f inite t r i angu la r  la t t ices  

It, l.z, ...I,,, ... etc., each la t t ice  heing a sub-div is ion  of i ts I)redecessor and  such t h a t  

the  length  of the  longest  side of the  la t t ice  /~ is less than  2 " ,  say.  We denote  the  

ind iv idua l  t r iangles  in the  la t t ice  1, by  d,.~, d,.,. . . . .  d,.r,(,). Denote  by  1' , , (0)the set 

of poin ts  e ' ~  such t h a t  n is the  smal les t  number  for which CU~(,~(I,e t~ con- 

ta ins  the  whole of a t  least  one of the  t r iangles  d,,,., 1 ~ v - ~ m ( n ) .  Then ev iden t ly  

I l l  (0) _c/ '2 (0) c . . .  c 1"~ (0) ~- . . .  and  

m (0)  = U V~ (0) .  
n 

We now sub-d iv ide  the  sets / '~ (0) as follows. We assign to each t r iangle  

d~. 1, d,.2 . . . .  d,. ,,(,) 

all  those values  of e ' ~  (0) for which d ..... l < v <  m (n), is conta ined  in C Cocr (/, el~ 

t C-C, p. 94. 
s LUSlN and PRIVALOFF [8], p. 189. 
a BAOEMIHL, ERD•S and S~ID~L [1], p. 139 ; also J. WOLFF [14] and [15]. 

12-  533807. A c t a  M a t h e m a t i c s .  91. Imprim6 le 28 octobre 1954 
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and we denote the corresponding sub-sets of l ~. (0) by  ~) .... (0), 1 _< ~_< m (n). All bu t  

one of these sub-sets :O .... (0) may  be empty,  bu t  ~t least one of them must  be non- 

empty,  and any  two of them which are non-empty  m a y  have common points. With  

these definitions we evidently h,~ve 

?fl(0)=U U O,,~(0). (4) 

Since ~ ( 0 )  is of category I I  on ~ one at least of the enumcrable set of sets 

~, .~(0) ,  n <  ~ ,  v ~ m ( n ) ,  say :Dj.k(0), mus t  be of category I I  on ~. But,  for all 

ei~ the triangle dj.k is contained in C C q ( o ( I , e  i~ and so, put t ing  ~ 0 ( 0 )  = 

= ~i. ~ (0), the lemma is proved. 

lO. Secondly, We prove 

Lemma 3. I /  /(z) is meromorphic i~ I zl < l and i[ there is a set ~ ( 0 )  o/ points 

z = e i~ satis[ying the conditions (a) that ~ (0) ~_ C I (/), and (b) tt, at ~ (0) is o/ cateqory 

] I  on an arc o~ o/ the circum/erenee t zl==], then there is an arc f l~:r  such that ( i ) /~is  

a F~lto~ arc /or /(z),  and (ii) ~ ( 0 )  is dense o~ ft. 

Fvcry  point  ~ ~  C I ( / )  is the vertex of an angle A (0) iu [z I- :  1 in which the 

angular cluster set C,t(o)(1, e ~~ is sub-total .  Now denote by  E 1 the subset of ~ ( 0 )  

at  each point e ~~ of which there is a A (0) of magni tude  greater  than  ~z/2 such tha t  

('~(0)([,e ~~ is sub-total ,  by  E z the subset of ~ ( 0 )  at  which there is ~ A ( O ) o f  

magni tude greater than ~,'4, hy  En the subset of ~ ( 0 )  at  which there is a A ( 0 ) o f  

magni tude greater  than ~ /2"  in which C',~(o)([,e ~~ is sub-total ,  an(l so on for inde- 

finitely increasing n. Evi( |ently Et g E., ~ _ ... ~_ E ,  ~_ . . . ,  and 

771 (0)= U E.. 
n 

We now proceed to sub-divide each set E ,  into a finite set of subsets as follows. 

(1 - 2 - " )  ~ ") f)ividc the angle -- '2 "~ q) < 2 (1 - 2 on the interior normal  side of the tangent  

to the unit  circle at  e i~ into N ~ = 2 n - 1  equal parts  of magni tude  ~ / 2  n by  drawing 

the chords ~)t =~(q~l), ~2~=ff(q~.~) . . . .  ~2u=~)(q~,v) through e ~~ Then every angle A(0) of 

magni tude greater than  re/'2 ~ and contained in ] z l <  1 mus t  contain at  least one of the 

chords ffl, 02, ..-flu. For  otherwise it must  contain one of the half- tangents at  e f~ 

contrary  to the definition of A(0). We denote by E ... .  l _ ~ v _  < N ,  the subset of En 

for which there is a A(0) of magni tude  greater than  ~z/2" such tha t  C~(o)(f,e i~ is 
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sub-total  and which contains e," Clearly, a point  e ~~ m a y  belong to more than  one 

of the sets En,~. Wi th  these definitions we have 

(0)= U U E .. . .  (5) 
n l ~ v ~ N  

Since ~ ( 0 )  is of category l I  on ~ one at least of the sets E ..... say Ej,k, mus t  

be of category I I  on ~. Consequently,  for all e ~~ E Ej, k, Cr k (/, e~~ which is contained 

ill a sub-total  set C,J(o)(/, e~~ is sub- to ta l ;  and it follows from L e m m a  2 tha t  there 

is a subset )~0 (0)_c Ej, k--~ ~ (0), also of category I I  on :r such tha t  n c c,, k (/, e ~~ 
'm~ (0) 

is not  empty.  I t  now follows from Lemma 1 tha t  there is an arc f i g : r  such tha t  

(i) fl is a Fa tou  arc for /(z), and (ii) ~0(0) ,  and therefore also ~ ( 0 ) ,  is dense on ft. 

The lemma is therefore proved. 

l i .  We are now in a posit ion to prove 

Theorem 3. I /  / (z)  is meromorphie in I z l <  1 and the set I ( [ )  o/ Plcssner points 

o[ / (z) is dense on an  are :r o/ the circum/erence ] z [ ~-= l,  then I (/) is also residual ou ~. 

Suppose tha t  C I ( / )  is of category ] I  on ~. Then, put t ing  ~ ( 0 ) : =  C I ( / )  and 

applying Lemma 3, it follows tha t  there is a Fa tou  arc f l _ ~ .  But,  since evidently 

f l ~ - C I ( / ) ,  this implies t ha t  I ( / )  is not  dense on :r and the theorem is proved. 

As a further  consequcncc of the a rgument  we have 

Theorem 4. I[  [(z) is mcromorp)~ic in [z[ - :  1 elnd i /  on an r :r o/ the circum. 

/er~nce [z[=:l ,  m ( F ( ] ) N a ) = O ,  then F ( / )  is o[ cat~gory I o ,  ~. 

For  F ( / ) ~ _ C I ( / )  so tha t  C I ( / ) N : r  is of category I I  if F ( / ) N ~  is of category 

H ; and this implies tha t  ~ contains a Fa tou  arc/~. Since m (F (f) N :r • m (F (/) N/~) > 0 

this proves the theorem. 

V. The set S(f) 

12. The set S(/)  is defined as the set of points z = e  ~~ for each of which the 

radial  cluster set C~,(/, e t~ of / ( z )  is total.  The definition can obviously be extended 

to chordal or more general linear cluster sets, as for example the set Se(~) of points 

e t~ for each of which Cr e~ t~ is total,  or the set S~(o)(/) on which C~(o)(f, e t~ is 

total.  We shall, however, confine the detailed discussion to  the radial case S ( / )  

since it will be obvious tha t  our  theorems are equally applicable to Sq(~) (/) and,  

under  appropriate  l imitations on ~(0), to  S~(o)(/) also. We first prove 
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Theorem 5. I[ /(z)  is meromorphic in ] z t<  1, t/ten the sets S ( / )  and I(])  di//er 

by a set o[ category I on the eircum/erence I zl = 1. 

We prove first tha t  S ( / ) n  C I ( / )  is of category I. To (lo this, put  ~ ( 0 ) =  

= S (f) n C I (/) and apply Lemma 3 under the hypothesis  tha t  ~ / ( 0 )  is of category II .  

This implies the existence of a Fa tou  arc fl on which ~ (0) is (lense. But  evidently 

no point  of fi can l)etong to S( / )  so tha t  f l ~ - C S ( / )  and ~ ( O )  N fl is empty .  This 

contradict ion proves our ~ssertion. 

Similarly, we prove tha t  C S (/) N I (/) is of category I. Pu t  771 (0) -- C S (/) f / I  (/) 

and apply Lemma 2 under the hypothesis  tha t  ~ (0) is of category I I .  This implies 

the existence of a subset ~ 0 ( 0 ) ~ _ ~  (0) such tha t  n c c ( ,  (/, e is) is not  empty.  Now, 
"me (0) 

applying Lemma 1, it follows tha t  there is a Fa tou  arc fl on which ~ 0  (0), aud there- 

fore also ~ (0), is dense. Bu t  evidently no point  of fl can belong to I ( / ) ,  so tha t  

f l ~ C I ( / )  an(1 we again have a contradiction, since ~ (0)f'l fl mus t  be empty .  The 

theorem is therefore provc(l. 

t3 .  As an imme(liate deduct ion from Theorems 3 an(l 5 we may  state 

Theorem 6. I /  [(z) is meromorphic in [z] - :  1 tlnd t]~e set I ( / )  is dense on an urc 

<x o/ the circumference ]z I l, tl~en S (/)f] I (/) is residual on :r 

Corollary 6.1. I /  m (F (/)N :r then ,S' (/) i.s residual on c(. 

For, by Plcssncr 's Theorem A, I ( / )  is (lense on ~ if m ( F ( / ) N ~ )  ~0. 

Corollary 6.2. I/  I (/) i.~ deJ~se on. ~, then F (]) is o/ category I on ~. 

For ,~ (/) is residual on :r aIl(l ,~'(/)_~ C F (/) st) tha t  C F (/) is residual ou ~. 

This is also a corollary of Theorem 3, since I (/)% C F (]). 

~t~. Theorem 5 shows the sets ,~r and I (])  to be topologically equivalent.  

They  are not, however, metrically equivalent,  as can be shown by known examples. 

For  instance, in the case of the function ~o (z)of  Lusin an(l Privaloff referred to in w 8 

above, co (z) takes the radial limit zero p.p., from which it follows tha t  C~ ' (w)  is 

p.p. But  m F ( w ) : = 0 ,  for otherwise we should have C~ (~, e~~ in a set of points 

e ~~ of positive measure which, by Plessner 's Theorem B, would imply  co (z)---0. There- 

fore I ( w )  is p.p. an(1 hence, by  Theorem 6, S(~o) is residual an(l, by  Theorem 5, 

I (w) is also residual. Thus  in this example m I (co) = 2 ~ and m S (o)) - 0 while I (o~) 

and S (w) are both residual sets. 
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VI. Relations between the sets F ( f ) ,  I ( f )  and S ( f )  

t5 .  A s  counterpar t  to Theorem 6 we have 

Theorem 7. I /  / (z)  is meromorphic in I z l<  1 and the set S (/) is dense on an arc 

~. o/ the circumlerence [ z ! =  1, then S (/) is re,sidual on ~ and consequently S (/)f~ I (/) 

is also residual on ~. 

For, if S( / )  is not  residual on ~ then C S ( / ) 0 ~  is of category I I a n d i t  follows 

from Lemmas  1 and 2 tha t  there is a Fa tou  arc /3~u .  Since, however , /3_~CS( / )  

it follows from this t ha t  S( / )  it not  dense and we have a contradiction. That  

S ( / ) r ) I  ([) is residual folh)ws from Theorem 5. 

This a rgument  also proves tha t  i/ an arc ~ is contained in W (/), then S (/) 0 I (/) 

is residual on ~. For  /3_~CW(/)  so tha t  C W ( / ) 0 ~  is not  emp ty  if C S ( / ) 0 u  is of 

category I I .  

Corollary 7. I[ S (f) is dense on ~, then F (/) is o/ category I on :r 

For I (/) is (lense and the conclusion follows immediately from Corollary 6.2. 

In  the same order of ideas we prove 

Theorem 8. I /  / (z) is meromorphic in [ z l < l  and i/ the set I ( / )  (or the set S (/)) 

is o/ category I on an arc ~r then F (/) is m~trically dense on ~. 

For, C I ( / )  0 :r is residual and hence, by  Lemma 3, every arc ~,_c~ contains a 

F~tou arc /3'; and m (E (/) N /3') :- 0. Hence m (F (]) 0 :r ~ m ( E ( / ) A / f f ' ) > 0 ,  and since 

:r is an arbi t rary  arc in u the theorem is proved. 

Another  metrical relation may  be noted. If  m (S (/)N ~):-: m:r it follows, since 

S ( [ ) _ ~ C F ( f ) ,  tha t  m ( F ( / ) N ~ ) = 0  and hence tha t  m( I ( [ ) f~ac ) :=mct  and I ( t ) ,  and 

also therefore S([),  is residual on ~. On the other  hand, as we saw in the example 

of the function ~o (z), the condition m (I (/)N 0r m~(, while it implies t ha t  I (/) and 

S (/) are residual, on ~ does not  imply tha t  m (S (/) 0 :r > 0. In  general terms we may  

say tha t  al though S (/) and I (/) are topologically equivalent  sets S ( / ) m a y  be smaller 

than  I (/) by  a set of measure m I ()'). There is no simple relation, such as inclusion, 

between the sets I (/) and S(] )  and no simple metrical relation between them. Bu t  

Theorems 3-8 and their corollaries have led to a number  of relations involving some 

metrical element which m a y  be tabulated as follows: 

For any /unction [ (z) meromorphic in [ z ] <  1 and any arc ~ o/ the circum/erence 

I 1=1, 
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m ( F  (1) n ~)  = 0 

m (I( / )  n ~ ) = m  

[ F ( / ) N  :r is of category I 

~ ' [ S  (/) N :r is residual 

(/) N 0r is residual 

(6 a) 

m ( S  (/) n ~)  = m ~ :~ m ( I  (/) n ~)  = m ~ (6 b )  

I (/)N :r of category I / 
! 

-- [ ~ F (f) is metrically dense on ~. 

! S (/)N :r of category I 

(6 c) 

VII. A theorem on the modular  funct ion  

i6 .  Since a set of category I I  is not  empty  Theorems 6 and 7 are existence 

theorems for the sets S( / )  and I ( / )  under  appropriate  conditions on the set F ( / ) .  

A particular case of interest is tha t  of the modular  function /~ (z) defined in the unit  

circle I z ] <  1. I t  is known tha t  the enumerable set of vertices of the modular  figure 

on thc circumference Iz[ -- 1 are all Fa tou  points1; and it is easily shown tha t  every 

other  point of the circumference is spanned 1)y an infinity of copies of all three sides 

of the fundamenta l  triangle so that ,  for these points c ~~ C,,(/t, e i~ is non-degenerate 

and hence ei~ C F(/~). ] t  follows tha t  F( / t )  is cnumcrable,  so tha t  I(/~) is p i ) . by 

Plessner's Theorem A, and hence, by  Theorems 5 and 6, both I(/~) and N(/~ ) are 

residual on the circumference I z l =  1. We have thus proved 

Theorem 9. For the modular /unction / ~ (z) regulaz in I zl < I the set S (#) o] points 

z - e  ~~ at which the radial cluster set Cq(tt, e ~~ is total is a residual set on I z l = l ;  and 

the s(t I ( # )  o/ Plessner points, which is p.p. on ] z I = l ,  is also residual. 

Recurring to a previous remark (w 12 above), the theorem is also t rue for the 

sets S~(~)(~t), ~ 7e - 2 "< qJ < 2 '  and Sago) (tt) under suitable restrictions on the curvc ). (0). 2 

I t  is known tha t  F ( t t  ) is densc a and I ( t t  ) is p.p. ou [ z [ = l .  We now see tha t  

S(tt) ,  being residual, is also dense on ]z[ = 1. 

1 See, for example, CARATHEODORY [4], p. 275. 
2 For example, if ). has an end point on and is non-tangential to ] z l =  1 while I zl is strictly 

increasing on ).. 
a C C ,  p .  140. 
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Other special cases for which S (/), and therefore also I (/), are residual sets are 

those functions for which F (/) is empty ,  such as the unbounded  regular functions 

which are bounded on a spiral or on a sequence of closed curves enclosing the origin 

and converging to the circumference [z[ = 13 

V I I I .  B e h a v i o u r  i n  t h e  s e t  o f  P l e s s n e r  p o i n t s  

i7 .  We consider the chordal cluster sets CQ(r e t~ of /(z) at a given point  

e ~~ I t  has recently been proved by  Meier z t ha t  the set S (/, 0) of values of 

2~ 7~ 
for which CQ(r e t~ is total  is of category I I  in the open interval - ~  < ~ <  ~-  

Our method is immediate ly  applicable to this problem and gives the stronger result 

tha t  S (/, 0) is in fact  a residual set in the interval. We prove 

Theorem 10. I /  /(z) is meromorphic in ] z ] <  1 and et~ (/), then the set S(/, O) 

o/ values o/ q) /or which C~(~) (/, e t~ is total is a residual set in - 2  <~v< 2 .  

If, for a given value of ~, Ce(~) (/, e I~ is sub-total  we can find a circle contained 

in CCe(v)(/, et~ We again project  the w-plane onto the w-sphere and proceed ex- 

act ly  as in the proof of Lemma 2. Using the same sequence of t r iangular  lattices 

11, 12, ... ln, . . . ,  n - + ~ ,  as in tha t  a rgument  ] 'n (q~) now denotes the set of values of 

in :t ~t - 2 < ~ <  2 such tha t  n is the smallest number  for which CCe(~([, e ~~ con- 

tains the whole of at  least one of the triangles d . . . .  1 ~< J,~ m (n). We assign to each 

triangle d . . . .  l_<v_<m(n)  those values of ~vEF=(q) for which dn.,=_CCc(~)(f, et~ 

Again, all but  one of these sub-sets of Fn (~), which we denote by D~. , (q) ,  may  be 

empty ,  but  at  least one of them must  be non-empty  and any  two of them may  

have common points. We thus obtain the decomposit ion 

c s ( t , o ) = o  U Dn.,(~). (7) 
n l < v < m ( n )  

If  one of the sets On,~ (~v), say Oj, k (~), is of category I I  it follows by  an argu- 

ment  similar to the proof of Lemma 1, which it is not  necessary to repeat, tha t  there 

is an angle ~ contained in - ~ ,  such tha t  ds.k =-- C C~ ([, e ~~ so tha t  C~ ([, e to) 

i LuslN and PRIVALOFF [8], pp. 147-150; BAGEMIHL, ERD6S and SEIDEL [1], p. 144; and VA- 
LIRON [11] and [12], pp. 430-432. Another example is given by BIEBERBACH, 1.C., pp. 152-155. 

2 MEIER [9], p. 241. 
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is sub-total  and consequently e i ~  I ( / ) .  Therefore, if e i ~  (/) every set ~ .... (~) 

mus t  be of category I in - 2 ,  ) , and the theorem follows from (7). 

18. For  any  given value of ~, Theorem 10 does not  of course establish the 

existence of any  point  z = e ~~ at which the corresponding chordal cluster set C0(~)([, e ~~ 

of [(z) is total.  But  we have such an existence theorem in Theorem 6, which, as 

we have already pointed out,  m a y  also be proved for any of the sets So(~)(/) and 

certain of the sets S~co)(/). This leads at  once to the following generalisation of 

Theorem 6. Let  ~t, q)2, "" q~, " " ,  be any  enumerable set of values in the interval 

21: ~ 
<:cp~< al~<l denote by  Sx,,(~) (/) the set CI S e ( ~  (/) so tha t  S~,,(~> (/) is the 

set of points z = e  ~~ at each of which all the chordal cluster sets C,,<+n>(/,e i~ are 

total.  We then have 

Theorem l l .  I /  [(z)  is meromorphic in I z l . :  1 and i/ either I (/) or a set Sq<~)(/) 

~ . 

/~)r some q~ in the open interval - 2 : q)':: 2 as dense on an arc :r o / t h e  circum/erenee 

I zl -- l,  then, given any. en~Lmerable .set q~, T2, ".. q)n, ... , where - "~2 < ~~ "~'~ ~2' n - :  l, 2, . . . ,  

the intersection 

'~"-~,~.; (I) n I (1) (s) 

is residual o~ :~. 

For by Theorems 6 and 7, both of which are valid with S~,(~)(/) ill place ~)f 

~ (/), I (/) is residual on ~. Hence, t)y Theorem 6, ;~'(,~q,~)(/) is residual on ~ for every 

valuc of n an(l it follows tha t  the complement  ([.J CS(,(q,,)(/))U C I ( f )  of (8) bciqg 
n 

the union of an enumcrablc set of sets of category I on ~, is of category I on :r 

This proves the theorem. 

Some years ago it was proved by Kierst  and Szpilrajn 1 for regular functions tha t  

in general, i.e. in  a residual sub-space el the space o/ /unctions regular in I zl < 1, the 

cluster set Co(c) (/, e ~~ is total /or all values el  0 and  q). More generally, these authors  

proved tha t  for a class of curves ;t (0) the cluster set C~(o)(/) is total  for all values 

of 0 and in a residual sub-space of the space of regular functions. 2 W h a t  Theorem 6 

J KIERST and SZI'ILRAJN [7], p. 2 9 l .  
A l though  KIERST and SZPILIIAJN only  d i scuss  regular funct ions  in the  circle [ z ~ 1 it is clear 

that  their m e t h o d s  will in fact  prove  that  in the  space of funct ions  meromorphic  in z [ ( 1 the set  
of  funutions ] (z) for which Cg (I) is total  for all curves  ). on which [ z [--> I is residual.  
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and its generalisations, of which Theorems l0  an(1 l l  are examples, now show is tha t  

assertions in the same direction, a l though less sweeping, can be made under  specified 

conditions applicable to individual meromorphic  fimctions. 

I X .  A t h e o r e m  o n  i s o l a t e d  e s s e n t i a l  s i n g u l a r i t i e s  

19. Tile method of w 17 is equally applicable to tile ease of a uniform funct ion 

g (z) having an isolated essential singularity, which we may  assume to be at  infinity. 

We denote by  Ce(~)(g) the cluster set of g(z) as z - > ~  along the ray  ~(~) defined 

by z = r e  ~'p, 0~<r<  oo, and by  C~ (g) the angular  cluster set of g ( z ) a s  z-~oo by 

sequences {z,~} contained in A. With these definitions we prove 

Theorem 12. Suppose that g (z) is non-rational and meromorphic ~or K < [z[ < ~ .  

The necessury a~zd su//icient co~dition that, given an angle ,4 deft'ned by z~ - re  *~', 

q;~ < q~ < q'2, K < r < oo, the angulr duster set C,j (g) o/ g (z) i~ any /J c A shall be total 

is that the set o/ values o/ ~t ~ in qh < ~ :  q~', /or which the radial cblster set C'~,(~, (g) is 

sub.total is o/ category I. 

That  the condition is necessary follows at once hy an at)l)lication to the sets 

(:~,(~,) (g) and S (g), the set of values of q, for which C~,(~)(g) is total, of the a rgument  

()f w 17, l)ractically wi thout  modification. The sequence of t r iangular  lattices {1,~} is 

constructe(l an(1 the corresponding subsets 1',~ (g,) of C S (g) are (h,finc(l as in w 17 

above and ~vc obtain the (leeomposition 

C S (g):: U U ~ ..... (~), (',)) 
1l 1 r : : m u I )  

where ~3 ..... (~) is now the subset of I'~ (q,) for which C(?t,(v, ) (g) contains the triangle 

d ...... l "_; ~,~ m (**). I f  a set ~i. k (~) is of category II  in (g'l, q",) then there is all 

angle A contained in ~l <~~  ~2 such tha t  dj. k c  CC~j (g). The angular cluster set 

U j (g) is thus sub-total  and the necessity of the con(lition follows. For  if every (,',1 (g) 

is total  then all the ]0,,~(q,) must  be of category I and it follows from (9) t ha t  

C $ (g) must  be of category I in (~1, q~2). 

The con(lition is also sufficient. For  if it is satisfied every angle A c A contains 

a ray z = re*", 0 <_ r< oo, on which ('t,(~)(g) is total; and Ca (g), which contains Ue(r 

is therefore total.  

The theorem can evidently be generalised for domains swept out  by a curve 

a (q~) rota ted about  the origin, A ( ~ )  being subject  to suitable restrictions, as for 

example tha t  [z] is str ict ly increasing on A (~). 
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Postscript 

I t  was not  un t i l  a f te r  this  pape r  was f inished t h a t  I became aware  of two ve ry  

recent  papers  of Bagemih l  and  Seidel  [2] and  [3]. The  au thors  there  s t u d y  prob lems  

closely re la ted  to those  s tud ied  here and  in [2] t hey  prove  some of the  same results .  

Theorem 7 (b) a n d  Corol la ry  1 of [2] a re  respec t ive ly  Theorem 1 and  Corol lary  I of 

the  presen t  paper ,  while Theorems 7 (a) and  7 (b) of [2] are special  cases of our  

Theorem 6, and  Theorem 9 of [2] conta ins  our  Theorem 10. However ,  the  me thods  

of these two qui te  i ndependen t  inves t iga t ions  are  suff ic ient ly  d i f ferent  to  give each 

of t hem an i n d e p e n d e n t  in te res t  and  there  are  a considerable  n u m b e r  of resul ts  which 

are  no t  common to both .  In  par t i cu la r ,  our  Theorem 5 and  i ts  consequences m a y  

be ment ioned .  I t  has  therefore  seemed best ,  in spi te  of the  over l app ing  of the  re- 

sul ts  referred to  1, to  leave this  pape r  una l t e r ed  excep t  for the  add i t i on  of this  

br ief  note .  

Lilburn Tower, Alnwick, England 
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